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Chapter 1

Introduction

1-1 Background

Trends in wireless communication

The advancements in the field of digital wireless communication have led to maitingx
applications like mobile internet access, health care and medical monitorivigesgrsmart
homes, combat radios, disaster management, automated highways anigégacttliith each
passing day novel and advanced services are being launched Nemxisting ones continue
to flourish. While traditionally only voice and data communication were possibieless
services have now found applicability in other sectors too including healé) tansportation,
security, logistics, education and finance. For example, tele-medicinerdarremergent and
easy-to-access health care at distance. Through rural conneg@atyle living in remote places
in developing/under-developed nations can be given access to gabty @aducation via long
distance learning programs. In the era of open course ware (OCW)ahiprove to be a
boundary breaker in spreading top quality educational content to $tubo hitherto might not
have access to them. Demand for wireless services is thus expected tmdhexforeseeable
future.

However, with increasing popularity of the wireless services the requirtesnan prime re-
sources like battery power and radio spectrum are put to great testexkorple, currently
most spectrum has been allocated (seelfify(a), and it is becoming increasingly difficult to
find frequency bands that can be made available either for new seoriteexpand existing
ones. Even as the available frequency spectrum appears to be fullgiedca surveyl] con-
ducted by the American regulatory body Federal Communications Commis<i) (R 2002
revealed that much of the available spectrum is underused most of thelfineng study L]
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also showed that only 20% or less of the spectrum is used and that spexingestions are
more due to the sub-optimal use of spectrum than to the lack of free spgsteerfig.1.1(b).
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FIGURE 1.1: lllustration of sub-optimal utilization of Spectrurta) Frequency Allocation in

the region 3-6 GHz. (b) Actual spectral utilization in therea3-6GHz band. Measurements

taken in an urban area at mid-day with 20 KHz resolution owéne span of 50 microseconds
with a 30 degree directional antenna [1].

Concomitant with the growth of wireless services is the increase in the voluda¢atxchanged
by a factor of about 10 every 5 years following Moore’s law. For exiamihe average mobile
broadband connection in the year 2009 generated a traffic of 1.3 dgégatsr month (equivalent
to about 650 MP3 music files). This number is expected to grow to 7 gigabitesffic per
month (roughly equivalent to about 3,500 MP3 music files) by 2014 (tefig. 1.2) [2, 3]. The
ten-fold increase in data volume every 5 years corresponds to anseaéthe associated en-
ergy consumption by about 20% annually. In fact, the current worlcewitergy requirements
of Information and Communication Technology (ICT) systems contributesadyn2% of the
CO2 emissions, a figure comparable with the total emissions due to global &ir draabout
one guarter of the emissions due to cars and trucks.

Another emerging trend is the demand for higher data rates as exemplified Infighere
the growth of home bandwidth since the 1970s has been shéwnTpday, UMTS is one
of the fastest solutions on the market that can operate in dispersivememénts at a rate of
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FIGURE 1.2: Global Mobile Data Traffic Growth (Mobile traffic will giv by 39 times from
2009 to 2014). Notations in the figure: EB: Exa-byt@8'{ bytes), mo: Month, TB: Terra-
bytes (0'2 bytes) P).
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FIGURE 1.3: Growth of home bandwidth since the 1978 [

3.84x10° chips but the rapid progress of telecommunication market has created fonaewer
techniques that can accommodate data rates even higher than this.

The need

There is therefore an emergent need for developing energy effigierty technologies that opti-
mize premium radio resources, such as power and spectrum, even vdridamtpeing a desirable
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quality of service. Of signal interest is in the development of a capable/RadY layer plat-
form that facilitates optimum utilization of energy in addition to guaranteeingsgdedficiency,
adequate coverage and good Quality of Service (Qo0S). Spatially, telypame spectrally lo-
calized transmission strategies which minimize the energy spent to transmit itifmrin@aring
symbols will be crucial towards achieving high energy efficiency. Meegowireless systems
operate under dynamic conditions with frequent changes in the propagateronment and
user requirements. Thus in a wireless environment the system requiremetatsrk capacities
and device capabilities have enormous variations giving rise to signifiesngrd challenges.
All these trends point to an untapped niche available for flexible, reamafide systems that
can adapt to its radio neighborhood.

The means

Existing wireless systems are based on the mathematical precept of Famgfoitm. In com-
parison to the Fourier transform the recently formulated theory of waveftdss many ad-
vantages for the design of sophisticated wireless devices. The suitabiitsvelets for these
applications is in their ability to characterize signals with adaptive time-frequezsolution.

By careful adaptation of the main system parameters according to the radiorenent the
operation of wavelet based radios can be optimized to save valuable eadiorces.

1-2 Wavelet transform as a tool for extending boundaries

1-2-1 Wavelets and wavelet transform

A wavelet is a waveform of limited duration. As the name suggests, wavektall wave-
forms with a set of oscillatory structures that is non-zero for a limited perfotinee (or
space). The wavelet transform is a multi-resolution analysis scheme w&heénput signal is
decomposed into different frequency components with each compondigdstuth resolutions
matched to its time-scales. The Fourier transform also decomposes signatgeim@ntary
waveforms but the bases used are trignometric functions. Thus, wieemants to analyze the
local properties of the input signal, such as edges or transients, thielRoansform is not an ef-
ficient analysis tool. By contrast the wavelet transforms which usesiiadyg shaped wavelets
offer better prospects of representing sharp changes and lotaidea

The wavelet transform is used in various applications and is finding tresnsnplopularity
among technologists, engineers and mathematicians alike. In most of the tippdicdne power
of the transform comes from the fact that the basis functions of the tnansdre localized in
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time (or space) and frequency, and offer different resolutions iretdemains. These resolu-
tions often correspond to the natural behavior of the process one weaatslyze, hence the
power of the transform. Such properties make wavelets and waveldiomassnatural choices

in fields as diverse as image synthesis, data compression, computeicgraptt animation,

human vision, radar, optics, astronomy, acoustics, seismology, nuoigiaeering, biomedical

engineering, magnetic resonance imaging, music, fractals, turbulemtpusmmath.

While the wavelet transform is thie jurestandard for many signal processing applications, es-
pecially, in the fields of image processing, speech analysis and data ssioprehe technique
has not been extensively applied to the design of communication systems.

1-2-2 Advantages of wavelet transform for wireless commuiation

The motivation for pursuing wavelet based systems primarily lies in the fre¢laey provide to
communication systems designessg]. Unlike the Fourier bases which are static sines/cosines,
wavelet bases offer flexibility and adaptation that can be tailored to satisipgineering de-
mand. This feature is attributable to the fact that the wavelet transform is implechentirely
using filter bank tree structures obtainable from paraunitary filteFsie freedom to alter the
properties of the wavelet and the filter bank tree structure gives thetopy to fine tune and
optimize the modulated signal according to the application at hand.

The benefits of wavelet based radios for research and developfremergy efficient commu-
nication are summarized in the following sections.

a. Intelligent utilization of signal space

The wavelet based systems are realized from tree structures obtaicastagling a fundamental
Quadrature Mirror Filter (QMF) pair of low and high pass filters. The taasion of this tree
structure can be adjusted to come out with an optimum tree structure that twatesous
requirements. The requirements could typically be:

e identification and isolation of time-frequency "atoms" affected by an infedesource
and communicating around the source of interferefige [

o flexibility with time-frequency tiling of the carriers that can lead to multi-rate systems
which can transmit with different rates in different ban@& [ Such a feature can be
exploited in scenarios where the channel characteristics are notranifor

'Examples include JPEG000, an image compression standard and MPERart14 or MP4, a multimedia
container format standard.
2paraunitary filters are a class of perfect-reconstrunction filters whinbrgtes orthogonal bases
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b. Adaptability by customization of wavelet properties

By careful selection of the fundamental filters which greatly influence dresinission charac-
teristics, it is possible to optimize the system performance in terms of the bandaffidtancy,
localization of the transmitted signal in time and frequency, minimization of inter-eymter-
ference (I1Sl), inter-carrier interference (ICI) or peak-to-age-power ratio (PAPR), robustness
towards interference from competing sources. This can also aid intojpgiic communication
(e.g. Cognitive Radio) where unused resources can be cleverly utilized

c. Flexibility with sub-carriers

The derivation of wavelets is directly related to the iterative nature of theletivansform. The
wavelet transform allows for a configurable transform size and hamosfigurable number of
carriers. This facility can be used, for instance, to reconfigure adeares according to a given
communication protocol; the transform size could be selected accordingdbdheel impulse
response characteristics, computational complexity or link quajty [

d. Enhanced multi-access transmission

Wavelets offer a new dimension of diversity called the "Waveform dityérshat can be ex-
ploited to enhance multiple access transmissfijn The wavelet transform generates wavelet
bases which are orthogonal to one another. By designating thesetbadifferent users in
adjacent cellular communication cells, the inter-cell interference can be minimize

e. Reduced sensitivity to channel effects

The performance of communication systems is influenced by the kind of modutatieeme
used. The modulation mode in turn is affected by the set of waveforms Bgeteverly altering

the nature and characteristics of the waveforms used the sensitivity afrtiraenication system
to harmful channel effects can be reducid]]

f. Generic and multi-purpose transceivers

Furthermore, a generic and parameterized wavelet based radio cairhplify the system ar-
chitecture by doing away with multiple firmware, software, drivers which exdly contributes
to reduced power consumption and improved battery life. The radio caedigngéd merely
by altering the parameters instead of adding/removing hardware componénéstransceiver
chain.
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g. Optimal power utilization

While there is no explicit relationship between power optimization and wavefdhasature
and characteristics of the waveform can be altered to suit a set ofeewgnis which can indi-
rectly contribute to a more efficient system resulting in lower requirementsveépand energy.
These criteria could typically be:

e minimization of IS, ICI or PAPR,
e greater tolerance and robustness to time/frequency/phase offsst erro
e robustness towards interference from competing sources,

e possibilities for opportunistic communication (e.g. Cognitive Radio) wheresenhue-
sources can be cleverly utilized.

h. Reduced complexity of implementation

It has been provedLD] that the complexity of the Wavelet systems is by and large simpler than
OFDM systems. A lower complexity also means lower power requirements in tcaigon

of the signal processing algorithms. The implementation of Wavelet systenisecimplified
even further if fast-wavelet transforms are employed.

1-2-3 Application of wavelets for wireless transmission

The wavelet transform holds promise as a possible analysis scheme tiesiga of sophisti-
cated digital wireless communication systems, with advantages such as flexibihiy wans-
form, lower sensitivity to channel distortion and interference and betteraitdiz of spectrum.
Wavelets have found beneficial applicability in various aspects of wiremssnunication sys-
tems design including channel modelling, design of transceivers, datsegpation, data com-
pression, source and channel coding, interference mitigation, signadiding, energy efficient
networking. Fig.1.4 gives a graphical representation of some of the facets of wireless commu-
nications where wavelets hold promi.[
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FIGURE 1.4: The spectrum of wavelet applications for wireless cemication.

1-3 Research goals, original contributions and challenges

1-3-1 Wavelet packet based multi-carrier modulator (WPM)

The promise of wavelets for wireless systems design is exemplified in thigechsgark with
the realization of an orthogonal multi-carrier modulator (MCM) based oreleapackets. Or-
thogonal multi-carrier communication is a modulation format that places indepemdorma-
tion carrying symbols on orthogonal signals. These orthogonal sigreatg@cally equi-spaced
sub-carriers which are modulated to occupy different center fregqegenin traditional imple-
mentations of MCM, such as the Orthogonal Frequency Division Multiplex®igDM), the
sub-carriers are Fourier bases (complex exponential functiongen®g the Wavelet Packet
transform has emerged as an important signal processing tool. Theflradisns in wavelet
packet representation are obtained from a single function called the mathelenthrough scal-
ing and translations. When the scales and translations are dyadic therrgsasia functions are
orthogonal and spahembedded subspacesiof(R) ° at different resolutions yielding a Multi
Resolution Analysis. From the perspective of communication system déisigihas important
and interesting implications -finite energy signald.if{R) can be decomposed into orthogonal
subspaces through a wavelet packet transform or converselynafimn can be combined into

3Wavelet packets are generalized form of wavelets and will be dealt iimdet&hapters 2 and 3.
“The span of may be defined as the collection of all (finite) linear combinations of the elenussS.
Sset of square-integrable functionslin
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mutually orthogonal wavelet packet basis functions in a way that they tinteofere with one
another. Since the basis functions and subspaces are orthogohadfrsietures can be used for
obtaining orthogonal waveforms leading to the idea of WPM.

The pioneering work on applying the theory of wavelets and waveletgtgié@r the design of
multi-carrier modulators was carried out by Lindsdyl][who laid out the theoretical founda-
tions to establish the link between wavelet packets and digital communicationsdishawed
that the entire WPM transceiver structure can be realized with a pair ¢iigate quadrature
mirror filters which satisfy a set of constraints. His idea has since then tagen forward

by other researchers. 1172 and [10], respectively, the authors study few aspects of applying
wavelet and wavelet packet filters for multi-carrier modulation. The degodf WPM data
with Maximum likelihood estimators has been addressed by Sug@ki A preliminary study

of an equalization scheme suited for WPM has been conducted by Gradjagn[15, 16] an
investigation on the performance of WPM systems in the presence of time isffserformed.

In [17] its PAPR performances are analyzed. The advantages of the wae@lgfiolm in terms

of the flexibility they offer to customize and shape the characteristics of thefarans have
been demonstrated ii§-21]. Three use-cases where the waveforms are designed and applied
to optimize the WPM system performance according to specific system delauanitiastrated

in [18-20Q]. In [21], the work of [18, 19 is extended to establish a unifying mathematical frame-
work where the waveforms are designed according to a pre-defiitedacr

1-3-2 Aim and scope of the thesis work

In spite of the developments mentioned in the previous section, existing krgewedwavelets
for multi-carrier modulation is limited and the literature on the topic continues to rerpamse.
This lacuna in available knowledge is a key motivation for this PhD work. Euantbre, in the
effectuation of wavelet packet modulator for wireless systems two funad@mguestions arise,
namely (see figl.5),

a. What are the demonstrable advantages of WPM?
b. What are the challenges in the implementation of WPM?
Answering these two questions form the basis of this thesis work. We eoafirself to the

mathematical modeling and implementation of the Wavelet Packet Modulator (VWP &$ion-
ulation platform.®

6A preliminary implementation of the WPM algorithms on a FPGA/DSP platformaiss attempted.
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FIGURE 1.5: Primary questions handled in the thesis work.

a. Demonstrable advantages

In this work we pursue two main advantages of the WPM system:

1. Design of wavelets:The time-frequency characteristics of the the wavelets can be altered
according to a system specification. Hence, by careful selection ofdhel@is it is possi-
ble to optimize WPM performance in terms of bandwidth efficiency, frequealactivity
of sub-carriers, sensitivity to synchronization errors, PAPR, etcthEtmore, the WPM
can be efficiently implemented with filter banks which make it convenient foicgijpns
related to digital communications.

2. Frequency selectivity of the wavelets:Another advantage of pursuing WPM systems
is in the promise of better confinement of spectra and lower out-of-bagrgjespillage.
This ability is due to the fact that WPM symbols overlap in time resulting in greater
localization in frequency. The signal energy can hence be better ednfiithout leaking
into neighboring bands.

b. Implementation challenges

We consider 2 challenges in the implementation of WPM, namely,

1. Performance under loss of synchronization.

2. Peak-to-average-Power (PAPR) ratio performance.

In fig. 1.6 these areas of research have been enlisted in the form of puzzle-pEseh piece
in the puzzle represents a research challenge that has to be handledhe aittualization
of the WPM system. The challenges are ordered in 5 columns. The firstdlumugs list
the implementation challengetgms1 to 10). Column 3 enumerates important advantages of
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FIGURE 1.6: Pieces of the Puzzle - realizing the WPM system.

wavelets that have to be demonstratiéenis11 to 15). Column 4 names some of the auxiliary
issues lfems16 to 20) that have to taken into account. In column 5 the issues related to the
practical realization and deployment of the WPM systéem{s21 to 24) are listed.

We would like to emphasize here that not all topics listed above have beemnedoin this
thesis work. For example, channel modelirigerh 8), synchronization of transceivergegm
10), multiple access communicatioliefm 15), standardization issuekgm 21) and Proof of
Concept [tem 24) have not been taken up. Furthermore, some of the topics have &edied

in detail while others have been treated only preliminarily. Various shadesldfave been used
in fig. 1.6to indicate the degree to which the topic has been covered in this dissertatipn. O
the radio transmission (physical layer) challenges have been corsidere

1-3-3 Specifics of the thesis work

In this section we explain in more detail the various activities carried out inrémeework of
the PhD (as depicted in fid.6).
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a. System implementation on computer platform

A simulation setup in MATLARCfor the implementation of the WPM transceivers was estab-
lished. (temsl, 2, 18 and 19 in figl.6).

b. Study of loss of synchronization (Chapter 4)

The performance of the proposed WPM system under loss of time, fiegue phase syn-
chronization was evaluated. The mathematical expressions for integrdaterference (ICI)
and inter-symbol interference (ISI) in WPM transmission were derijkeims3, 4, 5 and 7 in
fig. 1.6)

c. Evaluation of Peak-to-Average-Power Ratio (PAPR) performace (Chapter 5)

The PAPR performance of the WPM system was analysed. Two mechaniseguie the
PAPR in WPM transmission were devisette(n9 in fig. 1.6)

d. A spectrum estimator based on wavelet packets (WPSE) (Chagt 6)

An investigation of wavelet packet transform as a viable spectral dadba was conducted.
The main attraction for wavelet packets is the trade-offs they offer in tefisetisfying perfor-
mance metrics such as frequency resolution, side lobe suppressioararte of the estimated
power spectral density (PSD). The performance of the system wham&s@through simulation
studies. The results of the experiments show that the wavelet baseaeppfters greater flex-
ibility and adaptability apart from its performances which were found to Ipepeoable and at
times even better than Fourier based estimate=mn(l3).

e. A wavelet packet transceiver for dynamic spectrum access (RSE/WPM) (Chapter 7)

A reconfigurable wavelet Packet transceiver for spectral anaysisiynamic spectrum access
was tested. The transceiver consisted of a wavelet packet spestimbtr (WPSE) and a
wavelet packet multi-carrier modulator (WPM). The WPSE senses the eswdiconment to
identify spectrum holes and occupied bands. This information is then usatetahe time-
frequency characteristics of the WPM transmission waveform such thaicttupied bands are
evaded. The WPSE uses the same filter bank structure as used for dafatroocand hence
does not add to the implementation costs. The performances were compdradchitectures
based on FFT/OFDM. The studies showed that WPSE/WPM performed thettelF FT/OFDM
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in regard to estimation of spectrum and spectral confinement of transmigai@iorms. This
in turn contributed to better bit-error-rate (BER) performance and batdwfficiency. (tems
11,13 and 17)

f. A framework to design wavelets (Chapter 8)

A filter design framework that facilitated the development of new waveletdsascording to
specific demands was established. The design constraints were exjgiesaathematical con-
stricts and suitable optimization tools (including convex optimization and semi-defiirote
gramming) were employed to solve the problem. The results were then testegtifogality.
The procedure was illustrated with two examples:

1. maximally frequency selective wavelets which generated transmissicefamas with
compact support in both time- and frequency-domains.
2. wavelets which reduced sensitivity of WPM systems to loss of time syniziatem.

Through computer simulations the advantages of the newly designed filterceapared and
contrasted with standard waveletke(ns12, 16)

g. Equalization of channel (Appendix C)

Channel equalization in WPM is unique because the symbols overlap in timeddadinter-
symbol interference (ISI) and inter-symbols inter-carriers interiggeifiSCI). To mitigate the
detrimental effect of the channel an algorithm to equalize the channahvmsmented. Ilems
6 and 7 in fig.1.6).

1-3-4 Original contributions of the thesis work

The main contributions of this work are:

1. A wavelet packet analyser for estimation of spectrum (Chapter 6).

2. Atransceiver based on wavelet packets for dynamic spectrurasagpglications (Chap-
ter 7).

3. A framework to design and test new wavelets (Chapter 8).

Other contributions include:
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1. Evaluation of performance of WPM under time/frequency and phdsetsfand compar-
ison with OFDM (Chapter 4).

2. Analysis of PAPR performance of WPM and implementation of two PAPRctémiu
algorithms (Chapter 5).

3. Implementation of a basic equalizer to aid WPM transmission (Appendix-C).
Some of the related activities accomplished during the course of the the&isnelude:
a. Software tools and graphical user interface (GUI) (Appendix B}- A user-friendly GUI ({tem

22 in fig. 1.6) was developed to test and run the simulation models for:

e design of wavelets,

e operation of WPM transceiver.

b. Tutorial material — Study materials on the topic of wavelets for wireless communication
were created to promote and motivate more research on the &%

1-3-5 Research challenges

A few of the challenges encountered and addressed during the aafutise PhD work are
summarized below:

System realization and establishment of a simulation environment to test WR#&tiope

Evaluation of the inherent properties of the wavelet packet modulator (inamdefre-
quency domains) and devise algorithms that they aid WPM transmiSsion.

Creation of a generic framework/toolbox to design wavelets.

Translate system specifications into mathematical expressions to aid desigsg®s.

Define suitable performance metrics to evaluate WPM system operation.

It must also be stated that since the theory of wavelets emerged frorsealfields, there are no
clear guidelines that can be readily used to design and develop waveézt bammunication
systems. Moreover, the nomenclature in the literature on wavelets is damas@consistent.
Therefore, to aid the development of wavelet based radios the notatidreoaventions had to
be made uniform.

"The WPM transmission is unique because the symbols overlap in both timieegpuency. This means that
existing algorithms used in systems like OFDM cannot be used for WPM.prhldem is particularly acute with
regard to maintaining time-synchronization between the transceiverscaatization of channel.
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1-3-6 Research approach and feasibility

The research strategy was theoretical studies and numerical simulatigraafl tycenario on a
MATLAB (@©platform. The tasks specified in the previous section (sed i@y will be handled
individually and when necessary haolistically. The feasibility of the reseapproach will be
demonstrated through simulation studies. The results will also be corrothavdteanalytical
expressions and formulas. Wherever possible, the performance pfdhesed WPM system
will be compared and contrasted with FFT based OFDM systems.

1-4 Organization of thesis work

The dissertation is organized in 9 chapters. The contents provided thosrfstitute the first
chapter. The rest of the material is categorized into 3 parts namely, thebbetakground (Part
I), implementation challenges (Part Ill) and demonstration of advan{@ges|V).

Part Il - Theoretical background (Chapters 2 and 3) In this part we provide the theoretical
background. In chapter 2, material on the theory of wavelets is providied in chapter
3 the wavelet packet modulator, which is the focus of this research vgarkroduced.

Part Il - Implementation challenges (Chapters 4 and 5) In this dissertation we take up three
of the issues encountered in the implementation of WPM. Each of these cleallisrign-
dled in a separate chapter. In Chapter 4 the influence of loss of synzation (time/fre-
guency/phase) on the performance of the WPM system is analyzedadtookthese syn-
chronization errors a model is presented and theoretical analysis isfgiveoth WPM
and OFDM. The Bit error rate (BER) performance under time offsetjufeacy offset
and phase noise is investigated by means of simulations studies. The simulegipes-a
formed for WPM with different types of standard wavelets and compar&HoM. In
Chapter 5 the sensitivity of WPM to PAPR is explored.

Part IV - Demonstration of advantages (Chapters 6,7 and 8)in Part IV some of the benefits
of pursuing wavelet based systems for wireless systems’ design arasieated. Three
examples are considered: In chapter 6, a spectrum estimator basedaatyackets is
explained. The proposed method is shown to be efficient in estimation dfsmefor
various sources and the performances comparable with existing tecknique

In chapter 7, a wavelet packet transceiver for spectral analydidyamamic spectrum ac-
cess is presented. The transceiver consists of a Wavelet Pack&abgetimator (WPSE)
and a Wavelet Packet Multi-carrier Modulator (WPM). The WPSE setiieesadio envi-
ronment to identify Licensed Users (LU) bands and spectrum holes.iffbignation is
then used to shape the time-frequency characteristics of the WPM transnvissieform
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Chapter Subject matter Itemin fig.1.6
1 Introduction -

2 Theory of wavelets -

3 Theory of wavelet packet modulator (WPM) 1,2,18,19

4 Study of time, frequency and phase Offset errors | 3,4,5, 7, 20

5 Peak-to-average power ratio studies 9,20

6 Wavelet packet spectrum estimator 13

7 Dynamic spectrum analysis 11, 13, 17 and 2(
8 Design of wavelets 12 and 16

9 Conclusion -

Appendix-B | Graphical user interface 22
Appendix-C | Channel equalization and transceiver synchronizatién7 and 10

TABLE 1.1: Chapters and contents.

to evade the LU transmission zones. The shaping is done by vacating tlmsarsiers
which lie in and around the LU bands. The studies show that WPSE/WP Mrpestbet-
ter than Fourier based OFDM in regard to bit-error-rate (BER), barttivefficiency and
interference to the licensees.

In Chapter 8, a general, unified approach to design and develop orthlogavelet packet
bases according to a requirement. To this end, the design criterion andvwle&etcon-
straints are first listed. The problem which is originally non-linear and camvex in
nature is then converted into a tractable convex optimization problem and famdyd
using suitable Semi Definite Programming (SDP) tools. The proposed methanis
demonstrated through two toy examples where families of wavelets which arei) ma
mally frequency selective and ii) have the lowest cross correlation gnegpectively,
are developed. The design procedure borrows from the studiesc®ddn earlier chap-
ters. For e.g. the design of maximally frequency selective filters bornaws the studies
of Chapters 6 and 7 while the construction of filters with low cross correlats@s the
conclusions of chapter 4.

Finally, the dissertation concludes in Chapter 9 with the main conclusions of dhe and
recommendations for future research.

Fig. 1.7 depicts the chapters of the thesis work, their organization and the link betivee
chapters. Table 1.1 gives the details of the chapters and their relation tortteeliséed in
fig. 1.68.

8items 8, 15, 21 and 24 have not been handled in this work.



Chapter 1 Introduction

18

Part I: Introduction

1. Introduction

Part II: Theoretical Background

2. Theory of Wavelets

3. Wavelet Packet
Modulator (WPM)

Part Ill: Implementation Challenges

4. Analysis of loss of synchronization
(time/frequency/phase) on
WPM performance

5. Analysis of WPM
Peak-to-Average-Powe

Ratio performance !

1

T

Part IV: Demonstration of 1
Advantages 1

3 1

7. WPM/WPSE for | 1
Dynamic Spectrum Access : Gggg\éterlfrtnpsgi(ritaziied
i mm i imim i P _ (WPSE)
; x
. ¥
1
! === 8. Design of Wavelet - = = - -
1 1 bases ;
! i i
1 ; :
v ] v
a. Frequency b. Wavelets \_Nith
Selective wavelets low correlation

Part V: Conclusion

9. Conclusions and
Future Research Topigs

Appendices
a. Graphical User Interface
b. Channel equalization,

FIGURE 1.7: Organization of Chapters. The links between chaptave been indicated with

arrows.



Part Il

Theoretical Background

19



Chapter 2

Theory of wavelets

The Wavelet transform is a powerful new tool to analyze data. It cansee to represent
known/unknown signals as a set of known functions, called waveledsyan insights on their
characteristics. The tool is used in various applications and is becomingepular amongst
technologists, engineers and mathematicians alike. In most of the applic#tepswer of the
transform comes from the fact that the basis functions of the transfaua® tompact support
in time (or space) and are localized in frequency. Furthermore, the tehaitpws analysis
of signals at resolutions which correspond to the natural behavior girtess one wants to
understand. These properties make wavelet transform a naturakdhdields as diverse as
image synthesis, data compression, computer graphics and animation, hisioapradar, op-
tics, astronomy, acoustics, seismology, nuclear engineering, biomedgiakering, magnetic
resonance imaging, music, fractals, turbulence, and pure mathen@ticRdcently wavelet
transform has also been used in the design of sophisticated digital wicalesaunication
systems including channel modeling, transceiver design, data refaiserand compression;
source/channel coding, interference mitigation, signal de-noising reed)e efficient network-
ing [26)].

In this chapter we provide an overview of the mathematical foundations afdkelet theory.
The material provided in this chapter will not only aid the understanding of tGiapters but
also serve to make the dissertation self-contained. A thorough study aftifeescan be found
in[5, 6, 8, 22, 26-39.

We start the chapter with a discussion on the representation of signalstionS2d.. In this
regard we trace the progression of the field of signal representationdiassical Fourier anal-
ysis through Gabor transform to wavelet transform. The sections thetvf@ection 2-1 will
elaborate further on the theory of wavelets. The two major branches \@letaransform,
namely Continuous Wavelet Transform (CWT) and Discrete WaveletsTtoam (DWT) are ex-
plained in Section 2-2 and Section 2-4, respectively. Section 2-3 will dataihportant facet

20
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of the wavelet theory known as Multi-Resolution Analysis (MRA). This willfodowed by a

discussion on the filter bank implementation of DWT which includes material oysas@and

synthesis of signals using filter banks in Section 2-5. An important varfaheavavelet trans-
form known as Wavelet Packet Transform will be presented in Sect@rFnally, a review on
a few popular wavelet families is given in Section 2-7.

Notation

Throughout this dissertation, continuous variables are enclosed irccbrackets, e.gf (x),

g(t), while discrete variables are denoted in square bracketsfle.gg[k|. Vectors are denoted
inboldface, e.gz=z[n| = |29 21 2o ...zN,l]. The discrete index for time is represented
with n while t is used to connote the continuous time variable. The corresponding indices in
the frequency domain are denoted wijth{continuous) and: (discrete). Finally, variables in
time/space domain are given in small cases while their representation in trartsimain (e.qg.
Fourier, Gabor, Wavelet) is expressed in upper case.

2-1 Introduction

2-1-1 Representation of signals

Mathematical representation of signals or transforms are a way to destobmation or data
a physical signal in terms of known mathematical functions. Through wemstions valuable
insights on the signal can be gained that can be exploited for variouscpigmrposes. Burke
[30] considers the transforms to beathematical prismthat facilitate a better interpretation of
signals just the way optical prisms split light into colors to enable a better sitaaheling of light.
The applications can be as diverse as processing audio/video/image uhat@detiing geological
processes such as Tsunami or Earthquakes.

A mathematical transform is usually a linear expression where any givealgigr) in spaceS
is expressed as a linear combination of a set of known signatd € 7 as P8]:

fla) = Zami (2.1)

Hereq; are the expansion coefficients or weights which tell how much of the compgnén
available in the original signdi(z). The spacé& can be finite dimensional like the set of all real
numbersR”™ or the set of all real integefd™ ;or infinite dimensional like the set of all square
integrable functiond.? or the set of square sum able functidhs
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The set is said to be complete for the space if there exists a du@};88t € Z such that the
expansion coefficients; can be computed from them, i.e.

i = (f (), $i) (2.2)

Here, the operatof.) represents the inner-product operation. Thesetil € Z is considered
to be orthonormal and complete whep= ¢; and

(@i pj) = d[i — j] (2.3)

hered|.| is the dirac-delta function. On the other hand the set is said to be bi-ortabifain
is complete and the vectors are linearly independent (but not orthonormal) and satisfy the
relation:

(i, j) = dli = 7] (2.4)

The choice on the right set of basis functions depends on the type @l $ighe represented
and the application in hand.

2-1-2 Fourier analysis

The earliest recorded work on signal representation was condugtddam Baptiste Joseph
Fourier in the early 19th century. He investigated problems of diffusioreat and proved that
periodic functions can be represented as a series of harmonically reiatswids. This work,
popularly known as the Fourier Series expansion, was published in tr@i€nalytique de la
Chaleur (The Analytical Theory of Heat) in the year 182@][ While Fourier series allows rep-
resentation of periodic functions, a variant called Fourier Transforabked decomposition of
non-periodic functions of finite energy. Fourier Transform is an irgigansform that expresses
any complex-valued function of a real variahig) in terms of trigonometric basis functions:

o0

X(f)= / x(t)exp(—j2m ft)dt, f € R. (2.5)

— 00

In signal processing applicationgt) exists in the time (or space) domain and the transform
X (f) represents:(t) in the frequency domain. This is analogous to what music composers
do when they represent musical chords in terms of the constituent ndtesugh the reverse
transformz(t) can be reconstructed froi( f) as follows:

x(t) = / X(f)exp(j2nft)df,t € R. (2.6)
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Since the Fourier transform analyses time-based signal to providesfieguinformation, the
operation is regarded as frequency-amplitude decomposition.

The nice thing about the Fourier operations is that frequency informatierobtains after the
transforms often corresponds to the actual physical waves whiclitcoashe signal 30].

2-1-3 Gabor transform

The Fourier Transform offers excellent frequency resolution&ilg fo provide any information

on the temporal variations Furthermore, the sine/cosine functions which are the basis func-
tions of these operations stretch to infinity in time. In order to have a refietgemthat gives
both time and frequency information of the signal studied, Dennis Gaadapted the Fourier
transform to analyze only a small section of the signal at a time. In his adaptatited the
Short-Time Fourier Transform (STFT), the signal is windowed into smghrsats (taken to be
stationary) which are then studied independer8]y [For a window functionu(¢) the STFT op-
eration maps a signal or functigfit) into a two-dimensional function of timeand frequency

f and can be defined as:

STFT{z(t)} = X(7, f) = / [z(t)w(t — 7)) exp(—j2m ft)dt (2.7)

The STFT is a compromise between time and frequency-based views ofadh [dign A trade
off between the time and frequency resolution is enabled in STFT by alternditfensions
of the window function. Smaller windows offer better time resolution but po&regjuency
resolution. On the other hand if the size of the window is enlarged to allow bettprency
resolution, the time resolution is compromised. Another drawback is that otice avindow
is chosen it remains the same for the analysis of all frequencies. Marsisigquire a more
flexible approach, one where the window size can be varied to accudaigymine both time
and frequency. The solution¥avelet Analysis

2-1-4 Wavelet analysis

The wavelet transform is a multi-resolution analysis (MRA) mechanism waergput sig-
nal is decomposed into different frequency components; then eachooemipis studied with
resolutions matched to its time-scales. The Fourier transform also decargigsals into el-
ementary waveforms, but these bases are trigonometric functions (sidessines). Thus,
when one wants to analyze the local properties of the input signal, swedfgas or transients,

The temporal data after a Fourier transform is not totally lost but entasi@hase information, which is usually
inaccessible.
2He won the Nobel Prize in 1971 for his investigation and developmentlogjhaphy.
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FIGURE 2.1: Wavelet Nomenclature: The figure depicts various texsseciated with wavelet
theory and the respective domains, enclosed within closekbts, from which the terminolo-
gies originated.

the Fourier transform is not an efficient analysis tool. By contrast thelatransforms which
use irregularly shaped wavelets offer a better representation of changes and local features.
The wavelet transform gives good time resolution and poor frequerstyutéon at high fre-
guencies and a good frequency resolution and poor time resolution atdgweincies. Such
an approach is appropriate when the studied signal has high frequermgyonents for short
durations and low frequency components for long durations. Fortundtelysignals that are
encountered in most applications are often of this type.

The theory of wavelets emerged from multiple backgrounds (refer2flf).- as Continuous
wavelet transform (CWT) in Geo-Physics, as sub-band coding irchp®d image processing,
as filter Banks from the fields of signal processing and audio compressdMulti-resolution
Analysis from Computer Vision, as pyramid coding from Image Coding arat@sic decom-
positions in applied Mathematics. These topics had been studied independatehdifferent
names by different scientific communities and only recently did these ideasrgento facil-
itate a unified understanding of the subject. Even though the wavelet ntahgads diverse,
the wavelet theory can be interpreted broadly in terms of its continuous timdisecréte time
representations. We shall present these topics in the coming sections.
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FIGURE 2.2: Mexican Hat Wavelet at different translations andesal

2-2 Continuous wavelet transform

Wavelets for signal representation was introduced by Mortlet and @Gaes B2] who showed
that continuous-time functiong(¢) in L2(R) can be represented by a set of basis functions
{1 (t)} obtained by scaling: and shiftingy primary functions known as mother wavelets
¥ (t). The continuous wavelet transform (CWT) of any continuous squeegrable function

or signalf(t) in terms of waveletg1,. , (¢)} can be expressed &&9:

Ty = \}E/O; FO)ws, (t)dt: Ve € Z¥, x e Z*. (2.8)

The expression2.8) is a general form of CWT wher¥  , give the wavelet coefficients of the
continuous signaf (t) as a function of the various scaledand the shiftedy versions of the
mother wavelet)(t). The operatok stands for complex conjugation.

The mother wavelet)(¢) is continuous in both time and frequency and the set of baby (or
daughter) wavelets functions, . (¢) are obtained by scalingand shiftingy the mother wavelet

P(t) [29):
b

wn,x(ﬂ = \/E

<t;x> Ve e Zt,x € Z*. (2.9)
The scaling parameter is similar to the frequency variable in Fourier Tnansfodescribes how
a wavelet basis function is stretched or contracted. On the other hanshitheariable, also
known as translation parameter, represents the location of the wavelet irBiitiethese param-
eters are continuous-real variables. An example of scaled and trahskatelet is illustrated in
fig. 2.2, where a wavelet, popularly known as the Mexican Hat because of ip& sfsashown
for three different translation and scale factors. The wavelet shoWrearigin represents the
mother wavelet, which is neither shifted nor scaled.



Chapter 2 Theory of wavelets 26

o b L i - 4 1 . =i . =
2 = lin 15 200 250 300 350 400 450 s0d

50 100 150 w0 20 £ 360 am 450 50
time (or space)

Transform, absolute coaficients (30

o
B . " 3
Sasg & 100 150 00 260 5

Scale time (or space)

FIGURE 2.3: Translation-Scale Representation of a Signal.

The original signalf(¢) can be reconstructed from wavelet coefficients through the inverse
wavelet transform41]:

F(t) = ;//T&X;zﬁ (t;x)dxdn, (2.10)
Kk X

wherey)(t) is the dual function ofs(t) and must satisfy the conditiod 1],
T 7 (ti=x\ - (t—x\ dxd
[ [o(552) 5 (5F) 5 —ao-w @1)
K K |k
0 —oo

For orthogonal expansion sets(t) = Cle(t) where B1],

2
cw—/]R Wt‘)‘ dw. (2.12)

Here,)(w) represents the Fourier transformuoft).

An example of the CWT where a signal of finite support is expressed as-ditmensional (2D)
and three-dimensional (3D) time-scale array of coefficients is illustrated.i2.8. The signal
considered is a fractal developed by the Swedish Mathematician Helge acm Krhe large
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amplitude in the figure corresponds to high frequency-correlation ofiginalsvith the wavelet
function of a particular scale at a certain time instance.

2-2-1 Orthonormal wavelets

In theory any function which has zero integral can be considered asdtiger wavelet)(t).
Furthermore, the shift and scale parameters can be real continuoes faka Z*, y € Z™).
Hence the CWT, as expressed in €8.8], leads to a representation which is infinitely redun-
dant in nature. Such an expression is unwieldy and difficult to implement.effargund this
problem, a sparse representation which gives perfect reconstro€tiom signal while avoiding
redundancy is preferred. The answeoithogonal wavelets

Meyer [42] proved that there exist waveletst) that provide an orthogonal expansion set of
L?(R) and is of the form:

Ya,a(t) = V200 (2%t — B) ;Va, B € Z. (2.13)

In eqg. .13 « anda are the scaling and shift parameters which vary in discrete integer units,
i.e. o, B € Z. Meyer also showed that these wavelets are generalized form of tméudaton.

The work of Meyer was carried forward by Daubechi2g 3] who came out with a family of
wavelets which in addition to being orthogonal also had compact support.

2-2-2 Non-dyadic wavelets

It is important to note that Orthonormal wavelets need not always be ofbtine éq. 2.13
nor do the scales have to be dyadic. In fact recent studies show thsdalileg factor can be
different from 2 and can take any rational vajye > 1 [43]. However, in these more general
cases, it may be necessary to introduce more than one (but always adimter) of mother
wavelets.

We would like to mention here that through out this dissertation only orthononaatlets of
the form eq. 2.13 will be used. This is because, not only is the theory of dyadic waveldts we
established, the bases with factor-2 are also easy to implement for nuncerngalitations.

2-3 Multi-resolution analysis

An important advancement in the field of wavelets was the Multi-resolution Arsa(\vIRA)
framework developed by Malla#fl]] and Meyer B2]. The MRA allows characterization of
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Y(t) € L?(R) that result in an orthonormal basis. The starting point in the discussion on
MRA is to consider the wavelet coefficient$(t), 1, 5(t)) at any scalex, which covers the
difference in the approximations ¢ft) at resolutiong®*! and2, respectively. To characterize
the successive vector spadésin which the functionf(¢) is approximated, a complementary
function called the scaling functian(?) is definec®. As in the case of wavelet functions, 5(t),

there also exists an extended family of scaling functipps;(¢) which are obtained by time
shifted version of the fundamental scaling functioft) [31]:

Cap(t) =2 Rp(2%t — B), VBEZ el (2.14)

The approximation subspacks spanned by the scaling functiopg 5(t) over integers-oco <
£ < oo are defined by:

Vo = S%an {pp(20t)} = Spﬁan {pa,s(t)} (2.15)

Low values ofa provide coarse representation of a signal while higher values rejpresent
the finer details. MRA requires the spadésspanned by the scaling functiopg s(t) to have
finite energy and ordered as a nested approximation spa&d]as [

0---CVocVicVyCVicCVy---L? (2.16)

Vo CVoy1 VaeZ

(] Va = {0} (2.17)
o€l

U Vo = L*(R)

o€l

Eq. 2.17) implies that the space that contains high resolution approximates of a sitjredba
contain information on its lower resolution representation. The nested \&ioes spanned by
the scaling functions are illustrated in fi4.

The MRA imposes strict restrictions on what the scaling functidn) can be. One of the
conditions is that there existgeightsh[k) such that the scaling functian(t) (which spand/)
can be expressed as a weighted sum of shifted versiop&ef (which spand/), i.e. [31]:

p(t) = hlk]V20(2t —k), kel (2.18)
k

3The scaling functions are also called father wavelet. The father wawtewith the mother wavelet to yield a
family of baby wavelets.
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FIGURE 2.4: Spaces Spanned by the Scaling Functions.

% CHCH OV

FIGURE 2.5: Spaces Spanned by the Scaling Functions and Wavelets.

whereh[k] denotes the scaling function coefficients. This equation shows that séafiction
can be constructed by the sum of its half-length translations.

There are other restrictions on the natureo6f) and« (¢) which are usually determined by the
scaling coefficient&[k]. We shall delve on them in Chapter 9 where the design of wavelets is
discussed in detail.

As mentioned earlier, the waveletgt) in MRA are defined as orthogonal bases that span
the differences between the spaces spanned by the scaling functiaroas scales. Let the
subspace spanned by the waveletlbg_;, then the function spaces covered by the scaling
functionsV,, can be written as:

Vi=Vo® Wy

Vo=VieW: = (Vo Wo) @ W
(2.19)

VaH:Va@Wa:leaan VacZ
=0

Nested vector spaces spanned by the scaling function and wavelet seates are illustrated
in fig. 2.5.

It should be noted that the sp&aidg spanned by a wavelet is actually a subspadd ¢iv, C 17).
Therefore there exists a corresponding orthonormal basis of wadeli@gd by a weighted sum
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of shifted scaling functiorp(2t) similar to eq. 2.18),
b(t) = glklvV20(2t — k), keL. (2.20)
k

In eq. 2.2Q g[k] denotes the wavelet function coefficients. Because of the orthogonatity ¢
dition Vo LWy LW, L --- LW, the scaling and wavelet coefficients are related to each other by
[8, 29:

glk] = (=1)*h[L — 1 — k], for h[k] of length L. (2.21)

2-4 Discrete wavelet transform

For practical applications the continuous wavelet transform is not Leseditherefore a discrete
version of the wavelet transform is preferred. Assuming an orthogaaagform, the forward
discrete wavelet transform (DWT) of a discrete signal or funcfi@nn = 0,1,2...M — 1 be-
longing tol?(Z) is defined a$ :

doip = (1) @oslnl) = 2= 3 flnleaslnl = <=3 fln2 2plzn 5] (222

n

i = Tl nalol) = 2 3 bl = = 3 fin2 20l ) 229

Here, \, s and~, g are the scaling and wavelet transform coefficients ﬁ is the normal-
ization factor. Usually, the value dif is limited by the desired resolutiam and is taken to be
M =2,

The inverse transform to approximaf:| in terms of the scaling functions, g[n| is given as
[31]:

1 [o.¢] (o]
fln] = N ( >y Aa,ﬁgoa,ﬁ[n]) (2.24)

a=—00 =—00

“For the discrete version the notation of the time unit has been changed from



Chapter 2 Theory of wavelets 31

This can be rewritten at a desired resolution spegeby a series sum of scaling function of
subspaceyy and wavelet functions of subspaee= oy — oo as follows B1]:

1 o0 o0 o0
fln] = Nl 5;,0 Aao,8Pa0,8 0] +Z ﬁ:zoo Ver,8%a,5 (7] (2.25)

Vg CWa

The parametety in eq. .25 is an integer which sets the coarsest level of approximation of
the function f[n], the details of the which are filled by its projection onto the wavelet spaces
W,. In terms of the function spaces the resoluti¥n at which f[n] is approximated can be

given as:
Nr—1

Ve =Vap + > Wa (2.26)

a=0
2-5 Filter bank representation of DWT

One of the breakthroughs of wavelet transform was the possibility of impigngethe DWT
algorithm using filter banks. MallaBJ, 38, 44] showed that it is possible to perform DWT
decomposition and reconstruction using 2-channel filter banks throbggraachical algorithm
known as the pyramidal algorithm. This meant that results of wavelet theaig be developed
entirely using filter banks. In the next two sections we shall see how thisis.do

2-5-1 Analysis filter bank

We start by considering the discrete variant of 24.8) which expresses the scaling functions
¢[n] as a series sum of shifted versiaf{&n| [31],

pln] = hlkV2p2n— k], keZ, (2.27)
k

Applying the transforrm — 2%n — 3 we obtain,
p2n—p] = Y hlkIV2p[2(2%n — §) — k]
k
= > h[k]V2p[2* ' — 28 — K]

k
= Y hlm—28]V202°"'n—m) (2.28)

m=26+k



Chapter 2 Theory of wavelets 32

Similarly, considering the discrete version of eg.20)

=> glk]V2¢[2n — k], k€L, (2.29)
k

and applying the transform — 2%n — 3 we obtain,

P2 — B = > glk]V20[2(2°n — B) — k]
k
= > glkV2e[2°t ' — 28 — K]
k
= Y glm—28vV2¢[2°n — m)] (2.30)

m=28+k
The DWT coefficients at scale by coefficients at the higher scale+ 1 can be as follows:

M = (F1], Papl] er ol \/%Zf[np%@[?“n—ﬁ] (2.:31)

Substituting eq.4.31) into eq. @.31) we get,

Aoy = rZf 122 3" him - 28]V2¢[2" 0 — m)]

m=2(+k

hlm — 2p] Zf 2" i 1/ ©[29T 0 — m)

m=2[+k

hlm = 2B]Aa+1,8 (2.32)
m=23+k

2l- %\H

Similarly, we find
1 «
— n)2 / “n — .
Yous = (FIn], va,pln] fo [t 5[] mgf[ 27 2¢[2°n — ] (2.33)

Substituting eq.4.31) into eq. €.33), yields

1 «
Yo = —F— f[n]2 2 glm — 25]\[2w[2a+1n —m]
iy m%k
1 a +1
1
= = m§+k9[m — 28]Ya11,8 (2.34)

Eq. .32 and eq. 2.39 imply that wavelet and scaling DWT coefficients at a certain scale can
be calculated by taking a weighted sum of DWT coefficients from highdescdahis can be
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viewed as convolution between the DWT coefficients at seale 1 with wavelet and scaling
filter coefficients and subsequently sub-sampling each output with fa¢toobtain new wavelet
and scaling DWT coefficients at scale Therefore, we can implement eq2.47) and .29
by a 2-channel filter bank as illustrated in f&y6.

The 2-channel filter bank first splits the input signal in two parts and fitteespart with filterh

and the other with filteg. Both the filtered constituents are then sub-sampled by 2. Each output
component will therefore contain half the number of samples and spanfhiailé drequency
band compared to the input signal.

The complete representation of the DWT can be obtained by iteration of thariel filter
bank and taking repeatedly scaling DWT coefficiehtas input. The number of stages in the
iteration process will determine the DWT resolution and therefore the nunfilbeaonels.

The example of a two band analysis tree with three stages is graphically &lydign2.7. The
input signalf has 512 samples and contains frequencies that lie betweens) dine resulting
decompositions together will still contain 512 samples and span the samerfegduand as the
original signal but these will be decomposed in different DWT coeffisien

The sub-band structure of wavelet decomposition in frequency domainJestage analysis is
illustrated in fig.2.8.
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2-5-2 Synthesis filter bank

The reconstruction formula is derived by considering a signal imithel scaling spacg|n] €
Va—l—l as Bl]

1 = 1 =
fln] = VM ( Z /\a-i-l,ﬁ(pa—f—lﬁ[n]) = ﬁ ( Z Aa+1,8 2a+1¢[2a+1n
=00 p=—oo

(2.35)
This can be expressed in terms of the next scal8Hs [
fln] = L > 52" R g[2on — ]+ > Ya 52 2y[2on — 4] | . (2.36)
VM B ’ B 7

Substituting the 2-scale equations eg2() and eq. 2.29 into eq.2.36 we get

m=20+k

1) (ZA 5 S hm— 252 +1)/290[2°‘“nm})
+7 (Z%‘:ﬁ Z m2ﬁ]2(a+1)/2ap[2°‘+1nm]>. (2.37)

m=2[+k

Multiplying both sides of equation eq2. 87) by [2%"n— 8] and taking the summation allows
us to describe the DWT coefficients at higher scales by those of the |oader[31]:

Xat1p = O AashlB —2m] + 3 va,59(8 — 2m) (2.38)
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The expression eq.2(38 implies that the DWT coefficients at certain scale lexel 1 can
be reconstructed by taking a combination of weighted wavelet and scalinfy édéfficients at
previous scale.

Introducing, two new variablesn] andg[n] which are time-reversed versions/df] andg[n],
i.e., h[n] = h|—n] andg[n] = g[-n], eq. @.38 can be described by the 2-channel synthesis
filter bank, illustrated in fig2.9.

The 2-channel synthesis filter bank performs operations which aotlexg@posite to those of
analysis filter bank discussed in the previous section. The wavelet aligsDWT coefficients

are first up-sampled by factor-2 and after that the wavelet function D@éfficients are filtered
with HPF g while scaling function DWT coefficients are filtered with LRE The two filtered

signals are then added to each other to construct DWT coefficients &t Isicgie.

The decomposition of a signal in terms of coefficients is called discrete waxetsform. In
order to reconstruct the original signal from coefficients we can apglynverse wavelet trans-
form, abbreviated IDWT. The IDWT can be efficiently implemented by iteratieg2tthannel
synthesis filter bank in the same manner like we have done in the previougaardor the
2-channel analysis filter bank. The example of 3-stages synthesis iftastigted in fig.2.10
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FIGURE 2.11: Discrete Wavelet Transform of the Noisy Doppler (tideenain).

Details Coeciants

[T B00

Scabe of colors om MIM o MAX

FIGURE 2.12: Discrete Wavelet Transform of the Noisy Doppler (tigtale domain).
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If the assumption of orthogonality is valid the reconstructed signal is merabyex Delta)
delayed version of the input signal, i.en] = y[n — A]. The filter banks that satisfy this
property are called perfect reconstruction filter banks.

Fig. 2.11depicts the decomposition of a noisy Doppler function into DWT coefficierdgfet-
ent scales. In this figure we can see how the time-varying frequencal ssggdescribed by the
wavelet transform as a function of scale and translation index. A more corantbaompact
figure of DWT performed on the same signal is shown in2ig.2 In this representation the
depicted colors contain the scale information.

2-6 Wavelet packet transform

The wavelet transform is implemented as a non-uniform filter bank whdgetioa low pass
(scaling) branches are iteratively decomposed. The wavelet paakstdrm is a generalized
form of the wavelet transforms where the tree structure used to implememavetet algorithm

is decomposed on the high pass (wavelet) as well as the low pass filtehésarithe original
investigation on the topic was carried out by Coifman and Mej2r45]. And it was followed

by Wickerhauser46, 47] who constructed uniform wavelet packet trees and demonstrated its
operation for acoustic signal compression. Because the high fregsesme decomposed in
the same manner as low frequencies the wavelet packet transformeamdyg gvaced frequency
resolution. Fig2.13shows the frequency bands of a 3-stage wavelet packet tree.

The filter bank structure for wavelet packet transform usually expémd full binary tre€. In
order to make clear the distinction between different sets of coefficientabeéeach wavelet
packeté[n] by the levelt which corresponds to the depth of the node in the tree and by the
current positiorp of the node at a given level. Wavelet packet decomposition recurspétyg
each parent node in two orthogonal sub-spat@docated at the next levedf]

2 2p+1
WP = Wi e Wi (239)

The subspaces given in e@.39 are those spanned by the basis functions of wavelet packets

WP = span {2/2¢[2ln — k] } (2.40)

Wavelet packet coefficientdn] at a certain level are calculated by convolving the wavelet and
scaling filter with wavelet packets coefficients from a previous level. Tttismis performed
repeatedly for all wavelet packets until the full binary tree is obtained ferdisired depth.

®Arbitrary pruning of the full binary tree also lead to a basis for squanensable space (R).



Chapter 2 Theory of wavelets 38

[H(w)|

>

OO0

0 Yem Yimr B I ®

v

FIGURE 2.13: Frequency Bands for 3-Stage Wavelet Packets Tree.

FIGURE 2.14: 3-Stages Wavelet Packet Analysis Tree.

The wavelet packets coefﬂmerﬁt&frl are generated using the scaling filter and coefficients

2p+1
gl’

i+1 |n] which are created using the wavelet filtéd[ 48]

£l+1 Z hlk]& [2n — K]
8 ) = V2 Zg[k]gl [2n — k] (2.41)
k
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FIGURE 2.15: 3-Stages Wavelet Packets Synthesis Tree.

The expression2(41) shows the recursive equation for wavelet packets generation. heghe
lar DWT decomposition for each additional level we need only to perforingiesiteration of a
2-channel filter bank while in the wavelet packet transform the numhiégrations is exponen-
tially proportional to the number of levels. Therefore, the wavelet pacaasform has higher
computational complexity when compared to regular DWT. By utilization of thififter bank
algorithm the wavelet packet transform requi€®sV log(/N')) operations, similar to FFT while
DWT needs onlyO (V) calculations 10].

Fig. 2.14illustrates the full binary tree for a 3-stages wavelet packet analysis.

The reconstruction of wavelet packets is also performed in an iterativeochddor each pair of
wavelet packets coefficients at levalf the tree we can calculate wavelet packets coefficients at
the previous level — 1 by:

&inl = hKIGE 20— K + > glk|&T [2n — K] (2.42)
k k

Fig. 2.15depicts the 3-stage wavelet packets synthesis tree.

Fig. 2.16 portrays the wavelet packet decomposition of the noisy Doppler functidiffarent
scales. The same noisy Doppler signal as used in the DWT example hagseatsoded here.



Chapter 2 Theory of wavelets 40

FIGURE 2.16: Discrete Wavelet Packet Transform of the Noisy Dappla) Tree Structure,
(b) Wavelet Packet transform in time-scale domain.

2-7 Wavelet types

The wavelet transform is a generic tool with infinitely many wavelets. Theaatithe wavelet
is entirely determined by the filters which characterize it. Each wavelet hisrcdistinguish-
ing characteristics that make them more suitable for one application thanDileeefore during
the design of a system careful considerations of the different wawedperties should be made
according to the system requirements.

2-7-1 Wavelet properties

Many considerations go into the design of a wavelet system including piegsuch as orthog-
onality, compact support, symmetry, and smoothness. Here we shallgdisdas important
ones.

i. Compact support

This property ensures that the wavelet has a finite number of non-wragistefficients and that
the filter banks used to derive the wavelets are of finite lergfth Compact support is defined

by the length of the filter. In order to keep the computational complexity to the minimum
usually shorter filters are preferred. However, a longer filter giveerfreedom to fine tune
other wavelet properties like orthogonality or regularity.

ii. Para-unitary Condition

The para-unitary condition is essential for many reasons. Firstly, it ierequisite for gener-
ating orthonormal wavelet8] 29]. Second, it automatically ensures perfect reconstruction of
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the decomposed signd?9) i.e., the original signal can be reconstructed without amplitude or
phase or aliasing distortion, if the filter banks used satisfy the para-undaditon. A rational
transfer function(z) is said to be para-unitary when it obeys the relatiqn)A(z) = 1. Here
A(z) is the para-conjugate of(z) and is given asd(z) = A*(z~!) where the superscript
denotes the conjugation of the coefficients. Properties 1 and 2 aresagcasnd sufficient con-
ditions for the wavelets to be realized. However, they may not alwaysgtes the generation
of regular and well shaped wavelets. Quite often the wavelets can belareg even fractal
shaped. Therefore to ensure smoothness or regularity of the waveletddhional property of

regularity is important.

iii. Regularity

This property is a measure of smoothness of the wavelet. The regularitjtioonrequires
that the wavelet be locally smooth and concentrated in both the time and foygdemains.

It is normally quantified by the number of times a wavelet is continuously diftexkle. The
simplest regularity condition is thigatnessconstraint which is stated on the low pass filter. A
LPF is said to satisfy &’th order flatness (or K-regular) if its transfer functiéh(z) contains

K zeroes located at the Nyquist frequeney=£ —1 or w = 7). ParametelK is called the
regularity order and for a filter of length it satisfies the relatiof < K < L/2. K-regularity

is also an important measure for wavelets because it helps to reduce thernofmrmon-zero
coefficients in the high-pass sub-bands and it is one of the easiestav@gtermine if a scaling
function is fractal.

Another way to determine the regularity of the wavelets is the number of vagistdments of
the wavelet)(¢) and scaling functiong(t) [6]. This number is used for the dual vanishing mo-
ments to determine the convergence rate of the multi-resolution projectiongitiT he®ments
of the wavelet and scaling functions,, (j) andms(j), respectively, are defined in continuous
time domain as followsd1]:

() = /tjw(t)dt
mai) = [ toty (2.43)

Usually the more contribution from the zero wavelet moments of a wavelet, thetiseravill be
its scaling function. However this is not a tight condition. The smoothnessualgcdefined by
the continuous differentiability of the scaling function. There are two waysich smoothness
can be defined: local by the Holder measure and global by the Sobolewmed3ifferent
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measures of smoothness are utilized based on the application in hand. lissleidadion we
use the K-regularity as the true measure of smoothness.

iv. Symmetry

Symmetrical wavelets have a feature that the transform of the mirror of areiledhe same
as the mirror of the wavelet transform. None of the orthogonal waveleespexXaar wavelet
is symmetric. Although, requiring symmetric wavelets involuntarily means thatleigvare
not orthogonal, there are some applications that prefer symmetric wavbteis arthogonal
ones. For instance image compression techniques like JPEG2000 uséembboal symmetric
wavelets. Because by compression of an image we discard one partveditbiet coefficients
containing high detail, the perfect reconstruction has become impossititevanyrhe fulfill-
ment of symmetry property in JPEG2000 on the other hand results in moralhanooth
images.

2-7-2 Popular wavelet families

A wavelet is defined by the choice of low pass filter used, obtained atisfysag the compact
support, regularity and para-unitary conditions. For a filter of lerigthis is essentially solving

L equations of whicll /2 come from the para-unitary constraint alidrom the regularity/flat-
ness constraint. The remainidg'2 — K conditions offer the freedom to establish a desired
wavelet property such as frequency selectivity.

a. Daubechies

The Daubechies are a family of compact supported orthonormal wavéiethehighest degree

of smoothness. It was derived by Ingrid Daubechg fvho used all the degrees of freedom
K to generate a wavelet family of maximum regularity for a given filter ledgtbr minimum

L for a given regularity 31]. This she did by imposing the maximum number of zero moments
to the wavelet function in the vanishing moments’ condition.

b. Coiflet

Coiflets are a variation of the Daubechies wavelets. They are so namaaskdatwas derived
by I. Daubechies at the behest of R. Coifman who suggested the atiwsiraf an orthonormal
wavelet basis with vanishing moment conditions for both wavelet and scaiimagions (unlike
Daubechies where only the wavelet functions have zero moments). Maéetviunction hag L
moments equal t6 and the scaling function h&4. — 1 moments equal to.
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Name Compact Support | Orthogonality | Symmetry K-regularity
Haar 2 Yes Yes 1
Daubechies L Yes No (Far from) | L/2
Symlets L Yes No (Near from)| L/2
Discrete Meyer| 102 Yes No 1
Coiflet L Yes No (Near from)| L/6
Bi-orthogonal | (L1,L2) No Yes ~ (L1/2, Lo /2)

c. Symlet

TABLE 2.1: Standard Wavelet Specifications.

The symlet family of wavelets is another variant of the Daubechies family wéniehearly-

symmetricalas opposed to being symmetrical). These modifications were also prappsed

Daubechies and the properties of the two wavelet families are similar.

In Table2.1 we list some of the most popular wavelets today and give their most important

properties.

2-8 Summary

In this chapter we presented the basics of the theory of the waveletdranand explained how

the discrete wavelet transform can be efficiently implemented with the Mallatzspglal tree

algorithm using filter banks. Due to their ease of implementation and the flexibitytogide,

wavelets have been applied in diverse fields. Recently, wavelets hemeals® proposed as a

candidate for multi-carrier modulation (MCM). In the next chapter we show tine theory of

wavelets and wavelet packets can be applied for MCM.
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Wavelet packet modulator

Wavelets, filter banks and multi-resolution analysis which were developegémdlently in the
fields of applied mathematics, signal processing, and computer visiorectesby, have re-
cently converged to form a single theory. In the previous chapter wehsawthe theory of
wavelets emerged as a natural extension to traditional signal processisigike Fourier trans-
form. In this chapter we shall see how a multi-carrier communication systetmecemnstructed
with wavelets and wavelet packets.

Multi-carrier modulation is a method where the data to be transmitted is divided w¢oase
parallel data streams or channels, one for each sub-carrier. Muigcarodulation possesses
several properties which make it an attractive approach for high spieeléss communication
networks. Among these properties is the ability to efficiently access and distrfultiplexed
data streams and a reduced susceptibility to impulsive as well as to narchat@mel distur-
bances.

In existing multi-carrier transmission schemes, such as the popular or@idgequency divi-
sion multiplexing (OFDM), information carrying bits modulate orthogonal trigoatric func-
tions which are then added to obtain a composite signal. These techniquieswrigg trans-
forms and are particularly efficient with regard to bandwidth utilization and lgiitypof transceiver
design. However, they are not without fault - since the building block3rDM are sine/cosine
functions which oscillate to infinity in time, the signals usually have to be truncasedting in
deterioration of performance. Further more the basis functions are staticesnce the trans-
mission waveforms cannot be altered according to the demands of the witelasmission.
With an ever increasing demand for high quality wireless services, thergrisnang interest
towards alternative orthogonal basis functions that can yield bettesrpeahces in relation to
OFDM. Itis in this context that that the mathematical precept of wavelets andlat packets
hold promise.

44
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In this chapter we explain how the theory of wavelets and filter banks casdubto construct
a new multi-carrier modulation called the wavelet packet modulator (WPM).théeretical
background presented in this chapter will serve as an important prel(@leejaters 4-9 where
we address various issues related to the implementation of WPM. But evare bef introduce
WPM, we quickly review OFDM and other filter bank based multi-carrier systeThis discus-
sion on alternative MCM techniques will aid in the better understanding of tARM\iéchnique.
The contents of the chapter are divided into five sections. Se&itgives an overview of ex-
isting modulation techniques currently in use for wireless data transmissiotioIs8-2 details
the most popular MCM technique, namely, the Orthogonal Frequencyi@ultiplexing or
OFDM. This discussion on OFDM will be followed by an overview of Filter bdorased MCM
methods in SectiorB-3. Section 3-4introduces the WPM system implementation. And finally
to round off the chapter a summary of the contents is outlined in Se@&ibn

3-1 Modulation techniques for wireless communication

In telecommunication systems, modulation is a process where information cgdigital bits
are mapped into waveforms (or air waves) so that the message can lieaphysansmitted.
This is done by varying the phase, frequency or amplitude of the wawsfior accordance with
the content of the message. While different wireless standards may fiifferone another
substantially, the air interfaces of all radio platforms operate under othe ¢tiree fundamental
modulation modes, namely, single-carrier (where the information bits modulatgla wave-
form or carrier), multi-carrier modulation (where the data is divided intessg\parallel data
streams or channels, one for each sub-carrier) or spread-spdgthere the signal is transmit-
ted on a bandwidth considerably larger than the frequency content ofitfieal information).
Wireless communication systems can hence be viewed as trans-multiplexexstetized by
the kind of waveforms they transmit. The properties of the waveform, i.e. thedpread,
spectral footprint, shape and the number of carriers, determine the wdtine radio.

3-1-1 Single carrier transmission

In a single carrier system the base band signal modulates the carrigg®nsionf the character-
istic frequency, phase, or amplitud€9] 50]. Fig. 3.1shows the blocks of a typical narrowband,
single carrier communication system. At the transmitting end, a source genaragbitrary
stream of data derived from the source alphabet. This stream of da&nifirtbarly modulated

by a pulse shaping filtef(f) and then transmitted to the channel. At the receiver the received
signal is demodulated and decoded by a receiving filtef) and after further processing the
data is estimated.
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FIGURE 3.1: Baseband equivalent of a narrowband communicatidesyB1].

For digital signals, the information is in the form of bits or collections of bits caligdi®ls,
which are modulated onto the carrier. When higher bandwidths (data aaes$ed, the dura-
tion of one bit or symbol of information becomes smaller. At the same time the spsteomes
more susceptible to loss of information from impulse noise, signal reflectrmhsther impair-
ments. These impairments can hinder recovery of the transmitted informatiaaddition, as
the bandwidth of the single carrier system is made larger its vulnerability tonehdispersion
is also increased. Therefore this method is not preferable in practice.

3-1-2 Multi-carrier transmission

In the past decade the rapid progress of telecommunication market hadapiehes for new
techniques that can accommodate high data rates without loss in perfornracoaventional
single-carrier communication systems the data is transmitted sequentially arfdrénéne du-
ration of each symbol is inversely proportional to the data fate Higher data rates result in
shorter symbol duration. The problem however arises in dispersamenehs when the duration
of transmitted symbols becomes shorter than the delay introduced by theethAsra result
the received symbols are widely spread in time causing Inter Symbol Ireade (I1SI). The
amount of ISl in a given channel increases with the dataRatiémiting the connection speed.

ISI can be significantly reduced by employment of multi-carrier modulation{Ni@chnique.
MCM subdivides the total bandwidth inf§ narrow channels, which are transmitted in parallel.
The original data stream at rafe, is divided into N streams each having data rateRf/N
and therefore the symbol duration A times longer, i.e.Ty;c = NT. Fig. 3.2 shows the
Time-Frequency footprints of single and multi carrier modulated signals.

Multi-Carrier Modulation (MCM) is the principle of transmitting high data rate byiding the
stream into several parallel bit streams, each of which has a much lowetdyiand by using
these sub-streams to modulate several sub-car4€r8(]. Multi-carrier modulation possesses
several properties which make it an attractive approach for high speeléss communication
networks. Among these properties is the ability to efficiently access and distritltiplexed
data streams, and a reduced susceptibility to impulsive as well as narwbannel distur-
bances.
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FIGURE 3.2: Single-carrier and multi-carrier Modulation.

Each data symbol in single-carrier systems occupies the entire availaldwidénwhile an
individual data symbol in multi-carrier system only occupies a fraction ofdated bandwidth.
Therefore, narrow band interference or strong frequency seteatienuation can cause single-
carrier transmission to completely fail but in MCM they only affect subieasrocated at par-
ticular frequencies.

3-1-3 Frequency division multiplexing

MCM can be implemented using several techniques. The first multi-carrsterag applied
frequency division multiplexing (FDM). In FDM the composite multi-carrier sibjis obtained
by shifting the baseband parallel data streams upwards in frequency dylatiog them on
different sinusoidal carriers. In order to avoid cross-talk the sarbers used in FDM must not
overlap. Very often guard bands are inserted between the subrsanr@der to accommodate
for local oscillator imperfections and channel effects like Doppler sprEay. 3.3(a)shows the
spectrum of composite FDM signal with guard bands.

There is however an alternative approach to transmitting data over a multipatimed. In-
stead of using carriers with non-overlapping bands, one could partigospctrum into closely
packed sub-bands which overlap. In the next sections we shall sethisas done to optimize
utilization of the spectrum, a resource in premium.
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FIGURE 3.3: a) FDM Spectrum (8 sub-carriers with guard bands); (BP® Spectrum (8
sub-carriers).

3-2 Orthogonal frequency division multiplexing

Over the years there have been several attempts aiming at optimum utilizatjpectfs band-
width through multi-carrier transmission. One of the spectrally efficient multieranethods is
Orthogonal Frequency Division Multiplexing (OFDM32]. Although the principle of OFDM
existed since early sixties the first real life systems appeared only in tiis 198day OFDM
is the most commonly used multi-carrier modulation technique and is widely adoptessa
the world. It is in fact the de-facto choice for high-speed data ratertresgon in frequency
selective fading channels and wireless-Local Area Networks (WLAM of the first systems
to use OFDM was European Digital Audio Broadcasting (DAB) back in 1&&bin short time
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other standards such as Digital Video Broadcasting (DVB), WiFi (IEGE Bla/g/j/n), WiIMAX
(IEEE 802.16), UWB Wireless PAN (IEEE 802.15.3a) and MBWA (IEER 20) followed
[49].

The high spectral efficiency of OFDM is due to its orthogonal sub-aarsiéhich allow their
spectrum to overlap. Adjacent sub-carriers do not interfere with ettedr as long as they
preserve their orthogonality. Moreover, the frequency guard bikelthose used in FDM are
no longer necessary. Fig.3(b)illustrates this with the spectrum of OFDM for 8 sub-carriers.
The technique has other advantages too - high immunity to multipath delay spat@duises
inter-symbol interference (ISI) in wireless channels, immunity to frequesaetective fading
channels, elegance in implementation through the Fast Fourier Tran$¥6iTh &lgorithms and
ease of channel equalization.

OFDM transmission system can be efficiently implemented using the Inversedeaiger Trans-
form (IFFT) at the transmitter side and Fast Fourier Transform (FET)eareceiver side. The
Fourier transformation allows us to describe a signal as a linear combin&garusoids which
form an orthogonal basis. These sinusoids in OFDM are referregbasasriers and their num-
ber is determined by the length of the FFT vector. The orthogonality of auiecs over an
OFDM symbol period’y; ¢ is achieved by setting the inter-carrier spacingt@,,c Hz. There-
fore, the frequency of thith sub-carrier irl’-spaced OFDM is given bybp]:

Foe k01 N1 (3.1)
Tyvic

The correspondingth sub-carrier at frequencf. can therefore be written aS7:

Vp(t) = B2t (3.2)

An OFDM symbol consists oV sub-carriers and after being modulated by the OFDM trans-
mitter can be expressed as:

—_

N—
Sl =Y are?™V, 0<n<N-1 (3.3)
k=0

Ineq. @.3) ay represents the mapped complex data symbols. If we assume an ideall@mhne
perfect synchronization between OFDM transmitter and receiver, tieévezl sequencR|[n] is
identical to the transmitted signal, i.&[n] = S[n]. Under such conditions the demodulated
data after FFT for théth sub-carrier can be expressed as:
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Unfortunately, such an idealistic scenario does not occur in reality amdftine the channel
effects and oscillators’ imperfections should be taken into consideratiamgdsystem design.
Due to delay spread of the channel, OFDM symbols could overlap oneearatid perfect
reconstruction as described in e®.4) may not be possible. In order to decrease the amount
of ISl in dispersive channels guard intervals are inserted betweerMogyinbols. Usually in
OFDM the cyclic prefix is used as it makes the OFDM signal appear periodidterefore
avoid the discrete time property of the convolution.

The cyclic prefix is a copy of lasW-p samples of OFDM symbols which is appended to the
front of each symbol. The effect of the dispersive channels carffisgertly mitigated if the
length of a cyclic prefix is set longer than the span of the channel.3Hglepicts an OFDM
symbol with cyclic prefix. Because the cyclic prefix does not carry asgfwl information it
decreases the spectral efficiency and therefore has to be kepiraaspossible. At the receiver
side the cyclic prefix is no longer needed and hence discarded beéodertimodulation process.
The OFDM transmitter and receiver block diagrams are illustrated i3 figfa)and fig.3.5(b)
respectively.
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3-3 Filter bank multi-carrier methods

The characteristics of OFDM carriers followsac-function in the frequency domain as a con-
sequence of using rectangular windows. This causes the sub-sdarieave large side-lobes
which spill over into neighboring bands resulting in significant interfegerfeurthermore, un-
der non-ideal channel conditions the spectral overlap between thehauinels necessitates the
use of cyclic prefix (CP) and frequency offset correction algorithikhough the CP is an
easy solution to mitigate the impairments induced by the channel, it leads to a losdatdhe
throughput and bandwidth efficiency.

There exist in the literature several alternative multi-carrier techniques BMOB3, 54] that
better handle this inadequacy of OFDM. We shall discuss a few importa# ionthe next
sub-sections.

3-3-1 Filtered multi-tone (FMT)

In [55, 56] a filter-bank modulation technique called Filtered Multi-tone (FMT) is preskente
FMT is similar to Frequency Division Multiplexing (FDM) in the sense that the-saitriers do
not overlap and guard bands are used between carriers to pret@fdrence. FMT is imple-
mented using filter banks with a single prototype filk&ff) and it's dualH*( f). The prototype
filter is usually a Root Nyquist filtergb]. The modulation scheme is usually Quadrature Am-
plitude Multiplexing (QAM). Fig.3.6 shows the implementation of the FMT transmitter and the
FMT receiver modulator. In the figuréy denotes the maximum number &f sub-carriers and
K represents the sampling factor. Usually a choicéof> N is made for addition of guard
bands between the sub-carrier bands. Equalizers are neededmftesdmpling at the receiver.

In FMT, orthogonality between sub-channels is ensured by using verapping spectral char-
acteristics as compared with the overlappifgc-function type spectra employed in OFDM.
Since the linear transmission medium does not destroy orthogonality aclinetlégd manner,
cyclic prefixing is not needed. Clearly, the required amount of spectraiainment must be
achieved with acceptable filtering complexity. In a critically sampl¥d=£ K) filter bank, the
frequency separation of the pass bands willl p& with a total of M bands. In this way, each

of the transmitter pass-band filters will be frequency-shifted versionkeofow pass filter as
shown in fig.3.7. An obvious disadvantage of FMT is the inefficient use of bandwidth as the
sub-carriers do not overlap.
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3-3-2 Cosine modulated multi-tone (CMT)

In [57] Boroujeny introduces the Cosine Modulated Multi-tone (CMT) as a capablg-carrier
modulation technique. The CMT uses pulse amplitude modulated (PAM) symbolyagtia
gial sideband modulation and the sub-carrier bands are maximally ovedlagpénally spaced.
Vestigial side-band modulation (illustrated in fi8.9) is adopted to maximise bandwidth effi-
ciency. The prototype filter&/ (f) and H*( f) are selected to be Root-Nyquist filters to aid the
demodulation of the data symbols at the receiver. At the receiver eqimiizsicarried out after
decimation §7]. Figs.3.8(a)and 3.8(b)show the blocks of the CMT transmitter and receiver,
respectively.

Both FMT and Cosine Modulated Multi-tone (CMT) are filter bank-based radidun tech-
niques p7]. The main difference between the two methods lies in the way the spectiidan
used, as shown in fi@.7. In FMT, the sub-carrier bands are non-overlapping, thus separatio
of different sub-carrier signals can be achieved by conventionaiififfe On the other hand,

in CMT, the sub-carrier bands are allowed to overlap and separatiomésttoough judicious
design of the synthesis and analysis filters. It is evident from3figthat CMT offers higher
bandwidth efficiency than FMT since more sub-carrier bands can mrecodated per unit
bandwidth.

The sub-carriers of FMT as well as CMT can be considered to be adwdrandwidth thereby
experiencing a flat fading channel. Hence, the equalization of the ehafiects is carried out
through a single tap equalizer whose tap weight is the inverse of the digaine Training
symbols are usually used to initialize the equalizer taps. In CMT the uniqueenatihe
underlying signals allows for blind equalization without training. The pracesl are described
in greater detail in%7].

3-3-3 Offset QAM/staggered multi-tone (SMT)

Another technique suggested is the Staggered Multi-tone (SMT) modulatios.m&thod is
also known as Offset QAM and is implemented using poly-phase filter b&8%&9]. Unlike
the FMT, SMT allows overlap of carriers to maximize spectrum utilization. Theuladidn
scheme used is Offset- QAM where the quadrature and in-phase contstitie separated by a
time-offset of half the symbol interval. Hence, the name Staggered Multi-tone

Fig. 3.10shows the blocks of the OFDM-OQAM transmitter and receiver. In OFDRIAM,

the sub-carrier bands overlap and are spaced at the symbol rateesSutsignal separation
is nevertheless possible thanks to the orthogonality between the subrscautnieh guarantees
that the transmitted symbols arrive at the receiver free of inter-sym8¢) &hd inter-carrier
interference (ICI). Carrier orthogonality is achieved through time staggé¢he in-phase and



Chapter 3 Wavelet packet modulator 55

so(t)

A

h(t)el it

Modulation
to RF band

—a® ] h(t)ed3Ft _._®_,

v gji'r\rfl)[TtT: éR{}
L lw(t)
LAY 1‘:3: ;I
h_(t)eJ apt —"®_’ To channel
(@
From channel 2 nl
y(t) ——————|h(t)ei e R

| gmi2nfett | o—i(Ft+E)

R
-;_-:' _______ ; —b®—b h(t)e Frtl m{}_/\;L

Demodulation
from RF band

—IN-1)(Ft+F) o

Lo ht)ei et | —o|R{ | Er=alnl

(b)

FIGURE 3.8: CMT. (a) Transmitter and (b) Receivé&d].

guadrature components of the sub-carrier symbols and designingr irapsmit and receive
filters. In OFDM-OQAM, each sub-carrier band is double side-banduladeld and carries a
sequence of QAM complex valued symbols. Assuming identical symbol doratid number
of sub-carriers, the CMT signal occupies half the bandwidth of OFDRI®! thereby offering
only half the data rate. On the other hand, FMT uses guard bands beddjaeent sub-carriers.
The width of the guard-bands depends on the specific system implemenTdtenefore, for an
identical number of carriers and identical symbol timing, FMT requires marglWwidth than
OFDM-OQAM and CMT B8§].
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The OFDM-OQAM method is similar to CMT for the case when the sub-carriedbanax-
imally overlapping (i.e. are minimally spaced), see 8d/. Both OQAM and CMT achieve
maximum bandwidth efficiency. Transmit symbols of OFDM-OQAM are oft3aM: in-phase
and quadrature components have a time offset of half symbol intervale buerlaps are lim-
ited to adjacent bands ardl( f) andH « (f) are a pair of root-Nyquist filters the separation of
data symbols at the receiver output is guaranteed. Equalizers aredregfeel decimators at the
receiver.

3-4 Wavelet and wavelet packet based multi-carrier modulators

3-4-1 Wavelet packet modulator (WPM)

Recently, the theory of wavelet$?] and wavelet packetdl ] has been applied for the design
of multi-carrier modulators. The pioneering work on these subjects wetied¢aut by Lindsay
[11] who laid out the theoretical foundations to establish the link between wayadiets and
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digital communication. He also showed that the entire WPM transceiver steurdn be real-
ized with a pair of conjugate quadrature mirror filters which satisfy a setmmstcaints. His idea
has since then been taken forward by many researchers. The dgoddlifiPM data with Max-
imum likelihood estimators has been addressed by Su4gki [The study of an equalization
scheme suited for WPM has been conducted by Gradis [n [15, 16] an investigation on
the performance of WPM systems in the presence of time offset is perfotmgd/] its PAPR
performances are analyzed. The advantages of the wavelet trariafterms of the flexibility
they offer to customize and shape the characteristics of the waveform$ban demonstrated
in [18-21]. Three use-cases where the waveforms are designed and appliptiniize the
WPM system performance according to specific system demands are iédstigl8-20]. In
[21], the work of [18, 19] is extended to establish a unifying mathematical framework where the
waveforms are designed according to a pre-defined criteria.

WPM is implemented with orthogonal wavelet packet (WP) bases derigaddmulti-resolution
analysis (MRA). Fundamentally, OFDM and WPM have many similarities as betlosog-
onal sub-carriers (which overlap over one-another) to achieve $pgletral efficiency. The
adjacent sub-carriers do not interfere with each other as long astimgonality between sub-
carriers is preserved. The difference between OFDM and WPM is in theftegaency charac-
teristics of the sub-carriers and in the manner in which they are gene@f&M uses Fourier
bases which are trignometric functions while WPM uses a family of waveletsbdsifferent
wavelet families result in sub-carriers of distinct nature paving way €justing the trans-
mission characteristics of the system. By careful selection of wavelets is&hpe in WPM
to optimize figures of metrics like bandwidth utilization, sensitivity to synchroninagioors,
Peak-to-average Power ratio (PAPR), etc.

The starting point to derive the orthogonal wavelet bases is to consipair ® Quadrature
Mirror Filters (QMF) consisting of a half-band low pass filtgi] and high pass filteg[n| of
length L each. These filters share a tight relationship giverg8h29:

gIL — 1 —n] = (~1)"h[n] (35)

Furthermore, they have adjoints or duals which are their complex conjugatestarsed vari-
ants BJ:

W'[n] = h*[-n]
g'ln] = g*[-n] (3.6)

The filter-pairh’[n], ¢'[n] are called the synthesis filters and are used to generate the WP carri-
ers for modulation of the data at the transmitter. On the other hand the filtek{pairg[n],
known as the analysis filters, are used to derive the duals for demodutdtidata at the
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receiver. Denoting the magnitude responses of these four filters ingbadncy domain as
H(w),G(w), H' (w)andG’ (w), the filters satisfy the perfect reconstruction conditions§]if [

H*(w+ m)H' (w) + G*(w + )G’ (w)

0
H*(w)H' (w) + G*(w)G' (w) = 2

(3.7)

Such filters can be used for various applications from compression ofefsgech signals
to radio system design. From these QMF filters, the wavelet packet E;l%lsm be derived
recursively through a multi-resolution analysis (MRA) 84][

&2\ [n] = V2> hlklel[2n — K]
k

&0 ) = V2> glkl€l[2n — K] (3.8)
k

Ineq. B.8) ¢ denotes the wavelet packets duals astands for the sub-carrier index at any given
tree depthl. The number of decomposition level®f the WP tree determines the maximum
number of WPM sub-carrietd that can be generated and the two are related by the expression
N <24

The WP bases satisfy two orthogonal properties which are crucialéorapplication to MCM.
First, they are orthogonal to themselves for all non-zero integer shift$3ile

(&'ln—jl,&[n — k) = 8[j — kJ; V4, k € Z. (3.9)

Here, the operatqf) represents the inner-product operation. And second, pairs of thiesé3
derived out of the same parent are orthogonal to one another foaatk [31]:

< 2[n — j, fp+1[n—k]> = 0;¥j,k € Z. (3.10)

Eq. (3.8) can be physically realized with a filter bank tree structure obtained byadasrthe
fundamentah|n], g[n] filter pair, followed by down-sampling bg, iteratively as shown under
the Discrete Wavelet Packet Transform (DWPT) block in3ig.1[31].

The figure shows a level-2 decomposition scheme which yields up to 4 orthb@¢P bases.
The WP duals.fl’p for the transmitter can be obtained by a similar procedure, albeit, with the
synthesis filter pairé’[n], ¢’[n]. The processes are referred to as inverse-DWPT (IDWPT) and
DWPT at the transmitter and receiver, respectively, analogous to thesé®#&T (IFFT) and
FFT, in OFDM systems.

The WPM transmitter and receiver block diagrams are illustrated in3ig8(a)and 3.13(b)
respectively. The WPM modulated sigr#n] is obtained as a linear combination of the WP
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dualsggp weighted with complex data symbalg ;.

N—-1
Sl =" aur&Fn — uN] (3.11)

u k=0

In eq. @B.11) k denotes the sub-carrier index anddenotes the WPM symbol index. The
constellation symbol modulatingth sub-carrier inith WPM symbol is represented ky; ..

At the receiver the data is demodulated with the dual bases. If we assuintieethdPM trans-
mitter and receiver are perfectly synchronized and that the channelak the detected data at
the receiver can be given by:

awp = Y RnJE [W/N —n]

N-1
= 22> aukbfln —uNJg W'N —n]

n u k=0

N—-1
= Z Z Qo (Z §f[n - uN]ff/ [u'N — n])

u k=0

=

= Z aur0lu — Uk — k'] =a,

u 0

i

(3.12)

An important property unique to wavelet transform is that the waveletsbassemuch longer

in length than the duration of a symbol and can overlap in the time domain withaug fiteir
orthogonality. The long wavelet bases in WPM allow for better frequenalilation of sub-
carriers, especially, in relation to OFDM where the rectangular DFT wisd@sult in large
side lobes. In fig3.12the spectrum of a WPM system with 8 sub-carriers is depicted. One may
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observe the relative merits of using WPM over OFDM with regard to frequeelectivity of
the sub-carriers from fig8.3(b)and 3.12

An undesirable consequence of time overlap in WPM is that guard bandstdae used. Al-
though, the addition of a guard interval in OFDM severely decreasesrapefficiency, it is an
effective and low complexity method to cope with dispersive channels and et

3-4-2 Variants of wavelet packet modulator

The Wavelet packet modulator can be considered as a generalizedfatimer multi-carrier
modulators based on wavelets. IrP] Negash and Nikookar suggest replacing the conventional
Fourier-based complex exponential carriers of a multi-carrier systenowiftbnormal wavelets.
The wavelets are derived from a multistage tree-structured Haar anokeBsies orthonormal
QMF bank. An improved performance with respect to reduction of the poivks| and ICI

is reported. This work is extended iB8(] by realizing a high-speed digital communication
system over a low-voltage power-line. With empirical investigations on a naigtalned from
measurements of a practical low-voltage powerline communication channauttias demon-
strate the effectiveness of wavelets for use in OFDM systems, especitilyegard to ISI and
ICI mitigation. Another real time application of the system is reportedit) vhere Wavelet-
based OFDM for V-BLAST (vertical Bell laboratories layered space tif6e) is discussed.
According to B1] the bit error rate (BER) performance of the wavelet based V-BLABTeN

is superior to their Fourier-based counterparts. In the conventiostdrag, the ISI and ICI are
reduced by adding a guard interval (Gl) using a cyclic prefix (CP) tcht#eed of the OFDM
symbol. Adding CP can largely reduce the spectrum efficiency. WavesstdoOFDM schemes
do not require CP, thereby enhancing the spectrum efficiency. Mereas pilot tones are not
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necessary for the wavelet based OFDM system, they perform bettempacson to existing
OFDM systems like 802.1la or HiperLAN, where 4 out of 52 sub-bandsised for pilots. An
advanced OFDM modulation scheme called Isotropic Orthogonal Trangftgorithm (IOTA)

for future broadband physical layers is proposeda8|.[ This system uses isotropic Gaussian

functions to generate the carrier waves and gives good spectra¢mgicby eliminating the

use of a cyclic prefix. In§4] the promise shown by a Haar WOFDM system with Hadamard

spreading codes in reducing its peak-to-average power ratio (PAREYdsged.



Chapter 3 Wavelet packet modulator 62

Shaping Filters Interpolating Filter Tree
| I |

T -
o) e
- |
o] - L
-
) ]
T -

47 Wiron 21 G |—

Lt -l

FIGURE 3.14: Modulator of Interpolated Tree Structure (ITOMH]. In the figurew;roas is
the ITOM shaping filters.

3-4-3 Interpolated tree orthogonal multiplexing (ITOM)

In the WPM technique the filter banks perform the dual role of shapinggbetisim as well as
interpolating in time series. A slight enhancement to this approach would bpdcese the two
processes and gain greater control over the characteristics of therafhis method is called
the Interpolated Tree Orthogonal Multiplexing (ITOM) and was introduzgéiaris p5]. The
procedure is depicted in fi§.14 From the figure we can notice that up-sampled shaping filters
precede the input ports of the wavelet packet tree structure. Notcherglee desired spectral
interval is achieved by vacating one or more of the input branches. Fitfs(a)and 3.15(b)
illustrate an example of the ITOM mechanism. We may note from 8db(a)and 3.15(b)as

to how well the enabled and disabled carries fit into the spectral gapeedmother, illustrating
the superiority of the ITOM procedure towards spectrum shaping.



Chapter 3 Wavelet packet modulator 63

Spectrum of Enabled ITOM Time Series

G H
o i
© -20 i
o H
E i
= ; ; : : i
81_40_.. ................ .............. ............... ............... .........
= F i H H i
o
o
ERUI: Ty] e | S T R O PN e — R "
-05 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 04 05
Normalized Spectrum
(a)
Spectrum of Disabled ITO Time Series
Of- I ! S — — : g
)
2 3 : i
© 20t O SRRIIORULSEEEERON RS B EECECRPRREIELE TR B RLAE L o8 BERT - -~
T i r i :
2 ; :
= i ; i i i i i ]
PR TI] % IS SRR Tt IS SO s ot I R T o S
= ] 1 1 ; s : ] 1
o i i - i H i 1
| |.l| llil ]ll“l“ : L‘ ‘H}H i R i i
-05 -04 -0.3 -0.2 -0.1 0 0.1 0.3 04 05

Normalized Spectrum: (fffs)

(b)

FIGURE 3.15: lllustration of ITOM operation: (a) Spectra of Enablepectral Bands of 64-
point ITOM; (b) Spectra of Disabled Spectral Bands of 64rRp6TOM [65].

3-5 Summary

In this chapter we discussed various multi-carrier techniques availabédfiment modulation
of data. OFDM was presented as the most popular of MCM implementations. lFaitral-
ternatives to OFDM, like FMT, CMT and SMT, were addressed. Theaijwar of the WPM
transceiver, as a wavelet based implementation of orthogonal multi-cayseem, was pre-
sented. The WPM is a relatively young multi-carrier transmission technigdeeny little is
known about its operation. In Part-11l (includes Chapters 4, 5 andeG3hvall evaluate the WPM
system over various performance metrics like:

e sensitivity to loss synchronization (time/frequency/phase),

e peak-to-average power ratio (PAPR) performance and

e influence of channel induced interferences; and mitigation of interéerasing channel
equalization.
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Chapter 4

Synchronization errors in wavelet
packet modulation

4-1 Introduction

The rapid increase in wireless applications and the ensuing lack of feeg'sm have prompted
engineers to pursue bandwidth efficient multi-carrier techniques. kréodachieve high band-
width efficiency the sub-carriers have to be closely spaced to each ‘otheln this class of
multi-carrier systems belong OFDM and WPIJ], discussed in Sections 3.2 and 3.5, re-
spectively, of Chapter 3. OFDM and WPM have orthogonal sub-cartiwt overlap with one
another. The orthogonality property of the transmission bases ensatéielinformation con-
taining sub-carriers do not interfere. Before the MCM symbol can lneodielated the receiver
has to be synchronized properly with the transmitted frame timing, carriardrery and phase.
However, impairments such as frequency offset and/or phase nalsegieh by radio front ends
or channel conditions, can cause the sub-carriers to lose their mutiuagjonality and impede
the transmission of one-another. The rise of interference level duestofasthogonality is far
more pronounced in multi-carrier transmission than in single carrier systdmnssdiSadvantage
of multi-carrier systems places higher demands on the quality of the analogccadponents,
especially on the choice of oscillators. For OFDM transmission the effedteaiiency offset
and phase noise are well documented in the literato#€, [68-74] and a number of synchro-
nization techniques are reported to estimate and reduce the frequerstyaofts phase noise
effects [/5-81]. Similar material for WPM performance does not exist.

'Portions of this chapter have been published@f],[[15 and [67]. For any material that has been reused,
wherever applicable, a written consent has been obtained from thaufirsdr.

2The author gratefully acknowledges the contributions of Msc studentDMiKaramehmedovic for his active
co-operation and help with the computer simulations.
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Besides frequency and phase misalignment, multi-carrier systems can fdsdreun loss of
time synchronization. Time synchronization errors occur when the stdheomulti-carrier
symbol is incorrectly detected. This causes discarding of samples atgimning or end of the
useful symbol and selection of parts of adjacent symbol. Due to loss of tinehonization,
disturbances like Inter Symbol Interference (ISI) and Inter Carnitarference (ICI) occur. The
use of cyclic prefix in OFDM can significantly improve the system perforraamcase of timing
errors. However, the use of guard interval is not feasible in WPM systeecause the symbols
overlap in time. As with the study on the impact of frequency offset andephasse effects
on WPM transmission, the literature on the effects of timing errors on WPMatiparis also
relatively low in comparison to what is available for OFDM.

In this chapter we address the impact of different synchronizationseorothe WPM transmis-
sion and compare their performances with that of OFDM. The operationRi¥\ivansceivers,
employing different wavelets, is numerically evaluated under differentitions. Analytical
expressions for the demodulation of the transmitted WPM data are alsodleBeaeh of the
frequency, phase and time errors is treated individually and separatiffeirent sub-sections.
The intention of studying the three disturbances separately is in part to battea understand-
ing of the individual phenomenon but also to aid ease of analysis. Mergihe three errors -
time, frequency and phase- are caused by disparate processe® apptbach to study them
separately is a reasonable approximation. First, we present the impactief érequency off-
sets on WPM/OFDM communication in Section 4.2. This is followed by a discussidhen
influence of phase noise in Section 4.3. Lastly, the transmission of WPM/OtiMdr a loss
of time synchronization error is analyzed in Section 4.4. The chapter eitiis\\summary in
Section 4.5.

4-2 Frequency offset in multi-carrier modulation

The orthogonality between sub-carriers is maintained as long as the trananiteeceiver
have the same reference frequency. Any offset in the frequesaitsen loss of orthogonality
and the carriers interfere with one-another’s transmission. This is due tedison that during
demodulation sampling may not occur at the peaks of the sub-carriei@hbet at offset points.
Besides the interference, frequency offsets also lead to attenuatiootatidn of the sub-carrier
phases.



Chapter 4 Synchronization errors in wavelet packet modulation 67

4-2-1 Modeling frequency offset errors

An offset in frequency is commonly caused by a misalignment betweervee@aid transmitter
local oscillator frequencies or due to a Doppler shift. The Doppler gaqu shift f4. is pro-
portional to the sub-carrier frequengy, angle of the velocity vecta and the relative speed
between the transmitter and the receiveand can be expressed as:

fax = chk cos() 4.1)

In eq. @.1) c denotes the speed of light and it is approximately equal 1010® m/s. The
frequency of each sub-carrier can be calculated by taking the sumiofoaaier frequencyf.
and baseband sub-carrier frequerfgyas:

fk:fc:tfsc (42)

Using egs. 4.1) and @.2) the relative frequency offséX ; due to Doppler shift can be expressed
as the ratio between the actual frequency offset and sub-carrigngpae.:

Ap = T “iikfsc cos(a) = U—cr cos(a) (4.3)

The frequency offset can be modeled at the receiver by multiplying ttesvesd signal in the
time domain with a complex exponential whose frequency component is equadeehcy
offset value. If we denote the transmitted signal$jy.] and the received signal bi[n] the

relation between the two under the influence of a frequency affgetan be given as:

R[n] = S[n)e/2 A/ N+bo 4 y[p] (4.4)

In eq.@.4) Ay denotes the relative frequency offset due to local oscillator mismatcheotodu
Doppler shift or a combination of botlv stand for the total number of sub-carriess,is initial
phase andv denotes additive white Gaussian noise (AWGN). Without loss of generaldy, w
consider thatw[n] = 0 and¢, = 0. Hence,R[n] = S[n]e/22m/N.

4-2-2 Frequency offset in OFDM

In OFDM the frequency offset prevents the perfect alignment of HR$ With the peaks of the
sinc pulses i.e. sub-carriers. This is illustrated in figl where the sampling mismatch due to a
frequency offset is depicted.
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[82].

The FFT output corresponding to thth sub-carrier under frequency offskl can be expressed

as:
N-1
. 1 _jonkin
ay = — R[n]e™*™~
N
n=0
| N-1 Nl )
=~ a eI2mE i2m A g fe o —i2m P
k=0 n=0
1 N-1 N—-1 '%(kfkqu)n
= N ag 6‘] N (45)
k=0 n=0

Using the geometric series properties édp) can also be expressed &4[76]:

sin(m(k — K +Af)) i (N1 (k—k/ A
U = Z Ok ( (k= k’-i—Af)) N ’ (46

sin

We can split eq4.6) into two distinct parts:

_SIn(rAy) _ m(Xet)ay
N sin (ﬂAf>

Useful Signal(Attenuated, PhaseShifted)
N-1

dk/ = a‘k’

sin(m(k — K" + Af)) jr(N1)hor' 1) (4.7)

Ty X W Sin(w(kﬂwf))

Intercarrier Interference(ICI)
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The first component of edl(7) stands for the useful demodulated signal which has been atten-
uated and phase shifted due to the frequency offset. Since the atterteatiois independent

of the carrier-index all the sub-carriers experience the same degaiermuation $2]. The sec-

ond term in eq4.7) contains the ICI term which represents the deleterious impact of all other
sub-carriers on the decision making of data contained in the carrier ofsttefrhe CFO does

not influence the amplitude of the OFDM signal and therefore the totalvet@iower is not
altered. Furthermore, the total ICI power due to CFO is also not affegtaidonumber of
OFDM carriers 82.

4-2-3 Frequency offset in WPM

The detected data for thgh sub-carrier andith symbol at the WPM receiver under a loss of
frequency synchronization can be expressed as:

N-1
Guge = DRI WN —n] =3 037 ausen - uNje T R W/ N —n]

n u k=0

N—-1
= DD uk (Z &ln — uN]e S W [/ N — n]) (4.8)

u k=0
Defining the cross-waveform functid®jA ] as:

Qi Ag] =" e A Wekin — uNIEF [/ N — n) (4.9)

the demodulated information bit of thgh sub-carrier andth WPM symbol corrupted by the
interference due to loss of orthogonality can be expressed as:

N-1
/ ’ / ,
e = aw Qo A+ D auw QU AL+ Y Y awQpn (A (4.10)
. / . ,
Desired Alphabet yuFEu u  k=0;k#k
ISI Inter Symbol—ICI(IS—ICT)

In eq.@.10 the first term stands for the attenuated and rotated version of the dseful The
second term gives the I1SI due to symbols transmitted on the same subdaohtiee third term
denotes the ICI measured over the whole frame.

4-2-4 Numerical results for frequency offset errors

In this section we investigate the performance of WPM under frequenesgtdfy means of
computer simulations. The WPM transceiver is simulated with different wafeatgties and
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WPM OFDM
Number of sub-carriers | 128 128
Number of multi-carrier] 100 100
symbols per Frame
Modulation QPSK QPSK
Channel AWGN AWGN
Oversampling factor 1 1
Guard band - -
Guard interval - -
Carrier frequencyf, 0 (base band) | 0 (base band)
Frequency offset Ar=5—-10% | Ay =5—10%
Phase noise - -
Time offset - -

TABLE 4.1: Simulation setup for study of frequency offset effects

their performances are compared with OFDM. To simplify the analysis, thenehas taken
to be additive white Gaussian noise (AWGN). No other distortions exceguéncy offset is
introduced. QPSK is the modulation mode of choice. The number of symbofeapee is set
to 100 with each symbol consisting of 128 sub-carriers. Furthermorsjrthdated system has
no error estimation or correction capabilities nor is guard intervals or dammds used. Any
change from these specifications will be explicitly stated. The parametdhs cfimulation
set-up are summarized in tallel

a. Performance under frequency offset error

Fig. 4.2 shows the bit error rate (BER) plots of OFDM and WPM transceiversaafoglative
frequency offset of 5% from the/T" spacing. The BER curves for different wavelets and OFDM
show similar performance but due to frequency offset they all deviaite fine theoretical curve.
The biorthogonal wavelet is the exception with a very poor performaoc®ared to the other
systems. This is due to the fact that the biorthogonal wavelets do not fudfitbrthogonality
condition.

In fig. 4.3the BER plots is shown for different values of relative frequency offaeying from
0 to 40% for a constant SNR value of 16 dB. We can again see that ttegparices of majority
of the wavelets are very similar to that of OFDM. The biorthogonal wavetieler, has a
poor performance, while Haar wavelet slightly outperforms other wavaledseven OFDM.
The results make clear the sensitivity of both WPM and OFDM systems to fieywdfset.
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FIGURE 4.2: BER for WPM for different Wavelets and OFDM under a refatfrequency
offset of 5%.
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FIGURE 4.3: BER vs. relative frequency offset for WPM and OFDM in an AWGhannel
(SNR =16 dB).
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b. Influence of number of sub-carriers

The results of the investigation on the influence of the number of sub+saoiethe WPM
system performance under frequency offset are depicted id.figFor this set of experiments
all the WPM transceivers are simulated with the same wavelet, namely Daub@€hieut with
different number of sub-carriers. Furthermore, the relative frequeffset is set to 10%.

The degradation of WPM performance in the presence of frequefegtd$ dependent on the
number of sub-carriers. This dependency is straightforward whesttbalute frequency offset

is fixed [B]. As the number of sub-carriers in a given bandwidth increases, dergpbetween

the sub-carriers decreases and hence the relative frequeneyintiseases. The results of these
studies are plotted in figl.4. For the case considered the relative frequency offset with respect
to the inter-carrier spacing is kept constant. The WPM configurations wigariaumber of sub-
carriers are more susceptible to the frequency offset. Howeverndey@oint this sensitivity
saturates and even with increasing number of sub-carriers there isceppble differences in
performance. For example, we can observe fromdfigthat the performances of WPM witht
and128 sub-carriers are almost identical.

c. Influence of WPM frame size

Frequency offset in WPM not only leads to ICI within one symbol but als@ss the whole
frame. Therefore, it is important to see the effect of the frame size in catdmwith the
frequency offset. These results are depicted in4i§. The plots show that the number of
symbols in a frame does not affect the performance of WPM in the preséfiequency offset.

d. Influence of wavelet filter length

The influence of the filter’s length in combination with the frequency offsethe BER perfor-
mance is illustrated in figd.6. This simulation is performed for AWGN channel and a relative
frequency offset of 10%. We again choose the Daubechies waveleplw we alter the num-
ber of filter’s coefficients and fix the number of sub-carriers to 12& BEBR curves shown in
fig. 4.6 are all superimposed one over another suggesting that the filter's lemgjtuanber of
wavelets’ zero moments have no tangible influence on the system perf&mpei@ting under

a loss of frequency synchronization.

e. Constellation plots

The effect of frequency misalignment between transmitter and receivéne constellation
points is depicted in the figt.7. In order to highlight the effect of frequency offset we assume
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FIGURE 4.6: BER for WPM using Daubechies wavelets of different lesgind relative fre-
guency offset of 10%.
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90 5

FIGURE 4.7: Constellation points in the presence of a relativedesgy offset of 5%.

an ideal channel without any other infarction or noise barring a loseguéncy synchroniza-
tion (a relative frequency offset of 5% is chosen). The main effeth®frequency offset is the
scattering of the constellation points around reference positions due tieietere. Other con-
sequences are the anti-clockwise rotation of all constellation points andginadattenuation.
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FIGURE 4.8: Spectral energy in a frame of the received WPM signattdteby a frequency
offset. (a) 2-D and (b) 3-D. Wavelet used: Daubechies 10.

f. Dispersion of sub-carrier energy

The last set of results in this section show the dispersion of the subtsagriergy due to fre-
guency offset (see figd.8(a)and 4.8(b)for WPM and figs4.9(a)and 4.9(b)for OFDM). For
clarity of depiction, we have limited the number of sub-carriers to 16 and #meefisize to 30
multi-carrier symbols. The channel is assumed to be ideal and all dist@®anthe transmis-
sion are solely due to the frequency offset. Fig8(a) 4.8(b) 4.9(a)and 4.9(b)were obtained
by transmitting a single non-zero pilot sub-carrier with all other sub-aariiethe frame set to
zero.

In an ideal situation without any frequency offset, the only sub-cawitér non-zero value will
be the pilot sub-carrier regardless of WPM or OFDM. However, thgueacy offset results in
loss of orthogonality and sub-carriers begin to interfere with one andth&~DM the effect of
frequency offset is to introduce ICI. This disturbance is confined toiwalsingle multi-carrier
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FIGURE 4.9: Spectral energy in a frame of the received OFDM sigrfatédd by a frequency
offset. (a) 2-D and (b) 3-D.

symbol and other OFDM symbols are not affected. On the other hand ti& WaB overlapping
symbols and hence an offset in frequency results in both ICIl and iptea-ICI.

In figs.4.8(a)and 4.8(b)we therefore observe that the energy of the pilot sub-carrier located in
the 5th sub-carrier andth symbol is spread across the whole frame. This is in agreement with
the theoretical derivations carried out in sections 4.2.2 and 4.2.3.

4-3 Phase noise in multi-carrier modulation

An ideal local oscillator modulates carriers with a constant amplitude anddrey. However,
practical local oscillators suffer from deleterious factors, such asnienoise 83], which
causes the oscillator’s central frequency to fluctuate. This uncertaitttg iactual frequency or
the phase of the signal is referred to as phase noise. Multi-carrientissien is vulnerable to
phase noise since phase noise can cause a loss of orthogonality bete/eeh-carriers.
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FIGURE 4.10: Single side band PSD of the oscillator.
4-3-1 Modeling the phase noise

Phase noise can be represented as a parasitic phase modulation ofllidt®iissignal. In the
literature there exist many models for the phase noise. Majority of these naréealtescribed
in terms of the power spectral density (PSD). In the ideal case the PS[2 &ddal oscillator
would be a single pulse (delta function) at the central frequency. Henvdue to imperfections
of the oscillator, the PSD of a practical oscillator is distributed over a wigguiency band with
highest concentration around oscillator’'s central frequency. Thgesside band PSD of free
running oscillator can be estimated by the Lorentzian funct@, ike the one illustrated in
fig. 4.10

We model the phase noise as a zero mean white Gaussian pggcesth finite variances2 .
The model is based on the work @&9). The autocorrelation function of the phase noise is given

by:
Ry, [m] = 26[m] (4.11)

w

The power spectral density of the phase noise can be expressed as:

Seu(f) = Y_ Ry, (m)e72m/m (4.12)

m=—0Q

In order to get the desired phase noise bandwidth we perform low ftasm{j with filter 7,
in which case the PSD can be given as:

Sen(£) = S (HIFs(f) (4.13)
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By changing the corner frequengy; of the filter used we can adjust the phase noise bandwidth.
Low values of the corner frequency result in narrow bandwidth foptirese noise while higher
values of the corner frequency spread the phase noise.

In the last stage of the model we add phase noise floor to the signal. The pbse floor is
also modeled as a zero mean Gaussian process with finite vasigpcahich is relatively low
compared tar2. The phase noise floor is not correlated so that it spans the whole dwailab
bandwidth and has flat PSD.

The total phase nois&, can now be expressed as a sum of bandwidth limited main noise
contributiong, and phase noise floar,, as:

Agln] = ¢p[n] + dun[n] (4.14)

Using the phase noise model given above we can write the received #ifjrjahat has been
affected by phase noise and AWGN channel as:

R[n] = S[n]e?2M 4 w[n] (4.15)

Without loss of generality, we take[n] = 0, in which case the received signal can be given as
R[n] = S[n]e?Ael,

4-3-2 Phase noise in OFDM

The demodulated OFDM data at the receiver’s output affected by ploése can be expressed

as:
N-1
1 o K
~ —Jj2rn
ap = — Rlnle 7™~
=3 R
n=0
L V-1 N )
_ = ar ejQW%nejAd)[n]e—jQW%n
N
k=0 n=0
LVl N -
= ¥ ay eIRolnl gl (4.16)
k=0 n=0

To simplify the analysis, the demultiplexed signal can be separated into urgefuhation com-
ponent and disturbance component. In order to do so we assume thate mise is suffi-
ciently small so that it can be approximated 69]]

e?2oll 1 4 jA, ). (4.17)
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Under this approximation the demodulated OFDM information bit for &tte carrier can be

given as:
| M- Nl . N-1 N-1 et
N Z a Z el + % ay Ag[n]e?*™ w
k=0 n=0 k=0 n=0

; N-1 N-1 _—
~ J J2m L
X ap + N Z af, A¢[n]e N

k=0 n=0

= ap + IA¢ [k)] (418)

The first component of edl(18 stands for the correctly demodulated symbol while the second
term I, represents the interference caused to each sub-carrier.

The perturbance caused by the phase noise on multi-carrier transmiasiba divided into two
components:
e Common phase error (CPE) wherein all the information bits contained in ezsuler are

attenuated and rotated by the same angle.

e Inter-carrier interference (ICIl) where the information bits contained sulacarrier are
corrupted by disturbance from all other sub-carriers.

1. Common phase error (CPE) - case wheh' =

For this case the disturbance term in édL@ can be written as:

j N—-1 N-1
Is, K] = L3 0 Y Agln)
k=0 n=0
= jOay. (4.19)

The interference component in e419 rotates all the constellation points by an angleThis
angle of rotationP is common for all sub-carriers and can be defined by the average pbiase
given as:

P — % S ¢lnl. (4.20)

The common phase error (CPE) is only dependent on low frequencibe phase noise spec-
trum up to the frequency of the inter-carrier spacing.
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2. Inter carrier interference (ICl) - case when &’ # k

For this case the disturbance term in 4dL can be written as:

. N-1 N-1
o [k—KIn
IA(,)[/C]:% E akg Agn]e*™ ~ . (4.21)
kK k=0;k#k!  n=0

The error in eq4.21) consists of contribution from all other sub-carriers of a OFDM symbol
and is known as ICI. The ICI due to phase noise is dependent only dnighdrequency phase
noise components. In general, the phase noise that causes ICI cdragimsncies which are
larger than inter-carrier spacing frequency.

4-3-3 Phase noise in WPM
As in OFDM, the disturbance caused by phase noise can be divided intttwmgonents:
e Common phase error (CPE) wherein all the information bits contained in ezuler are

attenuated and rotated by the same angle.

e Inter-Symbol Inter-carrier interference (ICI) where the informatidgts lsontained in a
sub-carrier are corrupted by disturbance from all other sub-caagewell as from neigh-
boring symbols.

For ease of representation we first define the cross-waveforrtidarie{A ;] as:

QZZ', [Ag] = Zflk [n — uN]eUReD el W/ N — n). (4.22)

The detected data at the WPM receiver in presence of the phase ndiseffth carrier andith
symbol can be written in terms of the cross-waveform funcipn ;] as:

dwp = Y RnE [WN —n]

N-1

= D03 auniilag) (4.23)

u k=0

Furthermore, assuming that the phase noise is sufficiently small so thathecgproximated
as b9
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Eq.@.23 can be rewritten as:

N-1 N-1
du’,k’ ~ Z Z au,kQZ:Z,, [qu)] + 7 Z Z au,kQZ:Z'I [Aﬂﬂ

~ au’,k’ + IA(Z)(U,I?) . (425)
—— —_——

(Useful Data) Interference Term
The first component in e@ (25 stands for the correctly demodulated symbol and the second

term represents the disturbances due to the phase offset. Two disénatiss arise out of the
error term.

1. Common phase error (CPE) - case whek’ = kand v/ = u
For this case the disturbance term in 26 can be written as:

Ing(u' k') = jaw w2 [Agln]], (4.26)

which describes the rotation of constellation points by an angle which is comonatl Sub-
carriers. The rotation angle is dependent on the average value & pbiag sequence.

2. Inter symbol- inter carrier interference (1S-ICl) - case when &’ # k and/or u # v/

For this case the disturbance term4n25 can be written as:

N—-1
IA¢(u', ki/) =3 Z au’,k’QZ,Igf [A¢[n]]
k=0;k#K
(ICh
N-—1 ,
11 S a0 Al @27)
uyuFu’ k=0

(IS-ICl)

The first term stands for the inter-carrier interference (ICl) andéersd for inter-symbol-inter
carrier interference (IS-ICl). The demodulated data hence con$idis estimate of the useful
data and the interference terms:

1. common phase errou (= v’ andk’ = k),

2. inter-carrier interferencei(= v’ andk’ # k),
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WPM OFDM

Number of Sub-carriers | 128 128

Number of Multi-carrier| 100 100

Symbols per Frame

Modulation QPSK QPSK

Channel AWGN AWGN

Oversampling Factor 1 1

Guard Band - -

Guard Interval - -

Frequency Offset - -

Phase Noise o2= -10 dBc,| ¢2= -10 dBc,
o2 = -20 dBc,| ¢2,= -20 dBc,
Jep =0.1 Jep =0.1

Time Offset - -

TABLE 4.2: Simulation setup for studying the impact of the phasseio

3. inter-symbol inter-carrier interference ¢ ', k¥’ = k. andu # o/, k¥’ # k).

Different frequency components of the phase noise have differeradmmpn the CPE and
ICI/IS-ICI terms. If the phase noise bandwidth is concentrated nearethteat frequency then
the CPE term dominates. On the other hand when the phase noise bandwigithaid the

ICI/IS-ICI term takes precedence.

4-3-4 Numerical results for phase noise

The performance degradation associated with phase noise has baetesl/avith computer
simulations. The simulation setup used is almost identical to that used for thextawalof
performance under frequency offset. More details on the set-up edound in the Section
4.2.4. An overview of simulation parameters is given in tahz

a. Phase noise characteristics

The effect of the phase noise on the WPM and OFDM transmission are itegstost the PSD
plots of the phase noise in fig4.11(a)( narrow-band phase noise) ardl12(a)(wide-band
phase noise). In figd.11(b)the constellation points’ diagram of the WPM system operating
under a phase noise of relatively low corner frequency is plotted. ®herdnt effect of such a
phase noise is the common phase error which results in the rotation of aiéliatien points.

The constellation points’ diagram of the phase noise with relatively highecdraquency is
illustrated in the fig4.12(b) For this case the interference caused to the sub-carriers is much
more acute resulting in more pronounced dispersion of the constellation.points
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FIGURE 4.11: Phase Noise (Narrow Band); (a): PSD, (b): WPM and OFDMsBalation
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Itis important to understand the effect of both CPE and ICI/IS-ICI ageththem can limit the
performance of the system. In the literature there exists many approachbe torrection of
CPE [79, 80]. However, the estimation and correction of the interference (ICI/I§iEharder
to accomplish. Therefore, we limit ourselves here to the study of intederenWPM and
OFDM caused by phase noise. In order to conduct this study, we seh#se noise bandwidth
to 10% of the total available bandwidth and the variance to -10 dBc (relatietcarrier). For
this case the PSD of the phase noise will look similar to the one illustrated i 1iQ.

b. Performance under frequency offset error

Fig.4.13shows the bit error rate (BER) of WPM and OFDM in the presence ofgphaise. The
illustrated behaviors of BER curves are similar to each other with the excegftimrorthogonal
wavelet.

Fig. 4.14illustrates the effect of the phase noise variance on the BER. This figotaadamed
using an AWGN channel with 16 dB SNR while phase noise variance is viaged-10 to 20
dBc with a step-size of 5 dBc. It is natural that the phase noise variantcéha performance
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FIGURE 4.12: Phase Noise (Wide Band); (a): PSD, (b): WPM and OFDM @tlation
Points.

degradation are closely related. The sensitivity of WPM and OFDM to thanae of the phase
noise is confirmed by the plots in fig.14

c. Influence of number of sub-carriers and WPM frame size

Figs.4.15and 4.16 respectively, show the performance of the WPM under phase noise wh
the number of sub-carriers and symbols in the frame are altered. THis tesen’t shown any
essential connection between the performance degradation and thermfiside carriers or the
number of symbols per framé.

d. Influence of wavelet filter length

Fig. 4.17illustrates the influence of filter's length and the number of zero wavelet misnmen
combination with the phase noise on the BER. As with the results for frequafest, there

3The results would have been different had the corner-frequermy &maller. This is because the inter-carrier
spacing depends on the number of sub-carriers - for low numberstarriers the CPE term dominates while for
high number of sub-carriers the interference will be the major t&9nd5].
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FIGURE 4.13: BER for WPM (with different wavelets) and OFDM under apé noise of
relative bandwidth 10% and variance -10 dBc.

WPM - Haar Length: 2
WPM - Daubechies Length: 20
¥ WPM - Symlets Length: 20
§WPM — Discrete Meyer Length: 102

B ER
S

WPM - Coiflet Length: 24
WPM - Biorthogonal Length: (12, 4)
-ll- OFDM 3

-6 i i i i i

5
dBc Level (dB)

FIGURE 4.14: BER vs. phase noise variance for WPM and OFDM in AWGN Chh(BNR
=16 dB).

are no noticeable influences of the filter's length and number of wavekts’moments on the
system performance when operating under a phase noise.

e. Constellation plots

For the completeness of the analysis we show irdfifjf8the smearing effect of the phase noise
on the constellation points. To highlight the impact of phase noise the chiarasdumed to be
ideal with no other perturbance (barring phase error).
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FIGURE 4.18: Constellation points in the presence of phase noise.

The spreading of sub-carrier energy due to phase noise is illustratgd.ih.fi9(a)and 4.19(b)

for OFDM and figs4.20(a)and 4.20(b)for WPM. Phase noise results in loss of orthogonality
and causes the sub-carriers to interfere with one another. In OFDMegirgiece due to phase
noise is limited to within a symbol resulting in an ICIl. However, due to the ovetiaymbols

in WPM, the phase noise causes ICI from other symbols resulting in Intab&lyinter carrier
interference (IS-ICI). This is illustrated in fig.20(b)where the dispersion of energy opdot
sub-carrier is shown to extend to the entire frame. In the example preseatednsider a
pilot sub-carrier located at the 5th sub-carrier of the 5th symbol. Thigdigm in energy is in
agreement with the theoretical derivations carried out in sections 4.3.2 a3
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FIGURE 4.19: Spectral energy in a frame of the received OFDM sigffatted by a phase
noise. (a) 2D view, (b) 3D View.
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signal affected by a phase noise. (a) 2D view, (b) 3D View.
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4-4 Performance under loss of time synchronization

Another drawback of multi-carrier transmission is their vulnerability to time sgorghation
errors which occur when the symbols are not perfectly aligned at thavesc Because of
the time offset, samples outside a symbol get erroneously selected whild se@iples at the
beginning or at the end of that particular symbol get discarded.

4-4-1 Modeling time offset errors

The time synchronization error is modeled by shifting the received data ssimpéetime offset
valueA, * to the left or right, depending on the sign of the[86]. If we assume that transmitted
signal is given byS|n], the received signak[n] in the presence of time synchronization errors
can be expressed as:

R[n + Ay = S[n] + w(n] (4.28)

Without loss of generality, we assumén] = 0, then,R[n + A,;] = S[n]. Time offset degrades
the performances of multi-carrier transceivers by introducing inter-symterference (ISI).

WPM and OFDM share many similarities as both are orthogonal multi-carriggragsut with
regard to timing error the behaviors are vastly different. The actual lerigtte WPM symbols

is defined by the wavelet used and in general it is significantly longer ties@FDM symbol. In
the case of time offset this overlap of the symbols in WPM causes each stonbtarfere with
several other symbols while in OFDM the symbols only interfere with their adfasgighbors.
The second important difference between the two transmission schemes & usetof the
guard interval between the symbols. OFDM uses cyclic prefix that signifjcanproves its
performance under loss of time synchronizafto®n the other hand, the WPM cannot benefit
from such a guard interval since many WPM symbols overlap over orteemo

4-4-2 Time offset in OFDM

The sensitivity of the OFDM to the time synchronization error is reporte@@g48]. A few
of the available techniques for OFDM symbol synchronization can bedf@auf89-93]. The
following discussion is based 086).

Cyclic prefix is an effective and low complexity method to cope with dispersiannels and
time synchronization errors in OFDM transceivers. OFDM often employgchccprefix but

“The variations in time\, is usually modeled as a stochastic process.
SHowever, the use of cyclic prefix is effective only when the time offsdtiged by the channel does not exceed
the length of the cyclic prefix and that the direction of time shift is towards ybkooprefix.
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rarely uses postfix This means that we have two distinct scenarios under time synchronization
errors depending on the direction of the time off84]{

e Time synchronization error away from cyclic prefix (to the right).

e Time synchronization error towards cyclic prefix (to the left).

a. Time offset away from the cyclic prefix

Fig. 4.21(b) illustrates this case by considering a snapshot of the OFDM data togsis
three symbolgu — 1,u,u + 1). In this example the FFT window (for data demodulation) is
misaligned to the right, i.e. away from the cyclic prefix. Each OFDM symba$istmof NV data
samples and an extension 8t p samples representing the cyclic prefix. The FFT window in
the case considered will contai — A, data sample§(A; + 1), (A; + 2),... N) of theuth
OFDM symbol, omitting the firsf\; useful samples. Instea; sampleg1,2,...A;) of the
next(u + 1)th OFDM symbol will be erroneously selected.

The demodulated OFDM signal after an FFT operation can be given as:

. N -4
(Lu/7k/ = au’7k’

N

Useful Data (Attenuated, phase shifted)
N—-1-A; N-1

1 o k(n+AY) o kn
TN Yo D aupe® N e N
n=0  k=0;k#k’

/
oI2m N A

Inter Carrier Interference
N—-1 N-1

o k(n=N+AY) .o k'n
g au+17k€']2ﬂ- N e MmN (4.29)
=N

Inter Symbol Interference

The first component of edl(29 represents the useful signal which is attenuated and phase
shifted by a term proportional to the sub-carrier indéx The second component of e,29
gives the ICI and the third component stands for ISI with the next symbol.

b. Time offset towards the cyclic prefix

Fig.4.21(a) illustrates the case when the time offset error occurs towards the syoulrocyclic
prefix, i.e. to the left. In such a scenario the FFT window consists of theNirs A, samples
(1,2,...(N—A,)) of the consideredth OFDM symbol and the lagk; samples of the symbols
own cyclic prefix. For convenience we take thist < Nop.
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FIGURE 4.21: Time offset error in OFDM. (a) Offset towards the cggirefix (to the left),(b)

Offset away from the cyclic prefix (to the right).

The demodulated OFDM signal affected by time offset in the direction of sysnfawn cyclic
prefix is given in eq4.30), for the case wherh; < Nep.
kA

du’,k:’ = au/7k/€—327r N (430)

Thanks to the cyclic prefix the orthogonality is preserved and the ISItddis don’t appear.
The timing error towards the cyclic prefix therefore results only in a phaige s
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4-4-3 Time synchronization error in WPM

The WPM transceivers do not employ guard intervals and thereforarénaidn of time offset
is inconsequential. The demodulation process under time offset&yrcan be obtained as:

awp = Y RPIEF[(W/N —n+ A

N—-1
= > DD autfn—uNJE N —n+ A/

n u k=0

= ZZ“M(Z& [n — uNJEF [u ’N—n+At]>. (4.31)

u k=0

For ease of representation we define the cross-waveform furetigras:

Q) wIA Z EFn — uNEF W' N —n+ A, (4.32)

Eq.@.32 represents the autocorrelation and the cross-correlation of the WBMastier k.
Whenk = k' the two sub-carriers are time-inversed versions of one another and bgr.32
gives the autocorrelation sequence of the waveférnOn the other hand wheh £ &’ the
two waveforms correspond to different sub-carriers and in this instaq@.32 represents the
cross-correlation between the waveforinandk’.

Using eq.4.31) and eq4.32 we can express the demodulated alphabet fokthesub-carrier
anduth WPM symbol corrupted by the interference due to loss of orthogonality as

au, k= Ay k’Qk’k’ At Z Ay, k/Qk’ k’ At —|— Z Z Ay, ka K At] (433)
%,_/

/ !
Desired Alphabet wuFU u  k=0;k#k

ISI IS—ICI

In eq.@.33 the first term stands for the attenuated useful signal. The second itezstige 1SI

due to symbols transmitted on the same sub-channel and the third term dead@stleasured
over the whole frame. The received constellation points of WPM under timehsynization

errors don’t experience linear phase rotation, opposed to OFDMewbation of constellation
points is proportional to the sub-carrier index. The WPM signal in thegmi@s of timing error
will however be attenuated and it will suffer from ISI and ICI.
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4-4-4 Modulation scheme

The consequence of time-offset in OFDM, regardless of offset titigds in the introduction
of a phase shiff. The phase shift is linearly proportional to the sub-carrier index andahe
of time offset. The rotation angk®, %] due to timing error is given by8p]:

2k A
@l = TRE (4.34)

Standard modulation techniques such as coherent (non-differentiadlr&ure Phase Shift key-

ing (QPSK) perform poorly under time synchronization errors bec#husesub-carriers with
higher frequency indices experience greater phase shifts. Foraeseall timing offset (such
asA; = 1) the phase rotation experienced by the constellation symbols is in the order of
0 < ®4[k] < 2. The sub-carrier with the highest frequency will therefore expeeenphase
shift of almost360 degrees. If this phase shift is not corrected, majority of the detected data
would be corrupted even without an ICI or ISI.

The phase rotation due to timing error can be usually reversed by pilot-$yaiueal channel es-
timation techniques or by the use of differential constellation mapping. In thik we employ
differential quadrature phase shift keying (DQPSK) in order to awake this problem. In the
DQPSK scheme the data is modulated on the basis of phase differencerbetweansecutive
constellation symbols thereby ensuring that adjacent sub-carriensengea phase shift which
is independent of the carrier position. The phase rotation of constellatiohXis determined
by applying a phase shift ak® to the previous constellation symbol 1. The difference in
phase shifA® for DQPSK modulation can be given &4[:

2(b—1)m

Ady, =
b 4 )

bel... A (4.35)

Therefore, the phase difference between two consecutive DQPi@¥etiation symbols under
timing errors becomesp]:
. 2w A
Adpp_i=e (awp—2530) (4.36)

Using DQPSK modulation in presence of timing error therefore results in sepdtaft that is
depending on the value of the time offset but not anymore on the valudafasuer indexk.
The rotation angl@; k] due to timing error become8f]:

_27TA1}
N

5The discussion presented here is based6h |

O [k] , Differential — PSK. (4.37)
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QPSK DQPSK ?/,

FIGURE 4.22: Constellation plot of received OFDM signal with a timgierror of Delta; = 1.
Left: QPSK, Right: DQPSKr/4.

Fig. 4.22illustrates the rotations of constellation points for received OFDM signal WRBIQ
and DQPSK modulation modes. We have assumed here an ideal chanretiamadoffset of
A; = 1 samples towards the cyclic prefix.

DQPSK modulation is a simple solution to overcome the problem of phase shéft time: syn-
chronization errors. However, DQPSK modulation requires about 2 ® Bigher SNR when
compared to coherent QPSK to obtain the same BER performance as in tiken@feiBlation
mode.

4-4-5 Numerical results for time offset

The performances of WPM and OFDM under time synchronization errergnaestigated by
means of computer simulations. The time offset is modeled as a discrete uniiiribution
between -2 and 2 samples, i.&; € [-2,—1,0,1,2]. The modulation of choice is DQPSK.
A cyclic prefix of 16 samples is added to OFDM data while no such guardvadtés used
for WPM. Due to the use of cyclic prefix the spectral efficiency of OFDMléxreased by
12.5% while that of WPM remains unchanged. Finally, we oversample the datagnify the
difference in performance between various systems and wavelets. A syrofmgimulation
parameters is given in tabde3,

a. Performance of WPM without time errors

We first evaluate the system performance under ideal conditions4 Rigshows the DQPSK
constellation points for WPM transmision (various wavelets) in an ideal @tawith no time
offset. From the plot we may note that perfect estimates of the transmittedashalee ©btained
at the receiver when the transmitter and receiver ends are in unison.

A timing error results in a loss of time synchronization which causes a losseftation of
incoming data at the receiver. As a result the data entering the IDFT/IDWMEK s misaligned
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System parameters WPM OFDM

Number of sub-carriers | 128 128

Number of multi-carrier| 100 100

symbols per frame

Modulation DQPSK DQPSK

Channel AWGN AWGN

Oversampling factor 15 15

Guard band - -

Guard interval - CP (length: 16)

Frequency offset - -

Phase noise - -

Time offset Ay € [-2,-1,0,1,2] | Ay € [-2,-1,0,1,2]
(Uniformly distributed) | (Uniformly distributed)

TABLE 4.3: Simulation setup for evaluation of performance unuhee tsynchronization error.

FIGURE 4.23: DQPSK constellation points for WPM setup using variwaselets in an ideal
channel with no time offset.

whereby the samples of previous or next OFDM/WPM symbol are seledide valid samples
at the beginning or at the end of the symbol in consideration are discailfedoresent the
impact of time synchronization error in the following sections.

b. Performance when time offset is modeled as a discrete uniform disbution

Fig. 4.24shows the BER curves of OFDM and WPM transceivers over AWGN rélaior a
uniformly distributed timing offset erraf; = 2 samples. The OFDM system performs much
better under time synchronization errors when compared to WPM mainly decéthe cyclic
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FIGURE 4.24: BER curves for WPM with different wavelets and OFDM uniil@e synchro-
nization errors {; = 2).

prefix. The WPM cannot benefit from the use of a cyclic prifix and kgrerforms poorly under
time error.

In fig. 4.25the BER is shown for different time-offsets in the range -15 and 12 samples
time offset in this simulation is modeled as a one-sided uniform distribution. The fiset &
considered to vary betwed®, . .., A} to the right and{ — A, ..., 0} to the left’. The SNR is
kept constant at 10dB.

As can be seen in figt.25the direction of the time offset is inconsequential in WPM trans-
mission. The BER curves of WPM on either side of the time-axis are almost nrineges of
one another. However, the situation is different in OFDM where negatiltess of time offsets
(towards the own cyclic prefix) result in much lower BER in comparison tatipegime offsets
(away from the cyclic prefix). This is due to the use of cyclic prefix which ratiég the dele-
terious impact of a misalignment of FFT window. However when the time offestesls the
cyclic prefix the ICI and ISI components reappeatr.

c. Influence of number of sub-carriers

Fig. 4.26 shows the performance of the WPM in the presence of time synchronization e
when the number of sub-carriers is altered. The plots reveal how witkdsitrg number of
WPM sub-carriers the BER decreases. We may recall from the thirdeshégat the symbol

"The values are so chosen to highlight the importance of cyclic prefix inNDFD
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FIGURE 4.25: BER vs. time offset error for WPM and OFDM transmissioran AWGN
channel (SNR = 10 dB).
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FIGURE 4.26: BER plots for WPM transmission under a loss of time symization for
different number of sub-carriers,

duration of multi-carrier system is proportional to the number of sub-canged. Therefore,

the more the number of sub-carriers longer symbol duration and hendlersmetative time
offset with respect to multi-carrier symbol length.

d. Influence of number of symbols/frame

The simulation results for different number of WPM symbols per frame guietdsl in fig.4.27.
The results show that the number of symbols/frame does not influence R@&itormance.
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FIGURE 4.27: BER for WPM with timing error for different number of spwis/frame.
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FIGURE 4.28: BER for WPM using Daubechies wavelets of different teaginder a loss of
time synchronization.

e. Influence of different lengths of wavelet filters

Fig. 4.28illustrates the influence of filter’'s length and the number of zero wavelet misnen
combination with timing error on the BER. The wavelet family of choice is Dauieschin
the plots the Daubechies filter with 6 coefficients and 3 wavelet zero momerearasto have
slightly better BER performance when compared to longer filters of the samily.fadlowever,
when the length of the filters is increased further the BER curves becos®cipaced. There-
fore, we can conclude that there is no significant relation between thepgEBrmance under
timing errors and the filter’s length.
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FIGURE 4.29: Constellation points of received signal in the presesf timing error.

f. Constellation plots

The effect of time synchronization error on the constellation points is debpictig. 4.29 In
order to highlight the effect of time synchronization error we considedeal channel without
any noise (apart from the time offset error). The main impact of the timetaghe scattering
of the constellation points around the reference modulation points due tceiatece. OFDM
has more concentrated constellation points than any of the WPM systemereaisid

g. Dispersion of energy of the sub-carriers

Figs.4.30(a)and 4.30(b)illustrate the dispersion of sub-carrier energy due to time synchroniza-
tion error for WPM transmission. The respective plots for OFDM are shiavigs.4.31(a)and
4.31(b) The timing error in OFDM results in ISI between successive symbols in adddithe
ICI. If a cyclic prefix is used the ICI and ISI terms are mitigated for time+arrghich occur
towards the cyclic prefix (time offset to the left). This is illustrated in fig80(a)and 4.31(b)
where the energy of the pilot symbol disperses into the subsequent kfregdting in an ISI)
but not into the previous symbol. Furthermore, the energy of pilot sutiecalso spreads across
other sub-carriers within the same symbol (causing ICI). For WPM theedigm of energy of
a single pilot is far more pronounced. The smearing of energy is spreacdchdarge number
of symbols with the sub-carriers closest to the pilot sub-carrier affented (refer figs4.30(a)
and 4.30(b).
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FIGURE 4.30: Spectral energy in a frame of the received WPM (with Rabies wavelet)

signal affected by timing errors. (a) 2D view, (b) 3D View.
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4-5 Summary

In this chapter we addressed the effects of frequency offset, pt@se and time synchro-
nization error on WPM and OFDM transceivers. The study was conduci&g computer
simulations. Several well-known families such as Daubechies, Symletseiisdeyer, Coiflet
and Bi-orthogonal wavelet were applied and studied. The sensitivity PVand OFDM are
quite similar in the presence of frequency offset and phase noise. udovibe effect of time
synchronization loss is far more severe for WPM transmission. The simudatisn showed
that OFDM has much lower BER under timing errors when compared to WPM.i largely

due to the beneficial use of cyclic prefix in OFDM.

The frequency offset and phase noise lead to a loss of orthogonatityede the sub-carriers
and cause them to interfere with one-another. In OFDM the disturbanedisited to ICI but
in WPM the frequency offset and phase noise cause ICI as well assimtéol-ICI.

The effect of time synchronization error was also discussed. Akin to thadtmgd phase/fre-
guency errors, there are significant differences between thetmpecd OFDM and WPM in
the presence of time errors. Firstly, the I1SI in OFDM occurs only betweatiguous symbols
while in WPM a number of neighboring symbols interfere. Secondly, the timiray er OFDM
results in a rotation of constellation symbols proportional to sub-carriexibdein WPM this
behavior is absent.

The wavelets used in these computer simulations are standard waveletsrindeweloped for
other applications such as image processing or compression and hésaéatde for modula-
tion of data. In chapter 9 we present the design of new wavelets that minineizeténference
due to time-offset errors.



Chapter 5

Peak-to-average power ratio
performance

5-1 Introduction

A major drawback of multi-carrier systems such as the WPM or the classidaMd&the large
variations in their signal envelope?. Such fluctuations in the signal envelope is due to the
inherent nature of these modulation schemes where many independentliateddub-carriers
are combined together to obtain a composite signal. The envelope of the tim@dogmel
varies with different data symbols and when the sub-carriers add ety the peak power
of the composite OFDM/WPM signal can be many times larger than the average. po fact,
for M number of sub-carriers the peak of the signal can be uy times the average power if
all the sub-carriers are of the same phase. Since practical systems are liynitee maximum
operable power, either the WPM/OFDM systems have to function with a largergmack-off
or risk operating in the non-linear (saturation) regions of the electromipoaents such as the
high power amplifiers (HPA) and the digital-to-analog converters (DAC)arrdnsceiver chain.

A large back-off would mean that the average signal power has to lerkegh lower than the
available power so that the amplifier operates in the linear region. On thehathdy function-
ing in the non-linear regions of the amplifiers can result in distortions suaitleand interfer-
ence (or inter-modulation distortion) and out-of-band radiation (due tctigdevidening of the
transmit signal). The in-band interference increases the bit errorB&fR)(of the received sig-
nal while the out-of-band radiation causes adjacent channel inteci(er cross-talk) through

Parts of this chapter have been publishedlif| and [94]. For any material that has been reused, wherever
applicable, a written consent has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc studentBésna Torun for her help with the
computer simulations.
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spectral spreading. It is therefore important to study the power fluctgatiesociated with
multi-carrier mode transmission and mitigate them.

Typically, the metric peak-to-average power ratio or PAPR is used to cieaize the variations
in the envelope of the signal. While the quantum of literature available for thg sfuOFDM
and its PAPR performance is significant, the material available for a similar study/PM
is thin. In fact the entire material on the subject can be listed as followsl7jng] study on
the PAPR of WPM signals and its stochastic variations is presented. Thes$ioadsg that the
envelope of the WPM signal is Gaussian and its power distribution Chi-sdu&urthermore,
the PAPR performances of the WPM systems for almost all used waveleshana to be
similar to OFDM. In P5] a multi-pass pruning method to reduce PAPR is proposed. Ar2gin [
a threshold based method to reduce PAPR is suggeste@l/]lagdper bounds for the maximum
PAPR for WPM transmission are derived and based on these resulttetgatiet minimize
PAPR are obtained. A different approach is followed98][where the WPM tree structure is
adjusted to lower the PAPR.

In this chapter we address the PAPR performance of the WPM systemssWenfierstand the
stochastical nature of the WPM signal, its power variations and its PAPRBrpehce. We then
implement two techniques that mitigate PAPR, namely,

e modification of phases of the sub-carriers,

e mathematical optimization of phase selection of sub-carrier through a lanahsalgo-
rithm,

The effectiveness of the proposed algorithms is demonstrated througgrical studies.

The contents of the chapter are organised as follows. We first prasenéf overview on

the nature of WPM signals in sectidin2. A survey of existing PAPR reduction techniques
is presented in sectiob-3. The proposed PAPR reduction techniques are then introduced in
sections 5-4 and 5-5. In section5-4 PAPR reduction by modification of sub-carrier phases is
presented, while in sectioB-5a mathematical optimization for selection of sub-carrier phases
through local search algorithms is explained. The contents of the chapteummarized in
section5-6.

5-2 Distribution of the PAPR

5-2-1 OFDM

A multi-carrier signal consists of a number of independently modulated aukecs which can
result in a large peak-to-average-power ratio when they add cdheréor a system with\/
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sub-carriers when all the sub-carriers have the same phase the geakqf the transmitted
signal can bél/ times the average power. The PAPR is one way to measure the variations in the
transmitted signal and for critically sampled dafa] can be given as:

Og}%%(lx[n]ﬁ)

PAPR = =50

(5.1)

whereE{.} is the expectation operator which averages over the ensemble of datasample

The CDF of the PAPR is one of the most frequently used performance resafsun PAPR
reduction technique$p, 99]. From the central limit theorem it follows that for large number of
sub-carriersV/, the real and imaginary componentsadf:] follows the Gaussian distribution,
each with a zero mean and varianceléftimes the variance of one complex sinus@a][ The
amplitude of the OFDM signal therefore has a Rayleigh distribution and itsmpdisigibution
becomes a central chi-square distribution with two degrees of freeddmesio meang2, 100.
The CDF of the power is given aS7]

F(z) = ’ Lefw% du=1-— 67% (5.2)

0 202

wherez > 0. From the power distribution the theoretical CDF for PAPR per OFDM symbol
can be derived. Assuming the samples to be mutually uncorrelated (whicle istien there is
no over sampling) the probability that PAPR is below some threshold tewen be written as

[52]:

22

N
Prob{PAPR < z} = [F(2)]Y = (1 — e%2> (5.3)

5-2-2 WPM

A WPM signal, like the OFDM signal, is the sum of many information bearing subars
which are statistically independent. The orthogonal sub-carriers arelevgacket bases de-
rived from a MRA [L0] as explained in Chapter 3. The modulated WPM sigja) is obtained
as a linear combination of the wavelet packet b@lé’éweighted with the complex data symbols

Aoy k-
M—-1

yln) =" > aurgF(n —ud) (5.4)

u k=0
a. WPM signal characteristics

In fig. 5.1the CDF curves for the PAPR of the WPM system (theoretical as well as sadula
values) for different number of sub-carriet$ are plotted. We can see from the fig1 that
as the number of carriers of the WPM system increases, the simulated ateohetical (as
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represented in equatiof.@)) PAPR curves converge. From abdut-128 carriers the simulated

values accurately map the theoretical derivations.
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FIGURE 5.1: CDF-distribution of PAPR for different number of suargers. From left to
right: 16, 32, 64, 128, 256, 512, 1024 sub-carriers. Dashmes lindicate simulated values

while continuous lines represent the theoretical curvemvalét of choice is Daubechies-15.

b. Amplitude distribution
Unlike OFDM which is a complex signal with real and imaginary parts, the WPMasignly

has real components. OFDM signal has a Rayleigh distribution and it waeuikté&resting to
check the distribution of WPM signal. Fi§.2plots the simulated CDF curves for WPM systems

along with Gaussian and Rayleigh distributions. The WPM setup uses Daebaavelets with
length 15. It is clear from the figure that the patterns of the WPM sign&ti@ns follow the

Gaussian distribution.

c. Power distribution
The CLT states that the mean of a sufficiently large number of indepenalehdm variables,

each with finite mean and variance, will be normally distributed. Based on @he&n large
number of sub-carriers are employed in a WPM system; i.e., large numbevei$ ia the

IDWPT, the amplitude of WPM signal follows Gaussian distribution. It is wellwndrom
the stochastic theory that the distribution of power of Gaussian signals isqDared. This
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FIGURE5.2: CDF of WPM signals. The wavelet considered is Daubeettes he WPM sys-
tem is taken to have 128 carriers. Gaussian and Rayleighlsigre also plotted for reference.

TABLE 5.1: Specification of wavelets used.

Name Orthonormal?| Length
Daubechies Yes 30
Coiflet Yes 30
Symlet Yes 30
Discrete Meyer| Yes 102
Bi-Orthogonal | No (5,3)

means that the power distribution of WPM signals should also be Chi-squdieid fact is
corroborated in fig5.3. In fig. 5.3 where the curves for the power distribution of WPM signal
are plotted along with Gaussian, Rayleigh and Chi-Square distributions. imAfigl. 5.4 the
power distributions for WPM signals applying different wavelet familiessir@wvn. Almost all
the wavelet families have a power distribution which is Chi-squared. Thefgpgions of the
wavelets (Daubechies 15, Coiflet 5, Symlet 15 (all of length 30), Diséfeieer (of length 102)
and Bi-Orthogonal 2.2) which are considered are given in t&hle

d. PAPR distribution

Figs.5.5and 5.6 show the PAPR performance curves for various wavelet families amogar
filter lengths, respectively. From fig.5.5 we can deduce that apart from the bi-orthogonal

3There is a fundamental difference in the calculation of PAPR betweerMO#&il WPM. The PAPR in OFDM
is usually calculated per symbol. This is not possible in WPM because WRMdayg overlap in the time-domain
and therefore the PAPR has to be calculated per frame.
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FIGURE 5.3: CDF of power of Gaussian and Wavelet Packet Modulaiigmass. The wavelet
considered is Daubechies-15. The WPM system has 128 carriers
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FIGURE 5.4: CDF of power of Wavelet Packet Modulated signals forotes families (for 128
carriers).

wavelet, all the other wavelets follow a similar CDF pattern for the PAPR. Amich fiig. 5.6 it
is clear that even with increasing lengths of the wavelet, from Daubech@®®aubechies 45,
the PAPR distribution doesn’t vary much.
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5-3 Techniques to mitigate PAPR

There exists several techniques in the literature for the reduction of PARKCM transmis-
sion. These methods can be broadly categorized into signal scramblingjggnadi distortion
techniques.

5-3-1 Signal scrambling techniques

Signal scrambling techniques work on the principle of altering the phagbe stib-carriers to
decrease the PAPR. Coding can also be used for signal scrambling.dh fiee commonly used
signal scrambling solutions are block codid@{], selected mapping (SLMLPZ, interleaving
[103, tone reservation104] and partial transmit sequences (PTE)Y.

The block coding approacii Q1] works on the principle that the PAPR can be reduced by not
permitting those set of code words that accentuate the peak envelopegide transmitted
signal. In the selected mapping (SLM) method a set of candidate signalsisatgshrepresent-
ing the same information. Then the signal with the least PAPR is chosen asthittza [LOZ).

In the interleaving methodlD3J the data block is partitioned into non-overlapping sub-blocks
and then each sub-block is rotated by a statistically independent rotatton felse rotated data
with the lowest peak amplitude is then selected and transmitted. In the toneatesetech-
nique [L04 a fraction of the bandwidth is used to synthesize signals of opposite pola@hty
synthesized signals are then added to the original signal to minimize the pésktcEinsmitted
signal. Subtraction of peaks reduces the PAPR without altering the tramemisgabilities of
the OFDM system. A related technique is the partial transmit sequences [[F055)nethod
where a small set of tones are set aside for PAPR reduction. Highlglated data frames have
large PAPR; the PTS thus operates by breaking the correlation patterrestiatismitted data
to reduce PAPR.

5-3-2 Signal distortion techniques

In the techniques based on signal distortion the high peaks are reduoeeitydy limiting the
signal to within a tolerable upperlimit. Clipping the signal before amplification is alsimp
method to limit the PAPR. However, clipping may result in large out-of-bandgD@diation
and in-band distortion. Other practical solutions include peak windowlig [ peak cancella-
tion [107], peak power suppression, weighted multi-carrier transmisgiog pnd companding

[109.
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FIGURE 5.7: Classification of commonly known PAPR reduction teqaes

In [106 Nee and Wild propound that since large PAPR values occur only inéretyuit should

be possible to remove the peaks using windowing techniques without affébgntransmis-
sion characteristics. A few of the suggested windows include Gaussian, cosine, Kaiser and
Hamming windows. The peak cancellation method introduced @7][suggests subtracting a
time-shifted and scaled reference function from the signal to reducestilegower. Nikookar

and Lidsheim 10§ propose a phase updating algorithm for the reduction of the OFDM signal.
In this algorithm the sub-carrier phases are adjusted based on a siochstsibution. The
phases are then updated till the peak value of the signal is below a pezti¢freshold. The
threshold and the number of iterations for the phase update are alterachidgily. Finally,
Wang et.al. 109 propose a simple and effective companding technique to mitigate the PAPR
of the OFDM signals. Companding of the signal is done before it is con@rte an analog

waveform.

Fig. 5.7 shows the classification of various PAPR reduction techniques.

5-3-3 Criteria for the selection of best PAPR mitigation stategy

Many factors have to be considered before the right PAPR reductibnitae can be chosen
5. Some of the factors include PAPR reduction capability, distortion inducadempincrease in
the transmit signal, BER increase at the receiver, loss in data rate, céypiegomputation.
Many of these requirements are contradictory and cannot be met antiectisze.

For example, the amplitude clipping technique removes the signal peaksshlisiie in-band
distortion and out-of-band radiation. Other techniques, like the tonevegg®m (TR) method,
require additional transmit power because part of the signal powecéssary for the reduction
of the carrier peaks. Some techniques may result in a loss of BER at #ieaeif the transmit

“Usually a small price is paid in the form of self-interference
The discussion is based oY
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signal power is fixed or equivalently may require large transmit power totaiaithe BER after
applying the PAPR reduction techniques.

Strategies such as the block coding technique require the data rate taibeddxdcause some
of the information symbols have to be dedicated to controlling PAPR. MethadsasiSLM,
PTS and interleaving require side-information on the changes made atribmitter end. This
causes adrop in achievable data-rates. Furthermore, if the receleddf®rmation is erroneous
then the entire data block could be wrongly interpreted. Therefore, tkeirdiokmation is
usually protected with channel coding, further adding to the overhead.

Computational complexity is yet another important consideration in choosinggiiePAPR
reduction technique. Techniques such as PTS run over many iterationsl & siolution. On
the other hand, interleaving techniques perform better for large nunilietedeavers, which
however slows down the computation process.

Based on the above discussion, in this work we chose methods based/dioShitigation of
PAPR in WPM transmission. The SLM is a simple and reliable technique whichecezelily
applied to WPM to achieve better PAPR performances.

5-4 Selected mapping with phase modification

In this section we present the first method to reduce the PAPR of WPM sidtedgechnique is
based on the Selected Mapping (SLM) approach proposed by Ba0g&jl [The method works

on the principle that the PAPR of a multi-carrier system can be adjusted yingdhe phases of
the sub-carrierslf02]. Different PAPR values for the same information are obtained by altering
the phases of the sub-carriers used to modulate the data. The WPMscaraaptated with a
phase-values chosen from an alphabet of finite number of identicakbgdpzhase-shifts. The
WPM frame with the least PAPR is then identified and transmitted. The attractitreforethod

is in its simplicity of implementation and the notable gains it yields with minimal increase in
complexity. The disadvantage of the scheme is that side-information on theastgr phases
has to be transmitted to the receiver.

5-4-1 Description of algorithm

Fig. 5.8 shows the blocks of the proposed WPM system with the PAPR mitigation structure
The bit stream from the information source is first converted to a constallé@8SK/BPSK)
stream and then replicated to obtain a finite number of copied, say;. Each of the replicated

set is then serial-to-parallel (S/P) converted and then phase-shifeethibglom phase sequence.
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FIGURE 5.8: WPM Transmitter Block diagram with the SLM based PAPRitidn technique

The phase sequences are generated by a phase generator wbhsdsdbetween different phase
alphabetsp, their distribution and creates a phase ve@&?‘). Heren (= 1,2,3,... Lsrar)
stands for the index of the frame ap¢= 1, 2, 3, ... Mgy.ar) connotes the sub-carrier index. The
phase vector thus contairis;;,; rows each withM gy, columns. Denoting the information
bearing WPM frame by the notatidX[p], the Lg;,, different WPM framesX (") [p] obtained
by sub-carrier wise multiplication with the phase-ve@é’l‘) can be given as:

XM p] = X[p] x B = X[p] x % (5.5)

The phase-shifted information bearing streams are then transformed IDY\&#PIT operation
and the PAPR of the transformed composite signal is calculated. Amongstttioé sy a/
PAPR values, the frame with the least value is selected and transmitted. Déffi@iogndidate
time domain WPM frame ag = IDWPT (X (™) [p]), the index of this frame can be given as:

7 = argmin (PAPR (z(™)) (5.6)

1<n<LsLm

In order to ensure that the transmitter and receiver operate harmonithgsishosen index of
the framel is sent to the receiver as a side-information. Typically for a &ize,, vector, the
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number of bits required to seridwill be log, (Lsrar). However, to prevent corruption of this
precious message, more bits may be used to encapsulate this messagenbyading.

The algorithm to calculate and select the minimum PAPR for WPM is summarized in algo
rithm 1.

Algorithm 1 SLM Pseudocode

1. Obtain the source message.

2: Replicate it a finite number of times, séy ;.

3: Generate phase sequences from the chosen phase alphabgt(é®@.w/2, 7, 37/2)).

4: Multiply frame sequences element/carrier-wise My 5 ;-length phase sequences. Here
Mg is also the number of WPM carriers.

5. Do the IDWPT transform for each resulted frame sequence for eatibatd copy of the
data.

6: Calculate the PAPR per frame of the signal for each replicated copy o&taeadd find the
PAPR.

7: List all the PAPR values; select the minimum PAPR and transmit.

8: Send as side information the index of the frame with minimum PAR&recover the data
in the receiver.

5-4-2 Numerical results

In this section we present results of the studies and evaluate the pertammlWPM system

with the PAPR reduction technique. The investigations are carried out aeinguter simula-
tions and the performance metric of choice is the CCDF. The WPM systenmlizeckasing a

filter bank structure with 7 levels of decomposition (128 sub-carriersg.ibdulation scheme
used is QPSK. The phase alphabet is taken to be(0, 7/2, 7, 37 /2) which is randomly cho-
sen while generating the phase vector. The wavelet of choice is Daabéetlkidenoted db5)
which is of length 10. These simulation parameters will be used through oekgeriments

unless stated otherwise. To properly evaluate the improvements due to tiie redection

technique, a reference PAPR-CCDF curve obtained for db5 wawelété case without PAPR
reduction (i.e. no phase modification) will also be provided.

a. Performance of the PAPR mitigation technique

In the first set of results we verify the impact of the PAPR reduction tecienigig.5.9 shows
the CCDF curves for the variation of PAPR under the PAPR reduction icpofirfior different
number of replicationsL sy, s. A reference curve with no PAPR reduction is also included. It
is evident from the plots that the improvements are significant and bring in3giBeeduction

in PAPR in comparison to the case when no PAPR reduction technique is used.
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FIGURE 5.9: CCDF of the PAPR of the WPM signal for different valuesiof; ;. The
wavelet considered is Daubechies 5 (length 10). A referenoee with no PAPR reduction is
also plotted.

b. Influence of phase-sequence distribution

To gauge the impact of the distribution of the phase sequences we novderod#ferent
stochastic distributions. The distributions considered are random sexpjgBolay sequences
[110 117 and Hadamard sequences. The number and length of all the sequeadegen

to be equal. The phase alphabet is taken t@ ke (0, /2,7, 37/2) and the value of g7

is fixed at 8. Fig5.10shows the respective plots and it can be deduced from the figures that
though all the distributions yield notable improvements, there is no perceidédfdesnces in

their performances.

These results are important because the similarity in the performances wihgnpssudo-
random and random sequences indicates that the receiver only hasviotle key used at
the transmitter to generate the pseudo-random phase sequences @hsteaehntire phase se-
guence). This aids in significant reduction of the side information.

c. Impact of phase alphabet

We now evaluate the impact of the phase alphabet on the PAPR reductiomanisgch The
results are plotted in figc.11where a range of cardinalities for the phases are considered. The
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FIGURE5.10: Complementary cumulative distribution function (@& of the PAPR of WPM
for different distributions of the phase sequences. Theeledwconsidered is Daubechies 5
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FIGURE 5.11: CCDF of the PAPR of WPM using the PAPR reduction techaigu different
phase sequences. The wavelet considered is Daubechiesth(iD).

results show that the choice of the phase alphabet does not affearfbenpance of the PAPR
reduction technique.
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FIGURE 5.12: CCDF of the PAPR for several wavelets.

d. Impact of wavelet families

We now analyze the conduct of the PAPR reduction technique for differavelet families and
for different filter lengths. In these set of experiments the valubgf); is taken to be 8. The
various wavelet families considered are Daubechies 15, Coiflet 5, Syh{ellof length 30),
Meyer (of length 102) and Haar. Figs.12and 5.13show the PAPR performance curves for
various wavelet families and various filter lengths, respectively. Fronbfi we can deduce
that all the wavelets follow a similar CCDF pattern for their PAPR performanéesl from
fig. 5.13it is clear that even with increasing lengths of the wavelet filter, from Delils 2 to
Daubechies 35, the PAPR distribution is limited to a variation of about 0.8 dBl imstances
the proposed technique reduces the PAPR between 1.5 and 2.5dB.

e. Influence of the PAPR reduction technique on the BER performace

We finally plot the BER performances of the WPM system (fid.4). The curves plotted are
for the cases when the phase sequences are generated randondgaao-@mndomly. For the
case with random phase change two figures are plotted. In the firs{dm=sated Case-1) the
receiver has complete and perfect knowledge of the random phassésatithe transmitter. In
the second scenario (marked Case-2) the receiver operates withondekige of the phases
used at the transmitter. For the scenarios when phases with Golay anch&tdddistributions

are used, the transmitter and receiver only share the keys of the psswdtom polynomial. As
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FIGURE 5.13: CCDF of the PAPR for the WPM system with different filtendgiths of the
Daubechies wavelet family.

a reference the BER plot for the case with no PAPR reduction techniqusoipltted. The
results show the importance of having complete knowledge on the phasensequ Even a
slight mismatch in the phase information at the receiver deteriorates the systéarmance.
Since a perfect replication of randomly generated phases is not poasitiie receiver, the
application of pseudo-random generators can be considered. Thippsrsed by the results
plotted in fig.5.10where the PAPR reduction due to pseudo-random codes is shown to be as
good as that of random phase generators and id figkwhere the BER curves show that using
PAPR reduction mechanism with pseudo-random phase generatonsal@esult in any loss in
performance.
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two figures are plotted. In the first case (denoted Case-ljetteiver has complete and per-

fect knowledge of the random phases used at the transniitténe second scenario (marked

Case-2) the receiver operates with no knowledge of the ghaset at the transmitter. For the

scenarios when phases with Golay and Hadamard distritsuion used, the transmitter and
receiver only share the keys of the pseudo-random polyrdomia

5-5 Hill climbing optimization heuristics for minimization of PAPR

in WPM transmission

In the SLM method a whole set of candidate signals representing the sameatifm are gen-
erated. Then the most favorable signal as regards to minimum PAPR isxcdnodéransmitted.
Instead of an arbitrary selection of the sub-carrier phases, it is atsigh@to find the optimum
set of phase values that result in the lowest possible PAPR at all instafbis can be deter-
mined by a local search around a selected set of phase-shift Md-dimensional space (for
M number of sub-carriers). Local search is a meta-heuristic where thiesoitable solution
amongst a number of candidate solutions is determined such that a tarbgtative function is
maximized (or minimized)J12. Such local search algorithms move in the search space until a
solution considered satisfactdtys obtained within a bounded period. In this section we present
a method to optimize selection of sub-carrier phases to minimize the PAPR of teenitiza
WPM signal. A mathematical optimization tool known as the hill climbing algorithm is agplie
to obtain the optimal set of phase adjustments which guarantee a low PAPR.

5The local search heuristic only guarantees a local minima and not d glatimum solution.
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5-5-1 PAPR reduction as an optimization problem

A multi-carrier modulated signal is the sum of many information bearing sulecamhich

are statistically independent. For a reasonably large number (aboutedrey of sub-carriers
the distribution of these symbols in the time-domain is Gaussian. Hence, the sigmalsc-

casionally exhibit high fluctuations or spikes in the transmitted power. Thetdlgeof the

optimization problem is therefore to minimize such fluctuations in the power (ctesized by

the metric PAPR) of the studied signal by adjusting the phases of the stbrsar

Formally, the problem can be mathematically stated as,

. |
min J (¢ (5.7)
)= TE(yp)
subject to
0< ¢ <2
Here.J(¢) denotes the objective functiop; gives the phases of the sub-carriees 1,2, ..., M

andy[n] = IDWPT (X;e/?) with X; representing the complex symbols after constellation
mapping on thé'® sub-carrier.

The phase sequencesare determined by this optimization process. The phase-shifted infor-
mation bearing streams are then transformed by an IDWPT operation andjdutiv@ value,
which is the PAPR of the transformed composite signal, is calculated.

5-5-2 Hill climbing algorithm

We use a local search algorithm called the hill climbing algorithm to improve thetseie

of the phases. Hill climbing is a mathematical optimization technique which belonge to th
family of local search algorithms. A local search algorithm starts with a catelgblution and
then iteratively searches for better solutions in the neighborhood. Wieealgbrithm cannot
improve the solution any further, it terminates. Ideally, at the point of termindlie obtained
solution should be as close as possible to the optimum solution. However, likeallsearch
algorithms, the hill climbing technique does not guarantee the best solution

An advantage of employing the hill climbing technique is that the method doegquire the
target functions to be differentiable. This is particularly useful for WBMtems because the
wavelet signals cannot be readily expressed mathematically and hencenatithéoperations
like partial differentiation and integration can prove unwieldy.

’Since the intention here is to minimize PAPR (and not necessarily find the tipwesible PAPR) the hill
climbing algorithm is suitable for the problem in hand.
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The hill climbing algorithm maximizes (or minimizes) the objective functif@) through an
iterative process. In each iteration, the algorithm alters a single eléhient and determines
whether the change improves the valug’6p). Any change thatimproves(¢) is retained. The
process continues until no change can be found to improve it furthés. sblution of J(¢) is
then said to béocally optimal The elements o can take both continuous and discrete values.

Different variants of the hill climbing method employ different processesetdction to identify

the sample point®. Some chose the new points randomly; others try all possible values and
select the one which best maximizes (or minimizes) the target function. In\emy,ef the
newly selected point produces a solution better than the previous oneetaisad. However,

if there are no further improvements to be had another point in the seaach spchosen. The
algorithm stops when the desired solution has been obtained or when tHatetipuin-time of

the algorithm has lapsed.

In the discrete vector spaces, the combinatorial problem may be visuafizedraph with the
vertices of the graph denoting different stateg)oHill climbing traverses the vertices, always
locally, increasing (or decreasing) the objective function. An appeitgostep size is determined
and the states ap are either incremented or reduced by the value ¢éading to a gradient
descent if the target function is to be minimized or to a gradient ascent if it is toadximized.
More details on the hill climbing algorithm can be found iip-114.

The block diagram of the proposed scheme is presented ib. 1i§.
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FIGURE 5.15: Block diagram of the hill climbing based PAPR reductimethod.

In the next section, we show how the hill climbing search algorithm can lmbtosgptimize the
SLM algorithm presented in secti@i4 and reduce the PAPR in WPM transmission.

8This is in contrast to the gradient descent method where all the elemehtstafget function are adjusted.
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5-5-3 Mitigation of PAPR for WPM systems with hill climbing al gorithm

For a WPM system with\/ sub-carriers (refer figh.15 the search space is/d-dimensional
phase vector where the phases can take values betweer2@ ande initial candidate solution

is a vectorg of randomly selected phases whére< ¢; < 2w, j = 1,2,..., M. The WPM
sub-carriers are phase-modified with thelength phase sequence. The IDWPT transform for
the obtained frame sequence is then obtained and the PAPR of the sigraliated.

The hill climbing method starts with a randoid -dimensional phase vectgrand calculates
the PAPR (which is the objective function) of the modulated frame. A step sizéhé phase
increments or decrements is then chosen. Each element of the phaseis/éiotor modified
iteratively by adding or subtracting it by the step size to obtain a new phatar ¥ieat produces
a different PAPR value. When this method cannot improve the PAPR anyiheralgorithm
terminates.

The hill climbing technique is presented in algoritl#m Initially, an equal step size; is set
for all the elements of = 1,2,,..., M. The step size; determines by how much tha"
dimension of the phase vector is to be updated. At each eponk of the phases, say,, is
updated bys\ ") = ¢! 5. The WPM sub-carriers are phase shifted by the new valitre!
and the PAPR of the signal is calculated. It must be noted that during aypareépoch all other
phase values; ;. are kept unchangell If the objective functionJ(gf)(t“)) decreases, i.e.,
J(@tD) < J(p®), thengb,(f“) becomesb,(fﬂ) = gb,(:) + s5. On the other hand, if the value of
the objective function increases(st*1)) > J(¢®), theng!" ™) becomes)! ™ = ¢\ — 5.

If there is no change in the objective function value, thgis set to zero.

(b](:) + s if J(¢(t+1)) < J(qﬁ(t))
S =0 80— i T(EEH) > J(e) (5.8)
¢;(€t) if J<¢(t+1)) — J(¢(t))_

At each epoch the algorithm aims to minimize the PAPR. To aid fast convergémice algo-
rithm to the minima the step size is decreased exponentially. Whenever thefieaisgedn the
direction of the optimization in two consecutive epochs, for example,

J(¢"1) < J(¢®) and J(¢V)) > J(¢TV),

or,
J(@H) > J(¢™) and J(6V)) < (o),

This follows the fundamental principle of the hill climbing technique wherly one element is altered at any
given instance
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the step size of the corresponding dimension is halved. Furthermore, ifefhvasize becomes
lower than a certain predefined threshold (a very small value) it implies thaoiation cannot

be improved any further with changes in that dimension. In such a caseefhsize is set to
zero. Ifs; = 0, ¥y, then the algorithm terminates. When the algorithm stops, a near-optimal
phase vectoo, that produces a frame with a minimized PAPR is obtained.

Algorithm 2 Hill climbing based PAPR reduction algorithm

Require: X {X are the symbols on each sub-carrier}
1: stepsize = 0.1 {how much the phases can be updated at each epoch}
2: maxepochs = 1000 {maximum number of epochs (iterations)}
3: ¢; = rand(0,27) wherei = 1,..., M {initially selected phase vector for each sub-carrier}

4: s; = stepsize wherei =1, ..., M {phase change for local search}
5. d; = 1 wherei = 1,..., M {direction of optimization 1:decreaset{p) O:increased/(p)}
6. Generatéy = I DW PT(Xe’?) {Modulate the new frame}
7. J(¢V) = PAPR(Y) {Calculate the PAPR and BER (objective valu&p))}
8: for t = 1 to maxepochs do
9. fori=1toM do

10: qg=o¢®

11: Qi = q; + S

12: GenerateY = IDW PT(Xe’9)

13: J(¢#D) = PAPR(Y)

14: if J(¢(H1) < J(¢®) then

15: c;SZ(»tH) = d>z(»t) + si

16: dtt =1

17: else

18: if J(¢tHD) > J(¢®) then
19: ¢5t+1) _ ¢l(t) s

20: dtl =1

21: else

22: s; =0

23: dtl =0

24: end if

25: end if

26: if d* + d'*! =0 then

27: s; = s;/2 {Fluctuations close to minima, decrease the step size}
28: end if

29:  end for

30: ¢, = ¢ttD)

31:  Generated = IDW PT(Xe/%+)
32:  J(¢.) = PAPR(Y)

33 if .1, s; = 0then

34: Break;

35.  endif

36: end for
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TABLE 5.2: Parameters used in the simulations

Parameter | Value
Number of SLM replicasVs s 4
DimensionM 16
Step sizes; 0.1

Maximum number of epochs| 100

5-5-4 Numerical results

In this section we present results of the studies and evaluate the peréamWPM system
with the proposed hill climbing based PAPR mitigation scheme. The WPM systeralisec:
using a filter bank structure with 4 levels of decomposition (16 carriers)tla@dvavelet of
choice is Daubechies 5 (denoted db5) which is of length 10. The modulatieme used is
Quadratic Phase Shift Keying (QPSK). The figure-of-merit used is dngptementary cumu-
lative distribution function (CCDF). These simulation parameters will be usedigih out the
experiments unless stated otherwise.

a. Performance of the algorithm to reduce PAPR

We first evaluate the impact of the PAPR reduction technique. Irbfis the results of the
proposed hill climbing technique are plotted along with that of the SLM techniGoe param-
eters used for the hill climbing are tabulated in tabl2 For the SLM technique the phases are
chosen from a phase alphabetfof (0,7/2,7,37/2). As a reference the case with no PAPR
reduction is also plotted.

b. Convergence of the algorithm

The starting point of the search algorithm and the choice of the step sizeaplayportant
role on the convergence of the algorithm to a minima. If a large step size isesklben the
algorithm could overlook potential solutions in the search space. On thetathd, if the step
size is small then the required number of epochs to converge to a minima cduilghbe

In order to avert long execution times the maximum number of epochs in theggdmlgo-
rithm is bounded. Furthermore, the convergence of the algorithm to a miniraailisated by
exponential updates to the step size. The phenomenon is illustratedSrifigvhere the initial
phase vector is marked witttart and the minima to which the algorithm converges to is marked
stop In the example considered the algorit2monverges to a minima in around 2000 epochs.
The results of the PAPR reduction algorithm to different step sizes areglotfiy. 5.18
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FIGURE 5.16: Performance of PAPR mitigation strategy with hilhdtiing optimization. The

WPM system is realized using a filter bank structure with 4leeédecomposition and QPSK

modulation scheme. As reference the results of the starg@ldvidapproach as well as case that

without any PAPR reduction are plotted. For SLM, the numbgrhase-shifted replicas of the
original frame,Ngp s = 4.
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FIGURE 5.17: Demonstration of the impact of the initially selecstejp size where; = 0.01,
Vj on the PAPR reduction technique. The wavelet consideredaishBchies 15 (length 30).
For the case considered algoritfhaonverges to a minima in about 2000 epochs.

c. Impact of the wavelet family

We now evaluate the performance of the PAPR reduction technique feratiffwavelet fam-

ilies. In fig. 5.19 the impact of the selected wavelet family on the performance of the PAPR
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FIGURE 5.18: Impact of the step sizg on the PAPR reduction technique.

reduction is presented. Daubechies 5 (of length 10), Coiflet 5, Syml@idth of length 30),
Meyer (of length 102) and Haar wavelets are compared. An improvemeheiRAPR per-
formance can be observed for all the wavelet familes. For a CCDF vélabout10~2, the

PAPR gained with the mitigation technique is about 2dB when compared to thevhase no
optimization technique is applied.
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FIGURE 5.19: CCDF of the PAPR of WPM using hill Climbing based optiatian method
for different wavelet families. The WPM system is realizethgsa filter bank structure with 4
levels of decomposition and QPSK modulation scheme.
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In fig. 5.20the performance of the PAPR reduction technique for different wafiatlengths
is shown. Though the differences in the performances are not muehmay note that with
increasing lengths of the wavelet filters the PAPR values also increase.
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FIGURE 5.20: CCDF of the PAPR of WPM using hill Climbing based optiatian method
with different filter lengths of the Daubechies wavelet fymi

A two-dimensional demonstratiod{ = 2), of this technique is presented in fig.21for five
different wavelet families. In the figure the axgs andpl indicate the selected phases for
the two sub-carrierN/ = 2) expressed in discrete values in the rafge 2x. In the figure,
the phase vector selected at the commencement of the algorithm is markestastdind the
near-optimal phase vector obtained at the end of the search algorithmoiedeasstop

d. Computational complexity of the algorithm

The computational complexity of a hill climbing algorithmd¥ 7 K') whereT is the number
of iterations andK is the average number of neighbor solutions. The valug afepends on
the number of sub-carrieds/ and can be given a& = 2M 0. Consequently, the complex-
ity of the hill climbing algorithm isO(7T'M ). When calculating the complexity of the overall
implementation, the computations necessary to execute the IDWPT must alsadbeténto
account. The IDWPT complexity can be derived to®eV/ log, M) [10] and therefore, the
overall complexity of the algorithm can be given@§T'M? log, M ).

For each sub-carrier a phase value can either be increased caskti®y a step size
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FIGURE 5.21: Demonstration of Algorithr@ for various wavelet families.

5-6 Summary

In this chapter we presented a study on the PAPR performance of the \W&dhs Further-
more, two strategies to migitate the PAPR in WPM transmission were proposed.

e Selected mapping (SLM) with phase modification: The method exploited the fdct tha
by altering the phase of the WPM sub-carriers one can alter the PAPR whtisenitted
signal. By altering the phases of the sub-carriers that modulate the inform¥tieM
frames with different PAPRs can be obtained for the same information segueBy
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selecting the frame with the least PAPR the WPM system can be preventedpgevating
in the saturation region of the electronic circuitry in the transceiver chain.

e Optimization of phase selection: The SLM technique was enhanced bygangpomath-
ematical heurestic to optimize the selection of phases to reduce PAPR. Tq tleeso

objective of minimizing the PAPR is posed as a mathematical optimization problem and

solved using a local-search algorithm known as the hill climbing heuristic. riie
benefit of using the hill climbing technique for WPM systems is that the methosl riute
require the target functions to be differentiable. This is critical becagsedelet signals
cannot be readily expressed as mathematical functions and hencémyelie partial
differentiation or integration are not easy.

The operation of the proposed methods were demonstrated and veriiedlimumerical com-
putations. Comparing the two techniques, the hill climbing optimizer outperfornv l&ised

phase modification or scrambling based techniques. The large side infanmadgjoirement
of this optimization technique reduces the applicability of this technique. Taeethe side-

information two strategies may be employed (a) quantization of phases to a finilgen and

(b) bundling of sub-carriers into groups where all the sub-carriéitsirwa group undergo the
same phase shifip§.
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Chapter 6

Wavelet packet spectrum estimation

In this chapter, we investigate the application of wavelet packet trang\RT) for spectral
estimation and analysis®>. The main attraction for the method is the trade-offs it offers in terms
of satisfying various figure-of-merits such as high frequency resalugiood side-lobe suppres-
sion and low variations in the estimated power spectral density (PSD). Tfegmance of the
system is evaluated through computer simulations. The results of the experishew that
the wavelet based approach offers great flexibility and adaptability &ipar its performances
which are comparable and at times even better than Fourier based estimates.

In addition to this, a couple of optimizations which lead to significant perforeaains by
correcting edge-artifacts in standard wavelet packet transformseserged.

The rest of the chapter is organized as follows. The fundamentals g€rtonal spectrum
estimation techniques like Periodogram, Corellogram, Welch and Blackmaay @& provided
in Section 6.1. In Section 6.2 these spectrum estimation techniques are ireerasea filter
bank analysis problem. Two new techniques, namely, Multi taper specstimation (MTSE)
and Filter bank spectrum estimation (FBSE) are also presented in this sectatass of filter
bank estimators. We then introduce the wavelet packet spectrum estim&&H)h Section
6.3 as an advancement to the existing approaches. The WPSE is realizedtregithstructure
consisting of para-unitary filters. In Section 6.4 a couple of optimizationshwhiprove WPSE
performance is explained. Section 6.5 presents the simulation setup anslilte oéthe study.
A comparative analysis of WPSE with existing methods is provided in Sectioff Bebchapter
ends with a summary in Section 6.7.

Parts of this chapter have been publishedlitq and [L16]. For any material that has been reused, wherever
applicable, a written consent has been obtained from the first author.

The author gratefully acknowledges the contributions of Msc studenDMP. Ariananda for his active coop-
eration and help with the computer simulations.
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6-1 Introduction

Spectral Analysis is the process of determining the distribution in frequehtlye power of

a finite length signal from a finite set of measurements/]. Metrics like variance and bias
of measurement as well as complexity of method are important considerati@mmsahoosing
the right spectrum analysis tool. Variance is the variations or fluctuationgim#dasurement
which occur due to the fact that an infinite humber of PSD values are estirinated finite
sample set]17. On the other hand, a bias can be due to 2 factors - smearing (or smudging
and leakage (or spillagell7]. Both these problems arise due to the limitations in the band-
pass filter, principally, with regard to their main and side lokdEk/]. The effect of the main
lobe is to smear the estimate resulting in reduced frequency resolution. Sededolihe other
hand contribute to transferring power from the desired to the undesbiabls causing leakages
[117. The criterion for the optimum band-pass filters - narrow main lobes with ide/lsbes -

is conflicting and hence cannot be met simultaneously. Naturally, comproh@geso be made
with regard to the choice of the band-pass filter. The best approade hevuld be the one
which offers a trade-off between a desirable main-lobe and a toleraleléahid.

Conside?, a discrete time signai[n] consisting ofNV, random data samples and of finite energy
and zero mean i.&{z[n]} = 0. HereE{.} is the expectation operator which averages over the
ensemble of data samples. Defining the correlation fundtigyik] as:

Rz [k] = E{x*[n — k]z[n]},0 < k < Ny — 1, (6.1)

there are two ways in which the power spectral density of the signal caalbelated. In the
first method, known as the direct method (or frequency domain apprdhehPSDSYi (w) is
estimated directly from the signa[n] as [L17, 118,

2

Ns—1
S @) =y B 7, | 2 el 62)

In the second approach, referred as the indirect method (or time domaioaap), the auto-
correlation functionR,[k] of the signal being estimated is considered and from this autocor-
relation value, the power spectrum densst) " (w) is found by applying the Discrete Fourier
Transform 117, 119, i.e.,

St (W)= ) Raalk]e7M) (6.3)

k=—o0

3The discussion is based ohl[7] and has been summarized here for ready reference
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6-1-1 Periodogram

The most commonly known spectrum estimator is the periodogram, which is baske direct
method of spectrum estimation as presented in6eg).( Since the signal to be estimated is
usually of finite length/V,, the expectation and limit operation in e§4) can be omitted to
obtain the reformulated PSD estimatg, (w) as [117):

2

. 1 [t A
SPo(w) = . Z x[n]e v (6.4)
n=0

6-1-2 Correlogram

The correlogram uses the autocorrelation function of the input sifpglk] to compute the
PSD. The PSD is obtained from the DFTRBf,[£] ,i.e., [117:

S (€)= D Rug[k] exp(—jwk) (6.5)

k=—o00

There are two possible ways to compute the covariance fun&igfk], namely, the standard
biased and the standard unbiased estimafiéf]] The standard unbiased estimate is expressed
as[117:

N-1

~ 1

Rm[k]:mZx*[n—k]x[n],ngSN—l, (6.6)
n=~k

and the standard biased estimate is giveriag|{

N—-1
Zm*[n—k]m[n], 0<kE<N-L1 (6.7)

n=~k

1

Raa[k] = -

In egs.6.6) and 6.7) R..[k] denotes the approximate of the autocorrelation funciigne) [k].
Amongst the two approaches, the biased approach is usually pref@ineds so because for
large lags in the unbiased approdcthe factor(/V — k) will be small leading to erratic values
of the R, [k]. Moreover, the value ok, [k] is guaranteed to be positive semi-definita 7.

6-1-3 Other techniques

The main deficiency of the techniques presented above is the use ofg@etawindow to
truncate the input data samples to finite length. This windowing introduces antlisaity
between the original signal and the aliased version produced by a DiRSfdrenation. In the
frequency domain, the rectangular window results in a Dirichlet Kernéthwvis described by



Chapter 6 Wavelet packet spectrum estimation 135

the width of the main lobe and the level of side lotk&y. The width of the main lobe is related
to the frequency resolution of the power spectra, and the level of sidddoklated to the ratio
between maximum and minimum spectral power that is distinguishable by the estifiaor
rectangular window compromises the frequency resolution resulting indeakad a biased
estimate. ForVy, number of data samples, the spectral resolution limit of PeriodograyiNs.
That is, the periodogram cannot resolve those details of the signal wreckeparated by less
thanl/N; cycles per sampling intervall7).

Another problem with the periodogram is that the estimates are coarse withréoigipn and
large variance. Moreover, this variance does not improve with more ddta.only way to
reduce the variance of the periodogram is to average the PSD estimatisscamhbe done
by computing several (shorter) periodograms and use these to compudges of each PSD
estimate. This method is known as Bartlett method. Conversely, the periodageficients
can also be weighted by windows. This is what happens in the Blackmagy huithod. Bartlett
method and Blackman-Tukey method can be combined together so that ongtesipaverage
of several windowed periodograms. This is the Welch method.

The choice of segment size and the number of segments determine thenfegesolution
and the variance that the methods presented above can offer. Aparttfese two parameters,
the choice of window also has an important role to play. The window functeiarohines
the dynamic spectrum range of the estimator as well as the attainable spesdtation. The
window functions can thus be used as a lever to control the resolution andnige of the
estimator. Some of the popular windows used are the Triangular, Blacknaamnihg, Kaiser
and Hann window functions.

An important point to note is that almost all these window functions have smadligfhis for
data samples located around the edges. Therefore, in the final compufatienPSD all the
data samples are not equally represented. In order to mitigate this effetdttheegments are
allowed to overlap. In118], Porat suggests a 50 percent segment overlap. For this casdaall da
samples have equal representation since samples located near thefedgadioular segment
will be located at the center of the adjacent segments.

6-2 Spectrum estimation as a filter bank analysis problem

In this section we explain how traditional spectrum estimators can be intetpasta filter

bank analysis problem. Since the proposed wavelet packet basadiapestimator (WPSE) is
entirely based on filter bank theory such a discussion will greatly aid in iterstehding. The
discussion is based on an analysis provided kv].
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6-2-1 Filter bank interpretation of spectrum analysis

As mentioned before, spectrum estimation is about finding the power spedansity (PSD)
of a finite sample set[n|,n = 1,2, ..., N for the frequency banf| < 7. Usually the Fourier
transform is used to obtain a Periodogram estimate. Let us first consig@deas a function
of frequency (instead of the angular frequen@A1:

2

N
PO 1 s .
P (p921fy — (=j2mfn)
Sty = 5 n§:12:c[n1e (6.8)
For any given frequencyj;, eq.6.8) can be rewritten aslfL7]:
1|2 2 1|2 2
b (027fiy — (—j2mfin) L (j2r f;(Ns—n))
SP(e?<™)7) N ngl x[nle . ngl x[nle (6.9)

The second operation in €6.9) is possible sinceel/27/iN:)

= 1. By introducing a new
variablek = N — n, we can rewrite egg(9) as [L17]:

2 2

Ns—1 Ns—1
—~ . 1 id . S
SP(e?i) = — | > 2Ny — Kl R = 1N hy k][N, — k] (6.10)
%] k=0 k=0
where,
k1eU2mfik) for k =0,1,2,..., Ny — 1
hilk] = wikle o Y (6.11)
0 otherwise

and window functionu [k] = 1/+/N5.

If holk]( = w(k]) is taken to be a prototype FIR low-pass filter, thgn..o[k]s will constitute

a bank of band-pass filters centered at frequengiasd obtained by modulating the prototype
filter holk]. The spectrum analysis problem posed in @&)(can be perceived as passing
samples of the studied signal through a filter bank with impulse respaggéss illustrated in
fig. 6.1 For the classic periodogram, the functiofi] is a rectangular window withv[k] =

1/+/Ns.

The frequency respondé;(w) of the filter h;[k], which is,
Hi(w) = hi[kle 7 (6.12)

can be easily derived to b&17:
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FIGURE 6.1: lllustration of the filter bank concept2Q.
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It is clear that the frequency response of the periodogram with thengadter windoww [k] =
1/+/N; as prototype filter will have large side lobes leading to large leakages. der ¢o
obtain a prototype filter with smaller side lobes, the rectangular window is egplaith a
window function that tapers smoothly on both sides . Examples of populaowirfighctions
are Hanning, Kaiser and Blackmahlg.

6-2-2 Multi-taper spectral estimator (MTSE)

A more intuitive approach would be to employ the Multi-taper spectrum estimatdiSE)
suggested by Thomsoth18 121]. In this method multiple orthogonal prototype filters are used
for each band. The outputs of each filter are then averaged to obtastithaie. Since the filters

are orthogonal to each other the outputs are uncorrelated and the estiamatdew variance.

To improve the accuracy of the estimates a mini-max algorithm is employed to g¢hatithe
filters have maximum energy in the bands (with minimal side-lobe) of interestoithegonal
basis vectors used in MTSE are slepian functions (prolate spherica¢rsees). The MTSE
uses multiple orthogonal prototype filters to improve the variance and redestde-lobe and
leakage. Fig6.2 illustrates the magnitude response of the first seven MTSE prolate filters of
length 128 120. In this figure, only the even numbered filters are shown for the sa&kofy.
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FIGURE 6.2: Magnitude responses of the first seven prolate filtetsrafth 128. For clarity,
only the even numbered filters are shown. The odd numberedsfhitave responses that fall in
between the presented onég&(.

exp(-j27fin)

—>(X—> HE) vl

FIGURE 6.3: Demodulation of théth sub-carrier of the received signal before it is processed
by the root-Nyquist filter 120

6-2-3 Filter bank spectral estimator (FBSE)

An example of a spectrum estimator which is completely based on filter banksh#tdrdank
spectrum estimator (FBSE) proposed by Farhang-BoroufE2.[ While in Thomson’s MTSE,
the estimate at a frequency poifitis obtained by averaging the output of multiple prototype
filters, FBSE simplifies MTSE by employing only one prototype filter in the zeraihdbas
shown in fig.6.3

FBSE is implemented with a pair of matched root Nyquist-filter. A filter with tranffection
H(z) is said to satisfy the Nyquist criterion iL2Z]:
Og—1

> P(ze *Mh) = Oy (6.14)
k=0
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FIGURE 6.4: lllustration of Filter Bank Spectral Estimator (FBSpapposed by Farhang-
Boroujeny [120. Srpsr(f;) is the FBSE estimate a&tth frequency sub-bandg].

Ineq.6.14), P(z) is the product filtel?(z) = H(z)H(>~!) andOg is an integer called the over
sampling factor122. In multi-carrier communication, such filters are useful to design a pair of
matched transmit and received filters whose cascade is a Nyquist pajse siWherjz| = 1,
thenP(z) = H(2)H(z~') = |H(2)|?. P(z) is called a Nyquist filter antiH (z)| = P(2)'/? a
root-Nyquist filter.

Fig. 6.4 shows the FBSE implementation. In the figui f) is the prototype filter, which is
root-Nyquist filter while the rest of the filters are modulated version# 0f). The frequency
response of the prototype filté? (f) and its modulated versions are shown in igs. The
output power of each filter is a measure of the estimated power over thesponding sub-
band. Hence, the power spectral density (PSD) estimatetoub band of the filter bank is
represented adpq:

5 (N) — avg ([l (6.15)

In eq.6.15, the operatonvg{.} stands for time averaging whilg|[n| is the output signal of
thei-th sub-band filter. The basic idea of FBSE is to assume that filter bardd maglti-carrier
communication technique is used as the communication system of choice. Thélwarbank
can then be used for spectrum estimation. In this filter bank architecturepriéssimed that
the filters at the receiver and transmitter side are a pair of matched roeistlfitiers H (=) as
shown in fig.6.3[122. At the receiver end, the received signal is down-converted telizax],
low-pass filtered, and decimatet?[() before it is finally forwarded to the root-Nyquist filter for
data demodulation and spectrum estimation.

Comparing MTSE and FBSE, the later is usually better when the PSD is calctdatdarge
number of samples. On the other hand, when the available data samples are theited TSE
is preferable. Another important advantage of FBSE underlinedd] is the possibility of
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FIGURE 6.5: Optimally designed Root Nyquist Filter by Farhang-&geny in [L27] as pro-
totype filter for FBSE.

applying FBSE as a multi-carrier modulator. This is possible due to the facthbdilter-
bank in the receiver module can be used both for spectrum estimation aredl as for signal
demodulation. More information on this topic is available12().
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6-3 Wavelet packet spectrum estimator (WPSE)

In this section, we describe the proposed spectrum estimation appraachdrediscrete wavelet
packet transform in greater detail. The motivation for using WP filters is molaniFirst, the or-
thogonality of the filters ensures that the filtered outputs are not correlatedence the bias in
the estimates is reduced. Next, the DWPT, which is a lapped transform, allewgRHilters to
overlap in time. This means that the WP filters can be of longer lengths with shigapsitions
and localized frequency bands. Third, since all the WP filters are obtdyneascading low-
pass filters, the variances in the estimates are inherently lower. Furthetheotee structure of
WPSE can be adjusted to fine tune the frequency resolution, variand®eanid the estimates.
For example, greater the levels of decomposition, more the number of adk-f@r estimate
points) and hence better the frequency resolution. Lastly, the waveldida can be carefully
chosen so as to improve the accuracy of the estimates.

6-3-1 Wavelet packet representation

It is well known from the theory of wavelets that compactly supported edwan be derived
from perfect reconstruction filter bankg,[29, 31]. Two channel filter banks split the given
signal into coarse (low-frequency) and detail (high-frequency)manents. The high- and low-
pass filters remove the lower- and upper-half frequency componesisatively. As a result,
the output signal spans only half of the frequency band spanned liyghesignal. However,
the time scale of the signal remains unchanged. To retain the same numbaptésahe filter
outputs are down-sampled by a factor of 2. Therefore, one step destip process consist-
ing of half band filtering and down sampling reduces the time resolution by ahdlfeduces
the frequency band spanned by the signal by half as well. The schermenigahated succes-
sively on both the coarse and detailed versions until the desired defgresotution to form a
cascaded tree structure. The cascaded two channel filter bankstmecursively decomposes
the signal being estimated and maps the signal components into the freqoemayndThis pro-
cess may be likened to passing the received signal into a bank of filters Wigeoutput point

of each filter is a wavelet packet node. The output of each wavel&epaode corresponds
to a particular frequency band. In fi§.6, a level-4 decomposition procedure generating 16
wavelet packet coefficients is illustrated. Fig6also depicts the relationship between the order
of wavelet packet node number and its frequency ordering for ael-tlacomposition. There
are 16 nodes in the lowest level shown in g6 corresponding to 16 frequency bands. These
16 frequency bands span the normalized frequency riing¢or [0Hz, 0.5 f,Hz], wheref, Hz

is the sampling frequency.

The decomposition of the signal into different frequency bands with réifiieresolutions is
possible. The resolution of the estimate can be adjusted by increasingeasiag the number
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FIGURE 6.6: Wavelet packet tree for four levels wavelet packet demusition. Herdd (=) and

G(z) denote the low- and high-pass decomposition filters, reisede | represent decimation

by 2. It should be noted that the coefficients of the wavelekpttransform are not ordered by

increasing order of frequency. Gray code conversion isiredto obtain the correct frequency
order.

of decomposition levels. The greater the degree of decomposition, the thettérequency
resolution is. The number of successions is usually limited by the desireddifrelquency
resolution and available computational power. An added advantage is ¢hatiffput at every
level can be chosen according to the desired frequency resolution.

6-3-2 Frequency ordering of wavelet packet coefficients

It is of utmost importance to identify the bands spanned by the wavelet peckéicients
and their relative frequency ordering. The coefficients of the wayeleket transform are not
naturally ordered by increasing order of frequency. Instead, tfeegiambered on the basis of a
sequential binary gray code valuE2.

To understand the working of the wavelet packet transform, consigeexample shown in
figs. 6.7 and 6.8 where the decomposition of a signal spanning 8 Hz is considered for
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FIGURE 6.7: Level 1 Decomposition: Mirroring of high-pass compotsedue to down-
sampling. In the figure} | denotes down sampling by 223.

up to two levelé. The output of a decomposition process is the result of the scaling (the low-
pass filter) and the wavelet function (the high-pass filter) followed byrdsampling. Down
sampling generates two new filter results with half the number of elements in the timaérddn
addition to this, it also results in mirroring of the high-pass components in thedrey domain.
This swaps the low and high-pass components in a subsequent decompesigkemplified in

the figures.

“The discussion presented here is basedlag][
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FIGURE 6.8: Level 2 Decomposition (continued from previous figurEhe 2-levels wavelet

packet decomposition is applied. Due to down sampling alltigh frequency parts are mir-

rored. The low and high-frequency parts are swapped in asuiesit transform. In the figure,

2 | denotes down-sampling by 2. Note that the output of the 1selgapacket node corre-

spond to 0-2Hz, 2nd wavelet packet node correspond to 2-3idand 4th node correspond to
6-8Hz and 4-6Hz respectivelit23).

6-3-3 Re-ordering of wavelet packet coefficients

A. Gray to binary code conversion

When the wavelet packet algorithm is recursively applied the resultaveletapacket coef-
ficients obtained follow the Gray code sequent2d. The binary to Gray code conversion

formulais given as123:
GC(bz) = (b, + bi+1) mod 2. (616)



Chapter 6 Wavelet packet spectrum estimation 145

Here,n is the decimal numbet with a binary representation of the form iofb3b2b, (b is the
least significant bit anél; the most significant bit).

Instead of the usual Gray Code Permutation, we here present an @eeaigorithm to convert
the sequence from Gray to binary. This method is computationally simpler asdadinvolve
any binary to decimal conversion (or vice versa). If the wavelet gacbkées are in sequence
(from the smallest number to the largest), the algorithm for obtaining thedrexguband order
can be stated as follows:

e Initialize a vectoralpha with elements 0 and Ja{pha = [0 1])
e Define the required level of wavelet packet decomposition L
e Forj=2toL —1do

— beta = alpha + 2j;
— Flip the element obeta

— Appendbeta at the end ohlpha

6-3-4 Wavelet packet based spectrum estimation as a filter n& analysis problem

The WPSE can be considered as a natural extension to MTSE. The W&tSEsas different
orthogonal filters as prototype filters. Akin to MTSE and periodogram, tfRS® estimates
are the outputs of a bank of filter having a pass-band around that poawewdr, instead of
Slepian sequences the WPSE filters are derived by cascading waaekeit flecomposition
filters. However, in contrast to MTSE, these filters are realized by dasgaeveral analysis
low-pass and/or high-pass filters, which are derived from single fyqmtoaccording to two
scale equations and quadrature mirroring. The impulse response otttseseled filters, called
the wavelet packet duals, can be represented as:

Qilk] = &[k] = BIK] * B[2K] * ...« B[2' K] * B[2" k] (6.17)
where0 < i < 2! — 1 andj[k] are the branch filters given as:

hlk], for low — pass branch
Blk] = , (6.18)
glk], for high — pass branch

Fig. 6.10presents the proposed wavelet packet based spectrum estimator adbariiteln this
figure the decomposition level is 3 which results in 8 estimatation points. Theaighilative
filters divide the normalized frequency rangerPinto 8 equal sub-bands. Higher the levels of
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X[n]

FIGURE 6.9: Wavelet packet decomposition of a signal. HErandG denote the frequency

responses of the low- and high-pass decomposition filtesperctively. The down-arrowis

represents decimation by 2. The¢s denote the wavelet packet coefficients. Besides the de-

composition, the Power Spectral Density (PSD) of the deam®g signal components in suc-

cessive octave bands normalized to the Nyquist frequerglyown. The order of filter in each
level is modified in order to match frequency ordering frono @t

decomposition more the number of sub-bands (or estimate points) and tlatsrdhe degree
of frequency resolution.

B. Modified wavelet packet tree structure

A more convenient approach is to avoid this Gray to binary conversionagliegby modifying
the WPSE tree structurd23. Fig. 6.9illustrates the modified structure of the wavelet packet
tree (3-level of decomposition) in order to match the frequency orderig. can note the
difference of this structure with the first 3 level of the tree shown indi§. especially the order
of analysis low-pass filteH and high-pass filtez in each level.

6-3-5 Wavelet packet transform and energy conservation

The relationship between the amplitude of the signal and wavelet coeffitiagt® be estab-
lished to develop the wavelet packet spectrum estimator. The Parskargroves that the
Fourier transform is a lossless unitary transform. Likewise, we needstrta$ the wavelet
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FIGURE 6.10: Wavelet packet based spectrum estimation concept thhe point of view of

filter bank paradigm. Here 3-level decomposition is empiygsulting in 8 virtual filters split-

ting the normalized frequency band4{Qjnto eight sub-bands corresponding to eight estimate
points.

packet transforms preserves energy too. In order to ascertainldtismewe start by represent-
ing a functionf(z) in Hilbert Space as the linear combination of the basis functjgfs):

flz) = Z aipi(z) (6.19)

Here a; can be obtained from the inner-product of the basis functigfis) and the studied
signal f (z):
a; = (pi(z), f(x)) (6.20)

The norm of the function can be computed from the transform coefficients

If @)l =) lail* = Z (i), f () (6.21)

7

By assuming that a functiog(z) has transform coefficients;, we can derive the generalized
Parseval equation by taking the inner product between two funcfionsandg(x) in Hilbert
Space:

(f(),g(x)) = Z @ifi =Y (f(x),9i(2)) (¢i(x), g(x)) (6.22)

7
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Here,a; denotes the complex conjugate versiomafAccording to Todorovska and HadZ34],
the Parseval relation for Discrete Orthogonal Wavelet Transfornitariaverse is obtained by
substitution on generalized Parseval Equation in the above exprestieforivard and inverse
discrete wavelet transforms for the discrete sigral can be represented as follovi2{:

N/27 J N/2i
zln] = > el k)psrn] + [ DD d(, k)piln] (6.23)
k=1 j=1 k=1

d(j, k) = ($jk[nl, z[n]) (6.24)

In egs.6.23 and 6.24), J is the decomposition level anll is the total number of samples.
These expressions are known as the synthesis and analysis equaspestively. The first
component in eqd.24) is the coarse part of signaln], which is represented as a linear com-
bination of the scaling functiop ;;[n]. On the other hand, the second part of @@4) is the
detail version of:[n], which is represented as a linear combination of wavelet functigng:|.

If we consider another signalfn] with d¥) (5, k) andc?) (J, k) as its wavelet packet coefficients,
the Parseval relation faf{n| andx[n] can be described as:

00 J Nj2J 4 N/27 '
(@hl,yll) = Y xlyln = [ DY dDG,R)AGE) | + | D (T E)e(J, k)
n=-—00 Jj=1 k=1 k=1

(6.25)

Takingz[n| = y[n], the Parseval relation in terms of the normy@i] can be given aslp4:

oo J N/27 N/27
lylll* = Dyl = { >0 > G R | + Y le( k) (6.26)
n=-—00 j=1 k=1 k=1

This clearly shows that the wavelet transform is a lossless transfornthanel is no loss of
energy when we transform the time-domain data to the wavelet domain. Thisefésa fun-
damental reason why a spectrum estimator based on wavelets can be bsivaParelation
holds well for both conventional discrete wavelet transform and wapaleket decomposition.

6-3-6 Calculating power spectrum density from wavelet pac&t coefficients

Since the Wavelet packet transform obeys the Parseval relationghiganvobtain the wavelet
based spectrum estimates. Considering that the wavelet packet nadabwsgrequency band
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[0 0.5fs], where f, is the sampling frequency, and that the levels of wavelet packet decom-
position isn there will be2™ wavelet packet nodes. This decomposition will divide the band
[0 0.5f5] into 2™ equal bands.

The power spectrum density estimg’(ﬁpM(fk) of the frequency band spanned by #te WP
can be calculated from the energyf;.) detected in théth band as follows:

§E£PM(fk) = ?V(];f) (watt/(radian/sample)); where 1 < k < 2¢. (6.27)
stk

Here N, connotes the number of input samples. With these steps the WP indices cappgetma
to their respective frequency bins and an accurate estimation of the paditsiem can be per-
formed.

6-4 Optimizations to wavelet packet implementation

We now present the Enhanced WPSE (E-WPSE) which fine tunes thatiopeof WPSE by
bringing in a couple of improvisations. These optimizations correct artifalsishainherently
occur in WPSE and lead to significant gains.

6-4-1 Enhanced WPSE to mitigate edge artifacts

Before presenting the details of the E-WPSE, it will be useful to take ardinsleat the standard
implementation of the Wavelet Packet algorithm again. Supposing that thesigat ] is

of length N (with N, taken to be even for convenience) and if we take the length of the filters
h and g to be L, then the down-sampled sub-band signal$:] and z,[n| (connoting low-
and high-pass branch outputs, respectively) will each be of lefigth N;)/2. However, if

the length of the samples before and after the wavelet packet operatiobéskept constant
then the lengths of sub-band signalgn] andz,[n| have to beN,/2 (see fig.6.11). To do

so the standard wavelet packet implementations drof fl2esub-band samples near the edges
which exceed the lengthV /2. Naturally, this abrupt truncation of the data samples results in
aberrations like ringing around the edges and produces spuriousreighehcy components
leading to inaccurate estimation.

In order to correct this artifact we avoid the excessive length by addmtastL /2 samples of

each sub-band signal to the fifst2 samples (see fig.12). This periodic extension is similar
to the use of cyclic prefix in OFDM and is a most convenient fix to the probleetge based
artifacts and ringing. We call the new method Enhanced WPSE or E-WPSE.



Chapter 6 Wavelet packet spectrum estimation 150

.............

" o 214 ~ length (L+N,)/2
G " 2:1d ~ length (L+N)/2
length L

FIGURE 6.11: Two-channel filter bank implementation: convolutaperation and increased
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FIGURE 6.12: Two-channel filter bank implementation: periodicemsion to fix edge-based
artifacts.

6-4-2 Enhanced WPSE with padding

A requirement in the implementation of E-WPSE is that the number of samplesrelegatof

the WP tree is even. This means that for a leVallecomposition the number of data samples
considered must be a multiple 8f. If this is not the case, then the input samples should
be padded with additional bits to make the data length a multip¥’ofThe padding can be
done in two ways. In the first method, the additional bits are added to thedapabefore the
decomposition process. In this regard three approaches are cedsidamely, zero padding
(ZP), cyclic prefix (CP) padding and symmetric padding (SP). Assumirigngth samples for

N < a.2¢ wherea is the smallest integer leading to a multiple 25f, the zero padding is
performed by appending.2¢ — N zeros at the end of the received samples. When cyclic prefix
is used, the last.2¢ — N samples of the received sequeneés are copied and prefixed to the
original sequences. The data sequence can be given as:

[N — (a2 = N —1)] ...2[N — 1] 2[N] 2[0] z[1] ...2[N — 1] z[N].

In symmetric padding, the last.2® — N samples of the received sequencés] are copied
and then flipped before they are suffixed to the data samples. The dttersequences can be
given as:

z[0] z[1] ...2[N — 1] 2[N] 2[N] [N — 1] ...2[N — (0.2 = N —1)].
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In the second scheme of padding, instead of adding all the extra bitelkb#odecomposition
process, a single bit is added only to those decomposition stages wherertherrof samples

is odd. For example, a sequende| having 38400 samples passed into the wavelet packet tree
with 11-level of decomposition will not require one-bit pad during the dgoosition process

up to level-9. However, at level-10 and level-11, one bit pad will beiredu In this work, the
additional bit used is a zero bit.

6-5 EXperiment scenarios, sources and their characteristics

In order to investigate the performance of the wavelet packet basettspeestimation tech-
nique, four different types of sources are considered, nameliapband, single-tone, multi-
tones and swept-tone. The test sources are so chosen that theyifredtdnsights into the
operation of the spectrum estimation tool. The partial-band source (s€lfggd) has its en-

ergy spread over a continuous range of frequencies and occupiesrtinalized frequency band
from 0.257 t0 0.757. The partial band source is implemented as a OFDM system with the num-
ber of carriers adjusted according to the bandwidth considered fotubg. sThe single tone
source (see figs.13B) has all of its energy at one frequency and is in the middle of the fre-
guency range spanned by the WPSE, namelyfat. The multi-tones source (see fi§g13-C)
consists of seven equi-spaced single tones located(ro2hr to 0.8757.

Finally, a swept tone source (refer fig.14) is introduced to measure how well the estimation
schemes perform when there are temporal variations in the bands attypilee data source.
The swept tone source is a chirp signal in which the frequency ing€agechirp’) with time.
After a sweep of incremental chirps the signal winds back to the origiequincy to start with
the next sweep cycle.

Table7.2summarizes the description of sources used in the experiment.

0.3751  0.625T 0.51
(A) (B)

0.1251 0.251 0.3751 0.5m 0.6251 0.751 0.875t
©

FIGURE 6.13: Sources and their characteristics. The sourcesd=mesi are: (A) Partial Band,
(B) Single-tone and (C) Muiltiple Tone.
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FIGURE 6.14: Swept Tone Source.
| Type of sources| Description |
Partial band Consists of a partial band source occupying the
normalized frequency rand@.375, 0.6257|. (See
fig. 6.13A)
Single tone A single tone at normalized frequen®ybr. (See
fig. 6.13B)
Multi-tone Consists of 7 single tones occupying the normal-

ized frequencies occuring @t 25, 0.257, 0.3757,
0.57, 0.6257, 0.757 and0.8757. (See fig.6.13C)

Swept tone Consists of a source which occupies different fre-
quency bands at different time instances. A total
of 20 sweeps (each of 640 samples) covering |the
frequency band of0.2x, 0.87] is considered. (See

fig. 6.14)

D

TABLE 6.1: Description of test sources.

For the WPSE, a level-7 decomposition tree is considered. Several wiaralkes are investi-
gated namely Daubechies families, Coiflet, Symlet, Discrete Meyer, Biortlabgon Reverse
Biorthogonal. The WPSE results are compared with existing techniquesasdlelch, Peri-
odogram estimates, periodogram with windowing (Hann, Hamming and BlagkemdrVTSE.

In Welch, the input samples are divided into smaller segments and the peaaddgr each

segment is computed.

The number of data samples considered in the experiments is 12800. The &futdite is
obtained by dividing the received samples into 399 segments of 64 samples@ansecutive
segments of the samples overlap with one-another by 50%. Before tlagengeof data samples
a Hamming window is applied on each segment. To gauge the swept tone, 2lgeeps
(each of 640 unit samples) are considered. The sweep spans thdinednfilequency band
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[0.27,0.87]. In order to present the effect of highly time-varying frequency aecpim esti-
mation, the estimate for five portions of a single sweep is displayed. The estirtettorique
depicts the first 128 unit samples of a single sweep followed by the nexirii28amples of the
same sweep and so on until the fifth 128 unit samples of the same sweep.

6-6 Results and analysis

In this section we present the results of our study on using WPSE to estinfatewtifkinds of
data sources.

6-6-1 Partial band source estimation

In the estimation of partial band sources the performance of the candidategees are guaged
using four performance metrics, namely,

e side lobe suppression,
e variance of the estimated PSD in pass-band ,
e variance of the estimated PSD stop band,

e and transition between pass-band and stop-band (transition band).

The best system is one which yields good side lobe suppression, lowagegipnd variance
and a narrow transition band. Indeed all these desirable propertiesohag mealized at the
same instance and one may have to trade-off between the desirables ttheebest system.

A. Comparison with Welch and Periodogram estimators

We first compare the performance of the WPSE with Welch and Perioddgcimiques. Figh.15
depicts the estimates of a partial band source with Periodogram, Welch aS& \@&imators
(employing Daubechies wavelets). For the sake of clarity only two decdatigyotevels are
presented. The number of data samples considered in the experimend@ 128

From the plots we may notice that the Periodogram estimates have a goodioesolii have
large variances in the pass-band. The Welch estimator divides the datkesantp smaller
segments, calculates the local periodogram of each segment and thegesviaem to arrive at
the final estimate. Hence, the variances in the PSD estimates are low; haive\areraging of
the estimates results in loss of information on sharp transitions in the studiet! Sijnaterest
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FIGURE 6.15: PSD estimates of the partial band source with Peri@siogWelch and WPSE

(Daubechies 20 wavelet) estimatators. The number of dat@lea considered is 12800. In

the Welch estimator the data samples are windowed (Hamnmitgsmaller segments of 64
samples each with an overlap of 50%.

is the WP approach where one may increase or decrease the decompegiioto achieve the
desired variance versus frequency resolution trade-off.

When the performance of the WPSE is compared to Fourier-based pgnaoalothe transition
band of the periodogram output is sharper. However, on accotim @riance of the estimated
PSD the WPSE performs significantly better than the periodogram. This iglchugadio
transmission where large variances in the estimate could lead to erroneoamgridg on the
presence/absence of sources. Hence, in the metric of variance oftestir&D, it can be said
that orthogonal wavelet based estimate is preferable in comparison taithéqmeam for partial
band source estimation.

Comparing WPSE and Welch, the Welch technique performs marginally betteravieraging

of estimates in the Welch plays an important role in ensuring that the PSD hadl aataace
even when maintaining sharp transition bands. However, it may be notethéh&ransition
band guaranteed by Welch is only fractionaly better than that found in WiB®Bg the Discrete
Meyer waveleP. This implies that there is scope for further improvement in WPSE perforenanc
when the length of the wavelet filter is increased.

In the metric of stop band suppression, the level of estimated power in tleewgied bands
for Welch is higher than that of WPSE or periodogram. This is a directegprence of the
data partitioning carried out in Welch which results in lower number of samptEtable for

SLength of Discrete Meyer filter length is 102
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FIGURE 6.16: PSD estimates of partial band source according to tifiereht decomposition
level of frequency selective wavelet based approach, Thoim$1TSE and Periodogram using
Hann window. The number of samples in this experiment is 0280

estimation. Consequently, the Welch introduces a wider main lobe in its windavelkand
causes more leakage than the periodogram. The WPSE offers bettéorejean both Welch
and periodogram in the unoccupied frequency bands and also dasaysthe stop band.

B. Comparison with windowed Periodogram and MTSE methods

Applying the window to the periodogram (plots presented in figé6and 6.17) reduces the
side lobes and hence leakage into the stop bands. However, it doeslvetre problem of
large variances in the pass band. In fact, all the windowed-perioghogugputs have variances
much larger than WPSE. Lastly, the MTSE offers excellent frequen@jutisn but they too
suffer from large variances.

C. Impact of wavelet families

In this set of experiments the influence of wavelet familes on the perforenah@VPSE is
evaluated. Several well-known wavelet families including Daubechie§diflet-5, Symlet-15,
Discrete Meyer, Biorthogonal-3.9, Reverse and Biorthogonal 3.9 westigated. Daubechies-
15, Coiflet-5 and Symlet-15 have a filter length of 30. On the other handrddésMeyer has
filter length of 102 while both Biorthogonal3.9 and Reverse Biorthogonah& filter length
of 20.
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FIGURE 6.17: PSD estimates of partial band source according terdift decomposition level
of frequency selective wavelet based approach togethbrReitiodogram using Hamming and
Blackman window. The number of samples in this experimeh2&00.

Figs.6.18and 6.19depict the performances of various wavelet families for WPSE. Welch and
periodogram results have also been provided as reference. Thesfgjwow that Discrete Meyer
wavelet has the best performance amongst all wavelet families. Hovitesleould be noted that
the length of the Discrete Mayer filter is 102 and thus exacts a higher caspt#mentation.

It may also be noted that the performance of non-orthogonal wavetdida (Biorthogonal 3.9
and its reverse counter part) is very bad and hence unsuitable for \Aji{iEations.

D. Impact of wavelet lengths

Fig. 6.20illustrates the effect of filter length on the performance of the WPSE. In #sis,c¢he
Daubechies family is selected for the experiment. It should be noted thaniié lef the filter
is twice the index of the wavelet. For example, Daubechies-4 has filter lef@thlbshould
also be noted that Haar is actually Daubechies-1 and has a filter lengttrair@.the figure, it
is evident that the longer the filter length, the smaller the transition band. Ldfigelength
also corresponds to a better suppression of power in the unoccupidd. ddowever, a higher
price is paid for the implementation.

E. Impact of decomposition levels

In fig. 6.21, WPSE estimates at four different decomposition levels, namely level-3;7eve
level-9 and level-11, are displayed. Of interest is the change in the earemd resolution of
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FIGURE 6.18: Periodogram and wavelet based estimates (DaubethjeSymlet 15, Fre-
qguency Selective (Length =30), Discrete Meyer) for patigd source.
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FIGURE 6.19: Welch and wavelet based estimates (Coiflet-5, bigahal 3.9, and reverse

biorthogonal 3.9) for partial band source. The number ofgamin this experiment is 12800.

The overlap percentage and the length of each segment esgloyVelch is 50% and 64 sam-

ples, respectively. Hamming window is used in the Welchastion. A level-7 decomposition
tree is used for WPSE.
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FIGURE 6.20: Wavelet based estimates for partial band source @=wdpechies family with
different filter length. A level-7 decomposition tree is d$er WPSE. The number of samples
in this experiment is 12800.
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FIGURE 6.21: PSD estimates of partial band source according towsuidecomposition level
of Frequency Selective Wavelet of length 30. The number ofpdas in this experiment is
12800.
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Estimation Tech- Side-lobe Variance in| Transition Variance in
nique suppression | pass-band | band stop band
Welch ~ - ~ -
Periodogram - ++ - ++
Periodogram with - ++ - ++

Window

MTSE - + - +

TABLE 6.2: Comparison of WPSE performance with other techniques$timation of a
partial-band source.The notations +, - aadndicate whether the WP approach performs fa-
vorably, negatively or similar, respectively, in comparido the other method.

the estimated PSD with increasing/decreasing number of decomposition levttls técrease
in the depth of signal decomposition, the variance of the estimated PSD isstediibis is
to be expected because for lower number of data decompositions, witts Aee spanned by
the wavelet packet nodes. On the other hand, the total energy contaiaesingle wavelet
packet node would be averaged over larger frequency band resitamaller variances in the
estimates.

Table6.2 summarizes the performance comparison of the WPSE with other techniqube fo
estimation of a partial-band source. The notations +, -;amdicate whether the WP approach
performs favorably, negatively or similar, respectively, in comparisadhémther method.

6-6-2 Single-tone source estimation

With regard to the estimation of single tone source, the performance metritangse

variance of the estimated power spectrum density (PSD),

mean power in stop band,

frequency resolution, and

leakage suppression or power rejection in the unoccupied band (Sidedppression).
The number of samples in these experiments is 12800 while the configuraiigeladf method

used here is the same as in the case of partial band source. The sanht Veswiies as
employed for the study of partial band sources are also employed here.

A. Comparison with Welch and Periodogram methods

Fig. 6.22shows the Periodogram, Welch and WPSE estimates for the single tone. e
the figure, it can be noted that the variance of the WPSE estimates are @artleam that of
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FIGURE 6.22: PSD estimation of single tone source with WPSE, Pegiato and Welch

methods. The number of samples considered in this experism&Ba800. The overlap percent-

age and the length of each segment employed in Welch is 50%4sdmples, respectively.
Hamming window is used in the Welch estimation.

Periodogram. The plots also show that the resolution offered by WPSEté&s Hean that of
Welch. The averaging of estimates in Welch, which results in lower variahpartal band
estimates, is also the reason for the poor frequency resolution in the estiroftimgle tone
source®. On the other hand the periodogram estimates offer a very good freyjuesolution
and side lobe suppression which are comparable to the wavelet basedesstikawever, the
variances in the periodogram estimates remain high.

The results of these studies also exemplify the fact that the wavelet bstsmdtes have char-
acteristics in between that of periodogram (excellent frequency tésolout large stop band
variance) and Welch (low stop band variance but poor frequenojutésn). The WPSE can be
made to operate between the strengths of the Welch (low variance) andqugem (excellent
resolution) estimations without compromising too much on either of these metrics figyyme
increasing/decreasing the levels of decomposition.

B. Comparison with windowed-Periodogram and MTSE techniques

Figs.6.23and 6.24 show the impact of windowing on the reduction of side lobe level of the
Periodogram estimates. Periodogram with Hann, Hamming and Blackman winffewietter
marginally better frequency resolution than WPSE. The MTSE also offgsod frequency
resolution and side lobe rejection.

6Averaging results in smearing of peaks and transitions of the studied data
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FIGURE 6.23: PSD estimation of single tone source with WPSE, Thore9dmSE and Peri-
odogram using Hann window. The number of data samples camesids 12800.
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FIGURE 6.24: PSD estimation of single tone source with WPSE, Pegiain with Hamming
window and Blackman window. The number of samples consitlisr&2800.
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FIGURE 6.25: Periodogram and WPSE (Daubechies 15, Symlet 15, Dedeleyer) for single
tone source. The number of samples in this experiment is@280evel-7 decomposition tree
is used for WPSE.

C. Impact of wavelet families

Figs.6.25and 6.26depict the WPSE estimates with various wavelet families for the estimation
of single tone source. Welch and periodogram estimates have also losfedrto serve as a
reference. As expected, the Discrete Meyer wavelet, having longeldiftgth, performs better
than other wavelet families. However, in terms of frequency resolutiomrtibgonal wavelet
based estimates perform similarly. The performance of biorthogonallstave poor making
them unsuitable candidates.

D. Influence of filter length

Fig. 6.27illustrates the effect of filter length on the performance of the waveletbestamates.
There is no clear correlation between the length of filter and the frequesojution of the
WPSE. However, on account of the variance of estimate in the stop barldamr pattern
emerges - the longer the decomposition filters the smaller the variance of tiee ipaive stop
band.

E. Influence of decomposition level

Fig. 6.28shows the plots for the single tone source estimation with WPSE at differeatrde
position levels. The results show that WPSE structures of higher decdiopdsvels lead to
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FIGURE 6.26: Welch and wavelet based estimates (Coiflet-5, bigdhal 3.9, and reverse

biorthogonal 3.9) for single tone source. The number of dasip this experiment is 12800.

The overlap percentage and the length of each segment eadgloyelch is 50% and 64 sam-

ples, respectively. Hamming window is used in the Welchastiion. A level-7 decomposition
tree is used for WPSE.
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FIGURE 6.27: Wavelet based estimates for single tone source usindpézhies family with
different filter length. A level-7 decomposition tree is dder WPSE. The number of samples
considered is 12800.
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FIGURE 6.28: PSD estimates of single tone source according towsdecomposition level
of frequency selective wavelet. The number of samples gakperiment is 12800.

Estimation Tech{ Mean Power| Variance in| Frequency | Side lobe
nique in stop-band| stop-band resolution

Welch + ~ ++ +
Periodogram ~ ++ ~ ~
Periodogram with| - ++ ~ -
Window

MTSE - + R~ -

TABLE 6.3: Comparison of WPSE performance with other techniquesd$timation of a
single-tone source.The notations +, - anthdicate whether the WP approach performs favor-
ably, negatively or similar in comparison to the other metho

better frequency resolution. However, as the decomposition level isasede(from 5 to 11
in the example shown), the variances of the estimates increase as well. életvizmsed es-
timates tend to approach periodogram estimate for higher order decompdesitds and the
Welch based estimate for lower orders.

Table6.3 summarizes the performance comparison of the WPSE with other techniqube fo
estimation of a single-tone source. The notations +, -;Aanaddicate whether the WP approach
performs favorably, negatively or similar in comparison to the other method.
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FIGURE 6.29: PSD estimates of multi-tone source for different degosition level of

Daubechies-20 together with Periodogram and Welch EstimiElte number of samples con-

sidered is 12800. The overlap percentage and the lengthchfssgment employed in Welch
is 50% and 64 samples, respectively. Hamming window is uséus Welch estimation.

6-6-3 Multi-Tone Source Estimation

A. Comparison with Welch and Periodogram methods

Fig. 6.29 illustrates the Periodogram, Welch and WPSE results for the estimation of multi-
tones sources. The number of samples in these experiments is 12800 whitafigerration

of Welch method used here is the same as in the case of partial band and@megsource.
The performance comparison of the candidate techniques follow trendsrdimtitee estimation

of single tone sources. The performance of orthogonal WPSE is bedteithht of Welch for
frequency resolution and stop band power suppression. The pgraoddas better frequency
resolution compared to WPSE but the variances in the estimates are large.

B. Comparison with windowed-Periodogram and MTSE techniques

Outcomes similar to single tone estimation occur when the WPSE estimation of multi-tone
sources are compared with that of windowed periodogram and MT & figs.6.30and 6.31).
Increasing the level of decomposition improves the frequency resolutioavelet based esti-
mates to the extent that the results are compared with the frequency resoftdiau by win-
dowed periodogram and MTSE. Both the MTSE and the windowed penadogutperform
WPSE for power rejection in the unoccupied bands.
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FIGURE 6.30: PSD estimates of multi-tones source according termifft decomposition level
of Daubechies-20 together with Thomson’s MTSE and Pericatagising Hann window. The
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FIGURE 6.31: PSD estimates of multi-tones source according terifft decomposition level
of Daubechies-20 together with Periodogram using Hammiimgleww and Blackman window.

The number of samples in this experiment is 12800.
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FIGURE 6.32: Wavelet based estimate for multi tones source (Ddbgd 5, Symlet 15 and
Discrete Meyer).

C. Impact of wavelet families

Figs.6.32and 6.33show the WPSE for a multiple tone source with various wavelet families.
As in the estimation of the single tone source, the performance of biorthbgarmalet based
estimate is far worse than the orthogonal wavelet based estimate. ApartHi®, there are

no other palpable differences in the performances of the orthogonaletdased estimates in
terms of frequency resolution.

E. Impact of decomposition levels

Fig. 6.34shows the effect of the decomposition level on the wavelet based PSD testiriiae
results are similar to single tone source, namely the higher the wavelet phda@hposition
level, the more similar the estimates to the periodogram estimates. On the otheloteanchg

the decomposition level makes the WPSE performance similar to that of the Welicticee.

6-6-4 Swept-tone source estimation

The motivation for studying swept tone sources is to understand the abilttyeafandidate
techniques to gauge signals that vary with time. Such an analysis will be pentiyauseful for
testing the applicability of WPSE for Cognitive Radios where the characteristithe signals
studied can vary with time.
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FIGURE 6.33: Wavelet based estimate for multi-tone source (CdflBtorthogonal 3.9, Re-
verse Biorthogonal 3.9).
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FIGURE 6.34: PSD estimates of multi-tones source according t@uardecomposition level

of Daubechies-20. The number of samples in this experinset2800.
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Twenty sweeps are conducted to estimate the swept tone source. Weinlestigate the spec-
tral estimate of the entire 20 sweeps in a single attempt because the resultbwaoldifferent
from the estimation of partial band sources. Instead, we investigate thslsitaof a portion

of single sweep. Five snapshots are taken on a single sweep with egushencorresponding

to 20% of the total sweep period. Each sweep spans from the lowesefregrange(.1f; or
0.27) to the highest({.4 f; or 0.87). The first snapshot corresponds to the left most lobe while
the fifth snapshot corresponds to the right most lobe.

Figs.6.35 6.36 6.37and 6.38 show the periodogram, Welch as well as WPSE estimates
(using different wavelets) for the swept tone source. None of theB\d@&figuration surpasses
the performance of the Welch method. The Welch technique demonstraisigedobe sup-
pression, small variance and a resolution that matches with that of orthloggamelet based
estimates. On the other hand, the performance of orthogonal waveést baimates is quite
comparable with the periodogram in terms of side lobe or stop band poweresgmpn with the
added advantage of smaller variance.

Comparing the performance of different wavelets, it can be obseresd fig. 6.38 that the
performance of bi-orthogonal wavelet is far worse than its orthogooahterparts. Among
the orthogonal wavelets, Discrete Meyer wavelets perform better tham wtvelets, espe-
cially, with respect to the minimization of pass-band variance. Howeventfar metrics like
transition-band and stop-band power suppression, there are npetéamance differences.

Fig. 6.39depicts the effect of filter length on the performance of the WPSE for tilnesgtson
of swept-tone source. For clarity of expression only two Daubechieglets are depicted in
the figure. It can be inferred from the plots that estimation with wavelet-filteianger lengths
(say Daubechies 20) is better both in terms of the variance and stop-bamd puppression.
However, the frequency resolution of the estimates are identical even witrased filter lengths
(compare Daubechies-4 results with Daubechies-20).

Fig. 6.40illustrates the differences in the performance of the WPSE for the estimatgvnepft
tone sources for different levels of signal decomposition. We canrab$eom the plots that
with increasing number of decomposition levels, the fregeuncy resolutioeases. However,
this is also accompanied by large variations in the estimates.

Fig. 6.41shows a 3-dimensional plot of the estimation for 2 sweeps of the swept-aanges
6-6-5 Estimation with limited number of samples
It will be interesting to see how the performances of the candidate teclsnigugpare when the

numbers of data samples available for estimation are limited. Such a study wilttim|zaly
useful when the span time available for radio analysis is limited (e.g. as in ta@tasgnitive
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Legend: Star — Periodogram, Rectangle — Discrete Meyer
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FIGURE 6.35: Periodogram and wavelet based estimate (DaubechiasdlLDiscrete Meyer)
for a single sweep of swept tone source. Five portions oflsisgeep is captured (the most
left lobe is the first 20% of the sweep, the most right lobe ésfifth 20% of the sweep).
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FIGURE 6.36: Welch and wavelet based estimates (Symlet 15 and &megbelective (Length
= 30)) for a single sweep of swept tone source. Five portidisingle sweep are captured (the
most left lobe is the first 20% of the sweep, the most right liskibe fifth 20% of the sweep).
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Legend: Trian gle Periodogram, Dashes Daubechies 20 (11 Ie el decomposto )
Circle — hies 20 (6-level dec sition),
T
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FIGURE 6.37: Periodogram, Welch, Daubechies-15 and Discrete Megsed estimates for a
single sweep of swept tones source. 5 portions are captonest (eft lobe is the first 20% and
most right lobe is the fifth 20% of the sweep).
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FIGURE 6.38: Wavelet based estimate for a single sweep of sweptsomee (Coiflet 5 and
Biorthogonal 3.9). Five portions of single sweep is capli(tbe most left lobe is the first 20%
of the sweep, the most right lobe is the fifth 20% of the sweep).
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Legend: Triangle — Daubechies 4; Circle — Daubechies 20
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FIGURE 6.39: Wavelet based estimate for a single sweep of swept sonece (using

Daubechies family with different filter length). Five pantis of single sweep are captured

(the most left lobe is the first 20% of the sweep, the most righé is the fifth 20% of the
sweep).

Legend: Rectangle => Daubechies 20 (11-level decomposition), Triangle — Daubechies 20 (8-level
decomposition), Circle => Daubechies 20 (5-level decomposition)
10 ;

Power / Frequency (dB/rad/sample)

i B I 1 1Te
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FIGURE 6.40: Wavelet based estimate for a single sweep of swept $onece using

Daubechies family at different levels of decompositionveFportions of single sweep are

captured (the most left lobe is the first 20% of the sweep, tbstmght lobe is the fifth 20% of
the sweep).
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Energy (Joule)

10

Wavelet based spectrum estimation with Daubechies-20 wavelet
for Swept Tone Source
Five Portions of Two Sweeps are illustrated
First Portion — Lowest Frequency
Fifth Portion — Highest Frequency

Normalized Frequency
(x 7 rad/sample)

FIGURE 6.41: Three dimensional plot of energy of spectrum estimasing frequency selec-

tive wavelet (2 sweeps, each of 640 samples).

radio applications). The number of samples used in the experiments is 384.figm WPSE,

the other estimators used are welch and periodogram. The parameterkchfused here are

exactly the same as the ones used in the previous set of experiments, immiagHaindow of

window size is 64 with 50% overlap.

A. Partial band

Figs.6.42and 6.43depict the PSD plots of WPSE along with the periodogram and Welch
estimates for small number of samples. One may observe from the figurestpattbrmances

of all the techniques deteriorates when the number of samples are redimegaring Welch

and WPSE, both perform similarly in the metric of stop-band rejection. This isxpected

lines because the number of samples in each segment for both cases is¢hexamely 64.

However, the variations in the Welch output is larger when the number oflearspreduced

because the estimates are now averaged over 11 segments (instead as 8@%ore). The

periodogram estimates for small number of samples also leaks more into treupigatbands

when compared with the earlier case with 12800 samples. This is also to heexkpice the

size of the window in the case of 384 samples is much smaller leading to moredeakag
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source. The number of samples considered is 384. The ovedagentage and the length
is used for Welch estimation. A level-7 decomposition teeeded for WPSE.

FIGURE 6.43: Welch and WPSE (Coiflet-5, Daubechies-15) estimatioa partial band
of each segment employed in Welch is 50% and 64 samples,ateghe Hamming window
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FIGURE 6.44: Periodogram and WPSE (Symlet 15, and Discrete Meygmaton of single
tone source. The number of samples in this experiment isB8el-7 decomposition tree is
used for WPSE.
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FIGURE 6.45: Welch and WPSE (Coiflet-5, Daubechies-15) estimati@ingle tone source.

The number of samples in this experiment is 384. The overtapegmtage and the length of

each segment employed in Welch is 50% and 64 samples, reghecHamming window is
used for Welch estimation. A level-7 decomposition treesiscufor WPSE.
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FIGURE 6.46: Periodogram and WPSE (Symlet 15, and Discrete Meyématson of a multi-
tone source. The number of samples in this experiment isB8el-7 decomposition tree is
used for WPSE.
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FIGURE6.47: Welch and WPSE (Coiflet-5, Daubechies-15) estimatiemaulti-tones source.

The number of samples in this experiment is 384. The oveeapamtage and the length of each

segment employed in Welch is 50% and 64 samples, respgctivainming window is used in
the Welch estimation. A level-7 decomposition tree is usgdV¥PSE.
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B. Single tone

The plots for the estimation of a single tone source with 384 data samples aidepldn

figs. 6.44and 6.45 From the plots we may observe that the resolution of the estimates is
not affected by a reduction in the number of data samples. However, tlmpgram and
WPSE estimates have a poorer frequency resolution and leak into the oéighbands with

a decreased number of data samples. The Welch estimates, on the othdndwenthe same
side-lobe level as before because the window size of the data segnmeaissé&4 even with the
reduced sample set.

C. Multi-Tone

Figs.6.46and 6.47compare WPSE performance with Welch and Periodogram methods for the
estimation of multi-tone sources when the number of samples is low. For theaasidared,
there seems to be no tangible differences in the performances of the \E&ltlater. On the
other hand, both periodogram and WPSE estimates suffer from higledobigks with a decrease

in the number of data samples.

6-6-6 Enhanced wavelet packet spectrum estimator (E-WPSE)

We now present results of the evaluation of the Enhanced-WaveleePapkctrum Estimator
(E-WPSE) introduced in Section 7.5.

A. Estimation of partial band source

We first evaluate the performance of E-WPSE for the estimation of a paera kource.
Figs.6.48 6.49 6.50and 6.51show the estimation of a partial band source with various tech-
niques. The results are provided in four different figures for eadecharity of depiction. The
figure of merit used to evaluate the various estimation techniques are:

e side lobe suppression,

e variance of the estimated PSD in pass-band and stop-band, and

e transition between pass-band and stop-band (transition band).

The best estimator is the one which has a sharp transition band, goodsédsdjmpression and
Out-Of-Band (OOB) energy reduction, and low stop/pass-band \@&igkll these metrics may
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FIGURE 6.48: Estimation of a partial-band source with E-WPSE abuerWP decomposition
levels. The wavelet used is Daubechies-20.

not be realized at the same instance and the desired features have tieldddraelect the best
system.

In fig. 6.48 the wavelet based PSD estimates are displayed at 3 different decomptesitts
to understand the influence of the iteration level on WPSE performance wabelet used is
Daubechies-20.

In the next three figures (fig6.49 6.50and 6.51) the E-WPSE results are compared with other
approaches.

A.1. Comparison with Welch and periodogram techniques

The Periodogram has a sharp transition band but has a large variatite pass-band (see
fig. 6.49. The Welch averages the estimates and hence the variances are lousdhissalts
in a poor transition band. Of interest are the WP approaches, WPSE-WfISE, which have
significantly lower variance in comparison to the Periodogram. With regaridiétobe levels
and OOB, the performances of the Welch and WPSE approaches mat¢RSE-on the other
hand comfortably outperforms both the Welch and the WPSE by a significagtimiap to 60
dB gains in OOB reduction).
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FIGURE 6.49: Comparison in performance of the estimation of a @laltind source between
E-WPSE, WPSE, periodogram and Welch methods. The waveletsiBedibechies-20.
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FIGURE 6.50: Comparison in performance of the estimation of a @laltitnd source between
E-WPSE, MTSE, periodogram with Hann window and Welch methddee wavelet used is
Daubechies-20.
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FIGURE 6.51: Comparison in performance of the estimation of a glabtand source between
E-WPSE, WPSE, Periodogram (with Hamming and Blackman windoethods. The wavelet
used is Daubechies-20.

A.2. Comparison with Windowed periodogram and MTSE

Applying the window to the periodogram (see figsb0and 6.51) reduces the side lobes in the
estimates but it does not solve the problem of large variances. All théseath windowed-
periodogram have variances much larger than the WPSE estimates. LasMyT 8E estimates
have good frequency resolution but they too suffer from significarigmce.

A.3. Influence of decomposition levels

One may increase or decrease the decomposition levels of the WPSE/E-8yBeHRSs to
achieve the desired variance of the estimated PSD. With a decrease in thedgta decom-
position the variance is marginally improved though it is also accompanied bylbdateease
in frequency resolution. This effect is illustrated in fy48where the estimates for different
levels of decomposition are depicted.

Table6.4 summarizes the performance comparison of the E-WPSE with other technichees
notations +, - and- indicate whether the WP approach performs favorably, negatively or simila
in comparison to the other method. Itis clear from the PSD curves and theftablbe E-WPSE
compares favorably with existing approaches in almost all the perfornmagasures.
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FIGURE 6.52: E-WPSE estimation of a single tone source at differenbohposition levels.
Wavelet applied is Daubechies-20.
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FIGURE 6.53: E-WPSE estimation of a single tone source and its casgramwith Peri-
odogram and Welch results. Wavelet applied is Daubecties-2



Chapter 6 Wavelet packet spectrum estimation

182

|
a
=}
T

Power/Frequency (dB/rad/sample)

—— Periodogram (Hann Window)
Thomson Multi Taper
(MTSE)

Daubechies-20
(9-level decomposition)

—— Daubechies-20 (6-level decomposition)

0 0.1 0.2 03 04

05 0.6 0.7 0.8

Normalized Frequency (x & rad/sample)

FIGURE 6.54: E-WPSE estimation of a single tone source and its casgrawith Thomson’s

MTSE and Periodogram with Hann window. Wavelet applied isiizchies-20.
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FIGURE 6.55: E-WPSE estimation of a single tone source and its casgrawith Peri-
odogram (using Hamming and Blackman windows). Waveletiagj$ Daubechies-20.
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Estimation Tech- Side-lobe Variance in| Transition Variance in
nique suppression | pass-band | band stop band
Welch +++ ~ ++ ~
Periodogram ++ +++ - ++
Periodogram with =~ ++ ~ ++

Window

MTSE - + - +

TABLE 6.4: Comparison of E-WPSE performance with other technidaegstimation of
a partial-band source.The notations +, - andndicate whether the WP approach performs
favorably, negatively or similar in comparison to the othesthod.

B. Single tone source

For the evaluation of single-tone source estimation, the performance meeidse:

mean power in stop band,

variance in stop band,

frequency resolution, and

side lobe suppression.

Figs.6.52 6.53 6.54and 6.55show the PSD estimates for single tone source. The results of
this experiment make it clear that for the evaluation of single tone souree&-WPSE is an
excellent choice.

B.1. Comparison with Welch and periodogram methods

The Welch estimator windows the data, calculates the estimates of the windayveergs and
then averages them to obtain the final estimate. Hence, it smears the detaildaatlcausing
poor frequency resolution (see fi§.53. On the other hand, the periodogram output suffers
from large variations making it difficult to distinguish the actual output frgmrgus noise.

B.2. Comparison with Windowed periodogram and MTSE techniques

MTSE offers good resolution but has large sidelobes (se6.6¢). The windowed periodogram
reduces the sidelobes but at the same time smudges the estimates (8#&4igad 6.55).
Amongst all the methods the E-WPSE offers the best resolution with exgethw side lobes
(almost -250 dB).
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Estimation Tech{ Mean power| Stop-band | Frequency | Side-lobe
nique in stop-band | variance resolution suppression
Welch +++ ++ ++++ +++
Periodogram ++ ++ R~ +++
Periodogram with ++ ++ + +++
Window

MTSE ++ + ~ +++

TABLE 6.5: Comparison of E-WPSE performance with other technidaegstimation of
a single tone source.The notations +, - aadndicate whether the WP approach performs
favorably, negatively or similar in comparison to the othesthod.

B.3. Influence of decomposition levels

As in the case of partial band estimation, higher WP decompositions lead to foeteency
resolution (refer fig6.52).

Table6.5summarizes the comparison of the wavelet packet approach with otheeapps for
single tone estimation.

6-6-7 Impact of padding on E-WPSE estimatation

As mentioned earlier, the implementation of E-WPSE requires the number ofegécamples

to be multiples oR¢ whereC is the number of WP decomposition levels. When this is not the
case, extra bits have to be added either in the form of cyclic prefix opaeiding or symmetrical
padding.

Fig. 6.56illustrates the impact of padding schemes on the E-WPSE performance &stima-

tion of a partial-band source. In this example the number of samples caebided400. Since

this is a multiple of 128 (27), no padding is required for a level-7 decomposition. However,
when the level is increased to 9, padding is necessary to make the nunsbenes a multiple

of 512 (22). Fig.6.56shows that all forms of padding (CP/ZP/SP) lead to a loss in performance
with the OOB level around -40 dB.

However, when a single zero bit is added only in stages where the nurhiogub samples is

odd, the results are encouraging. In fact this approach is found to nmainéaexcellent OOB
energy levels that E-WPSE offers. For a level-9 decomposition, a siegtelit padding is
necessary only at tHi#th decomposition stage since it is only here that the number of samples is
odd.

The impact of padding schemes on the E-WPSE estimates for Multi-tonegsoilhastrated in
fig. 6.57. The pattern that emerges from the results is very similar to that of partidldmamnce
estimation - ZP/SP/CP diminishes E-WPSE performance while single bit additiserpes it.
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FIGURE 6.56: Evaluation of impact of padding on E-WPSE estimatiopastial band source.

No padding is required for level- WP tree, for level-9 tree@Badding (ZP), Cyclic Prefix

(CP) and Symmetric padding (SP) performed before decortipogirocess and single zero bit
added at those stages when the number of samples is odd.

Comparing the two methods of padding, it is clear that adding an additionalbzteonly in
those stages where the input is odd is more profitable than adding the extma aisngle
attempt before the estimation process versus. This is because the sppoyath preserves the
benefits offered by E-WPSE. This difference in performance cantbiively answered. First,
the impact of padding is only experienced in those decomposition stages thieegxtra bit is
added (and not by all levels as is the case in the first approach). Geatamy given level, the
padding process is spread over different wavelet packet inputs mingrtizéninfluence of the
appended samples.
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FIGURE 6.57: Evaluation of impact of padding on E-WPSE estimatiomafti-tone source.

No padding is required for level- WP tree, for level-9 tree@®adding (ZP), Cyclic Prefix

(CP) and Symmetric padding (SP) performed before decoripogirocess and single zero bit
added at those stages when the number of samples is odd.

6-7 Summary

In this chapter, the application of the wavelet packet transform fortepacestimation was
proposed and investigated. Four classes of sources with differ@itrés and characteristics
were used to gauge the operation of the developmental system and the nwese compared
with that of well-known periodogram, windowed-periodogram, Welch aficsi4 methods. The
performance metrics used were variance and frequency resolutioa estimated PSD as well
as side-lobe level in the unoccupied band. We also investigated the impdetafposition
level on the wavelet-based estimates. The studies showed that the piegtissator operated
well for all types of sources and its performances were comparabletiones even better than
existing techniques.



Chapter 7

A wavelet packet transceiver for
spectral analysis and dynamic
spectrum access

A reconfigurable wavelet packet transceiver for spectral anadyslsdynamic spectrum access
is presented. The transceiver consists of a Wavelet Packet Spectral Estimator Y\
a Wavelet Packet Multi-carrier Modulator (WPM) both of which are implemeniging filter
banks. The WPSE estimates the radio environment and identifies spectiesrahd occupied
bands. This information is then used to shape the time-frequency chatcsesf the WPM
transmission waveform in a way that the occupied bands are evadedisTdise by vacat-
ing those sub-carriers which lie in and around the occupied bands. Hi Sub-carriers are
orthogonal wavelet packet (WP) bases derived from a fundam2stiagnnel para-unitary fil-
ter pair which is uniformly iterated to form a tree structure. The WPSE usesatine filter
bank structure as used for WPM data modulation and hence doesn'’t #tilitoplementation
costs. Through computer simulations the operation of the proposed systmanstrated.
The performances are also compared with two other candidate systendsdoaBast Fourier
Transform (FFT) and Orthogonal Frequency Division Multiplexing BDB. The studies show
that WPSE/WPM, in comparison to FFT/OFDM, offers better bit-error-aER) performance
and bandwidth efficiency. This is facilitated by the excellent time-frequéocalization of
wavelet filters which results in better estimation of spectrum and spectriheorent of the

transmission waveform.

Parts of this chapter have been publishedli2d], [126 and [127].
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7-1 Introduction

Advances in wireless technologies have led to a host of new and innewegitigless applica-
tions and services. With each passing day there is demand for more wiretgg®es even
when the popularity of existing applications is on the rise. As a result the dkfoamaluable
resources such as transmission spectrum has far exceeded thebiktyailsdleanwhile, stud-
ies commissioned by international agencies, such as the Federal Commusi€ztimmission
(FCCQC) in the United States, show that large portion of licensed frequearoystremain unused
for most of the time and that the congestion of the spectrum is more due to thesirsauies
of the access techniques than due to non-availability of spectt@g 129. This has sparked
a debate in the telecommunications circles on the need to revamp existing spesgclatory
policies and introduce newer approaches. One such initiative is the ideagoitive Radio, a
new paradigm that promises opportunistic utilization of unused spectrurfficidnt spectrum
management. IN29 Haykin defines Cognitive Radio as “an intelligent wireless communica-
tion system that is cognizant of its environment, learns from it and adaptgetsah states to
statistical variations in the incoming Radio-frequency (RF) stimuli by makinggésin certain
operating parameters in real time with objectives of highly reliable communicatibasever
and wherever needed, and efficient utilization of the radio spectrum.”

Modulation schemes, transmission bandwidth, transmit power, chanriabcaahd carrier fre-
guency are examples of radio/PHY layer parameters that can be adjufdeiitate realization
of cognitive radio. The modulation scheme is chosen in such a way that thesdaansmit-
ted reliably using the least possible spectrum; in another words the modulattbodmaust
be spectrally efficient. Spectral efficiency is influenced by the noisepaolagation condi-
tion. The latter varies with time due to environmental change, hence the modwdatieme
should be able to adapt to the channel propagation variation. It shooldgiport multi-node
communication considering that several nodes can exist in a Cognitive Retavork.

Recently an innovative strategy for efficient access and utilization atspe, called Spectrum
Pooling, has been proposekB[J. Spectrum pooling is a spectrum management principle where
licensed (primary) users put their unused spectrum into a pool frontvgieicondary users can
rent spectrum. In spectrum pooling public access to the spectrum is pdowithout sacrificing
the transmission quality of the actual license users by overlaying new radiesisting ones.
Spectral utilization is optimized by allowing rental (i.e., unlicensed) users tertvihand receive
data over portions of spectra where the primary users (i.e., licensedgspative. This is done
in a way that the rental users (RUs) do not hinder the licensed usert(atmission. In such
a setting LUs are ordinary mobile terminals and their associated base stati@yshtlis do not
possess much intelligence. The RUs, on the other hand, should be capsitesing the radio
environment and optimally utilize the available resource. At the same time, the Rlugls
relinquish control of the resources once the LU begins transmission.
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To implement such radios, multi-carrier Modulation (MCM) techniques like OFMVelbeen
recommended as suitable physical layer candiddi®dg.[ The characteristics of the transmis-
sion waveform can be readily shaped to occupy the time-frequencyaddbpe LU system by
merely activating and vacating the sub-carriers. In addition to this the FFLlmaded for
modulation of information bits can also be used for spectral analysis.

Unfortunately, OFDM for CR is not without problems. A number of shomgws of OFDM

in its application in CR have been noted 89] and [L31]. The problems arise from the fact that
the filters that characterize the OFDM sub-carriers have large sidedabemg significant out-
of-band (OOB) energy leakage and interference to neighboring comatiom systems. While
techniques like windowing have been suggested to overcome this problgnaréhmeffective
as they reduce the bandwidth efficiency further.

In this backdrop, we introduce the wavelet packet modulator (WRN)11] as an alternative
multi-carrier technique for CR applications. The motivation for pursuing W& the promise
of better confinement of spectra and lower out-of-band energy spilldgs ability is due to the
fact that WPM symbols overlap in time resulting in greater localization in frequére signal
energy can hence be better confined without leaking into neighboringsb&uathermore, as
in FFT/OFDM, the WPM receiver structure used for data demodulation isanb& used for
spectrum analysis to detect occupied/free bands at virtually no additosgl

The rest of the chapter is organized as follows. In Section 7.2, a shwetwr of existing multi-
carrier methods for CR is provided. Section 7.3 explains the WPM trarescan the spectrum
analyzer based on wavelet packets. In Section 7.4 the experimentalcesisidered for the
simulation studies is detailed. The results of the experiments are analyzedsandgsed in
Section 7.5. A summary of the study is provided in Section 7.6.

7-2 Multi-carrier methods for Cognitive Radio

7-2-1 FFT based OFDM

OFDM is a natural PHY layer candidate for CR systems given its advantampbsas ease of
implementation, flexibility and elegance in operatitin The short-coming of the OFDM is
primarily due to the large side-lobes of the filters that characterize theasulerc The power
spectrum of a OFDM transmit sign&df’”"PM ( f) can be given as5):

T 2
Nrrr (1+e) 2 ( )
OFDM =327 (f—fm)t
m t J dt| . 7.1
SV = oy | 2o VEnA | e (1)
(1+o¢)7“

The discussion presented here is based6h |
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FIGURE 7.1: Power Spectrum Density of OFDM Carriéf].

HereT,, is the total symbol duration (includes cyclic prefin)t) is the window function used to

shape the signady is the roll-off factor of the windowA,,, is the QAM/PSK mapped information

which modulates the sub-carrig¢f, with an allocated power dP,,. The power spectrum of

individual carriersSO“PM(f) depends on the window function(t) used to shape the sub-
carriers through the following relatio®J]:

SOEDM (Y — A [W(f — fon)|? (7.2)

T Tm

HereW (f) is the transfer function of the window functian(t). For conventional OFDM the
window is a rectangular function. For this case, the power spectrunchfeeariersS M ( f)

becomesj3:
Seman (f) = Amlsine((f — fm)Tu)|” (7.3)
where, _
sinc(z) = sin(rz) (7.4)
T

SinceSPTPM () varies ag(sinc(f))? it introduces large side lobes. In fact the first side lobe

T Tm

for rectangular window occurs at13dB (refer Fig.7.1).

To alleviate this problem windows that taper gently are used (refei7E2j.A commonly used
window is the raised-cosine function, which is defined&g:[
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FIGURE 7.2: Power Spectrum Density of OFDM Carrier with differenbdows B3].

= for 0 < [¢] < Tullza)
we®) ={ g {1 cos [ (111 - B2) ]} for Tl <y < Telfre)
0 Otherwise.

(7.5)

While windows like the raised-cosine function significantly reduce the sideslothey also
increase the symbol duration by a factor(df+ «) hence reducing the bandwidth efficiency.
Therefore, for dynamic spectrum access applications OFDM imparts smmtifoverhead to the
transmission of useful information.

7-2-2 Filter bank multi-carrier methods

There exist in literature several alternative multi-carrier techniques toNDfID CR applica-
tions [131. In [55 a filter-bank modulation technique called Filtered Multi-tone (FMT) is
presented. FMT is similar to Frequency Division Multiplexing (FDM) in the sethat the sub-
carriers do not overlap and guard bands are used between ctrngeevent interference. FMT
is implemented using filter banks with a single prototype filter and it's dual. Thetype filter

is usually a Root Nyquist filterdp]. The inadequacy of this method is in its inefficient use of
bandwidth as the sub-carriers do not overlap.

Another technique suggested is the Staggered Multi-tone (SMT) modulatios.m&kthod is
also known as Offset QAM and is implemented using poly-phase filter b&8ksJnlike FMT,
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the method SMT allows overlap of carriers to maximize spectrum utilization. Thelautizh
scheme used is Offset-QAM where the Quadrature and In-phase centpare separated by a
time-offset of half the symbol interval. Hence the name Staggered Multi-tone.

In [57] Boroujeny presents the Cosine Modulated Multi-tone (CMT) method asabtamulti-
carrier modulation technique for CR applications. CMT is similar to FMT excegititiallows
overlap of adjacent bandST]. Maximization of bandwidth is achieved by using vestigial side-
band modulation.

We shall see in the next section that the WPSE/WPM method presented in thisrcisaalso
suitable for DSA.

In the WPM technique the filter banks perform the dual role of shapingpgbetisim as well as
interpolating in time series.lB6p] the two processes are separated to have a greater control over
the characteristics of the carriers. This method, called the InterpolatedOrteogonal Mul-
tiplexing (ITOM), was introduced ind5] by fred haris. In ITOM, shaping of the transmission
waveform spectra is performed external to the wavelet packet trestgteu Notching over the
desired spectral interval is achieved by vacating one or more of thelbnauthes.

7-3 Wavelet packet transceiver for spectral analysis and dynamic
spectrum access

The main elements of the proposed CR system are the WPSE spectral ghVelpketransceiver
and the spectrum vector manipulator. Fig3 depicts the blocks of the proposed system. The
two main tasks of the proposed system are -

e spectrum analysis of radio environment to gather data on spectrum mulescaupied
bands, and

e adaptive data transmission on idle bands through wavelet packet modulation

At the transmitting end, an incoming high-rate serial data stream is spliNipptg ,; lower-rate
parallel streams. The data in each parallel branch is then up-sampl&@ /by, and used to
modulate Ny pys sub-carriers. Meanwhile, the WPSE evaluates the channel and rperéor
radio scene analysis to estimate LU frequency bands and detect spéciesn Based on the
spectrum estimates, the cognitive modules dynamically de-activate thosianibels of the
WPM system that lie in and around the spectrum of the LU. The idea is to dyaliyréculpt
the transmission signal in a way it has no or very little time-frequency comp®gempeting
with the LU. This way the CR can seamlessly co-exist with the LU. The sutecaiare then
modulated and scaled to the desired energy level to obtain the WPM transnsigsiah
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FIGURE 7.3: The proposed WPSE/WPM-based transceiver. The traesmitte contains the

inverse discrete wavelet packet transformer (IDWPT) usetet@lop multi-carrier modulated

signals. The receiver side consists of the discrete wapealeket transformer (DWPT) used

for spectrum estimation and multi-carrier data demodoiratiDWPT and DWPT are realized

using filter bank analysisH’ andG’ are the low and high pass synthesis filters wheiéas

and G are the low and high pass analysis filters. Down and Up arrefes to down and
up-sampling, respectively.
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FIGURE 7.4: Wavelet Packed based Transmultiplexer.

7-3-1 Wavelet packet multi-carrier modulation (WPM)

WPM is implemented with orthogonal wavelet packet bases derived froml@&nesolution
analysis (MRA) [[]. The procedure uses a pair of Quadrature Mirror Filters (QMF) which
consists of a half-band high and low pass filter duo (represented byrtitse responsesgn|
andg[n|. Furthermore, they also have adjoints or dudi§+{], ¢'[n]} which are their complex
conjugate time-inversed versions.

The pair {'[n], ¢'[n]} is called the analysis filter-pair and is used to generate the wavelet packet
carriers for modulation of data at the transmitter end. On the other handrtitgration {:.[n],

g[n]} is called the synthesis filter-pair and is used to derive the wavelet paekger duals

for demodulation of data at the receiver end. The processes areetefe as inverse discrete
wavelet packet transformation (IDWPT) at the transmitter and discreteletgvacket transfor-
mation (DWPT) at the receiver, analogous to the inverse discrete Fduaiesform (IDFT) and

the DFT, respectively,in OFDM systemB]]. Such systems are used for applications as varied
as compression techniques in image/speech processing to transcsigeride&eommunication
theory.

7-3-2 Wavelet packet spectrum estimator (WPSE)

Spectrum sensing is an important functionality of Cognitive Radio (CR)utszxy and speed of
estimation are the key indicators to select the appropriate spectrum sem$ingjtee. Conven-
tional spectrum estimation techniques which are based on Fourier Tman@fd) suffer from
familiar problems such as low frequency resolution, high variance of estipateer spectrum
and high side lobes/leakages. Methods such as multi-taper spectrum estisuati@ssfully
alleviate these deficiencies but exact a high price in terms of complexity.

In this backdrop we present the WPSE as a promising spectral analyisiS\toite the DWPT
structure can be used for spectrum analysis the frequency informatimt isadily available.
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FIGURE 7.5: Wavelet Packet decomposition and ordering of the decged components in
gray code order.

This is because the DWPT output is in the wavelet (time-scale) domain and basrapped
into appropriate frequency bins. Furthermore, the wavelet packets@eesd as a binary Gray
code sequence and not by increasing order of frequencies. Thieexplained as follows - the
output of any 2-channel analysis is the result of low/high-pass filterithgied by decimation
by 2. Decimation generates two new filter outputs with half the number of elemahtaases a
form of aliasing calledand-shufflingvhere the high-pass components are mirrofddi [When
the WP algorithm is applied recursively, the frequency ordering of theltent WPs follows
the Gray code orderR3. Fig. 7.5illustrates this. The first step in the translation is therefore
a Gray to Binary code conversion to re-order the WP indices. After thiB8i2 of the studied
signal is obtained for each frequency bin from the energy containestimwavelet packet node
(details in Chapter-6).

7-3-3 ldentification of spectrum holes and waveform shaping

The information on the radio environment obtained from the spectrum asayken processed
to identify spectrum holes and occupied bands. This is carried on asubHy-sub-band basis
where the power contained in each WP sub-band is independently cahtpareredetermined
threshold. When the threshold exceeds the power of a sub-band theeliceser is declared to
be present and if it is less than the threshold, the band is considered &udat and available
for use. This information is used to shape the WPM spectrum.

The information about estimated PSD is passed to the carrier de-activatcidaotaining a
threshold and spectrum vector manipulation block (see FR&). The threshold block decides
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whether a particular band is occupied or not based on a defined tlde®oen the power in a
certain band is below the threshold value, the band is declared being @bl€usThe band is
declared OFF (unusable) when the detected power is above the threShelthreshold block
produces a spectrum vector containing binary values 1 and 0 cordisgdn the ON and OFF
status, respectively.

Due to spectral spill-over it is also possible that the frequency bandseadjto the band of
consideration have a power above the threshold. Therefore, orosaekions it is necessary
to de-activate carriers adjacent to the band of interest. For this purfh@sspectrum vector
manipulation block is added to customize the spectrum vector. This block issdddamodify
the format of the spectrum vector if the decompaosition level in the receidgffésent from the
reconstruction level in the transmitter.

The spectrum vector determines whether a particular sub-carrier shewloined on or not. It
is fed to the Inverse Discrete Wavelet Packet Transform (IDWPT Klitothe transmitter where
the requisite carriers are chosen. Based on the spectrum vector, tinarSRiitter dynamically
vacates the sub-carriers of the WPM system lying in and around theieddugquency band.
This is analogous to shaping the spectrum of the CR signal so that timeefregaomponents
competing with LU are eliminated.

7-4  Simulation setup

7-4-1 System parameters

In this work a WPM based CR system with 128 equally spaced carriers etdtiiom a uniform
level-7 decomposition of QMF is considered. The same tree structure issdddar spectrum
analysis. Quadrature Phase Shift Keying (QPSK) is used as the modulettieme while the
choice of wavelet is a family of Frequency Selective filter barlk3?]. These wavelets have
narrow transition bands and are characterized by the parametergitggntiex (K-regularity)
K, length of filter L, and transition band3;. In this work, these parameters are taken to be
K, =19,L; = 50 and B; = 0.27. We shall explain these classes of filters in more detail in
Chapter 8. The LU is taken to be a partial band source whose bandwidthrigeger multiple

of the WPM sub-channel band. Talel summarizes the simulation parameters.

7-4-2 Comparison with Periodogram/Welch-OFDM systems

To evaluate the operation of the WPSE/WPM system the performancesmapai@ with two
OFDM configurations employing Periodogram and Welch modules, resplgtior spectrum
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System parameters WPM based CR OFDM based CR
Number of sub-carriers | 128 (7-level uniform WP de; 128
composition)
Licensed  user/interferr OFDM based system of dif- OFDM based system of dift
ence source ferent bands ferent bands
Sub-carrier spacing of Sub-carrier spacing Sub-carrier spacing equal
licensed userfinterfering A} "M~ equal to that off A?"PM =M to of the LU,
sourceA the LU, i.e. AWPM-CR « | je AQFPM-CR o ALU
AR
Number of multi-carrier] 100 100
symbols per Frame
Modulation QPSK QPSK
Channel AWGN AWGN
Oversampling Factor 1 1
Channel/source coding | None None
Guard Band None None
Filter characteristics Maximally frequency select Not Applicable
tive Lf = 50,K, =
19, By = 0.2
Time/Phase/Frequency | O 0
Offset
Active Source -2.1dB -2.1dB
Threshold to determing-7dB -7dB
presence/absence ol
source

TABLE 7.1: Simulation parameters.

estimation. In the Welch method the estimate is obtained by dividing the samples inbeel00
lapping segments (50% overlap, Hamming window) each of 64 samples. Tpenodogram

of each segment is calculated and averaged to obtain the true estimai&6Bigpws the blocks
of he Periodogram (or Welch) - OFDM based CR transceiver.

The Periodogram/Welch estimator analyses the radio environment ang pasaérmation on
the frequency content of the received signals to the threshold block.thFeshold operation
is performed on every sub-band and decision on occupied/free madsoded in a spectrum
vector containing ones and zeros. This vector is then used to activatethe OFDM carriers
to shape the spectrum of the transmitted signal.

7-4-3 Sources and their characteristics

In order to investigate the performance of the WPSE/WPM system fouretiffeypes of sources
are considered, namely, partial-band, single-tone, multi-tones and soveptThe partial-band
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FIGURE 7.6: CR Transceiver based on Periodogram Family Spectruim&sr and OFDM.

source has its energy spread over a continuous range of fregsieimdieis work we have consid-
ered four different kinds of partial band sources, namely, singhetbiaiple-band, quandruple-
band and quintuple-band, as presented in FigA,Fig. 7.7-B,Fig. 7.7-C and Fig.7.7-D, re-
spectively. The single tone source (refer Figure Fig-E) has all of its energy at one frequency
and is taken to be in the middle of the range(&tr) spanned by the WPSE. The multi-tones
source (refer Fig7.7-F) consists of seven single tone sources located at normalized flgquen
from 0.1257 to 0.8757 and they are equally spaced.

Finally, a swept tone source (refer Chapter 6, id.4) is used to test how well the candidate
schemes perform when there are temporal variations in the occupiegfreg The swept-tone
source is a chirp signal in which the frequency increaapschirp) with time. After a sweep of
incremental chirps the signal winds back to the original frequency towsitdrthe next sweep
cycle.

The test sources are so chosen that they shed different insights injodietion of the candidate
systems.

7-4-4 Experiment scenarios

The experiments are divided into two broad categories. In the first setilietaken to occupy
fixed bands of contiguous frequencies. The evaluation of the testesoufour kinds of partial-
band, single-tone, multi-tone and swept-tone - come under this categahe second set the
normalized frequency rangé, 7| is divided into 128 equal bands (or frequency bins) and the
LU is randomly activated and de-activated over a finite set of bins. Thehayacteristics in
the two experiments are listed in tablé® and7.3, respectively. An active source is taken to
operate at-2.1dB level. In experiment 1 the threshold to evaluate thexpe¢absence of the LU

is set to -7dB. This threshold was found after a series of empirical di@hsaln experiment 2,
this threshold is varied between -3dB and -7dB.

Partial-band LUs are modeled using an OFDM setup. OFDM is the most pdpualarology
for wide-band digital communication. Hence, the LU is modeled on OFDM in spiteedfact
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FIGURE 7.7: Sources and their characteristics. The sources amesicgre: (A) Partial band,
(B) Triple partial band, (C) Quadruple partial band, (D) Quple partial band, (E) Single-tone
and (F) Muiltiple tone.

that OFDM has poor spectral confinement properties. The bandwidtiedfU is adjusted by
activating and vacating the requisite number of its sub-carriers. Theauier spacing of each
LU carrier A%V is taken to be the same as that of the WPM based™R™~“" as well as

that of the OFDM based CR?"PM~C# candidates.

The WPSE-WPM operation is also compared with Periodogram-OFDM andhV@&H®OM con-
figurations. All three systems operate under the same conditions.

Since the focus of this work is on the demonstration of WPM/WPSE as a PHY dayeidate
for dynamic spectrum access, we have made the practical assumptiootthétd transmitter
and receiver are at all times aware of the details of the active/vacatiéersaAlternatively, the
systems could also operate under a collective spectrum pooling retj8fe [

7-5 Results and analysis

7-5-1 Characteristics of OFDM and WPM sub-channels

Before presenting the results we first revisit the point on WPM being sethpansform and
its attendant benefits. The waveforms used in WPM are longer than théotrarduration of
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FIGURE 7.8: Spectrum of WPM and OFDM sub-carriers. For ease of depithe 2nd, 4th
and 6th sub-carriers alone of a 8-carriers system are shown.

one symbol and the symbols overlap in time. For a filter of lergttthe overall symbol length
L gym With Ny pjs carriers can be shown to beq:

Loym = (Ly —1)(Nwpy — 1) +1 (7.6)

Longer waveforms allow for better frequency localization of the subierar This is illustrated

in fig. 7.8, where the spectrum of the carriers of WPM and OFDM are plotted. Faitycla
of depiction only the2nd, 4th and6th sub-carriers of an 8-carrier system have been shown.
Clearly the side lobes of the WPM sub-carriers are much lower than that @FHDM system.

7-5-2 Comparison of efficiency of spectrum estimators

The first task of the Cognitive radios is to evaluate the spectrum to identifiyWheharacter-
istics. Table7.4 lists the number of LU carriers that actually coincide with the CR versus the
number of carrier removals recommended by various estimation techniqurese different
kinds of LU characteristics are considered, namely, partial band, trgpteapband and quintu-
ple partial band. Itis clear from the tabulated values that the WPSE methadnsoit efficient

in identifying the right number of CR carriers that coincide with the LU for akkes. The Pe-
riodogram estimator also gives good estimates. However, the Welch estimgg@sss a larger
number of CR sub-carriers operating in LU-bands than is actually the(Eakse alarm).
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Type of sources

Description

Partial band

Consists of a partial band source occupying
normalized frequency rang6.375, 0.6257]. (See
Fig. 7.7-A)

the

Triple Partial band

the normalized frequency rangef, 0.2188x],
[0.40637, 0.59387] and [0.8125, 7], respectively.
(See Fig.7.7-B)

Consists of a 3 Partial Band LU occupying

Quadruple Partial Ban

the normalized frequency range$0,0.1257],
[0.28137,0.43757],  [0.56257,0.71887]  and
[0.8438, 7], respectively. (See Fig..7-C)

J Consists of a 4 Partial Band LU occupying

Quintuple Partial Band

Consists of a 5 Partial Band LU occupying norm
ized frequency: [0,0.10947],[0.21887,0.32817],
[0.43757,0.54697],

[0.65637,0.76567],[0.8757, w|.  (See Fig. 7.7-
D)

=8
1

of 20 sweeps (each of 640 samples) covering
frequency band of0.27, 0.87] is considered. (Se
Chapter 6, Fig6.149

Single tone A single tone at normalized frequenfysw. (See
Fig. 7.7-E)

Multi-tone Consists of 7 single tones occupying the normal-
ized frequencies occuring @il 257, 0.257, 0.375,
0.57, 0.6257, 0.75m and0.8757. (See Fig7.7-F)

Swept tone Consists of a source which occupies different fre-

guency bands at different time instances. A tqtal

the

11

TABLE 7.2: Description of Licensed Users used in experiment 1.

Types of scenario| Description

Scenario A

64 sources are randomly activated and
de-activated over 128 frequency bins
and each source occupies 2 frequency
bins.

Scenario B

32 sources are randomly activated and
de-activated over 128 frequency bins
and each source occupies 4 frequency
bins.

Scenario C

16 sources are randomly activated and
de-activated over 128 frequency bins
and each source occupies 8 frequency
bins.

TABLE 7.3: Description of the licensed users used in experiment 2.
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S Number of LU carriers | Recommended number of CR carrier removals
ource types o : .
co-inciding with CR Periodogram Welch | WPSE
Partial Band | 32 33 36 32
Triple 76 77 84 76
Quadruple | 76 79 87 76
Quintuple 72 76 83 72

TABLE 7.4: Actual number of LU carriers versus the number of caremovals recommended
by various estimation techniques.
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FIGURE 7.9: Plots of spectrum adaptation (Partial Band LU case)edbasn Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only thosgerarcorrespond-
ing to frequency bands with LU energy above the thresholdleractivated.

7-5-3 Evaluation of different sources

A. Partial band source

Fig. 7.9shows the Power Spectral Density (PSD) plots of the enabled bandstbféleeCR con-
figurations considered, namely, Periodogram/OFDM, Welch/OFDM andBEX&BM. The CR
carriers coinciding with LU bands have been de-activated. The figsmeshows the spectrum of
the partial band LU. The plots clearly demonstrate the advantages of {hesgWPSE/WPM
based CR system, in relation to the OFDM systems, in offering sharper@pesiiaping, better
out-of-band (OOB) energy rejection and significantly lower interfeeeiocthe LU. In fact the
results show that the OOB rejection in WPSE/WPM is at least 40dB greatetttibaim the
OFDM based systems.
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FIGURE 7.10: BER Performance of WPSE-WPM based CR system for Padiadl BU case.
(a) Comparison with Periodogram-OFDM based CR system, (@hgarison with Welch-
OFDM based CR system.

In fig. 7.10(a) the BERs of the WPSE/WPM CR system and Periodogram/OFDM CR system
are compared. In figf.10(b)the BERs of the WPSE/WPM CR system and Welch/OFDM CR
system are shown. The plots show that the WPSE/WPM system betters theraerces of

the Periodogram/OFDM system. When additional carriers abutting the sidas aU (like

an adaptive guard band) are removed the interference energy trbduen further. As more

and more carriers adjacent to LU are vacated, the performance of tis&EMWHRPM CR system

converges faster than the Periodogram/OFDM CR system towards thettbablimit (no in-

terference case). There is therefore a trade-off between the ldesiegection of interference
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FIGURE 7.11: Plots of spectrum adaptation (Triple-Partial Band ta$e) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only thosgerarcorrespond-
ing to frequency bands with LU energy above the thresholdleractivated.

and bandwidth utilization. When more number of carriers are removed tcegd@B energy,

the bandwidth (and hence the throughput) is sacrificed. The best teehsitherefore the one
which gives good BER and OOB reduction for the lowest number of caeaovals possible.
Clearly the results point towards WPSE/WPM.

Three other LU cases, with triple, quadruple and quintuple partial batdrs, are investigated
next. The PSD plot for the triple band LU are shown in figl1while the BER curves are de-
picted in figs.7.12(a)and 7.12(b) The corresponding PSD plots for the quadruple partial band
LU are available in fig7.13while the respective BER plots are provided in figsl4(a)and
7.14(b) The plots for Quintuple sources are available in figd5 7.16(a)and 7.16(b) The
trends in the results are similar to that seen in the evaluation of the Partial Rard tompar-
ison to OFDM, the WPM signal rejects OOB energy much better with lower imtavée to the

LU (see figs.7.11, 7.13and 7.195. In fact the OOB power is at about -55 dB which is 40dB
lower than in Periodogram (or Welch)/OFDM systems. Furthermore, theffiermances are
also good (see figg.12(a) 7.12(b) 7.14(a) 7.14(b) 7.16(a)and 7.16(b).

Carrier removal and reduction of interference

We now present results on the interference caused by candidate @/sys the LU and the
impact of removing carriers in-and-around the CR bands. An interderencaused because
the sub-carriers of the multi-carrier based CR system spills into neighbloainds resulting in
out-of-Band energy. One method suggested to minimize the interferencecimtve carriers
of CR adjacent to the LU13(.
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FIGURE 7.12: BER Performance of WPSE-WPM based CR system for TriptaaP Band
LU case. (a) Comparison with Periodogram-OFDM based CResystb) Comparison with
Welch-OFDM based CR system.

Figs.7.17, 7.18 7.19and 7.20depict the plots for the interference caused by the candidate
CR systems for the four partial band LUs considered in this work. Theeggalso show as to
how the removal of different number of carriers in and around the LWialles the problem of
mutual interference. More the number of carriers removed, lower thdereece. However, a
price is pain in the form of inefficient spectral utilization. It is therefore int@otr that only the
right number of sub-carriers is removed.

Comparing the different candidate CR systems, it is clear from the resulthéh&/PSE/WPM
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FIGURE 7.13: Plots of spectrum adaptation (Quadruple-PartiadBdu case) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only thosdgearcorrespond-
ing to frequency bands with LU energy above the thresholdieractivated.

based system comfortably outperforms the other two systems - Periodogtiv/énd Welch/OFDM
in guarantying better interference suppression. In fact, for the pbaial case the WPSE/WPM
system ensures up to 45 dB lower interference than the other two systertierfore, the in-
terference values with carrier removals taper much faster in WPSE/WPNhtRaniodogram/OFDM
or Welch WPSE. These results are consistent for all four LU sources.

B. Multi-tone source

Fig. 7.21shows the WPSE estimates of the multi-tone LU and the spectrum shaped CR. In th
figure only those CR carriers that coincide with LU are de-activated fifjbee shows how well

the adapted CR’s signal operates in the nulls of the LU signal. This is ssndwamno additional
carriers apart from those that coincide with the LU bands are de-teddivdhe corresponding
BER performance curves are plotted in fig22 The PSD and BER curves clearly show the
advantages of spectrum shaping. Interestingly, unlike the case of i@ pand source, it is
enough to vacate only those CR carriers (totaling 14) that co-exist withlhi® lobtain good
performances. This implies that no additional carriers adjacent to the etatipg band have

to be de-activated.

C. Single-tone source

Fig. 7.23depicts the wavelet packet based estimate of a single tone LU along with dieuspe
adapted CR. The results obtained are similar to those of the multi-tone LU. IA.2¢the
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FIGURE 7.14: BER Performance of WPSE-WPM based CR system for QuaiRagttial
Band LU case. (a) Comparison with Periodogram-OFDM basesyd®em, (b) Comparison
with Welch-OFDM based CR system.

BER performance of various CR configurations are shown. From7ig8.and .7.24 it can
be deduced that the wavelet-based spectrum shaping approactmeviell for single tone
sources. Indeed unlike the partial band case there is no need fatidatian of additional

carriers.
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FIGURE 7.15: Plots of spectrum adaptation (Quintuple-PartialdBad case) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only thosgearcorrespond-
ing to frequency bands with LU energy above the thresholdleractivated.

D. Swept-tone source

We now present results for the study with swept tone LU. In the experifmgatigp considered
each sweep spans five chirps (or frequency increments). To estimasevéipe tone LU, 20
sweeps in the normalized frequency bangir - 0.87 are considered. Each sweep consists of
640 data samples resulting in a total of 12800 samples for 20 sweeps. ddirugp estimation
module takes a shapshot (or sub-sweep) containing 128 samplespoodiry to 20% of a
single sweep. Hence, five snapshots of a single sweep are availabésl ®aeach 128-samples
snapshot, spectrum vector generator has to determine the carriers tmée off so that the
WPM signal can be adapted accordingly.

Fig. 7.25(a)depicts the LU and CR PSD curve. In this figure, only the PSD of the fourth a
the fifth sub-sweeps of LU signal are displayed together with the camelipg adapted CR
PSD. It should also be noted that only the carriers that coincide with Ldexactivated in this
figure. If the interference between the LU and CR signals needs to beeggdit is possible to
additionally de-activate the carriers adjacent to the band occupied blyigl¥.25(b)illustrates
the effect of de-activation of four additional carriers that are adjattethe LU band. And in
fig. 7.26the BER performance of WPM based CR system is plotted.

7-5-4 Evaluation of efficiency of spectral utilization

We now present the results of the second set of experiments. In thesanegnts the bands
occupied by the LU varies with time. Fig.27shows a snapshot of the LU characteristics over
three different time periods. The details of the sources are providedole Tdl. The aim of
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FIGURE 7.16: BER Performance of WPSE-WPM based CR system for Querieattial Band
LU case. (a) Comparison with Periodogram-OFDM based CResystb) Comparison with
Welch-OFDM based CR system.

these experiments is to compare and contrast as to how accurately the aR@onfigurations
map the LU characteristics and how efficiently the spectrum is utilized. Theefigfumerit
considered is the redundancy factgsy which is defined as the difference between the number
of CR carriers removeg.movea @nd those which actually coincide with the lzjhincide.

Tlred = Mremoved — Mcoincide (77)
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FIGURE 7.17: Interference caused by the CR on the LU (Partial Bandcg).
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FIGURE 7.18: Interference caused by the CR on the LU (Triple-PaB&ad source).

A positive value ofn,.q indicates that more carriers are removed than essential and hence the
spectrum is not efficiently utilized. On the other, a negativg implies that a lower number of
carriers than necessary have been removed, hence the chandesfefiimg with LU transmis-

sion is high. Therefore, the best method is the one which yields a redeyntiantors,..q close

to zero i.e. only the necessary carriers are removed.
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FIGURE 7.19: Interference caused by the CR on the LU (QuadruplgaPBand source).

Interference caused by CR on LU
T T T

=ill- Periodogram/OFDM
Welch/OFDM
WPSE/WPM)

-20

| | |

w w n

3] 3,1
T

Power / Frequency (dB / rad/sample)
IN

o

T

_50 i i i
0 2 4 5 6 7 8

3
Number of CR Carriers Removed Adjacent to Each LU

FIGURE 7.20: Interference caused by the CR on the LU (Quintupl¢id?&and source).
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FIGURE 7.21: Spectrum adaptation of WPSE/WPM system co-existing avinulti-tone LU.
Only those carriers that correspond to the frequency bahdiseoLU are de-activatedl{
carriers). The wavelet decomposition filters used here hdgagth of50, a K-regularity index

of 7 and a transition band df.2x. A 11-level WP decomposition tree is used for spectrum
estimation.
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FIGURE 7.22: Performance of wavelet packet-based CR co-existitiganmulti-tone licensed

user. The wavelet decomposition filters used here have ahlei¢0, a K-regularity index

of 7 and a transition band df.2x. A 11-level WP decomposition tree is used for spectrum
estimation.
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FIGURE 7.23: Spectrum adaptation of WPSE/WPM system co-existing wisingle-tone

LU. Only those carriers that correspond to the frequencylbarf the LU are de-activated4

carriers). The wavelet decomposition filters used here hdgegth of50, a K-regularity index

of 7 and a transition band df.2x. A 11-level WP decomposition tree is used for spectrum
estimation.
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FIGURE 7.24: Performance of wavelet packet-based CR co-existitigassingle-tone licensed

user. The wavelet decomposition filters used here have d@hleig0, a K-regularity index

of 7 and a transition band df.2x. A 11-level WP decomposition tree is used for spectrum
estimation.
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FIGURE 7.25: PSD of adapted CR source for a swept tone LU with sulegwsee of 128

samples. In this case, every single sweep contains 5 suépswand only the 4th and 5th

sub-sweeps are displayed. The wavelet decompositiorsfiltlsed here have length &6, K-

regularity index of7 and transition band di.2x. The 7-level wavelet decomposition is used

in spectrum estimation module. (a) Only carriers corredponthe bands with energy above

threshold are de-activated. (b) Two bands in the left andidamds in the right side of bands
having energy above threshold are also de-activated.
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FIGURE 7.26: Performance of wavelet based spectrum estimatiospacirum adaptation in

WPMCM CR system for swept tone LU case with sub-sweep siz@®samples. The wavelet

decomposition filters used here have lengtth@fK-regularity index of7 and transition band
of 0.27. The 7-level wavelet decomposition is used in spectrunmegion module.
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Table 7.5 shows the redundancy in the de-activated carriers for the three G&rsy/$or the
case when the normalized frequency ram@er] is split into 128 equal frequency bins and
64 LU sources (each occupying 2 adjacent frequency bins) ademay activated or vacated.
Three thresholds -3, -5 and -7dB are considered. From the tableseittigeclear that the
Welch/OFDM pair de-activates more carriers than needed while the PgrasddOFDM com-
bination de-activates less than needed. For example, when the thresiebid ket to -7dB, the
Welch/OFDM system de-activates around 35 sub-carriers more thaededs a result, this

W UL U

Normahzed Frequency (xm rad/sample

|

&

3
T

3
8
T

Power / Frequency (dB / rad/sample)
g2
| G
Il Il Il

06 0.8 12 14
Normalized Frequency (x & rad/sample)

FIGURE 7.27: PSD of the LU over three different frame periods.

Types of CR Sys-| Threshold BER (at | Redundancy in Average Num-
tems SNR =8dB) | bers of De-activated Carriers
Periodogram- -3dB 0.1588 -52.2488

OFDM

Periodogram- -5dB 0.0445 -0.5491

OFDM

Periodogram- -7dB 0.0574 0.0000

OFDM

Welch-OFDM -3dB 0.1616 -44.7847

Welch-OFDM -5dB 0.0955 0.5300

Welch-OFDM -7dB 0.0056 34.9094

WPSE-WPM -3dB 0.0779 -17.6369

WPSE-WPM -5dB 0.0259 -0.1428

WPSE-WPM -7dB 0.0167 2.4944

TABLE 7.5: lllustration of redundancy in number of vacated casrfer the three CR systems

(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the pneseof randomly ac-

tivated 64 LU signals occupying 128 frequency bins in thenmadized frequency rangé, «].

Each source occupies 2 frequency bins. A positive valueHferredundancy factor implies

that the CR system has vacated more sub-carriers than néadkezl alarm) and a negative

value indicates that the CR system has vacated a lower nuofilseb-carriers than necessary
(miss-detection).
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Types of CR Sys-| Threshold BER (at | Redundancy in Average Num-
tems SNR =8dB) | bers of de-activated carriers
Periodogram- -3dB 0.1476 -51.9472

OFDM

Periodogram- -5dB 0.0233 -0.4981

OFDM

Periodogram- -7 dB 0.0224 0.0000

OFDM

Welch-OFDM -3dB 0.0871 -28.5088

Welch-OFDM -5dB 0.0321 0.2359

Welch-OFDM -7dB 0.0020 24.0451

WPSE-WPM -3dB 0.0823 -15.8528

WPSE-WPM -5dB 0.0224 -0.1506

WPSE-WPM -7dB 0.0193 2.4891

TABLE 7.6: lllustration of redundancy in number of vacated casrfer the three CR systems
(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the pnegeof randomly ac-
tivated 32 LU signals occupying 128 frequency bins in themadized frequency rande, .
Each source occupies 4 frequency bins. A positive valuehreédundancy factor means that
the CR system has vacated more sub-carriers than needsel §farm) and a negative value
means that the CR system has vacated a lower number of stiérgdhan necessary (miss-

detection).
Types of CR Sys-| Threshold BER(at Redundancy in Average num-
tems SNR =8dB) | bers of de-activated carriers
Periodogram- -3dB 0.1533 -51.8838
OFDM
Periodogram- -5dB 0.0242 -0.4988
OFDM
Periodogram- -7dB 0.0169 0.0000
OFDM
Welch-OFDM -3dB 0.0524 -12.6600
Welch-OFDM -5dB 0.0075 0.1881
Welch-OFDM -7dB 0.0012 9.0328
WPSE-WPMCM | -3dB 0.0632 -13.6359
WPSE-WPMCM | -5dB 0.0189 -0.1334
WPSE-WPMCM | -7 dB 0.0098 2.4288

TABLE 7.7: lllustration of redundancy in number of vacated casrfer the three CR systems

(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the pneseof randomly ac-

tivated 16 LU signals occupying 128 frequency bins in thenradized frequency range, «].

Each source occupies 8 frequency bins. A positive valuehrédundancy factor means that

the CR system has vacated more sub-carriers than needgel §farm) and a negative value

means that the CR system has vacated a lower number of stikredhan necessary (miss-
detection).
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system wastes bandwidth which is precious. On the other hand, the Rgaod®FDM com-
bination de-activates about 50 carriers (case when threshold is Sei8pless than necessary.
This indicates that this method does not shape the CR spectra adequatelyPBE/WPM pair
performs efficiently for all the scenarios with the redundancy factorgoeliose to zero with a
low BER.

Another important observation one can make is the impact of the threshokdussd to evaluate
the presence or absence of a LU. When the threshold is set to a low salpe7@dB), more

number of carriers is removed than necessary. This may reduce the mtavi@rence between
the CR and LU and hence improve the BER. But also has the negative @ffgmorer spectral
utilization. On the other hand, when the threshold is set to a high value @8y, {8wer number

of carriers are removed than required. This means that the mutual ieteréebetween the LU
and CR is not completely eliminated.

In table7.6the case when 32 sources (each occupying 4 frequency binsha@mly activated
and de-activated are listed. And in talier the case where 16 sources (each occupying 8
frequency bins) are randomly activated and de-activated is illustratée pattern in these
results also follows the one described earlier and the WPSE/WPM emertestaest choice.

7-6 Summary

In this chapter, a wavelet packet based CR transceiver with specstumaéon capabilities was
presented. The sub-carriers are orthogonal wavelet packet Hasged from a tree structure
consisting of fundamental para-unitary 2-channel filter pairs. The EViis®s the same filter
bank structure as used for the data modulation and hence is implementeddalittanal cost.
The co-existence of the CR station with LU is enabled by dynamically activatimgaating
the CR sub-carriers to occupy the time-frequency gaps of the LU. Theadaantage of using
wavelet packets for CR is in its property of allowing the symbols to overlap in tintieout
loosing its orthogonality. This results in greater localization of the waveldtgtazarriers in
frequency. This implies that the transmitted signal can be better shapeaminted without
leaking into neighboring bands.

Through simulation studies the benefits of the proposed system were desteuhs The per-
formances were also compared with existing systems based on FFT and .OFeMtudies
showed that the proposed WPM method offered better BER performaaicbamdwidth effi-
ciency at a lower interference to the licensees. This is illustrated by the btgbf-dband energy
rejection which is at least 40dB more than that in OFDM systems. Furtherniherenethod
accurately shaped the CR characteristics with only the right number dérsaremoved (very
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less redundancy) paving the way for excellent spectrum utilization andé tihroughput at an
acceptable BER.

It is worth pointing out that the complexity in the implementation of the WPM system has
been shown to be comparable with that of OFDM)J[ A. Jamin in [L0] shows that the WPM
implementation costs is of the same order as that of OFDM and can even bedowerdium

to large size transforms and wavelet filters of moderate length. In additigmihiirthered the
work in [13] by investigating the application of WPM based multi-carrier modutettioa multi-
antenna cognitive radio system employing the vertical Bell-labs layeregddpae (V-BLAST)
receiver architecture.



Chapter 8

A unified framework to design
orthonormal wavelet bases

8-1 Introduction

In the previous chapters we evaluated the WPM system performancemettes like opera-
tion under loss of time/frequency/phase synchronization (chapter ¢)PARR (chapter 5)2.
We also presented two applications of the WPM structure for spectrum estinfetiapter 6)
and as a wide-band multi-carrier modulation technology for dynamic spe@ogess (DSA)
(chapter 7). In this chapter we advance the state- of-the-art in WPMsigrdevavelet bases
for use in communication formats. The possibility of adapting the characteridttbe WPM
transmission is pursued with two examples where families of wavelets which meximally
frequency selective and ii) have the lowest cross correlation ermegpectively, are developed.
To this end a generic, unified framework that facilitates the design of nexglatabases that
cater to a requirement is established. Suitable optimizations are introducedantevhere
necessary to make the problem tractable. Numerical solvers are usdditotbb solution.

An important point to note is that by design of wavelet bases we essentially thealesign
of filters used to obtain the wavelets. This is because the WPM system is dealirea tree
structure made of cascaded half-band low/high-pass filter pairs. Adalesge later in the
chapter, this is both an advantage and a disadvantage. The advanitagé¢hbe the design
process is reduced to that of deriving Finite Impulse Response (FIRkfilbhence standard,

1This chapter is an extended version of the publicatiti}. [Parts of it also appeared ia§| and [20]. Wherever
applicable, for any material that has been reused from a publicatiorewliie author is the second author, a written
consent and approval has been obtained from the first author.

The author gratefully acknowledges the contributions of Msc studentMiKaramehmedovic for his active
co-operation and help with the computer simulations.
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well established methods can be employed; the disadvantage is that the shiatloetween the
filters and the wavelet bases is sometimes not straightforward or explicit.

The rest of the chapter is organized as follows. Section 8.2 outlines tles lwdighe design
process. The design process is exemplified with two examples in SectiondBSeation 8.4.
In Section 8.3 the design of maximally frequency selective wavelet is carsigenile Section
8.4 will delve on the filters with low cross correlation errors. In each ofdlsegtions the design
process is formulated as an optimization problem. The numerical results andrthbysis is
also presented in the respective sections. A summary of the material in {htercisgorovided
in Section 8.5.

8-2 Criterion for design of wavelets

8-2-1 Design procedure

The attributes of the WPM system greatly depend on the set of transmissiesiidized which
in turn is determined by the filters used. This means that by adapting the filersaonadapt
the WPM characteristics to satisfy a system specification. Choosing thdilighthough is a
delicate task. The filters have to satisfy a number of constraints and dasaditrarily chosen.
Besides the design objectives there are other budgets which have toddered in order to
guarantee that the designed wavelet is valid. The design procedwistsoof 3 major steps,
namely:

1. Formulation of the design problem, i.e. stating the design objectives asttaiots man-
dated by wavelet theory.
2. Application of suitable optimizations and transformations to make the probletalite.
3. Utilization of numerical solvers to obtain the required filter coefficients.
At the end of the design procedure a low-pass FIR filfef], satisfying the design and wavelet
constraints, is obtained. From this filter the other three filkgrs, h'[n] andg¢’[n], are derived

through the QMF relation (see Chapter 3). In the following sections we witloe&te on each
of these processes.

8-2-2 Filter bank implementation of WPM

First, a quick recap of the wavelet and WPM theory. It is well known tbatgactly supported
orthonormal wavelets can be obtained from a tree structure constrycseddessively iterating
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discrete two-channel para-unitary filter banBs27]. Time and frequency limited orthonormal
wavelet packet base&gt) can be derived by recursively iterating discrete half-band bigh
and low-pass|[n] filters, as®:

z+1 fzh gz (t —2m)
S0 WZQ mlel(t — 2m) (8.1)

In eq.8.1) the subscript denotes the level in the tree structure and supersgripdicates the
waveform index. The number of basggenerated is determined by the number of iterations
[ of the two-channel filter bank. e®.(), known as the-scale equationcan be interpreted as
follows - a basis function belonging to a certain sub-space of lower risolcan be obtained
from shifted versions of the bases belonging to a sub-space of hggmution; and the weights

h andg used in the transformation are low- and high-pass in nature.

The filtersh andg form a quadrature mirror pair and are also known as the analysis filtleeseT
filters have duals/adjoints known as synthesis filters which are also a pzatfdfand low-h’

and high-pass filterg’. All these four filters share a tight relation and hence it is enough if the
specifications of one of these filters are available. The wavelet padkeatasriers (used at the
transmitter end) are generated from the synthesis filters. The wavelettghals (used at the
receiver end) are obtained from the analysis filters. The entire WPMdearer structure can
thus be realized by this set of two QMF pairs. Hence, the design proaesdso be confined to
the construction of one of the filters, usually the low-pass analysis filt&rthorough analysis

on the topic can be found in chapters 2 and 3.

8-2-3 Important wavelet properties

The wavelet tool can be a double edged sword - on the one hand themis for customiza-
tion and adaptation; on the other hand there are no clear guidelines tcedhedsest wavelet
from for a given application. In order to ease the selection procesgndesnstraints such as
orthogonality, compact support and smoothness are imposed. We ha@dtitiese properties
in chapter 2; here we shall discuss them in more detail.

3The expressions are considered in continuous time-domain to congenlerivations
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A. Wavelet existence and compact support

This constraint is necessary to ensure that the wavelet has finite nmieasSficient and thus
the impulse response of the wavelet decompaosition filter is finite as well. Thiggyocan be
derived by simply integrating both sides of the two-scale equafi8g|] *:

/ (Wit = V2 / S hinle(2t - n)dt
/g(t)dt = \@Zh[n]/g(zt—n)dt
/g(t)dt = ﬁZh[n]/o.5§(2t—n)d(2t—n) (8.2)

Substitutingu = 2t — n, €q.8.2) can be rewritten as:

75(t>dt - Vg;hm/mg(u)du

_T £(t)dt

1
W = ﬂ;h[n] (8.3)

Finally we obtain the compactly supported wavelet constraint as:
> hn]=v2. (8.4)

It should be noted that the derivation that is given above is only possitile gcaling function
is absolutely integrable and the integration of the scaling function is non-Bemto this fact,
eq.B.4) is also recognized as the wavelet existence constraint.

B. Para-unitary condition

The para-unitary or the orthogonality condition is essential for many nsagsirst, it is a pre-
requisite for generating orthonormal wavelédsZ7]. Second, it automatically ensures perfect
reconstruction of the decomposed signal i.e., the original signal cancbasteucted without
amplitude or phase or aliasing distortion. To satisfy the para-unitary congtra scaling filter

“The subscripts denoting the decomposition léweld the waveform index have been dropped for convenience.
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coefficients have to be orthogonal at even shB{2[/]. The constraint can be derived using the
orthonormality property of the scaling function and its shifted version aswstlo

[ ettt wa =) (8.5)
Substituting the two-scale equation &yl in eq.@.5 we get:
/ D hn)&2t —n)V2Y him]E2(t — k) - m)Vadt = S[k],

2Zh[n]2h[m]/£(2t—n)§(2(t—k)—m)dt o

25 k() S A fm) / 0562t — n)E(2(t — k) —m)d(2t) = o[k,  (8.6)
Or,
> " hnlh[n - 2k] = §[k], for k=0,1,...,(L/2) - 1. (8.7)

Eq.@8.7) is called the double-shift orthogonality relation of the wavelets. Ir8eq),(L represents
the length of the low-pass filter. For a filter of lengkhthe orthogonality condition e@(7)
imposesL /2 non-linear constraints ofa[n|.

C. Flatness/K-Regularity

This property is a rough measure of the smoothness of the wavelet. Tilariggcondition is
needed to ensure that the wavelet is smooth in both the time- and frequemeyrddq9]. It is
normally quantified by the number of times a wavelet is continuously differdatidthe sim-
plest regularity condition is thatnessconstraint which is stated on the low-pass filter (LPF). A
LPF is said to satisfy<'th order flatness if its transfer functidi(w) containsk zeros located
at the Nyquist frequencyw = ). For any function?)(w) with no poles or zeros dtv = )
this can be written as:

He = (M) qw), )

with Q(r) # 0.

In eq.8.8), Q(w) is a factor of H (w) that does not have any single zerawat= 7. Having K
number of zeros at = 7 also implies that (w) is K-times differentiable and its derivatives
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are zero when they are evaluatedvat 7. Considering that
H(w) =Y h{n]exp(—jwn), (8.9)
the kth order derivative off (w) would be
H® (w) =" hn] (=jn)* exp(—jwn). (8.10)
The evaluation of eg8(10 atw = 7 would result in,

> hin](=jn)* exp(—jmn) = H®(m),
> k) (=)Fm)F e Im" = o,
> (=) n)F = o (8.11)

n
Therefore, the K-regularity constraint in terms of the low-pass filterfunesfits can be given as:

> hn](n)*(=1)" =0, for k=0,1,2,... K — 1. (8.12)

8-2-4 Degrees of freedom to design

Eqgs.8.4), (8.7) and .12 are necessary and sufficient conditions for the set to form an athon
mal basis and have to be imposed for all wavelet design procedurea.fiker of lengthL the
design process is about obtainibginknown filter variables fronk equations. Of thesé equa-
tions, one is required to satisfy the wavelet existence condifig come from the para-unitary
constraint, ' — 1 from the regularity constraint and the remainihg2 — K conditions offer

the possibility for establishing the design objective. The larger the vallig®df- K, more the
degree of freedom for design and greater is the loss in regularityeTfiénerefore a trade-off

to be made. Thé /2 — K degrees of freedom that remain after satisfying the wavelet existence,
orthogonality and K-regularity condition can be used to design a scalingwiiterthe desired
property (see fig8.1). In Sections 9.3 and 9.4 we illustrate this with two examples.



Chapter 8 A unified framework to design orthonormal wavelet bases 226
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FIGURE 8.1: Wavelet conditions and degrees of freedom for design.

8-3 Example 1 - Maximally frequency selective wavelets

As the first example we consider the design of filters which are maximally érexyuselec-
tive. Frequency selectivity is a useful property for many applicatiopea@ally, in the fields
of Cognitive radio, for dynamic spectrum access and LTE-advahoetere the spectrum of a
transmission signal has to be accurately shaped to match a frequency itrakkwleakages
to the neighboring bands. We shall see in Section 9.3.5 that the frequédectvefilters yield
wavelet bases with a well confined spectral footprint. Such basesesifat applications such
as wavelet packet based spectrum estimation (WPSE) presented inr&aptefor spectrum
shaping presented in chapter 7.

To obtain the frequency selective filters the design parameters are stttedrieguency-domain
in terms of the desired magnitude respofiéw)|? of the LPF (see fig8.2). In the figurew,
andws, denote pass- and stop-band frequencies, respectjlely,| is the pass-bandws, 7] is
the stop-band anfi,,, w;] is the transition band;. A, connotes the maximum ripple that can

5In Long Term Evolution advanced (LTE-advanced) the spectrum eafitcated over non-contiguous frequency
bands. This possibility necessitates that the frequency bands are witlezbwithout any side lobes or spill-over.

a2

Pass-band Ripple

A A l Maximum ErrorA
SRV

Boundary Points

Frequency Response

Stop-band Ripple

/.\ Angular

PassBand % l%\‘/ ________ \@......n. Frequencyw

Transition Band3 Stop Band

FIGURE 8.2: Plot of magnitude response |H()|2 of the designed.filter
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be tolerated and the stop-band constraint can be stated as
0 < |H(w)|* < Ay for w € [ws, 7], (8.13)

where,

|H(w)[* => > h[n]h[m]e 7<=m). (8.14)

In terms of the impulse response, &y1¥) can be expressed as:

0<> > hn]am]e 70 < A for w € [w, 7). (8.15)

8-3-1 Formulating the design problem

This procedure was originally proposed by Parks and McClell8d][for the design of FIR fil-
ters. However, it has to be adapted to accommodate the constraints (der $2c4) mandated

by the wavelet theoryl[32. The design goal is to generate filters with the desired transition
bandB; and minimum error\, while satisfying the wavelet constraints. For a given transition
bandB;,, this optimization problem can be formally stated as:

Problem 1. MinimizeB; subject to the wavelet constrairggs.8.4),(8.7), (8.12 and the filter
constrainteq.@.195.

ie.,
MINIMIZE: A,
SUBJECT TO:
Zh n] = V2,
Zh[n]h[;—%] = (k) for k=0,1,...,(L/2) — 1,

> hnl(n)F(-1)" = 0fork=0,1,2,...,.K—1,

)
A
=
E
T
A

Ay for w € [ws, 7] . (8.16)

for fixed values ofB;, L and K.

It should be noted that we define the stop-band constraint only within tigerafw € |ws, 7]
due to the inherent anti-symmetry property off (w)|? — 1) aboutw = /2 (see fig8.2) [132.
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The stop band constraint can thus be simplified as:

[Hw)* = H()H(e )

= (Z h[n]e‘j‘“”> (Z h[m]ejwm>

= ZZh g~ iwin=m), (8.17)

Hence, the stop-band constraint can be written as:

O<ZZh eI < AV w € [ws, ] (8.18)

From eqgs8.7) and 8.18), it is clear that both the double-shift orthogonality and the stop-band
constraints are non-linear and non-convex. Therefore, the optimizataiiem can only be
solved by general purpose solvers which do not guarantee a glibtbs. Furthermore, when
the number of constraints increases these general purpose algoritem&dfto provide a valid
solution. In order to overcome this difficulty, some authors have suggesiple starting
point techniques or branch-and-bound methif.

In this work the objective function and the constraints are solved usingegaptimization and
semi-definite program4.B6-147 6. In the following sections we convert the design constraints
into a convex form and obtain the solution with the aid of convex optimization t@di3-145.

8-3-2 Transformation of problem from non-convex to convex

Fortunately, it is possible to transform the non-convex/non-linear equgitido a linear/convex
problem by reformulating the constraints in terms of the autocorrelation sequgk| [146-
149:

= h[m]h[m + k] (8.19)

mez

Taking into account the inherent symmetry of the autocorrelation sequieocar be defined

more precisely as:
L—1-1

ralll = Y hlnlh[n+1] for 1 >0 (8.20)
n=0

In eq.B.20, L is the length of the FIR filter and the autocorrelation function is symmetric about
[=0,i.e:
ral=1] = rall (8.21)

®In Appendix Al we have briefly discussed convex optimization and sefitiite programming.
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We derive the four constraints ed®4), (8.7), (8.12 and 8.18) in terms ofr[{] in the following
sections.

A. Compact support or admissibility constraint

The compact support constraint in é34) can be rewritten as:

L-1

S hin] =2 ,or
S hin] S him] = 2. (8.22)

Takingm = n + [, we have:

L—1L—n—1

> > hnlhn+i]=2 (8.23)

n=0 [=—n

Reversing the order of the summation and considering the fact that the innpsisase of filter
h[n] has non-zero values only &t< n < L — 1, we obtain:

L—1 L—I1-1
> > hnlhn+i]=2 (8.24)
I=—(L—1) n=0

The compact support constraint in é34) can then be rewritten as:

> ol =2 (8.25)

Taking into consideration the double shift orthonormality property (se€&d)) and the fact
that the autocorrelation sequence is symmetric, we can simplifg.2).further as:

L—1
0] 42> rall] =2 (8.26)
=1

L—-1 1
> ol = 3 (8.27)
=1

Eq.8.27) is the compactly supported wavelet constraint stated in terms of the awiation
sequencey|[l].
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B. Double shift orthogonality constraint

The double shift orthogonality constraint presented in8&@d).(can be expressed in terms of the
autocorrelation sequenceg|!] as follows:

> " h[m]h[m + 2k] = r4[2k] = 6[k] (8.28)

It should be noted that e®.28) is obtained by applying — 2k = m on eq.8.7). Hence the
final double-shift orthogonality constraint in terms of the autocorrelagousnce;,[l] is:

{1, if k=0
rn[2k] = d[k] = (8.29)

0, otherwise.

Herek = 0,1,..., |52 ].

We again make use of the symmetry property to simplify it. In contrast t@&ywhich was
non-convex, eqd.29 consists of linear equalities and is convex.

C. K-Regularity constraint

The regularity constraint can be reformulated in terms of the autocorrekgiuence, [{] by
considering the square of the absolute value of8e§.(.e.:

P = (F ”w)K (* )K Q)] 2 (8.30)

2 2

Requiring the transfer functiof/ (w) to have K zeros at the Nyquist frequencgw = ) is
equivalent to requiringH (w)|? to have2 K zeros atv = 7. Taking into account the fact that
|H (w)|? is the Fourier transform of the autocorrelation sequenasg, Bf, we can represent the
2kth order derivative ofH (w)|? as follows:

(1))

e > [l (51" exp(—jwl).) (8.31)
l

The evaluation of egg(31) atw = 7 would yield:
Sl (0 exp(—jmt) = (|H@P)
l
Sl (=520 () = 0, and
l

Sl (1" = o (8.32)
l
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Now, for a filter of lengthL, the filter index! varies as—(L — 1) < | < (L — 1); therefore
eg.8.32 becomes:

L—1

> (=D Ol =0, fork=0,1,..., K — L. (8.33)

l=—L+1

In eq.8.33, K represents the desirable regularity index of the wavelet. Making use of the
symmetry property of the autocorrelation sequengg and taking into ocnsideration that it has
a zero value fol = 0, eq.8.33 can be further simplified as:

L—1
(=D Ol =0, for k=0,1,...,K - 1. (8.34)
=1

D. Stop-band constraint

Definingn = m + k, eq.8.18 can be expressed as:

[ Hw)[? => > hlm]hm + ke 7" = ", [k] e~ (8.35)
m  k

k

Therefore, the stop-band constraint becomes:

0<> rylk]e7F < Ay for w € [w, ) (8.36)
k

The autocorrelation sequencg[k| is symmetric about: = 0, (i.e, r,[l] = rp[—I]) [132.
Hence, eq&.36 can be modified as,

H@) = 0]+ 3 1] (70 + e!)
l

= rp[0] +2 Z rp, [1] cos(wl), (8.37)
1

fori=1,2,...,L—1andw € [ws,7].

Consequently, the stop-band constraint in&8§ can be written as,

0<r,[0]+2 Z rp, [I] cos(wl) < Ay, (8.38)
]

fori=1,2,...,L—1andw € [ws,7].
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E. Spectral factorization and discretization on stop band constint

The reformulated optimization problem consists of the objective function adehign con-
straints expressed in terms of the autocorrelation sequegfi¢eand therefore the optimal solu-
tion will also be in the autocorrelation domain. Since our interests lie in the filtdficdeats
h[n], we have to obtaitk[n] from r[l]. There are no unique solutions to the filter coefficient
that can be obtained for a giveR|l]. We borrow the spectral factorization algorithm proposed
in [146 to obtain unique filters which satisfy the minimum-phase propery/]. The spectral
factorization of an autocorrelation sequengg| can be performed as long as the logarithm
function of its Fourier transforni;, (w) remains inR . To ensure this, the following additional
constraint is enforced:

Ry(w) = |H(w)|* >0, for w e [0,7]. (8.39)

Using eq.8.38), the time domain representation of €339 can be given as,

1, [0] +2Zrh [[]cos(wl) >0 forl=1,2,...,L —1 and w € [0,7]. (8.40)
!
Since we have an infinite number of inequalities in 84.(), we discretize it in the interval
w € [0, 7]. Thisis necessary in order to make the optimization problem practically sov@abée
such approach is proposed t¥fg where the continuous variahleis replaced with the discrete
variablew; = ir/d, defined on the finite set= [0,...,d|. A typical value ofd suggested
in [144 is 15n. As a result, the constraint required for successful spectral faatmm after
applying the discretization process becomes:
L—1
r, [0] + 2 Z rp, [l cos(iml/d) > 0 for i = 0,1,...,d. (8.41)
=1
For simplicity of expression, heron, we refer to &) as the spectral factorization constraint.
As with the spectral factorization constraints, the number of stop-banstradmts defined in
eq.B.39 is also infinite. Hence, the stop-band constraints also have to be disdretireake
the problem practically solvable. After the discretization, the stop-bansti@nts in eq8.39
can be rewritten as:

L—-1
0<r,[0]+2 Z rp, [[] cos(iml/d) < Ay for i = {&—‘ xd,... d. (8.42)

™
=1

The optimization problem in terms of the autocorrelation sequegi¢ecan thus be summarized
as:

MINIMIZE: Ay

’See Appendix A2 for more details on the Kolmogorov spectral factorizatigorithm.



Chapter 8 A unified framework to design orthonormal wavelet bases 233

SUBJECT TO:
; wll] =
1, ifk=0,
rp[2k] = 0[k] = , where k=0,1,..., [£2]
0, otherwise
L-1 z
S (=) () rp ] =0 for k=0,1,..., K — 1,
1=1
0<r,[0] + []cos(ml/d)gAbfori:{%W*d’.”,d’

25
=1
Lj n ] cos(inl/d) > 0 for i = 0,1,...,d. (8.43)

8-3-3 Reformulation of optimization criterion in the Q)(w) function domain

The optimization problem stated above is both convex and linear. Theré&figpenciple any

linear or convex programming tool can be used to solve this optimization proltenvever,

a numerical problem may rise for long filters (when the valué @nd K are large) when the
regularity constraint in e®(28 becomes ill-conditionedlf32, 145. In order to alleviate this
the optimization problem is expressed in terms of@He») function, which is defined as:

—jw K ejw K

el = (F5) (F57) e
: i\ K

_ ((1+e )§1+e )) 0w)P

K
_ ((1+c;s(w))> Q)2 (8.44)

The time-domain representation of €344 can be shown to bl g5:

| = 272K Z <n+K> —n], forl=0,1,...,L—1. (8.45)

Here,r,[l] is also an autocorrelation sequence. As witfi], the symmetry property also holds
good forr,[l]. The constraints now are redefined in terms of the autocorrelation seeyéin.
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A. Compact support

The property of compact support for wavelets is stated in terms of theauation sequence
r4[{] by combining eqs§.4) and 8.44) and takingo = 0. It can be noticed that:

> _hn) = Hw)l,—g = Y hln]exp(—jwn)

w=0

HW)P| =2

w=0

By substituting eq&.44) into eq.8.47) we obtain:

(057 () )

QEIP| =2

w=0

Lo—1
{Tq 0] +2 Z rq (1] cos(wl)} -9
w=0

=2

w=0

=1

V3

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

We finally come up with the compactly supported wavelet constraint in termtotaurelation

sequence,|l] as follows:
Lg—1

rg[0]+2 ) rgfl] =2.
=1

B. Double shift orthogonality

(8.51)

Based on eqs3(29 and 8.46), the double shift orthogonality constraint in term of autocorrela-

tion sequence, /] can be represented as:

K
il =272 SO (P Voo = s feri=0,1,...
R n+K q y Ly

K

2K

or, Y <n+ K)rq[2l—n] — 224,
n=—K

(8.52)

Eq.8.52 defines the double shift orthogonality constraint in terms of the autdatoe se-

quencer,[l].
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C. Spectral factorization

The easiest way to reformulate the spectral factorization constraint in tértine autocorrela-
tion sequence, (] is by combining eqs.8.39 and 8.44 as follows:

|H(w)|* > 0 for w € [0, 7] (8.53)

) K
(W) 1Q(W)[? > 0 for w € [0,7]. (8.54)

Since the factot + cos (w) above is always positive, we can rephrase it as:
1Q(w)|* > 0 for w € [0, 7] (8.55)
Discretizing it in the intervab € [0, 7] , the spectral factorization constraint in term of autocor-
relation sequence,[!] can be written as:
Lo—1
rq[0]+2 ) rg[lcos(inl/d) > 0 for i =0,1,....d. (8.56)
=1

Itis clear from eq8.8) that sincel)(w) hasK zeros less thaf/ (w), the length of the filteg[n]
willbe L, = L — K.

D. Stop band constraint

As with the spectral factorization constraints, the stop-band constraints t&f the autocor-
relation sequence; /] is obtained by combining eg8.(7), (8.18 and @.44) as follows:

0 < [H(w)|> < A for w € [ws, 7 (8.57)
1+ cos (w)\ ™ 2
0< <2> Q(w)|” < Ay for w € [ws, 7] (8.58)

Discretizing it in the intervaly € [w;, 7] the stop-band constraint can be expressed in terms of
the autocorrelation sequencg!l] as:

Lg—1

. K
0< <1+co;(m/d)> 74 (0] + 2 Z rq [l cos(iml/d) | < Ay, (8.59)
=1

fori =[] «d,...,dandL, = L — K.

It is clear from eq.8.59 that when the optimization problem is expressed in terms of the au-
tocorrelation sequence[i], the necessity fotH (w)|* to have2K zeros atv = « has been
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imposed implicitly. Therefore, the regularity constraints are not explicitly esged when the
optimization problem is conducted in tii&w) domain.

The spectral factorization constraints stated in &4 and @8.56) will be automatically ful-
filled if the stop-band constraint stated in €459 is satisfied. In fact the stop band constraint
eq.B.59 is more stringent than the spectral factorization constrain8&xf)(

In summary, the optimization problem in terms of the autocorrelation sequgfitean be
stated as:

MINIMIZE: A

SUBJECT TO:

Lg—1
rg[0]+2 > gl =2,
=1

K
Z < 2K )rq[Ql—n]:22K5[l], forle,l,...,{EJ,

e\t K 2
. . K Lqil
0< <1+c0;(m/d)> 74 [0] + 2 Z rq[l] cos(iml/d) | <A,

=1

for i = {%—‘*d,...,danqu:L—K.

(8.60)

Once we find the optimal autocorrelation sequengg, the spectral factorization is employed
in order to derive the optimal sequengé| from r,[l]. Finally, the optimal wavelet low-pass
filter coefficients are computed using the time-domain equivalent d8.8y[L45:

K
Wil =27%%"

k=0

(ka )q[l . (8.61)

8-3-4 Solving the convex optimization problem

Since the optimization problem posed above is linear it is also convex. bherahy linear or
convex optimization tool can be used to solve this problem. We used Se3}j p generic
Semi-Definite Programming (SDP) solver, to solve the optimization problem. SeBtakts
for Self-Dual Minimization as it implements a self-dual embedding techniquedtmization
over self-dual homogeneous conés(). It comes as an additional Matl@package and can
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FIGURE 8.3: Flow chart of the optimum wavelet design process foreletvpacket based
spectrum estimation.

be used for linear, quadratic and semi-definite programming. Normally iiresga problem

to be described in a primal standard form but with modeling languages likeWWRI(short for
Yet Another LMI Parser) the optimization problems can be directly expdessa user-friendly
higher level languagelp1]. Thus YALMIP allows the user to concentrate on the high-level
modeling without having to worry about low-level details. We have deveapdilter opti-
mization program that incorporates most of the available optimization routin&4afitab©and
which relies on YALMIP to translate the problem into the standard form.

The blocks of the filter design program are elucidated in8i§. The design process consists
of both analytical and numerical modules. In the analytical part, the nowegoproblem is
converted into a convex one, followed by a transformation of the expref®m autocorrela-
tion r[l] domain into autocorrelation,[/] domain. In the numerical part the convex problem
is solved and the solution is obtained in terms-gh]. After that, another analytical process is
initiated to derive optimum low-pass filter coefficierits:| from the sequencegn|, which is
obtained by applying spectral factorizationii]. We use the spectral factorization algorithm
proposed in146. From the autocorrelation sequence, this spectral factorization algodéh
rives filter coefficients with lengti having a minimum phase propery At the end of the
design process the filter coefficients of the analysis LPF will be gener&ten the analysis
LPF h[n|, the HPFg[n] and the synthesis filters, LP¥[n| and HPF¢'[n], can be obtained

8We chose filters having minimum phase because they guarantee stability
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FIGURE 8.4: Frequency response of Daubechies-15, Coiflet-5 andebigned wavelet low-
pass (LPF) and high-pass (HPF) filter with L=30, K=7, &&ar.

through the QMF equations. And from these set of filters the WPM camistgheir duals can
be derived using the 2-scale &1).

8-3-5 Results and analysis

In this section we present a few results to demonstrate the design precétiermain variables

of the design process are the length and regularity order of the filterul&ay has to be
equal to or larger than 1 to ensure that the wavelet existence constraatised and it may

not exceedL /2. If the selected value for regularity is close to the upper limit, the degrees of
freedom available for the optimization of the objective function will be lowei@d the other
hand, imposing a small regularity can result in highly irregular wavelets.

A. Frequency and impulse responses of the newly designed filter

We consider two wavelets with filter lengtlis= 30 and L. = 40. It is certainly possible to
design filters of other lengths too. In the first example, shown ir8f@.the frequency response
of the designed wavelet filters is compared with Daubechies and Coifletl@tdilters. For
fairness of comparison all of these wavelet filters have a length of 30-régkilarity index of 7
and transition bandA;) of 0.2x is enforced on the designed wavelet filters. From8id, it is
evident that the filters obtained from the design have better frequetetigity, with sharper
transition between the pass- and stop-bands, than their Daubechiesiflatidounterparts. A
small price however is paid in terms of the ripples introduced in the side lobe8.Bigresents
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Index | Low-Pass Filter | High-Pass Filter | Index | Low-Pass Filter | High-Pass Filter
1 0.0000 -0.0201 16 -0.0611 -0.0074
2 -0.0000 0.1437 17 0.0206 -0.0395
3 0.0001 -0.4279 18 0.0892 -0.0017
4 0.0002 0.6521 19 -0.0357 0.0223
5 -0.0006 -0.4454 20 -0.1296 0.0055
6 0.0001 -0.0789 21 0.0469 -0.0097
7 0.0024 0.3037 22 0.1943 -0.0049
8 -0.0026 -0.0350 23 -0.0350 0.0026
9 -0.0049 -0.1943 24 -0.3037 0.0024
10 0.0097 0.0469 25 -0.0789 -0.0001
11 0.0055 0.1296 26 0.4454 -0.0006
12 -0.0223 -0.0357 27 0.6521 -0.0002
13 -0.0017 -0.0892 28 0.4279 0.0001
14 0.0395 0.0206 29 0.1437 0.0000
15 -0.0074 0.0611 30 0.0201 0.0000

Magnitude (dB)

similar comparison fol. = 40. In this example, only the maximally frequency selective wavelet

TABLE 8.1: Optimal filter coefficients for filter lengtth = 30, K-regularity=7, Transition

-5
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Band=).2x.
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FIGURE 8.5: Frequency response of Daubechies-20 and the designedetvlow-pass (LPF)
and high-pass (HPF) filter with = 40, K = 8, B; = 0.27.

and Daubechies-20 filters are considered.

Figs.8.6and 8.7 depict the impulse responses of the high and low-pass filters of the optimally

designed wavelets fat = 30, K = 7, B, = 0.2r andL = 40, K = 8, B, = 0.2, respectively.
The coefficients of the designed wavelet filter fore= 30, K = 7, Bt = 0.2wr andL = 40, K =
8, By = 0.27 are presented in tabl&land8.2 respectively.
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Index | Low-Pass Filter | High-Pass Filter | Index | Low-Pass Filter | High-Pass Filter
1 0.0000 -0.0071 21 -0.0404 -0.0018
2 0.0000 0.0630 22 0.0035 0.0261
3 0.0000 -0.2416 23 0.0586 0.0047
4 0.0000 0.5128 24 -0.0110 -0.0154
5 0.0001 -0.6110 25 -0.0818 -0.0053
6 -0.0000 0.2958 26 0.0194 0.0077
7 -0.0001 0.1849 27 0.1122 0.0044
8 0.0004 -0.2882 28 -0.0249 -0.0030
9 0.0001 -0.0275 29 -0.1538 -0.0028
10 -0.0013 0.2128 30 0.0179 0.0006
11 0.0006 -0.0179 31 0.2128 0.0013
12 0.0028 -0.1538 32 0.0275 0.0001
13 -0.0030 0.0249 33 -0.2882 -0.0004
14 -0.0044 0.1122 34 -0.1849 -0.0001
15 0.0077 -0.0194 35 0.2958 0.0000
16 0.0053 -0.0818 36 0.6110 0.0001
17 -0.0154 0.0110 37 0.5128 -0.0000
18 -0.0047 0.0586 38 0.2416 0.0000
19 0.0261 -0.0035 39 0.0630 -0.0000
20 0.0018 -0.0404 40 0.0071 0.0000

TABLE 8.2: Optimal filter coefficients for filter lengtlh = 40, K-regularity=8, Transition
Band=H.27.

Response

Response

Impulse Response of the Designed Wavelet Low Pass Filter
(Length=30, K-regularity=7, Transition Band=0.2r)
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Coefficients

Impulse Response of the Designed Wavelet High Pass Filter
(Length=30, K-regularity=7, Transition Band=0.2r)

25
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15
Coefficients

FIGURE 8.6: Impulse response of the designed optimal wavelet fitliéhr length L =30, K-
regularity K = 7, overall transition bant, = 0.27.
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Impulse Response of the Designed Wavelet Low Pass Filter
(Length = 40, K-regularity, Transition Band=0.2r)
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FIGURE 8.7: Impulse response of the designed optimal wavelet filtér length L = 40, K-
regularity = 8, overall transition banl, = 0.27.
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FIGURE 8.8: Estimates of a partial band source with Coiflet-5, Dabies-15, Symlet-15 and
the designed optimal wavelet filter with length L=30, K-r&ggity = 7, overall transition band
B; = 0.2r. The wavelet decomposition level used here is 7. The numibgaraples in this
experiment is 12800.
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Type of | Description

source

Partial band | Frequency occupied:
[0.257,0.757]

Single tone | Frequency occupied).57

Multi-band | Consist of 3 active band

occupying
quency bands [0.087,0.197],

[0.867,0.977], respectively.

normalized frer

[0.477,0.587], and

TABLE 8.3: Description of three types of sources used in the exjaaris.

20

Transition Band=0.2r)
—O— Daubechies-15
—— Symlet-15

—&— Coiflet-5

T T
Designed wavelet (Length=30

K-regularity=7|
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| |
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FIGURE 8.9: Estimates of single-tone source based on Coiflet-5pBzhies-15, Symlet-15
and the designed optimal wavelet filter with length L=30,d¢ularity = 7, overall transition
bandB; = 0.2r. The wavelet decomposition level used here is 7. The numitearoples in

t

his experiment is 12800.

B. Evaluation of spectrum estimator performance

We now examine the performance of the wavelet packet based specttimater or WPSE

(presented in Chapter 7) with the newly designed wavelet. For this pyrpgoee types of

sources are considered, namely, partial-band, single-tone and mudti-BEme partial-band

source has its energy spread over a continuous range of freqsiemdet occupies the nor-

malized frequency band from257 to 0.757. The single-tone source has all of its energy at one

frequency and is in the middle of the range spanned by the wavelet basetdusn estimation

at0.57. The third source has a multi-band characteristic with three active bandpyng the
normalized frequency bands 00087-0.197, 0.477-0.587 and0.867-0.977, respectively. The
details of all the sources are provided in taBla

e Partial-band source
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FIGURE 8.10: Spectrum shaping with WPM carriers based on the wavel€oiflet-5,
Daubechies-15, Symlet-15 and the designed optimal wafitkst with length L = 30, K-
regularity = 7, transition bané; = 0.27.

Fig. 8.8 presents how the spectrum estimation of a partial-band source with the newly
designed wavelet compares with those based on the standard wavelet fideriéy the
number of samples is set to 12800. The specifications for the optimal warelét
(length) = 30, K (regularity index) = 7 anB; (transition bandwidth) #.27. It is clear

from the figure that the newly designed wavelet outperforms DaubedB@fiet and
Symlet wavelets of the same length. The improvements are with regard to ricgque
selectivity and the sharp transition between occupied band and unoddgrid.

e Single-tone source

For the estimation of the single-tone source, as illustrated by the plots Bi%idhe dif-
ference in performances of the designed wavelet and the standagdsomet tangible.
The frequency resolution of the single tone source is influenced moresbg\éls of de-
composition than by frequency selectivity of the filter used. Hence, theepgrceivable
differences in the performances of various wavelets.

e Multiple-Bands source

The benefit of frequency selective filters is that the WPM carrierseefrom them have
narrow and well-confined spectral footprints. Moreover, they alsindigtter estimation

of signals. Fig8.10illustrates this characteristic where the frequency selective wavelets
are shown to efficiently carve the bands between the desirable andredde®tprints
while all other wavelets have residual infringing components. This feasunseful in
applications such as Cognitive Radio and LTE-advanced where thenisaisn signal
characteristics have to be shaped to accurately map a frequency mask.
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FIGURE 8.11: Detection and false alarm probability of the spectestimation based on vari-

ous wavelet families. The length of the wavelet filter is 3@ wavelet decomposition level is

7 and the sample space is of size 12800. The K-Regularityeadéisigned wavelets is 7 with a
normalized transition ban8; of 0.27.

C. Evaluation of the receiver operating characteristics (ROC)

The receiver operating characteristic (ROC) is used as the secone-&ifyurerit to gauge the
performance of the spectrum estimator. To obtain the probability of detediigrafd false
alarm (P,,), we divide the normalized frequency ran@er] into 128 equal bands (or frequency
bins). Each bin is occupied by one source meaning that overall thet@&sources. These 128
sources are randomly activated/de-activated and’glend Py, are calculated for each threshold
for a sample space of 100 experiments. An active source operateslatbli dB power and the
threshold is varied between -3dB to -15dB. The number of samples usstrtage is 12800.
Fig. 8.11depicts thel; and Py, as a function of threshold level; the plots clearly underline the
superiority of the newly designed wavelet in relation to other wavelet famifidsecsame filter
length. The frequency selectivity inherent in the proposed wavelealmsed the spectrum
estimator to have bette?; and Py, for all thresholds in comparison to Daubechies, Symlet
and Coiflet based estimators. The ROC depicted ingfitj2 further endorses the benefits and
superiority of the estimator based on the designed wavelet.

D. Other studies - filter characteristics and their influence

We now study the impact of altering the filter design parameters on the ROCpldtsein
fig. 8.13 show the impact of filter length on the ROC. The results show that for a gegn
ularity order, the longer the filters, the better thg and Py, of the estimates. This is to be
expected because filters which are longer offer more degrees dbfre minimize the pass-
band and stop-band ripple. Likewise, for a given filter length, a loweeddilarity index results
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FIGURE 8.12: Receiver operating characteristic of spectrum ediom based on various

wavelet families. In this scenario, the length of waveletateposition filter is 30, the wavelet

decomposition level is 7 and the sample space is of size 388 K¥Regularity of the designed
wavelets with SDP is 7 with a normalized transition band.afr.
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FIGURE 8.13: Detection and false alarm probability of the spectastimation based on the

newly designed wavelet with variations on filter lengthstHis scenario, the wavelet decom-

position level is 7 and the sample space is of size 12800. TFRedularity of the designed
wavelets with Semi-Definite Programming is 7 with a trawesitband of).27.



Chapter 8 A unified framework to design orthonormal wavelet bases 246

e o & o & a
09 == Trans. Band = 0.16t (Detection) : N
- of= Trans. Band = 0.16r (False Alarm)

081 =O— Trans. Band = 0.2t (Detection) n
=+~ Trans. Band = 0.2t (False Alarm)
0.7 = Trans. Band = 0.24r (Detection) 3
=-ll- Trans. Band = 0.24r (False Alarm)
0.6 =& Trans. Band = 0.28t (Detection) -
g = i+ Trans. Band = 0.281 (False Alarm)
® 05 =1 Trans. Band = 0.32r (Detection) _
8 N -4-  Trans. Band = 0.32t (False Alarm)
S A O
0.4 B A f
QTN
e LGN
03 T
R ln S '~. " 7
0% T
QT
o2r "‘& |
N U'é5s
LTS
0.1 : J '.',',".,',1 g
Q hI.
o | \ | | '\""'--ﬁ_‘._;.,__F
-16 -14 -12 - -8 -6 -4 -2

10
Threshold (dB)

FIGURE 8.14: Detection and false alarm probability of the spectestimation based on newly

designed wavelet with variations on transition band. Ii$ ggenario, the length of wavelet

decomposition filter is 40, the wavelet decomposition lé¥&l and the sample space is of size
12800. The K-Regularity of the designed wavelets with SBefinite Programming is 6.

in a greater degree of freedom available to minimize the pass/stop-bandyigldieg better
performance results.

Fig. 8.14exemplifies the influence of transition band variation on the detection ancsiaise

probability. The result further exemplifies the importance of frequeniecteity on the quality

of the estimates. Here, configurations with narrower transition banddaffer false alarm and
higher detection probability.

8-4 Example 2 - Wavelets with low cross correlation error

As a second example we design filters with low cross-correlation enetgieée the low- and
high-pass filters with the objective of minimizing the interference due to timingsmo/NPM
transmission. In Chapter 4 we found out that multi-carrier systems are tgghbitive to loss
of time synchronization. A loss in time synchrony results in samples outside a gyRiol
getting erroneously selected, while useful samples at the beginning @& anthof the symbol
getting discarded. It also introduces ISI and ICI causing a perforendegradation.

We also observed that though WPM and OFDM share many similarities as ondloguulti-
carrier systems, they are significantly different in their responses toldisse synchronization.
This difference is a result from the fact that the WPM symbols overlap vaith @ther and they
are longer than the OFDM symb®l Under a loss in time synchronization, the overlap of the
symbols in WPM causes each symbol to interfere with several other symhdésivv OFDM

The length of the symbol and the degree of overlap is determined by tiyénlefwavelet filter used.
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each symbol interferes only with its neighbors. The second differeriogli® usage of guard
intervals. OFDM benefits from the cyclic prefix which significantly improvegpgformance
under timing errors. WPM cannot use guard intervals because of theobgndrlap.

Fortunately, WPM offers the possibility of adjusting the properties of theefeans in a way

that the errors due to loss of synchronization can be minimized. In this seeti@resent a
method to design a new family of wavelet filters which minimize the energy of the tinmiog e
interference

8-4-1 Time offset errors in WPM

The time synchronization error is modeled by shifting the received data ssuRpleby a time
offset A, to the left or right as:

Rin £ Ay = S[n] + w(n]. (8.62)

Here,S[n] denotes the transmitted signal anfh| the Gaussian noise.

Recalling, from Chapter 3, that in ideal conditions when the WPM transmittereaeiver are
perfectly synchronized and the channel is benign, the estimation of thedlat@ned in the
uth symbol andkth sub-carriefa,, ; is the same as the transmitted datg, 1°. However,
errors are introduced in the demodulation decision making process undesfigaeerrorsA,
as elucidated below:

awp = Y RMIEF[(W/N —n+ A

N-1
= >3 > austfin—uNIg W' N —n+ A/

n u k=0

N-1
= > ) auk <Z &Fn — uNJEF W' N —n + At]> . (8.63)

u k=0

Defining the cross waveform functidg(A,) as:

Qi A) = & ln — uNIEF W/ N —n+ A, (8.64)

1%To distinguish the receiver and transmitter end parameters, aposiraphased in the receiver-end symhbol
and carriert’ index.
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the demodulated data corrupted by the interference due to loss of ortiitgai the receiver
for the kth sub-carrier andth symbol can be expressed as:

N—-1
e ’ /
e = G Qi (A + D aup i AI+Y S Y e PR A+
) k)
w;uFu U k=0;k#k g

GaussianNoise

Desired Alphabet

ISI IS—-ICI
(8.65)

In eq.B.65 the first term stands for the attenuated useful signal, the second tewteddCl,
the third term gives ISI and the last term stands for Gaussian noise.

8-4-2 Formulation of the design problem
A. Design criterion

The information contained in the sub-carriers can be correctly decodled viaveforms used
have large distances between one another. In WPM this is achieved hhtwigrthogonality

of the generated waveforms. In disturbance-free environments tes-coorelations of WPM
waveforms equals zero and perfect reconstruction is possible despitenth and frequency
overlap. However, the timing errdx, leads to the loss of orthogonality between the waveforms
and consequently they begin to interfere one with another leading to IQBnstated as:

Qo [D] =D& —uN)EF (W/'N —n+ Ay). (8.66)

The design objective is therefore to generate wavelet bamas their dualg’ that minimize
interference energy in the presence of a timing error,i.e.,

MINIMIZE:

, 2
3 ‘QZ’Z/ [At}‘ withrespectto {¢, &'} . (8.67)
u,k;k#k!

B. Wavelet-domain to filter bank-domain

The waveforms in WPM are created by the multi-level tree structure filter.dasikg Parseval’s
theorem of energy conservation it can be easily proved that the totedyeateach level is
equal regardless of the tree’s depth. Therefore, minimizing the integferiergy at the roots
of the tree will automatically lead to a decrease of total interfering energyeahither tree

branches. Furthermore, the two-channel filter banks through thal@-equation are related,
albeit explicitly, to the WPM waveforms. Therefore the design proces®eamnverted into a
tractable filter design problem. We should hence be able to minimize the deleteffiects of
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time synchronization errors in WPM by minimizing the following cross-correldtimction:

> gl AP =D hlnlgln — AP =Y [Rn)((-1)"AL —n+ AP (8.68)
Ay n n

The design problem of minimizing the interference energy due to timing offsethow be
formally stated as an optimization problem satisfying the objective functioB8.6§ @nd con-
straints eqs8.4), (8.7) and 8.12, i.e.,

MINIMIZE:
> [7hg[Ad][Pwith respect to h[n] (8.69)
Ay
SUBJECT TO:
d k] = V2
> hnfhin -2k = O[k], for k=0,1,...,(L/2) — 1
> ARl (n)F(-1)" = 0, for k=0,1,2,..., K 1. (8.70)

As in the first example, the majority of constraints in 8g/() are non-linear and non-convex.
As before, we shall move to the auto-correlation domajfik( = > h[m]h[m + k] ) to sim-

mez

plify the problem.

8-4-3 Transformation of the mathematical constraints froma non-convex prob-
lem to a convex/linear one

The admissibility, para-unitary and K-regularity conditions are readily availan the auto-
correlation domain (eq®8(27), (8.29 and 8.34), respectively). The spectral factorization con-
dition eq.8.42 can also be reused. Therefore, we only have to derive the objéaticéon.
We know that,

L—n—1
Y>> hlm]hlm+n], n>0
'rh[n] = m=0 (8.71)
r,(—n), n<0
and that,
L—n—1
reln] = Z glm|glm +n| where n >0

o

L 1
= (=D)™A[L = m])((—=1)™"h[L — (m +n)]) = (=1)"r[n]. (8.72)

n

3
I
=)
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Applying the corollary!®: “The sum of squares of a cross-correlation between two functions
equals the inner product of the autocorrelation sequences of these mwiidios.”, and consid-
ering the double shift orthogonality property,

1, for z=0 L—-1
rp[2z] = d[x] = _ where x = 0,1,..., LTJ, (8.73)
0, otherwise,

the cross-correlation functian,,[n] can be rewritten in terms of,[n] as follows:

S gl = 3 ralnlryll
n=0 n=0

L—1
= D ] (=1)"ra[n])
n=0

(L/2-1) (L/2-1)
= Y (w41 = ) (ra22])
=0 =0
Odd numl;gred values Even numbered values
(L/2-1)
= ) (mln+1])? -1 (8.74)
n=0

The new optimization problem can therefore be stated as,

MINIMIZE:
(L/2-1)

> (ral2n+1))%, (8.75)

n=0
subject to the wavelet constraints e§(), (8.29 and 8.34), the spectral factorization criterion
e(.8.42 and the design constraint e8}.[4).

Or,
MINIMIZE:
(L/2-1)
> (ral2n+1])% (8.76)
n=0

"proved in Appendix A4
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0.1198 | 0.4982 | 0.6609 | 0.2032
-0.0291| 0.1594 | -0.1449 | -0.3016
0.2063 | 0.2059 | 0.16541| -0.0566
0.0712 | -0.0095| -0.0083 | 0.0091
-0.0049| -0.0007| 0.0015 | -0.0003

TAaBLE 8.4: Optimal Filter Coefficients.

SUBJECT TO:

L-1

1
>l =3
n=1

1, fork=0 L-1
rp2k] = 0(k) = where £ =0,1,..., {J
0, otherwise 2
L-1
S (=) (1)Fry[n] =0for k=0,1,...,K —1
n=1
L—1
0] 42> 7y [n] cos(iml/d) > 0 for i = 0,1,...,d. (8.77)
n=1

The equations are now convex and can be solved using the setuptpteise8ection 9.3.4 and
illustrated by fig.8.3.

8-4-4 Results and analysis

In this section we present a few results to demonstrate the design precédurefore, the main
variables of the design process are the length and regularity order filfehe

A. Frequency and impulse responses of the designed filter

In this example we have set the length of the filter to 20 though it is also possidiesign
filters of other lengths. The order of regularity chosen is 5, which is a comige between
optimization space and wavelet regularity. The impulse response of theddsigtimal filter is
illustrated in fig.8.15and numerical values of filter coefficients are given in tabe Although

the optimal filter is designed in the autocorrelation domain, the minimum-phase timerdoma
coefficients obtained through spectral factorization satisfy all consgnaiandated by the design
process. The wavelet and scaling function of the newly designed optiteakiie illustrated in

fig. 8.16 respectively. The frequency response is shown indig7 Table 8.5 shows the
specifications of the various filters used in the thesis along with the values obthesponding
objective functions. Clearly, the newly designed wavelet has the lowesterence energy.



Chapter 8 A unified framework to design orthonormal wavelet bases 252

Impulse Response of Scaling Filter
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FIGURE 8.15: Impulse response of the optimal LPF with 20 coeffident
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FIGURE 8.16: Optimal Filter; (a) Scaling Function, (b) Wavelet Etion.

L2
Name Length | K-Regularity z/: (rn[2n + 1])°
n=0
Haar 2 1 -
Daubechies | 20 10 0.41955
Symlets 20 10 0.41955
Discrete 102 1 0.45722
Meyer
Coiflet 24 4 0.41343
Optimal 20 5 0.36814

TABLE 8.5: Wavelet specifications and objective function.
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FIGURE 8.17: Frequency Response (in dB) of the designed filter.

Parameters WPM OFDM
Number of Sub- 128 128
carriers

Number of Multi- | 100 100
carrier symbols per

frame

Modulation DQPSK | DQPSK
Channel AWGN | AWGN
Oversampling Fact 15 15

tor

Guard Band - -
Guard Interval - -
Frequency Offset | - -
Phase Noise - -

Time Offset t=2 t=2

TABLE 8.6: Simulation setup for study on time synchronizatiomerr

B. Evaluation of the designed filter under a loss of time synchronizabn

The performance of the designed wavelet is compared and contrastezwétial known wavelets

by means of computer simulations. We have designed a communication systemQ®&kD

modulation and 128 orthogonal sub-carriers, corresponding to detgacket tree of 7 stages.

Guard intervals are not used and no error estimation or correctionitapslare implemented.

To simplify the analysis, perfect frequency and phase synchronizat®assumed. The time

offset A, is modeled as discrete uniform distribution between -2 and 2 samplesAi.ec

[—2,-1,0,1,2]. In order to highlight the difference in performances between variavelsts,

an oversampling factor of 15 is applied. The details are tabulated in Bable
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<O~ WPM: Haar Length: 2
WPM: Daubechies Length: 20
WPM: Symlets Length: 20
WPM: Discrete Meyer Length: 1023
WPM: Coiflet Length: 24 H
= WPM: Optimal Length: 20

-1 OFDM
=¥ Theoretical Limit

|
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FIGURE 8.18: BER Performance of Different Wavelets and OFDM underelSynchroniza-
tion Errors.

Wavelet Haar Daubechies Symlets| Discrete Meyer| Coiflet
Improvement | 5.03dB| 2.17 dB 3.25dB| 3.25dB 2.98dB

TABLE 8.7: Performance improvement of designed optimal wavefet standard Wavelets in
the presence of time errors (measured at BER)of!).

Fig. 8.18shows the Bit Error Rate (BER) performances of the WPM system withrdiitekinds
of wavelets and OFDM. The channel is taken to be an AWGN channel antrahsmitter-
receiver ends operate under a loss of time-synchronization.

The plots in fig.8.18reveal that the designed optimal wavelet has better BER performance in
the presence of timing errors when compared to performances of commumlnkwavelets.
However, OFDM tolerates a loss of time synchrony better than WPM. Thisdgalact that
under time synchronization errors the ISI in OFDM arises only between djazent symbols
while in WPM several symbols interfere with each other. Tableshows the relative gains in

the SNR performance of the designed optimal wavelet over standardetsivethe presence of
timing errors. The values have been calculated for a bit-error-rate \BER ~%.

BER and Mean Square Error (MSE) calculated for different valugsrad offset are shown in
figs. 8.19and 8.20Q respectively. Because the direction of timing error is inconsequential fo
WPM systems the time offseX, is considered to follow a uniform distribution 1 and 5 samples.
The results presented corroborate the gains brought in by the nevigynddavavelets.
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BER for Time Offsets

1 SNR: 20 dB

B ER

-+ WPM: Haar Length: 2
-A- WPM: Daubechies Length: 20
- WPM: Symlets Length: 20 |
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FIGURE 8.19: BER vs. Time Offset for WPM in any AWGN channel (SNR = 20dB)
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FIGURE 8.20: MSE vs. Time Offset for WPM in an AWGN channel (SNR = 20dB).
C. Dispersion of sub-carrier energy

In figs. 8.21 (2-D plots) and 8.22 (3-D plots) the diffusion of sub-carriers energy to adjacent
regions due to time synchronization error are portrayed. For claritymttien we have limited
the number of sub-carriers to 16 and the WPM frame size to 30 multi-carnarag. From a
total of 480 sub-carriers in each frame, one pilot sub-carrier is sehtmaero value while the
remaining 479 sub-carriers are made zero. In order to accentuatddbieoéfa timing error the
channel is taken to be ideal. It can be seen from the figures that the amaplbfichterfering
sub-carriers is reduced by employing the newly designed filter (denstegp@mal filter’ in the
graphs).
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Wavelet Haar Daubechies Symlets| D-Meyer | Coiflet | Designed
Interference Vari- | 5.1088 | 3.0751 3.0721 | 3.1651 | 3.0639| 2.8775
ance (L0~°)

Max. Interference | 14.14 %| 8.36 % 797% | 6.66% | 8.25%| 451 %
to Signal Ampli-
tude

TaBLE 8.8: Interference Variance and Maximum (Max.) InterfeeeAenplitude Ratio.

In table 8.8 the values of interference variance and maximal interference amplitudeirratio

relation to signal amplitude are given. These values are obtained forle pila sub-carrier

under a constant time-offset.
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FIGURE 8.21: Received Spectral Energy (2-dimension) in a framberpresence of a timing

error.
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FIGURE 8.22: Received Spectral Energy (3-dimension) in a frambérpresence of a timing
error.

Wavelet Packet Modulation has recently emerged as a strong candidatelfocarrier trans-

mission because of its offer of enormous adaptability and flexibility to systesigmiers. In

this chapter, we presented a methodology to design new wavelets accrdirgiven design

specification. The design process was described as an optimizationmiblaieaccommodated

the design objectives and additional constraints necessary to ensigketnexistence and or-

thonormality. In order to obtain the global minimum, the original non-convesttamts and

objective function were translated into the autocorrelation domain. Usingetlidarmulation,
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the design problem was expressed as a convex optimization problemfiaiehdy solved us-
ing semi-definite programming techniques. Two case studies - (a) whereogseaorrelation
between the filters was lowest, and (b) where the filters were maximally fnegselective -
were used to demonstrate the design mechanism. The simulation results révettlee newly
designed wavelet satisfied all the design objectives and outperfornmethetdavavelets.

The wavelet design framework presented in this chapter can easily bedafgp other design
criteria (say reduction of PAPR or ISI or ICI) by merely altering the obyedtiinction. However,
to be able to do so, the desirable properties of the wavelet bases mustdiatéa into realizable
objective functions. This can at times be challenging because the relagidrettveen wavelet
functions and filters is implicit and not direct. Another area of future neses to establish
weights to evaluate the various trade-offs between the desirable (and atdomgadictory)
goals.
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Chapter 9

Conclusions and future research topics

9-1 Introduction

The convergence of information, multimedia and wireless communicationsibad the vision
of ubiquitous and pervasive communication - communication anywhere, angtichanything.
However, each of the incumbent wireless systems operate with diffecdmdigies, standards,
interfaces, hardware (processors, Radio Frequency (RF)drahtantennas), software (drivers,
firmware), network subscriptions, frequency bands and identitiesaclrstate-of-the-art multi-
radios only share the display and keyboard!

The consequence is that users have to constantly switch betweenrdifiexéces, modes and
networks impoverishing their experience. Therefore, there is an entenged for a generic,
universal radio that integrates different standards and air intexfabiee challenge is to seize
on the right technical strategy to provide a common telecommunications mediunotiregcts
devices and thereby people.

Digital communication systems can be viewed as trans-multiplexers charadteyitiee trans-
mission waveforms. The time-frequency properties of the pulse shaping ifiite the time
spread and frequency footprint, determine the type of communication sy§eiA, FDMA,
CDMA, OFDM, UWB, MC-CDMA etc). Different radios have differengatnismission character-
istics which are greatly altered by the nature of the waveforms used. riiiggien waveforms
can thus be considered as thenesof the radios - the fundamental unit of change. By al-
tering the time-frequency characteristics of the waveforms, wirelessnsystdich optimize
resources and system performance can be envisaged. In ordergi@ietdifferent radios we
propose the realization of a flexible and generic wavelet packet baskid@arrier Modulation
(WPM) Radio that can emulate different use-cases. Wavelets and whaeglsforms are used
as the technology of choice because their characteristics can be widedyrized to fulfill the
requirements of intelligent wireless communication systems.

260
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A generic wavelet based MCM radio will be a natural replacement for mui-szhemes like
OFDM. It can also generate single carrier schemes since they are jpstialscase of multi-
carrier signals. A variant of UWB systems called multi-band OFDM (MB-OB[2lMeady exist
where the wide band OFDM operates at different frequency bandiffexient instances. Multi
band-WPM can be an extension to MB-OFDM and can be applied for UWBmm&sion. Mul-
tiple access communication is also possible with wavelets. With their offer ofegriéexibility
in designing signature waveforms, and their inherent orthogonality psogbey can play a
vital role in the design of waveforms and receivers for multiple accessrags

The possibility of applying wavelet theory for the design of flexible andegernradios capable
of handling multiple radios has been explored in the framework of this thesls Whe results
of these studies have been recorded in various publications and repbissthesis work was
dedicated to the demonstration of the Wavelet Packet Modulator (WPM) &eaband multi-
carrier technology alternative to the well known OFDM. Additionally, thel@pgion of WPM
to a multi-antenna/MIMO architecture is investigated 157]. In [153, a method to shape
Ultra wide-band (UWB) signals using the wavelet packet transform seoted. Bit error rate
(BER) and outage probability performance of the proposed system imeékerce of competing
sources is analyzed and suitable strategies to mitigate the impact of inteef@resented. And
in [154], a novel receiver design that utilizes the time and frequency localizatmpepties of
Wavelet transform is proposed for a wavelet-based single carrigmys

It is important to underline here that the all the communication modes explaioed amploy
the same signal processing architecture and hence they can be combireediimgle radio unit.

The advantages of wavelet transform in terms of the flexibility they offeustarnize and shape
the characteristics of the waveforms have been demonstratesGHl5g. Two use-cases where
the waveforms are designed and applied to optimize the system performaocdiag to spe-
cific system demands are illustrated irbp, 156. In [157), the efforts of [L55, 156 is extended
to establish a unifying mathematical framework where the waveforms cansizmdd accord-
ing to any engineering requirement. And kb search heuristics ,based on a genetic/neural
code, are used to solve numerical problems associated with wavelet.dEaigily, the abil-
ity of wavelet radios to opportunistically exploit radio resources is illustratgd59 where a
WPM based scheme for cognitive radio systems is addressed. In thigspipfhe transmis-
sion waveform of WPM is sculpted to make use of the unoccupied time-fnegugaps of the
licensed users.

In this thesis the operation of the novel Wavelet Packet Modulator wassitlly evaluated.
The importance of the study lies in the fact that very little literature exists in this fiéld main
contribution of the work is in the mathematical modeling of the WPM system in MAT{C/Bd
numerical analysis of its performance. The challenges involved in thégakicnplementation
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of the system were listed and studied. The functioning of the proposed BiBim under
various performance metrics was studied. Some of the figures of meriaédlmclude:

PAPR performance,

sensitivity to loss of synchronization (time/frequency/phase),

robustness to channel vagaries,

operation under interfering sources.

Suitable interventions that addressed issues like PAPR, channel etjoalizare devised, im-
plemented and tested. The proposed system was successfully appliestiéied for two prac-
tical applications namely, spectrum estimation and dynamic spectrum accessad@ptable
features of the system were demonstrated in the form of wavelet dedtgd su the system
specification.

Numerical results and comparative studies with FFT/OFDM-based systdiuisted the effi-
cacy of the algorithms deployed. The results of the study made it clear thisk M#Bed radios
can be a viable alternative to existing technologies.

9-2 Summary of chapters and key conclusions

The key inferences and conclusions of the study are summarized chagdein the following
sections.

A. Study of WPM performance under loss of Synchronization (Chager — 4)

In this chapter we evaluated the effects of loss of synchronization betthegransmitter and
receiver, due to frequency offset or phase noise or timing errokVBiM transmission. The
performances were also compared with OFDM. The key inferencesaaldla contributions of
the study can be summarized as follows:

e Orthogonal multiplexing schemes like WPM and OFDM are vulnerable to losgmf s
chronization in time, frequency or phase.

e Effect of frequency offset —The effect of frequency offset is to cause the sub-carriers
to lose their mutual orthogonality which results in mutual interference. In OFDigl
performance degradation is limited to the interference amongst the sikrsdreferred
as Inter-carrier Interference (ICI)) within one OFDM symbol duratidowever, in WPM
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the sub-carriers from multiple symbols interfere with each other causing $ytabol-
Inter Carrier Interference or I1S-ICI. This dissimilarity in the interferehehavior is due
to the manner in which the sub-carriers in wavelet and Fourier basedsyate created.
The signals generated by OFDM overlap only in frequency domain while \yéérated
signals overlap in both frequency and time domain.

e Impact of phase noise -Depending on the bandwidth of the phase noise two scenarios
can emerge in the presence of phase noise:

i. if the phase noise bandwidth is small compared to inter-carrier spacinghiaant
effect is a constant rotation of constellation symbols.

ii. if the phase noise bandwidth is greater than the inter-carrier spacingtétenal
behavior is less pronounced but instead the interference dominates.

e As with the effect of frequency offset, the interference due to phassercorrupts the
OFDM signal only with ICI while in WPM signals are corrupted with IS-ICI.

e Impact of loss of time synchronization -OFDM benefits from the use of the cyclic prefix
to greatly reduce the errors due to loss of time synchronization. WPM thanefit from
such constructions due to the time overlap of the symbols. Neverthelesgctivgpeefix
in OFDM fails to prevent interference from occurring if the offset vakirger than the
size of the prefix or when the offset is in the direction opposite to the symbalisprefix.
When parts of the neighboring symbols are erroneously selected at sl ©FWPM
receiver windows, the demodulated data is afflicted by ISI and ICI. IDKBASI arises
only due to neighboring multi-carrier symbols, while in WPM more symbols, in additio
to the contiguous ones, contribute to the generation of ISI.

e To understand the impact of loss of synchronization, analytical eXpresaere derived.
To corroborate the theoretical findings, a computer simulation platformetagesand the
performances of OFDM and WPM systems were examined in the preseoagief fre-
qguency offset, phase noise or time synchronization errors. Sevelakmown wavelets
such as Daubechies, Symlets, discrete Meyer, Coiflets and bi-ortHoganelets were
applied and studied.

From the study it can be concluded that the performance degradatiorP®f whd OFDM
affected by carrier frequency offset and phase noise are cobipakéowever, WPM is far more
severe to time offset than OFDM, thereby, necessitating a strong andt r&jochronization
algorithm to recover loss of time synchronization.
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B. PAPR performance studies (Chapter — 5)

In this chapter, a study on the effect of PAPR on the Wavelet Packetldimd was presented.
The summary of the study and key novelties are enlisted below:

e The statistical distribution of WPM signals and its power variations were studibé
envelope of the WPM signal and its power were found to follow the GaussidrChi-
squared distribution, respectively.

e The effect of PAPR on the Wavelet Packet Modulator (WPM) schemetlaexs eval-
uated. Various WPM configurations, with different wavelet families, pshsapes and
lengths, were considered. OFDM was also included as reference. pdithtiee wavelets
performed similarly with regard to their PAPR performances. MoreoveMNtR& oper-
ations were comparable with that of OFDM.

e To alleviate the PAPR impact on WPM transmission, 2 techniques were employed:

i. First, a selected mapping (SLM) approach with phase modification techmigque
reduce the PAPR in the Wavelet Packet Modulation system was studiede&yng
replicas of the original message by randomly altering the phases of theastibrs
that modulate the information, different WPM frames with different PAPR eslu
could be obtained. Then, the WPM frame with the least PAPR should be trarcsmitte
The attraction for this method is its simplicity and elegance of implementation.

ii. Next, we extended the selected mapping technique by optimizing the selection of
phase offset of the sub-carriers. The technique employed a heulgtidgttam
known as the Hill Climbing optimization which is based on neural networks.

From the studies it was found that the stochastic nature of the WPM signalieas its PAPR
performance are similar to that of the OFDM. Furthermore, the PAPR mitigatiategies de-
vised for one system can be used for the other with minor adjustments.

C. Wavelet packet spectrum estimator(WPSE) (Chapter — 6)

In this chapter, we investigated the application of wavelet packet trangiPT) for spectral
estimation and signal analysis. The main contributions of the study are:

e Wavelet packet spectrum estimator (WPSE) 4mplementation of wavelet packet based
spectrum estimator on a simulation platform.
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e Evaluation of the performances of the proposed WPSE and its compatiisainagitional
techniques like Periodogram, Welch, Windowed periodogram and MT&gatige the
performance of the estimator, different test sources with variegatedathestics were
utilized. The figures of merit employed were - out of band (OOB) enesgpction, vari-
ance of the estimates and frequency resolution.

e Enhanced wavelet packet spectrum estimator (E-WPSE)Gptimization of WPSE per-
formance through mitigation of edge based artifacts that occur in standa8EwW

The key inferences on the study of WPSE may be summarized as follows:

Vi.

. The wavelet transform is a unitary transform which conserves gnerg

Since the mathematical precept of wavelets is tightly coupled to the filter bankythibe
WPSE can be formulated as a filter bank analysis problem,

An effectual spectrum estimator based on the theory of wavelets caunilb&yp exploiting
the filter bank structure of wavelet packet decomposition,

The decomposition level of the wavelet packet tree can be tuned tetadgiperformance
of the wavelet-based estimates with respect to variance of the estimated 88Bcurency
resolution.

Based on the level of decomposition, the WPSE performance rantyesdvethat of Welch
and periodogram.

The wavelet packet based approach gives all wavelet coefficarall decomposition lev-
els. The presence of all of these coefficients allows for obtaining multipima&tes from
different level of the tree with different degree of variance anddeggy resolution, in one
snapshot and one operation. This feature can be exploited to corairadaptable and re-
configurable spectrum estimation mechanism. This feature of WPSE canebpemifous
advantage in a dynamic and variegating environment.

The results of the experiments showed that the WPSE offered greailftgxdbhd adaptability

apart from its performances which are comparable and at times eventhatidfourier based

estimates. The studies also showed that the E-WPSE system offered rex©€)B rejection,

small variance of the estimates, and good frequency resolution making ity &empetitive

technique. In comparison to existing estimators the E-WPSE gave signifedintrpance gains

especially with an out-of-band rejection of up to 60dB for partial bandabalit 200 dB for

multi-tone sources.
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D. WPSE/WPM for Dynamic Spectrum Access (Chapter — 7)

In this chapter we presented a Wavelet Packet spectrum estimator (\WRB#)let Packet
Modulator (WPM) combination as a multi-carrier solution for dynamic spectraoess solu-
tion. The key contributions of the study can be enlisted, as:

e A wavelet packet transceiver that combined the wavelet packet-lspsetrum estimator
(WPSE) with a Multi-carrier modulator was established.

e The WPSE unit used the same filter bank structure as used for WPM traimsmidence
spectrum analysis was possible at virtually no additional cost.

e The proposed WPSE/WPM system was testeddforamic spectrum access usases.
Typical applications for such systems include Cognitive radio and LTMa+azkd.

e The system was evaluated for various scenarios and use caseseridrenpnces were
compared and contrasted with two other candidate systems based on kédidgem.

From the numerical studies, the performance of the WPSE/WPM transeegefound to be
excellent in terms of BER performance, rejection of out-of-band enargy interference to
neighboring sources. Comparing with the performance of OFDM/FFTdbesefigurations,
the studies showed that WPSE/WPM performed better in regard to estimatipaatfian and
confinement of transmitted waveform spectra. This in turn contributed tor txtterror rate
(BER) performance and bandwidth efficiency.

E. Design of Wavelets (Chapter — 8)

In this chapter we presented a general, unified approach to designesatbpl orthogonal
wavelet packet bases according to a requirement. The important ioésrand original con-
tributions of the study are detailed below:

e We advanced the state-of-the-art in WPM to design wavelet basesdan e@mmuni-
cation formats. This is necessitated by the fact that the wavelets currentgy iara not
custom-built for multi-carrier systems.

e To do so we established a generic, unified framework that facilitates thgndefsnew
wavelet bases that cater to a requirement.

e The possibility of adapting the characteristics of the WPM transmission is illudtnatie
two examples where families of wavelets which are maximally frequency selecthave
the lowest cross correlation energy, are developed.
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e The design of wavelet filters is subject to multiple constraints. Besides thergrgoal
(for e.g. derivation of wavelets with high frequency selectivity) theeeather constraints
mandated by the wavelet theory that have to be fulfilled. Theskyetsof the filter-
design process were expressed as a convex optimization problenglolia solutions
for the design problem were obtained using a mathematical numerical soleenkas
semi definite programming (SDP). The solution-filters were then tested fdormnance
with design goals.

Some of the conclusions from the design of the two candidate wavelet-fitetsecstated thus:

1. Design of Maximally Frequency Selective Wavelets:
e WPSE results with the newly designed filters yielded more accurate resultstban
based on standard wavelets such as Coiflets, Symlets and Daubechies.
e The WPM carrier using the new wavelets guaranteed sharper transitiols bad
better time-frequency localization than commonly known wavelets.
2. Design of wavelets with low cross correlation energy:
e To address the high sensitivity of WPM to a time offset, we designed a neeletav
filter which reduces the timing error interference.

e Studies on the WPM operation showed that the newly designed optimum filter en-
sured better performance on loss of time synchronization when compateahttard
wavelets such as Daubechies, Symlets, discrete Meyer, Coiflets, etc.

The results of these studies affirmed the promise that a WPM system holdigindefiexi-
ble communication systems whose characteristics can be tailored accordiegetagiheering
requirements.

9-3 Future research topics

In this section we present a few ideas to enhance this PhD work. Thentas@ivided into
three sections (refer fi@.1), namely,

1. Enhancements to this PhDwhere suggestions to improve the study conducted during
this dissertation are presented.

2. Related Studieswhere activities which are related to this dissertation (but not treated in
this work) are listed.
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3. What are the other domains
where the findings of this research work
can be applied ?

1. How can the efforts of this

dissertation be improved ? Future Research Topics

2. What are the related areas of study
that have to be covered to fructify the ideas presented in this work ?

FIGURE 9.1: Future research topics

3. Beyond this work, where other domains and fields where the research findings of the
areas can be readily applied and translated, are enlisted.

9-3-1 Enhancements to this PhD

A. Study of WPM performance under loss of Synchronization

e In this thesis the vulnerability of WPM to time synchronization errors was addoe
However, in the implementation all the sub-carriers were taken to experieacgame
time or frequency offset. This model can be extended with differentantiers undergo-
ing different offsets.

e Furthermore, a robust synchronization algorithm to detect and cdarget time offsets
can be implemented.

B. PAPR performance studies

e Study those cases where the data is correlated (e.g. transmission of a picaudio
information); important is its impact on the PAPR performance or on the mitigatibn tec
niques.

e Explore the possibility of data clipping as a PAPR mitigation technique and the utihzatio
of wavelet de-noising methods at the receiver to retrieve data.

e Conduct PAPR studies with more sophisticated power amplifier models.
e Explore the possibility of designing new wavelets for PAPR reduction.
e Study the impact of over-sampling on the PAPR performance of WPM.

e Exploit the tree structure of WPM to come out with the best tree formation tleaibgtees
minimum PAPR. Unlike OFDM which divides the communication channel into orthogo
nal sub-channels of equal bandwidths, WPM uses an arbitrary tiqadney plane tiling
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to create orthogonal sub-channels of different bandwidths and dyates. When trans-
mitting the same data in WPM, alternative tree representations can be uskitgeau
different sub-channel spacing in time and frequency which are resssarily uniform.
This feature of WPM can be utilized for the reduction of PAPR. In particidach of
the alternative (pruned) trees could result in a different value folRRARd an algorithm
to choose the optimum tree structure can be devised such that the struttienea the
minimum PAPR.

Analyze the complexity in which the cost of implementing the reduction techniqueg alo
with the loss in date-rate, is considered.

C. Wavelet packet spectrum estimator (WPSE)

Explore the possibility of applying compressed sampling for Wavelet Péels=td spec-
trum estimation.

Expand edge-mitigation studies to include more sophisticated approacHaditigavin-
dowing techniques) to reduce artifacts in WPSE filter bank implementation.

Study of dual tone sources to understand the resolution abilities of WPSE.
Derive analytical expressions for WPSE variance and bias.

Explore the possibility of applying windows to the WPSE method to tackle spurmaes s
tral growth (also known as spectral carving).

Utilize co-operative spectrum sensing with focus on diversity exploitatiampoove the
WPSE probability of errors/estimation. This can also be useful in avoidiadashing
and hidden node problems.

Analyze the ability of WPSE for a sparse representation of the radio emuant (fre-
quency information) with a lower number of coefficients. This helps in aperative
spectrum sensing scenario where a lower amount of information sharggsnmeirectly
leads to a lesser clogging of the bandwidth.

Investigate the properties of WPSE to guarantee good time resolution. Dipisrpr can
be useful in scenarios where the time information is vital (e.g. estimation oft dosmep
sources, discussed in Chapters 7 ans 8 of this dissertation).

Optimize dynamic spectrum utilization: 1460 Z. Tian and G.B. Giannakis propose a
wavelet-based wide-band spectrum sensing approach for dynarotospenanagement.
In their approach, the signal spectrum over a wide frequency bamd®posed into ele-
mentary building blocks of non-overlapping sub-bands that are welactexized by local
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irregularities in frequency. Then the entire wide-band is modeled as &segwf con-
secutive frequency sub-bands, where the power spectral ¢hiaséic is smooth within
each sub-band but exhibit a discontinuous change between adjabelmisds. Informa-
tion on the locations and intensities of spectrum holes and occupied baretsvieddoy
considering the irregularities in PSD. The main attraction of using wavelets ingbis
cation is in the ability of wavelets to analyze singularities and irregular strictuingch
can be used to characterize the local regularity and edges of signalse Hbe method
is also called Edge detection. The method of Z.Tian and G.B. Giannakis carhaeeed
further by designing new wavelets that are best suited for the applicastgashof using
generalized wavelets.

D. WPSE-WPM for dynamic spectrum access

e The WPSE/WPM system was evaluated for various dynamic spectrunsacsegases.
Future research can include more scenarios, especially, the casesthaature of the
licensed user (LU) varies frequently or when the data available to gaeddtltharac-
teristics is limited.

e More extensive evaluation of the system performance under differamnel conditions
are still needed.

E. Design of wavelets

e The unique features offered by wavelets to tailor and customize new filezesexplored
in this thesis in order to make WPM transmission less sensitive to time synchronizatio
errors or reduce spectral spillage into neighboring bands. The itinevwsavelet filter
design template can also be used for other design goals by merely alteringjebtve
function and other desigbudgets For instance, wavelet filters which can decrease fre-
qguency offset and phase noise sensitivity, reduce Peak-to-Av&ager Ration (PAPR)
or increase spectral efficiency could be designed. However, tolbeéabio so, the desir-
able properties of the wavelet bases must be translated into realizablévebijections.
This can at times be challenging because the relationship between wanelkibrig and
filters is implicit and not direct.

e Another area of research is to establish weights to gauge the tradenadffeo between
various desirable (and at times contradictory) goals.

e An added advantage of using the wavelet theory for Multi-carrier modul&tim the pos-
sibility of improving transmission security. Because newly designed waveleismgue



Chapter 9 Conclusions and future research topics 271

in nature, the transmitted signal can only be decoded by the WPM recdiveh Vg8 ac-
quainted with filter coefficients used by the WPM transmitter.

F. Channel equalization

e The studies in this thesis were confined to channels that were time-invarferefére a
natural extension to the work will be to consider channels that vary with tirdéornare
frequency dispersive.

e The equalizer in this thesis focused on the removal of ISI. Devising aalieguwhich
handles both the Inter-symbol interference and Inter-carrier ingréercan be a fruitful
area of further research.

e A blind equalizer in which the transmitted signal is inferred from the recesigdal
making use only of the transmitted signal statistics (without availability of chanfoe}
mation.), can be a productive area of future research.

¢ Information on channel modeling and representation of the channelwawget packets
can be used to customize the transceiver tree structure based on theldwandition and
further simplify the equalization process.

9-3-2 Related studies

One of the prime motives for pursuing wavelet based systems is in the flexibititg@aptability
that they offer. This capability can be readily exploited to provide betteticas to users and
enrich their experience. In order to realize these capabilities many tegjicedlchallenges
have to be overcome. Apart from that there are other related subjettsatieato be addressed.
Foremost amongst them is an understanding of how an engineeringemeuir translates to a
particular system specification. To successfully map this relation, a tareduhorough study
on the following areas must be conducted:

i. impact of waveform characteristics on various performance metrics,

ii. the trade-offs in performance characteristics with regard to the des$igiaxaeforms. For
e.g. research questions suchdasthe waveforms that yield the best PAPR performance
affect the BER performangeandWhat about its performance with respect to ISI/ICI re-
ductior? have to be addressed,

iii. athorough analysis on the complexity issues,
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iv. mapping of the complexity analysis and trade-off issues ieasy-to-understand-and-to-
presentmanner such that the user can make effective choices based on lssanelateces-
sities. For example, if the user desires low battery power consumption kiéddhm able
to operate with a single radio with sufficient features for gainful communicatin the
other hand, he should also be made aware of the consequences afibésartd how it may
affect the quality of service (such as lower speed, lower bandwidthyghput etc.).

Other topics which have to be covered for the practical implementation of VifiRlde,

i. ensuring backward compatibility with existing technologies and systems,
ii. making the system generic and flexible so that it can be easily scaled,

iii. establishing suitable mechanisms to analyze the radio environment and utilimesffez-
tively in radio reconfiguration schemes,

iv. demonstration of the system capabilities through a proof of conc€pTjP
v. development of software tools to adequately test and verify the system,

vi. standardization of the technology to ensure compatibility across diffdemelopment plat-
forms.

9-3-3 Beyond this work

Apart from the suggested improvements cataloged above, there arahsrof wireless sys-
tem design where the wavelet packet architecture can be readily apgpéeslwe discuss a few
of them:

A. Wavelet-Based modeling of time-variant wireless channels

Currently available wireless channel models are based on statistical impafsense models
derived from empirical results. While these models perform adequateliyrfe-invariant chan-
nels, they fail to accurately map time-varying channels. The wavelet tnanst a way of
decomposing a signal of interest into a set of basis waveforms, callegletewvhich thus pro-
vide a way to analyze the signal by examining the coefficients (or weightgjedlets. Due to
their inherent joint time-frequency localization property and their ability taiestely charac-
terize the time-varying nature of the estimation problem, the wavelets offelugaaidvantages
for channel modeling. Some of them are: accurate characterization ofvéirgierg as well
as frequency selective multi-path fading channels, fast convergdrastimating the channel,
representation of the channel with a fewer number of coefficients, sopliberror, and clear
interpretation of modeling error.
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B. Multiple access communication

Wavelets and wavelet packets possess unique properties that maketttztiva for use in
multiple access communications. With their offer of greater flexibility in designigigasure
waveforms, and their inherent orthogonality property, they can play arei@in the design
of waveforms and receivers for multiple access systems. Further|etaean facilitate the
design of user signature waveforms for code division multiple accesM@zommunica-
tion systems. By randomly clipping the wavelet construction tree, a completertrahormal
basis is generated. This basis eventually spawns spreading coda®tbahagonal to one an-
other. Moreover, they display greater capacity to suppress multiplesactesferences. The
design and construction of orthogonal signatures for use in a spgraatisre CDMA system is
discussed ing]. According to [L61] wavelets allow for simpler equalization and detection of
CDMA signals at the receiver.

Multi-carrier CDMA or MC-CDMA is a data transmission technique that combilfesti-
carrier modulation (MCM) and CDMA. It is a spread spectrum technolatigre the spreading
is performed in the frequency domain, unlike CDMA, where the spreadidgns in the time
domain. By combining the best of MCM and CDMA, MC-CDMA promises higheshdarge
bandwidth, better frequency diversity to combat frequency-selediimg and good perfor-
mance in severe multi-path conditions. MC-CDMA has thus emerged as a sandmlate for
future wireless systems. In comparison to the conventional Fouriedb&€eCDMA systems,
introducing wavelets to MC-CDMA yields the following advantages:

i. They provide three levels of orthogonality, namely,

e between the sub-carriers,
e between the wavelets and scaling functions, and

e between the spreading sequences.

Therefore in comparison to conventional MC-CDMA systems, they off&r dimensions
to combat multipath fading, ICI and interference or jamming signal by providing

ii. They provide flexibility in choosing the spacing between the sub-camégyuiencies.

iii. They offer a wide choice of wavelet families to choose from.
C. Wavelet radio for green communication
Recent studies have shown that the energy costs account for as mhaelf af a mobile ser-

vice provider's annual operating expenses. Therefore making tmencaication equipment
more efficient in relation to its power consumption not only has implications witardetp
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environmental pollution, it also makes economic sense. The theme of Greem@uocations
is to design energy-efficient communication techniques and protocols wpiaially utilize
available resources and minimize power consumption. Wavelet-based lgksmffer a lot of
tools for research and development of Green communication devicesndtmedologies can
be classified into two broad categories:

i. Customization of waveforms

e While there is no explicit relationship between power optimization and waveforms
the nature and characteristics of the waveform can be altered to suibarsguire-
ments which can indirectly contribute to a more efficient system resulting in lower
requirements of power and energy. These criterion could typically be:

— minimization of ISI, ICI or PAPR,
— greater tolerance and robustness to time/frequency/phase offgst erro
— robustness towards interference from competing sources

— possibilities for opportunistic communication (e.g. Cognitive Radio) where un-
used resources can be cleverly utilized.

e It is important to note that every performance metric that is influenced byhae c
acteristics of the transmission waveform can be mapped into a design aurestic
exploited to yield efficient systems.

ii. Customization of tree structure

e The wavelet-based systems are realized from a tree structure obtainaddaging a
fundamental Quadrature Mirror Filter (QMF) pair of low and high pass §ltérhe
construction of this tree structure can be adjusted to come out with an optimeim tre
structure that caters to various requirements. The requirements couldlly pie:

— Identification and isolation of thatomsof interference in both time and fre-
quency domains.

— Flexibility with time-frequency tiling of the carriers leading to multi-rate systems
which can transmit with different rates in different bands. This featare lme
exploited in scenarios where the channel characteristics are notranifor

e It can be proved that the complexity of Wavelet systems is by and large sithpler
OFDM systems. A lower complexity also means lower power requirements in the ex
ecution of the signal processing algorithms. The implementation of Wavelensys
can be simplified even further if fast-wavelet transforms are employed.

e In addition to these advantages, the promise of an integrated and uhivexsdet-
based radio can also immensely help in the optimization of the system performance
By integrating multiple radios the wavelet-based systems do away with the rneed fo
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multiple firmwares, software, drivers etc and reduce power consumpitbimgrove
battery life.

D. Wavelet based multiple-input multiple-output communications (MIMO)

OFDM-MIMO (Multiple-Input Multiple-Output) combination has been sucdekg applied to
enhance the throughput and range of wireless networks without thmniscrease in band-
width or power requirements. Since OFDM and WPM share many propextiésth are orthog-
onal multi-carrier techniques, there is potential for a WPM systems to bamuaedulti-antenna
MIMO setup.

9-4 Concluding remarks

In a recent article in The Communication magazine, Steve Weinsté#, [a pioneer in the
development of OFDM traces back the journey of OFDM right from its itioedn 1966 when
Chang [L63 published the first paper on multi-carrier modulation, to the developmenédifr &t
proof of concept by Bell Labs in 1983.§4] and its first major consumer deployment as ADSL
in 1993 and finally its standardization as IEEE 802.11a in 1999. In his acdinguemarks he
advocates wavelet-based systems as true successors of OFDMakysdec the development
of futuristic low powerGreen Radiosvhich are intelligent and adaptable.

The research and investigation, on the utilization of wavelet technologyfartsesource aware
radio systems, as presented in this thesis, can be considered as aditetfybt at tackling the
various technical questions that will shorten the development time froneptina to practical
realization of wavelet radios . Furthermore in an era when bold prediciisiisePHY Layer
is Dead[169 are made, the work on wavelet-based radios can increase the capeftities
wireless link and open new vistas for gainful research on radio design.



Appendix A

Design of Wavelets

A-1 Semi-definite programming

Semi-definite Programming (SDP) is a sub-field of convex optimization, whicteffeciently
exploit interior point methods to find an optimal solutial8f 137]. The main advantages
of convex optimization methods are that they always achieve global minimumuwitieng
trapped in the local minima, and that they can determine explicitly the feasibility wea get
of constraints. SDP algorithms can be used to solve linear, quadraticrairdsgnite problems,
which all are part of convex optimization problems.

The optimization problems in SDP can be described as minimization of an objecta lin
function over the intersection of the semi-definite cone with an affine spaigcone is shaped
by constraints that form a set of positive symmetric semi-definite matricesi ¢afiear Matrix
Inequality (LMI) constraint138. LMI gives boundaries of feasible region in which SDP solver
tries to find an optimal solution for the objective function. This region is gadlyenon-smooth
and non-linear but it has to be convex in order to be solvable by 3B®-147,.

A set( is said to be convex if the line segment between any two arbitrary selecteld poin
also lies inC'. In case of points{; and X, we can show the convexity by:

FXi+(1-IXeeCfor X1,Xo€Cand 0<T" < 1. (A1)

The example of convex and non-convex set is illustrated byAfify. For each two points in
pentagon the line segment lies in the defined set and therefore blue figftirés(convex. The
red figure (right) is obviously not convex since two poiis and X, are within the set but the
line which connects them is partially not contained in the set.

276
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FIGURE A.1: Convexity. Left: Convex Set, Right: Non-Convex Set.

A-2 Spectral factorization

The Kolmogorov spectral factorization method is based on constructior ahitimum phase
spectral factorSF,,(z) from the autocorrelation function. The power series expansion of
SFmp(z) is given by:

We can decompodeg SF),,(z) into real and imaginary parts as:

log SFmp(z) = p(z) + jn(2) (A.2)

Here,u(w) andv(w) are Hilbert transform pairs. Far= ¢/“ we have:

plw) = log’SFmp(ej“’)’

1
= 35 log Ry, (w)

= — Z dy, sinwn. (A.3)

In eq.8.39 R, (w) denotes the Fourier transform of autocorrelation sequence. We chifén
coefficientsd,, by:

2
1 1 :
dy, = /loth(w)e_]”wdw (A.4)
27 ) 2
0
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A-3 Sum of squares of cross-correlation function

The sum of squares of cross-correlation magnitude is related to the eetation sequences of
low pass filterH and high pass filtets according to the following equation:

L—1 L—1
D lrng[nl? = D raln] (=1)"raln])
n=0 n=0

= rpn] - rgn]. (A.5)

Proof:

Do lrgm)* = Z(Zh[wn]g[p])

n

= > hlp+nlglplh[m + nlg[m]

L

= 3 gllglm] S hlp + nlhfm + ]

= > > glplglm] > h[m]h[2m - p]
= > > rulm —plglplglm]
= > > ralnlglplgln +pl

p n=m-—p

= ol
= tuln) gl (6)

A-4 Partitioning of energy

The sum of squares of the time series elemenssgiven by:

=

) =) x(t)? (A7)
t

Il
=)
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Energy is preserved at any level< [ < J of the transform as given by e&.@), where(

denotes WPT coefficients. l
2l

lel® = > 11 (A8)
p=0
Proof:

Let us first define equivalent sequence filterbuilt from the combination of filter&[n|, g[n]
and down-sampling as:

L—1
Ulpn = Z Up,iVi—1,|p/2] ,n—21—1i (A.9)
i=0
where,
vion = hin]
viin = g[n (A.10)

The discrete Fourier transform (DFT) @fis given by:

N—-1
X(k) =Y a(t)e /2! (A11)
t=0
Similarly follows the DFT of the filtew:
-1
Yipk = [ [ Mipm2mk moa v (A.12)
m=0

where

Moy 2mi mod N = Hami mod N
M 9mi mod N = Goami mod N

. N-1 .
H; = Y h(n)e 72mnF
n=0

- N-1 -
Gi= Y g(n)e 7wt (A.13)
n=0

Parseval’s theorem states that the sum of squares of a sequence wgithNers equal to the
sum of the moduli squared of its DFT divided bBy. Now the WPT coefficients are given by the
convolution of time-domain filter sequence with elementa/hich in frequency-domain can be
expressed as:
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82
—
82
I
—
i
—_

- 2 1
17 = >0 < Do IXE)P Tl
N
p=0 p=0 k=0
1 N—-1 2l—1
= N X (B)* D Yrpl
k=0 n=0
1 Nl 2l 1 1-1 2
= N X (k)| Z H M, pm,2mk mod N
k=0 n=0 |m=0
| N1 =1 ) ) )
= N X (k)|? H I:‘HT"kmodN‘ + ‘GQkaodN‘ } (A.14)
k=0 m=0

The wavelet and scaling filter are chosen in such way that their frequespgnses are mirror

images of each other with respect to frequencyr . Therefore, we get for the normalized
wavelets:

. 2 N 2
’H(w)’ + G(w)‘ —1 (A.15)
Equation eqA.14) can hence be written as:
201 ) 1 N-1 -1 N-1
M = N SoIXE)PTT 10m) = >~ () = ||« (A.16)
n=0 k=0 m=0 t=0



Appendix B

Graphical User Interface

During the course of this project a graphical user interface (GUI) dea®loped to facilitate
the computer modeling and simulation of various WPM configurations. The Gldsedon
Matlab. Two GUIs were developed - one to test WPM operation and thetotdesign wavelets.

B-1 GUI for WPM testing

Fig. B.1 shows the screenshot of the interface used for running the WPM simdatibime
interface can also be used for simulating OFDM. It has provisions to tdstetit wavelet
families like Daubechies, Symlets, Coiflet and Discrete Meyer. Wavelet fanofie#ferent
filter lengths can also be evaluated. Other parameters that can be adjestdteanumber of
carriers of WPM/OFDM systems, the number of symbols per frame, the lerfidghie @yclic
prefix in OFDM, channel conditions, infarctions such as frequenisgisp or time offset errors,
amongst others. Different kind of outputs in the form of Bit-error rateves, scatter plots,
2D/3D energy plots can be obtained with the interface.
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FIGURE B.1: Wavelet Packet Filter Design Program

B-2 GUI for wavelet design

The screenshot of the wavelet filter design interface is shown iBflfy. The interface allows
the entry of wavelet parameters like the filter length, the desired regularifiatpess) and the
order of differentiability. Apart from these mandatory conditions, othetdgets may also be
specified.

The program uses Semi Definite Programming (SDP) to design optimized fdtangléng to the
user specifications. To ensure smooth operation of the programs ateastditional Matlab
packages are needed, namely: - Yalmip, [online available at http://contrtizetd joloef/wik-
i/pmwiki.php] - SeDuMi, [online available at http://sedumi.mcmaster.ca]

B-2-1 Details of the filter design program

The desired length of the filter, regularity and the minimal number of times thatcdimg
function is continuously differentiable are mandatory fields. The fiétdr Lengthmust always
an even number because of the double shift orthogonality constiéiegularityhas to be
smaller or equal to the half of th@élter Lengthbut it should be always greater than 1 in order for



GRAPHICAL USER INTERFACE 283

the filter coefficients to satisfy the wavelet existence constr&ifterentiability, if applicable,
has to be smaller than half of theéRegularity The field Objective Functioris used to set a
scalar expression which has to be minimized. The #alditional Constraintan be used to set
an extra constraint or an extra set of the constraints.

Three optimization methods are used for design of new filters:

e Optimal Convex
e Optimal Convex 2
e Optimal Non-Convex.
Optimal Convex is the most stable of the three methods and works on the aetation se-

quence of filterQ(w) (refer Chapter 9). It has built-in additional continuous differentiability
constraint, opposed to other two methods which don’t support it.

Optimal Convex 2 method works well only for short filters. For large filtegtés this method
becomes unstable. Optimal Convex 2 works on autocorrelation sequiegihecfitter H .

The optimal non-convex method works directly on filter coefficients with comvex constraints
and therefore does not use SDP optimization algorithms. The disadvamtageethod is that
the results are usually local minimum. Furthermore, for large filter lengths thischetis into

numerical problems.

The interface generates output such as:

Filter Impulse Response,

Filter Frequency Response,

Wavelet and Scaling Function,

Wavelet Packet Plot,

Wavelet Packet Spectrum.

The interface has inbuilt diagnostics to test the validity of data entered. oltvalsfies if the
results of the optimization algorithm satisfy the conditions mandated.
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Appendix C

Channel Equalization in WPM by
minimization of peak-distortion

C-1 Introduction

A radio communication link can corrupt transmission of information betweendesend a re-
ceivet 2. Frequency-selective or dispersive channels can lead to a loshofonality between
the signals of a multi-carrier system causing disturbances such as theyntbol interference
(ISI) and Inter-carrier Interference (ICI). Channel equalizaisoa simple technique to counter-
act the deleterious effects of the wireless channel. Channel equalizatig¥PM systems is
unique because the WPM symbols overlap in time. Hence, both inter-symbééietece (1SI)
and inter-symbol inter-carrier interference (IS-ICl) occur andehiavbe factored in the design
of the equalizer. In this chapter we present a basic time-domain equalizbefoompensation
of channel induced distortions on the WPM transmission.

While there exists many techniques for equalization of OFDM channels, taatdxody of
research for WPM systems is limited to the work of Gracibg pnd Jamin 10]. In [14] a
channel equalization method for a generic WPM structure is presentedméthod works by
exploiting the fact that for sufficiently narrow band sequences, ar@laran be modeled as
an attenuation and delay. Thus, equalization is reduced to a problem ohiete the delay
introduced by the channel for each of the wavelet packet sub-@riie accurately determine
the delay experienced by each sub-carrier, a minimum square varigocihen is proposed.
The algorithm is shown to perform well, analytically and through simulation stufdiea simple
delay-channel.

The contents of this chapter have been published @§[ For any material borrowed fronLp6 a written
consent has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc studentdurag Bajpai for his help with the
computer simulations.
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In [10] a distributed equalizer architecture which exploits the tree structure of WePdg-
gested. Since the WPM transceiver is organized as a set of filter-paitwses, the signal can
be accessed at different rates at each stage of the WPM tree stractusgjualized indepen-
dently. The equalizer is modeled as a lattice structure with the series elementsrowuthe
ISI and the shunt elements handling the ICI. The method can be consaeeedlass of post-
detection equalizer and has been demonstrated to work for time-invaremtels.

The disadvantage of both the methods presented above is their high bedenmexity and the
difficulty in scaling them to systems with large number of sub-carriers (say 828). In this

backdrop we a present a simple and efficient equalizer for WPM sysfidresqualizer applies
the principle of peak-distortion criterion where the maximum inter-symbol iatenice induced
by the channel is minimized. The operation of the proposed algorithm is dématsasthrough
numerical simulations. Investigations to understand the impact of the waasiéy flength of

the wavelet filters, and the number of equalizer taps on the performaribe efjualizer are
carried out.

The rest of the chapter is organized as follows - sedlieghdescribes the proposed equalization
technique. The details of the simulation environment and important test paramet@rovided

in sectionC-3. The numerical results of the study are presented and discussed imgaetio
Finally, the chapter concludes with a summary of important inferences in s&&tto

C-2 Equalization by minimization of the peak-distortion

Consider that a data sequence of lendthz[n] = [zoz122...xNn-1], IS transmitted into the
radio channef. Assuming that the channel has a memoryLofwith coefficientsc[n] =
[cocica...cr,—1], the received signaln]| can be given as,

yln] = ln] * cln] + nn]. (1)

Here x stands for the convolution operator anfh| represents the Additive White Gaussian
Noise (AWGN).

The multi-path effects of the wireless channel introduces Inter Symbaifénemce(ISI) and
distorts the transmission of information. Hence, an equalizer is necedstrg eeceiver to
remove ISI and obtain an uncorrupted signal.dri the WPM receiver with the equalizer is
shown. The equalization is carried out in the time-domain before the demodutdiiiata.

3The discussion presented in this section is base&@nghapter-10.
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FIGURE C.1: Blocks of the peak-distortion equalizer.

In order to design an efficient equalizer to remove (or minimize) the chalistertion, we use

a performance metric called the peak-distortion criteria®) 167]. Peak-distortion may be de-
fined as the worst case ISl at the output of an equal&@r Representing the impulse response
of the channel with,, and that of the equalizer with),, we can define a single equivalent filter
¢» as the convolution betweer ande,, as,

qn = Z €jCn—j- (C.2)
Jj=—00

Under these circumstances, two scenarios can be defined to unddéhstaradure of the equal-
ization process,

a. when the equalizer has infinite number of taps, and

b. when the equalizer has a finite number of taps.

C-2-1 Equalizer with Infinite Taps

With an equalizer of infinite taps, the output at ttt sampling instance can be expressed as
[50]: .
Ie=qoli+ > InGrn+ Y €y (C.3)
n#£k j=—o0
In (C.3) the first term represents the desired symbol scaled by a fagttre second term is the
ISI and the third term is AWGN. The peak value of this distorti®fe), is given by p0Q]:

00 00 00
Q)= > lwl= D 1> ejonsyl
n=—00,n#0 n=—oo,n#0 j=—00

Indeed 2(e) is a function of the equalizer tap weights. For an equalizer with infinite taps, it is
possible to select the tap weights such &t) = 0, i.e., the ISI can be completely eliminated.
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Under these circumstances, the tap weights can be determined as,

s 1,n=0
Gn = Z €jCn—j = (C.49)
j=—00 O, n # 0

In the frequency domairn.4) can be written as:

Q) = B()C(f) =1 (C5)
or,
E(f) = C(lf) (C6)

From (C.6) it can be inferred that in order to completely eliminate the ISI, the equalizeddh
be an inverse of the channel filter. For this reason the peak-distortteri@n is also referred to
as zero-forcing equalization.

C-2-2 Equalizer with Finite Taps

Thus far, we have considered an equalizer of infinite length. Let usoosider an equalizer of
finite length, say, BI1+1. Sincee; = 0 for |j| > M, the convolution ot:, with e,, is zero outside
therange-M < n< M+ L — 1. Thatis,g, =0forn<-M andn>M + L - 1, whereL is the
channel length. Witlgy normalized to unity, the peak-distortion becomes

M+L—-1 M+L—-1
Qeoy= >, lml= D, 1> ejenyl. (C.7)
n=—M n#0 n=—Mmn#0 j

Although the equalizer ha&M + 1 adjustable parameters, there aM + L non-zero values
in ¢,. Therefore, it is impossible to completely eliminate the ISI and there will alwaygin
residual interference even when the optimum coefficients are used.

The peak-distortion criterion given irC(7) has been shown to be a convex function of the
equalizer coefficient0]. The general solution of the peak-distortion criterion can be obtained
by the method of steepest descent. The minimum value of the peak-dist@riorcan be
obtained by selecting the equalizer coefficients to fagce 0 for 1 < |nf < M andgy = 1. It

can be given as[]:

Qo= len] (C.8)

In [50] the value ofQ2y has been shown to be less than unity which means that the ISl is not
severe .
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FIGURE C.2: Impulse Response-11 tap Channel

C-3 Simulation Setup

In this section we evaluate the performance of WPM system with the propbsedel equalizer
and present results of the studies. The investigations were carriedtbgbmputer simulations.
The performance metric of choice is the Bit error rate performance (BER)WPM system is
realized using a filter bank structure with 7 levels of decomposition (12&csxr The modula-
tion scheme used is Quadratic Phase Shift Keying (QPSK). The waveletizie is Daubechies
20 (denoted db20) which is of length 40. These simulation parameters wildzktbrough out
the experiments unless stated otherwise.

Two channels were considered for the experiments. The first one isexddent channel pro-
posed by Proakish0] whose impulse response is given by:

henn1 = [0.04, —0.005,0.07, —0.21, —0.5,0.72,0.36,0,0.21,0.03,0.07].  (C.9)

The channel has a memory of 11-taps and does not have any highflegleency selectivity
or nulls. The discrete time channel characteristics of this channel is plottéd.i@.2 and the
amplitude response of this channel is depicted in Eig.

The second channel considered is a 15 tap channel, with high ordegagicy selectivity. This
channel is proposed by European Telecommunications Standards IngETi88 for Digital
Video Broadcastingl[68. The discrete time channel characteristics of this channel is plotted in
Fig. C.4and the amplitude response of this channel is depicted ind=&y.
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FIGURE C.3: Channel Frequency Response-11 tap Channel
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FIGURE C.4: Impulse Response-15 tap Channel
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15 - Tap Channel Frequency Response
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FIGURE C.5: Channel Frequency Response-15tap Channel

C-4 Simulation Results

C-4-1 Performance under Channel Conditioni

The BER performance of the WPM system under Channeith the proposed equalizer is
shown in Fig.C.6 where the notable improvements brought about by the equalizer can be ob-
served. The number of taps of the equalizer used in this experiméft ihe correspond-

ing constellation diagram for the received and equalized data at a SRRIBfare shown in

Fig. C.7. We can observe from Fig:.7 the improvements brought about by the equalizer in
reducing the dispersion of received data.

A further investigation was carried out to verify the impact of the equalizes ¢ the system
performance. FigC.8depicts the BER curves of the WPM system operating with an equalizer
of different number of taps. Barring the case with an equalizer of 5 tapgerformance of the
system for other scenarios is good and comparable. In order to minimizertipexity, for the
channel under consideration, an equalizer of 12 taps would be a@dequa

In Fig. C.9a comparison of the BER performance of the WPM system with differenelsts/
under the same channel conditions anthaap ZF equalizer, is made. It can be seen from
the plots that there are no tangible differences in the performances of Bt §ystem oper-
ating with different wavelets. The only exception is the bi-orthogonal VeayvBior3.5, which
performs worst because the sub-carriers generated by this waneetgitaorthogonal.
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ZF Equalizer Performance with Different taps
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FIGURE C.8: ZF Equalizer performance with different taps for a Jd @hannel

ZF Equalizer Performance with different wavelets
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FIGURE C.9: ZF Equalizer with different Wavelets
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FIGURE C.10: Wavelets of Daubechies Family

In Fig. C.10the BER plots for the WPM system with the Daubechies family of wavelets of
different lengths is plotted. The number of taps of the equalizer is fixed.atVe can observe
from the plots that there is no perceivable difference in the performanithe system.

We now compare the operation of the WPM and OFDM systems under chacoekditions.
The number of OFDM sub-carriers considered 28 and the length of the cyclic prefix (CP)
is taken to be32. The comparison was made for two kinds of equalizer at the OFDM raceive
the first where a frequency domain equalizer is used, and secondaithma domain equalizer

is applied. It can be seen from Fig.11 that when comparing WPM and OFDM systems,
OFDM with frequency domain equalization outperforms WPM. But with equtidiman the
time domain the performances of WPM and OFDM are comparable.

C-4-2 Performance under Channel Condition2

The BER performance of the WPM system under Chagrfel a 200 tap equalizer is shown

in Fig. C.14 The constellation diagram for the received and the equalized sign&dRaof
21dB is shown in FigC.13 The improvements brought about by the equalizer in improving the
BER performance as well as in mitigating the diffusion of received data easbberved from
FiguresC.14andC.13 respectively.

Equalizers of other lengths can also be employed to mitigate the effect ohl#ieoWPM
system performance. In Fi..14a comparison of equalizers with different lengths is shown
below. It can be deduced from the plots that with increasing tap lengthseaghalizer the
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Comparison of OFDM and WPM Performance with same channel
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FIGUREC.11: WPM versus OFDM
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FIGURE C.14: ZF Equalizer performance with different taps for adp Channel

BER performance improves. However, this improvement is at the price ofdeed system
complexity. Thus, there is a trade-off on offer between the complexity oédualizer and the
performance gains it can yield.

In Fig. C.15a comparison of different wavelets for the same channel conditions gimé 200-
tap ZF equalizer is made. The wavelets used for the study are tabulatedeénCdb It can
be seen that shorter the length of the waveform, better the performancewatelet. This is
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ZF Equalizer with different wavelets
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TaBLE C.1: Wavelet Specifications.

Name Short form | Orthonormal?| Length
Haar Haar Yes 2
Daubechies db10 Yes 20
symlet sym10 Yes 20
Coiflet coif4 Yes 24
Discrete Meyer| dmey Yes 102
Bi-Orthogonal | bior3.5 No (5,3)

because the WPM system employs the Discrete wavelet packet tran&uviAT) which is a
lapped transform i.e. the symbols overlap in time. This means the waveforeh&Usd”M are
longer than the transform duration of one symbol. For a filter of ledgtithe overall symbol
length L,,,, with WPM N carriers can be shown to be(]:

Lsym = (Lf—l)(NWPM—1)+1 (ClO)

Therefore, when the length of the wavelet filter is longer, more numbeRW\&ymbols overlap
resulting in higher ISI. To better corroborate this, the effect of the lepfttne wavelet on
the WPM performance operating under Charithebnditions have been plotted in Fig.16
Although the wavelets belong to same family, the ones which are longer caagerd Sl leading
to poorer BER performancé.

A comparison of WPM and OFDM system performances under Chanisedhown in FigC.17.
It can be seen that the performance of WPM and OFDM is comparable fndggrency domain
equalization is used in OFDM. But with a time-domain equalizer the performdr@&DM is
poorer than WPM?

C-4-3 Eye Diagrams

In communication theory, eye patterns (diagrams) are widely used as a tixafrformance
indicator of a system1[67]. The information in digital communications is stored in pulses of
one or zero and when these two pulses are superimposed on eachegtral smes, a pattern
similar to the human eye emergesThe center of the pattern is the point at which the signal
clock samples the signal. Since the signal is digital in nature, it must be compléblyih

low at the sampling point. Hence, apeneye indicates that the signal is fully high or low at
the sample moment. On the other hand, if a signal trace crosses througlethibezythe eye

is partially closedcausing an ambiguity in decision making leading to data errors. Horizontal

“4Since channel-was not severe and could be easily equalized, the length of the wavetsitdidve significant
impact on the WPM system performance.

SUnlike the frequency domain equalizer, the time-domain equalizer forNDBE{stem does not benefit from the
property of circular convolution.

5The pulse is not a sharp rectangle and has a finite rise and fall time.
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Comparison of OFDM and WPM with same equalizer for same channel
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FIGUREC.17: OFDM versus WPM

opening of the eye signifies the jitters or timing errors and vertical openitigeadye determines
the noise margin, i.e. difference between the logic High and logic 1d¥][ Eye diagrams can
also be used to check for ISl in a digital communication syste®7][ It provides an excellent
way to estimate the amount of ISI and the ability of the equalizer to mitigate it. We now sh
the eye diagram of the data at different stages of the transceiver. ¢dhdig. C.18the QPSK
modulated data at the transmitter is shown. Since there is no ISI the eye is coynpjes.
The information bits are modulated by the WPM and then transmitted to the radioatian
be received by the WPM receiver. Figutel9shows the eye diagram of the data received at
the receiver. The received data has inherent overlap due to the WRMIation as well as
ISI induced by the channel; therefore the eyelissed The received data is then equalized
and demodulated by the WPM demodulator. In Fig20the eye pattern at the output of the
equalizer is shown. It is observable from the eye diagram that the egubbz mitigated the
ISI considerably’

"Even after equalization of data there exists a residual ISI. This is bethesqualizer is of finite length and
does not neutralize all of the channel induced artifacts. Howeverntieiat of remnant IS is tolerable and the BER
performance does not suffer much.
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C-5 Conclusion

In this chapter we presented a time-domain equalizer for the mitigation of dhemtifects on
the Wavelet Packet Modulator. The equalizer operated on the principlelldfing the max-
imum inter-symbol interference induced by the channel. Various realistioreis conditions
with different memories and characteristics were applied. Furthermogstigations to under-

stand the impact of:

e the wavelet family,
e length of the wavelet filters, and

e the number of taps of the equalizer,

on the performance of the equalizer were evaluated. The operation @R system were
also compared to the orthogonal frequency division multiplexing. For ni@strel conditions
the equalizer performed adequately yielding significant performance waprents. Results of
the simulation studies illustrated notable enhancement in Bit Error Rate (BER)ympance
for the scenarios considered. The studies of this worked were cdrtfinehannels that were
time-invariant. Furthermore, the equalizer focused entirely on the rembi&@l @nd not ICI).
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Summary

Reconfigurable and Adaptive Wireless Communication Systesbased on Wavelet
Packet Modulators

Wavelet Packet Modulation (WPM) is a multi-carrier transmission techniqueuties orthog-

onal wavelet packet bases to combine a collection of information bits into e Zingposite

signal. This system can be considered as a viable alternative, for @mdmmmunication, to
the popular Orthogonal Frequency Division Multiplexing (OFDM) systeime fain advantage
of WPM is that the transmission characteristics of the system can be adaptediag to the

radio environment to maximize resource utilization.

The WPM is a system under development and has not been studied exitgrisithis research
work the operation of a WPM radio is successfully evaluated. The thesiagly focuses on the
guestion of how efficient and robust wireless radios can be desigitlethe aid of wavelet the-
ory. To do so the challenges involved in the practical implementation of thensysteevaluated
and understood. Suitable mechanisms that address communication theofigoerits such

as Peak-to-average power ratio (PAPR), loss of time/phase/freqegnclironization, channel
equalization are devised and tested.

Furthermore, the advantages of the WPM system for wireless transmissideraonstrated in
three scenarios,namely,

1. Wavelet packets for spectrum estimation.
2. Wavelet packets for dynamic spectrum access.

3. Design of new wavelets based on system requirements.

The efficacy of the proposed algorithms is validated using computer simulaimohsumerical
analysis. The results of the research show that the WPM is an effectilidoa to existing
wireless transmission modes.

Madan Kumar Lakshmanan
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Samenvatting

Reconfigurable and Adaptive Wireless Communication Systembased on Wavelet
Packet Modulators

Wavelet Packet Modulation (WPM) is een multi-drager transmissie techniejetieiik maakt
van een orthogonale wavelet pakket bases om een verzameling @lelf@msignalen te com-
bineren in een enkel composiet signaal.

Dit systeem kan worden beschouwd als een levensvatbaar alterniatenebrede band trans-
missie techniek, voor het populaire Orthogonal Frequency Division Meiipg (OFDM) sys-
teem. Het grote voordeel van WPM is dat de transmissieeigenschappbataysteem kunnen
worden aangepast aan de radio-omgeving om benutting van restairnazimaliseren.

De WPM is een systeem in ontwikkeling en is nog niet uitgebreid bestudeadi.dnderzoek is
het werk van de werking van het nieuwe Wavelet Packet ModulatoMYW&dio is met succes
geévalueerd. Het proefschrift richt zich primair op de vraag hoei@ffie en robuuste draadloze
radioSs kunnen worden ontworpen met behulp van wavelet theorie.

Om dit te doen zijn de uitdagingen van een praktische implementatie van hetrayges-
valueerd en in kaart gebracht. Geschikte mechanismen die gaan over nmateutheorie
figuur-of-verdiensten, zoals Piek-tot-gemiddeld vermogen ratio (PARRIes van tijd / fase /
frequentie-synchronisatie, kanaal egalisatie zijn bedacht en getest.

Bovendien zijn de voordelen van het WPM-systeem voor draadlozeniiasie aangetoond in
drie scenarioSs, namelijk:

1. Wavelet packets voor spectrum schatting.

2. Wavelet packets voor dynamische toegang tot het spectrum.

3. Ontwerp van nieuwe golven op basis van systeem eisen.
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De effectiviteit van de voorgestelde algoritmen zijn gevalideerd met belangemputersimu-
laties en numerieke analyse. De resultaten van het onderzoek toneat &Rl een krachtige
aanvulling op de bestaande draadloze transmissie modi kan worden.

Madan Kumar Lakshmanan
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