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Chapter 1

Introduction

1-1 Background

Trends in wireless communication

The advancements in the field of digital wireless communication have led to many exciting

applications like mobile internet access, health care and medical monitoring services, smart

homes, combat radios, disaster management, automated highways and factories. With each

passing day novel and advanced services are being launched even while existing ones continue

to flourish. While traditionally only voice and data communication were possible, wireless

services have now found applicability in other sectors too including health care, transportation,

security, logistics, education and finance. For example, tele-medicine can render emergent and

easy-to-access health care at distance. Through rural connectivity, people living in remote places

in developing/under-developed nations can be given access to good quality education via long

distance learning programs. In the era of open course ware (OCW), thiscan prove to be a

boundary breaker in spreading top quality educational content to students who hitherto might not

have access to them. Demand for wireless services is thus expected to growin the foreseeable

future.

However, with increasing popularity of the wireless services the requirements on prime re-

sources like battery power and radio spectrum are put to great test. Forexample, currently

most spectrum has been allocated (see fig.1.1(a)), and it is becoming increasingly difficult to

find frequency bands that can be made available either for new servicesor to expand existing

ones. Even as the available frequency spectrum appears to be fully occupied, a survey [1] con-

ducted by the American regulatory body Federal Communications Commission (FCC) in 2002

revealed that much of the available spectrum is underused most of the time [1]. The study [1]

2



Chapter 1 Introduction 3

also showed that only 20% or less of the spectrum is used and that spectrum congestions are

more due to the sub-optimal use of spectrum than to the lack of free spectrum(see fig.1.1(b)).

(a)

 

(b)

FIGURE 1.1: Illustration of sub-optimal utilization of Spectrum.(a) Frequency Allocation in
the region 3-6 GHz. (b) Actual spectral utilization in the same 3-6GHz band. Measurements
taken in an urban area at mid-day with 20 KHz resolution over atime span of 50 microseconds

with a 30 degree directional antenna [1].

Concomitant with the growth of wireless services is the increase in the volume ofdata-exchanged

by a factor of about 10 every 5 years following Moore’s law. For example, the average mobile

broadband connection in the year 2009 generated a traffic of 1.3 gigabytes per month (equivalent

to about 650 MP3 music files). This number is expected to grow to 7 gigabytes of traffic per

month (roughly equivalent to about 3,500 MP3 music files) by 2014 (referto fig.1.2) [2, 3]. The

ten-fold increase in data volume every 5 years corresponds to an increase of the associated en-

ergy consumption by about 20% annually. In fact, the current world-wide energy requirements

of Information and Communication Technology (ICT) systems contributes to nearly 2% of the

CO2 emissions, a figure comparable with the total emissions due to global air travel or about

one quarter of the emissions due to cars and trucks.

Another emerging trend is the demand for higher data rates as exemplified in fig. 1.3 where

the growth of home bandwidth since the 1970s has been shown [4]. Today, UMTS is one

of the fastest solutions on the market that can operate in dispersive environments at a rate of
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FIGURE 1.2: Global Mobile Data Traffic Growth (Mobile traffic will grow by 39 times from
2009 to 2014). Notations in the figure: EB: Exa-bytes (1018 bytes), mo: Month, TB: Terra-

bytes (1012 bytes) [2].

FIGURE 1.3: Growth of home bandwidth since the 1970s [3].

3.84x106 chips but the rapid progress of telecommunication market has created a need for newer

techniques that can accommodate data rates even higher than this.

The need

There is therefore an emergent need for developing energy efficient,green technologies that opti-

mize premium radio resources, such as power and spectrum, even while guaranteeing a desirable
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quality of service. Of signal interest is in the development of a capable radio/PHY layer plat-

form that facilitates optimum utilization of energy in addition to guaranteeing spectral efficiency,

adequate coverage and good Quality of Service (QoS). Spatially, temporally and spectrally lo-

calized transmission strategies which minimize the energy spent to transmit information bearing

symbols will be crucial towards achieving high energy efficiency. Moreover, wireless systems

operate under dynamic conditions with frequent changes in the propagation environment and

user requirements. Thus in a wireless environment the system requirements, network capacities

and device capabilities have enormous variations giving rise to significant design challenges.

All these trends point to an untapped niche available for flexible, reconfigurable systems that

can adapt to its radio neighborhood.

The means

Existing wireless systems are based on the mathematical precept of Fourier transform. In com-

parison to the Fourier transform the recently formulated theory of waveletsoffers many ad-

vantages for the design of sophisticated wireless devices. The suitability ofwavelets for these

applications is in their ability to characterize signals with adaptive time-frequency resolution.

By careful adaptation of the main system parameters according to the radio environment the

operation of wavelet based radios can be optimized to save valuable radio resources.

1-2 Wavelet transform as a tool for extending boundaries

1-2-1 Wavelets and wavelet transform

A wavelet is a waveform of limited duration. As the name suggests, wavelets are small wave-

forms with a set of oscillatory structures that is non-zero for a limited period of time (or

space). The wavelet transform is a multi-resolution analysis scheme wherean input signal is

decomposed into different frequency components with each component studied with resolutions

matched to its time-scales. The Fourier transform also decomposes signals intoelementary

waveforms but the bases used are trignometric functions. Thus, when one wants to analyze the

local properties of the input signal, such as edges or transients, the Fourier transform is not an ef-

ficient analysis tool. By contrast the wavelet transforms which uses irregularly shaped wavelets

offer better prospects of representing sharp changes and local features.

The wavelet transform is used in various applications and is finding tremendous popularity

among technologists, engineers and mathematicians alike. In most of the applications, the power

of the transform comes from the fact that the basis functions of the transform are localized in
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time (or space) and frequency, and offer different resolutions in these domains. These resolu-

tions often correspond to the natural behavior of the process one wantsto analyze, hence the

power of the transform. Such properties make wavelets and wavelet transforms natural choices

in fields as diverse as image synthesis, data compression, computer graphics and animation,

human vision, radar, optics, astronomy, acoustics, seismology, nuclear engineering, biomedical

engineering, magnetic resonance imaging, music, fractals, turbulence, and pure math.

While the wavelet transform is thede jurestandard1 for many signal processing applications, es-

pecially, in the fields of image processing, speech analysis and data compression, the technique

has not been extensively applied to the design of communication systems.

1-2-2 Advantages of wavelet transform for wireless communication

The motivation for pursuing wavelet based systems primarily lies in the freedom they provide to

communication systems designers [5, 6]. Unlike the Fourier bases which are static sines/cosines,

wavelet bases offer flexibility and adaptation that can be tailored to satisfy an engineering de-

mand. This feature is attributable to the fact that the wavelet transform is implemented entirely

using filter bank tree structures obtainable from paraunitary filters2. The freedom to alter the

properties of the wavelet and the filter bank tree structure gives the opportunity to fine tune and

optimize the modulated signal according to the application at hand.

The benefits of wavelet based radios for research and development of energy efficient commu-

nication are summarized in the following sections.

a. Intelligent utilization of signal space

The wavelet based systems are realized from tree structures obtained bycascading a fundamental

Quadrature Mirror Filter (QMF) pair of low and high pass filters. The construction of this tree

structure can be adjusted to come out with an optimum tree structure that catersto various

requirements. The requirements could typically be:

• identification and isolation of time-frequency "atoms" affected by an interfering source

and communicating around the source of interference [7],

• flexibility with time-frequency tiling of the carriers that can lead to multi-rate systems

which can transmit with different rates in different bands [8]. Such a feature can be

exploited in scenarios where the channel characteristics are not uniform.

1Examples include JPEG2000, an image compression standard and MPEG-4 Part14 or MP4, a multimedia
container format standard.

2Paraunitary filters are a class of perfect-reconstrunction filters which generates orthogonal bases
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b. Adaptability by customization of wavelet properties

By careful selection of the fundamental filters which greatly influence the transmission charac-

teristics, it is possible to optimize the system performance in terms of the bandwidthefficiency,

localization of the transmitted signal in time and frequency, minimization of inter-symbol Inter-

ference (ISI), inter-carrier interference (ICI) or peak-to-average-power ratio (PAPR), robustness

towards interference from competing sources. This can also aid in opportunistic communication

(e.g. Cognitive Radio) where unused resources can be cleverly utilized.

c. Flexibility with sub-carriers

The derivation of wavelets is directly related to the iterative nature of the wavelet transform. The

wavelet transform allows for a configurable transform size and hencea configurable number of

carriers. This facility can be used, for instance, to reconfigure a transceiver according to a given

communication protocol; the transform size could be selected according to thechannel impulse

response characteristics, computational complexity or link quality [7].

d. Enhanced multi-access transmission

Wavelets offer a new dimension of diversity called the "Waveform diversity" that can be ex-

ploited to enhance multiple access transmission [9]. The wavelet transform generates wavelet

bases which are orthogonal to one another. By designating these basesto different users in

adjacent cellular communication cells, the inter-cell interference can be minimized.

e. Reduced sensitivity to channel effects

The performance of communication systems is influenced by the kind of modulation scheme

used. The modulation mode in turn is affected by the set of waveforms used.By cleverly altering

the nature and characteristics of the waveforms used the sensitivity of the communication system

to harmful channel effects can be reduced [10].

f. Generic and multi-purpose transceivers

Furthermore, a generic and parameterized wavelet based radio can helpsimplify the system ar-

chitecture by doing away with multiple firmware, software, drivers which indirectly contributes

to reduced power consumption and improved battery life. The radio can be designed merely

by altering the parameters instead of adding/removing hardware componentsto the transceiver

chain.
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g. Optimal power utilization

While there is no explicit relationship between power optimization and waveforms, the nature

and characteristics of the waveform can be altered to suit a set of requirements which can indi-

rectly contribute to a more efficient system resulting in lower requirements of power and energy.

These criteria could typically be:

• minimization of ISI, ICI or PAPR,

• greater tolerance and robustness to time/frequency/phase offset errors,

• robustness towards interference from competing sources,

• possibilities for opportunistic communication (e.g. Cognitive Radio) where unused re-

sources can be cleverly utilized.

h. Reduced complexity of implementation

It has been proved [10] that the complexity of the Wavelet systems is by and large simpler than

OFDM systems. A lower complexity also means lower power requirements in the execution

of the signal processing algorithms. The implementation of Wavelet systems canbe simplified

even further if fast-wavelet transforms are employed.

1-2-3 Application of wavelets for wireless transmission

The wavelet transform holds promise as a possible analysis scheme for thedesign of sophisti-

cated digital wireless communication systems, with advantages such as flexibility of the trans-

form, lower sensitivity to channel distortion and interference and better utilization of spectrum.

Wavelets have found beneficial applicability in various aspects of wirelesscommunication sys-

tems design including channel modelling, design of transceivers, data representation, data com-

pression, source and channel coding, interference mitigation, signal de-noising, energy efficient

networking. Fig.1.4gives a graphical representation of some of the facets of wireless commu-

nications where wavelets hold promise [6].
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FIGURE 1.4: The spectrum of wavelet applications for wireless communication.

1-3 Research goals, original contributions and challenges

1-3-1 Wavelet packet based multi-carrier modulator (WPM)

The promise of wavelets for wireless systems design is exemplified in this research work with

the realization of an orthogonal multi-carrier modulator (MCM) based on wavelet packets3. Or-

thogonal multi-carrier communication is a modulation format that places independent informa-

tion carrying symbols on orthogonal signals. These orthogonal signals are typically equi-spaced

sub-carriers which are modulated to occupy different center frequencies. In traditional imple-

mentations of MCM, such as the Orthogonal Frequency Division Multiplexing(OFDM), the

sub-carriers are Fourier bases (complex exponential functions). Recently, the Wavelet Packet

transform has emerged as an important signal processing tool. The basisfunctions in wavelet

packet representation are obtained from a single function called the mother wavelet through scal-

ing and translations. When the scales and translations are dyadic the resultant basis functions are

orthogonal and span4 embedded subspaces ofL2(R) 5 at different resolutions yielding a Multi

Resolution Analysis. From the perspective of communication system design,this has important

and interesting implications -finite energy signals inL2(R) can be decomposed into orthogonal

subspaces through a wavelet packet transform or conversely information can be combined into

3Wavelet packets are generalized form of wavelets and will be dealt in detain in Chapters 2 and 3.
4The span ofS may be defined as the collection of all (finite) linear combinations of the elements ofS.
5set of square-integrable functions inR
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mutually orthogonal wavelet packet basis functions in a way that they do not interfere with one

another. Since the basis functions and subspaces are orthogonal, such structures can be used for

obtaining orthogonal waveforms leading to the idea of WPM.

The pioneering work on applying the theory of wavelets and wavelet packets for the design of

multi-carrier modulators was carried out by Lindsay [11] who laid out the theoretical founda-

tions to establish the link between wavelet packets and digital communication. He also showed

that the entire WPM transceiver structure can be realized with a pair of conjugate quadrature

mirror filters which satisfy a set of constraints. His idea has since then beentaken forward

by other researchers. In [12] and [10], respectively, the authors study few aspects of applying

wavelet and wavelet packet filters for multi-carrier modulation. The decoding of WPM data

with Maximum likelihood estimators has been addressed by Suzuki [13]. A preliminary study

of an equalization scheme suited for WPM has been conducted by Gracias [14]. In [15, 16] an

investigation on the performance of WPM systems in the presence of time offset is performed.

In [17] its PAPR performances are analyzed. The advantages of the wavelet transform in terms

of the flexibility they offer to customize and shape the characteristics of the waveforms have

been demonstrated in [18–21]. Three use-cases where the waveforms are designed and applied

to optimize the WPM system performance according to specific system demandsare illustrated

in [18–20]. In [21], the work of [18, 19] is extended to establish a unifying mathematical frame-

work where the waveforms are designed according to a pre-defined criteria.

1-3-2 Aim and scope of the thesis work

In spite of the developments mentioned in the previous section, existing knowledge on wavelets

for multi-carrier modulation is limited and the literature on the topic continues to remain sparse.

This lacuna in available knowledge is a key motivation for this PhD work. Furthermore, in the

effectuation of wavelet packet modulator for wireless systems two fundamental questions arise,

namely (see fig.1.5),

a. What are the demonstrable advantages of WPM?

b. What are the challenges in the implementation of WPM?

Answering these two questions form the basis of this thesis work. We confine ourself to the

mathematical modeling and implementation of the Wavelet Packet Modulator (WPM) on a sim-

ulation platform.6

6A preliminary implementation of the WPM algorithms on a FPGA/DSP platform wasalso attempted.
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FIGURE 1.5: Primary questions handled in the thesis work.

a. Demonstrable advantages

In this work we pursue two main advantages of the WPM system:

1. Design of wavelets:The time-frequency characteristics of the the wavelets can be altered

according to a system specification. Hence, by careful selection of the wavelets it is possi-

ble to optimize WPM performance in terms of bandwidth efficiency, frequencyselectivity

of sub-carriers, sensitivity to synchronization errors, PAPR, etc. Furthermore, the WPM

can be efficiently implemented with filter banks which make it convenient for applications

related to digital communications.

2. Frequency selectivity of the wavelets:Another advantage of pursuing WPM systems

is in the promise of better confinement of spectra and lower out-of-band energy spillage.

This ability is due to the fact that WPM symbols overlap in time resulting in greater

localization in frequency. The signal energy can hence be better confined without leaking

into neighboring bands.

b. Implementation challenges

We consider 2 challenges in the implementation of WPM, namely,

1. Performance under loss of synchronization.

2. Peak-to-average-Power (PAPR) ratio performance.

In fig. 1.6 these areas of research have been enlisted in the form of puzzle-pieces. Each piece

in the puzzle represents a research challenge that has to be handled to aidthe actualization

of the WPM system. The challenges are ordered in 5 columns. The first two columns list

the implementation challenges (Items1 to 10). Column 3 enumerates important advantages of
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FIGURE 1.6: Pieces of the Puzzle - realizing the WPM system.

wavelets that have to be demonstrated (Items11 to 15). Column 4 names some of the auxiliary

issues (Items16 to 20) that have to taken into account. In column 5 the issues related to the

practical realization and deployment of the WPM system (Items21 to 24) are listed.

We would like to emphasize here that not all topics listed above have been covered in this

thesis work. For example, channel modeling (Item 8), synchronization of transceivers (Item

10), multiple access communication (Item 15), standardization issues (Item 21) and Proof of

Concept (Item24) have not been taken up. Furthermore, some of the topics have been handled

in detail while others have been treated only preliminarily. Various shades ofred have been used

in fig. 1.6 to indicate the degree to which the topic has been covered in this dissertation. Only

the radio transmission (physical layer) challenges have been considered.

1-3-3 Specifics of the thesis work

In this section we explain in more detail the various activities carried out in the framework of

the PhD (as depicted in fig.1.6).
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a. System implementation on computer platform

A simulation setup in MATLABc©for the implementation of the WPM transceivers was estab-

lished. (Items1, 2, 18 and 19 in fig.1.6).

b. Study of loss of synchronization (Chapter 4)

The performance of the proposed WPM system under loss of time, frequency or phase syn-

chronization was evaluated. The mathematical expressions for inter-carrier interference (ICI)

and inter-symbol interference (ISI) in WPM transmission were derived.(Items3, 4, 5 and 7 in

fig. 1.6)

c. Evaluation of Peak-to-Average-Power Ratio (PAPR) performance (Chapter 5)

The PAPR performance of the WPM system was analysed. Two mechanisms toreduce the

PAPR in WPM transmission were devised. (Item9 in fig. 1.6)

d. A spectrum estimator based on wavelet packets (WPSE) (Chapter 6)

An investigation of wavelet packet transform as a viable spectral analysis tool was conducted.

The main attraction for wavelet packets is the trade-offs they offer in terms of satisfying perfor-

mance metrics such as frequency resolution, side lobe suppression and variance of the estimated

power spectral density (PSD). The performance of the system was evaluated through simulation

studies. The results of the experiments show that the wavelet based approach offers greater flex-

ibility and adaptability apart from its performances which were found to be comparable and at

times even better than Fourier based estimates. (Item13).

e. A wavelet packet transceiver for dynamic spectrum access (WPSE/WPM) (Chapter 7)

A reconfigurable wavelet Packet transceiver for spectral analysisand dynamic spectrum access

was tested. The transceiver consisted of a wavelet packet spectral estimator (WPSE) and a

wavelet packet multi-carrier modulator (WPM). The WPSE senses the radioenvironment to

identify spectrum holes and occupied bands. This information is then used toalter the time-

frequency characteristics of the WPM transmission waveform such that the occupied bands are

evaded. The WPSE uses the same filter bank structure as used for data modulation and hence

does not add to the implementation costs. The performances were compared with architectures

based on FFT/OFDM. The studies showed that WPSE/WPM performed betterthan FFT/OFDM
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in regard to estimation of spectrum and spectral confinement of transmissionwaveforms. This

in turn contributed to better bit-error-rate (BER) performance and bandwidth efficiency. (Items

11, 13 and 17)

f. A framework to design wavelets (Chapter 8)

A filter design framework that facilitated the development of new wavelet bases according to

specific demands was established. The design constraints were expressed as mathematical con-

stricts and suitable optimization tools (including convex optimization and semi-definitepro-

gramming) were employed to solve the problem. The results were then tested foroptimality.

The procedure was illustrated with two examples:

1. maximally frequency selective wavelets which generated transmission waveforms with

compact support in both time- and frequency-domains.

2. wavelets which reduced sensitivity of WPM systems to loss of time synchronization.

Through computer simulations the advantages of the newly designed filter were compared and

contrasted with standard wavelets. (Items12, 16)

g. Equalization of channel (Appendix C)

Channel equalization in WPM is unique because the symbols overlap in time leading to inter-

symbol interference (ISI) and inter-symbols inter-carriers interference (ISCI). To mitigate the

detrimental effect of the channel an algorithm to equalize the channel wasimplemented. (Items

6 and 7 in fig.1.6).

1-3-4 Original contributions of the thesis work

The main contributions of this work are:

1. A wavelet packet analyser for estimation of spectrum (Chapter 6).

2. A transceiver based on wavelet packets for dynamic spectrum access applications (Chap-

ter 7).

3. A framework to design and test new wavelets (Chapter 8).

Other contributions include:
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1. Evaluation of performance of WPM under time/frequency and phase offsets and compar-

ison with OFDM (Chapter 4).

2. Analysis of PAPR performance of WPM and implementation of two PAPR reduction

algorithms (Chapter 5).

3. Implementation of a basic equalizer to aid WPM transmission (Appendix-C).

Some of the related activities accomplished during the course of the thesis work include:

a. Software tools and graphical user interface (GUI) (Appendix B)– A user-friendly GUI ((Item

22 in fig.1.6) was developed to test and run the simulation models for:

• design of wavelets,

• operation of WPM transceiver.

b. Tutorial material – Study materials on the topic of wavelets for wireless communication

were created to promote and motivate more research on the topic [22–25]

1-3-5 Research challenges

A few of the challenges encountered and addressed during the courseof the PhD work are

summarized below:

• System realization and establishment of a simulation environment to test WPM operation.

• Evaluation of the inherent properties of the wavelet packet modulator (in timeand fre-

quency domains) and devise algorithms that they aid WPM transmission.7

• Creation of a generic framework/toolbox to design wavelets.

• Translate system specifications into mathematical expressions to aid design processes.

• Define suitable performance metrics to evaluate WPM system operation.

It must also be stated that since the theory of wavelets emerged from diverse fields, there are no

clear guidelines that can be readily used to design and develop wavelet based communication

systems. Moreover, the nomenclature in the literature on wavelets is diverseand inconsistent.

Therefore, to aid the development of wavelet based radios the notations and conventions had to

be made uniform.
7The WPM transmission is unique because the symbols overlap in both time andfrequency. This means that

existing algorithms used in systems like OFDM cannot be used for WPM. Thisproblem is particularly acute with
regard to maintaining time-synchronization between the transceivers andequalization of channel.
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1-3-6 Research approach and feasibility

The research strategy was theoretical studies and numerical simulation of typical scenario on a

MATLAB c©platform. The tasks specified in the previous section (see fig.1.6) will be handled

individually and when necessary holistically. The feasibility of the research approach will be

demonstrated through simulation studies. The results will also be corroborated with analytical

expressions and formulas. Wherever possible, the performance of theproposed WPM system

will be compared and contrasted with FFT based OFDM systems.

1-4 Organization of thesis work

The dissertation is organized in 9 chapters. The contents provided thus far constitute the first

chapter. The rest of the material is categorized into 3 parts namely, theoretical background (Part

II), implementation challenges (Part III) and demonstration of advantages(Part IV).

Part II - Theoretical background (Chapters 2 and 3) In this part we provide the theoretical

background. In chapter 2, material on the theory of wavelets is provided. And in chapter

3 the wavelet packet modulator, which is the focus of this research work,is introduced.

Part III - Implementation challenges (Chapters 4 and 5) In this dissertation we take up three

of the issues encountered in the implementation of WPM. Each of these challenges is han-

dled in a separate chapter. In Chapter 4 the influence of loss of synchronization (time/fre-

quency/phase) on the performance of the WPM system is analyzed. For each of these syn-

chronization errors a model is presented and theoretical analysis is given for both WPM

and OFDM. The Bit error rate (BER) performance under time offset, frequency offset

and phase noise is investigated by means of simulations studies. The simulations are per-

formed for WPM with different types of standard wavelets and compared toOFDM. In

Chapter 5 the sensitivity of WPM to PAPR is explored.

Part IV - Demonstration of advantages (Chapters 6,7 and 8)In Part IV some of the benefits

of pursuing wavelet based systems for wireless systems’ design are demonstrated. Three

examples are considered: In chapter 6, a spectrum estimator based on wavelet packets is

explained. The proposed method is shown to be efficient in estimation of spectrum for

various sources and the performances comparable with existing techniques.

In chapter 7, a wavelet packet transceiver for spectral analysis and dynamic spectrum ac-

cess is presented. The transceiver consists of a Wavelet Packet Spectral Estimator (WPSE)

and a Wavelet Packet Multi-carrier Modulator (WPM). The WPSE sensesthe radio envi-

ronment to identify Licensed Users (LU) bands and spectrum holes. Thisinformation is

then used to shape the time-frequency characteristics of the WPM transmission waveform
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Chapter Subject matter Item in fig.1.6
1 Introduction -
2 Theory of wavelets -
3 Theory of wavelet packet modulator (WPM) 1,2, 18, 19
4 Study of time, frequency and phase Offset errors 3,4,5, 7, 20
5 Peak-to-average power ratio studies 9, 20
6 Wavelet packet spectrum estimator 13
7 Dynamic spectrum analysis 11, 13, 17 and 20
8 Design of wavelets 12 and 16
9 Conclusion -
Appendix-B Graphical user interface 22
Appendix-C Channel equalization and transceiver synchronization6, 7 and 10

TABLE 1.1: Chapters and contents.

to evade the LU transmission zones. The shaping is done by vacating those sub-carriers

which lie in and around the LU bands. The studies show that WPSE/WPM performs bet-

ter than Fourier based OFDM in regard to bit-error-rate (BER), bandwidth efficiency and

interference to the licensees.

In Chapter 8, a general, unified approach to design and develop orthogonal wavelet packet

bases according to a requirement. To this end, the design criterion and the wavelet con-

straints are first listed. The problem which is originally non-linear and non-convex in

nature is then converted into a tractable convex optimization problem and finallysolved

using suitable Semi Definite Programming (SDP) tools. The proposed mechanism is

demonstrated through two toy examples where families of wavelets which are i) maxi-

mally frequency selective and ii) have the lowest cross correlation energy, respectively,

are developed. The design procedure borrows from the studies conducted in earlier chap-

ters. For e.g. the design of maximally frequency selective filters borrows from the studies

of Chapters 6 and 7 while the construction of filters with low cross correlationuses the

conclusions of chapter 4.

Finally, the dissertation concludes in Chapter 9 with the main conclusions of the work and

recommendations for future research.

Fig. 1.7 depicts the chapters of the thesis work, their organization and the link between the

chapters. Table 1.1 gives the details of the chapters and their relation to the items listed in

fig. 1.68.

8Items 8, 15, 21 and 24 have not been handled in this work.
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Chapter 2

Theory of wavelets

The Wavelet transform is a powerful new tool to analyze data. It can beused to represent

known/unknown signals as a set of known functions, called wavelets, and gain insights on their

characteristics. The tool is used in various applications and is becoming very popular amongst

technologists, engineers and mathematicians alike. In most of the applications,the power of the

transform comes from the fact that the basis functions of the transform have compact support

in time (or space) and are localized in frequency. Furthermore, the technique allows analysis

of signals at resolutions which correspond to the natural behavior of theprocess one wants to

understand. These properties make wavelet transform a natural choice in fields as diverse as

image synthesis, data compression, computer graphics and animation, human vision, radar, op-

tics, astronomy, acoustics, seismology, nuclear engineering, biomedical engineering, magnetic

resonance imaging, music, fractals, turbulence, and pure mathematics [5]. Recently wavelet

transform has also been used in the design of sophisticated digital wirelesscommunication

systems including channel modeling, transceiver design, data representation and compression;

source/channel coding, interference mitigation, signal de-noising and energy efficient network-

ing [26].

In this chapter we provide an overview of the mathematical foundations of thewavelet theory.

The material provided in this chapter will not only aid the understanding of later chapters but

also serve to make the dissertation self-contained. A thorough study of the subject can be found

in [5, 6, 8, 22, 26–39].

We start the chapter with a discussion on the representation of signals in Section 2-1. In this

regard we trace the progression of the field of signal representation from classical Fourier anal-

ysis through Gabor transform to wavelet transform. The sections that follow Section 2-1 will

elaborate further on the theory of wavelets. The two major branches of wavelet transform,

namely Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) are ex-

plained in Section 2-2 and Section 2-4, respectively. Section 2-3 will detailan important facet

20
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of the wavelet theory known as Multi-Resolution Analysis (MRA). This will befollowed by a

discussion on the filter bank implementation of DWT which includes material on analysis and

synthesis of signals using filter banks in Section 2-5. An important variant of the wavelet trans-

form known as Wavelet Packet Transform will be presented in Section 2-6. Finally, a review on

a few popular wavelet families is given in Section 2-7.

Notation

Throughout this dissertation, continuous variables are enclosed in curved brackets, e.g.f(x),

g(t), while discrete variables are denoted in square brackets, e.g.f [n], g[k]. Vectors are denoted

in boldface, e.g.z = z[n] =
[
z0 z1 z2 . . . zN−1

]
. The discrete index for time is represented

with n while t is used to connote the continuous time variable. The corresponding indices in

the frequency domain are denoted withf (continuous) andk (discrete). Finally, variables in

time/space domain are given in small cases while their representation in transform domain (e.g.

Fourier, Gabor, Wavelet) is expressed in upper case.

2-1 Introduction

2-1-1 Representation of signals

Mathematical representation of signals or transforms are a way to describeinformation or data

a physical signal in terms of known mathematical functions. Through transformations valuable

insights on the signal can be gained that can be exploited for various practical purposes. Burke

[30] considers the transforms to bemathematical prismsthat facilitate a better interpretation of

signals just the way optical prisms split light into colors to enable a better understanding of light.

The applications can be as diverse as processing audio/video/image data tomodeling geological

processes such as Tsunami or Earthquakes.

A mathematical transform is usually a linear expression where any given signalf(x) in spaceS

is expressed as a linear combination of a set of known signalsϕi; ∀l ∈ Z as [28]:

f(x) =
∑

i

αiϕi (2.1)

Hereαi are the expansion coefficients or weights which tell how much of the component ϕi is

available in the original signalf(x). The spaceS can be finite dimensional like the set of all real

numbersRn or the set of all real integersZn ;or infinite dimensional like the set of all square

integrable functionsL2 or the set of square sum able functionsl2.
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The set is said to be complete for the space if there exists a dual setϕ̃i; ∀l ∈ Z such that the

expansion coefficientsαi can be computed from them, i.e.

αi = 〈f(x), ϕ̃i〉 (2.2)

Here, the operator〈.〉 represents the inner-product operation. The setϕi; ∀l ∈ Z is considered

to be orthonormal and complete whenϕi = ϕ̃i and

〈ϕi, ϕj〉 = δ[i− j] (2.3)

hereδ[.] is the dirac-delta function. On the other hand the set is said to be bi-orthogonal if it

is complete and the vectorsϕi are linearly independent (but not orthonormal) and satisfy the

relation:

〈ϕi, ϕ̃j〉 = δ[i− j] (2.4)

The choice on the right set of basis functions depends on the type of signal to be represented

and the application in hand.

2-1-2 Fourier analysis

The earliest recorded work on signal representation was conducted by Jean Baptiste Joseph

Fourier in the early 19th century. He investigated problems of diffusion of heat and proved that

periodic functions can be represented as a series of harmonically relatedsinusoids. This work,

popularly known as the Fourier Series expansion, was published in the Théorie Analytique de la

Chaleur (The Analytical Theory of Heat) in the year 1822 [30]. While Fourier series allows rep-

resentation of periodic functions, a variant called Fourier Transform enabled decomposition of

non-periodic functions of finite energy. Fourier Transform is an integral transform that expresses

any complex-valued function of a real variablex(t) in terms of trigonometric basis functions:

X(f) =

∞∫

−∞

x(t) exp(−j2πft)dt, f ∈ R. (2.5)

In signal processing applicationsx(t) exists in the time (or space) domain and the transform

X(f) representsx(t) in the frequency domain. This is analogous to what music composers

do when they represent musical chords in terms of the constituent notes. Through the reverse

transformx(t) can be reconstructed fromX(f) as follows:

x(t) =

∞∫

−∞

X(f) exp(j2πft)df, t ∈ R. (2.6)
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Since the Fourier transform analyses time-based signal to provide frequency information, the

operation is regarded as frequency-amplitude decomposition.

The nice thing about the Fourier operations is that frequency information one obtains after the

transforms often corresponds to the actual physical waves which constitute the signal [30].

2-1-3 Gabor transform

The Fourier Transform offers excellent frequency resolution but fails to provide any information

on the temporal variations1. Furthermore, the sine/cosine functions which are the basis func-

tions of these operations stretch to infinity in time. In order to have a representation that gives

both time and frequency information of the signal studied, Dennis Gabor2 adapted the Fourier

transform to analyze only a small section of the signal at a time. In his adaptation, called the

Short-Time Fourier Transform (STFT), the signal is windowed into small segments (taken to be

stationary) which are then studied independently [8]. For a window functionw(t) the STFT op-

eration maps a signal or functionf(t) into a two-dimensional function of timeτ and frequency

f and can be defined as:

STFT{x(t)} ≡ X(τ, f) =

∫

t

[x(t)w(t− τ)] exp(−j2πft)dt (2.7)

The STFT is a compromise between time and frequency-based views of a signal [40]. A trade

off between the time and frequency resolution is enabled in STFT by altering the dimensions

of the window function. Smaller windows offer better time resolution but poorer frequency

resolution. On the other hand if the size of the window is enlarged to allow betterfrequency

resolution, the time resolution is compromised. Another drawback is that once atime window

is chosen it remains the same for the analysis of all frequencies. Many signals require a more

flexible approach, one where the window size can be varied to accuratelydetermine both time

and frequency. The solution -Wavelet Analysis.

2-1-4 Wavelet analysis

The wavelet transform is a multi-resolution analysis (MRA) mechanism wherean input sig-

nal is decomposed into different frequency components; then each component is studied with

resolutions matched to its time-scales. The Fourier transform also decomposes signals into el-

ementary waveforms, but these bases are trigonometric functions (sines and cosines). Thus,

when one wants to analyze the local properties of the input signal, such asedges or transients,

1The temporal data after a Fourier transform is not totally lost but encoded as phase information, which is usually
inaccessible.

2He won the Nobel Prize in 1971 for his investigation and development of holography.
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FIGURE 2.1: Wavelet Nomenclature: The figure depicts various termsassociated with wavelet
theory and the respective domains, enclosed within close brackets, from which the terminolo-

gies originated.

the Fourier transform is not an efficient analysis tool. By contrast the wavelet transforms which

use irregularly shaped wavelets offer a better representation of sharpchanges and local features.

The wavelet transform gives good time resolution and poor frequency resolution at high fre-

quencies and a good frequency resolution and poor time resolution at low frequencies. Such

an approach is appropriate when the studied signal has high frequencycomponents for short

durations and low frequency components for long durations. Fortunately, the signals that are

encountered in most applications are often of this type.

The theory of wavelets emerged from multiple backgrounds (refer fig.2.1) - as Continuous

wavelet transform (CWT) in Geo-Physics, as sub-band coding in speech and image processing,

as filter Banks from the fields of signal processing and audio compression, as Multi-resolution

Analysis from Computer Vision, as pyramid coding from Image Coding and asatomic decom-

positions in applied Mathematics. These topics had been studied independentlyunder different

names by different scientific communities and only recently did these ideas converge to facil-

itate a unified understanding of the subject. Even though the wavelet nomenclature is diverse,

the wavelet theory can be interpreted broadly in terms of its continuous time anddiscrete time

representations. We shall present these topics in the coming sections.
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FIGURE 2.2: Mexican Hat Wavelet at different translations and scales.

2-2 Continuous wavelet transform

Wavelets for signal representation was introduced by Mortlet and Grossmann [32] who showed

that continuous-time functionsf(t) in L2(R) can be represented by a set of basis functions

{ψκ,χ(t)} obtained by scalingκ and shiftingχ primary functions known as mother wavelets

ψ(t). The continuous wavelet transform (CWT) of any continuous square-integrable function

or signalf(t) in terms of wavelets{ψκ,χ(t)} can be expressed as [29]:

Υκ,χ =
1√
κ

∫ ∞

−∞
f(t)ψ∗

κ,χ(t)dt; ∀κ ∈ Z
+, χ ∈ Z

+. (2.8)

The expression (2.8) is a general form of CWT whereΥκ,χ give the wavelet coefficients of the

continuous signalf(t) as a function of the various scaledκ and the shiftedχ versions of the

mother waveletψ(t). The operator∗ stands for complex conjugation.

The mother waveletψ(t) is continuous in both time and frequency and the set of baby (or

daughter) wavelets functionsψκ,χ(t) are obtained by scalingκ and shiftingχ the mother wavelet

ψ(t) [29]:

ψκ,χ(t) =
1√
κ
ψ

(
t− χ

κ

)
; ∀κ ∈ Z

+, χ ∈ Z
+. (2.9)

The scaling parameter is similar to the frequency variable in Fourier Transform. It describes how

a wavelet basis function is stretched or contracted. On the other hand, theshift variable, also

known as translation parameter, represents the location of the wavelet in time.Both these param-

eters are continuous-real variables. An example of scaled and translated wavelet is illustrated in

fig. 2.2, where a wavelet, popularly known as the Mexican Hat because of its shape, is shown

for three different translation and scale factors. The wavelet shown at the origin represents the

mother wavelet, which is neither shifted nor scaled.
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FIGURE 2.3: Translation-Scale Representation of a Signal.

The original signalf(t) can be reconstructed from wavelet coefficients through the inverse

wavelet transform [41]:

f(t) =
1

cψ

∫

κ

∫

χ

Υκ,χ
1

κ2
ψ̃

(
t− χ

κ

)
dχdκ, (2.10)

whereψ̃(t) is the dual function ofψ(t) and must satisfy the condition [41],

∞∫

0

∞∫

−∞

ψ

(
t1 − χ

κ

)
ψ̃

(
t− χ

κ

)
dχdκ

|κ|3 = δ(t− t1) (2.11)

For orthogonal expansion sets,ψ̃(t) = C−1
ψ ψ(t) where [41],

cψ =

∫

R

∣∣∣ψ̂(ω)
∣∣∣
2

|ω| dω. (2.12)

Here,ψ̂(ω) represents the Fourier transform ofψ(t).

An example of the CWT where a signal of finite support is expressed as a two-dimensional (2D)

and three-dimensional (3D) time-scale array of coefficients is illustrated in fig. 2.3. The signal

considered is a fractal developed by the Swedish Mathematician Helge von Koch. The large
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amplitude in the figure corresponds to high frequency-correlation of the signal with the wavelet

function of a particular scale at a certain time instance.

2-2-1 Orthonormal wavelets

In theory any function which has zero integral can be considered as themother waveletψ(t).

Furthermore, the shift and scale parameters can be real continuous values (κ ∈ Z
+, χ ∈ Z

+).

Hence the CWT, as expressed in eq. (2.8), leads to a representation which is infinitely redun-

dant in nature. Such an expression is unwieldy and difficult to implement. To get around this

problem, a sparse representation which gives perfect reconstructionof the signal while avoiding

redundancy is preferred. The answer isorthogonal wavelets.

Meyer [42] proved that there exist waveletsψ(t) that provide an orthogonal expansion set of

L2(R) and is of the form:

ψα,β(t) =
√
2αψ (2αt− β) ; ∀α, β ∈ Z. (2.13)

In eq. (2.13) α andα are the scaling and shift parameters which vary in discrete integer units,

i.e. α, β ∈ Z. Meyer also showed that these wavelets are generalized form of the Haar function.

The work of Meyer was carried forward by Daubechies [27, 43] who came out with a family of

wavelets which in addition to being orthogonal also had compact support.

2-2-2 Non-dyadic wavelets

It is important to note that Orthonormal wavelets need not always be of the form eq. (2.13)

nor do the scales have to be dyadic. In fact recent studies show that thescaling factor can be

different from 2 and can take any rational valuep/q > 1 [43]. However, in these more general

cases, it may be necessary to introduce more than one (but always a finitenumber) of mother

wavelets.

We would like to mention here that through out this dissertation only orthonormalwavelets of

the form eq. (2.13) will be used. This is because, not only is the theory of dyadic wavelets well

established, the bases with factor-2 are also easy to implement for numericalcomputations.

2-3 Multi-resolution analysis

An important advancement in the field of wavelets was the Multi-resolution Analysis (MRA)

framework developed by Mallat [44]] and Meyer [42]. The MRA allows characterization of
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ψ(t) ∈ L2(R) that result in an orthonormal basis. The starting point in the discussion on

MRA is to consider the wavelet coefficients〈f(t), ψα,β(t)〉 at any scaleα, which covers the

difference in the approximations off(t) at resolutions2α+1 and2α, respectively. To characterize

the successive vector spacesVα in which the functionf(t) is approximated, a complementary

function called the scaling functionϕ(t) is defined3. As in the case of wavelet functionsψα,β(t),

there also exists an extended family of scaling functionsϕα,β(t) which are obtained by time

shifted version of the fundamental scaling functionϕ(t) [31]:

ϕα,β(t) = 2
α/2ϕ(2αt− β), ∀β ∈ Z ϕ ∈ L2 (2.14)

The approximation subspacesVα spanned by the scaling functionsϕα,β(t) over integers−∞ <

β <∞ are defined by:

Vα = Span
β

{ϕβ(2αt)} = Span
β

{ϕα,β(t)} (2.15)

Low values ofα provide coarse representation of a signal while higher values ofα represent

the finer details. MRA requires the spacesVα spanned by the scaling functionsϕα,β(t) to have

finite energy and ordered as a nested approximation space as [31]:

0 · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · ·L2 (2.16)

i.e.:
Vα ⊂ Vα+1 ∀α ∈ Z

⋂

α∈Z
Vα = {0}

⋃

α∈Z
Vα = L2(R)

(2.17)

Eq. (2.17) implies that the space that contains high resolution approximates of a signal will also

contain information on its lower resolution representation. The nested vectorspaces spanned by

the scaling functions are illustrated in fig.2.4.

The MRA imposes strict restrictions on what the scaling functionϕ(t) can be. One of the

conditions is that there existsweightsh[k) such that the scaling functionϕ(t) (which spansV0)

can be expressed as a weighted sum of shifted versions ofϕ(2t) (which spansV1), i.e. [31]:

ϕ(t) =
∑

k

h[k]
√
2ϕ(2t− k), k ∈ Z (2.18)

3The scaling functions are also called father wavelet. The father wavelet acts with the mother wavelet to yield a
family of baby wavelets.
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FIGURE 2.4: Spaces Spanned by the Scaling Functions.

FIGURE 2.5: Spaces Spanned by the Scaling Functions and Wavelets.

whereh[k] denotes the scaling function coefficients. This equation shows that scalingfunction

can be constructed by the sum of its half-length translations.

There are other restrictions on the nature ofϕ(t) andψ(t) which are usually determined by the

scaling coefficientsh[k]. We shall delve on them in Chapter 9 where the design of wavelets is

discussed in detail.

As mentioned earlier, the waveletsψ(t) in MRA are defined as orthogonal bases that span

the differences between the spaces spanned by the scaling functions atvarious scales. Let the

subspace spanned by the wavelet beWj−1, then the function spaces covered by the scaling

functionsVα can be written as:

V1 = V0 ⊕W0

V2 = V1 ⊕W1 = (V0 ⊕W0)⊕W1

...

Vα+1 = Vα ⊕Wα =
α
⊕
l=0

Wl ∀α ∈ Z

(2.19)

Nested vector spaces spanned by the scaling function and wavelet vector spaces are illustrated

in fig. 2.5.

It should be noted that the spaceW0 spanned by a wavelet is actually a subspace ofV1 (W0 ⊂ V1).

Therefore there exists a corresponding orthonormal basis of waveletsdefined by a weighted sum
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of shifted scaling functionϕ(2t) similar to eq. (2.18),

ψ(t) =
∑

k

g[k]
√
2ϕ(2t− k), k ∈ Z. (2.20)

In eq. 2.20, g[k] denotes the wavelet function coefficients. Because of the orthogonality con-

dition V0⊥W0⊥W1⊥ · · ·⊥Wα the scaling and wavelet coefficients are related to each other by

[8, 29]:

g[k] = (−1)kh[L− 1− k], for h[k] of length L. (2.21)

2-4 Discrete wavelet transform

For practical applications the continuous wavelet transform is not useful and therefore a discrete

version of the wavelet transform is preferred. Assuming an orthogonaltransform, the forward

discrete wavelet transform (DWT) of a discrete signal or functionf [n]n = 0, 1, 2...M − 1 be-

longing tol2(Z) is defined as4 :

λα,β = 〈f [n], ϕα,β [n]〉 =
1√
M

∑

n

f [n]ϕα,β [n] =
1√
M

∑

n

f [n]2
α/2ϕ[2αn− β] (2.22)

γα,β = 〈f [n], ψα,β [n]〉 =
1√
M

∑

n

f [n]ψα,β [n] =
1√
M

∑

n

f [n]2
α/2ψ[2αn− β] (2.23)

Here,λα,β andγα,β are the scaling and wavelet transform coefficients and1√
M

is the normal-

ization factor. Usually, the value ofM is limited by the desired resolutionα and is taken to be

M = 2α.

The inverse transform to approximatef [n] in terms of the scaling functionsϕα,β [n] is given as

[31]:

f [n] =
1√
M




∞∑

α=−∞

∞∑

β=−∞
λα,βϕα,β [n]


 (2.24)

4For the discrete version the notation of the time unit has been changed fromt 7→ n



Chapter 2 Theory of wavelets 31

This can be rewritten at a desired resolution spaceVα0 by a series sum of scaling function of

subspaceα0 and wavelet functions of subspaceα = α0 → ∞ as follows [31]:

f [n] =
1√
M




∞∑

β=−∞
λα0,βϕα0,β [n]

︸ ︷︷ ︸
Vα0

+
∞∑

α=α0

∞∑

β=−∞
γα,βψα,β [n]

︸ ︷︷ ︸
⊂Wα




(2.25)

The parameterα0 in eq. (2.25) is an integer which sets the coarsest level of approximation of

the functionf [n], the details of the which are filled by its projection onto the wavelet spaces

Wα. In terms of the function spaces the resolutionNr at whichf [n] is approximated can be

given as:

VNr = Vα0 +
Nr−1∑

α=0

Wα (2.26)

2-5 Filter bank representation of DWT

One of the breakthroughs of wavelet transform was the possibility of implementing the DWT

algorithm using filter banks. Mallat [37, 38, 44] showed that it is possible to perform DWT

decomposition and reconstruction using 2-channel filter banks through ahierarchical algorithm

known as the pyramidal algorithm. This meant that results of wavelet theory could be developed

entirely using filter banks. In the next two sections we shall see how this is done.

2-5-1 Analysis filter bank

We start by considering the discrete variant of eq.(2.18) which expresses the scaling functions

φ[n] as a series sum of shifted versionsφ[2n] [31],

ϕ[n] =
∑

k

h[k]
√
2ϕ[2n− k], k ∈ Z, (2.27)

Applying the transformn→ 2αn− β we obtain,

ϕ[2αn− β] =
∑

k

h[k]
√
2ϕ[2(2αn− β)− k]

=
∑

k

h[k]
√
2ϕ[2α+1n− 2β − k]

=
∑

m=2β+k

h[m− 2β]
√
2ϕ[2α+1n−m] (2.28)
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Similarly, considering the discrete version of eq. (2.20)

ψ[n] =
∑

k

g[k]
√
2ϕ[2n− k], k ∈ Z, (2.29)

and applying the transformn→ 2αn− β we obtain,

ψ[2αn− β] =
∑

k

g[k]
√
2ϕ[2(2αn− β)− k]

=
∑

k

g[k]
√
2ϕ[2α+1n− 2β − k]

=
∑

m=2β+k

g[m− 2β]
√
2ϕ[2α+1n−m] (2.30)

The DWT coefficients at scaleα by coefficients at the higher scaleα+ 1 can be as follows:

λα,β = 〈f [n], ϕα,β [n]〉 =
1√
M

∑

n

f [n]ϕα,β [n] =
1√
M

∑

n

f [n]2
α/2ϕ[2αn− β] (2.31)

Substituting eq. (2.31) into eq. (2.31) we get,

λα,β =
1√
M

∑

n

f [n]2
α/2

∑

m=2β+k

h[m− 2β]
√
2ϕ[2α+1n−m]

=
1√
M

∑

m=2β+k

h[m− 2β]
∑

n

f [n]2
α+ 1/2ϕ[2α+1n−m]

=
1√
M

∑

m=2β+k

h[m− 2β]λα+1,β (2.32)

Similarly, we find

γα,β = 〈f [n], ψα,β [n]〉 =
1√
M

∑

n

f [n]ψα,β [n] =
1√
M

∑

n

f [n]2
α/2ψ[2αn− β] (2.33)

Substituting eq. (2.31) into eq. (2.33), yields

γα,β =
1√
M

∑

n

f [n]2
α/2

∑

m=2β+k

g[m− 2β]
√
2ψ[2α+1n−m]

=
1√
M

∑

m=2β+k

g[m− 2β]
∑

n

f [n]2
α+ 1/2ψ[2α+1n−m]

=
1√
M

∑

m=2β+k

g[m− 2β]γα+1,β (2.34)

Eq. (2.32) and eq. (2.34) imply that wavelet and scaling DWT coefficients at a certain scale can

be calculated by taking a weighted sum of DWT coefficients from higher scales. This can be
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FIGURE 2.6: 2-Channel Analysis Filter Bank [31].

FIGURE 2.7: 3-Stage analysis tree [31].

viewed as convolution between the DWT coefficients at scaleα + 1 with wavelet and scaling

filter coefficients and subsequently sub-sampling each output with factor-2 to obtain new wavelet

and scaling DWT coefficients at scaleα. Therefore, we can implement eqs. (2.27) and (2.29)

by a 2-channel filter bank as illustrated in fig.2.6.

The 2-channel filter bank first splits the input signal in two parts and filtersone part with filterh

and the other with filterg. Both the filtered constituents are then sub-sampled by 2. Each output

component will therefore contain half the number of samples and span half of the frequency

band compared to the input signal.

The complete representation of the DWT can be obtained by iteration of the 2-channel filter

bank and taking repeatedly scaling DWT coefficientsλ as input. The number of stages in the

iteration process will determine the DWT resolution and therefore the number of channels.

The example of a two band analysis tree with three stages is graphically shownby fig. 2.7. The

input signalf has 512 samples and contains frequencies that lie between 0 andπ. The resulting

decompositions together will still contain 512 samples and span the same frequency band as the

original signal but these will be decomposed in different DWT coefficients.

The sub-band structure of wavelet decomposition in frequency domain for a 3-stage analysis is

illustrated in fig.2.8.
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FIGURE 2.8: Frequency bands for the 3-Stage analysis tree [31].

2-5-2 Synthesis filter bank

The reconstruction formula is derived by considering a signal in theα+ 1 scaling spacef [n] ∈
Vα+1 as [31]:

f [n] =
1√
M




∞∑

β=−∞
λα+1,βϕα+1,β [n]


 =

1√
M




∞∑

β=−∞
λα+1,β

√
2α+1ψ[2α+1n− β]


 .

(2.35)

This can be expressed in terms of the next scale as [31]:

f [n] =
1√
M


∑

β

λα,β2
α/2ϕ[2αn− β] +

∑

β

γα,β2
α/2ψ[2αn− β]


 . (2.36)

Substituting the 2-scale equations eq. (2.27) and eq. (2.29) into eq.2.36, we get

f [n] =
1√
M


∑

β

λα,β
∑

m=2β+k

h[m− 2β]2
(α+ 1)/2ϕ[2α+1n−m]




+
1√
M


∑

β

γα,β
∑

m=2β+k

g[m− 2β]2
(α+ 1)/2ϕ[2α+1n−m]


 . (2.37)

Multiplying both sides of equation eq. (2.37) byϕ[2α+1n−β′] and taking the summation allows

us to describe the DWT coefficients at higher scales by those of the lower scale [31]:

λα+1,β =
∑

m

λα,βh[β − 2m] +
∑

m

γα,βg[β − 2m] (2.38)
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FIGURE 2.9: 2-Channel Synthesis Filter Bank.

FIGURE 2.10: Synthesis Tree.

The expression eq. (2.38) implies that the DWT coefficients at certain scale levelα + 1 can

be reconstructed by taking a combination of weighted wavelet and scaling DWT coefficients at

previous scaleα.

Introducing, two new variableŝh[n] andĝ[n] which are time-reversed versions ofh[n] andg[n],

i.e., ĥ[n] = h[−n] and ĝ[n] = g[−n], eq. (2.38) can be described by the 2-channel synthesis

filter bank, illustrated in fig.2.9.

The 2-channel synthesis filter bank performs operations which are exactly opposite to those of

analysis filter bank discussed in the previous section. The wavelet and scaling DWT coefficients

are first up-sampled by factor-2 and after that the wavelet function DWTcoefficients are filtered

with HPF ĝ while scaling function DWT coefficients are filtered with LPFĥ. The two filtered

signals are then added to each other to construct DWT coefficients at higher scale.

The decomposition of a signal in terms of coefficients is called discrete wavelet transform. In

order to reconstruct the original signal from coefficients we can applythe inverse wavelet trans-

form, abbreviated IDWT. The IDWT can be efficiently implemented by iterating the 2-channel

synthesis filter bank in the same manner like we have done in the previous paragraph for the

2-channel analysis filter bank. The example of 3-stages synthesis tree isillustrated in fig.2.10.
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FIGURE 2.11: Discrete Wavelet Transform of the Noisy Doppler (timedomain).

FIGURE 2.12: Discrete Wavelet Transform of the Noisy Doppler (time-scale domain).
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If the assumption of orthogonality is valid the reconstructed signal is merely a (overDelta)

delayed version of the input signal, i.e.x[n] = y[n − ∆]. The filter banks that satisfy this

property are called perfect reconstruction filter banks.

Fig. 2.11depicts the decomposition of a noisy Doppler function into DWT coefficients atdiffer-

ent scales. In this figure we can see how the time-varying frequency signal is described by the

wavelet transform as a function of scale and translation index. A more commonand compact

figure of DWT performed on the same signal is shown in fig.2.12. In this representation the

depicted colors contain the scale information.

2-6 Wavelet packet transform

The wavelet transform is implemented as a non-uniform filter bank where only the low pass

(scaling) branches are iteratively decomposed. The wavelet packet transform is a generalized

form of the wavelet transforms where the tree structure used to implement thewavelet algorithm

is decomposed on the high pass (wavelet) as well as the low pass filter branches. The original

investigation on the topic was carried out by Coifman and Meyer [42, 45]. And it was followed

by Wickerhauser [46, 47] who constructed uniform wavelet packet trees and demonstrated its

operation for acoustic signal compression. Because the high frequencies are decomposed in

the same manner as low frequencies the wavelet packet transform has evenly spaced frequency

resolution. Fig.2.13shows the frequency bands of a 3-stage wavelet packet tree.

The filter bank structure for wavelet packet transform usually expands to a full binary tree5. In

order to make clear the distinction between different sets of coefficients welabel each wavelet

packetξ[n] by the level-l which corresponds to the depth of the node in the tree and by the

current positionp of the node at a given level. Wavelet packet decomposition recursivelysplits

each parent node in two orthogonal sub-spacesW p
l located at the next level [48]

W p
l =W 2p

l+1 ⊕W 2p+1
l+1 (2.39)

The subspaces given in eq. (2.39) are those spanned by the basis functions of wavelet packets

W p
l = span

{
2l/2ξpl [2

ln− k]
}

(2.40)

Wavelet packet coefficientsξ[n] at a certain level are calculated by convolving the wavelet and

scaling filter with wavelet packets coefficients from a previous level. This action is performed

repeatedly for all wavelet packets until the full binary tree is obtained for the desired depth.

5Arbitrary pruning of the full binary tree also lead to a basis for square summable spacesl2(R).
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FIGURE 2.13: Frequency Bands for 3-Stage Wavelet Packets Tree.

FIGURE 2.14: 3-Stages Wavelet Packet Analysis Tree.

The wavelet packets coefficientsξ2p+1
l+1 [n] are generated using the scaling filter and coefficients

ξ2p+1
l+1 [n] which are created using the wavelet filter [11, 48]

ξ2pl+1[n] =
√
2
∑

k

h[k]ξpl [2n− k]

ξ2p+1
l+1 [n] =

√
2
∑

k

g[k]ξpl [2n− k] (2.41)
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FIGURE 2.15: 3-Stages Wavelet Packets Synthesis Tree.

The expression (2.41) shows the recursive equation for wavelet packets generation. In theregu-

lar DWT decomposition for each additional level we need only to perform a single iteration of a

2-channel filter bank while in the wavelet packet transform the number ofiterations is exponen-

tially proportional to the number of levels. Therefore, the wavelet packettransform has higher

computational complexity when compared to regular DWT. By utilization of the fast filter bank

algorithm the wavelet packet transform requiresO(N log(N)) operations, similar to FFT while

DWT needs onlyO(N) calculations [10].

Fig. 2.14illustrates the full binary tree for a 3-stages wavelet packet analysis.

The reconstruction of wavelet packets is also performed in an iterative method. For each pair of

wavelet packets coefficients at levell of the tree we can calculate wavelet packets coefficients at

the previous levell − 1 by:

ξpl [n] =
∑

k

h[k]ξ2pl+1[2n− k] +
∑

k

g[k]ξ2pl+1[2n− k] (2.42)

Fig. 2.15depicts the 3-stage wavelet packets synthesis tree.

Fig. 2.16portrays the wavelet packet decomposition of the noisy Doppler function at different

scales. The same noisy Doppler signal as used in the DWT example has also been used here.
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FIGURE 2.16: Discrete Wavelet Packet Transform of the Noisy Doppler. (a) Tree Structure,
(b) Wavelet Packet transform in time-scale domain.

2-7 Wavelet types

The wavelet transform is a generic tool with infinitely many wavelets. The nature of the wavelet

is entirely determined by the filters which characterize it. Each wavelet has certain distinguish-

ing characteristics that make them more suitable for one application than other.Therefore during

the design of a system careful considerations of the different waveletproperties should be made

according to the system requirements.

2-7-1 Wavelet properties

Many considerations go into the design of a wavelet system including properties such as orthog-

onality, compact support, symmetry, and smoothness. Here we shall discuss a few important

ones.

i. Compact support

This property ensures that the wavelet has a finite number of non-vanishing coefficients and that

the filter banks used to derive the wavelets are of finite length [31]. Compact support is defined

by the length of the filter. In order to keep the computational complexity to the minimum

usually shorter filters are preferred. However, a longer filter gives more freedom to fine tune

other wavelet properties like orthogonality or regularity.

ii. Para-unitary Condition

The para-unitary condition is essential for many reasons. Firstly, it is a prerequisite for gener-

ating orthonormal wavelets [8, 29]. Second, it automatically ensures perfect reconstruction of
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the decomposed signal [29] i.e., the original signal can be reconstructed without amplitude or

phase or aliasing distortion, if the filter banks used satisfy the para-unitary condition. A rational

transfer functionA(z) is said to be para-unitary when it obeys the relatioñA(z)A(z) = 1. Here
˜A(z) is the para-conjugate ofA(z) and is given as ˜A(z) = A∗(z−1) where the superscript∗

denotes the conjugation of the coefficients. Properties 1 and 2 are necessary and sufficient con-

ditions for the wavelets to be realized. However, they may not always guarantee the generation

of regular and well shaped wavelets. Quite often the wavelets can be irregular or even fractal

shaped. Therefore to ensure smoothness or regularity of the wavelets the additional property of

regularity is important.

iii. Regularity

This property is a measure of smoothness of the wavelet. The regularity condition requires

that the wavelet be locally smooth and concentrated in both the time and frequency domains.

It is normally quantified by the number of times a wavelet is continuously differentiable. The

simplest regularity condition is theflatnessconstraint which is stated on the low pass filter. A

LPF is said to satisfy aKth order flatness (or K-regular) if its transfer functionH(z) contains

K zeroes located at the Nyquist frequency (z = −1 or ω = π). ParameterK is called the

regularity order and for a filter of lengthL it satisfies the relation0 ≤ K ≤ L/2. K-regularity

is also an important measure for wavelets because it helps to reduce the number of non-zero

coefficients in the high-pass sub-bands and it is one of the easiest waysto determine if a scaling

function is fractal.

Another way to determine the regularity of the wavelets is the number of vanishing moments of

the waveletψ(t) and scaling functionsφ(t) [6]. This number is used for the dual vanishing mo-

ments to determine the convergence rate of the multi-resolution projections. Thejth moments

of the wavelet and scaling functions,mw(j) andms(j), respectively, are defined in continuous

time domain as follows [31]:

mw(j) =

∫
tjψ(t)dt

ms(j) =

∫
tjφ(t)dt (2.43)

Usually the more contribution from the zero wavelet moments of a wavelet, the smoother will be

its scaling function. However this is not a tight condition. The smoothness is actually defined by

the continuous differentiability of the scaling function. There are two ways inwhich smoothness

can be defined: local by the Hölder measure and global by the Sobolev measure. Different
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measures of smoothness are utilized based on the application in hand. In this dissertation we

use the K-regularity as the true measure of smoothness.

iv. Symmetry

Symmetrical wavelets have a feature that the transform of the mirror of an image is the same

as the mirror of the wavelet transform. None of the orthogonal wavelets except Haar wavelet

is symmetric. Although, requiring symmetric wavelets involuntarily means that wavelets are

not orthogonal, there are some applications that prefer symmetric wavelets above orthogonal

ones. For instance image compression techniques like JPEG2000 uses bi-orthogonal symmetric

wavelets. Because by compression of an image we discard one part of thewavelet coefficients

containing high detail, the perfect reconstruction has become impossible anyhow. The fulfill-

ment of symmetry property in JPEG2000 on the other hand results in more natural, smooth

images.

2-7-2 Popular wavelet families

A wavelet is defined by the choice of low pass filter used, obtained after satisfying the compact

support, regularity and para-unitary conditions. For a filter of lengthL this is essentially solving

L equations of whichL/2 come from the para-unitary constraint andK from the regularity/flat-

ness constraint. The remainingL/2 − K conditions offer the freedom to establish a desired

wavelet property such as frequency selectivity.

a. Daubechies

The Daubechies are a family of compact supported orthonormal wavelets with the highest degree

of smoothness. It was derived by Ingrid Daubechies [27] who used all the degrees of freedom

K to generate a wavelet family of maximum regularity for a given filter lengthL, or minimum

L for a given regularity [31]. This she did by imposing the maximum number of zero moments

to the wavelet function in the vanishing moments’ condition.

b. Coiflet

Coiflets are a variation of the Daubechies wavelets. They are so named because it was derived

by I. Daubechies at the behest of R. Coifman who suggested the construction of an orthonormal

wavelet basis with vanishing moment conditions for both wavelet and scaling functions (unlike

Daubechies where only the wavelet functions have zero moments). The wavelet function has2L

moments equal to0 and the scaling function has2L− 1 moments equal to0.
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Name Compact Support Orthogonality Symmetry K-regularity
Haar 2 Yes Yes 1
Daubechies L Yes No (Far from) L/2

Symlets L Yes No (Near from) L/2

Discrete Meyer 102 Yes No 1
Coiflet L Yes No (Near from) L/6

Bi-orthogonal (L1,L2) No Yes ≈ (L1/2, L2/2)

TABLE 2.1: Standard Wavelet Specifications.

c. Symlet

The symlet family of wavelets is another variant of the Daubechies family whicharenearly-

symmetrical(as opposed to being symmetrical). These modifications were also proposedby I.

Daubechies and the properties of the two wavelet families are similar.

In Table2.1 we list some of the most popular wavelets today and give their most important

properties.

2-8 Summary

In this chapter we presented the basics of the theory of the wavelet transform and explained how

the discrete wavelet transform can be efficiently implemented with the Mallat’s pyramidal tree

algorithm using filter banks. Due to their ease of implementation and the flexibity they provide,

wavelets have been applied in diverse fields. Recently, wavelets have been also proposed as a

candidate for multi-carrier modulation (MCM). In the next chapter we show how the theory of

wavelets and wavelet packets can be applied for MCM.
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Wavelet packet modulator

Wavelets, filter banks and multi-resolution analysis which were developed independently in the

fields of applied mathematics, signal processing, and computer vision, respectively, have re-

cently converged to form a single theory. In the previous chapter we sawhow the theory of

wavelets emerged as a natural extension to traditional signal processing tools like Fourier trans-

form. In this chapter we shall see how a multi-carrier communication system canbe constructed

with wavelets and wavelet packets.

Multi-carrier modulation is a method where the data to be transmitted is divided into several

parallel data streams or channels, one for each sub-carrier. Multi-carrier modulation possesses

several properties which make it an attractive approach for high speedwireless communication

networks. Among these properties is the ability to efficiently access and distribute multiplexed

data streams and a reduced susceptibility to impulsive as well as to narrowband channel distur-

bances.

In existing multi-carrier transmission schemes, such as the popular orthogonal frequency divi-

sion multiplexing (OFDM), information carrying bits modulate orthogonal trigonometric func-

tions which are then added to obtain a composite signal. These techniques useFourier trans-

forms and are particularly efficient with regard to bandwidth utilization and simplicity of transceiver

design. However, they are not without fault - since the building blocks ofOFDM are sine/cosine

functions which oscillate to infinity in time, the signals usually have to be truncated resulting in

deterioration of performance. Further more the basis functions are static and hence the trans-

mission waveforms cannot be altered according to the demands of the wireless transmission.

With an ever increasing demand for high quality wireless services, there is agrowing interest

towards alternative orthogonal basis functions that can yield better performances in relation to

OFDM. It is in this context that that the mathematical precept of wavelets and wavelet packets

hold promise.

44
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In this chapter we explain how the theory of wavelets and filter banks can beused to construct

a new multi-carrier modulation called the wavelet packet modulator (WPM). Thetheoretical

background presented in this chapter will serve as an important prelude toChapters 4-9 where

we address various issues related to the implementation of WPM. But even before we introduce

WPM, we quickly review OFDM and other filter bank based multi-carrier systems. This discus-

sion on alternative MCM techniques will aid in the better understanding of the WPM technique.

The contents of the chapter are divided into five sections. Section3-1 gives an overview of ex-

isting modulation techniques currently in use for wireless data transmission. Section 3-2details

the most popular MCM technique, namely, the Orthogonal Frequency Division Multiplexing or

OFDM. This discussion on OFDM will be followed by an overview of Filter bank based MCM

methods in Section3-3. Section 3-4 introduces the WPM system implementation. And finally

to round off the chapter a summary of the contents is outlined in Section3-5.

3-1 Modulation techniques for wireless communication

In telecommunication systems, modulation is a process where information carrying digital bits

are mapped into waveforms (or air waves) so that the message can be physically transmitted.

This is done by varying the phase, frequency or amplitude of the waveforms in accordance with

the content of the message. While different wireless standards may differfrom one another

substantially, the air interfaces of all radio platforms operate under one ofthe three fundamental

modulation modes, namely, single-carrier (where the information bits modulate a single wave-

form or carrier), multi-carrier modulation (where the data is divided into several parallel data

streams or channels, one for each sub-carrier) or spread-spectrum (where the signal is transmit-

ted on a bandwidth considerably larger than the frequency content of theoriginal information).

Wireless communication systems can hence be viewed as trans-multiplexers characterized by

the kind of waveforms they transmit. The properties of the waveform, i.e. the timespread,

spectral footprint, shape and the number of carriers, determine the nature of the radio.

3-1-1 Single carrier transmission

In a single carrier system the base band signal modulates the carriers using one of the character-

istic frequency, phase, or amplitude [49, 50]. Fig. 3.1shows the blocks of a typical narrowband,

single carrier communication system. At the transmitting end, a source generates an arbitrary

stream of data derived from the source alphabet. This stream of data is then linearly modulated

by a pulse shaping filterS(f) and then transmitted to the channel. At the receiver the received

signal is demodulated and decoded by a receiving filterU(f) and after further processing the

data is estimated.
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FIGURE 3.1: Baseband equivalent of a narrowband communication system [51].

For digital signals, the information is in the form of bits or collections of bits called symbols,

which are modulated onto the carrier. When higher bandwidths (data rates)are used, the dura-

tion of one bit or symbol of information becomes smaller. At the same time the systembecomes

more susceptible to loss of information from impulse noise, signal reflections and other impair-

ments. These impairments can hinder recovery of the transmitted information. Inaddition, as

the bandwidth of the single carrier system is made larger its vulnerability to channel dispersion

is also increased. Therefore this method is not preferable in practice.

3-1-2 Multi-carrier transmission

In the past decade the rapid progress of telecommunication market has opened niches for new

techniques that can accommodate high data rates without loss in performance. In conventional

single-carrier communication systems the data is transmitted sequentially and therefore the du-

ration of each symbol is inversely proportional to the data rateRs. Higher data rates result in

shorter symbol duration. The problem however arises in dispersive channels when the duration

of transmitted symbols becomes shorter than the delay introduced by the channel. As a result

the received symbols are widely spread in time causing Inter Symbol Interference (ISI). The

amount of ISI in a given channel increases with the data rateRs limiting the connection speed.

ISI can be significantly reduced by employment of multi-carrier modulation (MCM) technique.

MCM subdivides the total bandwidth intoN narrow channels, which are transmitted in parallel.

The original data stream at rateRs is divided intoN streams each having data rate ofRs/N

and therefore the symbol duration isN times longer, i.e.TMC = NT . Fig. 3.2 shows the

Time-Frequency footprints of single and multi carrier modulated signals.

Multi-Carrier Modulation (MCM) is the principle of transmitting high data rate by dividing the

stream into several parallel bit streams, each of which has a much lower bitrate, and by using

these sub-streams to modulate several sub-carriers [49, 50]. Multi-carrier modulation possesses

several properties which make it an attractive approach for high speedwireless communication

networks. Among these properties is the ability to efficiently access and distribute multiplexed

data streams, and a reduced susceptibility to impulsive as well as narrowband channel distur-

bances.
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FIGURE 3.2: Single-carrier and multi-carrier Modulation.

Each data symbol in single-carrier systems occupies the entire available bandwidth while an

individual data symbol in multi-carrier system only occupies a fraction of thetotal bandwidth.

Therefore, narrow band interference or strong frequency selective attenuation can cause single-

carrier transmission to completely fail but in MCM they only affect sub-carriers located at par-

ticular frequencies.

3-1-3 Frequency division multiplexing

MCM can be implemented using several techniques. The first multi-carrier systems applied

frequency division multiplexing (FDM). In FDM the composite multi-carrier signal is obtained

by shifting the baseband parallel data streams upwards in frequency by modulating them on

different sinusoidal carriers. In order to avoid cross-talk the sub-carriers used in FDM must not

overlap. Very often guard bands are inserted between the sub-carriers in order to accommodate

for local oscillator imperfections and channel effects like Doppler spread. Fig.3.3(a)shows the

spectrum of composite FDM signal with guard bands.

There is however an alternative approach to transmitting data over a multipath channel. In-

stead of using carriers with non-overlapping bands, one could partition the spectrum into closely

packed sub-bands which overlap. In the next sections we shall see how this is done to optimize

utilization of the spectrum, a resource in premium.



Chapter 3 Wavelet packet modulator 48

(a)

(b)

FIGURE 3.3: a) FDM Spectrum (8 sub-carriers with guard bands); (b) OFDM Spectrum (8
sub-carriers).

3-2 Orthogonal frequency division multiplexing

Over the years there have been several attempts aiming at optimum utilization of spectral band-

width through multi-carrier transmission. One of the spectrally efficient multi-carrier methods is

Orthogonal Frequency Division Multiplexing (OFDM) [52]. Although the principle of OFDM

existed since early sixties the first real life systems appeared only in the 1990s. Today OFDM

is the most commonly used multi-carrier modulation technique and is widely adopted across

the world. It is in fact the de-facto choice for high-speed data rate transmission in frequency

selective fading channels and wireless-Local Area Networks (WLAN). One of the first systems

to use OFDM was European Digital Audio Broadcasting (DAB) back in 1995and in short time
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other standards such as Digital Video Broadcasting (DVB), WiFi (IEEE 802.11a/g/j/n), WiMAX

(IEEE 802.16), UWB Wireless PAN (IEEE 802.15.3a) and MBWA (IEEE 802.20) followed

[49].

The high spectral efficiency of OFDM is due to its orthogonal sub-carriers which allow their

spectrum to overlap. Adjacent sub-carriers do not interfere with eachother as long as they

preserve their orthogonality. Moreover, the frequency guard bandslike those used in FDM are

no longer necessary. Fig.3.3(b)illustrates this with the spectrum of OFDM for 8 sub-carriers.

The technique has other advantages too - high immunity to multipath delay spread that causes

inter-symbol interference (ISI) in wireless channels, immunity to frequency selective fading

channels, elegance in implementation through the Fast Fourier Transform (FFT) algorithms and

ease of channel equalization.

OFDM transmission system can be efficiently implemented using the Inverse Fast Fourier Trans-

form (IFFT) at the transmitter side and Fast Fourier Transform (FFT) at the receiver side. The

Fourier transformation allows us to describe a signal as a linear combination of sinusoids which

form an orthogonal basis. These sinusoids in OFDM are referred as sub-carriers and their num-

ber is determined by the length of the FFT vector. The orthogonality of sub-carriers over an

OFDM symbol periodTMC is achieved by setting the inter-carrier spacing to1/TMC Hz. There-

fore, the frequency of thekth sub-carrier inT -spaced OFDM is given by [52]:

fk =
k

TMC
, k = 0, 1, . . . , N − 1. (3.1)

The correspondingkth sub-carrier at frequencyfk can therefore be written as [52]:

ϑk(t) = ej2πfkt (3.2)

An OFDM symbol consists ofN sub-carriers and after being modulated by the OFDM trans-

mitter can be expressed as:

S[n] =

N−1∑

k=0

ake
j2π kn

N , 0 ≤ n ≤ N − 1 (3.3)

In eq. (3.3) ak represents the mapped complex data symbols. If we assume an ideal channel and

perfect synchronization between OFDM transmitter and receiver, the received sequenceR[n] is

identical to the transmitted signal, i.e.R[n] = S[n]. Under such conditions the demodulated

data after FFT for thekth sub-carrier can be expressed as:
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FIGURE 3.4: OFDM Symbol with Cyclic Prefix.

âk′ =
1

N

N−1∑

n=0

R[n]e−j2π
k′n
N

=
1

N

N−1∑

n=0

N−1∑

k=0

ake
j2π kn

N e−j2π
k′n
N

=
N−1∑

k=0

ak

(
1

N

N−1∑

n=0

ej2π
n(k−k′)

N

)

=
N−1∑

k=0

akδ[k − k′] = ak.

(3.4)

Unfortunately, such an idealistic scenario does not occur in reality and therefore the channel

effects and oscillators’ imperfections should be taken into consideration during system design.

Due to delay spread of the channel, OFDM symbols could overlap one another and perfect

reconstruction as described in eq. (3.4) may not be possible. In order to decrease the amount

of ISI in dispersive channels guard intervals are inserted between OFDM symbols. Usually in

OFDM the cyclic prefix is used as it makes the OFDM signal appear periodic and therefore

avoid the discrete time property of the convolution.

The cyclic prefix is a copy of lastNCP samples of OFDM symbols which is appended to the

front of each symbol. The effect of the dispersive channels can be efficiently mitigated if the

length of a cyclic prefix is set longer than the span of the channel. Fig.3.4 depicts an OFDM

symbol with cyclic prefix. Because the cyclic prefix does not carry any useful information it

decreases the spectral efficiency and therefore has to be kept as short as possible. At the receiver

side the cyclic prefix is no longer needed and hence discarded before the demodulation process.

The OFDM transmitter and receiver block diagrams are illustrated in fig.3.5(a)and fig.3.5(b),

respectively.
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(a)

(b)

FIGURE 3.5: OFDM Transceiver. (a) Transmitter; (b) Receiver.

FIGURE 3.6: FMT Transmitter and Receiver [53].
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FIGURE 3.7: Sub-carrier signal spectra of (a) FMT, (b) OFDM-OQAM and (c) CMT [53].
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3-3 Filter bank multi-carrier methods

The characteristics of OFDM carriers follow asinc-function in the frequency domain as a con-

sequence of using rectangular windows. This causes the sub-carriers to have large side-lobes

which spill over into neighboring bands resulting in significant interference. Furthermore, un-

der non-ideal channel conditions the spectral overlap between the sub-channels necessitates the

use of cyclic prefix (CP) and frequency offset correction algorithms.Although the CP is an

easy solution to mitigate the impairments induced by the channel, it leads to a loss in thedata

throughput and bandwidth efficiency.

There exist in the literature several alternative multi-carrier techniques to OFDM [53, 54] that

better handle this inadequacy of OFDM. We shall discuss a few important ones in the next

sub-sections.

3-3-1 Filtered multi-tone (FMT)

In [55, 56] a filter-bank modulation technique called Filtered Multi-tone (FMT) is presented.

FMT is similar to Frequency Division Multiplexing (FDM) in the sense that the sub-carriers do

not overlap and guard bands are used between carriers to prevent interference. FMT is imple-

mented using filter banks with a single prototype filterH(f) and it’s dualH∗(f). The prototype

filter is usually a Root Nyquist filter [55]. The modulation scheme is usually Quadrature Am-

plitude Multiplexing (QAM). Fig.3.6shows the implementation of the FMT transmitter and the

FMT receiver modulator. In the figure,N denotes the maximum number ofN sub-carriers and

K represents the sampling factor. Usually a choice ofK > N is made for addition of guard

bands between the sub-carrier bands. Equalizers are needed after down-sampling at the receiver.

In FMT, orthogonality between sub-channels is ensured by using non-overlapping spectral char-

acteristics as compared with the overlappingsinc-function type spectra employed in OFDM.

Since the linear transmission medium does not destroy orthogonality achievedin this manner,

cyclic prefixing is not needed. Clearly, the required amount of spectralcontainment must be

achieved with acceptable filtering complexity. In a critically sampled (N = K) filter bank, the

frequency separation of the pass bands will be1/T with a total ofM bands. In this way, each

of the transmitter pass-band filters will be frequency-shifted versions ofthe low pass filter as

shown in fig.3.7. An obvious disadvantage of FMT is the inefficient use of bandwidth as the

sub-carriers do not overlap.
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3-3-2 Cosine modulated multi-tone (CMT)

In [57] Boroujeny introduces the Cosine Modulated Multi-tone (CMT) as a capablemulti-carrier

modulation technique. The CMT uses pulse amplitude modulated (PAM) symbols withvesti-

gial sideband modulation and the sub-carrier bands are maximally overlapped/minimally spaced.

Vestigial side-band modulation (illustrated in fig.3.9) is adopted to maximise bandwidth effi-

ciency. The prototype filtersH(f) andH∗(f) are selected to be Root-Nyquist filters to aid the

demodulation of the data symbols at the receiver. At the receiver equalization is carried out after

decimation [57]. Figs.3.8(a)and 3.8(b)show the blocks of the CMT transmitter and receiver,

respectively.

Both FMT and Cosine Modulated Multi-tone (CMT) are filter bank-based modulation tech-

niques [57]. The main difference between the two methods lies in the way the spectral band is

used, as shown in fig.3.7. In FMT, the sub-carrier bands are non-overlapping, thus separation

of different sub-carrier signals can be achieved by conventional filtering. On the other hand,

in CMT, the sub-carrier bands are allowed to overlap and separation is done through judicious

design of the synthesis and analysis filters. It is evident from fig.3.7 that CMT offers higher

bandwidth efficiency than FMT since more sub-carrier bands can be accommodated per unit

bandwidth.

The sub-carriers of FMT as well as CMT can be considered to be of narrow bandwidth thereby

experiencing a flat fading channel. Hence, the equalization of the channel effects is carried out

through a single tap equalizer whose tap weight is the inverse of the channel gain. Training

symbols are usually used to initialize the equalizer taps. In CMT the unique nature of the

underlying signals allows for blind equalization without training. The procedures are described

in greater detail in [57].

3-3-3 Offset QAM/staggered multi-tone (SMT)

Another technique suggested is the Staggered Multi-tone (SMT) modulation. The method is

also known as Offset QAM and is implemented using poly-phase filter banks [58, 59]. Unlike

the FMT, SMT allows overlap of carriers to maximize spectrum utilization. The modulation

scheme used is Offset- QAM where the quadrature and in-phase constituents are separated by a

time-offset of half the symbol interval. Hence, the name Staggered Multi-tone.

Fig. 3.10shows the blocks of the OFDM-OQAM transmitter and receiver. In OFDM-OQAM,

the sub-carrier bands overlap and are spaced at the symbol rate. Successful signal separation

is nevertheless possible thanks to the orthogonality between the sub-carriers which guarantees

that the transmitted symbols arrive at the receiver free of inter-symbol (ISI) and inter-carrier

interference (ICI). Carrier orthogonality is achieved through time staggering the in-phase and
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(a)

(b)

FIGURE 3.8: CMT. (a) Transmitter and (b) Receiver [53].

quadrature components of the sub-carrier symbols and designing proper transmit and receive

filters. In OFDM-OQAM, each sub-carrier band is double side-band modulated and carries a

sequence of QAM complex valued symbols. Assuming identical symbol duration and number

of sub-carriers, the CMT signal occupies half the bandwidth of OFDM-OQAM thereby offering

only half the data rate. On the other hand, FMT uses guard bands betweenadjacent sub-carriers.

The width of the guard-bands depends on the specific system implementation.Therefore, for an

identical number of carriers and identical symbol timing, FMT requires more bandwidth than

OFDM-OQAM and CMT [58].
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FIGURE 3.9: Illustration of Vestigial Side band Modulation of the CMT carriers [53].

FIGURE 3.10: OFDM-OQAM Transmitter and Receiver [53].

The OFDM-OQAM method is similar to CMT for the case when the sub-carrier bands max-

imally overlapping (i.e. are minimally spaced), see fig.3.7. Both OQAM and CMT achieve

maximum bandwidth efficiency. Transmit symbols of OFDM-OQAM are offsetQAM: in-phase

and quadrature components have a time offset of half symbol interval. If the overlaps are lim-

ited to adjacent bands andH(f) andH ∗ (f) are a pair of root-Nyquist filters the separation of

data symbols at the receiver output is guaranteed. Equalizers are needed after decimators at the

receiver.

3-4 Wavelet and wavelet packet based multi-carrier modulators

3-4-1 Wavelet packet modulator (WPM)

Recently, the theory of wavelets [12] and wavelet packets [10] has been applied for the design

of multi-carrier modulators. The pioneering work on these subjects were carried out by Lindsay

[11] who laid out the theoretical foundations to establish the link between waveletpackets and
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digital communication. He also showed that the entire WPM transceiver structure can be real-

ized with a pair of conjugate quadrature mirror filters which satisfy a set of constraints. His idea

has since then been taken forward by many researchers. The decoding of WPM data with Max-

imum likelihood estimators has been addressed by Suzuki [13]. The study of an equalization

scheme suited for WPM has been conducted by Gracias [14]. In [15, 16] an investigation on

the performance of WPM systems in the presence of time offset is performed. In [17] its PAPR

performances are analyzed. The advantages of the wavelet transform in terms of the flexibility

they offer to customize and shape the characteristics of the waveforms have been demonstrated

in [18–21]. Three use-cases where the waveforms are designed and applied to optimize the

WPM system performance according to specific system demands are illustrated in [18–20]. In

[21], the work of [18, 19] is extended to establish a unifying mathematical framework where the

waveforms are designed according to a pre-defined criteria.

WPM is implemented with orthogonal wavelet packet (WP) bases derived from a multi-resolution

analysis (MRA). Fundamentally, OFDM and WPM have many similarities as both use orthog-

onal sub-carriers (which overlap over one-another) to achieve highspectral efficiency. The

adjacent sub-carriers do not interfere with each other as long as the orthogonality between sub-

carriers is preserved. The difference between OFDM and WPM is in the time-frequency charac-

teristics of the sub-carriers and in the manner in which they are generated.OFDM uses Fourier

bases which are trignometric functions while WPM uses a family of wavelet bases. Different

wavelet families result in sub-carriers of distinct nature paving way for adjusting the trans-

mission characteristics of the system. By careful selection of wavelets it is possible in WPM

to optimize figures of metrics like bandwidth utilization, sensitivity to synchronization errors,

Peak-to-average Power ratio (PAPR), etc.

The starting point to derive the orthogonal wavelet bases is to consider apair of Quadrature

Mirror Filters (QMF) consisting of a half-band low pass filterh[n] and high pass filterg[n] of

lengthL each. These filters share a tight relationship given by [8, 29]:

g[L− 1− n] = (−1)nh[n] (3.5)

Furthermore, they have adjoints or duals which are their complex conjugate timereversed vari-

ants [8]:

h′[n] = h∗[−n]

g′[n] = g∗[−n] (3.6)

The filter-pairh′[n], g′[n] are called the synthesis filters and are used to generate the WP carri-

ers for modulation of the data at the transmitter. On the other hand the filter-pairh[n], g[n],

known as the analysis filters, are used to derive the duals for demodulationof data at the
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receiver. Denoting the magnitude responses of these four filters in the frequency domain as

H(ω), G(ω), H ′(ω)andG′(ω), the filters satisfy the perfect reconstruction conditions if [8]:

H∗(ω + π)H ′(ω) +G∗(ω + π)G′(ω) = 0

H∗(ω)H ′(ω) +G∗(ω)G′(ω) = 2 (3.7)

Such filters can be used for various applications from compression of image/speech signals

to radio system design. From these QMF filters, the wavelet packet basesξpl can be derived

recursively through a multi-resolution analysis (MRA) as [31]:

ξ2pl+1[n] =
√
2
∑

k

h[k]ξpl [2n− k]

ξ2p+1
l+1 [n] =

√
2
∑

k

g[k]ξpl [2n− k] (3.8)

In eq. (3.8) ξ denotes the wavelet packets duals andp stands for the sub-carrier index at any given

tree depthl. The number of decomposition levelsl of the WP tree determines the maximum

number of WPM sub-carriersN that can be generated and the two are related by the expression

N ≤ 2l.

The WP bases satisfy two orthogonal properties which are crucial for their application to MCM.

First, they are orthogonal to themselves for all non-zero integer shifts, i.e. [31]:

〈
ξpl [n− j], ξpl [n− k]

〉
= δ[j − k]; ∀j, k ∈ Z. (3.9)

Here, the operator〈.〉 represents the inner-product operation. And second, pairs of the WPbases

derived out of the same parent are orthogonal to one another for allj andk [31]:

〈
ξ2pl [n− j], ξ2p+1

l [n− k]
〉
= 0; ∀j, k ∈ Z. (3.10)

Eq. (3.8) can be physically realized with a filter bank tree structure obtained by cascading the

fundamentalh[n], g[n] filter pair, followed by down-sampling by2, iteratively as shown under

the Discrete Wavelet Packet Transform (DWPT) block in fig.3.11[31].

The figure shows a level-2 decomposition scheme which yields up to 4 orthogonal WP bases.

The WP dualsξ
′p
l for the transmitter can be obtained by a similar procedure, albeit, with the

synthesis filter pairsh′[n], g′[n]. The processes are referred to as inverse-DWPT (IDWPT) and

DWPT at the transmitter and receiver, respectively, analogous to the inverse-FFT (IFFT) and

FFT, in OFDM systems.

The WPM transmitter and receiver block diagrams are illustrated in figs.3.13(a)and 3.13(b),

respectively. The WPM modulated signalS[n] is obtained as a linear combination of the WP
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FIGURE 3.11: Wavelet Packed based Transmultiplexer.

dualsξ
′p
l weighted with complex data symbolsau,k:

S[n] =
∑

u

N−1∑

k=0

au,kξ
′k
l [n− uN ] (3.11)

In eq. (3.11) k denotes the sub-carrier index andu denotes the WPM symbol index. The

constellation symbol modulatingkth sub-carrier inuth WPM symbol is represented byau,k.

At the receiver the data is demodulated with the dual bases. If we assume that the WPM trans-

mitter and receiver are perfectly synchronized and that the channel is ideal, the detected data at

the receiver can be given by:

âu′,k′ =
∑

n

R[n]ξk
′

l [u′N − n]

=
∑

n

∑

u

N−1∑

k=0

au,kξ
k
l [n− uN ]ξk

′

l [u′N − n]

=
∑

u

N−1∑

k=0

au,k

(
∑

n

ξkl [n− uN ]ξk
′

l [u′N − n]

)

=
∑

u

N−1∑

k=0

au,kδ[u− u′][k − k′] =au,k

(3.12)

An important property unique to wavelet transform is that the wavelet bases are much longer

in length than the duration of a symbol and can overlap in the time domain without losing their

orthogonality. The long wavelet bases in WPM allow for better frequency localization of sub-

carriers, especially, in relation to OFDM where the rectangular DFT windows result in large

side lobes. In fig.3.12the spectrum of a WPM system with 8 sub-carriers is depicted. One may
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FIGURE 3.12: Spectrum of 8 WPM Orthogonal sub-carriers (for Daubechies filter of Length
20).

observe the relative merits of using WPM over OFDM with regard to frequency selectivity of

the sub-carriers from figs.3.3(b)and 3.12.

An undesirable consequence of time overlap in WPM is that guard bands cannot be used. Al-

though, the addition of a guard interval in OFDM severely decreases spectral efficiency, it is an

effective and low complexity method to cope with dispersive channels and time offsets.

3-4-2 Variants of wavelet packet modulator

The Wavelet packet modulator can be considered as a generalized formof other multi-carrier

modulators based on wavelets. In [12] Negash and Nikookar suggest replacing the conventional

Fourier-based complex exponential carriers of a multi-carrier system withorthonormal wavelets.

The wavelets are derived from a multistage tree-structured Haar and Daubechies orthonormal

QMF bank. An improved performance with respect to reduction of the power of ISI and ICI

is reported. This work is extended in [60] by realizing a high-speed digital communication

system over a low-voltage power-line. With empirical investigations on a modelobtained from

measurements of a practical low-voltage powerline communication channel, theauthors demon-

strate the effectiveness of wavelets for use in OFDM systems, especially with regard to ISI and

ICI mitigation. Another real time application of the system is reported in [61] where Wavelet-

based OFDM for V-BLAST (vertical Bell laboratories layered space time)[62] is discussed.

According to [61] the bit error rate (BER) performance of the wavelet based V-BLAST system

is superior to their Fourier-based counterparts. In the conventional systems, the ISI and ICI are

reduced by adding a guard interval (GI) using a cyclic prefix (CP) to thehead of the OFDM

symbol. Adding CP can largely reduce the spectrum efficiency. Wavelet based OFDM schemes

do not require CP, thereby enhancing the spectrum efficiency. Moreover, as pilot tones are not
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(a)

(b)

FIGURE 3.13: (a) WPM Transmitter; (b) WPM Receiver.

necessary for the wavelet based OFDM system, they perform better in comparison to existing

OFDM systems like 802.1la or HiperLAN, where 4 out of 52 sub-bands areused for pilots. An

advanced OFDM modulation scheme called Isotropic Orthogonal Transform Algorithm (IOTA)

for future broadband physical layers is proposed in [63]. This system uses isotropic Gaussian

functions to generate the carrier waves and gives good spectral efficiency by eliminating the

use of a cyclic prefix. In [64] the promise shown by a Haar WOFDM system with Hadamard

spreading codes in reducing its peak-to-average power ratio (PAPR) isreported.
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FIGURE 3.14: Modulator of Interpolated Tree Structure (ITOM) [65]. In the figurewITOM is
the ITOM shaping filters.

3-4-3 Interpolated tree orthogonal multiplexing (ITOM)

In the WPM technique the filter banks perform the dual role of shaping the spectrum as well as

interpolating in time series. A slight enhancement to this approach would be to separate the two

processes and gain greater control over the characteristics of the carriers. This method is called

the Interpolated Tree Orthogonal Multiplexing (ITOM) and was introducedby Haris [65]. The

procedure is depicted in fig.3.14. From the figure we can notice that up-sampled shaping filters

precede the input ports of the wavelet packet tree structure. Notching over the desired spectral

interval is achieved by vacating one or more of the input branches. Figs.3.15(a)and 3.15(b)

illustrate an example of the ITOM mechanism. We may note from figs.3.15(a)and 3.15(b)as

to how well the enabled and disabled carries fit into the spectral gaps of one-another, illustrating

the superiority of the ITOM procedure towards spectrum shaping.
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(a)

(b)

FIGURE 3.15: Illustration of ITOM operation: (a) Spectra of Enabled Spectral Bands of 64-
point ITOM; (b) Spectra of Disabled Spectral Bands of 64-point ITOM [65].

3-5 Summary

In this chapter we discussed various multi-carrier techniques available forefficient modulation

of data. OFDM was presented as the most popular of MCM implementations. Filterbank al-

ternatives to OFDM, like FMT, CMT and SMT, were addressed. The operation of the WPM

transceiver, as a wavelet based implementation of orthogonal multi-carriersystem, was pre-

sented. The WPM is a relatively young multi-carrier transmission technique and very little is

known about its operation. In Part-III (includes Chapters 4, 5 and 6) we shall evaluate the WPM

system over various performance metrics like:

• sensitivity to loss synchronization (time/frequency/phase),

• peak-to-average power ratio (PAPR) performance and

• influence of channel induced interferences; and mitigation of interference using channel

equalization.



Part III

Implementation Challenges

64



Chapter 4

Synchronization errors in wavelet

packet modulation

4-1 Introduction

The rapid increase in wireless applications and the ensuing lack of free spectrum have prompted

engineers to pursue bandwidth efficient multi-carrier techniques. In order to achieve high band-

width efficiency the sub-carriers have to be closely spaced to each other1 2. In this class of

multi-carrier systems belong OFDM and WPM [5–7], discussed in Sections 3.2 and 3.5, re-

spectively, of Chapter 3. OFDM and WPM have orthogonal sub-carriers that overlap with one

another. The orthogonality property of the transmission bases ensures that the information con-

taining sub-carriers do not interfere. Before the MCM symbol can be demodulated the receiver

has to be synchronized properly with the transmitted frame timing, carrier frequency and phase.

However, impairments such as frequency offset and/or phase noise, induced by radio front ends

or channel conditions, can cause the sub-carriers to lose their mutual orthogonality and impede

the transmission of one-another. The rise of interference level due to loss of orthogonality is far

more pronounced in multi-carrier transmission than in single carrier systems. This disadvantage

of multi-carrier systems places higher demands on the quality of the analog radio components,

especially on the choice of oscillators. For OFDM transmission the effects offrequency offset

and phase noise are well documented in the literature [5–7, 68–74] and a number of synchro-

nization techniques are reported to estimate and reduce the frequency offset and phase noise

effects [75–81]. Similar material for WPM performance does not exist.

1Portions of this chapter have been published in [66], [15] and [67]. For any material that has been reused,
wherever applicable, a written consent has been obtained from the firstauthor.

2The author gratefully acknowledges the contributions of Msc student Mr.D. Karamehmedovic for his active
co-operation and help with the computer simulations.
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Besides frequency and phase misalignment, multi-carrier systems can also suffer from loss of

time synchronization. Time synchronization errors occur when the start ofthe multi-carrier

symbol is incorrectly detected. This causes discarding of samples at the beginning or end of the

useful symbol and selection of parts of adjacent symbol. Due to loss of time synchronization,

disturbances like Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI) occur. The

use of cyclic prefix in OFDM can significantly improve the system performance in case of timing

errors. However, the use of guard interval is not feasible in WPM systems because the symbols

overlap in time. As with the study on the impact of frequency offset and phase noise effects

on WPM transmission, the literature on the effects of timing errors on WPM operation is also

relatively low in comparison to what is available for OFDM.

In this chapter we address the impact of different synchronization errors on the WPM transmis-

sion and compare their performances with that of OFDM. The operation of WPM transceivers,

employing different wavelets, is numerically evaluated under different conditions. Analytical

expressions for the demodulation of the transmitted WPM data are also derived. Each of the

frequency, phase and time errors is treated individually and separately indifferent sub-sections.

The intention of studying the three disturbances separately is in part to gain abetter understand-

ing of the individual phenomenon but also to aid ease of analysis. Moreover, the three errors -

time, frequency and phase- are caused by disparate processes and the approach to study them

separately is a reasonable approximation. First, we present the impact of carrier frequency off-

sets on WPM/OFDM communication in Section 4.2. This is followed by a discussion on the

influence of phase noise in Section 4.3. Lastly, the transmission of WPM/OFDMunder a loss

of time synchronization error is analyzed in Section 4.4. The chapter ends with a summary in

Section 4.5.

4-2 Frequency offset in multi-carrier modulation

The orthogonality between sub-carriers is maintained as long as the transmitterand receiver

have the same reference frequency. Any offset in the frequency results in loss of orthogonality

and the carriers interfere with one-another’s transmission. This is due to the reason that during

demodulation sampling may not occur at the peaks of the sub-carriers but rather at offset points.

Besides the interference, frequency offsets also lead to attenuation androtation of the sub-carrier

phases.



Chapter 4 Synchronization errors in wavelet packet modulation 67

4-2-1 Modeling frequency offset errors

An offset in frequency is commonly caused by a misalignment between receiver and transmitter

local oscillator frequencies or due to a Doppler shift. The Doppler frequency shiftfdk is pro-

portional to the sub-carrier frequencyfk, angle of the velocity vectorα and the relative speed

between the transmitter and the receivervr and can be expressed as:

fdk =
vrfk
c

cos(α) (4.1)

In eq. (4.1) c denotes the speed of light and it is approximately equal to3 × 108 m/s. The

frequency of each sub-carrier can be calculated by taking the sum of main carrier frequencyfc

and baseband sub-carrier frequencyfsc as:

fk = fc ± fsc (4.2)

Using eqs. (4.1) and (4.2) the relative frequency offset∆f due to Doppler shift can be expressed

as the ratio between the actual frequency offset and sub-carrier spacing, i.e.:

∆f =
fdk

fc ± fsc
cos(α) =

vr
c
cos(α) (4.3)

The frequency offset can be modeled at the receiver by multiplying the received signal in the

time domain with a complex exponential whose frequency component is equal to frequency

offset value. If we denote the transmitted signal byS[n] and the received signal byR[n] the

relation between the two under the influence of a frequency offset∆f can be given as:

R[n] = S[n]ej2π∆fn/N+φ0 + w[n] (4.4)

In eq.(4.4) ∆f denotes the relative frequency offset due to local oscillator mismatch or due to

Doppler shift or a combination of both.N stand for the total number of sub-carriers,φ0 is initial

phase andw denotes additive white Gaussian noise (AWGN). Without loss of generality, we

consider thatw[n] = 0 andφ0 = 0. Hence,R[n] = S[n]ej2π∆fn/N .

4-2-2 Frequency offset in OFDM

In OFDM the frequency offset prevents the perfect alignment of FFT bins with the peaks of the

sinc pulses i.e. sub-carriers. This is illustrated in fig.4.1where the sampling mismatch due to a

frequency offset is depicted.
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FIGURE 4.1: Illustration of erroneous sampling in OFDM due to Carrier Frequency Offset
[82].

The FFT output corresponding to thekth sub-carrier under frequency offset∆f can be expressed

as:

âk′ =
1

N

N−1∑

n=0

R[n]e−j2π
k′n
N

=
1

N

N−1∑

k=0

ak

N−1∑

n=0

ej2π
kn
N ej2π∆f

n
N e−j2π

k′n
N

=
1

N

N−1∑

k=0

ak

N−1∑

n=0

ej2π
(k−k′+∆f)n

N (4.5)

Using the geometric series properties eq.(4.5) can also be expressed as [74, 76]:

âk′ =
1

N

N−1∑

k=0

ak
sin(π(k − k′ +∆f ))

sin
(
π(k−k′+∆f )

N

) ejπ(
N−1
N )(k−k′+∆f ) (4.6)

We can split eq.(4.6) into two distinct parts:

âk′ = ak′
sin(π∆f )

N sin
(
π∆f

N

)ejπ(N−1
N )∆f

︸ ︷︷ ︸
Useful Signal(Attenuated, PhaseShifted)

+
1

N

N−1∑

k=0;k 6=k′
ak

sin(π(k − k′ +∆f ))

sin
(
π(k−k′+∆f )

N

) ejπ(
N−1
N )(k−k′+∆f )

︸ ︷︷ ︸
Intercarrier Interference(ICI)

(4.7)
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The first component of eq.(4.7) stands for the useful demodulated signal which has been atten-

uated and phase shifted due to the frequency offset. Since the attenuationterm is independent

of the carrier-index all the sub-carriers experience the same degree of attenuation [82]. The sec-

ond term in eq.(4.7) contains the ICI term which represents the deleterious impact of all other

sub-carriers on the decision making of data contained in the carrier of interest. The CFO does

not influence the amplitude of the OFDM signal and therefore the total received power is not

altered. Furthermore, the total ICI power due to CFO is also not affected by the number of

OFDM carriers [82].

4-2-3 Frequency offset in WPM

The detected data for thekth sub-carrier anduth symbol at the WPM receiver under a loss of

frequency synchronization can be expressed as:

âu′,k′ =
∑

n

R[n]ξk
′

l [u′N − n] =
∑

n

∑

u

N−1∑

k=0

au,kξ
k
l [n− uN ]ej2π∆f (

n
N
)ξk

′

l [u′N − n]

=
∑

u

N−1∑

k=0

au,k

(
∑

n

ξkl [n− uN ]ej2π∆f (
n
N
)ξk

′

l [u′N − n]

)
(4.8)

Defining the cross-waveform functionΩ[∆f ] as:

Ωu,u
′

k,k′ [∆f ] =
∑

n

ej2π∆f (
n
N
)ξkl [n− uN ]ξk

′

l [u′N − n] (4.9)

the demodulated information bit of thekth sub-carrier anduth WPM symbol corrupted by the

interference due to loss of orthogonality can be expressed as:

âu′,k′ = au′,k′Ω
u′,u′

k′k′ [∆f ]︸ ︷︷ ︸
Desired Alphabet

+
∑

u;u 6=u′
au,k′Ω

u,u′

k′,k′ [∆f ]

︸ ︷︷ ︸
ISI

+
∑

u

N−1∑

k=0;k 6=k′
au,kΩ

u,u′

k,k′

︸ ︷︷ ︸
Inter Symbol−ICI(IS−ICI)

[∆f ] (4.10)

In eq.(4.10) the first term stands for the attenuated and rotated version of the usefuldata. The

second term gives the ISI due to symbols transmitted on the same sub-channel and the third term

denotes the ICI measured over the whole frame.

4-2-4 Numerical results for frequency offset errors

In this section we investigate the performance of WPM under frequency offset by means of

computer simulations. The WPM transceiver is simulated with different waveletfamilies and
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WPM OFDM
Number of sub-carriers 128 128
Number of multi-carrier
symbols per Frame

100 100

Modulation QPSK QPSK
Channel AWGN AWGN
Oversampling factor 1 1
Guard band - -
Guard interval - -
Carrier frequencyfc 0 (base band) 0 (base band)
Frequency offset ∆f = 5− 10% ∆f = 5− 10%

Phase noise - -
Time offset - -

TABLE 4.1: Simulation setup for study of frequency offset effects.

their performances are compared with OFDM. To simplify the analysis, the channel is taken

to be additive white Gaussian noise (AWGN). No other distortions except frequency offset is

introduced. QPSK is the modulation mode of choice. The number of symbols perframe is set

to 100 with each symbol consisting of 128 sub-carriers. Furthermore, thesimulated system has

no error estimation or correction capabilities nor is guard intervals or guardbands used. Any

change from these specifications will be explicitly stated. The parameters ofthe simulation

set-up are summarized in table4.1.

a. Performance under frequency offset error

Fig. 4.2 shows the bit error rate (BER) plots of OFDM and WPM transceivers fora relative

frequency offset of 5% from the1/T spacing. The BER curves for different wavelets and OFDM

show similar performance but due to frequency offset they all deviate from the theoretical curve.

The biorthogonal wavelet is the exception with a very poor performance compared to the other

systems. This is due to the fact that the biorthogonal wavelets do not fulfill the orthogonality

condition.

In fig. 4.3 the BER plots is shown for different values of relative frequency offset varying from

0 to 40% for a constant SNR value of 16 dB. We can again see that the performances of majority

of the wavelets are very similar to that of OFDM. The biorthogonal wavelet, however, has a

poor performance, while Haar wavelet slightly outperforms other waveletsand even OFDM.

The results make clear the sensitivity of both WPM and OFDM systems to frequency offset.
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FIGURE 4.2: BER for WPM for different Wavelets and OFDM under a relative frequency
offset of 5%.
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b. Influence of number of sub-carriers

The results of the investigation on the influence of the number of sub-carriers on the WPM

system performance under frequency offset are depicted in fig.4.4. For this set of experiments

all the WPM transceivers are simulated with the same wavelet, namely Daubechies-20, but with

different number of sub-carriers. Furthermore, the relative frequency offset is set to 10%.

The degradation of WPM performance in the presence of frequency offset is dependent on the

number of sub-carriers. This dependency is straightforward when theabsolute frequency offset

is fixed [5]. As the number of sub-carriers in a given bandwidth increases, the spacing between

the sub-carriers decreases and hence the relative frequency offset increases. The results of these

studies are plotted in fig.4.4. For the case considered the relative frequency offset with respect

to the inter-carrier spacing is kept constant. The WPM configurations with larger number of sub-

carriers are more susceptible to the frequency offset. However, beyond a point this sensitivity

saturates and even with increasing number of sub-carriers there is no perceptible differences in

performance. For example, we can observe from fig.4.4that the performances of WPM with64

and128 sub-carriers are almost identical.

c. Influence of WPM frame size

Frequency offset in WPM not only leads to ICI within one symbol but also across the whole

frame. Therefore, it is important to see the effect of the frame size in combination with the

frequency offset. These results are depicted in fig.4.5. The plots show that the number of

symbols in a frame does not affect the performance of WPM in the presence of frequency offset.

d. Influence of wavelet filter length

The influence of the filter’s length in combination with the frequency offset on the BER perfor-

mance is illustrated in fig.4.6. This simulation is performed for AWGN channel and a relative

frequency offset of 10%. We again choose the Daubechies wavelet but now we alter the num-

ber of filter’s coefficients and fix the number of sub-carriers to 128. The BER curves shown in

fig. 4.6 are all superimposed one over another suggesting that the filter’s length and number of

wavelets’ zero moments have no tangible influence on the system performance operating under

a loss of frequency synchronization.

e. Constellation plots

The effect of frequency misalignment between transmitter and receiver on the constellation

points is depicted in the fig.4.7. In order to highlight the effect of frequency offset we assume
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FIGURE 4.7: Constellation points in the presence of a relative frequency offset of 5%.

an ideal channel without any other infarction or noise barring a loss in frequency synchroniza-

tion (a relative frequency offset of 5% is chosen). The main effect ofthe frequency offset is the

scattering of the constellation points around reference positions due to interference. Other con-

sequences are the anti-clockwise rotation of all constellation points and a marginal attenuation.
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FIGURE 4.8: Spectral energy in a frame of the received WPM signal affected by a frequency
offset. (a) 2-D and (b) 3-D. Wavelet used: Daubechies 10.

f. Dispersion of sub-carrier energy

The last set of results in this section show the dispersion of the sub-carriers energy due to fre-

quency offset (see figs.4.8(a)and 4.8(b)for WPM and figs.4.9(a)and 4.9(b)for OFDM). For

clarity of depiction, we have limited the number of sub-carriers to 16 and the frame size to 30

multi-carrier symbols. The channel is assumed to be ideal and all disturbances in the transmis-

sion are solely due to the frequency offset. Figs.4.8(a), 4.8(b), 4.9(a)and 4.9(b)were obtained

by transmitting a single non-zero pilot sub-carrier with all other sub-carriers in the frame set to

zero.

In an ideal situation without any frequency offset, the only sub-carrierwith non-zero value will

be the pilot sub-carrier regardless of WPM or OFDM. However, the frequency offset results in

loss of orthogonality and sub-carriers begin to interfere with one another. In OFDM the effect of

frequency offset is to introduce ICI. This disturbance is confined to within a single multi-carrier
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FIGURE 4.9: Spectral energy in a frame of the received OFDM signal affected by a frequency
offset. (a) 2-D and (b) 3-D.

symbol and other OFDM symbols are not affected. On the other hand the WPM has overlapping

symbols and hence an offset in frequency results in both ICI and inter-symbol-ICI.

In figs.4.8(a)and 4.8(b)we therefore observe that the energy of the pilot sub-carrier located in

the5th sub-carrier and5th symbol is spread across the whole frame. This is in agreement with

the theoretical derivations carried out in sections 4.2.2 and 4.2.3.

4-3 Phase noise in multi-carrier modulation

An ideal local oscillator modulates carriers with a constant amplitude and frequency. However,

practical local oscillators suffer from deleterious factors, such as thermal noise [83], which

causes the oscillator’s central frequency to fluctuate. This uncertainty inthe actual frequency or

the phase of the signal is referred to as phase noise. Multi-carrier transmission is vulnerable to

phase noise since phase noise can cause a loss of orthogonality betweenthe sub-carriers.
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FIGURE 4.10: Single side band PSD of the oscillator.

4-3-1 Modeling the phase noise

Phase noise can be represented as a parasitic phase modulation of the oscillator’s signal. In the

literature there exist many models for the phase noise. Majority of these modelsare described

in terms of the power spectral density (PSD). In the ideal case the PSD of the local oscillator

would be a single pulse (delta function) at the central frequency. However, due to imperfections

of the oscillator, the PSD of a practical oscillator is distributed over a wider frequency band with

highest concentration around oscillator’s central frequency. The single side band PSD of free

running oscillator can be estimated by the Lorentzian function [84], like the one illustrated in

fig. 4.10.

We model the phase noise as a zero mean white Gaussian processφw with finite varianceσ2w.

The model is based on the work of [69]. The autocorrelation function of the phase noise is given

by:

Rφw [m] = σ2wδ[m] (4.11)

The power spectral density of the phase noise can be expressed as:

Sφw(f) =
∞∑

m=−∞
Rφw(m)e−j2πfm (4.12)

In order to get the desired phase noise bandwidth we perform low pass filtering with filterFφ,

in which case the PSD can be given as:

Sφb(f) = Sφw(f)|Fφ(f)|2 (4.13)
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By changing the corner frequencyfcφ of the filter used we can adjust the phase noise bandwidth.

Low values of the corner frequency result in narrow bandwidth for thephase noise while higher

values of the corner frequency spread the phase noise.

In the last stage of the model we add phase noise floor to the signal. The phase noise floor is

also modeled as a zero mean Gaussian process with finite varianceσ2wn, which is relatively low

compared toσ2w. The phase noise floor is not correlated so that it spans the whole available

bandwidth and has flat PSD.

The total phase noise∆φ can now be expressed as a sum of bandwidth limited main noise

contributionφb and phase noise floorφwn as:

∆φ[n] = φb[n] + φwn[n] (4.14)

Using the phase noise model given above we can write the received signal R[n] that has been

affected by phase noise and AWGN channel as:

R[n] = S[n]ej∆φ[n] + w[n] (4.15)

Without loss of generality, we takew[n] = 0, in which case the received signal can be given as

R[n] = S[n]ej∆φ[n].

4-3-2 Phase noise in OFDM

The demodulated OFDM data at the receiver’s output affected by phasenoise can be expressed

as:

âk′ =
1

N

N−1∑

n=0

R[n]e−j2π
k′

N
n

=
1

N

N−1∑

k=0

ak

N−1∑

n=0

ej2π
k
N
nej∆φ[n]e−j2π

k′

N
n

=
1

N

N−1∑

k=0

ak

N−1∑

n=0

ej∆φ[n]ej2π
[k−k′]n

N . (4.16)

To simplify the analysis, the demultiplexed signal can be separated into usefulinformation com-

ponent and disturbance component. In order to do so we assume that the phase noise is suffi-

ciently small so that it can be approximated as [69]:

ej∆φ[n] ≈ 1 + j∆φ[n]. (4.17)
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Under this approximation the demodulated OFDM information bit for thekth carrier can be

given as:

âk′ ≈ 1

N

N−1∑

k=0

ak

N−1∑

n=0

ej2π
[k−k′]n

N +
j

N

N−1∑

k=0

ak

N−1∑

n=0

∆φ[n]e
j2π

[k−k′]n
N

≈ ak′ +
j

N

N−1∑

k=0

ak

N−1∑

n=0

∆φ[n]e
j2π

[k−k′]n
N

= ak′ + I∆φ
[k]. (4.18)

The first component of eq.(4.18) stands for the correctly demodulated symbol while the second

termIφ represents the interference caused to each sub-carrier.

The perturbance caused by the phase noise on multi-carrier transmission can be divided into two

components:

• Common phase error (CPE) wherein all the information bits contained in a sub-carrier are

attenuated and rotated by the same angle.

• Inter-carrier interference (ICI) where the information bits contained in asub-carrier are

corrupted by disturbance from all other sub-carriers.

1. Common phase error (CPE) - case whenk′ = k

For this case the disturbance term in eq.(4.18) can be written as:

I∆φ
[k′] =

j

N

N−1∑

k=0

ak

N−1∑

n=0

∆φ[n]

= jΦak′ . (4.19)

The interference component in eq.(4.19) rotates all the constellation points by an angleΦ. This

angle of rotationΦ is common for all sub-carriers and can be defined by the average phasenoise

given as:

Φ =
1

N

N−1∑

n=0

φ[n]. (4.20)

The common phase error (CPE) is only dependent on low frequencies ofthe phase noise spec-

trum up to the frequency of the inter-carrier spacing.
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2. Inter carrier interference (ICI) - case whenk′ 6= k

For this case the disturbance term in eq.(4.18) can be written as:

I∆φ
[k]

k 6=k′
=

j

N

N−1∑

k=0;k 6=k′
ak

N−1∑

n=0

∆φ[n]e
j2π

[k−k′]n
N . (4.21)

The error in eq.(4.21) consists of contribution from all other sub-carriers of a OFDM symbol

and is known as ICI. The ICI due to phase noise is dependent only on thehigh frequency phase

noise components. In general, the phase noise that causes ICI containsfrequencies which are

larger than inter-carrier spacing frequency.

4-3-3 Phase noise in WPM

As in OFDM, the disturbance caused by phase noise can be divided into twocomponents:

• Common phase error (CPE) wherein all the information bits contained in a sub-carrier are

attenuated and rotated by the same angle.

• Inter-Symbol Inter-carrier interference (ICI) where the information bits contained in a

sub-carrier are corrupted by disturbance from all other sub-carriers as well as from neigh-

boring symbols.

For ease of representation we first define the cross-waveform functionΩ[∆φ] as:

Ωu,u
′

k,k′ [∆φ] =
∑

n

ξkl [n− uN ]e(j∆φ[n])ξk
′

l [u′N − n]. (4.22)

The detected data at the WPM receiver in presence of the phase noise for thekth carrier anduth

symbol can be written in terms of the cross-waveform functionΩ[∆φ] as:

âu′,k′ =
∑

n

R[n]ξk
′

l [u′N − n]

=
∑

u

N−1∑

k=0

au,kΩ
u,u′

k,k′ [∆φ]. (4.23)

Furthermore, assuming that the phase noise is sufficiently small so that it canbe approximated

as [69]:

e(j∆φ[n]) ≈ 1 + j∆φ[n], (4.24)
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Eq.(4.23) can be rewritten as:

âu′,k′ ≈
∑

u

N−1∑

k=0

au,kΩ
u,u′

k,k′ [∆φ] + j
∑

u

N−1∑

k=0

au,kΩ
u,u′

k,k′ [∆φ]

≈ au′,k′︸ ︷︷ ︸
(Useful Data)

+ I∆φ(u, k)︸ ︷︷ ︸
Interference Term

. (4.25)

The first component in eq.(4.25) stands for the correctly demodulated symbol and the second

term represents the disturbances due to the phase offset. Two distinct scenarios arise out of the

error term.

1. Common phase error (CPE) - case whenk′ = k and u′ = u

For this case the disturbance term in eq.(4.25) can be written as:

I∆φ(u
′, k′) = jau′,k′Ω

u′,u′

k′,k′ [∆φ[n]], (4.26)

which describes the rotation of constellation points by an angle which is common for all sub-

carriers. The rotation angle is dependent on the average value of phase noise sequence.

2. Inter symbol- inter carrier interference (IS-ICI) - case whenk′ 6= k and/or u 6= u′

For this case the disturbance term in (4.25) can be written as:

I∆φ(u
′, k′) = j

N−1∑

k=0;k 6=k′
au′,k′Ω

u′,u′

k,k′ [∆φ[n]]

︸ ︷︷ ︸
(ICI)

+ j
∑

u;u 6=u′

N−1∑

k=0

au′,k′Ω
u,u′

k,k′ [∆φ[n]])

︸ ︷︷ ︸
(IS-ICI)

. (4.27)

The first term stands for the inter-carrier interference (ICI) and the second for inter-symbol-inter

carrier interference (IS-ICI). The demodulated data hence consists of the estimate of the useful

data and the interference terms:

1. common phase error (u = u′ andk′ = k),

2. inter-carrier interference (u = u′ andk′ 6= k),
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WPM OFDM
Number of Sub-carriers 128 128
Number of Multi-carrier
Symbols per Frame

100 100

Modulation QPSK QPSK
Channel AWGN AWGN
Oversampling Factor 1 1
Guard Band - -
Guard Interval - -
Frequency Offset - -
Phase Noise σ2w= -10 dBc,

σ2wn= -20 dBc,
fcφ = 0.1

σ2w= -10 dBc,
σ2wn= -20 dBc,
fcφ = 0.1

Time Offset - -

TABLE 4.2: Simulation setup for studying the impact of the phase noise.

3. inter-symbol inter-carrier interference (u 6= u′, k′ = k. andu 6= u′, k′ 6= k).

Different frequency components of the phase noise have different impacts on the CPE and

ICI/IS-ICI terms. If the phase noise bandwidth is concentrated near the central frequency then

the CPE term dominates. On the other hand when the phase noise bandwidth is spread the

ICI/IS-ICI term takes precedence.

4-3-4 Numerical results for phase noise

The performance degradation associated with phase noise has been evaluated with computer

simulations. The simulation setup used is almost identical to that used for the evaluation of

performance under frequency offset. More details on the set-up can be found in the Section

4.2.4. An overview of simulation parameters is given in table4.2.

a. Phase noise characteristics

The effect of the phase noise on the WPM and OFDM transmission are illustrated by the PSD

plots of the phase noise in figs.4.11(a)( narrow-band phase noise) and4.12(a)(wide-band

phase noise). In fig.4.11(b)the constellation points’ diagram of the WPM system operating

under a phase noise of relatively low corner frequency is plotted. The dominant effect of such a

phase noise is the common phase error which results in the rotation of all constellation points.

The constellation points’ diagram of the phase noise with relatively high corner frequency is

illustrated in the fig.4.12(b). For this case the interference caused to the sub-carriers is much

more acute resulting in more pronounced dispersion of the constellation points.
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FIGURE 4.11: Phase Noise (Narrow Band); (a): PSD, (b): WPM and OFDM Constellation
Points.

It is important to understand the effect of both CPE and ICI/IS-ICI as either of them can limit the

performance of the system. In the literature there exists many approaches for the correction of

CPE [79, 80]. However, the estimation and correction of the interference (ICI/IS-ICI) is harder

to accomplish. Therefore, we limit ourselves here to the study of interference in WPM and

OFDM caused by phase noise. In order to conduct this study, we set thephase noise bandwidth

to 10% of the total available bandwidth and the variance to -10 dBc (relative tothe carrier). For

this case the PSD of the phase noise will look similar to the one illustrated in fig.4.10.

b. Performance under frequency offset error

Fig.4.13shows the bit error rate (BER) of WPM and OFDM in the presence of phase noise. The

illustrated behaviors of BER curves are similar to each other with the exceptionof bi-orthogonal

wavelet.

Fig. 4.14 illustrates the effect of the phase noise variance on the BER. This figure isobtained

using an AWGN channel with 16 dB SNR while phase noise variance is variedfrom -10 to 20

dBc with a step-size of 5 dBc. It is natural that the phase noise variance and the performance
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FIGURE 4.12: Phase Noise (Wide Band); (a): PSD, (b): WPM and OFDM Constellation
Points.

degradation are closely related. The sensitivity of WPM and OFDM to the variance of the phase

noise is confirmed by the plots in fig.4.14.

c. Influence of number of sub-carriers and WPM frame size

Figs.4.15and 4.16, respectively, show the performance of the WPM under phase noise when

the number of sub-carriers and symbols in the frame are altered. The results haven’t shown any

essential connection between the performance degradation and the number of sub-carriers or the

number of symbols per frame.3

d. Influence of wavelet filter length

Fig. 4.17illustrates the influence of filter’s length and the number of zero wavelet moments in

combination with the phase noise on the BER. As with the results for frequencyoffset, there

3The results would have been different had the corner-frequency been smaller. This is because the inter-carrier
spacing depends on the number of sub-carriers - for low number of sub-carriers the CPE term dominates while for
high number of sub-carriers the interference will be the major term [69, 85].
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FIGURE 4.13: BER for WPM (with different wavelets) and OFDM under a phase noise of
relative bandwidth 10% and variance -10 dBc.

−10 −5 0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

dBc Level (dB)

B
  

E
  

R

 

 

WPM − Haar Length: 2

WPM − Daubechies Length: 20

WPM − Symlets Length: 20

WPM − Discrete Meyer Length: 102

WPM − Coiflet Length: 24

WPM − Biorthogonal Length: (12, 4)

OFDM

FIGURE 4.14: BER vs. phase noise variance for WPM and OFDM in AWGN Channel (SNR
= 16 dB).

are no noticeable influences of the filter’s length and number of wavelets’ zero moments on the

system performance when operating under a phase noise.

e. Constellation plots

For the completeness of the analysis we show in fig.4.18the smearing effect of the phase noise

on the constellation points. To highlight the impact of phase noise the channelis assumed to be

ideal with no other perturbance (barring phase error).
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FIGURE 4.15: BER for WPM with phase noise for different number of sub-carriers.
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FIGURE 4.18: Constellation points in the presence of phase noise.

The spreading of sub-carrier energy due to phase noise is illustrated in figs.4.19(a)and 4.19(b)

for OFDM and figs.4.20(a)and 4.20(b)for WPM. Phase noise results in loss of orthogonality

and causes the sub-carriers to interfere with one another. In OFDM, interference due to phase

noise is limited to within a symbol resulting in an ICI. However, due to the overlap of symbols

in WPM, the phase noise causes ICI from other symbols resulting in Inter Symbol-inter carrier

interference (IS-ICI). This is illustrated in fig.4.20(b)where the dispersion of energy of apilot

sub-carrier is shown to extend to the entire frame. In the example presentedwe consider a

pilot sub-carrier located at the 5th sub-carrier of the 5th symbol. This dispersion in energy is in

agreement with the theoretical derivations carried out in sections 4.3.2 and4.3.3.
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FIGURE 4.19: Spectral energy in a frame of the received OFDM signal affected by a phase
noise. (a) 2D view, (b) 3D View.



Chapter 4 Synchronization errors in wavelet packet modulation 89

0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Data Symbols

N
o

rm
a

liz
e

d
 V

a
lu

e

 

 

Received Data Sequence
Multi−carrier Symbols Borders
Pilot Data Position

(a)

0
5

10
15

20
25

30

0

5

10

15

0

0.2

0.4

0.6

0.8

1

 

SymbolsSubcarriers

 

N
o

rm
a

liz
e

d
 V

a
lu

e

Data Symbols

Pilot Data Position

Multi−Carrier Symbol with Pilot

(b)

FIGURE 4.20: Spectral energy in a frame of the received WPM (with Daubechies wavelet)
signal affected by a phase noise. (a) 2D view, (b) 3D View.
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4-4 Performance under loss of time synchronization

Another drawback of multi-carrier transmission is their vulnerability to time synchronization

errors which occur when the symbols are not perfectly aligned at the receiver. Because of

the time offset, samples outside a symbol get erroneously selected while useful samples at the

beginning or at the end of that particular symbol get discarded.

4-4-1 Modeling time offset errors

The time synchronization error is modeled by shifting the received data samples by a time offset

value∆t
4 to the left or right, depending on the sign of the∆t [86]. If we assume that transmitted

signal is given byS[n], the received signalR[n] in the presence of time synchronization errors

can be expressed as:

R[n±∆t] = S[n] + w[n] (4.28)

Without loss of generality, we assumew[n] = 0, then,R[n±∆t] = S[n]. Time offset degrades

the performances of multi-carrier transceivers by introducing inter-symbol interference (ISI).

WPM and OFDM share many similarities as both are orthogonal multi-carrier systems but with

regard to timing error the behaviors are vastly different. The actual lengthof the WPM symbols

is defined by the wavelet used and in general it is significantly longer than the OFDM symbol. In

the case of time offset this overlap of the symbols in WPM causes each symbolto interfere with

several other symbols while in OFDM the symbols only interfere with their adjacent neighbors.

The second important difference between the two transmission schemes is in the use of the

guard interval between the symbols. OFDM uses cyclic prefix that significantly improves its

performance under loss of time synchronization5. On the other hand, the WPM cannot benefit

from such a guard interval since many WPM symbols overlap over one another.

4-4-2 Time offset in OFDM

The sensitivity of the OFDM to the time synchronization error is reported in [86–88]. A few

of the available techniques for OFDM symbol synchronization can be found in [89–93]. The

following discussion is based on [86].

Cyclic prefix is an effective and low complexity method to cope with dispersivechannels and

time synchronization errors in OFDM transceivers. OFDM often employs a cyclic prefix but

4The variations in time∆t is usually modeled as a stochastic process.
5However, the use of cyclic prefix is effective only when the time offset induced by the channel does not exceed

the length of the cyclic prefix and that the direction of time shift is towards the cyclic prefix.
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rarely uses apostfix. This means that we have two distinct scenarios under time synchronization

errors depending on the direction of the time offset [86]:

• Time synchronization error away from cyclic prefix (to the right).

• Time synchronization error towards cyclic prefix (to the left).

a. Time offset away from the cyclic prefix

Fig. 4.21(b) illustrates this case by considering a snapshot of the OFDM data consisting of

three symbols(u − 1, u, u + 1). In this example the FFT window (for data demodulation) is

misaligned to the right, i.e. away from the cyclic prefix. Each OFDM symbol consists ofN data

samples and an extension ofNCP samples representing the cyclic prefix. The FFT window in

the case considered will containN − ∆t data samples((∆t + 1), (∆t + 2), . . . N) of theuth

OFDM symbol, omitting the first∆t useful samples. Instead∆t samples(1, 2, . . .∆t) of the

next(u+ 1)th OFDM symbol will be erroneously selected.

The demodulated OFDM signal after an FFT operation can be given as:

âu′,k′ =
N −∆t

N
au′,k′e

j2π k′

N
∆t

︸ ︷︷ ︸
Useful Data (Attenuated, phase shifted)

+
1

N

N−1−∆t∑

n=0

N−1∑

k=0;k 6=k′
au′,ke

j2π
k(n+∆t)

N e−j2π
k′n
N

︸ ︷︷ ︸
Inter Carrier Interference

+
1

N

N−1∑

n=N−∆t

N−1∑

k=0

au+1,ke
j2π

k(n−N+∆t)
N e−j2π

k′n
N

︸ ︷︷ ︸
Inter Symbol Interference

. (4.29)

The first component of eq.(4.29) represents the useful signal which is attenuated and phase

shifted by a term proportional to the sub-carrier indexk′. The second component of eq.(4.29)

gives the ICI and the third component stands for ISI with the next symbol.

b. Time offset towards the cyclic prefix

Fig.4.21(a) illustrates the case when the time offset error occurs towards the symbols own cyclic

prefix, i.e. to the left. In such a scenario the FFT window consists of the first N −∆t samples

(1, 2, . . . (N−∆t)) of the considereduth OFDM symbol and the last∆t samples of the symbols

own cyclic prefix. For convenience we take that∆t < NCP .
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FIGURE 4.21: Time offset error in OFDM. (a) Offset towards the cyclic prefix (to the left),(b)
Offset away from the cyclic prefix (to the right).

The demodulated OFDM signal affected by time offset in the direction of symbol’s own cyclic

prefix is given in eq.(4.30), for the case when∆t < NCP .

âu′,k′ = au′,k′e
−j2π k′∆t

N (4.30)

Thanks to the cyclic prefix the orthogonality is preserved and the ISI, ICIterms don’t appear.

The timing error towards the cyclic prefix therefore results only in a phase shift.
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4-4-3 Time synchronization error in WPM

The WPM transceivers do not employ guard intervals and therefore the direction of time offset

is inconsequential. The demodulation process under time offset error∆t can be obtained as:

âu′,k′ =
∑

n

R[n]ξk
′

l [(u′N − n+∆t]

=
∑

n

∑

u

N−1∑

k=0

au,kξ
k
l [n− uN ]ξk

′

l [u′N − n+∆t]

=
∑

u

N−1∑

k=0

au,k

(
∑

n

ξkl [n− uN ]ξk
′

l [u′N − n+∆t]

)
. (4.31)

For ease of representation we define the cross-waveform functionΩ[n] as:

Ωu,u
′

k,k′ [∆t] =
∑

n

ξkl [n− uN ]ξk
′

l [u′N − n+∆t]. (4.32)

Eq.(4.32) represents the autocorrelation and the cross-correlation of the WPM sub-carrierk.

Whenk = k′ the two sub-carriers are time-inversed versions of one another and hence eq.(4.32)

gives the autocorrelation sequence of the waveformk. On the other hand whenk 6= k′ the

two waveforms correspond to different sub-carriers and in this instance eq.(4.32) represents the

cross-correlation between the waveformsk andk′.

Using eq.(4.31) and eq.(4.32) we can express the demodulated alphabet for thekth sub-carrier

anduth WPM symbol corrupted by the interference due to loss of orthogonality as:

âu′,k′ = au′,k′Ω
u′,u′

k′k′ [∆t]︸ ︷︷ ︸
Desired Alphabet

+
∑

u;u 6=u′
au,k′Ω

u,u′

k′,k′ [∆t]

︸ ︷︷ ︸
ISI

+
∑

u

N−1∑

k=0;k 6=k′
au,kΩ

u,u′

k,k′

︸ ︷︷ ︸
IS−ICI

[∆t]. (4.33)

In eq.(4.33) the first term stands for the attenuated useful signal. The second term gives the ISI

due to symbols transmitted on the same sub-channel and the third term denotes the ICI measured

over the whole frame. The received constellation points of WPM under time synchronization

errors don’t experience linear phase rotation, opposed to OFDM where rotation of constellation

points is proportional to the sub-carrier index. The WPM signal in the presence of timing error

will however be attenuated and it will suffer from ISI and ICI.
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4-4-4 Modulation scheme

The consequence of time-offset in OFDM, regardless of offset direction, is in the introduction

of a phase shift6. The phase shift is linearly proportional to the sub-carrier index and thevalue

of time offset. The rotation angleΦt[k] due to timing error is given by, [86]:

Φt[k] =
2πk∆t

N
. (4.34)

Standard modulation techniques such as coherent (non-differential) Quadrature Phase Shift key-

ing (QPSK) perform poorly under time synchronization errors becausethe sub-carriers with

higher frequency indices experience greater phase shifts. For evena small timing offset (such

as∆t = 1) the phase rotation experienced by the constellation symbols is in the order of

0 < Φt[k] < 2. The sub-carrier with the highest frequency will therefore experience a phase

shift of almost360 degrees. If this phase shift is not corrected, majority of the detected data

would be corrupted even without an ICI or ISI.

The phase rotation due to timing error can be usually reversed by pilot-symbol-aided channel es-

timation techniques or by the use of differential constellation mapping. In this work we employ

differential quadrature phase shift keying (DQPSK) in order to overcome this problem. In the

DQPSK scheme the data is modulated on the basis of phase difference between two consecutive

constellation symbols thereby ensuring that adjacent sub-carriers experience a phase shift which

is independent of the carrier position. The phase rotation of constellation point k is determined

by applying a phase shift of∆Φ to the previous constellation symbolk − 1. The difference in

phase shift∆Φ for DQPSK modulation can be given as [86]:

∆Φb =
2(b− 1)π

4
, b ∈ 1 . . . 4. (4.35)

Therefore, the phase difference between two consecutive DQPSK constellation symbols under

timing errors becomes [86]:

∆φk,k−1 = e
j
(

∆Φb− 2π∆t
N

)

. (4.36)

Using DQPSK modulation in presence of timing error therefore results in a phase shift that is

depending on the value of the time offset but not anymore on the value of sub-carrier indexk.

The rotation angleΦt[k] due to timing error becomes [86]:

Φt[k] =
2π∆t

N
, Differential− PSK. (4.37)

6The discussion presented here is based on [86]
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QPSK DQPSK p/4QPSK DQPSK p/4

FIGURE 4.22: Constellation plot of received OFDM signal with a timing error ofDeltat = 1.
Left: QPSK, Right: DQPSKπ/4.

Fig. 4.22illustrates the rotations of constellation points for received OFDM signal with QPSK

and DQPSK modulation modes. We have assumed here an ideal channel anda time offset of

∆t = 1 samples towards the cyclic prefix.

DQPSK modulation is a simple solution to overcome the problem of phase shift under time syn-

chronization errors. However, DQPSK modulation requires about 2 to 3 dB higher SNR when

compared to coherent QPSK to obtain the same BER performance as in the QPSK modulation

mode.

4-4-5 Numerical results for time offset

The performances of WPM and OFDM under time synchronization errors are investigated by

means of computer simulations. The time offset is modeled as a discrete uniform distribution

between -2 and 2 samples, i.e.∆t ∈ [−2,−1, 0, 1, 2]. The modulation of choice is DQPSK.

A cyclic prefix of 16 samples is added to OFDM data while no such guard-interval is used

for WPM. Due to the use of cyclic prefix the spectral efficiency of OFDM isdecreased by

12.5% while that of WPM remains unchanged. Finally, we oversample the data tomagnify the

difference in performance between various systems and wavelets. A summary of simulation

parameters is given in table4.3.

a. Performance of WPM without time errors

We first evaluate the system performance under ideal conditions. Fig.4.23shows the DQPSK

constellation points for WPM transmision (various wavelets) in an ideal channel with no time

offset. From the plot we may note that perfect estimates of the transmitted data can be obtained

at the receiver when the transmitter and receiver ends are in unison.

A timing error results in a loss of time synchronization which causes a loss of orientation of

incoming data at the receiver. As a result the data entering the IDFT/IDWT block is misaligned
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System parameters WPM OFDM
Number of sub-carriers 128 128
Number of multi-carrier
symbols per frame

100 100

Modulation DQPSK DQPSK
Channel AWGN AWGN
Oversampling factor 15 15
Guard band - -
Guard interval - CP (length: 16)
Frequency offset - -
Phase noise - -
Time offset ∆t ∈ [−2,−1, 0, 1, 2]

(Uniformly distributed)
∆t ∈ [−2,−1, 0, 1, 2]
(Uniformly distributed)

TABLE 4.3: Simulation setup for evaluation of performance under time synchronization error.

FIGURE 4.23: DQPSK constellation points for WPM setup using variouswavelets in an ideal
channel with no time offset.

whereby the samples of previous or next OFDM/WPM symbol are selected while valid samples

at the beginning or at the end of the symbol in consideration are discarded. We present the

impact of time synchronization error in the following sections.

b. Performance when time offset is modeled as a discrete uniform distribution

Fig. 4.24shows the BER curves of OFDM and WPM transceivers over AWGN channel for a

uniformly distributed timing offset error∆t = 2 samples. The OFDM system performs much

better under time synchronization errors when compared to WPM mainly because of the cyclic
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FIGURE 4.24: BER curves for WPM with different wavelets and OFDM under time synchro-
nization errors (∆t = 2).

prefix. The WPM cannot benefit from the use of a cyclic prifix and hence performs poorly under

time error.

In fig. 4.25the BER is shown for different time-offsets in the range -15 and 12 samples. The

time offset in this simulation is modeled as a one-sided uniform distribution. The time offset is

considered to vary between{0, . . . ,∆t} to the right and{−∆t, . . . , 0} to the left7. The SNR is

kept constant at 10dB.

As can be seen in fig.4.25 the direction of the time offset is inconsequential in WPM trans-

mission. The BER curves of WPM on either side of the time-axis are almost mirrorimages of

one another. However, the situation is different in OFDM where negativevalues of time offsets

(towards the own cyclic prefix) result in much lower BER in comparison to positive time offsets

(away from the cyclic prefix). This is due to the use of cyclic prefix which mitigates the dele-

terious impact of a misalignment of FFT window. However when the time offset exceeds the

cyclic prefix the ICI and ISI components reappear.

c. Influence of number of sub-carriers

Fig. 4.26 shows the performance of the WPM in the presence of time synchronization error

when the number of sub-carriers is altered. The plots reveal how with increasing number of

WPM sub-carriers the BER decreases. We may recall from the third chapter that the symbol

7The values are so chosen to highlight the importance of cyclic prefix in OFDM.
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FIGURE 4.25: BER vs. time offset error for WPM and OFDM transmission in an AWGN
channel (SNR = 10 dB).
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WPM − Daubechies Length:20, 4 Subcarriers

WPM − Daubechies Length:20, 8 Subcarriers
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FIGURE 4.26: BER plots for WPM transmission under a loss of time synchronization for
different number of sub-carriers,

duration of multi-carrier system is proportional to the number of sub-carrier used. Therefore,

the more the number of sub-carriers longer symbol duration and hence smaller relative time

offset with respect to multi-carrier symbol length.

d. Influence of number of symbols/frame

The simulation results for different number of WPM symbols per frame are depicted in fig.4.27.

The results show that the number of symbols/frame does not influence the BER performance.
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FIGURE 4.27: BER for WPM with timing error for different number of symbols/frame.
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WPM − Daubechies Length: 6
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FIGURE 4.28: BER for WPM using Daubechies wavelets of different lengths under a loss of
time synchronization.

e. Influence of different lengths of wavelet filters

Fig. 4.28illustrates the influence of filter’s length and the number of zero wavelet moments in

combination with timing error on the BER. The wavelet family of choice is Daubechies. In

the plots the Daubechies filter with 6 coefficients and 3 wavelet zero moments appears to have

slightly better BER performance when compared to longer filters of the same family. However,

when the length of the filters is increased further the BER curves become closely spaced. There-

fore, we can conclude that there is no significant relation between the BERperformance under

timing errors and the filter’s length.
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FIGURE 4.29: Constellation points of received signal in the presence of timing error.

f. Constellation plots

The effect of time synchronization error on the constellation points is depicted in fig. 4.29. In

order to highlight the effect of time synchronization error we consider anideal channel without

any noise (apart from the time offset error). The main impact of the time offset is the scattering

of the constellation points around the reference modulation points due to interference. OFDM

has more concentrated constellation points than any of the WPM system considered.

g. Dispersion of energy of the sub-carriers

Figs.4.30(a)and 4.30(b)illustrate the dispersion of sub-carrier energy due to time synchroniza-

tion error for WPM transmission. The respective plots for OFDM are shown in figs.4.31(a)and

4.31(b). The timing error in OFDM results in ISI between successive symbols in addition to the

ICI. If a cyclic prefix is used the ICI and ISI terms are mitigated for time-errors which occur

towards the cyclic prefix (time offset to the left). This is illustrated in figs.4.30(a)and 4.31(b)

where the energy of the pilot symbol disperses into the subsequent symbol (resulting in an ISI)

but not into the previous symbol. Furthermore, the energy of pilot sub-carrier also spreads across

other sub-carriers within the same symbol (causing ICI). For WPM the dispersion of energy of

a single pilot is far more pronounced. The smearing of energy is spread over a large number

of symbols with the sub-carriers closest to the pilot sub-carrier affectedmost (refer figs.4.30(a)

and 4.30(b)).
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FIGURE 4.30: Spectral energy in a frame of the received WPM (with Daubechies wavelet)
signal affected by timing errors. (a) 2D view, (b) 3D View.
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FIGURE 4.31: Spectral energy in a frame of the received OFDM signal affected by timing
errors. (a) 2D view, (b) 3D View.
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4-5 Summary

In this chapter we addressed the effects of frequency offset, phasenoise and time synchro-

nization error on WPM and OFDM transceivers. The study was conducted using computer

simulations. Several well-known families such as Daubechies, Symlets, Discrete Meyer, Coiflet

and Bi-orthogonal wavelet were applied and studied. The sensitivity of WPM and OFDM are

quite similar in the presence of frequency offset and phase noise. However, the effect of time

synchronization loss is far more severe for WPM transmission. The simulations also showed

that OFDM has much lower BER under timing errors when compared to WPM. This is largely

due to the beneficial use of cyclic prefix in OFDM.

The frequency offset and phase noise lead to a loss of orthogonality between the sub-carriers

and cause them to interfere with one-another. In OFDM the disturbances are limited to ICI but

in WPM the frequency offset and phase noise cause ICI as well as Inter symbol-ICI.

The effect of time synchronization error was also discussed. Akin to the impact of phase/fre-

quency errors, there are significant differences between the operation of OFDM and WPM in

the presence of time errors. Firstly, the ISI in OFDM occurs only between contiguous symbols

while in WPM a number of neighboring symbols interfere. Secondly, the timing error in OFDM

results in a rotation of constellation symbols proportional to sub-carrier index but in WPM this

behavior is absent.

The wavelets used in these computer simulations are standard wavelets that were developed for

other applications such as image processing or compression and hence not suitable for modula-

tion of data. In chapter 9 we present the design of new wavelets that minimize the interference

due to time-offset errors.



Chapter 5

Peak-to-average power ratio

performance

5-1 Introduction

A major drawback of multi-carrier systems such as the WPM or the classical OFDM is the large

variations in their signal envelope1 2. Such fluctuations in the signal envelope is due to the

inherent nature of these modulation schemes where many independently modulated sub-carriers

are combined together to obtain a composite signal. The envelope of the time-domain signal

varies with different data symbols and when the sub-carriers add up coherently the peak power

of the composite OFDM/WPM signal can be many times larger than the average power. In fact,

for M number of sub-carriers the peak of the signal can be up toM times the average power if

all the sub-carriers are of the same phase. Since practical systems are limited by the maximum

operable power, either the WPM/OFDM systems have to function with a large power back-off

or risk operating in the non-linear (saturation) regions of the electronic components such as the

high power amplifiers (HPA) and the digital-to-analog converters (DAC) in the transceiver chain.

A large back-off would mean that the average signal power has to be kept much lower than the

available power so that the amplifier operates in the linear region. On the otherhand, function-

ing in the non-linear regions of the amplifiers can result in distortions such asin-band interfer-

ence (or inter-modulation distortion) and out-of-band radiation (due to spectral widening of the

transmit signal). The in-band interference increases the bit error rate (BER) of the received sig-

nal while the out-of-band radiation causes adjacent channel interference (or cross-talk) through

1Parts of this chapter have been published in [17] and [94]. For any material that has been reused, wherever
applicable, a written consent has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc student Ms.Berna Torun for her help with the
computer simulations.

104



Chapter 5 Peak-to-average power ratio performance 105

spectral spreading. It is therefore important to study the power fluctuations associated with

multi-carrier mode transmission and mitigate them.

Typically, the metric peak-to-average power ratio or PAPR is used to characterize the variations

in the envelope of the signal. While the quantum of literature available for the study of OFDM

and its PAPR performance is significant, the material available for a similar studyon WPM

is thin. In fact the entire material on the subject can be listed as follows: in [17] a study on

the PAPR of WPM signals and its stochastic variations is presented. The studyshows that the

envelope of the WPM signal is Gaussian and its power distribution Chi-squared. Furthermore,

the PAPR performances of the WPM systems for almost all used wavelets areshown to be

similar to OFDM. In [95] a multi-pass pruning method to reduce PAPR is proposed. And in [96]

a threshold based method to reduce PAPR is suggested. In [97] upper bounds for the maximum

PAPR for WPM transmission are derived and based on these results wavelets that minimize

PAPR are obtained. A different approach is followed in [98] where the WPM tree structure is

adjusted to lower the PAPR.

In this chapter we address the PAPR performance of the WPM systems. We first understand the

stochastical nature of the WPM signal, its power variations and its PAPR performance. We then

implement two techniques that mitigate PAPR, namely,

• modification of phases of the sub-carriers,

• mathematical optimization of phase selection of sub-carrier through a local search algo-

rithm,

The effectiveness of the proposed algorithms is demonstrated through numerical studies.

The contents of the chapter are organised as follows. We first presenta brief overview on

the nature of WPM signals in section5-2. A survey of existing PAPR reduction techniques

is presented in section5-3. The proposed PAPR reduction techniques are then introduced in

sections5-4 and 5-5. In section5-4 PAPR reduction by modification of sub-carrier phases is

presented, while in section5-5 a mathematical optimization for selection of sub-carrier phases

through local search algorithms is explained. The contents of the chapter are summarized in

section5-6.

5-2 Distribution of the PAPR

5-2-1 OFDM

A multi-carrier signal consists of a number of independently modulated sub-carriers which can

result in a large peak-to-average-power ratio when they add coherently. For a system withM
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sub-carriers when all the sub-carriers have the same phase the peak power of the transmitted

signal can beM times the average power. The PAPR is one way to measure the variations in the

transmitted signal and for critically sampled datax[n] can be given as:

PAPR =

max
0≤n≤M

(|x[n]|2)

E(|x[n]|2) (5.1)

whereE{.} is the expectation operator which averages over the ensemble of data samples.

The CDF of the PAPR is one of the most frequently used performance measures for PAPR

reduction techniques [52, 99]. From the central limit theorem it follows that for large number of

sub-carriersM , the real and imaginary components ofx[n] follows the Gaussian distribution,

each with a zero mean and variance ofM times the variance of one complex sinusoid [52]. The

amplitude of the OFDM signal therefore has a Rayleigh distribution and its power distribution

becomes a central chi-square distribution with two degrees of freedom and zero mean [52, 100].

The CDF of the power is given as [52]

F (z) =

∫ z

0

1

2σ2
e−

µ

2σ2 du = 1− e−
z2

2σ2 (5.2)

wherez ≥ 0. From the power distribution the theoretical CDF for PAPR per OFDM symbol

can be derived. Assuming the samples to be mutually uncorrelated (which is true when there is

no over sampling) the probability that PAPR is below some threshold levelz, can be written as

[52]:

Prob{PAPR ≤ z} = [F (z)]N =

(
1− e−

z2

2σ2

)N
(5.3)

5-2-2 WPM

A WPM signal, like the OFDM signal, is the sum of many information bearing sub-carriers

which are statistically independent. The orthogonal sub-carriers are wavelet packet bases de-

rived from a MRA [10] as explained in Chapter 3. The modulated WPM signaly[n] is obtained

as a linear combination of the wavelet packet basesξ
′k
l weighted with the complex data symbols

au,k:

y[n] =
∑

u

M−1∑

k=0

au,kξ
′k
l (n− uM) (5.4)

a. WPM signal characteristics

In fig. 5.1 the CDF curves for the PAPR of the WPM system (theoretical as well as simulated

values) for different number of sub-carriersM are plotted. We can see from the fig.5.1 that

as the number of carriers of the WPM system increases, the simulated and thetheoretical (as
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represented in equation (5.3)) PAPR curves converge. From aboutM>128 carriers the simulated

values accurately map the theoretical derivations.
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FIGURE 5.1: CDF-distribution of PAPR for different number of sub-carriers. From left to
right: 16, 32, 64, 128, 256, 512, 1024 sub-carriers. Dashed lines indicate simulated values
while continuous lines represent the theoretical curves. Wavelet of choice is Daubechies-15.

b. Amplitude distribution

Unlike OFDM which is a complex signal with real and imaginary parts, the WPM signal only

has real components. OFDM signal has a Rayleigh distribution and it would be interesting to

check the distribution of WPM signal. Fig.5.2plots the simulated CDF curves for WPM systems

along with Gaussian and Rayleigh distributions. The WPM setup uses Daubechies wavelets with

length 15. It is clear from the figure that the patterns of the WPM signal variations follow the

Gaussian distribution.

c. Power distribution

The CLT states that the mean of a sufficiently large number of independent random variables,

each with finite mean and variance, will be normally distributed. Based on CLT,when large

number of sub-carriers are employed in a WPM system; i.e., large number of levels in the

IDWPT, the amplitude of WPM signal follows Gaussian distribution. It is well known from

the stochastic theory that the distribution of power of Gaussian signals is Chi-squared. This
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FIGURE 5.2: CDF of WPM signals. The wavelet considered is Daubechies-15. The WPM sys-
tem is taken to have 128 carriers. Gaussian and Rayleigh signals are also plotted for reference.

TABLE 5.1: Specification of wavelets used.

Name Orthonormal? Length
Daubechies Yes 30
Coiflet Yes 30
Symlet Yes 30
Discrete Meyer Yes 102
Bi-Orthogonal No (5,3)

means that the power distribution of WPM signals should also be Chi-squared. This fact is

corroborated in fig.5.3. In fig. 5.3 where the curves for the power distribution of WPM signal

are plotted along with Gaussian, Rayleigh and Chi-Square distributions. Andin fig. 5.4 the

power distributions for WPM signals applying different wavelet families areshown. Almost all

the wavelet families have a power distribution which is Chi-squared. The specifications of the

wavelets (Daubechies 15, Coiflet 5, Symlet 15 (all of length 30), DiscreteMeyer (of length 102)

and Bi-Orthogonal 2.2) which are considered are given in tableC.1.

d. PAPR distribution

Figs.5.5and 5.6show the PAPR performance curves for various wavelet families and various

filter lengths, respectively3. From fig. 5.5 we can deduce that apart from the bi-orthogonal

3There is a fundamental difference in the calculation of PAPR between OFDM and WPM. The PAPR in OFDM
is usually calculated per symbol. This is not possible in WPM because WPM symbols overlap in the time-domain
and therefore the PAPR has to be calculated per frame.
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FIGURE 5.3: CDF of power of Gaussian and Wavelet Packet Modulation signals.The wavelet
considered is Daubechies-15. The WPM system has 128 carriers.
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FIGURE 5.4: CDF of power of Wavelet Packet Modulated signals for various families (for 128
carriers).

wavelet, all the other wavelets follow a similar CDF pattern for the PAPR. And from fig.5.6 it

is clear that even with increasing lengths of the wavelet, from Daubechies 2to Daubechies 45,

the PAPR distribution doesn’t vary much.
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FIGURE 5.5: CDF of PAPR for the WPM system applying several wavelet families. All the
configurations are taken to have 128 carriers.
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Daubechies wavelet family. The number of sub-carriers considered is 128.
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5-3 Techniques to mitigate PAPR

There exists several techniques in the literature for the reduction of PAPRin MCM transmis-

sion. These methods can be broadly categorized into signal scrambling andsignal distortion

techniques.

5-3-1 Signal scrambling techniques

Signal scrambling techniques work on the principle of altering the phases ofthe sub-carriers to

decrease the PAPR. Coding can also be used for signal scrambling. A few of the commonly used

signal scrambling solutions are block coding [101], selected mapping (SLM) [102], interleaving

[103], tone reservation [104] and partial transmit sequences (PTS) [105].

The block coding approach [101] works on the principle that the PAPR can be reduced by not

permitting those set of code words that accentuate the peak envelope power of the transmitted

signal. In the selected mapping (SLM) method a set of candidate signals is generated represent-

ing the same information. Then the signal with the least PAPR is chosen and transmitted [102].

In the interleaving method [103] the data block is partitioned into non-overlapping sub-blocks

and then each sub-block is rotated by a statistically independent rotation factor. The rotated data

with the lowest peak amplitude is then selected and transmitted. In the tone reservation tech-

nique [104] a fraction of the bandwidth is used to synthesize signals of opposite polarity. The

synthesized signals are then added to the original signal to minimize the peak ofthe transmitted

signal. Subtraction of peaks reduces the PAPR without altering the transmission capabilities of

the OFDM system. A related technique is the partial transmit sequences (PTS)[105] method

where a small set of tones are set aside for PAPR reduction. Highly correlated data frames have

large PAPR; the PTS thus operates by breaking the correlation patterns in the transmitted data

to reduce PAPR.

5-3-2 Signal distortion techniques

In the techniques based on signal distortion the high peaks are reduced directly by limiting the

signal to within a tolerable upperlimit. Clipping the signal before amplification is a simple

method to limit the PAPR. However, clipping may result in large out-of-band (OOB) radiation

and in-band distortion. Other practical solutions include peak windowing [106], peak cancella-

tion [107], peak power suppression, weighted multi-carrier transmission [108] and companding

[109].
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FIGURE 5.7: Classification of commonly known PAPR reduction techniques

In [106] Nee and Wild propound that since large PAPR values occur only infrequently it should

be possible to remove the peaks using windowing techniques without affecting the transmis-

sion characteristics4. A few of the suggested windows include Gaussian, cosine, Kaiser and

Hamming windows. The peak cancellation method introduced in [107] suggests subtracting a

time-shifted and scaled reference function from the signal to reduce the peak power. Nikookar

and Lidsheim [108] propose a phase updating algorithm for the reduction of the OFDM signal.

In this algorithm the sub-carrier phases are adjusted based on a stochastic distribution. The

phases are then updated till the peak value of the signal is below a predefined threshold. The

threshold and the number of iterations for the phase update are altered dynamically. Finally,

Wang et.al. [109] propose a simple and effective companding technique to mitigate the PAPR

of the OFDM signals. Companding of the signal is done before it is converted into an analog

waveform.

Fig. 5.7shows the classification of various PAPR reduction techniques.

5-3-3 Criteria for the selection of best PAPR mitigation strategy

Many factors have to be considered before the right PAPR reduction technique can be chosen
5. Some of the factors include PAPR reduction capability, distortion induced, power increase in

the transmit signal, BER increase at the receiver, loss in data rate, complexity of computation.

Many of these requirements are contradictory and cannot be met at the same time.

For example, the amplitude clipping technique removes the signal peaks but results in in-band

distortion and out-of-band radiation. Other techniques, like the tone-reservation (TR) method,

require additional transmit power because part of the signal power is necessary for the reduction

of the carrier peaks. Some techniques may result in a loss of BER at the receiver if the transmit

4Usually a small price is paid in the form of self-interference
5The discussion is based on [104]
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signal power is fixed or equivalently may require large transmit power to maintain the BER after

applying the PAPR reduction techniques.

Strategies such as the block coding technique require the data rate to be reduced because some

of the information symbols have to be dedicated to controlling PAPR. Methods such as SLM,

PTS and interleaving require side-information on the changes made at the transmitter end. This

causes a drop in achievable data-rates. Furthermore, if the received side-information is erroneous

then the entire data block could be wrongly interpreted. Therefore, the side-information is

usually protected with channel coding, further adding to the overhead.

Computational complexity is yet another important consideration in choosing theright PAPR

reduction technique. Techniques such as PTS run over many iterations to find a solution. On

the other hand, interleaving techniques perform better for large number of interleavers, which

however slows down the computation process.

Based on the above discussion, in this work we chose methods based on SLM for mitigation of

PAPR in WPM transmission. The SLM is a simple and reliable technique which can be readily

applied to WPM to achieve better PAPR performances.

5-4 Selected mapping with phase modification

In this section we present the first method to reduce the PAPR of WPM signals. The technique is

based on the Selected Mapping (SLM) approach proposed by Bauml [102]. The method works

on the principle that the PAPR of a multi-carrier system can be adjusted by varying the phases of

the sub-carriers [102]. Different PAPR values for the same information are obtained by altering

the phases of the sub-carriers used to modulate the data. The WPM carriers are rotated with a

phase-values chosen from an alphabet of finite number of identically spaced phase-shifts. The

WPM frame with the least PAPR is then identified and transmitted. The attraction forthe method

is in its simplicity of implementation and the notable gains it yields with minimal increase in

complexity. The disadvantage of the scheme is that side-information on the sub-carrier phases

has to be transmitted to the receiver.

5-4-1 Description of algorithm

Fig. 5.8 shows the blocks of the proposed WPM system with the PAPR mitigation structure.

The bit stream from the information source is first converted to a constellation (QPSK/BPSK)

stream and then replicated to obtain a finite number of copies, sayLSLM . Each of the replicated

set is then serial-to-parallel (S/P) converted and then phase-shifted bya random phase sequence.
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FIGURE 5.8: WPM Transmitter Block diagram with the SLM based PAPR reduction technique

The phase sequences are generated by a phase generator which chooses between different phase

alphabetsφ, their distribution and creates a phase vectorΦ
(n)
p . Heren (= 1, 2, 3, . . . LSLM )

stands for the index of the frame andp (= 1, 2, 3, . . .MSLM ) connotes the sub-carrier index. The

phase vector thus containsLSLM rows each withMSLM columns. Denoting the information

bearing WPM frame by the notationX[p], theLSLM different WPM framesX(n)[p] obtained

by sub-carrier wise multiplication with the phase-vectorΦ
(n)
p can be given as:

X(n)[p] = X[p]× Φ(n)
p = X[p]× ejφ

(n)
p (5.5)

The phase-shifted information bearing streams are then transformed by anIDWPT operation

and the PAPR of the transformed composite signal is calculated. Amongst the set of LSLM

PAPR values, the frame with the least value is selected and transmitted. Definingthe candidate

time domain WPM frame asx = IDWPT (X(n)[p]), the index of this frame can be given as:

n̂ = argmin
1≤n≤LSLM

(PAPR (x(n))) (5.6)

In order to ensure that the transmitter and receiver operate harmoniously,the chosen index of

the framêl is sent to the receiver as a side-information. Typically for a sizeLSLM vector, the
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number of bits required to send̂l will be log2 (LSLM ). However, to prevent corruption of this

precious message, more bits may be used to encapsulate this message by channel coding.

The algorithm to calculate and select the minimum PAPR for WPM is summarized in algo-

rithm 1.

Algorithm 1 SLM Pseudocode

1: Obtain the source message.
2: Replicate it a finite number of times, sayLSLM .
3: Generate phase sequences from the chosen phase alphabet (e.g.φ ∈ (0, π/2, π, 3π/2)).
4: Multiply frame sequences element/carrier-wise byMSLM -length phase sequences. Here
MSLM is also the number of WPM carriers.

5: Do the IDWPT transform for each resulted frame sequence for each replicated copy of the
data.

6: Calculate the PAPR per frame of the signal for each replicated copy of the data and find the
PAPR.

7: List all the PAPR values; select the minimum PAPR and transmit.
8: Send as side information the index of the frame with minimum PAPR,l̂ to recover the data

in the receiver.

5-4-2 Numerical results

In this section we present results of the studies and evaluate the performance of WPM system

with the PAPR reduction technique. The investigations are carried out usingcomputer simula-

tions and the performance metric of choice is the CCDF. The WPM system is realized using a

filter bank structure with 7 levels of decomposition (128 sub-carriers). The modulation scheme

used is QPSK. The phase alphabet is taken to beφ ∈ (0, π/2, π, 3π/2) which is randomly cho-

sen while generating the phase vector. The wavelet of choice is Daubechies 5 (denoted db5)

which is of length 10. These simulation parameters will be used through out theexperiments

unless stated otherwise. To properly evaluate the improvements due to the PAPR reduction

technique, a reference PAPR-CCDF curve obtained for db5 wavelet for the case without PAPR

reduction (i.e. no phase modification) will also be provided.

a. Performance of the PAPR mitigation technique

In the first set of results we verify the impact of the PAPR reduction technique. Fig.5.9shows

the CCDF curves for the variation of PAPR under the PAPR reduction technique for different

number of replications,LSLM . A reference curve with no PAPR reduction is also included. It

is evident from the plots that the improvements are significant and bring in up to3dB reduction

in PAPR in comparison to the case when no PAPR reduction technique is used.
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FIGURE 5.9: CCDF of the PAPR of the WPM signal for different values ofLSLM . The
wavelet considered is Daubechies 5 (length 10). A referencecurve with no PAPR reduction is

also plotted.

b. Influence of phase-sequence distribution

To gauge the impact of the distribution of the phase sequences we now consider different

stochastic distributions. The distributions considered are random sequences, Golay sequences

[110, 111] and Hadamard sequences. The number and length of all the sequencesare taken

to be equal. The phase alphabet is taken to beφ ∈ (0, π/2, π, 3π/2) and the value ofLSLM

is fixed at 8. Fig.5.10shows the respective plots and it can be deduced from the figures that

though all the distributions yield notable improvements, there is no perceivabledifferences in

their performances.

These results are important because the similarity in the performances when using pseudo-

random and random sequences indicates that the receiver only has to know the key used at

the transmitter to generate the pseudo-random phase sequences (insteadof the entire phase se-

quence). This aids in significant reduction of the side information.

c. Impact of phase alphabet

We now evaluate the impact of the phase alphabet on the PAPR reduction mechanism. The

results are plotted in fig.5.11where a range of cardinalities for the phases are considered. The
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FIGURE 5.10: Complementary cumulative distribution function (CCDF) of the PAPR of WPM
for different distributions of the phase sequences. The wavelet considered is Daubechies 5

(length 10).
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FIGURE 5.11: CCDF of the PAPR of WPM using the PAPR reduction technique for different
phase sequences. The wavelet considered is Daubechies 5 (length 10).

results show that the choice of the phase alphabet does not affect the performance of the PAPR

reduction technique.
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FIGURE 5.12: CCDF of the PAPR for several wavelets.

d. Impact of wavelet families

We now analyze the conduct of the PAPR reduction technique for different wavelet families and

for different filter lengths. In these set of experiments the value ofLSLM is taken to be 8. The

various wavelet families considered are Daubechies 15, Coiflet 5, Symlet 15 (all of length 30),

Meyer (of length 102) and Haar. Figs.5.12and 5.13show the PAPR performance curves for

various wavelet families and various filter lengths, respectively. From fig. 5.12we can deduce

that all the wavelets follow a similar CCDF pattern for their PAPR performances. And from

fig. 5.13it is clear that even with increasing lengths of the wavelet filter, from Daubechies 2 to

Daubechies 35, the PAPR distribution is limited to a variation of about 0.8 dB. In all instances

the proposed technique reduces the PAPR between 1.5 and 2.5dB.

e. Influence of the PAPR reduction technique on the BER performance

We finally plot the BER performances of the WPM system (fig.5.14). The curves plotted are

for the cases when the phase sequences are generated randomly and pseudo-randomly. For the

case with random phase change two figures are plotted. In the first case(denoted Case-1) the

receiver has complete and perfect knowledge of the random phases used at the transmitter. In

the second scenario (marked Case-2) the receiver operates with no knowledge of the phases

used at the transmitter. For the scenarios when phases with Golay and Hadamard distributions

are used, the transmitter and receiver only share the keys of the pseudo-random polynomial. As
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FIGURE 5.13: CCDF of the PAPR for the WPM system with different filter lengths of the
Daubechies wavelet family.

a reference the BER plot for the case with no PAPR reduction technique is also plotted. The

results show the importance of having complete knowledge on the phase sequences. Even a

slight mismatch in the phase information at the receiver deteriorates the systemperformance.

Since a perfect replication of randomly generated phases is not possibleat the receiver, the

application of pseudo-random generators can be considered. This is supported by the results

plotted in fig.5.10where the PAPR reduction due to pseudo-random codes is shown to be as

good as that of random phase generators and in fig.5.14where the BER curves show that using

PAPR reduction mechanism with pseudo-random phase generators doesnot result in any loss in

performance.
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FIGURE 5.14: BER vs. SNR (dB) for the cases with and without PAPR reduction (phase mod-
ification) and for various distributions of the phase. For the case with random phase change
two figures are plotted. In the first case (denoted Case-1) thereceiver has complete and per-
fect knowledge of the random phases used at the transmitter.In the second scenario (marked
Case-2) the receiver operates with no knowledge of the phases used at the transmitter. For the
scenarios when phases with Golay and Hadamard distributions are used, the transmitter and

receiver only share the keys of the pseudo-random polynomial.

5-5 Hill climbing optimization heuristics for minimization of PAPR

in WPM transmission

In the SLM method a whole set of candidate signals representing the same information are gen-

erated. Then the most favorable signal as regards to minimum PAPR is chosen and transmitted.

Instead of an arbitrary selection of the sub-carrier phases, it is also possible to find the optimum

set of phase values that result in the lowest possible PAPR at all instances. This can be deter-

mined by a local search around a selected set of phase-shift in anM -dimensional space (for

M number of sub-carriers). Local search is a meta-heuristic where the most suitable solution

amongst a number of candidate solutions is determined such that a target or objective function is

maximized (or minimized) [112]. Such local search algorithms move in the search space until a

solution considered satisfactory6 is obtained within a bounded period. In this section we present

a method to optimize selection of sub-carrier phases to minimize the PAPR of the transmitted

WPM signal. A mathematical optimization tool known as the hill climbing algorithm is applied

to obtain the optimal set of phase adjustments which guarantee a low PAPR.

6The local search heuristic only guarantees a local minima and not a global optimum solution.
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5-5-1 PAPR reduction as an optimization problem

A multi-carrier modulated signal is the sum of many information bearing sub-carriers which

are statistically independent. For a reasonably large number (about 64 ormore) of sub-carriers

the distribution of these symbols in the time-domain is Gaussian. Hence, the signalsmay oc-

casionally exhibit high fluctuations or spikes in the transmitted power. The objective of the

optimization problem is therefore to minimize such fluctuations in the power (characterized by

the metric PAPR) of the studied signal by adjusting the phases of the sub-carriers.

Formally, the problem can be mathematically stated as,

min
φi

J(φ) =
maxn(|y[n]|2)
E(|y[n]|2) (5.7)

subject to

0 6 φi 6 2π.

HereJ(φ) denotes the objective function,φi gives the phases of the sub-carriersi = 1, 2, . . . ,M

andy[n] = IDWPT (Xie
jφi) with Xi representing the complex symbols after constellation

mapping on theith sub-carrier.

The phase sequencesφi are determined by this optimization process. The phase-shifted infor-

mation bearing streams are then transformed by an IDWPT operation and the objective value,

which is the PAPR of the transformed composite signal, is calculated.

5-5-2 Hill climbing algorithm

We use a local search algorithm called the hill climbing algorithm to improve the selection

of the phases. Hill climbing is a mathematical optimization technique which belongs to the

family of local search algorithms. A local search algorithm starts with a candidate solution and

then iteratively searches for better solutions in the neighborhood. When the algorithm cannot

improve the solution any further, it terminates. Ideally, at the point of termination the obtained

solution should be as close as possible to the optimum solution. However, like alllocal search

algorithms, the hill climbing technique does not guarantee the best solution7.

An advantage of employing the hill climbing technique is that the method does not require the

target functions to be differentiable. This is particularly useful for WPM systems because the

wavelet signals cannot be readily expressed mathematically and hence mathematical operations

like partial differentiation and integration can prove unwieldy.

7Since the intention here is to minimize PAPR (and not necessarily find the lowest possible PAPR) the hill
climbing algorithm is suitable for the problem in hand.
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The hill climbing algorithm maximizes (or minimizes) the objective functionJ(φ) through an

iterative process. In each iteration, the algorithm alters a single element8 in φ and determines

whether the change improves the value ofJ(φ). Any change that improvesJ(φ) is retained. The

process continues until no change can be found to improve it further. This solution ofJ(φ) is

then said to belocally optimal. The elements ofφ can take both continuous and discrete values.

Different variants of the hill climbing method employ different processes ofselection to identify

the sample pointsφ. Some chose the new points randomly; others try all possible values and

select the one which best maximizes (or minimizes) the target function. In any event, if the

newly selected point produces a solution better than the previous one, it is retained. However,

if there are no further improvements to be had another point in the search space is chosen. The

algorithm stops when the desired solution has been obtained or when the stipulated run-time of

the algorithm has lapsed.

In the discrete vector spaces, the combinatorial problem may be visualized as a graph with the

vertices of the graph denoting different states ofφ. Hill climbing traverses the vertices, always

locally, increasing (or decreasing) the objective function. An appropriate step size is determined

and the states ofφ are either incremented or reduced by the value ofφ leading to a gradient

descent if the target function is to be minimized or to a gradient ascent if it is to be maximized.

More details on the hill climbing algorithm can be found in [112–114].

The block diagram of the proposed scheme is presented in fig.5.15.
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FIGURE 5.15: Block diagram of the hill climbing based PAPR reduction method.

In the next section, we show how the hill climbing search algorithm can be used to optimize the

SLM algorithm presented in section5-4and reduce the PAPR in WPM transmission.
8This is in contrast to the gradient descent method where all the elements ofthe target function are adjusted.
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5-5-3 Mitigation of PAPR for WPM systems with hill climbing al gorithm

For a WPM system withM sub-carriers (refer fig.5.15) the search space is aM -dimensional

phase vector where the phases can take values between 0 and2π. The initial candidate solution

is a vectorφ of randomly selected phases where0 ≤ φj ≤ 2π, j = 1, 2, . . . ,M . The WPM

sub-carriers are phase-modified with theM -length phase sequence. The IDWPT transform for

the obtained frame sequence is then obtained and the PAPR of the signal is calculated.

The hill climbing method starts with a randomM -dimensional phase vectorφ and calculates

the PAPR (which is the objective function) of the modulated frame. A step size for the phase

increments or decrements is then chosen. Each element of the phase vectoris then modified

iteratively by adding or subtracting it by the step size to obtain a new phase vector that produces

a different PAPR value. When this method cannot improve the PAPR anymore, the algorithm

terminates.

The hill climbing technique is presented in algorithm2. Initially, an equal step sizesj is set

for all the elements ofj = 1, 2, , . . . ,M . The step sizesj determines by how much thejth

dimension of the phase vector is to be updated. At each epocht one of the phases, sayφk, is

updated byφ(t+1)
k = φ

(t)
k +sk. The WPM sub-carriers are phase shifted by the new valueφ(t+1)

and the PAPR of the signal is calculated. It must be noted that during a particular epoch all other

phase valuesφj,j 6=k are kept unchanged9. If the objective function,J(φ(t+1)) decreases, i.e.,

J(φ(t+1)) < J(φ(t)), thenφ(t+1)
k becomesφ(t+1)

k = φ
(t)
k +sk. On the other hand, if the value of

the objective function increases,J(φ(t+1)) > J(φ(t)), thenφ(t+1)
k becomesφ(t+1)

k = φ
(t)
k − sk.

If there is no change in the objective function value, thensk is set to zero.

φ
(t+1)
k =





φ
(t)
k + sk if J(φ(t+1)) < J(φ(t))

φ
(t)
k − sk if J(φ(t+1)) > J(φ(t))

φ
(t)
k if J(φ(t+1)) = J(φ(t)).

(5.8)

At each epoch the algorithm aims to minimize the PAPR. To aid fast convergenceof the algo-

rithm to the minima the step size is decreased exponentially. Whenever there is a change in the

direction of the optimization in two consecutive epochs, for example,

J(φ(t−1)) < J(φ(t)) and J(φ(t)) > J(φ(t+1)),

or,

J(φ(t−1)) > J(φ(t)) and J(φ(t)) < J(φ(t+1)),

9This follows the fundamental principle of the hill climbing technique where only one element is altered at any
given instance
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the step size of the corresponding dimension is halved. Furthermore, if the step size becomes

lower than a certain predefined threshold (a very small value) it implies that the solution cannot

be improved any further with changes in that dimension. In such a case the step size is set to

zero. If sj = 0, ∀j, then the algorithm terminates. When the algorithm stops, a near-optimal

phase vectorφ∗ that produces a frame with a minimized PAPR is obtained.

Algorithm 2 Hill climbing based PAPR reduction algorithm

Require: X {X are the symbols on each sub-carrier}
1: stepsize = 0.1 {how much the phases can be updated at each epoch}
2: maxepochs = 1000 {maximum number of epochs (iterations)}
3: φi = rand(0, 2π) wherei = 1, . . . ,M {initially selected phase vector for each sub-carrier}

4: si = stepsize wherei = 1, . . . ,M {phase change for local search}
5: di = 1 wherei = 1, . . . ,M {direction of optimization 1:decreasedJ(p) 0:increasedJ(p)}
6: GenerateY = IDWPT (Xejφ) {Modulate the new frame}
7: J(φ(1)) = PAPR(Y) {Calculate the PAPR and BER (objective value,J(φ))}
8: for t = 1 tomaxepochs do
9: for i = 1 toM do

10: q = φ(t)

11: qi = qi + si
12: GenerateY = IDWPT (Xejq)
13: J(φ(t+1)) = PAPR(Y)
14: if J(φ(t+1)) < J(φ(t)) then
15: φ

(t+1)
i = φ

(t)
i + si

16: dt+1 = 1
17: else
18: if J(φ(t+1)) > J(φ(t)) then
19: φ

(t+1)
i = φ

(t)
i − si

20: dt+1 = −1
21: else
22: si = 0
23: dt+1 = 0
24: end if
25: end if
26: if dt + dt+1 = 0 then
27: si = si/2 {Fluctuations close to minima, decrease the step size}
28: end if
29: end for
30: φ∗ = φ(t+1)

31: GeneratedY = IDWPT (Xejφ∗)
32: J(φ∗) = PAPR(Y)
33: if

∑M
i=1 si = 0 then

34: Break;
35: end if
36: end for
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TABLE 5.2: Parameters used in the simulations

Parameter Value
Number of SLM replicasNSLM 4

DimensionM 16
Step sizesj 0.1

Maximum number of epochs 100

5-5-4 Numerical results

In this section we present results of the studies and evaluate the performance of WPM system

with the proposed hill climbing based PAPR mitigation scheme. The WPM system is realized

using a filter bank structure with 4 levels of decomposition (16 carriers) andthe wavelet of

choice is Daubechies 5 (denoted db5) which is of length 10. The modulation scheme used is

Quadratic Phase Shift Keying (QPSK). The figure-of-merit used is the complementary cumu-

lative distribution function (CCDF). These simulation parameters will be used through out the

experiments unless stated otherwise.

a. Performance of the algorithm to reduce PAPR

We first evaluate the impact of the PAPR reduction technique. In fig.5.16 the results of the

proposed hill climbing technique are plotted along with that of the SLM technique. The param-

eters used for the hill climbing are tabulated in table5.2. For the SLM technique the phases are

chosen from a phase alphabet ofφ ∈ (0, π/2, π, 3π/2). As a reference the case with no PAPR

reduction is also plotted.

b. Convergence of the algorithm

The starting point of the search algorithm and the choice of the step size playan important

role on the convergence of the algorithm to a minima. If a large step size is selected then the

algorithm could overlook potential solutions in the search space. On the other hand, if the step

size is small then the required number of epochs to converge to a minima could behigh.

In order to avert long execution times the maximum number of epochs in the proposed algo-

rithm is bounded. Furthermore, the convergence of the algorithm to a minima is facilitated by

exponential updates to the step size. The phenomenon is illustrated in fig.5.17where the initial

phase vector is marked withstartand the minima to which the algorithm converges to is marked

stop. In the example considered the algorithm2 converges to a minima in around 2000 epochs.

The results of the PAPR reduction algorithm to different step sizes are plotted in fig. 5.18.
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FIGURE 5.16: Performance of PAPR mitigation strategy with hill climbing optimization. The
WPM system is realized using a filter bank structure with 4 levels of decomposition and QPSK
modulation scheme. As reference the results of the standardSLM approach as well as case that
without any PAPR reduction are plotted. For SLM, the number of phase-shifted replicas of the

original frame,NSLM = 4.
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FIGURE 5.17: Demonstration of the impact of the initially selectedstep size wheresj = 0.01,
∀j on the PAPR reduction technique. The wavelet considered is Daubechies 15 (length 30).

For the case considered algorithm2 converges to a minima in about 2000 epochs.

c. Impact of the wavelet family

We now evaluate the performance of the PAPR reduction technique for different wavelet fam-

ilies. In fig. 5.19, the impact of the selected wavelet family on the performance of the PAPR
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FIGURE 5.18: Impact of the step sizesi on the PAPR reduction technique.

reduction is presented. Daubechies 5 (of length 10), Coiflet 5, Symlet 15(both of length 30),

Meyer (of length 102) and Haar wavelets are compared. An improvement inthe PAPR per-

formance can be observed for all the wavelet familes. For a CCDF value of about10−2, the

PAPR gained with the mitigation technique is about 2dB when compared to the casewhere no

optimization technique is applied.
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FIGURE 5.19: CCDF of the PAPR of WPM using hill Climbing based optimization method
for different wavelet families. The WPM system is realized using a filter bank structure with 4

levels of decomposition and QPSK modulation scheme.
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In fig. 5.20the performance of the PAPR reduction technique for different waveletfilter lengths

is shown. Though the differences in the performances are not much, one may note that with

increasing lengths of the wavelet filters the PAPR values also increase.
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FIGURE 5.20: CCDF of the PAPR of WPM using hill Climbing based optimization method
with different filter lengths of the Daubechies wavelet family.

A two-dimensional demonstration (M = 2), of this technique is presented in fig.5.21for five

different wavelet families. In the figure the axesp1 andp1 indicate the selected phases for

the two sub-carrier (M = 2) expressed in discrete values in the range0 to 2π. In the figure,

the phase vector selected at the commencement of the algorithm is marked withstart and the

near-optimal phase vector obtained at the end of the search algorithm is denoted asstop.

d. Computational complexity of the algorithm

The computational complexity of a hill climbing algorithm isO(TK) whereT is the number

of iterations andK is the average number of neighbor solutions. The value ofK depends on

the number of sub-carriersM and can be given asK = 2M 10. Consequently, the complex-

ity of the hill climbing algorithm isO(TM). When calculating the complexity of the overall

implementation, the computations necessary to execute the IDWPT must also be betaken into

account. The IDWPT complexity can be derived to beO(M log2M) [10] and therefore, the

overall complexity of the algorithm can be given asO(TM2 log2M).

10For each sub-carrier a phase value can either be increased or decreased by a step size
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(a) Daubechies 5.

0
10

20
30

0

10

20

30
1.5777

1.5778

1.5778

1.5778

1.5779

10p
1
 /Pi

START

STOP

10p
2
 /Pi

P
A

P
R

(b) Coiflet 5.
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(c) Meyer.
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(d) Haar.
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(e) Symlet15.

FIGURE 5.21: Demonstration of Algorithm2 for various wavelet families.

5-6 Summary

In this chapter we presented a study on the PAPR performance of the WPM system. Further-

more, two strategies to migitate the PAPR in WPM transmission were proposed.

• Selected mapping (SLM) with phase modification: The method exploited the fact that

by altering the phase of the WPM sub-carriers one can alter the PAPR of thetransmitted

signal. By altering the phases of the sub-carriers that modulate the information, WPM

frames with different PAPRs can be obtained for the same information sequence. By
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selecting the frame with the least PAPR the WPM system can be prevented fromoperating

in the saturation region of the electronic circuitry in the transceiver chain.

• Optimization of phase selection: The SLM technique was enhanced by proposing a math-

ematical heurestic to optimize the selection of phases to reduce PAPR. To do so, the

objective of minimizing the PAPR is posed as a mathematical optimization problem and

solved using a local-search algorithm known as the hill climbing heuristic. Themain

benefit of using the hill climbing technique for WPM systems is that the method does not

require the target functions to be differentiable. This is critical because the wavelet signals

cannot be readily expressed as mathematical functions and hence operations like partial

differentiation or integration are not easy.

The operation of the proposed methods were demonstrated and verified through numerical com-

putations. Comparing the two techniques, the hill climbing optimizer outperforms SLM based

phase modification or scrambling based techniques. The large side information requirement

of this optimization technique reduces the applicability of this technique. To reduce the side-

information two strategies may be employed (a) quantization of phases to a finite number and

(b) bundling of sub-carriers into groups where all the sub-carriers within a group undergo the

same phase shift [108].
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Chapter 6

Wavelet packet spectrum estimation

In this chapter, we investigate the application of wavelet packet transform(WPT) for spectral

estimation and analysis1 2. The main attraction for the method is the trade-offs it offers in terms

of satisfying various figure-of-merits such as high frequency resolution, good side-lobe suppres-

sion and low variations in the estimated power spectral density (PSD). The performance of the

system is evaluated through computer simulations. The results of the experiments show that

the wavelet based approach offers great flexibility and adaptability apart from its performances

which are comparable and at times even better than Fourier based estimates.

In addition to this, a couple of optimizations which lead to significant performance gains by

correcting edge-artifacts in standard wavelet packet transforms are presented.

The rest of the chapter is organized as follows. The fundamentals of conventional spectrum

estimation techniques like Periodogram, Corellogram, Welch and Blackman-Tukey are provided

in Section 6.1. In Section 6.2 these spectrum estimation techniques are interpreted as a filter

bank analysis problem. Two new techniques, namely, Multi taper spectrum estimation (MTSE)

and Filter bank spectrum estimation (FBSE) are also presented in this section as a class of filter

bank estimators. We then introduce the wavelet packet spectrum estimator (WPSE) in Section

6.3 as an advancement to the existing approaches. The WPSE is realized witha tree structure

consisting of para-unitary filters. In Section 6.4 a couple of optimizations which improve WPSE

performance is explained. Section 6.5 presents the simulation setup and the results of the study.

A comparative analysis of WPSE with existing methods is provided in Section 6.6.The chapter

ends with a summary in Section 6.7.

1Parts of this chapter have been published in [115] and [116]. For any material that has been reused, wherever
applicable, a written consent has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc student Mr.D .D. Ariananda for his active coop-
eration and help with the computer simulations.
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6-1 Introduction

Spectral Analysis is the process of determining the distribution in frequencyof the power of

a finite length signal from a finite set of measurements [117]. Metrics like variance and bias

of measurement as well as complexity of method are important considerations when choosing

the right spectrum analysis tool. Variance is the variations or fluctuations in the measurement

which occur due to the fact that an infinite number of PSD values are estimatedfrom a finite

sample set [117]. On the other hand, a bias can be due to 2 factors - smearing (or smudging)

and leakage (or spillage) [117]. Both these problems arise due to the limitations in the band-

pass filter, principally, with regard to their main and side lobes [117]. The effect of the main

lobe is to smear the estimate resulting in reduced frequency resolution. Side lobes on the other

hand contribute to transferring power from the desired to the undesirablebands causing leakages

[117]. The criterion for the optimum band-pass filters - narrow main lobes with low side lobes -

is conflicting and hence cannot be met simultaneously. Naturally, compromiseshave to be made

with regard to the choice of the band-pass filter. The best approach hence would be the one

which offers a trade-off between a desirable main-lobe and a tolerable side-lobe.

Consider3, a discrete time signalx[n] consisting ofNs random data samples and of finite energy

and zero mean i.e.E{x[n]} = 0. HereE{.} is the expectation operator which averages over the

ensemble of data samples. Defining the correlation functionRxx[k] as:

Rxx[k] = E{x∗[n− k]x[n]}, 0 ≤ k ≤ Ns − 1, (6.1)

there are two ways in which the power spectral density of the signal can becalculated. In the

first method, known as the direct method (or frequency domain approach), the PSDSDir
xx (ω) is

estimated directly from the signalx[n] as [117, 118],

SDir
xx (ω) =

Ns
lim→ ∞E





1

N s

∣∣∣∣∣

Ns−1∑

n=0

x[n]e−jωn
∣∣∣∣∣

2


 . (6.2)

In the second approach, referred as the indirect method (or time domain approach), the auto-

correlation functionRxx[k] of the signal being estimated is considered and from this autocor-

relation value, the power spectrum densitySinDir
xx (ω) is found by applying the Discrete Fourier

Transform [117, 118], i.e.,

SinDir
xx (ω) =

∞∑

k=−∞
Rxx[k]e

(−jωk)) (6.3)

3The discussion is based on [117] and has been summarized here for ready reference



Chapter 6 Wavelet packet spectrum estimation 134

6-1-1 Periodogram

The most commonly known spectrum estimator is the periodogram, which is basedon the direct

method of spectrum estimation as presented in eq.(6.2). Since the signal to be estimated is

usually of finite lengthNs, the expectation and limit operation in eq.(6.2) can be omitted to

obtain the reformulated PSD estimateŜpxx(ω) as [117]:

Ŝpxx(ω) =
1

N s

∣∣∣∣∣

Ns−1∑

n=0

x[n]e−jωn
∣∣∣∣∣

2

. (6.4)

6-1-2 Correlogram

The correlogram uses the autocorrelation function of the input signalRxx[k] to compute the

PSD. The PSD is obtained from the DFT ofRxx[k] ,i.e., [117]:

Ŝcxx(e
jω) =

∞∑

k=−∞
Rxx[k] exp(−jωk) (6.5)

There are two possible ways to compute the covariance functionRxx[k], namely, the standard

biased and the standard unbiased estimation [118]. The standard unbiased estimate is expressed

as [117]:

R̂xx[k] =
1

N − k

N−1∑

n=k

x∗[n− k]x[n], 0 ≤ k ≤ N − 1, (6.6)

and the standard biased estimate is given as [117]:

R̂xx[k] =
1

N

N−1∑

n=k

x∗[n− k]x[n], 0 ≤ k ≤ N − 1. (6.7)

In eqs.(6.6) and (6.7) R̂xx[k] denotes the approximate of the autocorrelation functionR(xx)[k].

Amongst the two approaches, the biased approach is usually preferred. The is so because for

large lags in the unbiased approachk the factor(N − k) will be small leading to erratic values

of theRxx[k]. Moreover, the value of̂Rxx[k] is guaranteed to be positive semi-definite [117].

6-1-3 Other techniques

The main deficiency of the techniques presented above is the use of rectangular window to

truncate the input data samples to finite length. This windowing introduces a discontinuity

between the original signal and the aliased version produced by a DFT transformation. In the

frequency domain, the rectangular window results in a Dirichlet Kernel which is described by
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the width of the main lobe and the level of side lobe [119]. The width of the main lobe is related

to the frequency resolution of the power spectra, and the level of side lobe is related to the ratio

between maximum and minimum spectral power that is distinguishable by the estimator. The

rectangular window compromises the frequency resolution resulting in leakage and a biased

estimate. ForNs number of data samples, the spectral resolution limit of Periodogram is1/Ns.

That is, the periodogram cannot resolve those details of the signal whichare separated by less

than1/Ns cycles per sampling interval [117].

Another problem with the periodogram is that the estimates are coarse with low precision and

large variance. Moreover, this variance does not improve with more data.The only way to

reduce the variance of the periodogram is to average the PSD estimates. This can be done

by computing several (shorter) periodograms and use these to compute averages of each PSD

estimate. This method is known as Bartlett method. Conversely, the periodogram coefficients

can also be weighted by windows. This is what happens in the Blackman-Tukey method. Bartlett

method and Blackman-Tukey method can be combined together so that one computes an average

of several windowed periodograms. This is the Welch method.

The choice of segment size and the number of segments determine the frequency resolution

and the variance that the methods presented above can offer. Apart from these two parameters,

the choice of window also has an important role to play. The window function determines

the dynamic spectrum range of the estimator as well as the attainable spectral resolution. The

window functions can thus be used as a lever to control the resolution and the range of the

estimator. Some of the popular windows used are the Triangular, Blackman, Hamming, Kaiser

and Hann window functions.

An important point to note is that almost all these window functions have smaller weights for

data samples located around the edges. Therefore, in the final computationof the PSD all the

data samples are not equally represented. In order to mitigate this effect thedata segments are

allowed to overlap. In [118], Porat suggests a 50 percent segment overlap. For this case, all data

samples have equal representation since samples located near the edges of a particular segment

will be located at the center of the adjacent segments.

6-2 Spectrum estimation as a filter bank analysis problem

In this section we explain how traditional spectrum estimators can be interpreted as a filter

bank analysis problem. Since the proposed wavelet packet based spectrum estimator (WPSE) is

entirely based on filter bank theory such a discussion will greatly aid in its understanding. The

discussion is based on an analysis provided in [117].
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6-2-1 Filter bank interpretation of spectrum analysis

As mentioned before, spectrum estimation is about finding the power spectrum density (PSD)

of a finite sample setx[n], n = 1, 2, . . . , N for the frequency band|ω| ≤ π. Usually the Fourier

transform is used to obtain a Periodogram estimate. Let us first consider eq.(6.4) as a function

of frequency (instead of the angular frequency) [117]:

Ŝpxx(e
j2πf ) =

1

N s

∣∣∣∣∣

Ns∑

n=1

x[n]e(−j2πfn)
∣∣∣∣∣

2

. (6.8)

For any given frequencyfi, eq.(6.8) can be rewritten as [117]:

Ŝpxx(e
j2πfi) =

1

Ns

∣∣∣∣∣

Ns∑

n=1

x[n]e(−j2πfin)
∣∣∣∣∣

2

=
1

N s

∣∣∣∣∣

Ns∑

n=1

x[n]e(j2πfi(Ns−n))
∣∣∣∣∣

2

(6.9)

The second operation in eq.(6.9) is possible since
∣∣e(j2πfiNs)

∣∣ = 1. By introducing a new

variablek = N − n, we can rewrite eq.(6.9) as [117]:

Ŝpxx(e
j2πfi) =

1

N s

∣∣∣∣∣

Ns−1∑

k=0

x[Ns − k]e(j2πfik)

∣∣∣∣∣

2

=

∣∣∣∣∣

Ns−1∑

k=0

hi[k]x[Ns − k]

∣∣∣∣∣

2

, (6.10)

where,

hi[k] =

{
w[k]e(j2πfik) for k = 0, 1, 2, . . . , Ns − 1

0 otherwise
(6.11)

and window functionw [k] = 1/
√
Ns.

If h0[k]( = w[k]) is taken to be a prototype FIR low-pass filter, thenhi;i 6=0[k]s will constitute

a bank of band-pass filters centered at frequenciesfi and obtained by modulating the prototype

filter h0[k]. The spectrum analysis problem posed in eq.(6.8) can be perceived as passingNs

samples of the studied signal through a filter bank with impulse responseshi[k] as illustrated in

fig. 6.1. For the classic periodogram, the functionw[k] is a rectangular window withw[k] =

1/
√
Ns.

The frequency responseHi(ω) of the filterhi[k], which is,

Hi(ω) =
∞∑

k=0

hi[k]e
−jωk (6.12)

can be easily derived to be [117]:
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FIGURE 6.1: Illustration of the filter bank concept [120].

Hi(ω) =
1√
Ns

N−1∑

k=0

ej(ωi−ω)k =
1√
Ns

ej(ωi−ω)Ns − 1

ej(ωi−ω) − 1

=
sin[Ns(ωi − ω)/2]√
Ns sin[(ωi − ω)/2]

exp

[
j

(
Ns − 1

2

)
(ωi − ω)

]
. (6.13)

It is clear that the frequency response of the periodogram with the rectangular windoww [k] =

1/
√
Ns as prototype filter will have large side lobes leading to large leakages. In order to

obtain a prototype filter with smaller side lobes, the rectangular window is replaced with a

window function that tapers smoothly on both sides . Examples of popular window functions

are Hanning, Kaiser and Blackman [118].

6-2-2 Multi-taper spectral estimator (MTSE)

A more intuitive approach would be to employ the Multi-taper spectrum estimator (MTSE)

suggested by Thomson [118, 121]. In this method multiple orthogonal prototype filters are used

for each band. The outputs of each filter are then averaged to obtain the estimate. Since the filters

are orthogonal to each other the outputs are uncorrelated and the estimateshave low variance.

To improve the accuracy of the estimates a mini-max algorithm is employed to ensurethat the

filters have maximum energy in the bands (with minimal side-lobe) of interest. Theorthogonal

basis vectors used in MTSE are slepian functions (prolate spherical sequences). The MTSE

uses multiple orthogonal prototype filters to improve the variance and reducethe side-lobe and

leakage. Fig.6.2 illustrates the magnitude response of the first seven MTSE prolate filters of

length 128 [120]. In this figure, only the even numbered filters are shown for the sake ofclarity.
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FIGURE 6.2: Magnitude responses of the first seven prolate filters oflength 128. For clarity,
only the even numbered filters are shown. The odd numbered filters have responses that fall in

between the presented ones [120].

FIGURE 6.3: Demodulation of theith sub-carrier of the received signal before it is processed
by the root-Nyquist filter [120].

6-2-3 Filter bank spectral estimator (FBSE)

An example of a spectrum estimator which is completely based on filter banks is theFilter bank

spectrum estimator (FBSE) proposed by Farhang-Boroujeny [120]. While in Thomson’s MTSE,

the estimate at a frequency pointfi is obtained by averaging the output of multiple prototype

filters, FBSE simplifies MTSE by employing only one prototype filter in the zeroth band as

shown in fig.6.3.

FBSE is implemented with a pair of matched root Nyquist-filter. A filter with transferfunction

H(z) is said to satisfy the Nyquist criterion if [122]:

OS−1∑

k=0

P (ze−j2πfk) = OS (6.14)
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FIGURE 6.4: Illustration of Filter Bank Spectral Estimator (FBSE)proposed by Farhang-
Boroujeny [120]. SFBSE(fi) is the FBSE estimate ati-th frequency sub-band [53].

In eq.(6.14),P (z) is the product filterP (z) = H(z)H(z−1) andOS is an integer called the over

sampling factor [122]. In multi-carrier communication, such filters are useful to design a pair of

matched transmit and received filters whose cascade is a Nyquist pulse shape. When|z| = 1,

thenP (z) = H(z)H(z−1) = |H(z)|2. P (z) is called a Nyquist filter and|H(z)| = P (z)1/2 a

root-Nyquist filter.

Fig. 6.4 shows the FBSE implementation. In the figureH(f) is the prototype filter, which is

root-Nyquist filter while the rest of the filters are modulated versions ofH(f). The frequency

response of the prototype filterH(f) and its modulated versions are shown in fig.6.5. The

output power of each filter is a measure of the estimated power over the corresponding sub-

band. Hence, the power spectral density (PSD) estimate ofi-th sub band of the filter bank is

represented as [120]:

Ŝ

(
i

N

)
= avg

[
|yi[n]|2

]
(6.15)

In eq.(6.15), the operatoravg{.} stands for time averaging whileyi[n] is the output signal of

thei-th sub-band filter. The basic idea of FBSE is to assume that filter bank-based multi-carrier

communication technique is used as the communication system of choice. The samefilter bank

can then be used for spectrum estimation. In this filter bank architecture, it ispresumed that

the filters at the receiver and transmitter side are a pair of matched root-Nyquist filtersH(z) as

shown in fig.6.3 [122]. At the receiver end, the received signal is down-converted to baseband,

low-pass filtered, and decimated [120] before it is finally forwarded to the root-Nyquist filter for

data demodulation and spectrum estimation.

Comparing MTSE and FBSE, the later is usually better when the PSD is calculatedfor a large

number of samples. On the other hand, when the available data samples are limited, then MTSE

is preferable. Another important advantage of FBSE underlined in [120] is the possibility of
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FIGURE 6.5: Optimally designed Root Nyquist Filter by Farhang-Boroujeny in [122] as pro-
totype filter for FBSE.

applying FBSE as a multi-carrier modulator. This is possible due to the fact thatthe filter-

bank in the receiver module can be used both for spectrum estimation and aswell as for signal

demodulation. More information on this topic is available in [120].
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6-3 Wavelet packet spectrum estimator (WPSE)

In this section, we describe the proposed spectrum estimation approach based on discrete wavelet

packet transform in greater detail. The motivation for using WP filters is manifold. First, the or-

thogonality of the filters ensures that the filtered outputs are not correlatedand hence the bias in

the estimates is reduced. Next, the DWPT, which is a lapped transform, allows the WP filters to

overlap in time. This means that the WP filters can be of longer lengths with sharper transitions

and localized frequency bands. Third, since all the WP filters are obtained by cascading low-

pass filters, the variances in the estimates are inherently lower. Furthermore, the tree structure of

WPSE can be adjusted to fine tune the frequency resolution, variance andbias in the estimates.

For example, greater the levels of decomposition, more the number of sub-bands (or estimate

points) and hence better the frequency resolution. Lastly, the wavelet families can be carefully

chosen so as to improve the accuracy of the estimates.

6-3-1 Wavelet packet representation

It is well known from the theory of wavelets that compactly supported wavelet can be derived

from perfect reconstruction filter banks [8, 29, 31]. Two channel filter banks split the given

signal into coarse (low-frequency) and detail (high-frequency) components. The high- and low-

pass filters remove the lower- and upper-half frequency components, respectively. As a result,

the output signal spans only half of the frequency band spanned by theinput signal. However,

the time scale of the signal remains unchanged. To retain the same number of samples, the filter

outputs are down-sampled by a factor of 2. Therefore, one step decomposition process consist-

ing of half band filtering and down sampling reduces the time resolution by a halfand reduces

the frequency band spanned by the signal by half as well. The scheme is then iterated succes-

sively on both the coarse and detailed versions until the desired degree of resolution to form a

cascaded tree structure. The cascaded two channel filter banks structure recursively decomposes

the signal being estimated and maps the signal components into the frequency domain. This pro-

cess may be likened to passing the received signal into a bank of filters where the output point

of each filter is a wavelet packet node. The output of each wavelet packet node corresponds

to a particular frequency band. In fig.6.6, a level-4 decomposition procedure generating 16

wavelet packet coefficients is illustrated. Fig.6.6also depicts the relationship between the order

of wavelet packet node number and its frequency ordering for a 4-level decomposition. There

are 16 nodes in the lowest level shown in fig.6.6 corresponding to 16 frequency bands. These

16 frequency bands span the normalized frequency range[0, π] or [0Hz, 0.5fsHz], wherefs Hz

is the sampling frequency.

The decomposition of the signal into different frequency bands with different resolutions is

possible. The resolution of the estimate can be adjusted by increasing or decreasing the number
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FIGURE 6.6: Wavelet packet tree for four levels wavelet packet decomposition. HereH(z) and
G(z) denote the low- and high-pass decomposition filters, respectively. ↓ represent decimation
by 2. It should be noted that the coefficients of the wavelet packet transform are not ordered by
increasing order of frequency. Gray code conversion is required to obtain the correct frequency

order.

of decomposition levels. The greater the degree of decomposition, the betterthe frequency

resolution is. The number of successions is usually limited by the desired levelof frequency

resolution and available computational power. An added advantage is that the output at every

level can be chosen according to the desired frequency resolution.

6-3-2 Frequency ordering of wavelet packet coefficients

It is of utmost importance to identify the bands spanned by the wavelet packet coefficients

and their relative frequency ordering. The coefficients of the waveletpacket transform are not

naturally ordered by increasing order of frequency. Instead, they are numbered on the basis of a

sequential binary gray code value [123].

To understand the working of the wavelet packet transform, consider the example shown in

figs. 6.7 and 6.8 where the decomposition of a signal spanning0 − 8 Hz is considered for
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FIGURE 6.7: Level 1 Decomposition: Mirroring of high-pass components due to down-
sampling. In the figure,2 ↓ denotes down sampling by 2 [123].

up to two levels4. The output of a decomposition process is the result of the scaling (the low-

pass filter) and the wavelet function (the high-pass filter) followed by down sampling. Down

sampling generates two new filter results with half the number of elements in the time domain. In

addition to this, it also results in mirroring of the high-pass components in the frequency domain.

This swaps the low and high-pass components in a subsequent decomposition as exemplified in

the figures.

4The discussion presented here is based on [123]
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FIGURE 6.8: Level 2 Decomposition (continued from previous figure): The 2-levels wavelet
packet decomposition is applied. Due to down sampling all the high frequency parts are mir-
rored. The low and high-frequency parts are swapped in a subsequent transform. In the figure,
2 ↓ denotes down-sampling by 2. Note that the output of the 1st wavelet packet node corre-
spond to 0-2Hz, 2nd wavelet packet node correspond to 2-4Hz,3rd and 4th node correspond to

6-8Hz and 4-6Hz respectively [123].

6-3-3 Re-ordering of wavelet packet coefficients

A. Gray to binary code conversion

When the wavelet packet algorithm is recursively applied the resultant wavelet packet coef-

ficients obtained follow the Gray code sequence [123]. The binary to Gray code conversion

formula is given as [123]:

GC(bi) = (bi + bi+1) mod 2. (6.16)
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Here,n is the decimal numbern with a binary representation of the form ofb4b3b2b1 (b1 is the

least significant bit andb4 the most significant bit).

Instead of the usual Gray Code Permutation, we here present an alternative algorithm to convert

the sequence from Gray to binary. This method is computationally simpler and does not involve

any binary to decimal conversion (or vice versa). If the wavelet packet nodes are in sequence

(from the smallest number to the largest), the algorithm for obtaining the frequency band order

can be stated as follows:

• Initialize a vectoralpha with elements 0 and 1 (alpha = [0 1])

• Define the required level of wavelet packet decomposition L

• For j = 2 toL− 1 do

– beta = alpha+ 2j;

– Flip the element ofbeta

– Appendbeta at the end ofalpha

6-3-4 Wavelet packet based spectrum estimation as a filter bank analysis problem

The WPSE can be considered as a natural extension to MTSE. The WPSE also uses different

orthogonal filters as prototype filters. Akin to MTSE and periodogram, the WPSE estimates

are the outputs of a bank of filter having a pass-band around that point. However, instead of

Slepian sequences the WPSE filters are derived by cascading wavelet packet decomposition

filters. However, in contrast to MTSE, these filters are realized by cascading several analysis

low-pass and/or high-pass filters, which are derived from single prototype according to two

scale equations and quadrature mirroring. The impulse response of thesecascaded filters, called

the wavelet packet duals, can be represented as:

Ωi[k] = ξil [k] = β[k] ∗ β[2k] ∗ . . . ∗ β[2l−2k] ∗ β[2l−1k] (6.17)

where0 ≤ i ≤ 2l − 1 andβ[k] are the branch filters given as:

β[k] =

{
h[k], for low − pass branch

g[k], for high− pass branch
(6.18)

Fig. 6.10presents the proposed wavelet packet based spectrum estimator as a filter bank. In this

figure the decomposition level is 3 which results in 8 estimatation points. The eightcumulative

filters divide the normalized frequency range [0,π] into 8 equal sub-bands. Higher the levels of
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FIGURE 6.9: Wavelet packet decomposition of a signal. HereH andG denote the frequency
responses of the low- and high-pass decomposition filters, respectively. The down-arrows↓
represents decimation by 2. Thexi’s denote the wavelet packet coefficients. Besides the de-
composition, the Power Spectral Density (PSD) of the decomposed signal components in suc-
cessive octave bands normalized to the Nyquist frequency isshown. The order of filter in each

level is modified in order to match frequency ordering from 0 to π.

decomposition more the number of sub-bands (or estimate points) and thus greater the degree

of frequency resolution.

B. Modified wavelet packet tree structure

A more convenient approach is to avoid this Gray to binary conversion altogether by modifying

the WPSE tree structure [123]. Fig. 6.9 illustrates the modified structure of the wavelet packet

tree (3-level of decomposition) in order to match the frequency ordering.We can note the

difference of this structure with the first 3 level of the tree shown in fig.6.6, especially the order

of analysis low-pass filterH and high-pass filterG in each level.

6-3-5 Wavelet packet transform and energy conservation

The relationship between the amplitude of the signal and wavelet coefficientshas to be estab-

lished to develop the wavelet packet spectrum estimator. The Parseval relation proves that the

Fourier transform is a lossless unitary transform. Likewise, we need to assert if the wavelet
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FIGURE 6.10: Wavelet packet based spectrum estimation concept from the point of view of
filter bank paradigm. Here 3-level decomposition is employed resulting in 8 virtual filters split-
ting the normalized frequency band [0,π] into eight sub-bands corresponding to eight estimate

points.

packet transforms preserves energy too. In order to ascertain this relation, we start by represent-

ing a functionf(x) in Hilbert Space as the linear combination of the basis functionsϕi(x):

f(x) =
∑

i

αiϕi(x) (6.19)

Hereαi can be obtained from the inner-product of the basis functionsϕi(x) and the studied

signalf(x):

αi = 〈ϕi(x), f(x)〉 (6.20)

The norm of the function can be computed from the transform coefficients:

‖f(x)‖ =
∑

i

|αi|2 =
∑

i

|〈ϕi(x), f(x)〉|2 (6.21)

By assuming that a functiong(x) has transform coefficientsβi, we can derive the generalized

Parseval equation by taking the inner product between two functionsf(x) andg(x) in Hilbert

Space:

〈f(x), g(x)〉 =
∑

i

ᾱiβi =
∑

i

〈f(x), ϕi(x)〉 〈ϕi(x), g(x)〉 (6.22)
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Here,αi denotes the complex conjugate version ofαi. According to Todorovska and Hao [124],

the Parseval relation for Discrete Orthogonal Wavelet Transform andits inverse is obtained by

substitution on generalized Parseval Equation in the above expression. The forward and inverse

discrete wavelet transforms for the discrete signalx[n] can be represented as follows [124]:

x[n] =

N/2J∑

k=1

c(J, k)ϕJ,k[n] +




J∑

j=1

N/2j∑

k=1

d(j, k)ψj,k[n]


 (6.23)

c(J, k) = 〈ϕJ,k[n], x[n]〉 and

d(j, k) = 〈ψj,k[n], x[n]〉 (6.24)

In eqs.(6.23) and (6.24), J is the decomposition level andN is the total number of samples.

These expressions are known as the synthesis and analysis equations, respectively. The first

component in eq.(6.24) is the coarse part of signalx[n], which is represented as a linear com-

bination of the scaling functionϕJ,k[n]. On the other hand, the second part of eq.(6.24) is the

detail version ofx[n], which is represented as a linear combination of wavelet functionsψj,k[n].

If we consider another signal,y[n] with d(i)(j, k) andc(i)(J, k) as its wavelet packet coefficients,

the Parseval relation fory[n] andx[n] can be described as:

〈x[n], y[n]〉 =
∞∑

n=−∞
x[n]y[n] =




J∑

j=1

N/2j∑

k=1

d(i)(j, k)d(j, k)


+



N/2J∑

k=1

c(i)(J, k)c(J, k)




(6.25)

Takingx[n] = y[n], the Parseval relation in terms of the norm ofy[n] can be given as [124]:

‖y[n]‖2 =
∞∑

n=−∞
|y[n]|2 =




J∑

j=1

N/2j∑

k=1

|d(j, k)|2

+

N/2J∑

k=1

|c(J, k)|2 (6.26)

This clearly shows that the wavelet transform is a lossless transform andthere is no loss of

energy when we transform the time-domain data to the wavelet domain. This feature is a fun-

damental reason why a spectrum estimator based on wavelets can be built. Parseval’s relation

holds well for both conventional discrete wavelet transform and wavelet packet decomposition.

6-3-6 Calculating power spectrum density from wavelet packet coefficients

Since the Wavelet packet transform obeys the Parseval relationship, we can obtain the wavelet

based spectrum estimates. Considering that the wavelet packet nodes span the frequency band
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[0 0.5fs], wherefs is the sampling frequency, and that the levels of wavelet packet decom-

position isn there will be2n wavelet packet nodes. This decomposition will divide the band

[0 0.5fs] into 2n equal bands.

The power spectrum density estimateŜWPM
xx (fk) of the frequency band spanned by thekth WP

can be calculated from the energyΦ(fk) detected in thekth band as follows:

ŜWPM
xx (fk) =

Φ(fk)

Nsfk
(watt/(radian/sample)); where 1 ≤ k ≤ 2C . (6.27)

HereNs connotes the number of input samples. With these steps the WP indices can be mapped

to their respective frequency bins and an accurate estimation of the radio spectrum can be per-

formed.

6-4 Optimizations to wavelet packet implementation

We now present the Enhanced WPSE (E-WPSE) which fine tunes the operation of WPSE by

bringing in a couple of improvisations. These optimizations correct artifacts which inherently

occur in WPSE and lead to significant gains.

6-4-1 Enhanced WPSE to mitigate edge artifacts

Before presenting the details of the E-WPSE, it will be useful to take a closer look at the standard

implementation of the Wavelet Packet algorithm again. Supposing that the inputsignalx[n] is

of lengthNs (with Ns taken to be even for convenience) and if we take the length of the filters

h and g to beL, then the down-sampled sub-band signalsxh[n] andxg[n] (connoting low-

and high-pass branch outputs, respectively) will each be of length(L + Ns)/2. However, if

the length of the samples before and after the wavelet packet operation is tobe kept constant

then the lengths of sub-band signalsxh[n] andxg[n] have to beNs/2 (see fig.6.11). To do

so the standard wavelet packet implementations drop theL/2 sub-band samples near the edges

which exceed the lengthNs/2. Naturally, this abrupt truncation of the data samples results in

aberrations like ringing around the edges and produces spurious high frequency components

leading to inaccurate estimation.

In order to correct this artifact we avoid the excessive length by addingthe lastL/2 samples of

each sub-band signal to the firstL/2 samples (see fig.6.12). This periodic extension is similar

to the use of cyclic prefix in OFDM and is a most convenient fix to the problem of edge based

artifacts and ringing. We call the new method Enhanced WPSE or E-WPSE.
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FIGURE 6.11: Two-channel filter bank implementation: convolutionoperation and increased
sample lengths.

FIGURE 6.12: Two-channel filter bank implementation: periodic extension to fix edge-based
artifacts.

6-4-2 Enhanced WPSE with padding

A requirement in the implementation of E-WPSE is that the number of samples at each level of

the WP tree is even. This means that for a level-C decomposition the number of data samples

considered must be a multiple of2C . If this is not the case, then the input samples should

be padded with additional bits to make the data length a multiple of2C . The padding can be

done in two ways. In the first method, the additional bits are added to the inputdata before the

decomposition process. In this regard three approaches are considered, namely, zero padding

(ZP), cyclic prefix (CP) padding and symmetric padding (SP). AssumingN -length samples for

N < α.2C whereα is the smallest integer leading to a multiple of2C , the zero padding is

performed by appendingα.2C −N zeros at the end of the received samples. When cyclic prefix

is used, the lastα.2C −N samples of the received sequencesx[n] are copied and prefixed to the

original sequences. The data sequence can be given as:

x[N − (α.2C −N − 1)] . . . x[N − 1] x[N ] x[0] x[1] . . . x[N − 1] x[N ].

In symmetric padding, the lastα.2C − N samples of the received sequencesx[n] are copied

and then flipped before they are suffixed to the data samples. The order of the sequences can be

given as:

x[0] x[1] . . . x[N − 1] x[N ] x[N ] x[N − 1] . . . x[N − (α.2C −N − 1)].
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In the second scheme of padding, instead of adding all the extra bits before the decomposition

process, a single bit is added only to those decomposition stages where the number of samples

is odd. For example, a sequencex[n] having 38400 samples passed into the wavelet packet tree

with 11-level of decomposition will not require one-bit pad during the decomposition process

up to level-9. However, at level-10 and level-11, one bit pad will be required. In this work, the

additional bit used is a zero bit.

6-5 Experiment scenarios, sources and their characteristics

In order to investigate the performance of the wavelet packet based spectrum estimation tech-

nique, four different types of sources are considered, namely, partial-band, single-tone, multi-

tones and swept-tone. The test sources are so chosen that they shed different insights into the

operation of the spectrum estimation tool. The partial-band source (see fig.6.13-A) has its en-

ergy spread over a continuous range of frequencies and occupies the normalized frequency band

from 0.25π to 0.75π. The partial band source is implemented as a OFDM system with the num-

ber of carriers adjusted according to the bandwidth considered for the study. The single tone

source (see fig.6.13-B) has all of its energy at one frequency and is in the middle of the fre-

quency range spanned by the WPSE, namely at0.5π. The multi-tones source (see fig.6.13-C)

consists of seven equi-spaced single tones located from0.125π to 0.875π.

Finally, a swept tone source (refer fig.6.14) is introduced to measure how well the estimation

schemes perform when there are temporal variations in the bands occupied by the data source.

The swept tone source is a chirp signal in which the frequency increases (’up-chirp’) with time.

After a sweep of incremental chirps the signal winds back to the original frequency to start with

the next sweep cycle.

Table7.2summarizes the description of sources used in the experiment.

0.375π 0.625π 0.5π

0.125π 0.375π 0.625π0.25π 0.5π 0.75π 0.875π

(A) (B)

(C)

FIGURE 6.13: Sources and their characteristics. The sources considered are: (A) Partial Band,
(B) Single-tone and (C) Muiltiple Tone.
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FIGURE 6.14: Swept Tone Source.

Type of sources Description

Partial band Consists of a partial band source occupying the
normalized frequency range[0.375, 0.625π]. (See
fig. 6.13-A)

Single tone A single tone at normalized frequency0.5π. (See
fig. 6.13-B)

Multi-tone Consists of 7 single tones occupying the normal-
ized frequencies occuring at0.125π, 0.25π, 0.375π,
0.5π, 0.625π, 0.75π and0.875π. (See fig.6.13-C)

Swept tone Consists of a source which occupies different fre-
quency bands at different time instances. A total
of 20 sweeps (each of 640 samples) covering the
frequency band of[0.2π, 0.8π] is considered. (See
fig. 6.14)

TABLE 6.1: Description of test sources.

For the WPSE, a level-7 decomposition tree is considered. Several wavelet families are investi-

gated namely Daubechies families, Coiflet, Symlet, Discrete Meyer, Biorthogonal and Reverse

Biorthogonal. The WPSE results are compared with existing techniques suchas Welch, Peri-

odogram estimates, periodogram with windowing (Hann, Hamming and Blackman) and MTSE.

In Welch, the input samples are divided into smaller segments and the periodogram for each

segment is computed.

The number of data samples considered in the experiments is 12800. The Welchestmate is

obtained by dividing the received samples into 399 segments of 64 samples each. Consecutive

segments of the samples overlap with one-another by 50%. Before the averaging of data samples

a Hamming window is applied on each segment. To gauge the swept tone source, 20 sweeps

(each of 640 unit samples) are considered. The sweep spans the normalized frequency band
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[0.2π, 0.8π]. In order to present the effect of highly time-varying frequency on spectrum esti-

mation, the estimate for five portions of a single sweep is displayed. The estimationtechnique

depicts the first 128 unit samples of a single sweep followed by the next 128unit samples of the

same sweep and so on until the fifth 128 unit samples of the same sweep.

6-6 Results and analysis

In this section we present the results of our study on using WPSE to estimate different kinds of

data sources.

6-6-1 Partial band source estimation

In the estimation of partial band sources the performance of the candidate techniques are guaged

using four performance metrics, namely,

• side lobe suppression,

• variance of the estimated PSD in pass-band ,

• variance of the estimated PSD stop band,

• and transition between pass-band and stop-band (transition band).

The best system is one which yields good side lobe suppression, low stop/pass-band variance

and a narrow transition band. Indeed all these desirable properties may not be realized at the

same instance and one may have to trade-off between the desirables to select the best system.

A. Comparison with Welch and Periodogram estimators

We first compare the performance of the WPSE with Welch and Periodogramtechniques. Fig.6.15

depicts the estimates of a partial band source with Periodogram, Welch and WPSE estimators

(employing Daubechies wavelets). For the sake of clarity only two decomposition levels are

presented. The number of data samples considered in the experiment is 12800.

From the plots we may notice that the Periodogram estimates have a good resolution but have

large variances in the pass-band. The Welch estimator divides the data samples into smaller

segments, calculates the local periodogram of each segment and then averages them to arrive at

the final estimate. Hence, the variances in the PSD estimates are low; however, the averaging of

the estimates results in loss of information on sharp transitions in the studied signal. Of interest
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Welch Approach

FIGURE 6.15: PSD estimates of the partial band source with Periodogram, Welch and WPSE
(Daubechies 20 wavelet) estimatators. The number of data samples considered is 12800. In
the Welch estimator the data samples are windowed (Hamming)into smaller segments of 64

samples each with an overlap of 50%.

is the WP approach where one may increase or decrease the decompositionlevels to achieve the

desired variance versus frequency resolution trade-off.

When the performance of the WPSE is compared to Fourier-based periodogram, the transition

band of the periodogram output is sharper. However, on account ofthe variance of the estimated

PSD the WPSE performs significantly better than the periodogram. This is crucial in radio

transmission where large variances in the estimate could lead to erroneous judgements on the

presence/absence of sources. Hence, in the metric of variance of estimated PSD, it can be said

that orthogonal wavelet based estimate is preferable in comparison to the periodogram for partial

band source estimation.

Comparing WPSE and Welch, the Welch technique performs marginally better. The averaging

of estimates in the Welch plays an important role in ensuring that the PSD has a small variance

even when maintaining sharp transition bands. However, it may be noted thatthe transition

band guaranteed by Welch is only fractionaly better than that found in WPSEusing the Discrete

Meyer wavelet5. This implies that there is scope for further improvement in WPSE performance

when the length of the wavelet filter is increased.

In the metric of stop band suppression, the level of estimated power in the unoccupied bands

for Welch is higher than that of WPSE or periodogram. This is a direct consequence of the

data partitioning carried out in Welch which results in lower number of samples available for

5Length of Discrete Meyer filter length is 102
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FIGURE 6.16: PSD estimates of partial band source according to two different decomposition
level of frequency selective wavelet based approach, Thomson’s MTSE and Periodogram using

Hann window. The number of samples in this experiment is 12800.

estimation. Consequently, the Welch introduces a wider main lobe in its window kernel and

causes more leakage than the periodogram. The WPSE offers better rejection than both Welch

and periodogram in the unoccupied frequency bands and also decaysfast in the stop band.

B. Comparison with windowed Periodogram and MTSE methods

Applying the window to the periodogram (plots presented in figs.6.16and 6.17) reduces the

side lobes and hence leakage into the stop bands. However, it does not solve the problem of

large variances in the pass band. In fact, all the windowed-periodogram outputs have variances

much larger than WPSE. Lastly, the MTSE offers excellent frequency resolution but they too

suffer from large variances.

C. Impact of wavelet families

In this set of experiments the influence of wavelet familes on the performance of WPSE is

evaluated. Several well-known wavelet families including Daubechies-15, Coiflet-5, Symlet-15,

Discrete Meyer, Biorthogonal-3.9, Reverse and Biorthogonal 3.9 are investigated. Daubechies-

15, Coiflet-5 and Symlet-15 have a filter length of 30. On the other hand, Discrete Meyer has

filter length of 102 while both Biorthogonal3.9 and Reverse Biorthogonal 3.9have filter length

of 20.
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FIGURE 6.17: PSD estimates of partial band source according to different decomposition level
of frequency selective wavelet based approach together with Periodogram using Hamming and

Blackman window. The number of samples in this experiment is12800.

Figs.6.18and 6.19depict the performances of various wavelet families for WPSE. Welch and

periodogram results have also been provided as reference. The figures show that Discrete Meyer

wavelet has the best performance amongst all wavelet families. However, it should be noted that

the length of the Discrete Mayer filter is 102 and thus exacts a higher cost ofimplementation.

It may also be noted that the performance of non-orthogonal wavelet families (Biorthogonal 3.9

and its reverse counter part) is very bad and hence unsuitable for WPSEapplications.

D. Impact of wavelet lengths

Fig. 6.20illustrates the effect of filter length on the performance of the WPSE. In this case, the

Daubechies family is selected for the experiment. It should be noted that the length of the filter

is twice the index of the wavelet. For example, Daubechies-4 has filter length of 8. It should

also be noted that Haar is actually Daubechies-1 and has a filter length of 2.From the figure, it

is evident that the longer the filter length, the smaller the transition band. Longer filter length

also corresponds to a better suppression of power in the unoccupied bands. However, a higher

price is paid for the implementation.

E. Impact of decomposition levels

In fig. 6.21, WPSE estimates at four different decomposition levels, namely level-5, level-7,

level-9 and level-11, are displayed. Of interest is the change in the variance and resolution of
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FIGURE 6.18: Periodogram and wavelet based estimates (Daubechies15, Symlet 15, Fre-
quency Selective (Length =30), Discrete Meyer) for partialband source.
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FIGURE 6.19: Welch and wavelet based estimates (Coiflet-5, biorthogonal 3.9, and reverse
biorthogonal 3.9) for partial band source. The number of samples in this experiment is 12800.
The overlap percentage and the length of each segment employed in Welch is 50% and 64 sam-
ples, respectively. Hamming window is used in the Welch estimation. A level-7 decomposition

tree is used for WPSE.
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FIGURE 6.20: Wavelet based estimates for partial band source usingDaubechies family with
different filter length. A level-7 decomposition tree is used for WPSE. The number of samples

in this experiment is 12800.
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FIGURE 6.21: PSD estimates of partial band source according to various decomposition level
of Frequency Selective Wavelet of length 30. The number of samples in this experiment is

12800.
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Estimation Tech-
nique

Side-lobe
suppression

Variance in
pass-band

Transition
band

Variance in
stop band

Welch ≈ - ≈ -
Periodogram - ++ - ++
Periodogram with
Window

- ++ - ++

MTSE - + - +

TABLE 6.2: Comparison of WPSE performance with other techniques for estimation of a
partial-band source.The notations +, - and≈ indicate whether the WP approach performs fa-

vorably, negatively or similar, respectively, in comparison to the other method.

the estimated PSD with increasing/decreasing number of decomposition levels. With a decrease

in the depth of signal decomposition, the variance of the estimated PSD is reduced. This is

to be expected because for lower number of data decompositions, wider bands are spanned by

the wavelet packet nodes. On the other hand, the total energy containedin a single wavelet

packet node would be averaged over larger frequency band resulting in smaller variances in the

estimates.

Table6.2 summarizes the performance comparison of the WPSE with other techniques for the

estimation of a partial-band source. The notations +, - and≈ indicate whether the WP approach

performs favorably, negatively or similar, respectively, in comparison tothe other method.

6-6-2 Single-tone source estimation

With regard to the estimation of single tone source, the performance metrics used are:

• variance of the estimated power spectrum density (PSD),

• mean power in stop band,

• frequency resolution, and

• leakage suppression or power rejection in the unoccupied band (side-lobe suppression).

The number of samples in these experiments is 12800 while the configuration ofWelch method

used here is the same as in the case of partial band source. The same wavelet families as

employed for the study of partial band sources are also employed here.

A. Comparison with Welch and Periodogram methods

Fig. 6.22shows the Periodogram, Welch and WPSE estimates for the single tone source. From

the figure, it can be noted that the variance of the WPSE estimates are far lower than that of
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Welch Approach

FIGURE 6.22: PSD estimation of single tone source with WPSE, Periodogram and Welch
methods. The number of samples considered in this experiment is 12800. The overlap percent-
age and the length of each segment employed in Welch is 50% and64 samples, respectively.

Hamming window is used in the Welch estimation.

Periodogram. The plots also show that the resolution offered by WPSE is better than that of

Welch. The averaging of estimates in Welch, which results in lower variance of partial band

estimates, is also the reason for the poor frequency resolution in the estimationof single tone

source6. On the other hand the periodogram estimates offer a very good frequency resolution

and side lobe suppression which are comparable to the wavelet based estimates. However, the

variances in the periodogram estimates remain high.

The results of these studies also exemplify the fact that the wavelet based estimates have char-

acteristics in between that of periodogram (excellent frequency resolution but large stop band

variance) and Welch (low stop band variance but poor frequency resolution). The WPSE can be

made to operate between the strengths of the Welch (low variance) and periodogram (excellent

resolution) estimations without compromising too much on either of these metrics by merely

increasing/decreasing the levels of decomposition.

B. Comparison with windowed-Periodogram and MTSE techniques

Figs.6.23and 6.24show the impact of windowing on the reduction of side lobe level of the

Periodogram estimates. Periodogram with Hann, Hamming and Blackman windowsoffer better

marginally better frequency resolution than WPSE. The MTSE also offers agood frequency

resolution and side lobe rejection.

6Averaging results in smearing of peaks and transitions of the studied data



Chapter 6 Wavelet packet spectrum estimation 161

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−50

−40

−30

−20

−10

0

10

20

30

Normalized Frequency (x π rad/sample)

P
o

w
e

r 
/ 

F
re

q
u

e
n

c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

 

 

Periodogram (Hann Window)

Thomson Multi Taper (MTSE)

Daubechies−20
(11−level decomposition)

Daubechies−20
(6−level decomposition)

FIGURE 6.23: PSD estimation of single tone source with WPSE, Thomson’s MTSE and Peri-
odogram using Hann window. The number of data samples considered is 12800.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−50

−40

−30

−20

−10

0

10

20

30

Normalized Frequency (x π rad/sample)

P
o

w
e

r 
/ 

F
re

q
u

e
n

c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

 

 

Periodogram
(Hamming Window)

Periodogram
(Blackman Window)

Daubechies−20
(11−level decomposition))

Daubechies−20 (6−level decomposition)

FIGURE 6.24: PSD estimation of single tone source with WPSE, Periodogram with Hamming
window and Blackman window. The number of samples considered is 12800.
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FIGURE 6.25: Periodogram and WPSE (Daubechies 15, Symlet 15, Discrete Meyer) for single
tone source. The number of samples in this experiment is 12800. A level-7 decomposition tree

is used for WPSE.

C. Impact of wavelet families

Figs.6.25and 6.26depict the WPSE estimates with various wavelet families for the estimation

of single tone source. Welch and periodogram estimates have also been provided to serve as a

reference. As expected, the Discrete Meyer wavelet, having longer filter length, performs better

than other wavelet families. However, in terms of frequency resolution, allorthogonal wavelet

based estimates perform similarly. The performance of biorthogonal wavelets is poor making

them unsuitable candidates.

D. Influence of filter length

Fig. 6.27illustrates the effect of filter length on the performance of the wavelet based estimates.

There is no clear correlation between the length of filter and the frequencyresolution of the

WPSE. However, on account of the variance of estimate in the stop band, aclearer pattern

emerges - the longer the decomposition filters the smaller the variance of the power in the stop

band.

E. Influence of decomposition level

Fig. 6.28shows the plots for the single tone source estimation with WPSE at different decom-

position levels. The results show that WPSE structures of higher decomposition levels lead to
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FIGURE 6.26: Welch and wavelet based estimates (Coiflet-5, biorthogonal 3.9, and reverse
biorthogonal 3.9) for single tone source. The number of samples in this experiment is 12800.
The overlap percentage and the length of each segment employed in Welch is 50% and 64 sam-
ples, respectively. Hamming window is used in the Welch estimation. A level-7 decomposition

tree is used for WPSE.
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FIGURE 6.27: Wavelet based estimates for single tone source using Daubechies family with
different filter length. A level-7 decomposition tree is used for WPSE. The number of samples

considered is 12800.
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FIGURE 6.28: PSD estimates of single tone source according to various decomposition level
of frequency selective wavelet. The number of samples in this experiment is 12800.

Estimation Tech-
nique

Mean Power
in stop-band

Variance in
stop-band

Frequency
resolution

Side lobe

Welch + ≈ ++ +
Periodogram ≈ ++ ≈ ≈
Periodogram with
Window

- ++ ≈ -

MTSE - + ≈ -

TABLE 6.3: Comparison of WPSE performance with other techniques for estimation of a
single-tone source.The notations +, - and≈ indicate whether the WP approach performs favor-

ably, negatively or similar in comparison to the other method.

better frequency resolution. However, as the decomposition level is increased (from 5 to 11

in the example shown), the variances of the estimates increase as well. The wavelet based es-

timates tend to approach periodogram estimate for higher order decompositionlevels and the

Welch based estimate for lower orders.

Table6.3 summarizes the performance comparison of the WPSE with other techniques for the

estimation of a single-tone source. The notations +, - and≈ indicate whether the WP approach

performs favorably, negatively or similar in comparison to the other method.
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FIGURE 6.29: PSD estimates of multi-tone source for different decomposition level of
Daubechies-20 together with Periodogram and Welch Estimate. The number of samples con-
sidered is 12800. The overlap percentage and the length of each segment employed in Welch

is 50% and 64 samples, respectively. Hamming window is used in the Welch estimation.

6-6-3 Multi-Tone Source Estimation

A. Comparison with Welch and Periodogram methods

Fig. 6.29 illustrates the Periodogram, Welch and WPSE results for the estimation of multi-

tones sources. The number of samples in these experiments is 12800 while the configuration

of Welch method used here is the same as in the case of partial band and singletone source.

The performance comparison of the candidate techniques follow trends similar to the estimation

of single tone sources. The performance of orthogonal WPSE is better than that of Welch for

frequency resolution and stop band power suppression. The periodogram has better frequency

resolution compared to WPSE but the variances in the estimates are large.

B. Comparison with windowed-Periodogram and MTSE techniques

Outcomes similar to single tone estimation occur when the WPSE estimation of multi-tone

sources are compared with that of windowed periodogram and MTSE (refer figs.6.30and 6.31).

Increasing the level of decomposition improves the frequency resolution of wavelet based esti-

mates to the extent that the results are compared with the frequency resolutionoffered by win-

dowed periodogram and MTSE. Both the MTSE and the windowed periodogram outperform

WPSE for power rejection in the unoccupied bands.
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FIGURE 6.30: PSD estimates of multi-tones source according to different decomposition level
of Daubechies-20 together with Thomson’s MTSE and Periodogram using Hann window. The

number of samples in this experiment is 12800.
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FIGURE 6.31: PSD estimates of multi-tones source according to different decomposition level
of Daubechies-20 together with Periodogram using Hamming window and Blackman window.

The number of samples in this experiment is 12800.
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FIGURE 6.32: Wavelet based estimate for multi tones source (Daubechies 15, Symlet 15 and
Discrete Meyer).

C. Impact of wavelet families

Figs.6.32and 6.33show the WPSE for a multiple tone source with various wavelet families.

As in the estimation of the single tone source, the performance of biorthogonal wavelet based

estimate is far worse than the orthogonal wavelet based estimate. Apart from this, there are

no other palpable differences in the performances of the orthogonal wavelet based estimates in

terms of frequency resolution.

E. Impact of decomposition levels

Fig. 6.34shows the effect of the decomposition level on the wavelet based PSD estimates. The

results are similar to single tone source, namely the higher the wavelet packetdecomposition

level, the more similar the estimates to the periodogram estimates. On the other hand,lowering

the decomposition level makes the WPSE performance similar to that of the Welch technique.

6-6-4 Swept-tone source estimation

The motivation for studying swept tone sources is to understand the ability ofthe candidate

techniques to gauge signals that vary with time. Such an analysis will be particularly useful for

testing the applicability of WPSE for Cognitive Radios where the characteristics of the signals

studied can vary with time.
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FIGURE 6.33: Wavelet based estimate for multi-tone source (Coiflet5 Biorthogonal 3.9, Re-
verse Biorthogonal 3.9).
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FIGURE 6.34: PSD estimates of multi-tones source according to various decomposition level
of Daubechies-20. The number of samples in this experiment is 12800.
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Twenty sweeps are conducted to estimate the swept tone source. We do notinvestigate the spec-

tral estimate of the entire 20 sweeps in a single attempt because the results wouldbe no different

from the estimation of partial band sources. Instead, we investigate the snapshot of a portion

of single sweep. Five snapshots are taken on a single sweep with each snapshot corresponding

to 20% of the total sweep period. Each sweep spans from the lowest frequency range (0.1fs or

0.2π) to the highest (0.4fs or 0.8π). The first snapshot corresponds to the left most lobe while

the fifth snapshot corresponds to the right most lobe.

Figs. 6.35, 6.36, 6.37 and 6.38 show the periodogram, Welch as well as WPSE estimates

(using different wavelets) for the swept tone source. None of the WPSE configuration surpasses

the performance of the Welch method. The Welch technique demonstrates good side lobe sup-

pression, small variance and a resolution that matches with that of orthogonal wavelet based

estimates. On the other hand, the performance of orthogonal wavelet based estimates is quite

comparable with the periodogram in terms of side lobe or stop band power suppression with the

added advantage of smaller variance.

Comparing the performance of different wavelets, it can be observed from fig. 6.38 that the

performance of bi-orthogonal wavelet is far worse than its orthogonalcounterparts. Among

the orthogonal wavelets, Discrete Meyer wavelets perform better than other wavelets, espe-

cially, with respect to the minimization of pass-band variance. However, forother metrics like

transition-band and stop-band power suppression, there are no clearperformance differences.

Fig. 6.39depicts the effect of filter length on the performance of the WPSE for theestimation

of swept-tone source. For clarity of expression only two Daubechies wavelets are depicted in

the figure. It can be inferred from the plots that estimation with wavelet-filtersof longer lengths

(say Daubechies 20) is better both in terms of the variance and stop-band power suppression.

However, the frequency resolution of the estimates are identical even with increased filter lengths

(compare Daubechies-4 results with Daubechies-20).

Fig. 6.40illustrates the differences in the performance of the WPSE for the estimation ofswept

tone sources for different levels of signal decomposition. We can observe from the plots that

with increasing number of decomposition levels, the freqeuncy resolution increases. However,

this is also accompanied by large variations in the estimates.

Fig. 6.41shows a 3-dimensional plot of the estimation for 2 sweeps of the swept-tone source.

6-6-5 Estimation with limited number of samples

It will be interesting to see how the performances of the candidate techniques compare when the

numbers of data samples available for estimation are limited. Such a study will be particularly

useful when the span time available for radio analysis is limited (e.g. as in the case of cognitive
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Legend: Star − Periodogram, Rectangle − Discrete Meyer

 

 

FIGURE 6.35: Periodogram and wavelet based estimate (Daubechies 15 and Discrete Meyer)
for a single sweep of swept tone source. Five portions of single sweep is captured (the most

left lobe is the first 20% of the sweep, the most right lobe is the fifth 20% of the sweep).
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Legend: Star − Welch, Triangle − Daubechies 15, Circle − Symlet 15

 

 

FIGURE 6.36: Welch and wavelet based estimates (Symlet 15 and Frequency Selective (Length
= 30)) for a single sweep of swept tone source. Five portions of single sweep are captured (the
most left lobe is the first 20% of the sweep, the most right lobeis the fifth 20% of the sweep).
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Legend: Triangle − Periodogram, Dashes − Daubechies 20 (11−level decomposition)
Circle − Daubechies 20 (6−level decomposition), Rectangle − Welch          

 

 

FIGURE 6.37: Periodogram, Welch, Daubechies-15 and Discrete Meyer based estimates for a
single sweep of swept tones source. 5 portions are captured (most left lobe is the first 20% and

most right lobe is the fifth 20% of the sweep).
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Legend: Star − Bi−orthogonal 3.9, Rectangle − Coiflet 5

 

 

FIGURE 6.38: Wavelet based estimate for a single sweep of swept tonesource (Coiflet 5 and
Biorthogonal 3.9). Five portions of single sweep is captured (the most left lobe is the first 20%

of the sweep, the most right lobe is the fifth 20% of the sweep).
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Legend: Triangle − Daubechies 4; Circle − Daubechies 20

 

 

FIGURE 6.39: Wavelet based estimate for a single sweep of swept tonesource (using
Daubechies family with different filter length). Five portions of single sweep are captured
(the most left lobe is the first 20% of the sweep, the most rightlobe is the fifth 20% of the

sweep).
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Legend: Rectangle => Daubechies 20 (11−level decomposition), Triangle − Daubechies 20 (8−level 
decomposition), Circle => Daubechies 20 (5−level decomposition)               

 

 

FIGURE 6.40: Wavelet based estimate for a single sweep of swept tonesource using
Daubechies family at different levels of decomposition. Five portions of single sweep are
captured (the most left lobe is the first 20% of the sweep, the most right lobe is the fifth 20% of

the sweep).
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FIGURE 6.41: Three dimensional plot of energy of spectrum estimates using frequency selec-
tive wavelet (2 sweeps, each of 640 samples).

radio applications). The number of samples used in the experiments is 384. Apart from WPSE,

the other estimators used are welch and periodogram. The parameters of Welch used here are

exactly the same as the ones used in the previous set of experiments, i.e. a Hanning window of

window size is 64 with 50% overlap.

A. Partial band

Figs. 6.42 and 6.43 depict the PSD plots of WPSE along with the periodogram and Welch

estimates for small number of samples. One may observe from the figures that the performances

of all the techniques deteriorates when the number of samples are reduced. Comparing Welch

and WPSE, both perform similarly in the metric of stop-band rejection. This is onexpected

lines because the number of samples in each segment for both cases is the same, namely 64.

However, the variations in the Welch output is larger when the number of samples is reduced

because the estimates are now averaged over 11 segments (instead of 399, as before). The

periodogram estimates for small number of samples also leaks more into the unoccupied bands

when compared with the earlier case with 12800 samples. This is also to be expected since the

size of the window in the case of 384 samples is much smaller leading to more leakage.
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Periodogram

Discrete Meyer

Symlet−15

FIGURE 6.42: Periodogram and WPSE (Symlet 15, and Discrete Meyer) estimation of a partial
band source. The number of samples considered is 384. A level-7 decomposition tree is used

for WPSE.
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Coiflet 5

Daubechies 15

FIGURE 6.43: Welch and WPSE (Coiflet-5, Daubechies-15) estimation of a partial band
source. The number of samples considered is 384. The overlappercentage and the length
of each segment employed in Welch is 50% and 64 samples, respectively. Hamming window

is used for Welch estimation. A level-7 decomposition tree is used for WPSE.
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 Periodogram

Discrete Meyer

Symlet 15

FIGURE 6.44: Periodogram and WPSE (Symlet 15, and Discrete Meyer) estimation of single
tone source. The number of samples in this experiment is 384.A level-7 decomposition tree is

used for WPSE.
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FIGURE 6.45: Welch and WPSE (Coiflet-5, Daubechies-15) estimation of single tone source.
The number of samples in this experiment is 384. The overlap percentage and the length of
each segment employed in Welch is 50% and 64 samples, respectively. Hamming window is

used for Welch estimation. A level-7 decomposition tree is used for WPSE.
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FIGURE 6.46: Periodogram and WPSE (Symlet 15, and Discrete Meyer) estimation of a multi-
tone source. The number of samples in this experiment is 384.A level-7 decomposition tree is

used for WPSE.
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FIGURE 6.47: Welch and WPSE (Coiflet-5, Daubechies-15) estimation of a multi-tones source.
The number of samples in this experiment is 384. The overlap percentage and the length of each
segment employed in Welch is 50% and 64 samples, respectively. Hamming window is used in

the Welch estimation. A level-7 decomposition tree is used for WPSE.
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B. Single tone

The plots for the estimation of a single tone source with 384 data samples are provided in

figs. 6.44 and 6.45. From the plots we may observe that the resolution of the estimates is

not affected by a reduction in the number of data samples. However, the periodogram and

WPSE estimates have a poorer frequency resolution and leak into the neighboring bands with

a decreased number of data samples. The Welch estimates, on the other hand, have the same

side-lobe level as before because the window size of the data segments remains 64 even with the

reduced sample set.

C. Multi-Tone

Figs.6.46and 6.47compare WPSE performance with Welch and Periodogram methods for the

estimation of multi-tone sources when the number of samples is low. For the case considered,

there seems to be no tangible differences in the performances of the Welch estimator. On the

other hand, both periodogram and WPSE estimates suffer from higher side lobes with a decrease

in the number of data samples.

6-6-6 Enhanced wavelet packet spectrum estimator (E-WPSE)

We now present results of the evaluation of the Enhanced-Wavelet Packet Spectrum Estimator

(E-WPSE) introduced in Section 7.5.

A. Estimation of partial band source

We first evaluate the performance of E-WPSE for the estimation of a partial band source.

Figs.6.48, 6.49, 6.50and 6.51show the estimation of a partial band source with various tech-

niques. The results are provided in four different figures for ease and clarity of depiction. The

figure of merit used to evaluate the various estimation techniques are:

• side lobe suppression,

• variance of the estimated PSD in pass-band and stop-band, and

• transition between pass-band and stop-band (transition band).

The best estimator is the one which has a sharp transition band, good side-lobe suppression and

Out-Of-Band (OOB) energy reduction, and low stop/pass-band variance. All these metrics may
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Daubechies−20 (Decomposition Level:9)

Daubechies−20 (Decomposition Level:7)

Daubechies−20 (Decomposition Level:5)

FIGURE 6.48: Estimation of a partial-band source with E-WPSE at various WP decomposition
levels. The wavelet used is Daubechies-20.

not be realized at the same instance and the desired features have to be traded to select the best

system.

In fig. 6.48, the wavelet based PSD estimates are displayed at 3 different decomposition levels

to understand the influence of the iteration level on WPSE performance. The wavelet used is

Daubechies-20.

In the next three figures (figs.6.49, 6.50and 6.51) the E-WPSE results are compared with other

approaches.

A.1. Comparison with Welch and periodogram techniques

The Periodogram has a sharp transition band but has a large variance inthe pass-band (see

fig. 6.49). The Welch averages the estimates and hence the variances are low; this also results

in a poor transition band. Of interest are the WP approaches, WPSE and E-WPSE, which have

significantly lower variance in comparison to the Periodogram. With regard to sidelobe levels

and OOB, the performances of the Welch and WPSE approaches match. E-WPSE on the other

hand comfortably outperforms both the Welch and the WPSE by a significant margin (up to 60

dB gains in OOB reduction).
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FIGURE 6.49: Comparison in performance of the estimation of a partial-band source between
E-WPSE, WPSE, periodogram and Welch methods. The wavelet usedis Daubechies-20.
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FIGURE 6.50: Comparison in performance of the estimation of a partial-band source between
E-WPSE, MTSE, periodogram with Hann window and Welch methods. The wavelet used is

Daubechies-20.
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FIGURE 6.51: Comparison in performance of the estimation of a partial-band source between
E-WPSE, WPSE, Periodogram (with Hamming and Blackman window)methods. The wavelet

used is Daubechies-20.

A.2. Comparison with Windowed periodogram and MTSE

Applying the window to the periodogram (see figs.6.50and 6.51) reduces the side lobes in the

estimates but it does not solve the problem of large variances. All the results with windowed-

periodogram have variances much larger than the WPSE estimates. Lastly, the MTSE estimates

have good frequency resolution but they too suffer from significant variance.

A.3. Influence of decomposition levels

One may increase or decrease the decomposition levels of the WPSE/E-WPSEsystems to

achieve the desired variance of the estimated PSD. With a decrease in the depth of data decom-

position the variance is marginally improved though it is also accompanied by a small decrease

in frequency resolution. This effect is illustrated in fig.6.48where the estimates for different

levels of decomposition are depicted.

Table6.4summarizes the performance comparison of the E-WPSE with other techniques. The

notations +, - and≈ indicate whether the WP approach performs favorably, negatively or similar

in comparison to the other method. It is clear from the PSD curves and the tablethat the E-WPSE

compares favorably with existing approaches in almost all the performancemeasures.
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FIGURE 6.52: E-WPSE estimation of a single tone source at different decomposition levels.
Wavelet applied is Daubechies-20.
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FIGURE 6.53: E-WPSE estimation of a single tone source and its comparison with Peri-
odogram and Welch results. Wavelet applied is Daubechies-20.
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FIGURE 6.54: E-WPSE estimation of a single tone source and its comparison with Thomson’s
MTSE and Periodogram with Hann window. Wavelet applied is Daubechies-20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−250

−200

−150

−100

−50

0

Normalized Frequency (x π rad/sample)

P
o

w
e

r/
F

re
q

u
e

n
c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

 

 

Periodogram
(Hamming Window)

Periodogram
(Blackman Window)

Daubechies−20
(9−level decomp.)

Daubechies−20
(6−level decomp.)

FIGURE 6.55: E-WPSE estimation of a single tone source and its comparison with Peri-
odogram (using Hamming and Blackman windows). Wavelet applied is Daubechies-20.
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Estimation Tech-
nique

Side-lobe
suppression

Variance in
pass-band

Transition
band

Variance in
stop band

Welch +++ ≈ ++ ≈
Periodogram ++ +++ - ++
Periodogram with
Window

≈ ++ ≈ ++

MTSE - + - +

TABLE 6.4: Comparison of E-WPSE performance with other techniquesfor estimation of
a partial-band source.The notations +, - and≈ indicate whether the WP approach performs

favorably, negatively or similar in comparison to the othermethod.

B. Single tone source

For the evaluation of single-tone source estimation, the performance metrics used are:

• mean power in stop band,

• variance in stop band,

• frequency resolution, and

• side lobe suppression.

Figs.6.52, 6.53, 6.54and 6.55show the PSD estimates for single tone source. The results of

this experiment make it clear that for the evaluation of single tone sources, the E-WPSE is an

excellent choice.

B.1. Comparison with Welch and periodogram methods

The Welch estimator windows the data, calculates the estimates of the windowed segments and

then averages them to obtain the final estimate. Hence, it smears the details in thedata causing

poor frequency resolution (see fig.6.53). On the other hand, the periodogram output suffers

from large variations making it difficult to distinguish the actual output from spurious noise.

B.2. Comparison with Windowed periodogram and MTSE techniques

MTSE offers good resolution but has large sidelobes (see fig.6.54). The windowed periodogram

reduces the sidelobes but at the same time smudges the estimates (see figs.6.54 and 6.55).

Amongst all the methods the E-WPSE offers the best resolution with exceedingly low side lobes

(almost -250 dB).
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Estimation Tech-
nique

Mean power
in stop-band

Stop-band
variance

Frequency
resolution

Side-lobe
suppression

Welch +++ ++ ++++ +++
Periodogram ++ ++ ≈ +++
Periodogram with
Window

++ ++ + +++

MTSE ++ + ≈ +++

TABLE 6.5: Comparison of E-WPSE performance with other techniquesfor estimation of
a single tone source.The notations +, - and≈ indicate whether the WP approach performs

favorably, negatively or similar in comparison to the othermethod.

B.3. Influence of decomposition levels

As in the case of partial band estimation, higher WP decompositions lead to betterfrequency

resolution (refer fig.6.52).

Table6.5summarizes the comparison of the wavelet packet approach with other approaches for

single tone estimation.

6-6-7 Impact of padding on E-WPSE estimatation

As mentioned earlier, the implementation of E-WPSE requires the number of received samples

to be multiples of2C whereC is the number of WP decomposition levels. When this is not the

case, extra bits have to be added either in the form of cyclic prefix or zeropadding or symmetrical

padding.

Fig. 6.56illustrates the impact of padding schemes on the E-WPSE performance for theestima-

tion of a partial-band source. In this example the number of samples considered is 6400. Since

this is a multiple of 128 (=27), no padding is required for a level-7 decomposition. However,

when the level is increased to 9, padding is necessary to make the number ofsamples a multiple

of 512 (=29). Fig.6.56shows that all forms of padding (CP/ZP/SP) lead to a loss in performance

with the OOB level around -40 dB.

However, when a single zero bit is added only in stages where the number of input samples is

odd, the results are encouraging. In fact this approach is found to maintain the excellent OOB

energy levels that E-WPSE offers. For a level-9 decomposition, a single zero bit padding is

necessary only at the9th decomposition stage since it is only here that the number of samples is

odd.

The impact of padding schemes on the E-WPSE estimates for Multi-tones source is illustrated in

fig. 6.57. The pattern that emerges from the results is very similar to that of partial-band source

estimation - ZP/SP/CP diminishes E-WPSE performance while single bit addition preserves it.
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FIGURE 6.56: Evaluation of impact of padding on E-WPSE estimation ofpartial band source.
No padding is required for level- WP tree, for level-9 tree Zero Padding (ZP), Cyclic Prefix
(CP) and Symmetric padding (SP) performed before decomposition process and single zero bit

added at those stages when the number of samples is odd.

Comparing the two methods of padding, it is clear that adding an additional zero-bit only in

those stages where the input is odd is more profitable than adding the extra bitsin a single

attempt before the estimation process versus. This is because the second approach preserves the

benefits offered by E-WPSE. This difference in performance can be intuitively answered. First,

the impact of padding is only experienced in those decomposition stages where the extra bit is

added (and not by all levels as is the case in the first approach). Second, at any given level, the

padding process is spread over different wavelet packet inputs minimizing the influence of the

appended samples.
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FIGURE 6.57: Evaluation of impact of padding on E-WPSE estimation ofmulti-tone source.
No padding is required for level- WP tree, for level-9 tree Zero Padding (ZP), Cyclic Prefix
(CP) and Symmetric padding (SP) performed before decomposition process and single zero bit

added at those stages when the number of samples is odd.

6-7 Summary

In this chapter, the application of the wavelet packet transform for spectrum estimation was

proposed and investigated. Four classes of sources with different features and characteristics

were used to gauge the operation of the developmental system and the results were compared

with that of well-known periodogram, windowed-periodogram, Welch and MTSE methods. The

performance metrics used were variance and frequency resolution of the estimated PSD as well

as side-lobe level in the unoccupied band. We also investigated the impact ofdecomposition

level on the wavelet-based estimates. The studies showed that the proposed estimator operated

well for all types of sources and its performances were comparable or at times even better than

existing techniques.



Chapter 7

A wavelet packet transceiver for

spectral analysis and dynamic

spectrum access

A reconfigurable wavelet packet transceiver for spectral analysisand dynamic spectrum access

is presented1. The transceiver consists of a Wavelet Packet Spectral Estimator (WPSE) and

a Wavelet Packet Multi-carrier Modulator (WPM) both of which are implemented using filter

banks. The WPSE estimates the radio environment and identifies spectrum holes and occupied

bands. This information is then used to shape the time-frequency characteristics of the WPM

transmission waveform in a way that the occupied bands are evaded. Thisis done by vacat-

ing those sub-carriers which lie in and around the occupied bands. The WPM sub-carriers are

orthogonal wavelet packet (WP) bases derived from a fundamental2-channel para-unitary fil-

ter pair which is uniformly iterated to form a tree structure. The WPSE uses thesame filter

bank structure as used for WPM data modulation and hence doesn’t add tothe implementation

costs. Through computer simulations the operation of the proposed system isdemonstrated.

The performances are also compared with two other candidate systems based on Fast Fourier

Transform (FFT) and Orthogonal Frequency Division Multiplexing (OFDM). The studies show

that WPSE/WPM, in comparison to FFT/OFDM, offers better bit-error-rate (BER) performance

and bandwidth efficiency. This is facilitated by the excellent time-frequencylocalization of

wavelet filters which results in better estimation of spectrum and spectral confinement of the

transmission waveform.
1Parts of this chapter have been published in [125], [126] and [127].
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7-1 Introduction

Advances in wireless technologies have led to a host of new and innovative wireless applica-

tions and services. With each passing day there is demand for more wireless services even

when the popularity of existing applications is on the rise. As a result the demand for valuable

resources such as transmission spectrum has far exceeded their availability. Meanwhile, stud-

ies commissioned by international agencies, such as the Federal Communications Commission

(FCC) in the United States, show that large portion of licensed frequency bands remain unused

for most of the time and that the congestion of the spectrum is more due to the inadequacies

of the access techniques than due to non-availability of spectrum [128, 129]. This has sparked

a debate in the telecommunications circles on the need to revamp existing spectrumregulatory

policies and introduce newer approaches. One such initiative is the idea ofCognitive Radio, a

new paradigm that promises opportunistic utilization of unused spectrum andefficient spectrum

management. In [129] Haykin defines Cognitive Radio as “an intelligent wireless communica-

tion system that is cognizant of its environment, learns from it and adapts its internal states to

statistical variations in the incoming Radio-frequency (RF) stimuli by making changes in certain

operating parameters in real time with objectives of highly reliable communicationswhenever

and wherever needed, and efficient utilization of the radio spectrum.”

Modulation schemes, transmission bandwidth, transmit power, channel coding, and carrier fre-

quency are examples of radio/PHY layer parameters that can be adjusted tofacilitate realization

of cognitive radio. The modulation scheme is chosen in such a way that the data is transmit-

ted reliably using the least possible spectrum; in another words the modulation method must

be spectrally efficient. Spectral efficiency is influenced by the noise andpropagation condi-

tion. The latter varies with time due to environmental change, hence the modulationscheme

should be able to adapt to the channel propagation variation. It should also support multi-node

communication considering that several nodes can exist in a Cognitive Radio network.

Recently an innovative strategy for efficient access and utilization of spectrum, called Spectrum

Pooling, has been proposed [130]. Spectrum pooling is a spectrum management principle where

licensed (primary) users put their unused spectrum into a pool from which secondary users can

rent spectrum. In spectrum pooling public access to the spectrum is provided without sacrificing

the transmission quality of the actual license users by overlaying new radioson existing ones.

Spectral utilization is optimized by allowing rental (i.e., unlicensed) users to transmit and receive

data over portions of spectra where the primary users (i.e., licensees) are inactive. This is done

in a way that the rental users (RUs) do not hinder the licensed user (LU)transmission. In such

a setting LUs are ordinary mobile terminals and their associated base stations. They thus do not

possess much intelligence. The RUs, on the other hand, should be capableof sensing the radio

environment and optimally utilize the available resource. At the same time, the RUs should

relinquish control of the resources once the LU begins transmission.
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To implement such radios, multi-carrier Modulation (MCM) techniques like OFDM have been

recommended as suitable physical layer candidates [130]. The characteristics of the transmis-

sion waveform can be readily shaped to occupy the time-frequency gapsof the LU system by

merely activating and vacating the sub-carriers. In addition to this the FFT module used for

modulation of information bits can also be used for spectral analysis.

Unfortunately, OFDM for CR is not without problems. A number of short-comings of OFDM

in its application in CR have been noted in [85] and [131]. The problems arise from the fact that

the filters that characterize the OFDM sub-carriers have large side lobescausing significant out-

of-band (OOB) energy leakage and interference to neighboring communication systems. While

techniques like windowing have been suggested to overcome this problem, they are ineffective

as they reduce the bandwidth efficiency further.

In this backdrop, we introduce the wavelet packet modulator (WPM) [10, 11] as an alternative

multi-carrier technique for CR applications. The motivation for pursuing WPMis in the promise

of better confinement of spectra and lower out-of-band energy spillage. This ability is due to the

fact that WPM symbols overlap in time resulting in greater localization in frequency. The signal

energy can hence be better confined without leaking into neighboring bands. Furthermore, as

in FFT/OFDM, the WPM receiver structure used for data demodulation can also be used for

spectrum analysis to detect occupied/free bands at virtually no additionalcost.

The rest of the chapter is organized as follows. In Section 7.2, a short review of existing multi-

carrier methods for CR is provided. Section 7.3 explains the WPM transceiver and the spectrum

analyzer based on wavelet packets. In Section 7.4 the experimental setupconsidered for the

simulation studies is detailed. The results of the experiments are analyzed and discussed in

Section 7.5. A summary of the study is provided in Section 7.6.

7-2 Multi-carrier methods for Cognitive Radio

7-2-1 FFT based OFDM

OFDM is a natural PHY layer candidate for CR systems given its advantagessuch as ease of

implementation, flexibility and elegance in operation2. The short-coming of the OFDM is

primarily due to the large side-lobes of the filters that characterize the sub-carrier. The power

spectrum of a OFDM transmit signalSOFDMxx (f) can be given as [53]:

SOFDMxx (f) =
1

NFFT

∣∣∣∣∣∣∣∣

NFFT∑

m=0

√
PmAm

(1+α) Tu
2∫

−(1+α) Tu
2

w(t) e−j2π(f−fm)tdt

∣∣∣∣∣∣∣∣

2

. (7.1)

2The discussion presented here is based on [53]
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FIGURE 7.1: Power Spectrum Density of OFDM Carrier [53].

HereTu is the total symbol duration (includes cyclic prefix),w(t) is the window function used to

shape the signal,α is the roll-off factor of the window,Am is the QAM/PSK mapped information

which modulates the sub-carrierfm with an allocated power ofPm. The power spectrum of

individual carriersSOFDMxmxm (f) depends on the window functionw(t) used to shape the sub-

carriers through the following relation [53]:

SOFDMxmxm (f) = Am|W (f − fm)|2 (7.2)

HereW (f) is the transfer function of the window functionw(t). For conventional OFDM the

window is a rectangular function. For this case, the power spectrum of each carrierSOFDMxmxm (f)

becomes [53]:

SOFDMxmxm (f) = Am|sinc((f − fm)Tu)|2 (7.3)

where,

sinc(x) =
sin(πx)

πx
(7.4)

SinceSOFDMxmxm (f) varies as(sinc(f))2 it introduces large side lobes. In fact the first side lobe

for rectangular window occurs at−13dB (refer Fig.7.1).

To alleviate this problem windows that taper gently are used (refer Fig.7.2). A commonly used

window is the raised-cosine function, which is defined as [85]:
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FIGURE 7.2: Power Spectrum Density of OFDM Carrier with different windows [53].

wrc(t) =





1
Tu

1
2Tu

{
1 + cos

[
π
αTu

(
|t| − Tu(1−α)

2

)]}

0

for 0 ≤ |t| ≤ Tu(1−α)
2 ,

for Tu(1−α)
2 ≤ |t| ≤ Tu(1+α)

2

Otherwise.

,

(7.5)

While windows like the raised-cosine function significantly reduce the side lobes, they also

increase the symbol duration by a factor of(1 + α) hence reducing the bandwidth efficiency.

Therefore, for dynamic spectrum access applications OFDM imparts significant overhead to the

transmission of useful information.

7-2-2 Filter bank multi-carrier methods

There exist in literature several alternative multi-carrier techniques to OFDM for CR applica-

tions [131]. In [55] a filter-bank modulation technique called Filtered Multi-tone (FMT) is

presented. FMT is similar to Frequency Division Multiplexing (FDM) in the sense that the sub-

carriers do not overlap and guard bands are used between carriersto prevent interference. FMT

is implemented using filter banks with a single prototype filter and it’s dual. The prototype filter

is usually a Root Nyquist filter [55]. The inadequacy of this method is in its inefficient use of

bandwidth as the sub-carriers do not overlap.

Another technique suggested is the Staggered Multi-tone (SMT) modulation. The method is

also known as Offset QAM and is implemented using poly-phase filter banks [58]. Unlike FMT,
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the method SMT allows overlap of carriers to maximize spectrum utilization. The modulation

scheme used is Offset-QAM where the Quadrature and In-phase components are separated by a

time-offset of half the symbol interval. Hence the name Staggered Multi-tone.

In [57] Boroujeny presents the Cosine Modulated Multi-tone (CMT) method as a capable multi-

carrier modulation technique for CR applications. CMT is similar to FMT except that it allows

overlap of adjacent bands [57]. Maximization of bandwidth is achieved by using vestigial side-

band modulation.

We shall see in the next section that the WPSE/WPM method presented in this chapter is also

suitable for DSA.

In the WPM technique the filter banks perform the dual role of shaping the spectrum as well as

interpolating in time series.In [65] the two processes are separated to have a greater control over

the characteristics of the carriers. This method, called the Interpolated Tree Orthogonal Mul-

tiplexing (ITOM), was introduced in [65] by fred haris. In ITOM, shaping of the transmission

waveform spectra is performed external to the wavelet packet tree structure. Notching over the

desired spectral interval is achieved by vacating one or more of the inputbranches.

7-3 Wavelet packet transceiver for spectral analysis and dynamic

spectrum access

The main elements of the proposed CR system are the WPSE spectral analyzer, WPM transceiver

and the spectrum vector manipulator. Fig.7.3 depicts the blocks of the proposed system. The

two main tasks of the proposed system are -

• spectrum analysis of radio environment to gather data on spectrum holes and occupied

bands, and

• adaptive data transmission on idle bands through wavelet packet modulation.

At the transmitting end, an incoming high-rate serial data stream is split intoNWPM lower-rate

parallel streams. The data in each parallel branch is then up-sampled byNWPM and used to

modulateNWPM sub-carriers. Meanwhile, the WPSE evaluates the channel and performs a

radio scene analysis to estimate LU frequency bands and detect spectrumholes. Based on the

spectrum estimates, the cognitive modules dynamically de-activate those sub-channels of the

WPM system that lie in and around the spectrum of the LU. The idea is to dynamically sculpt

the transmission signal in a way it has no or very little time-frequency components competing

with the LU. This way the CR can seamlessly co-exist with the LU. The sub-carriers are then

modulated and scaled to the desired energy level to obtain the WPM transmissionsignal.
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7-3-1 Wavelet packet multi-carrier modulation (WPM)

WPM is implemented with orthogonal wavelet packet bases derived from a multi-resolution

analysis (MRA) [7]. The procedure uses a pair of Quadrature Mirror Filters (QMF) which

consists of a half-band high and low pass filter duo (represented by theirimpulse responsesh[n]

andg[n]. Furthermore, they also have adjoints or duals {h′[n], g′[n]} which are their complex

conjugate time-inversed versions.

The pair {h′[n], g′[n]} is called the analysis filter-pair and is used to generate the wavelet packet

carriers for modulation of data at the transmitter end. On the other hand the combination {h[n],

g[n]} is called the synthesis filter-pair and is used to derive the wavelet packetcarrier duals

for demodulation of data at the receiver end. The processes are referred to as inverse discrete

wavelet packet transformation (IDWPT) at the transmitter and discrete wavelet packet transfor-

mation (DWPT) at the receiver, analogous to the inverse discrete FourierTransform (IDFT) and

the DFT, respectively,in OFDM systems [10]. Such systems are used for applications as varied

as compression techniques in image/speech processing to transceiver design in communication

theory.

7-3-2 Wavelet packet spectrum estimator (WPSE)

Spectrum sensing is an important functionality of Cognitive Radio (CR). Accuracy and speed of

estimation are the key indicators to select the appropriate spectrum sensing technique. Conven-

tional spectrum estimation techniques which are based on Fourier Transform (FT) suffer from

familiar problems such as low frequency resolution, high variance of estimated power spectrum

and high side lobes/leakages. Methods such as multi-taper spectrum estimationsuccessfully

alleviate these deficiencies but exact a high price in terms of complexity.

In this backdrop we present the WPSE as a promising spectral analysis tool. While the DWPT

structure can be used for spectrum analysis the frequency information isnot readily available.
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FIGURE 7.5: Wavelet Packet decomposition and ordering of the decomposed components in
gray code order.

This is because the DWPT output is in the wavelet (time-scale) domain and has tobe mapped

into appropriate frequency bins. Furthermore, the wavelet packets areordered as a binary Gray

code sequence and not by increasing order of frequencies. This can be explained as follows - the

output of any 2-channel analysis is the result of low/high-pass filtering followed by decimation

by 2. Decimation generates two new filter outputs with half the number of elements and causes a

form of aliasing calledband-shufflingwhere the high-pass components are mirrored [11]. When

the WP algorithm is applied recursively, the frequency ordering of the resultant WPs follows

the Gray code order [123]. Fig. 7.5 illustrates this. The first step in the translation is therefore

a Gray to Binary code conversion to re-order the WP indices. After this thePSD of the studied

signal is obtained for each frequency bin from the energy contained in each wavelet packet node

(details in Chapter-6).

7-3-3 Identification of spectrum holes and waveform shaping

The information on the radio environment obtained from the spectrum analysis is then processed

to identify spectrum holes and occupied bands. This is carried on a sub-band-by-sub-band basis

where the power contained in each WP sub-band is independently compared to a predetermined

threshold. When the threshold exceeds the power of a sub-band the licensed user is declared to

be present and if it is less than the threshold, the band is considered to be vacant and available

for use. This information is used to shape the WPM spectrum.

The information about estimated PSD is passed to the carrier de-activation block containing a

threshold and spectrum vector manipulation block (see Fig.7.3). The threshold block decides
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whether a particular band is occupied or not based on a defined threshold. When the power in a

certain band is below the threshold value, the band is declared being ON (usable). The band is

declared OFF (unusable) when the detected power is above the threshold. The threshold block

produces a spectrum vector containing binary values 1 and 0 corresponding to the ON and OFF

status, respectively.

Due to spectral spill-over it is also possible that the frequency bands adjacent to the band of

consideration have a power above the threshold. Therefore, on suchoccasions it is necessary

to de-activate carriers adjacent to the band of interest. For this purpose, the spectrum vector

manipulation block is added to customize the spectrum vector. This block is also used to modify

the format of the spectrum vector if the decomposition level in the receiver isdifferent from the

reconstruction level in the transmitter.

The spectrum vector determines whether a particular sub-carrier shouldbe turned on or not. It

is fed to the Inverse Discrete Wavelet Packet Transform (IDWPT) block in the transmitter where

the requisite carriers are chosen. Based on the spectrum vector, the CRtransmitter dynamically

vacates the sub-carriers of the WPM system lying in and around the occupied frequency band.

This is analogous to shaping the spectrum of the CR signal so that time-frequency components

competing with LU are eliminated.

7-4 Simulation setup

7-4-1 System parameters

In this work a WPM based CR system with 128 equally spaced carriers obtained from a uniform

level-7 decomposition of QMF is considered. The same tree structure is also used for spectrum

analysis. Quadrature Phase Shift Keying (QPSK) is used as the modulation scheme while the

choice of wavelet is a family of Frequency Selective filter banks [132]. These wavelets have

narrow transition bands and are characterized by the parameters regularity index (K-regularity)

Kr, length of filterLf and transition bandBt. In this work, these parameters are taken to be

Kr = 19, Lf = 50 andBt = 0.2π. We shall explain these classes of filters in more detail in

Chapter 8. The LU is taken to be a partial band source whose bandwidth is an integer multiple

of the WPM sub-channel band. Table7.1summarizes the simulation parameters.

7-4-2 Comparison with Periodogram/Welch-OFDM systems

To evaluate the operation of the WPSE/WPM system the performances are compared with two

OFDM configurations employing Periodogram and Welch modules, respectively, for spectrum
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System parameters WPM based CR OFDM based CR
Number of sub-carriers 128 (7-level uniform WP de-

composition)
128

Licensed user/interfer-
ence source

OFDM based system of dif-
ferent bands

OFDM based system of dif-
ferent bands

Sub-carrier spacing of
licensed user/interfering
source∆LU

f

Sub-carrier spacing
∆WPM−CR
f equal to that of

the LU, i.e. ∆WPM−CR
f ≈

∆LU
f

Sub-carrier spacing equal
∆OFDM−CR
f to of the LU,

i.e. ∆OFDM−CR
f ≈ ∆LU

f

Number of multi-carrier
symbols per Frame

100 100

Modulation QPSK QPSK
Channel AWGN AWGN
Oversampling Factor 1 1
Channel/source coding None None
Guard Band None None
Filter characteristics Maximally frequency selec-

tive Lf = 50,Kr =
19, Bt = 0.2

Not Applicable

Time/Phase/Frequency
Offset

0 0

Active Source -2.1 dB -2.1 dB
Threshold to determine
presence/absence of
source

-7dB -7dB

TABLE 7.1: Simulation parameters.

estimation. In the Welch method the estimate is obtained by dividing the samples into 400over-

lapping segments (50% overlap, Hamming window) each of 64 samples. Then aperiodogram

of each segment is calculated and averaged to obtain the true estimate. Fig.7.6shows the blocks

of he Periodogram (or Welch) - OFDM based CR transceiver.

The Periodogram/Welch estimator analyses the radio environment and passes on information on

the frequency content of the received signals to the threshold block. The threshold operation

is performed on every sub-band and decision on occupied/free bandsis encoded in a spectrum

vector containing ones and zeros. This vector is then used to activate/vacate the OFDM carriers

to shape the spectrum of the transmitted signal.

7-4-3 Sources and their characteristics

In order to investigate the performance of the WPSE/WPM system four different types of sources

are considered, namely, partial-band, single-tone, multi-tones and swept-tone. The partial-band
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FIGURE 7.6: CR Transceiver based on Periodogram Family Spectrum Estimator and OFDM.

source has its energy spread over a continuous range of frequencies. In this work we have consid-

ered four different kinds of partial band sources, namely, single-band, triple-band, quandruple-

band and quintuple-band, as presented in Fig.7.7-A,Fig. 7.7-B,Fig. 7.7-C and Fig.7.7-D, re-

spectively. The single tone source (refer Figure Fig.7.7-E) has all of its energy at one frequency

and is taken to be in the middle of the range (at0.5π) spanned by the WPSE. The multi-tones

source (refer Fig.7.7-F) consists of seven single tone sources located at normalized frequency

from 0.125π to 0.875π and they are equally spaced.

Finally, a swept tone source (refer Chapter 6, fig.6.14) is used to test how well the candidate

schemes perform when there are temporal variations in the occupied frequency. The swept-tone

source is a chirp signal in which the frequency increases (up-chirp) with time. After a sweep of

incremental chirps the signal winds back to the original frequency to startwith the next sweep

cycle.

The test sources are so chosen that they shed different insights into theoperation of the candidate

systems.

7-4-4 Experiment scenarios

The experiments are divided into two broad categories. In the first set theLU is taken to occupy

fixed bands of contiguous frequencies. The evaluation of the test sources - four kinds of partial-

band, single-tone, multi-tone and swept-tone - come under this category. Inthe second set the

normalized frequency range[0, π] is divided into 128 equal bands (or frequency bins) and the

LU is randomly activated and de-activated over a finite set of bins. The LUcharacteristics in

the two experiments are listed in tables7.2 and7.3, respectively. An active source is taken to

operate at -2.1dB level. In experiment 1 the threshold to evaluate the presence/absence of the LU

is set to -7dB. This threshold was found after a series of empirical evaluations. In experiment 2,

this threshold is varied between -3dB and -7dB.

Partial-band LUs are modeled using an OFDM setup. OFDM is the most populartechnology

for wide-band digital communication. Hence, the LU is modeled on OFDM in spite of the fact
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FIGURE 7.7: Sources and their characteristics. The sources considered are: (A) Partial band,
(B) Triple partial band, (C) Quadruple partial band, (D) Quintuple partial band, (E) Single-tone

and (F) Muiltiple tone.

that OFDM has poor spectral confinement properties. The bandwidth ofthe LU is adjusted by

activating and vacating the requisite number of its sub-carriers. The sub-carrier spacing of each

LU carrier∆LU
f is taken to be the same as that of the WPM based CR∆WPM−CR

f as well as

that of the OFDM based CR∆OFDM−CR
f candidates.

The WPSE-WPM operation is also compared with Periodogram-OFDM and Welch-OFDM con-

figurations. All three systems operate under the same conditions.

Since the focus of this work is on the demonstration of WPM/WPSE as a PHY layer candidate

for dynamic spectrum access, we have made the practical assumption that both the transmitter

and receiver are at all times aware of the details of the active/vacated carriers. Alternatively, the

systems could also operate under a collective spectrum pooling regime [130].

7-5 Results and analysis

7-5-1 Characteristics of OFDM and WPM sub-channels

Before presenting the results we first revisit the point on WPM being a lapped transform and

its attendant benefits. The waveforms used in WPM are longer than the transform duration of
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FIGURE 7.8: Spectrum of WPM and OFDM sub-carriers. For ease of depiction the 2nd, 4th
and 6th sub-carriers alone of a 8-carriers system are shown.

one symbol and the symbols overlap in time. For a filter of lengthLf the overall symbol length

Lsym with NWPM carriers can be shown to be [10]:

Lsym = (Lf − 1)(NWPM − 1) + 1 (7.6)

Longer waveforms allow for better frequency localization of the sub-carriers. This is illustrated

in fig. 7.8, where the spectrum of the carriers of WPM and OFDM are plotted. For clarity

of depiction only the2nd, 4th and6th sub-carriers of an 8-carrier system have been shown.

Clearly the side lobes of the WPM sub-carriers are much lower than that of the OFDM system.

7-5-2 Comparison of efficiency of spectrum estimators

The first task of the Cognitive radios is to evaluate the spectrum to identify theLU character-

istics. Table7.4 lists the number of LU carriers that actually coincide with the CR versus the

number of carrier removals recommended by various estimation techniques. Three different

kinds of LU characteristics are considered, namely, partial band, triple partial band and quintu-

ple partial band. It is clear from the tabulated values that the WPSE method is the most efficient

in identifying the right number of CR carriers that coincide with the LU for all cases. The Pe-

riodogram estimator also gives good estimates. However, the Welch estimator suggests a larger

number of CR sub-carriers operating in LU-bands than is actually the case(False alarm).
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Type of sources Description
Partial band Consists of a partial band source occupying the

normalized frequency range[0.375, 0.625π]. (See
Fig. 7.7-A)

Triple Partial band Consists of a 3 Partial Band LU occupying
the normalized frequency ranges[0, 0.2188π],
[0.4063π, 0.5938π] and [0.8125π, π], respectively.
(See Fig.7.7-B)

Quadruple Partial Band Consists of a 4 Partial Band LU occupying
the normalized frequency ranges[0, 0.125π],
[0.2813π, 0.4375π], [0.5625π, 0.7188π] and
[0.8438π, π], respectively. (See Fig.7.7-C)

Quintuple Partial Band Consists of a 5 Partial Band LU occupying normal-
ized frequency: [0, 0.1094π],[0.2188π, 0.3281π],
[0.4375π, 0.5469π],
[0.6563π, 0.7656π],[0.875π, π]. (See Fig. 7.7-
D)

Single tone A single tone at normalized frequency0.5π. (See
Fig. 7.7-E)

Multi-tone Consists of 7 single tones occupying the normal-
ized frequencies occuring at0.125π, 0.25π, 0.375π,
0.5π, 0.625π, 0.75π and0.875π. (See Fig.7.7-F)

Swept tone Consists of a source which occupies different fre-
quency bands at different time instances. A total
of 20 sweeps (each of 640 samples) covering the
frequency band of[0.2π, 0.8π] is considered. (See
Chapter 6, Fig.6.14)

TABLE 7.2: Description of Licensed Users used in experiment 1.

Types of scenario Description
Scenario A 64 sources are randomly activated and

de-activated over 128 frequency bins
and each source occupies 2 frequency
bins.

Scenario B 32 sources are randomly activated and
de-activated over 128 frequency bins
and each source occupies 4 frequency
bins.

Scenario C 16 sources are randomly activated and
de-activated over 128 frequency bins
and each source occupies 8 frequency
bins.

TABLE 7.3: Description of the licensed users used in experiment 2.
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Source types
Number of LU carriers
co-inciding with CR

Recommended number of CR carrier removals
Periodogram Welch WPSE

Partial Band 32 33 36 32
Triple 76 77 84 76
Quadruple 76 79 87 76
Quintuple 72 76 83 72

TABLE 7.4: Actual number of LU carriers versus the number of carrier removals recommended
by various estimation techniques.
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FIGURE 7.9: Plots of spectrum adaptation (Partial Band LU case) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only those carriers correspond-

ing to frequency bands with LU energy above the threshold arede-activated.

7-5-3 Evaluation of different sources

A. Partial band source

Fig.7.9shows the Power Spectral Density (PSD) plots of the enabled bands of thethree CR con-

figurations considered, namely, Periodogram/OFDM, Welch/OFDM and WPSE/WPM. The CR

carriers coinciding with LU bands have been de-activated. The figure also shows the spectrum of

the partial band LU. The plots clearly demonstrate the advantages of the proposed WPSE/WPM

based CR system, in relation to the OFDM systems, in offering sharper spectrum shaping, better

out-of-band (OOB) energy rejection and significantly lower interference to the LU. In fact the

results show that the OOB rejection in WPSE/WPM is at least 40dB greater thanthat in the

OFDM based systems.
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FIGURE 7.10: BER Performance of WPSE-WPM based CR system for Partial Band LU case.
(a) Comparison with Periodogram-OFDM based CR system, (b) Comparison with Welch-

OFDM based CR system.

In fig. 7.10(a), the BERs of the WPSE/WPM CR system and Periodogram/OFDM CR system

are compared. In fig.7.10(b)the BERs of the WPSE/WPM CR system and Welch/OFDM CR

system are shown. The plots show that the WPSE/WPM system betters the performances of

the Periodogram/OFDM system. When additional carriers abutting the sides ofthe LU (like

an adaptive guard band) are removed the interference energy is reduced even further. As more

and more carriers adjacent to LU are vacated, the performance of the WPSE/WPM CR system

converges faster than the Periodogram/OFDM CR system towards the theoretical limit (no in-

terference case). There is therefore a trade-off between the desirable rejection of interference
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FIGURE 7.11: Plots of spectrum adaptation (Triple-Partial Band LUcase) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only those carriers correspond-

ing to frequency bands with LU energy above the threshold arede-activated.

and bandwidth utilization. When more number of carriers are removed to reduce OOB energy,

the bandwidth (and hence the throughput) is sacrificed. The best technique is therefore the one

which gives good BER and OOB reduction for the lowest number of carrier removals possible.

Clearly the results point towards WPSE/WPM.

Three other LU cases, with triple, quadruple and quintuple partial band features, are investigated

next. The PSD plot for the triple band LU are shown in fig.7.11while the BER curves are de-

picted in figs.7.12(a)and 7.12(b). The corresponding PSD plots for the quadruple partial band

LU are available in fig.7.13while the respective BER plots are provided in figs.7.14(a)and

7.14(b). The plots for Quintuple sources are available in figs.7.15, 7.16(a)and 7.16(b). The

trends in the results are similar to that seen in the evaluation of the Partial Band LU. In compar-

ison to OFDM, the WPM signal rejects OOB energy much better with lower interference to the

LU (see figs.7.11, 7.13and 7.15). In fact the OOB power is at about -55 dB which is 40dB

lower than in Periodogram (or Welch)/OFDM systems. Furthermore, the BERperformances are

also good (see figs.7.12(a), 7.12(b), 7.14(a), 7.14(b), 7.16(a)and 7.16(b)).

Carrier removal and reduction of interference

We now present results on the interference caused by candidate CR systems on the LU and the

impact of removing carriers in-and-around the CR bands. An interference is caused because

the sub-carriers of the multi-carrier based CR system spills into neighboringbands resulting in

out-of-Band energy. One method suggested to minimize the interference is to remove carriers

of CR adjacent to the LU [130].
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FIGURE 7.12: BER Performance of WPSE-WPM based CR system for Triple-Partial Band
LU case. (a) Comparison with Periodogram-OFDM based CR system, (b) Comparison with

Welch-OFDM based CR system.

Figs.7.17, 7.18, 7.19and 7.20depict the plots for the interference caused by the candidate

CR systems for the four partial band LUs considered in this work. The figures also show as to

how the removal of different number of carriers in and around the LU alleviates the problem of

mutual interference. More the number of carriers removed, lower the interference. However, a

price is pain in the form of inefficient spectral utilization. It is therefore important that only the

right number of sub-carriers is removed.

Comparing the different candidate CR systems, it is clear from the results that the WPSE/WPM
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FIGURE 7.13: Plots of spectrum adaptation (Quadruple-Partial Band LU case) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only those carriers correspond-

ing to frequency bands with LU energy above the threshold arede-activated.

based system comfortably outperforms the other two systems - Periodogram/OFDM and Welch/OFDM

in guarantying better interference suppression. In fact, for the partialband case the WPSE/WPM

system ensures up to 45 dB lower interference than the other two systems. Furthermore, the in-

terference values with carrier removals taper much faster in WPSE/WPM thanin Periodogram/OFDM

or Welch WPSE. These results are consistent for all four LU sources.

B. Multi-tone source

Fig. 7.21shows the WPSE estimates of the multi-tone LU and the spectrum shaped CR. In the

figure only those CR carriers that coincide with LU are de-activated. Thefigure shows how well

the adapted CR’s signal operates in the nulls of the LU signal. This is so evenwhen no additional

carriers apart from those that coincide with the LU bands are de-activated. The corresponding

BER performance curves are plotted in fig.7.22. The PSD and BER curves clearly show the

advantages of spectrum shaping. Interestingly, unlike the case of the partial band source, it is

enough to vacate only those CR carriers (totaling 14) that co-exist with the LU to obtain good

performances. This implies that no additional carriers adjacent to the LU operating band have

to be de-activated.

C. Single-tone source

Fig. 7.23depicts the wavelet packet based estimate of a single tone LU along with the spectrum

adapted CR. The results obtained are similar to those of the multi-tone LU. In fig.7.24 the
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FIGURE 7.14: BER Performance of WPSE-WPM based CR system for Quadruple-Partial
Band LU case. (a) Comparison with Periodogram-OFDM based CRsystem, (b) Comparison

with Welch-OFDM based CR system.

BER performance of various CR configurations are shown. From figs.7.23and .7.24, it can

be deduced that the wavelet-based spectrum shaping approach performs well for single tone

sources. Indeed unlike the partial band case there is no need for de-activation of additional

carriers.
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FIGURE 7.15: Plots of spectrum adaptation (Quintuple-Partial Band LU case) based on Peri-
odogram/OFDM CR, Welch/OFDM CR and WPSE/WPM CR. Only those carriers correspond-

ing to frequency bands with LU energy above the threshold arede-activated.

D. Swept-tone source

We now present results for the study with swept tone LU. In the experimental setup considered

each sweep spans five chirps (or frequency increments). To estimate theswept tone LU, 20

sweeps in the normalized frequency band0.2π - 0.8π are considered. Each sweep consists of

640 data samples resulting in a total of 12800 samples for 20 sweeps. The spectrum estimation

module takes a snapshot (or sub-sweep) containing 128 samples corresponding to 20% of a

single sweep. Hence, five snapshots of a single sweep are available. Based on each 128-samples

snapshot, spectrum vector generator has to determine the carriers to be turned off so that the

WPM signal can be adapted accordingly.

Fig. 7.25(a)depicts the LU and CR PSD curve. In this figure, only the PSD of the fourth and

the fifth sub-sweeps of LU signal are displayed together with the corresponding adapted CR

PSD. It should also be noted that only the carriers that coincide with LU arede-activated in this

figure. If the interference between the LU and CR signals needs to be reduced, it is possible to

additionally de-activate the carriers adjacent to the band occupied by LU.Fig. 7.25(b)illustrates

the effect of de-activation of four additional carriers that are adjacent to the LU band. And in

fig. 7.26the BER performance of WPM based CR system is plotted.

7-5-4 Evaluation of efficiency of spectral utilization

We now present the results of the second set of experiments. In these experiments the bands

occupied by the LU varies with time. Fig.7.27shows a snapshot of the LU characteristics over

three different time periods. The details of the sources are provided in Table 7.1. The aim of
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FIGURE 7.16: BER Performance of WPSE-WPM based CR system for Quintuple-Partial Band
LU case. (a) Comparison with Periodogram-OFDM based CR system, (b) Comparison with

Welch-OFDM based CR system.

these experiments is to compare and contrast as to how accurately the various CR configurations

map the LU characteristics and how efficiently the spectrum is utilized. The figure-of-merit

considered is the redundancy factorηred which is defined as the difference between the number

of CR carriers removedηremoved and those which actually coincide with the LUηcoincide,

ηred = nremoved − ncoincide (7.7)
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FIGURE 7.17: Interference caused by the CR on the LU (Partial Band source).
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FIGURE 7.18: Interference caused by the CR on the LU (Triple-Partial Band source).

A positive value ofηred indicates that more carriers are removed than essential and hence the

spectrum is not efficiently utilized. On the other, a negativeηred implies that a lower number of

carriers than necessary have been removed, hence the chances of interfering with LU transmis-

sion is high. Therefore, the best method is the one which yields a redundancy factorηred close

to zero i.e. only the necessary carriers are removed.
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FIGURE 7.19: Interference caused by the CR on the LU (Quadruple-Partial Band source).
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FIGURE 7.20: Interference caused by the CR on the LU (Quintuple-Partial Band source).
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FIGURE 7.21: Spectrum adaptation of WPSE/WPM system co-existing with a multi-tone LU.
Only those carriers that correspond to the frequency bands of the LU are de-activated (14
carriers). The wavelet decomposition filters used here havea length of50, a K-regularity index
of 7 and a transition band of0.2π. A 11-level WP decomposition tree is used for spectrum

estimation.
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Theoritical Limit (AWGN only)

With LU − No CR carrier vacated

With LU − 14 CR carriers vacated

With LU − 28 CR carriers vacated
(14 additional carriers)

With LU − 42 CR carriers vacated
(28 additional carriers)

FIGURE 7.22: Performance of wavelet packet-based CR co-existing with a multi-tone licensed
user. The wavelet decomposition filters used here have a length of 50, a K-regularity index
of 7 and a transition band of0.2π. A 11-level WP decomposition tree is used for spectrum

estimation.
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FIGURE 7.23: Spectrum adaptation of WPSE/WPM system co-existing with a single-tone
LU. Only those carriers that correspond to the frequency bands of the LU are de-activated (14
carriers). The wavelet decomposition filters used here havea length of50, a K-regularity index
of 7 and a transition band of0.2π. A 11-level WP decomposition tree is used for spectrum

estimation.

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
it
 E

rr
o

r 
R

a
te

 (
B

E
R

)

 

 

AWGN only

With LU − No CR carrier vacated

With LU − 2 CR carriers vacated

With LU − 4 CR carriers vacated
(2 additional carriers)

FIGURE 7.24: Performance of wavelet packet-based CR co-existing with a single-tone licensed
user. The wavelet decomposition filters used here have a length of 50, a K-regularity index
of 7 and a transition band of0.2π. A 11-level WP decomposition tree is used for spectrum

estimation.
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FIGURE 7.25: PSD of adapted CR source for a swept tone LU with sub-sweep size of 128
samples. In this case, every single sweep contains 5 sub-sweeps and only the 4th and 5th
sub-sweeps are displayed. The wavelet decomposition filters used here have length of50, K-
regularity index of7 and transition band of0.2π. The 7-level wavelet decomposition is used
in spectrum estimation module. (a) Only carriers correspond to the bands with energy above
threshold are de-activated. (b) Two bands in the left and twobands in the right side of bands

having energy above threshold are also de-activated.
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Theoritical Limit (AWGN only)

With LU − No CR carrier vacated

With LU − CR carriers with LU energy
above thresholds are vacated

With LU − Additional single pair of
neighbor carriers are vacated

With LU − Additional two pairs of
neighbor carriers are vacated

With LU − Additional three pairs of
neighbor carriers are vacated

FIGURE 7.26: Performance of wavelet based spectrum estimation andspectrum adaptation in
WPMCM CR system for swept tone LU case with sub-sweep size of128 samples. The wavelet
decomposition filters used here have length of50, K-regularity index of7 and transition band

of 0.2π. The 7-level wavelet decomposition is used in spectrum estimation module.



Chapter 7 A wavelet packet transceiver for spectral analysis and dynamic spectrum access216

Table7.5 shows the redundancy in the de-activated carriers for the three CR systems for the

case when the normalized frequency range[0, π] is split into 128 equal frequency bins and

64 LU sources (each occupying 2 adjacent frequency bins) are randomly activated or vacated.

Three thresholds -3, -5 and -7dB are considered. From the table entries it is clear that the

Welch/OFDM pair de-activates more carriers than needed while the Periodogram/OFDM com-

bination de-activates less than needed. For example, when the threshold level is set to -7dB, the

Welch/OFDM system de-activates around 35 sub-carriers more than needed. As a result, this
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FIGURE 7.27: PSD of the LU over three different frame periods.

Types of CR Sys-
tems

Threshold BER (at
SNR = 8dB)

Redundancy in Average Num-
bers of De-activated Carriers

Periodogram-
OFDM

-3 dB 0.1588 -52.2488

Periodogram-
OFDM

-5 dB 0.0445 -0.5491

Periodogram-
OFDM

-7 dB 0.0574 0.0000

Welch-OFDM -3 dB 0.1616 -44.7847
Welch-OFDM -5 dB 0.0955 0.5300
Welch-OFDM -7 dB 0.0056 34.9094
WPSE-WPM -3 dB 0.0779 -17.6369
WPSE-WPM -5 dB 0.0259 -0.1428
WPSE-WPM -7 dB 0.0167 2.4944

TABLE 7.5: Illustration of redundancy in number of vacated carriers for the three CR systems
(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the presence of randomly ac-
tivated 64 LU signals occupying 128 frequency bins in the normalized frequency range[0, π].
Each source occupies 2 frequency bins. A positive value for the redundancy factor implies
that the CR system has vacated more sub-carriers than needed(false alarm) and a negative
value indicates that the CR system has vacated a lower numberof sub-carriers than necessary

(miss-detection).
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Types of CR Sys-
tems

Threshold BER (at
SNR = 8dB)

Redundancy in Average Num-
bers of de-activated carriers

Periodogram-
OFDM

-3 dB 0.1476 -51.9472

Periodogram-
OFDM

-5 dB 0.0233 -0.4981

Periodogram-
OFDM

-7 dB 0.0224 0.0000

Welch-OFDM -3 dB 0.0871 -28.5088
Welch-OFDM -5 dB 0.0321 0.2359
Welch-OFDM -7 dB 0.0020 24.0451
WPSE-WPM -3 dB 0.0823 -15.8528
WPSE-WPM -5 dB 0.0224 -0.1506
WPSE-WPM -7 dB 0.0193 2.4891

TABLE 7.6: Illustration of redundancy in number of vacated carriers for the three CR systems
(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the presence of randomly ac-
tivated 32 LU signals occupying 128 frequency bins in the normalized frequency range[0, π].
Each source occupies 4 frequency bins. A positive value for the redundancy factor means that
the CR system has vacated more sub-carriers than needed (false alarm) and a negative value
means that the CR system has vacated a lower number of sub-carriers than necessary (miss-

detection).

Types of CR Sys-
tems

Threshold BER(at
SNR = 8dB)

Redundancy in Average num-
bers of de-activated carriers

Periodogram-
OFDM

-3 dB 0.1533 -51.8838

Periodogram-
OFDM

-5 dB 0.0242 -0.4988

Periodogram-
OFDM

-7 dB 0.0169 0.0000

Welch-OFDM -3 dB 0.0524 -12.6600
Welch-OFDM -5 dB 0.0075 0.1881
Welch-OFDM -7 dB 0.0012 9.0328
WPSE-WPMCM -3 dB 0.0632 -13.6359
WPSE-WPMCM -5 dB 0.0189 -0.1334
WPSE-WPMCM -7 dB 0.0098 2.4288

TABLE 7.7: Illustration of redundancy in number of vacated carriers for the three CR systems
(Periodogram-OFDM, Welch-OFDM, and WPSE-WPMCM) in the presence of randomly ac-
tivated 16 LU signals occupying 128 frequency bins in the normalized frequency range[0, π].
Each source occupies 8 frequency bins. A positive value for the redundancy factor means that
the CR system has vacated more sub-carriers than needed (false alarm) and a negative value
means that the CR system has vacated a lower number of sub-carriers than necessary (miss-

detection).
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system wastes bandwidth which is precious. On the other hand, the Periodogram/OFDM com-

bination de-activates about 50 carriers (case when threshold is set to -3dB) less than necessary.

This indicates that this method does not shape the CR spectra adequately. The WPSE/WPM pair

performs efficiently for all the scenarios with the redundancy factor being close to zero with a

low BER.

Another important observation one can make is the impact of the threshold value used to evaluate

the presence or absence of a LU. When the threshold is set to a low value (say -7dB), more

number of carriers is removed than necessary. This may reduce the mutual interference between

the CR and LU and hence improve the BER. But also has the negative effect of poorer spectral

utilization. On the other hand, when the threshold is set to a high value (say -3dB), lower number

of carriers are removed than required. This means that the mutual interference between the LU

and CR is not completely eliminated.

In table7.6the case when 32 sources (each occupying 4 frequency bins) are randomly activated

and de-activated are listed. And in table7.7 the case where 16 sources (each occupying 8

frequency bins) are randomly activated and de-activated is illustrated. The pattern in these

results also follows the one described earlier and the WPSE/WPM emerges asthe best choice.

7-6 Summary

In this chapter, a wavelet packet based CR transceiver with spectrum estimation capabilities was

presented. The sub-carriers are orthogonal wavelet packet bases derived from a tree structure

consisting of fundamental para-unitary 2-channel filter pairs. The WPSE uses the same filter

bank structure as used for the data modulation and hence is implemented at no additional cost.

The co-existence of the CR station with LU is enabled by dynamically activating or vacating

the CR sub-carriers to occupy the time-frequency gaps of the LU. The mainadvantage of using

wavelet packets for CR is in its property of allowing the symbols to overlap in time without

loosing its orthogonality. This results in greater localization of the wavelet packet carriers in

frequency. This implies that the transmitted signal can be better shaped and confined without

leaking into neighboring bands.

Through simulation studies the benefits of the proposed system were demonstrated. The per-

formances were also compared with existing systems based on FFT and OFDM. The studies

showed that the proposed WPM method offered better BER performance and bandwidth effi-

ciency at a lower interference to the licensees. This is illustrated by the high out-of-band energy

rejection which is at least 40dB more than that in OFDM systems. Furthermore,the method

accurately shaped the CR characteristics with only the right number of carriers removed (very
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less redundancy) paving the way for excellent spectrum utilization and a good throughput at an

acceptable BER.

It is worth pointing out that the complexity in the implementation of the WPM system has

been shown to be comparable with that of OFDM [10]. A. Jamin in [10] shows that the WPM

implementation costs is of the same order as that of OFDM and can even be lowerfor medium

to large size transforms and wavelet filters of moderate length. In addition this, we furthered the

work in [13] by investigating the application of WPM based multi-carrier modulation to a multi-

antenna cognitive radio system employing the vertical Bell-labs layered space-time (V-BLAST)

receiver architecture.



Chapter 8

A unified framework to design

orthonormal wavelet bases

8-1 Introduction

In the previous chapters we evaluated the WPM system performance under metrics like opera-

tion under loss of time/frequency/phase synchronization (chapter 4)) and PAPR (chapter 5)1 2.

We also presented two applications of the WPM structure for spectrum estimation (chapter 6)

and as a wide-band multi-carrier modulation technology for dynamic spectrumaccess (DSA)

(chapter 7). In this chapter we advance the state- of-the-art in WPM to design wavelet bases

for use in communication formats. The possibility of adapting the characteristicsof the WPM

transmission is pursued with two examples where families of wavelets which are i)maximally

frequency selective and ii) have the lowest cross correlation energy,respectively, are developed.

To this end a generic, unified framework that facilitates the design of new wavelet bases that

cater to a requirement is established. Suitable optimizations are introduced when and where

necessary to make the problem tractable. Numerical solvers are used to obtain the solution.

An important point to note is that by design of wavelet bases we essentially mean the design

of filters used to obtain the wavelets. This is because the WPM system is realized with a tree

structure made of cascaded half-band low/high-pass filter pairs. As we shall see later in the

chapter, this is both an advantage and a disadvantage. The advantage being that the design

process is reduced to that of deriving Finite Impulse Response (FIR) filters; hence standard,

1This chapter is an extended version of the publication [21]. Parts of it also appeared in [18] and [20]. Wherever
applicable, for any material that has been reused from a publication where this author is the second author, a written
consent and approval has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc student Mr.D. Karamehmedovic for his active
co-operation and help with the computer simulations.
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well established methods can be employed; the disadvantage is that the relationship between the

filters and the wavelet bases is sometimes not straightforward or explicit.

The rest of the chapter is organized as follows. Section 8.2 outlines the basics of the design

process. The design process is exemplified with two examples in Section 8.3 and Section 8.4.

In Section 8.3 the design of maximally frequency selective wavelet is considered while Section

8.4 will delve on the filters with low cross correlation errors. In each of these sections the design

process is formulated as an optimization problem. The numerical results and their analysis is

also presented in the respective sections. A summary of the material in the chapter is provided

in Section 8.5.

8-2 Criterion for design of wavelets

8-2-1 Design procedure

The attributes of the WPM system greatly depend on the set of transmission bases utilized which

in turn is determined by the filters used. This means that by adapting the filters one can adapt

the WPM characteristics to satisfy a system specification. Choosing the rightfilter though is a

delicate task. The filters have to satisfy a number of constraints and cannotbe arbitrarily chosen.

Besides the design objectives there are other budgets which have to be considered in order to

guarantee that the designed wavelet is valid. The design procedure consists of 3 major steps,

namely:

1. Formulation of the design problem, i.e. stating the design objectives and constraints man-

dated by wavelet theory.

2. Application of suitable optimizations and transformations to make the problem tractable.

3. Utilization of numerical solvers to obtain the required filter coefficients.

At the end of the design procedure a low-pass FIR filterh[n], satisfying the design and wavelet

constraints, is obtained. From this filter the other three filtersh[n], h′[n] andg′[n], are derived

through the QMF relation (see Chapter 3). In the following sections we will elaborate on each

of these processes.

8-2-2 Filter bank implementation of WPM

First, a quick recap of the wavelet and WPM theory. It is well known that compactly supported

orthonormal wavelets can be obtained from a tree structure constructed by successively iterating
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discrete two-channel para-unitary filter banks [8, 27]. Time and frequency limited orthonormal

wavelet packet basesξ(t) can be derived by recursively iterating discrete half-band highg[n]

and low-passh[n] filters, as3:

ξ2pl+1(t) =
√
2
∑

m

h[m]ξpl (t− 2m)

ξ2p+1
l+1 (t) =

√
2
∑

m

g[m]ξpl (t− 2m) (8.1)

In eq.(8.1) the subscriptl denotes the level in the tree structure and superscriptp indicates the

waveform index. The number of basesp generated is determined by the number of iterations

l of the two-channel filter bank. eq.(8.1), known as the2-scale equation, can be interpreted as

follows - a basis function belonging to a certain sub-space of lower resolution can be obtained

from shifted versions of the bases belonging to a sub-space of higher resolution; and the weights

h andg used in the transformation are low- and high-pass in nature.

The filtersh andg form a quadrature mirror pair and are also known as the analysis filters. These

filters have duals/adjoints known as synthesis filters which are also a pair ofhalf-band low-h′

and high-pass filtersg′. All these four filters share a tight relation and hence it is enough if the

specifications of one of these filters are available. The wavelet packet sub-carriers (used at the

transmitter end) are generated from the synthesis filters. The wavelet packet duals (used at the

receiver end) are obtained from the analysis filters. The entire WPM transceiver structure can

thus be realized by this set of two QMF pairs. Hence, the design process can also be confined to

the construction of one of the filters, usually the low-pass analysis filterh. A thorough analysis

on the topic can be found in chapters 2 and 3.

8-2-3 Important wavelet properties

The wavelet tool can be a double edged sword - on the one hand there is scope for customiza-

tion and adaptation; on the other hand there are no clear guidelines to choose the best wavelet

from for a given application. In order to ease the selection process design constraints such as

orthogonality, compact support and smoothness are imposed. We had outlined these properties

in chapter 2; here we shall discuss them in more detail.

3The expressions are considered in continuous time-domain to convenience derivations
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A. Wavelet existence and compact support

This constraint is necessary to ensure that the wavelet has finite non-zero coefficient and thus

the impulse response of the wavelet decomposition filter is finite as well. This property can be

derived by simply integrating both sides of the two-scale equation [133]: 4:

∞∫

−∞

ξ(t)dt =
√
2

∞∫

−∞

∑

n

h[n]ξ(2t− n)dt

∞∫

−∞

ξ(t)dt =
√
2
∑

n

h [n]

∞∫

−∞

ξ(2t− n)dt

∞∫

−∞

ξ(t)dt =
√
2
∑

n

h [n]

∞∫

−∞

0.5ξ(2t− n)d(2t− n) (8.2)

Substitutingu = 2t− n, eq.(8.2) can be rewritten as:

∞∫

−∞

ξ(t)dt =
1√
2

∑

n

h [n]

∞∫

−∞

ξ(u)du

∞∫
−∞

ξ(t)dt

∞∫
−∞

ξ(u)du

=
1√
2

∑

n

h [n] (8.3)

Finally we obtain the compactly supported wavelet constraint as:

∑

n

h [n] =
√
2. (8.4)

It should be noted that the derivation that is given above is only possible ifthe scaling function

is absolutely integrable and the integration of the scaling function is non-zero. Due to this fact,

eq.(8.4) is also recognized as the wavelet existence constraint.

B. Para-unitary condition

The para-unitary or the orthogonality condition is essential for many reasons. First, it is a pre-

requisite for generating orthonormal wavelets [8, 27]. Second, it automatically ensures perfect

reconstruction of the decomposed signal i.e., the original signal can be reconstructed without

amplitude or phase or aliasing distortion. To satisfy the para-unitary constraint the scaling filter

4The subscripts denoting the decomposition levell and the waveform indexp have been dropped for convenience.



Chapter 8 A unified framework to design orthonormal wavelet bases 224

coefficients have to be orthogonal at even shifts [8, 27]. The constraint can be derived using the

orthonormality property of the scaling function and its shifted version as follows:

∞∫

−∞

ξ(t)ξ(t− k)dt = δ(k) (8.5)

Substituting the two-scale equation eq.(8.1) in eq.(8.5) we get:

∞∫

−∞

∑

n

h [n] ξ(2t− n)
√
2
∑

m

h [m] ξ(2(t− k)−m)
√
2dt = δ[k],

2
∑

n

h [n]
∑

m

h [m]

∞∫

−∞

ξ(2t− n)ξ(2(t− k)−m)dt = δ[k],

2
∑

n

h [n]
∑

m

h [m]

∞∫

−∞

0.5ξ(2t− n)ξ(2(t− k)−m)d(2t) = δ[k]. (8.6)

Or, ∑

n

h [n]h [n− 2k] = δ[k], for k = 0, 1, . . . , (L/2)− 1. (8.7)

Eq.(8.7) is called the double-shift orthogonality relation of the wavelets. In eq.(8.7),L represents

the length of the low-pass filter. For a filter of lengthL the orthogonality condition eq.(8.7)

imposesL/2 non-linear constraints onh[n].

C. Flatness/K-Regularity

This property is a rough measure of the smoothness of the wavelet. The regularity condition is

needed to ensure that the wavelet is smooth in both the time- and frequency-domains [29]. It is

normally quantified by the number of times a wavelet is continuously differentiable. The sim-

plest regularity condition is theflatnessconstraint which is stated on the low-pass filter (LPF). A

LPF is said to satisfyKth order flatness if its transfer functionH(ω) containsK zeros located

at the Nyquist frequency(ω = π). For any functionQ(ω) with no poles or zeros at(ω = π)

this can be written as:

H(ω) =

(
1 + ejω

2

)K
Q(ω), (8.8)

with Q(π) 6= 0.

In eq.(8.8), Q(ω) is a factor ofH(ω) that does not have any single zero atω = π. HavingK

number of zeros atω = π also implies thatH(ω) is K-times differentiable and its derivatives
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are zero when they are evaluated atω = π. Considering that

H(ω) =
∑

n

h [n] exp(−jωn), (8.9)

thekth order derivative ofH(ω) would be

H(k)(ω) =
∑

n

h [n] (−jn)k exp(−jωn). (8.10)

The evaluation of eq.(8.10) atω = π would result in,

∑

n

h [n] (−jn)k exp(−jπn) = H(k)(π),

∑

n

h [n] (−j)k(n)k(e−jπ)n = 0,

∑

n

h [n] (−1)n(n)k = 0. (8.11)

Therefore, the K-regularity constraint in terms of the low-pass filter coefficients can be given as:

∑

n

h [n] (n)k(−1)n = 0, for k = 0, 1, 2, . . .K − 1. (8.12)

8-2-4 Degrees of freedom to design

Eqs.(8.4), (8.7) and (8.12) are necessary and sufficient conditions for the set to form an orthonor-

mal basis and have to be imposed for all wavelet design procedures. Fora filter of lengthL the

design process is about obtainingL unknown filter variables fromL equations. Of theseL equa-

tions, one is required to satisfy the wavelet existence condition,L/2 come from the para-unitary

constraint,K − 1 from the regularity constraint and the remainingL/2 − K conditions offer

the possibility for establishing the design objective. The larger the value ofL/2−K, more the

degree of freedom for design and greater is the loss in regularity. There is therefore a trade-off

to be made. TheL/2−K degrees of freedom that remain after satisfying the wavelet existence,

orthogonality and K-regularity condition can be used to design a scaling filterwith the desired

property (see fig.8.1). In Sections 9.3 and 9.4 we illustrate this with two examples.
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FIGURE 8.1: Wavelet conditions and degrees of freedom for design.

8-3 Example 1 - Maximally frequency selective wavelets

As the first example we consider the design of filters which are maximally frequency selec-

tive. Frequency selectivity is a useful property for many applications especially, in the fields

of Cognitive radio, for dynamic spectrum access and LTE-advanced5, where the spectrum of a

transmission signal has to be accurately shaped to match a frequency mask with low leakages

to the neighboring bands. We shall see in Section 9.3.5 that the frequency selective filters yield

wavelet bases with a well confined spectral footprint. Such bases are ideal for applications such

as wavelet packet based spectrum estimation (WPSE) presented in chapter 6 and for spectrum

shaping presented in chapter 7.

To obtain the frequency selective filters the design parameters are stated inthe frequency-domain

in terms of the desired magnitude response|H(ω)|2 of the LPF (see fig.8.2). In the figureωp

andωs, denote pass- and stop-band frequencies, respectively.[0, ωp] is the pass-band,[ωs, π] is

the stop-band and[ωp, ωs] is the transition bandBt. ∆b connotes the maximum ripple that can

5In Long Term Evolution advanced (LTE-advanced) the spectrum can be allocated over non-contiguous frequency
bands. This possibility necessitates that the frequency bands are well confined without any side lobes or spill-over.
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FIGURE 8.2: Plot of magnitude response |H( )|2 of the designed filter.
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be tolerated and the stop-band constraint can be stated as

0 ≤ |H(ω)|2 ≤ ∆b for ω ∈ [ωs, π] , (8.13)

where,

|H(ω)|2 =
∑

n

∑

m

h[n]h[m]e−jω(n−m). (8.14)

In terms of the impulse response, eq.(8.14) can be expressed as:

0 ≤
∑

n

∑

m

h[n]h[m]e−jω(n−m) ≤ ∆b for ω ∈ [ωs, π] . (8.15)

8-3-1 Formulating the design problem

This procedure was originally proposed by Parks and McClellan [134] for the design of FIR fil-

ters. However, it has to be adapted to accommodate the constraints (see Section 9.2.4) mandated

by the wavelet theory [132]. The design goal is to generate filters with the desired transition

bandBt and minimum error∆b while satisfying the wavelet constraints. For a given transition

bandBt, this optimization problem can be formally stated as:

Problem 1: MinimizeBt subject to the wavelet constraintseqs.(8.4),(8.7), (8.12) and the filter

constrainteq.(8.15).

i.e.,

MINIMIZE: ∆b

SUBJECT TO:

∑

n

h [n] =
√
2,

∑

n

h [n]h [n− 2k] = δ(k) for k = 0, 1, . . . , (L/2)− 1,

∑

n

h[n](n)k(−1)n = 0 for k = 0, 1, 2, . . . ,K− 1,

0 ≤ |H(ω)|2 ≤ ∆b for ω ∈ [ωs, π] . (8.16)

for fixed values ofBt, L andK.

It should be noted that we define the stop-band constraint only within the range ofω ∈ [ωs, π]

due to the inherent anti-symmetry property of(|H(ω)|2−1) aboutω = π/2 (see fig.8.2) [132].
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The stop band constraint can thus be simplified as:

|H(ω)|2 = H(ejω)H(e−jω)

=

(
∑

n

h[n]e−jωn
)(

∑

m

h[m]ejωm

)

=
∑

n

∑

m

h[n]h[m]e−jω(n−m). (8.17)

Hence, the stop-band constraint can be written as:

0 ≤
∑

n

∑

m

h[n]h[m]e−jω(n−m) ≤ ∆b ∀ ω ∈ [ωs, π] (8.18)

From eqs.(8.7) and (8.18), it is clear that both the double-shift orthogonality and the stop-band

constraints are non-linear and non-convex. Therefore, the optimizationproblem can only be

solved by general purpose solvers which do not guarantee a global solution. Furthermore, when

the number of constraints increases these general purpose algorithms often fail to provide a valid

solution. In order to overcome this difficulty, some authors have suggestedmultiple starting

point techniques or branch-and-bound method [135].

In this work the objective function and the constraints are solved using convex optimization and

semi-definite programs [136–142] 6. In the following sections we convert the design constraints

into a convex form and obtain the solution with the aid of convex optimization tools [143–145].

8-3-2 Transformation of problem from non-convex to convex

Fortunately, it is possible to transform the non-convex/non-linear equations into a linear/convex

problem by reformulating the constraints in terms of the autocorrelation sequencerh[k] [146–

149]:

rh[k] =
∑

m∈z
h[m]h[m+ k] (8.19)

Taking into account the inherent symmetry of the autocorrelation sequenceit can be defined

more precisely as:

rh[l] =
L−l−1∑

n=0

h[n]h[n+ l] for l ≥ 0 (8.20)

In eq.(8.20), L is the length of the FIR filter and the autocorrelation function is symmetric about

l = 0, i.e:

rh[−l] = rh[l] (8.21)

6In Appendix A1 we have briefly discussed convex optimization and semi-definite programming.
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We derive the four constraints eqs.(8.4), (8.7), (8.12) and (8.18) in terms ofrh[l] in the following

sections.

A. Compact support or admissibility constraint

The compact support constraint in eq.(8.4) can be rewritten as:

L−1∑
n=0

h [n] =
√
2 , or

L−1∑
n=0

h [n]
L−1∑
m=0

h [m] = 2. (8.22)

Takingm = n+ l, we have:

L−1∑

n=0

L−n−1∑

l=−n
h [n]h [n+ l] = 2 (8.23)

Reversing the order of the summation and considering the fact that the impulseresponse of filter

h[n] has non-zero values only at0 ≤ n ≤ L− 1, we obtain:

L−1∑

l=−(L−1)

L−l−1∑

n=0

h [n]h [n+ l] = 2 (8.24)

The compact support constraint in eq.(8.4) can then be rewritten as:

L−1∑

l=−(L−1)

rh [l] = 2 (8.25)

Taking into consideration the double shift orthonormality property (see eq.(8.7)) and the fact

that the autocorrelation sequence is symmetric, we can simplify eq.(8.25) further as:

rh [0] + 2
L−1∑

l=1

rh [l] = 2 (8.26)

L−1∑

l=1

rh [l] =
1

2
(8.27)

Eq.(8.27) is the compactly supported wavelet constraint stated in terms of the autocorrelation

sequencerh[l].
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B. Double shift orthogonality constraint

The double shift orthogonality constraint presented in eq.(8.7), can be expressed in terms of the

autocorrelation sequencerh[l] as follows:

∑

m

h [m]h [m+ 2k] = rh[2k] = δ[k] (8.28)

It should be noted that eq.(8.28) is obtained by applyingn − 2k = m on eq.(8.7). Hence the

final double-shift orthogonality constraint in terms of the autocorrelation sequencerh[l] is:

rh[2k] = δ[k] =




1, if k = 0

0, otherwise.
(8.29)

Herek = 0, 1, . . . , ⌊L−1
2 ⌋.

We again make use of the symmetry property to simplify it. In contrast to eq.(8.7) which was

non-convex, eq.(8.29) consists of linear equalities and is convex.

C. K-Regularity constraint

The regularity constraint can be reformulated in terms of the autocorrelationsequencerh[l] by

considering the square of the absolute value of eq.(8.8) i.e.:

|H(ω)|2 =
(
1 + e−jω

2

)K (
1 + ejω

2

)K
|Q(ω)| .2 (8.30)

Requiring the transfer functionH(ω) to haveK zeros at the Nyquist frequency(ω = π) is

equivalent to requiring|H(ω)|2 to have2K zeros atω = π. Taking into account the fact that

|H(ω)|2 is the Fourier transform of the autocorrelation sequence ofrh[l], we can represent the

2kth order derivative of|H(ω)|2 as follows:

(
|H(ω)|2

)(2k)
=
∑

l

rh [l] (−jl)2k exp(−jωl).) (8.31)

The evaluation of eq.(8.31) atω = π would yield:

∑

l

rh [l] (−jl)2k exp(−jπl) =
(
|H(π)|2

)(2k)
,

∑

l

rh [l] (−j)2k(l)2k
(
e−jπ

)l
= 0, and

∑

l

rh [l] (l)
2k (−1)l = 0. (8.32)
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Now, for a filter of lengthL, the filter indexl varies as−(L − 1) ≤ l ≤ (L − 1); therefore

eq.(8.32) becomes:

L−1∑

l=−L+1

(−1)l (l)2krh [l] = 0, fork = 0, 1, . . . ,K − 1. (8.33)

In eq.(8.33), K represents the desirable regularity index of the wavelet. Making use of the

symmetry property of the autocorrelation sequencerh[l] and taking into ocnsideration that it has

a zero value forl = 0, eq.(8.33) can be further simplified as:

L−1∑

l=1

(−1)l (l)2krh [l] = 0, for k = 0, 1, . . . ,K − 1. (8.34)

D. Stop-band constraint

Definingn = m+ k, eq.(8.18) can be expressed as:

|H(ω)|2 =
∑

m

∑

k

h[m]h[m+ k]e−jω(k) =
∑

k

rh [k] e
−jωk (8.35)

Therefore, the stop-band constraint becomes:

0 ≤
∑

k

rh [k] e
−jωk ≤ ∆b for ω ∈ [ωs, π] (8.36)

The autocorrelation sequencerh[k] is symmetric aboutk = 0, (i.e, rh[l] = rh[−l]) [132].

Hence, eq.(8.36) can be modified as,

|H(ω)|2 = rh [0] +
∑

l

rh [l]
(
e−jωl + ejωl

)

= rh [0] + 2
∑

l

rh [l] cos(ωl), (8.37)

for l = 1, 2, . . . , L− 1 andω ∈ [ωs, π].

Consequently, the stop-band constraint in eq.(8.36) can be written as,

0 ≤ rh [0] + 2
∑

l

rh [l] cos(ωl) ≤ ∆b, (8.38)

for l = 1, 2, . . . , L− 1 andω ∈ [ωs, π].
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E. Spectral factorization and discretization on stop band constraint

The reformulated optimization problem consists of the objective function and the design con-

straints expressed in terms of the autocorrelation sequencerh[l] and therefore the optimal solu-

tion will also be in the autocorrelation domain. Since our interests lie in the filter coefficients

h[n], we have to obtainh[n] from rh[l]. There are no unique solutions to the filter coefficient

that can be obtained for a givenrh[l]. We borrow the spectral factorization algorithm proposed

in [146] to obtain unique filters which satisfy the minimum-phase property [147]. The spectral

factorization of an autocorrelation sequencerh[l] can be performed as long as the logarithm

function of its Fourier transformRh(ω) remains inR 7. To ensure this, the following additional

constraint is enforced:

Rh(ω) = |H(ω)|2 ≥ 0, for ω ∈ [0, π] . (8.39)

Using eq.(8.38), the time domain representation of eq.(8.39) can be given as,

rh [0] + 2
∑

l

rh [l] cos(ωl) ≥ 0 for l = 1, 2, . . . , L− 1 and ω ∈ [0, π] . (8.40)

Since we have an infinite number of inequalities in eq.(8.40), we discretize it in the interval

ω ∈ [0, π]. This is necessary in order to make the optimization problem practically solvable. One

such approach is proposed in [146] where the continuous variableω is replaced with the discrete

variableωi = iπ/d, defined on the finite seti = [0, . . . , d]. A typical value ofd suggested

in [146] is 15n. As a result, the constraint required for successful spectral factorization after

applying the discretization process becomes:

rh [0] + 2

L−1∑

l=1

rh [l] cos(iπl/d) ≥ 0 for i = 0, 1, . . . , d. (8.41)

For simplicity of expression, heron, we refer to eq.(8.41) as the spectral factorization constraint.

As with the spectral factorization constraints, the number of stop-band constraints defined in

eq.(8.38) is also infinite. Hence, the stop-band constraints also have to be discretized to make

the problem practically solvable. After the discretization, the stop-band constraints in eq.(8.38)

can be rewritten as:

0 ≤ rh [0] + 2
L−1∑

l=1

rh [l] cos(iπl/d) ≤ ∆b for i =
⌈ωs
π

⌉
∗ d, . . . , d. (8.42)

The optimization problem in terms of the autocorrelation sequencerh[l] can thus be summarized

as:

MINIMIZE: ∆b

7See Appendix A2 for more details on the Kolmogorov spectral factorization algorithm.
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SUBJECT TO:

L−1∑
l=1

rh [l] =
1
2

rh[2k] = δ[k] =




1, if k = 0,

0, otherwise
, where k = 0, 1, . . . , ⌊L−1

2 ⌋

L−1∑
l=1

(−1)l (l)2krh [l] = 0 for k = 0, 1, . . . ,K − 1,

0 ≤ rh [0] + 2
L−1∑
l=1

rh [l] cos(iπl/d) ≤ ∆b for i =
⌈
ωs

π

⌉
∗ d, . . . , d,

rh [0] + 2
L−1∑
l=1

rh [l] cos(iπl/d) ≥ 0 for i = 0, 1, . . . , d. (8.43)

8-3-3 Reformulation of optimization criterion in the Q(ω) function domain

The optimization problem stated above is both convex and linear. Therefore, in principle any

linear or convex programming tool can be used to solve this optimization problem.However,

a numerical problem may rise for long filters (when the value ofL andK are large) when the

regularity constraint in eq(8.28) becomes ill-conditioned [132, 145]. In order to alleviate this

the optimization problem is expressed in terms of theQ(ω) function, which is defined as:

|H(ω)|2 =

(
1 + e−jω

2

)K (
1 + ejω

2

)K
|Q(ω)|2

=

((
1 + ejω

) (
1 + e−jω

)

4

)K
|Q(ω)|2

=

(
(1 + cos(ω))

2

)K
|Q(ω)|2 . (8.44)

The time-domain representation of eq.(8.44) can be shown to be [145]:

rh[l] = 2−2K
K∑

n=−K

(
2K

n+K

)
rq[l − n], for l = 0, 1, . . . , L− 1. (8.45)

Here,rq[l] is also an autocorrelation sequence. As withrh[l], the symmetry property also holds

good forrq[l]. The constraints now are redefined in terms of the autocorrelation sequencerq[l].
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A. Compact support

The property of compact support for wavelets is stated in terms of the autocorrelation sequence

rq[l] by combining eqs.(8.4) and (8.44) and takingω = 0. It can be noticed that:

∑

n

h [n] = H(ω)|ω=0 =
∑

n

h[n] exp(−jωn)
∣∣∣∣∣
ω=0

=
√
2 (8.46)

|H(ω)|2
∣∣∣
ω=0

= 2 (8.47)

By substituting eq.(8.44) into eq.(8.47) we obtain:

{(
1 + e−jω

2

)K (
1 + ejω

2

)K
|Q(ω)|2

}∣∣∣∣∣
ω=0

= 2 (8.48)

|Q(ω)|2
∣∣∣
ω=0

= 2 (8.49)



rq [0] + 2

Lq−1∑

l=1

rq [l] cos(ωl)





∣∣∣∣∣∣
ω=0

= 2 (8.50)

We finally come up with the compactly supported wavelet constraint in term of autocorrelation

sequencerq[l] as follows:

rq [0] + 2

Lq−1∑

l=1

rq [l] = 2. (8.51)

B. Double shift orthogonality

Based on eqs.(8.29) and (8.46), the double shift orthogonality constraint in term of autocorrela-

tion sequencerq[l] can be represented as:

rh[2l] = 2−2K
K∑

n=−K

(
2K

n+K

)
rq[2l − n] = δ[l] for l = 0, 1, . . . . . . .., ⌊L− 1

2
⌋.

Or,
K∑

n=−K

(
2K

n+K

)
rq[2l − n] = 22Kδ[l]. (8.52)

Eq.(8.52) defines the double shift orthogonality constraint in terms of the autocorrelation se-

quencerq[l].
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C. Spectral factorization

The easiest way to reformulate the spectral factorization constraint in termsof the autocorrela-

tion sequencerq[l] is by combining eqs. (8.39) and (8.44) as follows:

|H(ω)|2 ≥ 0 for ω ∈ [0, π] (8.53)

(
1 + cos (ω)

2

)K
|Q(ω)|2 ≥ 0 for ω ∈ [0, π] . (8.54)

Since the factor1 + cos (ω) above is always positive, we can rephrase it as:

|Q(ω)|2 ≥ 0 for ω ∈ [0, π] (8.55)

Discretizing it in the intervalω ∈ [0, π] , the spectral factorization constraint in term of autocor-

relation sequencerq[l] can be written as:

rq [0] + 2

Lq−1∑

l=1

rq [l] cos(iπl/d) ≥ 0 for i = 0, 1, . . . , d. (8.56)

It is clear from eq.(8.8) that sinceQ(ω) hasK zeros less thanH(ω), the length of the filterq[n]

will be Lq = L−K.

D. Stop band constraint

As with the spectral factorization constraints, the stop-band constraint in terms of the autocor-

relation sequencerq[l] is obtained by combining eqs.(8.17), (8.18) and (8.44) as follows:

0 ≤ |H(ω)|2 ≤ ∆b for ω ∈ [ωs, π] (8.57)

0 ≤
(
1 + cos (ω)

2

)K
|Q(ω)|2 ≤ ∆b for ω ∈ [ωs, π] (8.58)

Discretizing it in the intervalω ∈ [ωs, π] the stop-band constraint can be expressed in terms of

the autocorrelation sequencerq[l] as:

0 ≤
(
1 + cos(iπ/d)

2

)K

rq [0] + 2

Lq−1∑

l=1

rq [l] cos(iπl/d)


 ≤ ∆b, (8.59)

for i =
⌈
ωs

π

⌉
∗ d, . . . , d andLq = L−K.

It is clear from eq.(8.59) that when the optimization problem is expressed in terms of the au-

tocorrelation sequencerq[l], the necessity for|H(ω)|2 to have2K zeros atω = π has been
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imposed implicitly. Therefore, the regularity constraints are not explicitly expressed when the

optimization problem is conducted in theQ(ω) domain.

The spectral factorization constraints stated in eqs.(8.54) and (8.56) will be automatically ful-

filled if the stop-band constraint stated in eq.(8.59) is satisfied. In fact the stop band constraint

eq.(8.59) is more stringent than the spectral factorization constraint eq.(8.56).

In summary, the optimization problem in terms of the autocorrelation sequencerq[l] can be

stated as:

MINIMIZE: ∆b

SUBJECT TO:

rq [0] + 2

Lq−1∑

l=1

rq [l] = 2,

K∑

n=−K

(
2K

n+K

)
rq[2l − n] = 22Kδ[l], for l = 0, 1, . . . , ⌊L− 1

2
⌋,

0 ≤
(
1 + cos(iπ/d)

2

)K

rq [0] + 2

Lq−1∑

l=1

rq [l] cos(iπl/d)


 ≤ ∆,

for i =
⌈ωs
π

⌉
∗ d, . . . , d and Lq=L−K.

(8.60)

Once we find the optimal autocorrelation sequencerq[l], the spectral factorization is employed

in order to derive the optimal sequenceq[l] from rq[l]. Finally, the optimal wavelet low-pass

filter coefficients are computed using the time-domain equivalent of eq.(8.8) [145]:

h[l] = 2−K
K∑

k=0

(
K

k

)
q[l − k]. (8.61)

8-3-4 Solving the convex optimization problem

Since the optimization problem posed above is linear it is also convex. Therefore, any linear or

convex optimization tool can be used to solve this problem. We used SeDuMi [150], a generic

Semi-Definite Programming (SDP) solver, to solve the optimization problem. SeDuMi stands

for Self-Dual Minimization as it implements a self-dual embedding technique foroptimization

over self-dual homogeneous cones [150]. It comes as an additional Matlabc©package and can
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FIGURE 8.3: Flow chart of the optimum wavelet design process for wavelet packet based
spectrum estimation.

be used for linear, quadratic and semi-definite programming. Normally it requires a problem

to be described in a primal standard form but with modeling languages like YALMIP (short for

Yet Another LMI Parser) the optimization problems can be directly expressed in a user-friendly

higher level language [151]. Thus YALMIP allows the user to concentrate on the high-level

modeling without having to worry about low-level details. We have developed a filter opti-

mization program that incorporates most of the available optimization routines for Matlabc©and

which relies on YALMIP to translate the problem into the standard form.

The blocks of the filter design program are elucidated in fig.8.3. The design process consists

of both analytical and numerical modules. In the analytical part, the non-convex problem is

converted into a convex one, followed by a transformation of the expression from autocorrela-

tion rh[l] domain into autocorrelationrq[l] domain. In the numerical part the convex problem

is solved and the solution is obtained in terms ofrq[n]. After that, another analytical process is

initiated to derive optimum low-pass filter coefficientsh[n] from the sequencesq[n], which is

obtained by applying spectral factorization onrq[l]. We use the spectral factorization algorithm

proposed in [146]. From the autocorrelation sequence, this spectral factorization algorithm de-

rives filter coefficients with lengthL having a minimum phase property8. At the end of the

design process the filter coefficients of the analysis LPF will be generated. From the analysis

LPF h[n], the HPFg[n] and the synthesis filters, LPFh′[n] and HPFg′[n], can be obtained

8We chose filters having minimum phase because they guarantee stability
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through the QMF equations. And from these set of filters the WPM carriersand their duals can

be derived using the 2-scale eq.(8.1).

8-3-5 Results and analysis

In this section we present a few results to demonstrate the design procedure. The main variables

of the design process are the length and regularity order of the filter. Regularity has to be

equal to or larger than 1 to ensure that the wavelet existence constraint issatisfied and it may

not exceedL/2. If the selected value for regularity is close to the upper limit, the degrees of

freedom available for the optimization of the objective function will be lowered. On the other

hand, imposing a small regularity can result in highly irregular wavelets.

A. Frequency and impulse responses of the newly designed filter

We consider two wavelets with filter lengthsL = 30 andL = 40. It is certainly possible to

design filters of other lengths too. In the first example, shown in fig.8.4, the frequency response

of the designed wavelet filters is compared with Daubechies and Coiflet wavelet filters. For

fairness of comparison all of these wavelet filters have a length of 30. A K-regularity index of 7

and transition band (Bt) of 0.2π is enforced on the designed wavelet filters. From fig.8.4, it is

evident that the filters obtained from the design have better frequency selectivity, with sharper

transition between the pass- and stop-bands, than their Daubechies and Coiflet counterparts. A

small price however is paid in terms of the ripples introduced in the side lobe. Fig. 8.5presents
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Index Low-Pass Filter High-Pass Filter Index Low-Pass Filter High-Pass Filter
1 0.0000 -0.0201 16 -0.0611 -0.0074
2 -0.0000 0.1437 17 0.0206 -0.0395
3 0.0001 -0.4279 18 0.0892 -0.0017
4 0.0002 0.6521 19 -0.0357 0.0223
5 -0.0006 -0.4454 20 -0.1296 0.0055
6 0.0001 -0.0789 21 0.0469 -0.0097
7 0.0024 0.3037 22 0.1943 -0.0049
8 -0.0026 -0.0350 23 -0.0350 0.0026
9 -0.0049 -0.1943 24 -0.3037 0.0024
10 0.0097 0.0469 25 -0.0789 -0.0001
11 0.0055 0.1296 26 0.4454 -0.0006
12 -0.0223 -0.0357 27 0.6521 -0.0002
13 -0.0017 -0.0892 28 0.4279 0.0001
14 0.0395 0.0206 29 0.1437 0.0000
15 -0.0074 0.0611 30 0.0201 0.0000

TABLE 8.1: Optimal filter coefficients for filter lengthL = 30, K-regularity=7, Transition
Band=0.2π.
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FIGURE 8.5: Frequency response of Daubechies-20 and the designed wavelet low-pass (LPF)
and high-pass (HPF) filter withL = 40,K = 8, Bt = 0.2π.

similar comparison forL = 40. In this example, only the maximally frequency selective wavelet

and Daubechies-20 filters are considered.

Figs.8.6and 8.7depict the impulse responses of the high and low-pass filters of the optimally

designed wavelets forL = 30,K = 7, Bt = 0.2π andL = 40,K = 8, Bt = 0.2π, respectively.

The coefficients of the designed wavelet filter forL = 30,K = 7, Bt = 0.2π andL = 40,K =

8, Bt = 0.2π are presented in tables8.1and8.2, respectively.
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Index Low-Pass Filter High-Pass Filter Index Low-Pass Filter High-Pass Filter
1 0.0000 -0.0071 21 -0.0404 -0.0018
2 0.0000 0.0630 22 0.0035 0.0261
3 0.0000 -0.2416 23 0.0586 0.0047
4 0.0000 0.5128 24 -0.0110 -0.0154
5 0.0001 -0.6110 25 -0.0818 -0.0053
6 -0.0000 0.2958 26 0.0194 0.0077
7 -0.0001 0.1849 27 0.1122 0.0044
8 0.0004 -0.2882 28 -0.0249 -0.0030
9 0.0001 -0.0275 29 -0.1538 -0.0028
10 -0.0013 0.2128 30 0.0179 0.0006
11 0.0006 -0.0179 31 0.2128 0.0013
12 0.0028 -0.1538 32 0.0275 0.0001
13 -0.0030 0.0249 33 -0.2882 -0.0004
14 -0.0044 0.1122 34 -0.1849 -0.0001
15 0.0077 -0.0194 35 0.2958 0.0000
16 0.0053 -0.0818 36 0.6110 0.0001
17 -0.0154 0.0110 37 0.5128 -0.0000
18 -0.0047 0.0586 38 0.2416 0.0000
19 0.0261 -0.0035 39 0.0630 -0.0000
20 0.0018 -0.0404 40 0.0071 0.0000

TABLE 8.2: Optimal filter coefficients for filter lengthL = 40, K-regularity=8, Transition
Band=0.2π.
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FIGURE 8.6: Impulse response of the designed optimal wavelet filterwith length L =30, K-
regularity K = 7, overall transition bandBt = 0.2π.
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FIGURE 8.7: Impulse response of the designed optimal wavelet filterwith length L = 40, K-
regularity = 8, overall transition bandBt = 0.2π.
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FIGURE 8.8: Estimates of a partial band source with Coiflet-5, Daubechies-15, Symlet-15 and
the designed optimal wavelet filter with length L=30, K-regularity = 7, overall transition band
Bt = 0.2π. The wavelet decomposition level used here is 7. The number of samples in this

experiment is 12800.
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Type of
source

Description

Partial band Frequency occupied:
[0.25π, 0.75π]

Single tone Frequency occupied:0.5π
Multi-band Consist of 3 active bands

occupying normalized fre-
quency bands [0.08π, 0.19π],
[0.47π, 0.58π], and
[0.86π, 0.97π], respectively.

TABLE 8.3: Description of three types of sources used in the experiments.
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FIGURE 8.9: Estimates of single-tone source based on Coiflet-5, Daubechies-15, Symlet-15
and the designed optimal wavelet filter with length L=30, K-regularity = 7, overall transition
bandBt = 0.2π. The wavelet decomposition level used here is 7. The number of samples in

this experiment is 12800.

B. Evaluation of spectrum estimator performance

We now examine the performance of the wavelet packet based spectrum estimator or WPSE

(presented in Chapter 7) with the newly designed wavelet. For this purpose, three types of

sources are considered, namely, partial-band, single-tone and multi-band. The partial-band

source has its energy spread over a continuous range of frequencies and it occupies the nor-

malized frequency band from0.25π to 0.75π. The single-tone source has all of its energy at one

frequency and is in the middle of the range spanned by the wavelet based spectrum estimation

at 0.5π. The third source has a multi-band characteristic with three active bands occupying the

normalized frequency bands of0.08π-0.19π, 0.47π-0.58π and0.86π-0.97π, respectively. The

details of all the sources are provided in table8.3.

• Partial-band source



Chapter 8 A unified framework to design orthonormal wavelet bases 243

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

Normalized Frequency (x π rad/sample)

P
o

w
e

r 
/ 

F
re

q
u

e
n

c
y
 (

d
B

/ 
ra

d
/s

a
m

p
le

)

 

 

Designed wavelet (Length=30 K−regularity=7 TransitionBand=0.2π)
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FIGURE 8.10: Spectrum shaping with WPM carriers based on the wavelets: Coiflet-5,
Daubechies-15, Symlet-15 and the designed optimal waveletfilter with lengthL = 30, K-

regularity = 7, transition bandBt = 0.2π.

Fig. 8.8 presents how the spectrum estimation of a partial-band source with the newly

designed wavelet compares with those based on the standard wavelet family. Here, the

number of samples is set to 12800. The specifications for the optimal waveletareL

(length) = 30, K (regularity index) = 7 andBt (transition bandwidth) =0.2π. It is clear

from the figure that the newly designed wavelet outperforms Daubechies, Coiflet and

Symlet wavelets of the same length. The improvements are with regard to frequency

selectivity and the sharp transition between occupied band and unoccupied band.

• Single-tone source

For the estimation of the single-tone source, as illustrated by the plots in fig.8.9, the dif-

ference in performances of the designed wavelet and the standard ones is not tangible.

The frequency resolution of the single tone source is influenced more by the levels of de-

composition than by frequency selectivity of the filter used. Hence, there isno perceivable

differences in the performances of various wavelets.

• Multiple-Bands source

The benefit of frequency selective filters is that the WPM carriers derived from them have

narrow and well-confined spectral footprints. Moreover, they also aidin better estimation

of signals. Fig.8.10illustrates this characteristic where the frequency selective wavelets

are shown to efficiently carve the bands between the desirable and undesired footprints

while all other wavelets have residual infringing components. This featureis useful in

applications such as Cognitive Radio and LTE-advanced where the transmission signal

characteristics have to be shaped to accurately map a frequency mask.
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FIGURE 8.11: Detection and false alarm probability of the spectrumestimation based on vari-
ous wavelet families. The length of the wavelet filter is 30, the wavelet decomposition level is
7 and the sample space is of size 12800. The K-Regularity of the designed wavelets is 7 with a

normalized transition bandBt of 0.2π.

C. Evaluation of the receiver operating characteristics (ROC)

The receiver operating characteristic (ROC) is used as the second figure-of-merit to gauge the

performance of the spectrum estimator. To obtain the probability of detection (Pd) and false

alarm (Pfa), we divide the normalized frequency range[0, π] into 128 equal bands (or frequency

bins). Each bin is occupied by one source meaning that overall there are128 sources. These 128

sources are randomly activated/de-activated and thePd andPfa are calculated for each threshold

for a sample space of 100 experiments. An active source operates around -2.1 dB power and the

threshold is varied between -3dB to -15dB. The number of samples used to estimate is 12800.

Fig. 8.11depicts thePd andPfa as a function of threshold level; the plots clearly underline the

superiority of the newly designed wavelet in relation to other wavelet families of the same filter

length. The frequency selectivity inherent in the proposed wavelet hasallowed the spectrum

estimator to have betterPd andPfa for all thresholds in comparison to Daubechies, Symlet

and Coiflet based estimators. The ROC depicted in fig.8.12further endorses the benefits and

superiority of the estimator based on the designed wavelet.

D. Other studies - filter characteristics and their influence

We now study the impact of altering the filter design parameters on the ROC. Theplots in

fig. 8.13 show the impact of filter length on the ROC. The results show that for a givenreg-

ularity order, the longer the filters, the better thePd andPfa of the estimates. This is to be

expected because filters which are longer offer more degrees of freedom to minimize the pass-

band and stop-band ripple. Likewise, for a given filter length, a lower K-regularity index results
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FIGURE 8.12: Receiver operating characteristic of spectrum estimation based on various
wavelet families. In this scenario, the length of wavelet decomposition filter is 30, the wavelet
decomposition level is 7 and the sample space is of size 384. The K-Regularity of the designed

wavelets with SDP is 7 with a normalized transition band of0.2π.
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FIGURE 8.13: Detection and false alarm probability of the spectrumestimation based on the
newly designed wavelet with variations on filter lengths. Inthis scenario, the wavelet decom-
position level is 7 and the sample space is of size 12800. The K-Regularity of the designed

wavelets with Semi-Definite Programming is 7 with a transition band of0.2π.
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FIGURE 8.14: Detection and false alarm probability of the spectrumestimation based on newly
designed wavelet with variations on transition band. In this scenario, the length of wavelet
decomposition filter is 40, the wavelet decomposition levelis 7 and the sample space is of size

12800. The K-Regularity of the designed wavelets with Semi-Definite Programming is 6.

in a greater degree of freedom available to minimize the pass/stop-band rippleyielding better

performance results.

Fig. 8.14exemplifies the influence of transition band variation on the detection and falsealarm

probability. The result further exemplifies the importance of frequency selectivity on the quality

of the estimates. Here, configurations with narrower transition bands offer lower false alarm and

higher detection probability.

8-4 Example 2 - Wavelets with low cross correlation error

As a second example we design filters with low cross-correlation energy between the low- and

high-pass filters with the objective of minimizing the interference due to timing errors in WPM

transmission. In Chapter 4 we found out that multi-carrier systems are highlysensitive to loss

of time synchronization. A loss in time synchrony results in samples outside a WPMsymbol

getting erroneously selected, while useful samples at the beginning or at the end of the symbol

getting discarded. It also introduces ISI and ICI causing a performance degradation.

We also observed that though WPM and OFDM share many similarities as orthogonal multi-

carrier systems, they are significantly different in their responses to lossof time synchronization.

This difference is a result from the fact that the WPM symbols overlap with each other and they

are longer than the OFDM symbol9. Under a loss in time synchronization, the overlap of the

symbols in WPM causes each symbol to interfere with several other symbols while in OFDM

9The length of the symbol and the degree of overlap is determined by the length of wavelet filter used.
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each symbol interferes only with its neighbors. The second difference isin the usage of guard

intervals. OFDM benefits from the cyclic prefix which significantly improves itsperformance

under timing errors. WPM cannot use guard intervals because of the symbol overlap.

Fortunately, WPM offers the possibility of adjusting the properties of the waveforms in a way

that the errors due to loss of synchronization can be minimized. In this sectionwe present a

method to design a new family of wavelet filters which minimize the energy of the timing error

interference

8-4-1 Time offset errors in WPM

The time synchronization error is modeled by shifting the received data samplesR[n] by a time

offset∆t to the left or right as:

R[n±∆t] = S[n] + w[n]. (8.62)

Here,S[n] denotes the transmitted signal andw[n] the Gaussian noise.

Recalling, from Chapter 3, that in ideal conditions when the WPM transmitter and receiver are

perfectly synchronized and the channel is benign, the estimation of the datacontained in the

uth symbol andkth sub-carrier̂au′,k′ is the same as the transmitted dataau,k 10. However,

errors are introduced in the demodulation decision making process under timeoffset errors∆t

as elucidated below:

âu′,k′ =
∑

n

R[n]ξk
′

l [(u′N − n+∆t]

=
∑

n

∑

u

N−1∑

k=0

au,kξ
k
l [n− uN ]ξk

′

l [u′N − n+∆t]

=
∑

u

N−1∑

k=0

au,k

(
∑

n

ξkl [n− uN ]ξk
′

l [u′N − n+∆t]

)
. (8.63)

Defining the cross waveform functionΩ(∆t) as:

Ωu,u
′

k,k′ [∆t] =
∑

n

ξkl [n− uN ]ξk
′

l [u′N − n+∆t], (8.64)

10To distinguish the receiver and transmitter end parameters, apostrophes are used in the receiver-end symbolu′

and carrierk′ index.
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the demodulated data corrupted by the interference due to loss of orthogonality at the receiver

for thekth sub-carrier anduth symbol can be expressed as:

âu′,k′ = au′,k′Ω
u′,u′

k′k′ [∆t]︸ ︷︷ ︸
DesiredAlphabet

+
∑

u;u 6=u′
au,k′Ω

u,u′

k′,k′ [∆t]

︸ ︷︷ ︸
ISI

+
∑

u

N−1∑

k=0;k 6=k′
au,kΩ

u,u′

k,k′

︸ ︷︷ ︸
IS−ICI

[∆t] + wu′,k′︸ ︷︷ ︸
GaussianNoise

.

(8.65)

In eq.(8.65) the first term stands for the attenuated useful signal, the second term denotes ICI,

the third term gives ISI and the last term stands for Gaussian noise.

8-4-2 Formulation of the design problem

A. Design criterion

The information contained in the sub-carriers can be correctly decoded ifthe waveforms used

have large distances between one another. In WPM this is achieved through the orthogonality

of the generated waveforms. In disturbance-free environments the cross-correlations of WPM

waveforms equals zero and perfect reconstruction is possible despite the time and frequency

overlap. However, the timing error∆t leads to the loss of orthogonality between the waveforms

and consequently they begin to interfere one with another leading to ICI andISI, stated as:

Ωu,u
′

k,k′;k 6=k′ [∆t] =
∑

n

ξkl (n− uN)ξk
′

l (u′N − n+∆t). (8.66)

The design objective is therefore to generate wavelet basesξ and their dualsξ′ that minimize

interference energy in the presence of a timing error,i.e.,

MINIMIZE: ∑

u,k;k 6=k′

∣∣∣Ωu,u
′

k,k′ [∆t]
∣∣∣
2
withrespectto

{
ξ, ξ′

}
. (8.67)

B. Wavelet-domain to filter bank-domain

The waveforms in WPM are created by the multi-level tree structure filter bank. Using Parseval’s

theorem of energy conservation it can be easily proved that the total energy at each level is

equal regardless of the tree’s depth. Therefore, minimizing the interfering energy at the roots

of the tree will automatically lead to a decrease of total interfering energy at the higher tree

branches. Furthermore, the two-channel filter banks through the 2-scale equation are related,

albeit explicitly, to the WPM waveforms. Therefore the design process canbe converted into a

tractable filter design problem. We should hence be able to minimize the deleteriouseffects of
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time synchronization errors in WPM by minimizing the following cross-correlationfunction:

∑

∆t

|rhg[∆t]|2 =
∑

n

|h[n]g[n−∆t]|2 =
∑

n

|h[n]((−1)nh[L− n+∆t])|2 (8.68)

The design problem of minimizing the interference energy due to timing offset can now be

formally stated as an optimization problem satisfying the objective function eq.(8.68) and con-

straints eqs.(8.4), (8.7) and (8.12), i.e.,

MINIMIZE: ∑

∆t

|rhg[∆t]|2with respect toh[n] (8.69)

SUBJECT TO:

∑

n

h [n] =
√
2

∑

n

h [n]h [n− 2k] = δ[k], for k = 0, 1, . . . , (L/2)− 1

∑

n

h [n] (n)k(−1)n = 0, for k = 0, 1, 2, . . . ,K − 1. (8.70)

As in the first example, the majority of constraints in eq.(8.70) are non-linear and non-convex.

As before, we shall move to the auto-correlation domain (rh[k] =
∑
m∈z

h[m]h[m+ k] ) to sim-

plify the problem.

8-4-3 Transformation of the mathematical constraints froma non-convex prob-

lem to a convex/linear one

The admissibility, para-unitary and K-regularity conditions are readily available in the auto-

correlation domain (eqs.(8.27), (8.29) and (8.34), respectively). The spectral factorization con-

dition eq.(8.42) can also be reused. Therefore, we only have to derive the objectivefunction.

We know that,

rh[n] =





L−n−1∑
m=0

h[m]h[m+ n], n ≥ 0

rh(−n), n < 0

(8.71)

and that,

rg[n] =
L−n−1∑

m=0

g[m]g[m+ n] where n ≥ 0

=
L−n−1∑

m=0

((−1)mh[L−m])((−1)m+nh[L− (m+ n)]) = (−1)nrh[n]. (8.72)
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Applying the corollary11: “The sum of squares of a cross-correlation between two functions

equals the inner product of the autocorrelation sequences of these two functions.”, and consid-

ering the double shift orthogonality property,

rh[2x] = δ[x] =




1, for x = 0

0, otherwise,
where x = 0, 1, . . . , ⌊L− 1

2
⌋, (8.73)

the cross-correlation functionrhg[n] can be rewritten in terms ofrh[n] as follows:

L−1∑

n=0

|rhg[n]|2 =
L−1∑

n=0

rh[n]rg[n]

=

L−1∑

n=0

rh[n] ((−1)nrh[n])

=

(L/2−1)∑

x=0

(rh[2x+ 1])2

︸ ︷︷ ︸
Odd numbered values

−
(L/2−1)∑

x=0

(rh[2x])
2

︸ ︷︷ ︸
Even numbered values

=

(L/2−1)∑

n=0

(rh[2n+ 1])2 − 1. (8.74)

The new optimization problem can therefore be stated as,

MINIMIZE:
(L/2−1)∑

n=0

(rh[2n+ 1])2, (8.75)

subject to the wavelet constraints eqs.(8.27), (8.29) and (8.34), the spectral factorization criterion

eq.(8.42) and the design constraint eq.(8.74).

Or,

MINIMIZE:
(L/2−1)∑

n=0

(rh[2n+ 1])2, (8.76)

11Proved in Appendix A4
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0.1198 0.4982 0.6609 0.2032
-0.0291 0.1594 -0.1449 -0.3016
0.2063 0.2059 0.16541 -0.0566
0.0712 -0.0095 -0.0083 0.0091
-0.0049 -0.0007 0.0015 -0.0003

TABLE 8.4: Optimal Filter Coefficients.

SUBJECT TO:

L−1∑

n=1

rh [n] =
1

2

rh[2k] = δ(k) =




1, for k = 0

0, otherwise
where k = 0, 1, . . . ,

⌊
L− 1

2

⌋

L−1∑

n=1

(−1)n (l)2krh [n] = 0 for k = 0, 1, . . . ,K − 1

rh [0] + 2
L−1∑

n=1

rh [n] cos(iπl/d) ≥ 0 for i = 0, 1, . . . , d. (8.77)

The equations are now convex and can be solved using the setup presented in Section 9.3.4 and

illustrated by fig.8.3.

8-4-4 Results and analysis

In this section we present a few results to demonstrate the design procedure. As before, the main

variables of the design process are the length and regularity order of thefilter.

A. Frequency and impulse responses of the designed filter

In this example we have set the length of the filter to 20 though it is also possible todesign

filters of other lengths. The order of regularity chosen is 5, which is a compromise between

optimization space and wavelet regularity. The impulse response of the designed optimal filter is

illustrated in fig.8.15and numerical values of filter coefficients are given in table8.4. Although

the optimal filter is designed in the autocorrelation domain, the minimum-phase time-domain

coefficients obtained through spectral factorization satisfy all constraints mandated by the design

process. The wavelet and scaling function of the newly designed optimal filter are illustrated in

fig. 8.16, respectively. The frequency response is shown in fig.8.17. Table 8.5 shows the

specifications of the various filters used in the thesis along with the values of the corresponding

objective functions. Clearly, the newly designed wavelet has the lowest interference energy.
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FIGURE 8.15: Impulse response of the optimal LPF with 20 coefficients.
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FIGURE 8.16: Optimal Filter; (a) Scaling Function, (b) Wavelet Function.

Name Length K-Regularity
L/2∑
n=0

(rh[2n+ 1])2

Haar 2 1 -
Daubechies 20 10 0.41955
Symlets 20 10 0.41955
Discrete
Meyer

102 1 0.45722

Coiflet 24 4 0.41343
Optimal 20 5 0.36814

TABLE 8.5: Wavelet specifications and objective function.
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Optimal Scaling Filter Length: 20

FIGURE 8.17: Frequency Response (in dB) of the designed filter.

Parameters WPM OFDM
Number of Sub-
carriers

128 128

Number of Multi-
carrier symbols per
frame

100 100

Modulation DQPSK DQPSK
Channel AWGN AWGN
Oversampling Fac-
tor

15 15

Guard Band - -
Guard Interval - -
Frequency Offset - -
Phase Noise - -
Time Offset t = 2 t = 2

TABLE 8.6: Simulation setup for study on time synchronization error.

B. Evaluation of the designed filter under a loss of time synchronization

The performance of the designed wavelet is compared and contrasted withseveral known wavelets

by means of computer simulations. We have designed a communication system with DQPSK

modulation and 128 orthogonal sub-carriers, corresponding to a wavelet packet tree of 7 stages.

Guard intervals are not used and no error estimation or correction capabilities are implemented.

To simplify the analysis, perfect frequency and phase synchronizationare assumed. The time

offset ∆t is modeled as discrete uniform distribution between -2 and 2 samples, i.e.∆t ∈
[−2,−1, 0, 1, 2]. In order to highlight the difference in performances between various wavelets,

an oversampling factor of 15 is applied. The details are tabulated in Table8.6.
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WPM: Haar Length: 2
WPM: Daubechies Length: 20
WPM: Symlets Length: 20
WPM: Discrete Meyer Length: 102
WPM: Coiflet Length: 24
WPM: Optimal Length: 20
OFDM
Theoretical Limit

FIGURE 8.18: BER Performance of Different Wavelets and OFDM under Time Synchroniza-
tion Errors.

Wavelet Haar Daubechies Symlets Discrete Meyer Coiflet
Improvement 5.03 dB 2.17 dB 3.25 dB 3.25 dB 2.98 dB

TABLE 8.7: Performance improvement of designed optimal wavelet over standard Wavelets in
the presence of time errors (measured at BER of10−4).

Fig.8.18shows the Bit Error Rate (BER) performances of the WPM system with different kinds

of wavelets and OFDM. The channel is taken to be an AWGN channel and the transmitter-

receiver ends operate under a loss of time-synchronization.

The plots in fig.8.18reveal that the designed optimal wavelet has better BER performance in

the presence of timing errors when compared to performances of commonly known wavelets.

However, OFDM tolerates a loss of time synchrony better than WPM. This is due to fact that

under time synchronization errors the ISI in OFDM arises only between two adjacent symbols

while in WPM several symbols interfere with each other. Table8.7 shows the relative gains in

the SNR performance of the designed optimal wavelet over standard wavelets in the presence of

timing errors. The values have been calculated for a bit-error-rate (BER) of 10−4.

BER and Mean Square Error (MSE) calculated for different values oftime offset are shown in

figs. 8.19and 8.20, respectively. Because the direction of timing error is inconsequential for

WPM systems the time offset∆t is considered to follow a uniform distribution 1 and 5 samples.

The results presented corroborate the gains brought in by the newly designed wavelets.
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FIGURE 8.19: BER vs. Time Offset for WPM in any AWGN channel (SNR = 20dB).
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FIGURE 8.20: MSE vs. Time Offset for WPM in an AWGN channel (SNR = 20dB).

C. Dispersion of sub-carrier energy

In figs. 8.21(2-D plots) and 8.22(3-D plots) the diffusion of sub-carriers energy to adjacent

regions due to time synchronization error are portrayed. For clarity of depiction we have limited

the number of sub-carriers to 16 and the WPM frame size to 30 multi-carrier symbols. From a

total of 480 sub-carriers in each frame, one pilot sub-carrier is set to anon-zero value while the

remaining 479 sub-carriers are made zero. In order to accentuate the effect of a timing error the

channel is taken to be ideal. It can be seen from the figures that the amplitudes of interfering

sub-carriers is reduced by employing the newly designed filter (denoted as ’optimal filter’ in the

graphs).
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Wavelet Haar Daubechies Symlets D-Meyer Coiflet Designed
Interference Vari-
ance (10−5)

5.1088 3.0751 3.0721 3.1651 3.0639 2.8775

Max. Interference
to Signal Ampli-
tude

14.14 % 8.36 % 7.97 % 6.66 % 8.25 % 4.51 %

TABLE 8.8: Interference Variance and Maximum (Max.) Interference Amplitude Ratio.

In table 8.8 the values of interference variance and maximal interference amplitude ratioin

relation to signal amplitude are given. These values are obtained for a single pilot sub-carrier

under a constant time-offset.
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FIGURE 8.21: Received Spectral Energy (2-dimension) in a frame in the presence of a timing
error.
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FIGURE 8.22: Received Spectral Energy (3-dimension) in a frame in the presence of a timing
error.

8-5 Summary

Wavelet Packet Modulation has recently emerged as a strong candidate for multi-carrier trans-

mission because of its offer of enormous adaptability and flexibility to system designers. In

this chapter, we presented a methodology to design new wavelets accordingto a given design

specification. The design process was described as an optimization problem that accommodated

the design objectives and additional constraints necessary to ensure wavelet existence and or-

thonormality. In order to obtain the global minimum, the original non-convex constraints and

objective function were translated into the autocorrelation domain. Using the new formulation,
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the design problem was expressed as a convex optimization problem and efficiently solved us-

ing semi-definite programming techniques. Two case studies - (a) where the cross-correlation

between the filters was lowest, and (b) where the filters were maximally frequency selective -

were used to demonstrate the design mechanism. The simulation results revealedthat the newly

designed wavelet satisfied all the design objectives and outperformed standard wavelets.

The wavelet design framework presented in this chapter can easily be applied for other design

criteria (say reduction of PAPR or ISI or ICI) by merely altering the objective function. However,

to be able to do so, the desirable properties of the wavelet bases must be translated into realizable

objective functions. This can at times be challenging because the relationship between wavelet

functions and filters is implicit and not direct. Another area of future research is to establish

weights to evaluate the various trade-offs between the desirable (and at times contradictory)

goals.
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Chapter 9

Conclusions and future research topics

9-1 Introduction

The convergence of information, multimedia and wireless communications has raised the vision

of ubiquitous and pervasive communication - communication anywhere, anytimeand anything.

However, each of the incumbent wireless systems operate with different technologies, standards,

interfaces, hardware (processors, Radio Frequency (RF) frontend, antennas), software (drivers,

firmware), network subscriptions, frequency bands and identities. In fact state-of-the-art multi-

radios only share the display and keyboard!

The consequence is that users have to constantly switch between different devices, modes and

networks impoverishing their experience. Therefore, there is an emergent need for a generic,

universal radio that integrates different standards and air interfaces. The challenge is to seize

on the right technical strategy to provide a common telecommunications medium thatconnects

devices and thereby people.

Digital communication systems can be viewed as trans-multiplexers characterized by the trans-

mission waveforms. The time-frequency properties of the pulse shaping filter, i.e. the time

spread and frequency footprint, determine the type of communication system(TDMA, FDMA,

CDMA, OFDM, UWB, MC-CDMA etc). Different radios have different transmission character-

istics which are greatly altered by the nature of the waveforms used. Transmission waveforms

can thus be considered as thegenesof the radios - the fundamental unit of change. By al-

tering the time-frequency characteristics of the waveforms, wireless systems which optimize

resources and system performance can be envisaged. In order to integrate different radios we

propose the realization of a flexible and generic wavelet packet based Multi-Carrier Modulation

(WPM) Radio that can emulate different use-cases. Wavelets and wavelet transforms are used

as the technology of choice because their characteristics can be widely customized to fulfill the

requirements of intelligent wireless communication systems.

260
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A generic wavelet based MCM radio will be a natural replacement for multi-tone schemes like

OFDM. It can also generate single carrier schemes since they are just a special case of multi-

carrier signals. A variant of UWB systems called multi-band OFDM (MB-OFDM) already exist

where the wide band OFDM operates at different frequency bands atdifferent instances. Multi

band-WPM can be an extension to MB-OFDM and can be applied for UWB transmission. Mul-

tiple access communication is also possible with wavelets. With their offer of greater flexibility

in designing signature waveforms, and their inherent orthogonality property, they can play a

vital role in the design of waveforms and receivers for multiple access systems.

The possibility of applying wavelet theory for the design of flexible and generic radios capable

of handling multiple radios has been explored in the framework of this thesis work. The results

of these studies have been recorded in various publications and reports. This thesis work was

dedicated to the demonstration of the Wavelet Packet Modulator (WPM) as a wide-band multi-

carrier technology alternative to the well known OFDM. Additionally, the application of WPM

to a multi-antenna/MIMO architecture is investigated in [152]. In [153], a method to shape

Ultra wide-band (UWB) signals using the wavelet packet transform is presented. Bit error rate

(BER) and outage probability performance of the proposed system in the presence of competing

sources is analyzed and suitable strategies to mitigate the impact of interference presented. And

in [154], a novel receiver design that utilizes the time and frequency localization properties of

Wavelet transform is proposed for a wavelet-based single carrier system.

It is important to underline here that the all the communication modes explained above employ

the same signal processing architecture and hence they can be combined into a single radio unit.

The advantages of wavelet transform in terms of the flexibility they offer to customize and shape

the characteristics of the waveforms have been demonstrated in [155–158]. Two use-cases where

the waveforms are designed and applied to optimize the system performance according to spe-

cific system demands are illustrated in [155, 156]. In [157], the efforts of [155, 156] is extended

to establish a unifying mathematical framework where the waveforms can be designed accord-

ing to any engineering requirement. And in [158] search heuristics ,based on a genetic/neural

code, are used to solve numerical problems associated with wavelet design. Finally, the abil-

ity of wavelet radios to opportunistically exploit radio resources is illustratedin [159] where a

WPM based scheme for cognitive radio systems is addressed. In this proposal, the transmis-

sion waveform of WPM is sculpted to make use of the unoccupied time-frequency gaps of the

licensed users.

In this thesis the operation of the novel Wavelet Packet Modulator was successfully evaluated.

The importance of the study lies in the fact that very little literature exists in this field. The main

contribution of the work is in the mathematical modeling of the WPM system in MATLABc©and

numerical analysis of its performance. The challenges involved in the practical implementation
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of the system were listed and studied. The functioning of the proposed WPMsystem under

various performance metrics was studied. Some of the figures of merit evaluated include:

• PAPR performance,

• sensitivity to loss of synchronization (time/frequency/phase),

• robustness to channel vagaries,

• operation under interfering sources.

Suitable interventions that addressed issues like PAPR, channel equalization were devised, im-

plemented and tested. The proposed system was successfully applied andverified for two prac-

tical applications namely, spectrum estimation and dynamic spectrum access. The adaptable

features of the system were demonstrated in the form of wavelet design suited to the system

specification.

Numerical results and comparative studies with FFT/OFDM-based systems validated the effi-

cacy of the algorithms deployed. The results of the study made it clear that WPM based radios

can be a viable alternative to existing technologies.

9-2 Summary of chapters and key conclusions

The key inferences and conclusions of the study are summarized chapter-wise in the following

sections.

A. Study of WPM performance under loss of Synchronization (Chapter – 4)

In this chapter we evaluated the effects of loss of synchronization between the transmitter and

receiver, due to frequency offset or phase noise or timing error, onWPM transmission. The

performances were also compared with OFDM. The key inferences and notable contributions of

the study can be summarized as follows:

• Orthogonal multiplexing schemes like WPM and OFDM are vulnerable to loss of syn-

chronization in time, frequency or phase.

• Effect of frequency offset –The effect of frequency offset is to cause the sub-carriers

to lose their mutual orthogonality which results in mutual interference. In OFDM, the

performance degradation is limited to the interference amongst the sub-carriers (referred

as Inter-carrier Interference (ICI)) within one OFDM symbol duration. However, in WPM
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the sub-carriers from multiple symbols interfere with each other causing Inter Symbol-

Inter Carrier Interference or IS-ICI. This dissimilarity in the interference behavior is due

to the manner in which the sub-carriers in wavelet and Fourier based systems are created.

The signals generated by OFDM overlap only in frequency domain while WPMgenerated

signals overlap in both frequency and time domain.

• Impact of phase noise –Depending on the bandwidth of the phase noise two scenarios

can emerge in the presence of phase noise:

i. if the phase noise bandwidth is small compared to inter-carrier spacing the dominant

effect is a constant rotation of constellation symbols.

ii. if the phase noise bandwidth is greater than the inter-carrier spacing the rotational

behavior is less pronounced but instead the interference dominates.

• As with the effect of frequency offset, the interference due to phase noise corrupts the

OFDM signal only with ICI while in WPM signals are corrupted with IS-ICI.

• Impact of loss of time synchronization –OFDM benefits from the use of the cyclic prefix

to greatly reduce the errors due to loss of time synchronization. WPM cannot benefit from

such constructions due to the time overlap of the symbols. Nevertheless, the cyclic prefix

in OFDM fails to prevent interference from occurring if the offset valueis larger than the

size of the prefix or when the offset is in the direction opposite to the symbol’sown prefix.

When parts of the neighboring symbols are erroneously selected at the OFDM or WPM

receiver windows, the demodulated data is afflicted by ISI and ICI. In OFDM, ISI arises

only due to neighboring multi-carrier symbols, while in WPM more symbols, in addition

to the contiguous ones, contribute to the generation of ISI.

• To understand the impact of loss of synchronization, analytical expressions were derived.

To corroborate the theoretical findings, a computer simulation platform was set-up and the

performances of OFDM and WPM systems were examined in the presence ofcarrier fre-

quency offset, phase noise or time synchronization errors. Several well-known wavelets

such as Daubechies, Symlets, discrete Meyer, Coiflets and bi-orthogonal wavelets were

applied and studied.

From the study it can be concluded that the performance degradation of WPM and OFDM

affected by carrier frequency offset and phase noise are comparable. However, WPM is far more

severe to time offset than OFDM, thereby, necessitating a strong and robust synchronization

algorithm to recover loss of time synchronization.
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B. PAPR performance studies (Chapter – 5)

In this chapter, a study on the effect of PAPR on the Wavelet Packet Modulator was presented.

The summary of the study and key novelties are enlisted below:

• The statistical distribution of WPM signals and its power variations were studied. The

envelope of the WPM signal and its power were found to follow the Gaussianand Chi-

squared distribution, respectively.

• The effect of PAPR on the Wavelet Packet Modulator (WPM) scheme wasthen eval-

uated. Various WPM configurations, with different wavelet families, pulseshapes and

lengths, were considered. OFDM was also included as reference. Almost all the wavelets

performed similarly with regard to their PAPR performances. Moreover, theWPM oper-

ations were comparable with that of OFDM.

• To alleviate the PAPR impact on WPM transmission, 2 techniques were employed:

i. First, a selected mapping (SLM) approach with phase modification techniqueto

reduce the PAPR in the Wavelet Packet Modulation system was studied. By creating

replicas of the original message by randomly altering the phases of the sub-carriers

that modulate the information, different WPM frames with different PAPR values

could be obtained. Then, the WPM frame with the least PAPR should be transmitted.

The attraction for this method is its simplicity and elegance of implementation.

ii. Next, we extended the selected mapping technique by optimizing the selection of

phase offset of the sub-carriers. The technique employed a heuristic algorithm

known as the Hill Climbing optimization which is based on neural networks.

From the studies it was found that the stochastic nature of the WPM signal aswell as its PAPR

performance are similar to that of the OFDM. Furthermore, the PAPR mitigation strategies de-

vised for one system can be used for the other with minor adjustments.

C. Wavelet packet spectrum estimator(WPSE) (Chapter – 6)

In this chapter, we investigated the application of wavelet packet transform (WPT) for spectral

estimation and signal analysis. The main contributions of the study are:

• Wavelet packet spectrum estimator (WPSE) –Implementation of wavelet packet based

spectrum estimator on a simulation platform.
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• Evaluation of the performances of the proposed WPSE and its comparison with traditional

techniques like Periodogram, Welch, Windowed periodogram and MTSE. To gauge the

performance of the estimator, different test sources with variegated characteristics were

utilized. The figures of merit employed were - out of band (OOB) energy rejection, vari-

ance of the estimates and frequency resolution.

• Enhanced wavelet packet spectrum estimator (E-WPSE) –Optimization of WPSE per-

formance through mitigation of edge based artifacts that occur in standard WPSE.

The key inferences on the study of WPSE may be summarized as follows:

i. The wavelet transform is a unitary transform which conserves energy,

ii. Since the mathematical precept of wavelets is tightly coupled to the filter bank theory, the

WPSE can be formulated as a filter bank analysis problem,

iii. An effectual spectrum estimator based on the theory of wavelets can be built by exploiting

the filter bank structure of wavelet packet decomposition,

iv. The decomposition level of the wavelet packet tree can be tuned to adjust the performance

of the wavelet-based estimates with respect to variance of the estimated PSD and frequency

resolution.

v. Based on the level of decomposition, the WPSE performance ranges between that of Welch

and periodogram.

vi. The wavelet packet based approach gives all wavelet coefficients at all decomposition lev-

els. The presence of all of these coefficients allows for obtaining multiple estimates from

different level of the tree with different degree of variance and frequency resolution, in one

snapshot and one operation. This feature can be exploited to constructan adaptable and re-

configurable spectrum estimation mechanism. This feature of WPSE can be ofenormous

advantage in a dynamic and variegating environment.

The results of the experiments showed that the WPSE offered great flexibility and adaptability

apart from its performances which are comparable and at times even betterthan Fourier based

estimates. The studies also showed that the E-WPSE system offered excellent OOB rejection,

small variance of the estimates, and good frequency resolution making it a very competitive

technique. In comparison to existing estimators the E-WPSE gave significant performance gains

especially with an out-of-band rejection of up to 60dB for partial band andabout 200 dB for

multi-tone sources.
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D. WPSE/WPM for Dynamic Spectrum Access (Chapter – 7)

In this chapter we presented a Wavelet Packet spectrum estimator (WPSE), Wavelet Packet

Modulator (WPM) combination as a multi-carrier solution for dynamic spectrum access solu-

tion. The key contributions of the study can be enlisted, as:

• A wavelet packet transceiver that combined the wavelet packet-basedspectrum estimator

(WPSE) with a Multi-carrier modulator was established.

• The WPSE unit used the same filter bank structure as used for WPM transmission. Hence

spectrum analysis was possible at virtually no additional cost.

• The proposed WPSE/WPM system was tested fordynamic spectrum access usecases.

Typical applications for such systems include Cognitive radio and LTE-advanced.

• The system was evaluated for various scenarios and use cases. The performances were

compared and contrasted with two other candidate systems based on FFT/Periodogram.

From the numerical studies, the performance of the WPSE/WPM transceiver was found to be

excellent in terms of BER performance, rejection of out-of-band energyand interference to

neighboring sources. Comparing with the performance of OFDM/FFT based configurations,

the studies showed that WPSE/WPM performed better in regard to estimation of spectrum and

confinement of transmitted waveform spectra. This in turn contributed to better bit-error rate

(BER) performance and bandwidth efficiency.

E. Design of Wavelets (Chapter – 8)

In this chapter we presented a general, unified approach to design and develop orthogonal

wavelet packet bases according to a requirement. The important inferences and original con-

tributions of the study are detailed below:

• We advanced the state-of-the-art in WPM to design wavelet bases for use in communi-

cation formats. This is necessitated by the fact that the wavelets currently in use are not

custom-built for multi-carrier systems.

• To do so we established a generic, unified framework that facilitates the design of new

wavelet bases that cater to a requirement.

• The possibility of adapting the characteristics of the WPM transmission is illustrated with

two examples where families of wavelets which are maximally frequency selective or have

the lowest cross correlation energy, are developed.
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• The design of wavelet filters is subject to multiple constraints. Besides the primary goal

(for e.g. derivation of wavelets with high frequency selectivity) there are other constraints

mandated by the wavelet theory that have to be fulfilled. Thesebudgetsof the filter-

design process were expressed as a convex optimization problem. Theglobal solutions

for the design problem were obtained using a mathematical numerical solver known as

semi definite programming (SDP). The solution-filters were then tested for conformance

with design goals.

Some of the conclusions from the design of the two candidate wavelet-filters can be stated thus:

1. Design of Maximally Frequency Selective Wavelets:

• WPSE results with the newly designed filters yielded more accurate results thanones

based on standard wavelets such as Coiflets, Symlets and Daubechies.

• The WPM carrier using the new wavelets guaranteed sharper transition bands and

better time-frequency localization than commonly known wavelets.

2. Design of wavelets with low cross correlation energy:

• To address the high sensitivity of WPM to a time offset, we designed a new wavelet

filter which reduces the timing error interference.

• Studies on the WPM operation showed that the newly designed optimum filter en-

sured better performance on loss of time synchronization when compared tostandard

wavelets such as Daubechies, Symlets, discrete Meyer, Coiflets, etc.

The results of these studies affirmed the promise that a WPM system hold in devising flexi-

ble communication systems whose characteristics can be tailored according to the engineering

requirements.

9-3 Future research topics

In this section we present a few ideas to enhance this PhD work. The content is divided into

three sections (refer fig.9.1), namely,

1. Enhancements to this PhD,where suggestions to improve the study conducted during

this dissertation are presented.

2. Related Studies,where activities which are related to this dissertation (but not treated in

this work) are listed.
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Future Research Topics
1. How can the efforts of this 

dissertation be improved ?

2. What are the related areas of study 
that have to be covered to fructify the ideas presented in this work ? 

3. What are the other domains
where the findings of this research work 

can be applied ?

FIGURE 9.1: Future research topics

3. Beyond this work, where other domains and fields where the research findings of the

areas can be readily applied and translated, are enlisted.

9-3-1 Enhancements to this PhD

A. Study of WPM performance under loss of Synchronization

• In this thesis the vulnerability of WPM to time synchronization errors was addressed.

However, in the implementation all the sub-carriers were taken to experiencethe same

time or frequency offset. This model can be extended with different sub-carriers undergo-

ing different offsets.

• Furthermore, a robust synchronization algorithm to detect and correctlarge time offsets

can be implemented.

B. PAPR performance studies

• Study those cases where the data is correlated (e.g. transmission of a picture or audio

information); important is its impact on the PAPR performance or on the mitigation tech-

niques.

• Explore the possibility of data clipping as a PAPR mitigation technique and the utilization

of wavelet de-noising methods at the receiver to retrieve data.

• Conduct PAPR studies with more sophisticated power amplifier models.

• Explore the possibility of designing new wavelets for PAPR reduction.

• Study the impact of over-sampling on the PAPR performance of WPM.

• Exploit the tree structure of WPM to come out with the best tree formation that guarantees

minimum PAPR. Unlike OFDM which divides the communication channel into orthogo-

nal sub-channels of equal bandwidths, WPM uses an arbitrary time-frequency plane tiling
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to create orthogonal sub-channels of different bandwidths and symbol rates. When trans-

mitting the same data in WPM, alternative tree representations can be used resulting in

different sub-channel spacing in time and frequency which are not necessarily uniform.

This feature of WPM can be utilized for the reduction of PAPR. In particular, each of

the alternative (pruned) trees could result in a different value for PAPR, and an algorithm

to choose the optimum tree structure can be devised such that the structure achieves the

minimum PAPR.

• Analyze the complexity in which the cost of implementing the reduction technique along

with the loss in date-rate, is considered.

C. Wavelet packet spectrum estimator (WPSE)

• Explore the possibility of applying compressed sampling for Wavelet Packetbased spec-

trum estimation.

• Expand edge-mitigation studies to include more sophisticated approaches (including win-

dowing techniques) to reduce artifacts in WPSE filter bank implementation.

• Study of dual tone sources to understand the resolution abilities of WPSE.

• Derive analytical expressions for WPSE variance and bias.

• Explore the possibility of applying windows to the WPSE method to tackle spurious spec-

tral growth (also known as spectral carving).

• Utilize co-operative spectrum sensing with focus on diversity exploitation toimprove the

WPSE probability of errors/estimation. This can also be useful in avoiding shadowing

and hidden node problems.

• Analyze the ability of WPSE for a sparse representation of the radio environment (fre-

quency information) with a lower number of coefficients. This helps in a co-operative

spectrum sensing scenario where a lower amount of information sharing means indirectly

leads to a lesser clogging of the bandwidth.

• Investigate the properties of WPSE to guarantee good time resolution. This property can

be useful in scenarios where the time information is vital (e.g. estimation of swept tone

sources, discussed in Chapters 7 ans 8 of this dissertation).

• Optimize dynamic spectrum utilization: In [160] Z. Tian and G.B. Giannakis propose a

wavelet-based wide-band spectrum sensing approach for dynamic spectrum management.

In their approach, the signal spectrum over a wide frequency band is decomposed into ele-

mentary building blocks of non-overlapping sub-bands that are well characterized by local
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irregularities in frequency. Then the entire wide-band is modeled as a sequence of con-

secutive frequency sub-bands, where the power spectral characteristic is smooth within

each sub-band but exhibit a discontinuous change between adjacent sub-bands. Informa-

tion on the locations and intensities of spectrum holes and occupied bands is derived by

considering the irregularities in PSD. The main attraction of using wavelets in thisappli-

cation is in the ability of wavelets to analyze singularities and irregular structures which

can be used to characterize the local regularity and edges of signals. Hence, the method

is also called Edge detection. The method of Z.Tian and G.B. Giannakis can be enhanced

further by designing new wavelets that are best suited for the application instead of using

generalized wavelets.

D. WPSE-WPM for dynamic spectrum access

• The WPSE/WPM system was evaluated for various dynamic spectrum access use cases.

Future research can include more scenarios, especially, the cases where the nature of the

licensed user (LU) varies frequently or when the data available to gauge the LU charac-

teristics is limited.

• More extensive evaluation of the system performance under differentchannel conditions

are still needed.

E. Design of wavelets

• The unique features offered by wavelets to tailor and customize new filters were explored

in this thesis in order to make WPM transmission less sensitive to time synchronization

errors or reduce spectral spillage into neighboring bands. The innovative wavelet filter

design template can also be used for other design goals by merely altering the objective

function and other designbudgets. For instance, wavelet filters which can decrease fre-

quency offset and phase noise sensitivity, reduce Peak-to-Average Power Ration (PAPR)

or increase spectral efficiency could be designed. However, to be able to do so, the desir-

able properties of the wavelet bases must be translated into realizable objective functions.

This can at times be challenging because the relationship between wavelet functions and

filters is implicit and not direct.

• Another area of research is to establish weights to gauge the trade-offs on offer between

various desirable (and at times contradictory) goals.

• An added advantage of using the wavelet theory for Multi-carrier modulation is in the pos-

sibility of improving transmission security. Because newly designed wavelets are unique
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in nature, the transmitted signal can only be decoded by the WPM receiver which is ac-

quainted with filter coefficients used by the WPM transmitter.

F. Channel equalization

• The studies in this thesis were confined to channels that were time-invariant. Therefore a

natural extension to the work will be to consider channels that vary with time and/or are

frequency dispersive.

• The equalizer in this thesis focused on the removal of ISI. Devising an equalizer which

handles both the Inter-symbol interference and Inter-carrier interference can be a fruitful

area of further research.

• A blind equalizer in which the transmitted signal is inferred from the receivedsignal

making use only of the transmitted signal statistics (without availability of channelinfor-

mation.), can be a productive area of future research.

• Information on channel modeling and representation of the channel usingwavelet packets

can be used to customize the transceiver tree structure based on the channel condition and

further simplify the equalization process.

9-3-2 Related studies

One of the prime motives for pursuing wavelet based systems is in the flexibility and adaptability

that they offer. This capability can be readily exploited to provide better services to users and

enrich their experience. In order to realize these capabilities many technological challenges

have to be overcome. Apart from that there are other related subjects that have to be addressed.

Foremost amongst them is an understanding of how an engineering requirement translates to a

particular system specification. To successfully map this relation, a careful and thorough study

on the following areas must be conducted:

i. impact of waveform characteristics on various performance metrics,

ii. the trade-offs in performance characteristics with regard to the design of waveforms. For

e.g. research questions such asdo the waveforms that yield the best PAPR performance

affect the BER performance? andWhat about its performance with respect to ISI/ICI re-

duction? have to be addressed,

iii. a thorough analysis on the complexity issues,
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iv. mapping of the complexity analysis and trade-off issues in aneasy-to-understand-and-to-

presentmanner such that the user can make effective choices based on his needs and neces-

sities. For example, if the user desires low battery power consumption he should be able

to operate with a single radio with sufficient features for gainful communication. On the

other hand, he should also be made aware of the consequences of his choice and how it may

affect the quality of service (such as lower speed, lower bandwidth, throughput etc.).

Other topics which have to be covered for the practical implementation of WPM,include,

i. ensuring backward compatibility with existing technologies and systems,

ii. making the system generic and flexible so that it can be easily scaled,

iii. establishing suitable mechanisms to analyze the radio environment and utilize them effec-

tively in radio reconfiguration schemes,

iv. demonstration of the system capabilities through a proof of concept (POC),

v. development of software tools to adequately test and verify the system,

vi. standardization of the technology to ensure compatibility across different development plat-

forms.

9-3-3 Beyond this work

Apart from the suggested improvements cataloged above, there are otherareas of wireless sys-

tem design where the wavelet packet architecture can be readily applied.Here we discuss a few

of them:

A. Wavelet-Based modeling of time-variant wireless channels

Currently available wireless channel models are based on statistical impulse response models

derived from empirical results. While these models perform adequately for time-invariant chan-

nels, they fail to accurately map time-varying channels. The wavelet transform is a way of

decomposing a signal of interest into a set of basis waveforms, called wavelets, which thus pro-

vide a way to analyze the signal by examining the coefficients (or weights) ofwavelets. Due to

their inherent joint time-frequency localization property and their ability to accurately charac-

terize the time-varying nature of the estimation problem, the wavelets offer various advantages

for channel modeling. Some of them are: accurate characterization of time-varying as well

as frequency selective multi-path fading channels, fast convergenceof estimating the channel,

representation of the channel with a fewer number of coefficients, small output error, and clear

interpretation of modeling error.
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B. Multiple access communication

Wavelets and wavelet packets possess unique properties that make them attractive for use in

multiple access communications. With their offer of greater flexibility in designing signature

waveforms, and their inherent orthogonality property, they can play a vital role in the design

of waveforms and receivers for multiple access systems. Further, wavelets can facilitate the

design of user signature waveforms for code division multiple access (CDMA) communica-

tion systems. By randomly clipping the wavelet construction tree, a complete andorthonormal

basis is generated. This basis eventually spawns spreading codes that are orthogonal to one an-

other. Moreover, they display greater capacity to suppress multiple access interferences. The

design and construction of orthogonal signatures for use in a spread signature CDMA system is

discussed in [5]. According to [161] wavelets allow for simpler equalization and detection of

CDMA signals at the receiver.

Multi-carrier CDMA or MC-CDMA is a data transmission technique that combinesMulti-

carrier modulation (MCM) and CDMA. It is a spread spectrum technology,where the spreading

is performed in the frequency domain, unlike CDMA, where the spreading isdone in the time

domain. By combining the best of MCM and CDMA, MC-CDMA promises high speed, large

bandwidth, better frequency diversity to combat frequency-selectivefading and good perfor-

mance in severe multi-path conditions. MC-CDMA has thus emerged as a strongcandidate for

future wireless systems. In comparison to the conventional Fourier-based MC-CDMA systems,

introducing wavelets to MC-CDMA yields the following advantages:

i. They provide three levels of orthogonality, namely,

• between the sub-carriers,

• between the wavelets and scaling functions, and

• between the spreading sequences.

Therefore in comparison to conventional MC-CDMA systems, they offer new dimensions

to combat multipath fading, ICI and interference or jamming signal by providing

ii. They provide flexibility in choosing the spacing between the sub-carrier frequencies.

iii. They offer a wide choice of wavelet families to choose from.

C. Wavelet radio for green communication

Recent studies have shown that the energy costs account for as much as half of a mobile ser-

vice provider’s annual operating expenses. Therefore making the communication equipment

more efficient in relation to its power consumption not only has implications with regard to
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environmental pollution, it also makes economic sense. The theme of Green Communications

is to design energy-efficient communication techniques and protocols whichoptimally utilize

available resources and minimize power consumption. Wavelet-based technologies offer a lot of

tools for research and development of Green communication devices. Themethodologies can

be classified into two broad categories:

i. Customization of waveforms

• While there is no explicit relationship between power optimization and waveforms,

the nature and characteristics of the waveform can be altered to suit a setof require-

ments which can indirectly contribute to a more efficient system resulting in lower

requirements of power and energy. These criterion could typically be:

– minimization of ISI, ICI or PAPR,

– greater tolerance and robustness to time/frequency/phase offset errors

– robustness towards interference from competing sources

– possibilities for opportunistic communication (e.g. Cognitive Radio) where un-

used resources can be cleverly utilized.

• It is important to note that every performance metric that is influenced by the char-

acteristics of the transmission waveform can be mapped into a design constraint and

exploited to yield efficient systems.

ii. Customization of tree structure

• The wavelet-based systems are realized from a tree structure obtained bycascading a

fundamental Quadrature Mirror Filter (QMF) pair of low and high pass filters. The

construction of this tree structure can be adjusted to come out with an optimum tree

structure that caters to various requirements. The requirements could typically be:

– Identification and isolation of theatomsof interference in both time and fre-

quency domains.

– Flexibility with time-frequency tiling of the carriers leading to multi-rate systems

which can transmit with different rates in different bands. This feature can be

exploited in scenarios where the channel characteristics are not uniform.

• It can be proved that the complexity of Wavelet systems is by and large simplerthan

OFDM systems. A lower complexity also means lower power requirements in the ex-

ecution of the signal processing algorithms. The implementation of Wavelet systems

can be simplified even further if fast-wavelet transforms are employed.

• In addition to these advantages, the promise of an integrated and universal wavelet-

based radio can also immensely help in the optimization of the system performance.

By integrating multiple radios the wavelet-based systems do away with the need for
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multiple firmwares, software, drivers etc and reduce power consumption and improve

battery life.

D. Wavelet based multiple-input multiple-output communications (MIMO)

OFDM-MIMO (Multiple-Input Multiple-Output) combination has been successfully applied to

enhance the throughput and range of wireless networks without the ensuant increase in band-

width or power requirements. Since OFDM and WPM share many properties,as both are orthog-

onal multi-carrier techniques, there is potential for a WPM systems to be usedin a multi-antenna

MIMO setup.

9-4 Concluding remarks

In a recent article in The Communication magazine, Steve Weinstein [162], a pioneer in the

development of OFDM traces back the journey of OFDM right from its inception in 1966 when

Chang [163] published the first paper on multi-carrier modulation, to the development of the first

proof of concept by Bell Labs in 1985 [164] and its first major consumer deployment as ADSL

in 1993 and finally its standardization as IEEE 802.11a in 1999. In his concluding remarks he

advocates wavelet-based systems as true successors of OFDM, especially, for the development

of futuristic low powerGreen Radioswhich are intelligent and adaptable.

The research and investigation, on the utilization of wavelet technology for smart resource aware

radio systems, as presented in this thesis, can be considered as a fruitfulattempt at tackling the

various technical questions that will shorten the development time from conception to practical

realization of wavelet radios . Furthermore in an era when bold predictionsas thePHY Layer

is Dead [165] are made, the work on wavelet-based radios can increase the capacitiesof the

wireless link and open new vistas for gainful research on radio design.
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Design of Wavelets

A-1 Semi-definite programming

Semi-definite Programming (SDP) is a sub-field of convex optimization, which can efficiently

exploit interior point methods to find an optimal solution [136, 137]. The main advantages

of convex optimization methods are that they always achieve global minimum without being

trapped in the local minima, and that they can determine explicitly the feasibility of a given set

of constraints. SDP algorithms can be used to solve linear, quadratic and semi-definite problems,

which all are part of convex optimization problems.

The optimization problems in SDP can be described as minimization of an objective linear

function over the intersection of the semi-definite cone with an affine space.This cone is shaped

by constraints that form a set of positive symmetric semi-definite matrices, called Linear Matrix

Inequality (LMI) constraint [138]. LMI gives boundaries of feasible region in which SDP solver

tries to find an optimal solution for the objective function. This region is generally non-smooth

and non-linear but it has to be convex in order to be solvable by SDP [138–142].

A setC is said to be convex if the line segment between any two arbitrary selected points inC

also lies inC. In case of pointsX1 andX2 we can show the convexity by:

ΓX1 + (1− Γ)X2 ∈ C for X1, X2 ∈ C and 0 ≤ Γ ≤ 1. (A.1)

The example of convex and non-convex set is illustrated by fig.A.1. For each two points in

pentagon the line segment lies in the defined set and therefore blue figure (left) is convex. The

red figure (right) is obviously not convex since two pointsX1 andX2 are within the set but the

line which connects them is partially not contained in the set.
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FIGURE A.1: Convexity. Left: Convex Set, Right: Non-Convex Set.

A-2 Spectral factorization

The Kolmogorov spectral factorization method is based on construction of the minimum phase

spectral factorSFmp(z) from the autocorrelation function. The power series expansion of

SFmp(z) is given by:

We can decomposelogSFmp(z) into real and imaginary parts as:

logSFmp(z) = µ(z) + jη(z) (A.2)

Here,µ(ω) andν(ω) are Hilbert transform pairs. Forz = ejω we have:

µ(ω) = log
∣∣SFmp(ejω)

∣∣

=
1

2
logRh(ω)

=
∞∑

n=0

dn cosnω, η(ω)

= −
∞∑

n=0

dn sinωn. (A.3)

In eq.(8.39) Rh(ω) denotes the Fourier transform of autocorrelation sequence. We can find the

coefficientsdn by:

dn =
1

2π

2π∫

0

1

2
logRh(ω)e

−jnωdω (A.4)
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A-3 Sum of squares of cross-correlation function

The sum of squares of cross-correlation magnitude is related to the autocorrelation sequences of

low pass filterH and high pass filterG according to the following equation:

L−1∑

n=0

|rhg[n]|2 =
L−1∑

n=0

rh[n] ((−1)nrh[n])

= rh[n] · rg[n]. (A.5)

Proof:

∑

n

|rhg(n)|2 =
∑

n

(
∑

p

h[p+ n]g[p]

)2

=
∑

n

∑

m

∑

p

h[p+ n]g[p]h[m+ n]g[m]

=
∑

m

∑

p

g[p]g[m]
L∑

n

h[p+ n]h[m+ n]

=
∑

m

∑

p

g[p]g[m]
∑

n=m−p
h[m]h[2m− p]

=
∑

m

∑

p

rh[m− p]g[p]g[m]

=
∑

p

∑

n=m−p
rh[n]g[p]g[n+ p]

=
∑

n

rh[n]rg[n]

= rh[n] · rg[n]. (A.6)

A-4 Partitioning of energy

The sum of squares of the time series elementsx is given by:

‖x‖2 =
N−1∑

t=0

x(t)2 (A.7)



DESIGN OF WAVELETS 279

Energy is preserved at any level1 ≤ l ≤ J of the transform as given by eq.(A.8), whereζ

denotes WPT coefficients.

‖x‖2 =
2l−1∑

p=0

∥∥ζpl
∥∥2 (A.8)

Proof:

Let us first define equivalent sequence filterυ, built from the combination of filtersh[n], g[n]

and down-sampling as:

υl,p,n =
L−1∑

i=0

υp,iυl−1,⌊p/2⌋,n−2l−1i (A.9)

where,

υ1,0,n = h[n]

υ1,1,n = g[n]. (A.10)

The discrete Fourier transform (DFT) ofx is given by:

X(k) =
N−1∑

t=0

x(t)e−j2π
k
N
t (A.11)

Similarly follows the DFT of the filterυ:

Υl,p,k =
l−1∏

m=0

Ml,p,m,2mk mod N (A.12)

where

M0,2mi mod N ≡ H2mi mod N

M1,2mi mod N ≡ G2mi mod N

H̃i =
N−1∑
n=0

h(n)e−j2π
n
N
k

G̃i =
N−1∑
n=0

g(n)e−j2π
n
N
k (A.13)

Parseval’s theorem states that the sum of squares of a sequence with lengthN is equal to the

sum of the moduli squared of its DFT divided byN . Now the WPT coefficients are given by the

convolution of time-domain filter sequence with elementsx, which in frequency-domain can be

expressed as:
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2l−1∑

p=0

∥∥ζpl
∥∥2 =

2l−1∑

p=0

1

N

N−1∑
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|X(k)|2 |Υl,p,k|2
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|X(k)|2
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2
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1

N
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k=0

|X(k)|2
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m=0

[∣∣∣H̃2mk mod N

∣∣∣
2
+
∣∣∣G̃2mk mod N

∣∣∣
2
]

(A.14)

The wavelet and scaling filter are chosen in such way that their frequencyresponses are mirror

images of each other with respect to frequency ofπ/2. Therefore, we get for the normalized

wavelets: ∣∣∣H̃(ω)
∣∣∣
2
+
∣∣∣G̃(ω)

∣∣∣
2
= 1 (A.15)

Equation eq.(A.14) can hence be written as:

2l−1∑

n=0

∥∥ζpl
∥∥2 = 1

N

N−1∑

k=0

|X(k)|2
l−1∏

m=0

I(m) =
N−1∑

t=0

x(t)2 = ‖x‖2 (A.16)



Appendix B

Graphical User Interface

During the course of this project a graphical user interface (GUI) wasdeveloped to facilitate

the computer modeling and simulation of various WPM configurations. The GUI is based on

Matlab. Two GUIs were developed - one to test WPM operation and the otherto design wavelets.

B-1 GUI for WPM testing

Fig. B.1 shows the screenshot of the interface used for running the WPM simulations. The

interface can also be used for simulating OFDM. It has provisions to test different wavelet

families like Daubechies, Symlets, Coiflet and Discrete Meyer. Wavelet familiesof different

filter lengths can also be evaluated. Other parameters that can be adjusted are: the number of

carriers of WPM/OFDM systems, the number of symbols per frame, the length of the cyclic

prefix in OFDM, channel conditions, infarctions such as frequency/ phase or time offset errors,

amongst others. Different kind of outputs in the form of Bit-error rate curves, scatter plots,

2D/3D energy plots can be obtained with the interface.
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FIGURE B.1: Wavelet Packet Filter Design Program

B-2 GUI for wavelet design

The screenshot of the wavelet filter design interface is shown in fig.B.2. The interface allows

the entry of wavelet parameters like the filter length, the desired regularity (or flatness) and the

order of differentiability. Apart from these mandatory conditions, other budgets may also be

specified.

The program uses Semi Definite Programming (SDP) to design optimized filters according to the

user specifications. To ensure smooth operation of the programs at leasttwo additional Matlab

packages are needed, namely: - Yalmip, [online available at http://control.ee.ethz.ch/ joloef/wik-

i/pmwiki.php] - SeDuMi, [online available at http://sedumi.mcmaster.ca]

B-2-1 Details of the filter design program

The desired length of the filter, regularity and the minimal number of times that the scaling

function is continuously differentiable are mandatory fields. The fieldFilter Lengthmust always

an even number because of the double shift orthogonality constraint.K-Regularityhas to be

smaller or equal to the half of theFilter Lengthbut it should be always greater than 1 in order for
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the filter coefficients to satisfy the wavelet existence constraint.Differentiability, if applicable,

has to be smaller than half of theK-Regularity. The fieldObjective Functionis used to set a

scalar expression which has to be minimized. The fieldAdditional Constraintcan be used to set

an extra constraint or an extra set of the constraints.

Three optimization methods are used for design of new filters:

• Optimal Convex

• Optimal Convex 2

• Optimal Non-Convex.

Optimal Convex is the most stable of the three methods and works on the autocorrelation se-

quence of filterQ(ω) (refer Chapter 9). It has built-in additional continuous differentiability

constraint, opposed to other two methods which don’t support it.

Optimal Convex 2 method works well only for short filters. For large filter lengths this method

becomes unstable. Optimal Convex 2 works on autocorrelation sequence of the filterH.

The optimal non-convex method works directly on filter coefficients with non-convex constraints

and therefore does not use SDP optimization algorithms. The disadvantage of this method is that

the results are usually local minimum. Furthermore, for large filter lengths this method runs into

numerical problems.

The interface generates output such as:

• Filter Impulse Response,

• Filter Frequency Response,

• Wavelet and Scaling Function,

• Wavelet Packet Plot,

• Wavelet Packet Spectrum.

The interface has inbuilt diagnostics to test the validity of data entered. It also verifies if the

results of the optimization algorithm satisfy the conditions mandated.
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FIGURE B.2: Wavelet Packet Filter Design Program



Appendix C

Channel Equalization in WPM by

minimization of peak-distortion

C-1 Introduction

A radio communication link can corrupt transmission of information between a sender and a re-

ceiver1 2. Frequency-selective or dispersive channels can lead to a loss of orthogonality between

the signals of a multi-carrier system causing disturbances such as the Inter-symbol interference

(ISI) and Inter-carrier Interference (ICI). Channel equalizationis a simple technique to counter-

act the deleterious effects of the wireless channel. Channel equalizationfor WPM systems is

unique because the WPM symbols overlap in time. Hence, both inter-symbol interference (ISI)

and inter-symbol inter-carrier interference (IS-ICI) occur and have to be factored in the design

of the equalizer. In this chapter we present a basic time-domain equalizer for the compensation

of channel induced distortions on the WPM transmission.

While there exists many techniques for equalization of OFDM channels, the extant body of

research for WPM systems is limited to the work of Gracias [14] and Jamin [10]. In [14] a

channel equalization method for a generic WPM structure is presented. The method works by

exploiting the fact that for sufficiently narrow band sequences, a channel can be modeled as

an attenuation and delay. Thus, equalization is reduced to a problem of determining the delay

introduced by the channel for each of the wavelet packet sub-carriers. To accurately determine

the delay experienced by each sub-carrier, a minimum square variance algorithm is proposed.

The algorithm is shown to perform well, analytically and through simulation studies, for a simple

delay-channel.

1The contents of this chapter have been published in [166]. For any material borrowed from [166] a written
consent has been obtained from the first author.

2The author gratefully acknowledges the contributions of Msc student Mr.Anurag Bajpai for his help with the
computer simulations.
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In [10] a distributed equalizer architecture which exploits the tree structure of WPMis sug-

gested. Since the WPM transceiver is organized as a set of filter-pair structures, the signal can

be accessed at different rates at each stage of the WPM tree structureand equalized indepen-

dently. The equalizer is modeled as a lattice structure with the series elements countering the

ISI and the shunt elements handling the ICI. The method can be consideredas a class of post-

detection equalizer and has been demonstrated to work for time-invariant channels.

The disadvantage of both the methods presented above is their high order of complexity and the

difficulty in scaling them to systems with large number of sub-carriers (say 64or 128). In this

backdrop we a present a simple and efficient equalizer for WPM systems.The equalizer applies

the principle of peak-distortion criterion where the maximum inter-symbol interference induced

by the channel is minimized. The operation of the proposed algorithm is demonstrated through

numerical simulations. Investigations to understand the impact of the wavelet family, length of

the wavelet filters, and the number of equalizer taps on the performance ofthe equalizer are

carried out.

The rest of the chapter is organized as follows - sectionC-2describes the proposed equalization

technique. The details of the simulation environment and important test parameters are provided

in sectionC-3. The numerical results of the study are presented and discussed in section C-4.

Finally, the chapter concludes with a summary of important inferences in section C-5.

C-2 Equalization by minimization of the peak-distortion

Consider that a data sequence of lengthN , x[n] = [x0x1x2...xN−1], is transmitted into the

radio channel3. Assuming that the channel has a memory ofLc with coefficientsc[n] =

[c0c1c2...cLc−1], the received signaly[n] can be given as,

y[n] = x[n] ∗ c[n] + η[n]. (C.1)

Here∗ stands for the convolution operator andη[n] represents the Additive White Gaussian

Noise (AWGN).

The multi-path effects of the wireless channel introduces Inter Symbol Interference(ISI) and

distorts the transmission of information. Hence, an equalizer is necessary at the receiver to

remove ISI and obtain an uncorrupted signal. InC.1 the WPM receiver with the equalizer is

shown. The equalization is carried out in the time-domain before the demodulation of data.

3The discussion presented in this section is based on [50], chapter-10.
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FIGURE C.1: Blocks of the peak-distortion equalizer.

In order to design an efficient equalizer to remove (or minimize) the channeldistortion, we use

a performance metric called the peak-distortion criterion [50, 167]. Peak-distortion may be de-

fined as the worst case ISI at the output of an equalizer [50]. Representing the impulse response

of the channel withcn and that of the equalizer withen, we can define a single equivalent filter

qn as the convolution betweencn anden, as,

qn =
∞∑

j=−∞
ejcn−j . (C.2)

Under these circumstances, two scenarios can be defined to understandthe nature of the equal-

ization process,

a. when the equalizer has infinite number of taps, and

b. when the equalizer has a finite number of taps.

C-2-1 Equalizer with Infinite Taps

With an equalizer of infinite taps, the output at thekth sampling instance can be expressed as

[50]:

Îk = q0Ik +
∑

n 6=k
Inqk−n +

∞∑

j=−∞
ejηk−j . (C.3)

In (C.3) the first term represents the desired symbol scaled by a factorq0, the second term is the

ISI and the third term is AWGN. The peak value of this distortionΩ(e), is given by [50]:

Ω(e) =
∞∑

n=−∞,n 6=0

|qn| =
∞∑

n=−∞,n 6=0

|
∞∑

j=−∞
ejcn−j |

Indeed,Ω(e) is a function of the equalizer tap weights. For an equalizer with infinite taps, it is

possible to select the tap weights such thatΩ(e) = 0, i.e., the ISI can be completely eliminated.
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Under these circumstances, the tap weights can be determined as,

qn =
∞∑

j=−∞
ejcn−j =




1, n = 0

0, n 6= 0
(C.4)

In the frequency domain (C.4) can be written as:

Q(f) = E(f)C(f) = 1 (C.5)

or,

E(f) =
1

C(f)
(C.6)

From (C.6) it can be inferred that in order to completely eliminate the ISI, the equalizer should

be an inverse of the channel filter. For this reason the peak-distortion criterion is also referred to

as zero-forcing equalization.

C-2-2 Equalizer with Finite Taps

Thus far, we have considered an equalizer of infinite length. Let us nowconsider an equalizer of

finite length, say, 2M+1. Sinceej = 0 for |j| > M, the convolution ofcn with en is zero outside

the range−M ≤ n ≤ M + L − 1. That is,qn = 0 for n < -M andn > M + L - 1, whereL is the

channel length. Withq0 normalized to unity, the peak-distortion becomes

Ω(e) =
M+L−1∑

n=−M,n 6=0

|qn| =
M+L−1∑

n=−M,n 6=0

|
∑

j

ejcn−j |. (C.7)

Although the equalizer has2M + 1 adjustable parameters, there are2M + L non-zero values

in qn. Therefore, it is impossible to completely eliminate the ISI and there will always remain

residual interference even when the optimum coefficients are used.

The peak-distortion criterion given in (C.7) has been shown to be a convex function of the

equalizer coefficients [50]. The general solution of the peak-distortion criterion can be obtained

by the method of steepest descent. The minimum value of the peak-distortionΩ(e) can be

obtained by selecting the equalizer coefficients to forceqn = 0 for 1≤ |n| ≤ M andq0 = 1. It

can be given as [50]:

Ω0 =
1

|c0|

L∑

n=1

|cn| (C.8)

In [50] the value ofΩ0 has been shown to be less than unity which means that the ISI is not

severe .
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FIGURE C.2: Impulse Response-11 tap Channel

C-3 Simulation Setup

In this section we evaluate the performance of WPM system with the proposedchannel equalizer

and present results of the studies. The investigations were carried out with computer simulations.

The performance metric of choice is the Bit error rate performance (BER). The WPM system is

realized using a filter bank structure with 7 levels of decomposition (128 carriers). The modula-

tion scheme used is Quadratic Phase Shift Keying (QPSK). The wavelet ofchoice is Daubechies

20 (denoted db20) which is of length 40. These simulation parameters will be used through out

the experiments unless stated otherwise.

Two channels were considered for the experiments. The first one is a benevolent channel pro-

posed by Proakis [50] whose impulse response is given by:

hchn1 = [0.04,−0.005, 0.07,−0.21,−0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]. (C.9)

The channel has a memory of 11-taps and does not have any high orderfrequency selectivity

or nulls. The discrete time channel characteristics of this channel is plotted inFig. C.2and the

amplitude response of this channel is depicted in Fig.C.3.

The second channel considered is a 15 tap channel, with high order of frequency selectivity. This

channel is proposed by European Telecommunications Standards Institute(ETSI) for Digital

Video Broadcasting [168]. The discrete time channel characteristics of this channel is plotted in

Fig. C.4and the amplitude response of this channel is depicted in Fig.C.5.
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FIGURE C.5: Channel Frequency Response-15tap Channel

C-4 Simulation Results

C-4-1 Performance under Channel Condition-1

The BER performance of the WPM system under Channel-1 with the proposed equalizer is

shown in Fig.C.6 where the notable improvements brought about by the equalizer can be ob-

served. The number of taps of the equalizer used in this experiment is15. The correspond-

ing constellation diagram for the received and equalized data at a SNR of21dB are shown in

Fig. C.7. We can observe from Fig.C.7 the improvements brought about by the equalizer in

reducing the dispersion of received data.

A further investigation was carried out to verify the impact of the equalizer taps on the system

performance. Fig.C.8depicts the BER curves of the WPM system operating with an equalizer

of different number of taps. Barring the case with an equalizer of 5 taps,the performance of the

system for other scenarios is good and comparable. In order to minimize the complexity, for the

channel under consideration, an equalizer of 12 taps would be adequate.

In Fig. C.9 a comparison of the BER performance of the WPM system with different wavelets

under the same channel conditions and a15-tap ZF equalizer, is made. It can be seen from

the plots that there are no tangible differences in the performances of the WPM system oper-

ating with different wavelets. The only exception is the bi-orthogonal wavelet, Bior3.5, which

performs worst because the sub-carriers generated by this wavelet are not orthogonal.
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FIGURE C.8: ZF Equalizer performance with different taps for a 11 tap Channel
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FIGURE C.10: Wavelets of Daubechies Family

In Fig. C.10 the BER plots for the WPM system with the Daubechies family of wavelets of

different lengths is plotted. The number of taps of the equalizer is fixed at15. We can observe

from the plots that there is no perceivable difference in the performancesof the system.

We now compare the operation of the WPM and OFDM systems under channel-1 conditions.

The number of OFDM sub-carriers considered is128 and the length of the cyclic prefix (CP)

is taken to be32. The comparison was made for two kinds of equalizer at the OFDM receiver:

the first where a frequency domain equalizer is used, and second whena time domain equalizer

is applied. It can be seen from Fig.C.11 that when comparing WPM and OFDM systems,

OFDM with frequency domain equalization outperforms WPM. But with equalization in the

time domain the performances of WPM and OFDM are comparable.

C-4-2 Performance under Channel Condition-2

The BER performance of the WPM system under Channel-2 for a 200 tap equalizer is shown

in Fig. C.14. The constellation diagram for the received and the equalized signal at aSNR of

21dB is shown in Fig.C.13. The improvements brought about by the equalizer in improving the

BER performance as well as in mitigating the diffusion of received data can be observed from

FiguresC.14andC.13, respectively.

Equalizers of other lengths can also be employed to mitigate the effect of ISI on the WPM

system performance. In Fig.C.14a comparison of equalizers with different lengths is shown

below. It can be deduced from the plots that with increasing tap lengths of the equalizer the
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FIGURE C.14: ZF Equalizer performance with different taps for a 15 tap Channel

BER performance improves. However, this improvement is at the price of increased system

complexity. Thus, there is a trade-off on offer between the complexity of theequalizer and the

performance gains it can yield.

In Fig. C.15a comparison of different wavelets for the same channel conditions and with a200-

tap ZF equalizer is made. The wavelets used for the study are tabulated in Table. C.1. It can

be seen that shorter the length of the waveform, better the performance of the wavelet. This is
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FIGURE C.15: ZF Equalizer with different wavelets
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TABLE C.1: Wavelet Specifications.

Name Short form Orthonormal? Length
Haar Haar Yes 2
Daubechies db10 Yes 20
symlet sym10 Yes 20
Coiflet coif4 Yes 24
Discrete Meyer dmey Yes 102
Bi-Orthogonal bior3.5 No (5,3)

because the WPM system employs the Discrete wavelet packet transform (DWPT) which is a

lapped transform i.e. the symbols overlap in time. This means the waveforms used in WPM are

longer than the transform duration of one symbol. For a filter of lengthLf the overall symbol

lengthLsym with WPMN carriers can be shown to be [10]:

Lsym = (Lf − 1)(NWPM − 1) + 1 (C.10)

Therefore, when the length of the wavelet filter is longer, more number of WPM symbols overlap

resulting in higher ISI. To better corroborate this, the effect of the lengthof the wavelet on

the WPM performance operating under Channel-2 conditions have been plotted in Fig.C.16.

Although the wavelets belong to same family, the ones which are longer cause greater ISI leading

to poorer BER performance.4

A comparison of WPM and OFDM system performances under Channel-2 is shown in Fig.C.17.

It can be seen that the performance of WPM and OFDM is comparable whenfrequency domain

equalization is used in OFDM. But with a time-domain equalizer the performance of OFDM is

poorer than WPM.5

C-4-3 Eye Diagrams

In communication theory, eye patterns (diagrams) are widely used as a qualitative performance

indicator of a system [167]. The information in digital communications is stored in pulses of

one or zero and when these two pulses are superimposed on each other several times, a pattern

similar to the human eye emerges.6 The center of the pattern is the point at which the signal

clock samples the signal. Since the signal is digital in nature, it must be completely high or

low at the sampling point. Hence, anopeneye indicates that the signal is fully high or low at

the sample moment. On the other hand, if a signal trace crosses through the eye, then the eye

is partiallyclosedcausing an ambiguity in decision making leading to data errors. Horizontal

4Since channel-1 was not severe and could be easily equalized, the length of the wavelet didnot have significant
impact on the WPM system performance.

5Unlike the frequency domain equalizer, the time-domain equalizer for OFDM system does not benefit from the
property of circular convolution.

6The pulse is not a sharp rectangle and has a finite rise and fall time.
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FIGURE C.17: OFDM versus WPM

opening of the eye signifies the jitters or timing errors and vertical opening ofthe eye determines

the noise margin, i.e. difference between the logic High and logic low [167]. Eye diagrams can

also be used to check for ISI in a digital communication system [167]. It provides an excellent

way to estimate the amount of ISI and the ability of the equalizer to mitigate it. We now show

the eye diagram of the data at different stages of the transceiver chain. In Fig. C.18the QPSK

modulated data at the transmitter is shown. Since there is no ISI the eye is completely open.

The information bits are modulated by the WPM and then transmitted to the radio channel to

be received by the WPM receiver. FigureC.19shows the eye diagram of the data received at

the receiver. The received data has inherent overlap due to the WPM modulation as well as

ISI induced by the channel; therefore the eye isclosed. The received data is then equalized

and demodulated by the WPM demodulator. In Fig.C.20 the eye pattern at the output of the

equalizer is shown. It is observable from the eye diagram that the equalizer has mitigated the

ISI considerably.7

7Even after equalization of data there exists a residual ISI. This is because the equalizer is of finite length and
does not neutralize all of the channel induced artifacts. However, the amount of remnant ISI is tolerable and the BER
performance does not suffer much.
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FIGURE C.18: Eye diagram of QPSK modulated data at the transmitter
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FIGURE C.19: Eye diagram of the Received Data
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FIGURE C.20: Eye diagram of the QPSK Symbols after equalization at the receiver
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C-5 Conclusion

In this chapter we presented a time-domain equalizer for the mitigation of channel artifacts on

the Wavelet Packet Modulator. The equalizer operated on the principle ofnullifying the max-

imum inter-symbol interference induced by the channel. Various realistic channels conditions

with different memories and characteristics were applied. Furthermore, investigations to under-

stand the impact of:

• the wavelet family,

• length of the wavelet filters, and

• the number of taps of the equalizer,

on the performance of the equalizer were evaluated. The operation of theWPM system were

also compared to the orthogonal frequency division multiplexing. For most channel conditions

the equalizer performed adequately yielding significant performance improvements. Results of

the simulation studies illustrated notable enhancement in Bit Error Rate (BER) performance

for the scenarios considered. The studies of this worked were confined to channels that were

time-invariant. Furthermore, the equalizer focused entirely on the removal of ISI (and not ICI).
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Summary

Reconfigurable and Adaptive Wireless Communication Systems based on Wavelet

Packet Modulators

Wavelet Packet Modulation (WPM) is a multi-carrier transmission technique that uses orthog-

onal wavelet packet bases to combine a collection of information bits into a single composite

signal. This system can be considered as a viable alternative, for wide-band communication, to

the popular Orthogonal Frequency Division Multiplexing (OFDM) system. The main advantage

of WPM is that the transmission characteristics of the system can be adapted according to the

radio environment to maximize resource utilization.

The WPM is a system under development and has not been studied extensively. In this research

work the operation of a WPM radio is successfully evaluated. The thesis primarily focuses on the

question of how efficient and robust wireless radios can be designed with the aid of wavelet the-

ory. To do so the challenges involved in the practical implementation of the system are evaluated

and understood. Suitable mechanisms that address communication theory figure-of-merits such

as Peak-to-average power ratio (PAPR), loss of time/phase/frequencysynchronization, channel

equalization are devised and tested.

Furthermore, the advantages of the WPM system for wireless transmission are demonstrated in

three scenarios,namely,

1. Wavelet packets for spectrum estimation.

2. Wavelet packets for dynamic spectrum access.

3. Design of new wavelets based on system requirements.

The efficacy of the proposed algorithms is validated using computer simulationsand numerical

analysis. The results of the research show that the WPM is an effective addition to existing

wireless transmission modes.

Madan Kumar Lakshmanan
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Samenvatting

Reconfigurable and Adaptive Wireless Communication Systems based on Wavelet

Packet Modulators

Wavelet Packet Modulation (WPM) is een multi-drager transmissie techniek diegebruik maakt

van een orthogonale wavelet pakket bases om een verzameling van parallelle signalen te com-

bineren in een enkel composiet signaal.

Dit systeem kan worden beschouwd als een levensvatbaar alternatief, als een brede band trans-

missie techniek, voor het populaire Orthogonal Frequency Division Multiplexing (OFDM) sys-

teem. Het grote voordeel van WPM is dat de transmissieeigenschappen van het systeem kunnen

worden aangepast aan de radio-omgeving om benutting van resourceste maximaliseren.

De WPM is een systeem in ontwikkeling en is nog niet uitgebreid bestudeerd. In dit onderzoek is

het werk van de werking van het nieuwe Wavelet Packet Modulator (WPM) radio is met succes

geëvalueerd. Het proefschrift richt zich primair op de vraag hoe efficiënte en robuuste draadloze

radioŠs kunnen worden ontworpen met behulp van wavelet theorie.

Om dit te doen zijn de uitdagingen van een praktische implementatie van het systeem geë-

valueerd en in kaart gebracht. Geschikte mechanismen die gaan over communicatie theorie

figuur-of-verdiensten, zoals Piek-tot-gemiddeld vermogen ratio (PAPR), verlies van tijd / fase /

frequentie-synchronisatie, kanaal egalisatie zijn bedacht en getest.

Bovendien zijn de voordelen van het WPM-systeem voor draadloze transmissie aangetoond in

drie scenarioŠs, namelijk:

1. Wavelet packets voor spectrum schatting.

2. Wavelet packets voor dynamische toegang tot het spectrum.

3. Ontwerp van nieuwe golven op basis van systeem eisen.
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De effectiviteit van de voorgestelde algoritmen zijn gevalideerd met behulp van computersimu-

laties en numerieke analyse. De resultaten van het onderzoek tonen aan dat WPM een krachtige

aanvulling op de bestaande draadloze transmissie modi kan worden.

Madan Kumar Lakshmanan
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