
Master’s Thesis

Ibidas: to serve and to protect

Thesis Committee:
Prof.dr.ir. M.J.T. Reinders
Prof.dr.ir. A. P. de Vries
Ir. J.J. Bot
Ir. M. Hulsman
Dr. M. Roos

Author Patrick van Kouteren
Email pvankouteren@gmail.com

Student number 1384953

Thesis supervisor Prof.dr.ir. M.J.T. Reinders
Ir. J.J. Bot

Date November 9, 2009 - 14:00

[I,C)
TInformation and

Communication
Theory Group

Preface

This document is the result of research, preceeded by a literature study, done
on the semantic Web, data warehousing and database security in the context of
biological entities. The document consists of two parts: a final report and a work
document. The final report consists of the introduction, implementation of the
two main features and the conclusions of the research. The work document also
includes some minor features and preparations regarding the implementation,
design choices made, planning and progress.

This research was done in the ICT group at Delft University of Technology,
and supervised by prof. dr. ir. M.J.T. Reinders and ir. J.J. Bot. The source
code of Ibidas is available upon request.

Acknowledgements

Although a lot of people supported me during my graduation period, I would
like to mention a couple of people who were important in making this project
possible and keeping me motivated. First of all I would like to thank Marcel,
Jan and Marc for giving me the opportunity to work on a subject I enjoy
working on, even though it’s only partially related to bioinformatics. Working
and discussing design and implementation issues with Jan and Marc provided
me much insights in design choices as well as a good reflection of my way of
programming while learning from their ways of getting things done. When being
caught up too much in implementation details, Marcel provided insights from
another angle which often transformed a problem into a better solvable one.
Also while writing this thesis, Jan and Marcel provided me with useful feedback
on my style of writing. As a result of that, the difference between the first draft
and this final document is huge. My thanks also go to Floris Sluiter working at
SARA for providing the basic security model.

Furthermore I’d like to thank all the students for being present and partic-
ipating at the student meetings. What goes around, comes around: as I often
had something questions and comments about their presentations, they also
provided me with useful feedback to improve my way of presenting my work;
the students I got to work with on the 11th floor for having discussions varying
from the quality of the coffee to specific issues regarding my project. Special
thanks goes out to Bas and Tisha, who were by far most present in ’the glass
room’ and always in the mood for any type of discussion.

Of course I could not have done this without the everlasting support of my
family, girlfriend and friends. Good times are easy, but during hard times they
were at their best by accepting my situation and doing everything to be of any
help. Big things really come in small packages.

Contents

1 Introduction 6

2 Database security 10
2.1 Virtual private databases . 10
2.2 Postgres login roles and usergroups 12
2.3 Implementation . 13
2.4 Query performance analysis . 14

2.4.1 Expectations . 14
2.4.2 Results . 16

3 Web services 19
3.1 Libraries and set up . 19
3.2 Implementation . 20

3.2.1 AtomicServices . 21
3.2.2 SOAP server . 21
3.2.3 SOAP serializers . 21

4 Using Ibidas in workflows 24
4.1 Example Taverna workflow . 24
4.2 Example Taverna workflow execution 27

5 Discussion and future work 28
5.1 Discussion . 28

5.1.1 Usergroup resolution . 28
5.1.2 Joining order . 29

5.2 Future work . 29
5.2.1 RESTful transferring . 29
5.2.2 Authenticated Web services 30
5.2.3 Ibidas sessions . 30
5.2.4 JSON . 30

2

List of Tables

2.1 PostgreSQL explanation of the speedtest queries 16

4.1 Inputs for our Taverna workflow 27

3

List of Figures

1.1 Overview of the intended setup of an Ibidas instance. 7
1.2 An example scenario to clarify the application of Ibidas 9

2.1 The options to apply filtering of data 11
2.2 Security implementation overview. 15
2.3 Query times per run . 18

3.1 Overview of the layers which are used with Web service access. . 20
3.2 Overview of the SOAP serializers present in Ibidas. 23

4.1 Venn diagram of gene set enrichment analysis 25
4.2 Execution of the scenario . 26

4

Abstract

In this thesis we present the database security mechanism and Web services
implementation for the Ibidas system. The security mechanism restricts access
to data by source per user. Web services provide an interface to call Ibidas
methods and share data from and with other applications. We will see the need
for the features presented, how they are implemented and the choices which were
made during implementation. Furthermore we will show an example of the use
of the Web services using the Taverna workbench application to solve a typical
situation a researcher could face. We conclude this thesis with a discussion
regarding our implementation and some future work indications.

5

Chapter 1

Introduction

The World Wide Web contains a large amount of information on all kinds of
aspects on biological entities like genes and proteins. However, this information
is often stored in a flat way (e.g. text files) and for interpreting the data certain
knowledge on the origin of the data is needed. This knowledge is not explicitly
defined, which means that only people having this knowledge know what the
data represents.

Measuring any type of property of proteins results in a set of data containing
specific information on those properties (e.g. protein mass, structure character-
istics etc.). For using this data, background knowledge (meta-data) on the
meaning of the results is required. A transition is currently going on, enriching
the Web with additional knowledge in the form of meta-data and ontologies: se-
mantics. These semantics add meaning to data in such a way that relationships
between data can be derived from these semantics. This is especially useful
when composing a data warehouse as the various types of data can then be
integrated by use of these semantics. This means that knowledge is not system-
specific any more: Genes which are in a different database can be related to
proteins elsewhere in a particular type of relationship (e.g. transcription factor,
gene product etc.).

The data which is put in a data warehouse can originate from a variety
of sources. The soure of data is actually of importance as not all data may be
publicly available. This can be due to commercial interests (e.g. pharmaceutical
companies, biotechnology companies etc.) or due to privacy (e.g. patient data).
Such data needs a form of protection to only grant authorized users access to
that data.

Although data can be related and stored in a data warehouse, tools are
needed to be able to work with this data. External applications can be used to
solve this. For providing the appropriate data to these applications, web services
are becoming more and more popular. These web services are running server-
sided and can be queried for data. Already established tools (e.g. workbench
applications like Taverna[9, 20] or visualization tools like Cytoscape[1, 17]) can
benefit from this. Such interoperability between various well-used systems is of
interest for the biologists as it takes away the unnecessary data (pre-)processing
and eliminates human errors during such data processing steps.

Ibidas provides a data integration platform enabling integration of data orig-
inating from different sources for bioinformatics purposes in a non-persistent

6

way. The coupled PostgreSQL[13] database allows for persistent storage of the
integrated data if desired. Next to plain storage of raw sequences and accessions
of genes and proteins, it allows linking these data together. These data types
with different namespaces are mapped to one uniform namespace, which allows
for easy data conversion. This means the data can be represented in a uniform
format which makes working with the data easier. For working with this data,
the Ibidas system can be used directly, but it can also be used to execute parts
of a workflow like computations or just data provisioning. Figure 1.1 shows
a schematic overview of the Ibidas system and indicates the positions of the
features.

Figure 1.1: Overview of the intended setup of an Ibidas instance. The dashed
area is the area Ibidas spans. In this area the layered structure can be seen.
Outside the dashed area are some examples of commonly used applications
which can interact with the web services layer.

For restricted data, the relationship between the actual data and access
rights can only be kept by storing them together. Therefore an authority schema
within Ibidas is needed. Such an authority structure should be used to limit
user access to publicly available data and data toch which access is granted. For
gaining the user’s trust, it’s important to have a transparent policy regarding
critical functionality like the security. Therefore the authorization structure is
place visibly outside the program code. In figure 1.1 the authorization structure

7

is denoted by the red mark located at the PostgreSQL database management
system.

Traversing an authorization structure to extract user access rights for data
is guaranteed to have implications on the speed with which the requests are
executed and the data is returned. To quantify these implications we ran tests
before and after application of security and compared the execution times.

Web services are basically small functions which can be executed by a server
providing that service. Client applications should have a way to communi-
cate with an Ibidas instance to obtain data and to call server-sided methods.
Example Web services for Ibidas are retrieving a particular dataset by some
constraints (e.g. all genes on the eleventh chromosome) and calculating a gene
set enrichment score. These functions are called as if they are part of the appli-
cation the user is running. In the background the application connects to the
Web server, calls the method there and collects the result. The implementation
of such functionalities should work regardless of which protocol is used. The
green arrows in figure 1.1 are the Web service communication channels in Ibidas.

One of the most commonly executed operations by researchers is a gene set
enrichment analysis based on experimental results. Such an analysis is used to
find sets of genes which occur more often than random wihtin a particular other
set of genes. This indicates deregulations of gene expression which is interesting
to perform further research on. If one’s interested in researching the role of
transcription factors in this experiment, the transcription factors for these genes
need to be obtained. This can be done by requesting the transcription factors for
the enriched genes. A popular database consisting many transcription factors
is TRANSFAC[21]. To obtain the sequences of the transcription factors of the
enriched genes another database call is necessary.

8

Figure 1.2: An example scenario of a research process. The aim is to retrieve
the sequences of the transcription factors which regulate the genes of interest.
These genes of interest probably have a similar functionality and / or belong
to the same functional pathway. Finding such probable relationships is often
done by performing a microarray test which compares expression patterns. For
our scenario we take the results of such a test as input. First a gene set enrich-
ment analysis is used to check if the list of genes of interest occurs more often
than random within a reference dataset (A). A database is used to obtain the
transcription factors of these genes (B). Then a database is used to obtain the
sequences of these transcription factors (C).

9

Chapter 2

Database security

2.1 Virtual private databases

For our personal dataset access feature it is required that there is a way to
restrict users in which data they can access. In concrete terms: we need a way
of hiding data in database tables from users.

For hiding data which the user is not allowed to see, a filtering mechanism
is needed. In this filtering mechanism we apply the access rights on the data:
we check the user’s access rights on the data requested, filter out the data
for which no access is granted and present the resulting data to the user. As
requests for data may take a long time to process, it pays off to optimize the
call before sending it. By rewriting the call to a form which the system can
handle faster, less disk accesses and internal memory are needed, which speeds
up the response time. Ibidas has a query optimizer to determine which source
should supply which data and based on this, it rewrites the query to an optimal
form. Figure 2.1 shows where we can apply a filter. We could apply it before
querying the database (figure 2.1(a)), but we can also leave the filtering to the
data container (figure 2.1(b)). Filtering data in the code allows us to add our
filter before the query optimizer rewrites the call to its final form. However, the
filtering mechanism is not visibile to the user. Because our system is new, user
distrust is more of an issue than it is with established systems. Users might
trust native database functions better than custom code, so we need a way to
express strong access controls in a trustworthy way. This could be done either
in the database itself or system-wide.

System-wide approaches focus on shared security policy within the OS. This
policy holds for all applications running at the server or workstation. SE
Postgres[14] is such an approach, using a secure protocol to ensure secure con-
nections to its resources, including Web services. The Secure Document Man-
agement System labels documents and assigns access rights to them in a similar
way Postgres treats objects. Such a solution is very specific as it’s dependent on
the OS and the applications. This is in contradiction with the ideas of software
developers not to introduce dependencies on OS or specific third-party software
configurations.

Performing access control in the database itself means performing security at
the level closest to the data itself. This makes the security mechanism straight-

10

(a) Applying the filter before the query opti-
mizer will rewrite the query is the most opti-
mal situation.

(b) Applying the filter in the data container.
The effect of optimized query coming from the
query optimizer is partly negated by applying
the filter on the optimized query.

Figure 2.1: Possible locations of applying the user access rights (the filtering)
to secure the data. The container could be a file, a database, a Web service or
any type of combination of such sources.

11

forward and transparent to the user. Data filtering or hiding can be done on
the tables by a form of row-level security or by using views[22].

The Oracle database software[11] provides Fine Grained Access Controls (or
also called virtual private databases), a form of row-level security, which we
are looking for in PostgreSQL. PGACL[12] is such a plugin for PostgreSQL.
Unfortunately row-level access means that access controls need to be defined at
every row in every table. In the Ibidas multiple inheritance structure this could
not only introduce problems because of inherited access control definitions, but
also take longer to evaluate all rows and the amount of tables and rows implies
that each row takes extra storage space.

Both SE Postgres and PGACL take care of database security, but they lack
functionality and performance required for our system. Securing a whole system
seems a good robust approach, but it should fit our aim to make Ibidas available
for every operating system. Access control modules derived from Oracle work
on the database tables, but are not mature enough (none is a stable first ver-
sion) and the storage structure has a negative influence on query times, which
decreases user-perceived performance. Because both these approaches have too
much downsides we chose to use views.

A view is a virtual table built on a stored query. This allows us to define
views which incorporate user access rights while storing these rights in a separate
table in an efficient way. The security is then transparent to the user while query
times are short compared to an approach like PGACL. In the next sections we
will see how we defined and implemented these views in Ibidas and PostgreSQL.

2.2 Postgres login roles and usergroups

For storing the user access rights we allow grouping of users (e.g. research
departments). Users can be assigned to multiple groups. These groups can be
part of a usergroup hierarchy. The ability to view particular data then depends
on the usergroup(s) the user belongs to. Postgres itself offers the creation,
modification and deletion of users and usergroups. This can be done through
the command-line, which Ibidas also uses.

Storing the usergroup in a parent-child relationship between usergroups
would be a natural way of storing such data. As different usergroups have
different rights, querying such a structure requires a recursive query to tra-
verse the hierarchy to reconstruct all the user’s rights, which is time consuming.
Therefore we store the hierarchy structure in a ’flat’ way: if a usergroup is
part of another usergroup, we store a relationship between the user and both
usergroups instead of storing the relation between the usergroups and storing a
relation between the user and the lowest usergroup. This way we can rerieve all
usergroups a user belongs to in one straightforward query.

The advantage of this approach is that querytimes benefit from this as no
recursive queries are called. The disadvantages become clear during modification
of the memberships. Moving a usergroup to another usergroup (e.g. when
restructuring departments) will require all users to be restructured to the new
hierarchy. When the hierarchy itself is stored separately, only a couple of rows
are affected by the change and the users stay untouched. In the flat storage
structure the users need to be reassigned to usergroups. This is much more
error prone.

12

Postgres itself uses a database to store its structure in. We use the ta-
bles in this database (system tables) for managing users and usergroups. We
use the Postgres system tables pg_catalog.pg_user which holds users and
pg_catalog.pg_group which contains the usergroups. The system table
information_schema.applicable_roles holds the relation between them and
the information about the database rights of the user. An advantage of these
native postgres shadow tables is that these users and usergroups are cluster-
wide. This means that there’s only one copy of pg_group and pg_user per
database cluster, and not per database. This is a useful advantage when more
than one database server is required (due to the amount of data, load balancing
for performance etc.).

All the data security is taken care of by the database. This means that by-
passing the security is limited to attacks on the database. The amount of effort
required to succeed completely depends on the system administrator. There
are two possibilities for illegaly obtaining the data. The first way is to get into
the database and alter the user rights so data which previously wasn’t visible
through the views will become visible. For doing this root access to the database
is required in order to be able to alter the tables.

An attack on the physical Postgres data file is another way to try and get the
data. This data is stored in the data directory of PostgreSQL. When installing
PostgreSQL, a separate user postgres is created on the OS. This user is given
rights to the data folder while no other user can perform any action on this
folder. Only if one can switch to this postgres user, the data directory can be
read or copied and the security fails. Summarized, data can only be illegaly
accessed when either knowing the root password of the Postgres application or
the postgres user of the OS.

2.3 Implementation

In the previous section we’ve seen that storing the usergroup hierarchy in a
simple flat structure has less negative effects on the execution speeds of queries
than a more complex structure. This section will discuss how the security in
Ibidas is implemented by using the capabilities of the PostgreSQL database
management system.

When a query for data is done, access control needs to be taken into account.
The query will first arrive at the query optimizer which rewrites the query to its
most efficient form. When this is done, the optimized query will be appended
with the access control part. The basic structure to traverse is shown in figure
2.2(a). This structure is queried as follows: First all sets to which a user has
access to are retrieved. From there on the items of these sets are retrieved. In
the database this means that users are joined with sets and the result of this is
joined with items. The usually large datasets might take a lot of memory space
which might be needed for further database operations. By joining sets with
users we reduce the data in memory as soon as possible to only applicable data
for the user.

In order to execute the authentication on all tables where data is selected
from, a view called ’mydatasets view’ returns the datasets accessible by the
logged in user. We apply restrictions per source, so there are views for every
table having a link to the set table containing these sources. The views restrict

13

the results such that only results from the mydatasets view are returned. When
querying the database, it needs to be told explicitly that data has to be selected
from the view, so instead of using the real tables to perform the query on
(figure 2.2(a)), we switch the tables for which views exist in the code with the
appropriate views. This is situation is depicted in figure 2.2(b). The views or
virtual tables already incorporate the access rights and they are only filled with
data which the user may access. This is what we defined earlier as the filtering
done by the database and it satisfies our design criteria regarding the protection
of datasets and doing this in a transparent way as the views can be checked in
the database management system.

2.4 Query performance analysis

To analyse the implication the authentication has on the query time we’ve run
test queries to quantize and visualize the difference in query times. We imported
the data of the Molecular Signatures Database[19, 8], also known as MSigDB,
into Ibidas. Then we constructed queries for reconstructing the data again. For
reconstructing the data, in total four table joins are necessary in Ibidas. In total
we’ve created five queries to show the difference in query times over the amount
of joins and the data contained in these tables. Both queries selected the same
data from the database and had the same results.

2.4.1 Expectations

The PostgreSQL command-line allows for query explanation[4]. A query is
explained by means of a query execution plan. The execution plan shows how
a query result is obtained, how complex a query is and (possible) bottlenecks
can be derived from it.

When using authentication, for every table that is used the authenticating
part (the mydatasets view) needs to be consulted. Because of this extra and
repetitive part that is executed, we expect the query time to be larger than
when not using authentication.

Every test was run one hundred consecutive times from a cold start to pre-
vent any type of caching having influence on the next series of runs of a query.
Table 2.1 gives an overview of the explanations of the queries by Postgres. This
gives an indication what to expect of the query times with respect to each
other. In this table it can already be seen that although more tables need to
be queried, the queries having two joins or more have a lower maximum cost
and less rows in case of authentication. This means that Postgres expects the
query to return the result faster when views are used (when the authentication
is incorporated) than when the tables are directly used. This relates to the
rows column which contains the number of rows which need to be considered.
It is clear that from two joins on the relationship between authenticated and
unauthenticated queries seem inversely proportional in terms of the rows to be
considered and the maximum costs related to that. This is because of the Post-
greSQL query optimization strategy[10]. Until a particular number of joins, the
PostgreSQL query optimizer uses a near-exhaustive search to join tables. For a
large number of joins it uses a genetic algorithm, which seems to greatly reduce
the amount of rows. This large amount of joins is reached pretty soon by the

14

(a)

(b)

Figure 2.2: The basic structure which plays a role at the security level. In figure
(a) every table (denoted by the ’table’ X) has a reference to the set table. The
sets in this set table are associated with PostgreSQL usergroups (contained in
the pg group table) by the set pg group relationship table. The white tables are
the native PostgreSQL tables which are used. Note that these are all many to
many relations which makes querying such a structure a quickly diverging task
which might take a lot of time. However, when authentication is not used, the
existing link between the set table and the set pg group relationship table is not
evaluated. The user is requesting data which is contained in (data)sets. When
authentication is used (figure (b)), per set we apply the user access rights. The
mydatasets view is the view responsible for the security. It resolves the datasets
a usergroup may access in two joins (of three tables) and it links directly to the
set view. The data is requested from the table view (depicted as X view). This
view only contains the data originating from datasets which are contained in
the mydatasets view. this view will result in incorporation of the user access
rights as the join filters out the rows which are associated with datasets users
may access.

15

Authentication Joins Min.cost Max.cost Rows
Off 0 0.00 18.39 3
Off 1 18.42 12168.26 410014
Off 2 18.42 363416.46 74062879
Off 3 8117.11 6076762.50 1247398475
Off 4 8117.11 21629360.43 4397936241
On 0 20.77 39.20 3
On 1 60.04 12209.88 410014
On 2 1903.59 52305.12 1110943
On 3 1906.53 18668.71 280663
On 4 2608.21 37761.83 14834

Table 2.1: The results of explaining the queries on the tables (authentication
off) and on the views (authentication on) as done by Postgres. Per joined view,
an authentication part is included which consists of two joins. The minimal cost
is the start-up time before the first row can be returned and the maximum cost
is the time it takes to return all rows. The time units are expressed in disk page
fetches. The rows column indicates how many table rows are considered during
execution of the query.

authenticated query due to the incorporated authentication which brings along
two joins per authentication which is done per table.

We run one hundred consecutive runs per query. When looking at the in-
dividual query times we expect the Postgres caching mechanism to reduce the
query times after the first run. This means that the first run will need more
time to return the results. After that, the results will be cached and the query
times will then be about the same.

2.4.2 Results

The tests were run on a MacBook Pro with the following specifications:

• Mac OS X 10.5.8 Leopard

• Intel Core2Duo 2,4 Ghz (3 MB L2 cache, FSB 800) CPU

• 4 GB 667 Mhz DDR2 SDRAM memory

• 200 GB SATA harddisk (7200 RPM, 16 MB cache)

Regarding the resulting graphs there are some results confirming our expec-
tations. Caching takes place for all of the authenticated queries and most of
the unauthenticated queries (figures 2.3(a), 2.3(d), 2.3(e)). After the caching
is done the query times stay about the same. It’s interesting to see that the
first run for the authenticated query in figure 2.3(d) takes twice as much time
as the first run for the authenticated query in figure 2.3(e) while joining three
views instead of four (and with that performing an authentication less). As
these times are in the order of 45 and 90 seconds, we cannot explain this by
environmental factors like background processes waking up. After caching has
occurred, the query times in figure 2.3(d) are lower than in figure 2.3(e), like
one would expect based on the amount of tables considered during execution.

16

The results of figure 2.3(b) are interesting as this behavior is not quite ex-
pected. Query times for both authenticated queries and unauthenticated queries
show a consistent alternating behavior with much resemblance. Although the
variance within this alternating behavior is about 0.2 seconds, it is unknown
why this actually occurs. We expected the first run to take longer as Postgres
will cache the results, but we see for the unauthenticated query that the first
run is actually the fastest run. When we ran the queries for figure 2.3(a) and
figure 2.3(b) immediately after each other, we observed similar behavior. This
was probably due to caching effects from the first query. However, in this case
the test was run from a cold start without it being preceeded by earlier tests.
This rules out caching effects, but it also rules out the only plausible explana-
tion. A last clear observation from figure 2.3(b) is the large peak around run
73. Regarding the facts that the query time is not doubled, but increased by
about 1.2 seconds and the authenticated query time doesn’t show such a peak,
we assume this peak can be explained by a background process responding to a
wake-up call from the operating system while running that particular test. We
therefore consider this an outlier. The same motivation holds for run 38 in the
unauthenticated query in figure 2.3(c), which we also consider an outlier.

Figure 2.3(c) shows a graph which is completely in line with our expectations.
From the figure we can clearly see that the query times for the authenticated
query are consistently more than twice as low as for the unauthenticated query
and the first run of the authenticated query is not taking longer than the next
runs. The explanation by Postgres shown in table 2.1 already predicted that
the genetic algorithm would execute the authenticated query in a more efficient
way. The explanation however suggested that authenticated queries containing
two joins or more would run faster than their unauthenticated version. Based on
the Postgres explanation we expected figures 2.3(d) and 2.3(e) to look like figure
2.3(c) instead of looking like 2.3(a). We only observed the predicted efficiency
for two joins. After that it looks like the near-exhaustive search is used again
while the amount of tables considered in the query increases, but we cannot
confirm or deny this.

Overall the tests show a nice performance. Except from the results for the
queries containing two joins, we can see from the figures that the average difer-
ence in query times is slightly higher when having to perform authentication,
but not more than twice as high. Next to that the variance of the query times
is very low, which indicates that the response time is very consistent. Although
the results show it’s faster to not use authentication, the difference between au-
thenticated queries and unauthenticated queries might only be noticeable when
performing queries on millions of records spanning all tables in the database.

17

(a) (b)

(c) (d)

(e)

Figure 2.3: The query times of figures (a) and (c) show the expected behavior
based on the Postgres explanation. Caching occurs for all queries except the
unauthenticated ones in figures (b) and (c). Both the facts that the first run
of the unauthenticated query is the fastest instead of the slowest and that the
alternating behavior is only present in figure (b) are hard to explain. The large
peak on run 73 in figure (b) and run 38 in figure (c) are probably related to a
background process in the OS. Figures (d) and (e) resemble much with figure
(a) whereas resemblance with figure (c) is expected.

18

Chapter 3

Web services

Our system is accessible in different ways. Indirect interaction is done through
Web services. External applications, like the popular Taverna workbench, can
run methods remotely on an Ibidas server as a part of a workflow. For commu-
nication with remote services, two transport protocols are commonly used. The
first one is XML-RPC, the other one is SOAP. In the next sections we will see
how we organized the Web services in Ibidas and how they work.

3.1 Libraries and set up

Basically it doesn’t matter if Ibidas is run as a local instance or remotely. Al-
though sharing openly available datasets can be done in a pretty straightfor-
ward way, we are also working with possible personalized datasets which require
a little bit more attention as we can only share these to authenticated parties.
Having said that, an important issue is introduced: remote authentication.

It’s not possible (yet) to secure SOAP or XML-RPC communication in such
a way that the security of the data is guaranteed after the data has been trans-
ferred. Therefore we concentrate on offering unauthenticated and unsecured
services, so services which handle openly available data only.

Various applications use various types of communication. The most impor-
tant applications considered here are Cytoscape and Taverna. The Cytoscape
visualization application can communicate through XML-RPC with external
data sources to obtain data and visualize it. The Taverna workbench can im-
port WSDL[2] files from remote servers to discover SOAP services. Figure 3.1
shows the Ibidas Web service workings. The AtomicServices library is the class
which executes methods on the Ibidas command-line. These methods are called
by the server classes. These server classes are protocol-specific and translate
the Web service calls to AtomicServices method calls. Because the transla-
tion occurs at the server classes the actual executing class, AtomicServices, is
protocol-independent. Because of that, adding functionality to this class means
that the functionality is added for all supported protocols at the same time.

The SOAP communication is slightly different than XML-RPC. WSDL files
are files describing server properties on how a SOAP service should be called,
which parameters should be provided, of which type these parameters should be
and what you’ll get back from the service and what the data type of the result

19

is.

Figure 3.1: Overview of the layers which are used with Web service access.
The SOAP and XML-RPC servers provide the interface to the applications
and translate (wrap and unwrap) the communication messages from and to the
AtomicServices class. Both servers listen on a different particular server port to
which the users connect. The AtomicServices class receives the calls from the
servers and processes them. It defines the available methods and acts on the
command-line interface like other Ibidas classes.

For XML-RPC, there is a built-in module in Python to create a simple
server (in just a couple of lines of code) which can listen on a server port for
requests and handle them. For SOAP there is no such module built into Python.
Therefore we’ve chosen to use the Soaplib library[18] to handle SOAP messages.
Soaplib offers CherryPy as a Web server, so this is installed with Soaplib as well.
A nice feature of Soaplib is that it can automatically create a WSDL file based
on the services that are offered. In our case it means that a WSDL file will be
created based on the methods defined in the AtomicServices.

3.2 Implementation

There are multiple transport protocols to transfer the same data. In a neat
object-oriented structure this means that only connecting interfaces for these
protocols need to be implemented whereas the functional layers can be the same.
Currently Ibidas has an XML-RPC server, IbidasXMLRPCLight, and a SOAP
server, IbidasSOAP. These servers are the access points for clients and client
applications to connect to Ibidas. This section will treat the implementation of
the SOAP server, the SOAP serializers and the executing AtomicServices class.

20

3.2.1 AtomicServices

The implementation of the AtomicServices class doesn’t differ from regular
Python classes. It maintains a database connection and it defines some functions
which convert Ibidas objects containing data from the database to a represen-
tation which can be sent in a SOAP message. This is called serialization. Our
SOAP serializers are discussed in the SOAP serializers section.

Data representing objects within Ibidas are called container objects. These
container objects contain actual data from the database. The contents of such an
object are variable, dependent on which data is requested from the database.
This can range from one single item to all contents of the whole database.
Container objects are basically a database in object form: these objects can be
queried in a similar way a database is queried.

As mentioned earlier Soaplib will generate a WSDL file based on the con-
tents of the AtomicServices class. In order to be able to do this, Soaplib must
recognize the methods which users can call as being SOAP methods. This is
done by applying decorators[5] to the methods intended for remote calling. Dec-
orating a method doesn’t alter the workings of the methods, but rather adds a
description for Soaplib to the method of which type the incoming parameters
need to be and what the data type of the result is. As this is what WSDL is
all about, Soaplib gathers the method names and the corresponding decorators
and transforms this information to a WSDL representation. Although these
methods are also used by the XML-RPC service, the decorators are only used
for the SOAP service and do not affect the XML-RPC service.

3.2.2 SOAP server

For handling requests, a Web Server Gateway Interface is needed. Python
supplies such a module, wsgiref, and Soaplib comes with CherryPy. Both WSGI
modules are sufficient for our SOAP server. We chose to use wsgiref, just because
it comes with the Python distribution and so it’s more likely to stay compatible
with our Python code.

The XML-RPC server implementation allows for registering instances of
classes which handle incoming requests. The WSGI server doesn’t allow this
and Soaplib requires the SOAP methods to be in the server class to be able to
create a WSDL file and execute the defined methods. Therefore the executing
class, AtomicServices, is written in such a way that it can be registered as
executing class as well as it can provide methods to a server class. By letting
the SOAP server inherit both the WSGI application and the AtomicServices
class Soaplib can access the SOAP methods while AtomicServices is kept in a
separate class so the XML-RPC can still access it.

3.2.3 SOAP serializers

The Web service methods return results which need to be put in a SOAP mes-
sage for sending it to the client. For this purpose there are serializers. Object
serializer classes declare the structure of an object in terms of their attributes
with their type. This type can be a lower-order serializer again. Soaplib pro-
vides a couple of primitive serializers for basic data types like strings, booleans,

21

integers and arrays. As more complex structures are required, serializers can be
constructed which are composed of other serializers.

As stated explained in the AtomicServices section, Ibidas uses container
objects which can contain any kind of information. Such a container can be
the result of a Web service method executed by AtomicServices. It should be
serialized to pack it into a SOAP message and to send the message back to the
client, i.e. a serializer for the container object should be a variable serializer
which depends on the data in the container. However, when starting a SOAP
server, a WSDL file is published which declares the structure of the available
objects. This means that before any transaction is done, the object structure,
and with that the object serializers, are finalized. Because of this it’s not possible
to introduce serializers depending on the actual data in a container object. As
a result of that a static serializer is created which has the ability to store all
possible data which a container object may contain. This serializer is called the
IbidasMessage serializer.

In the worst case, the whole Ibidas database is contained in a container
object. The serializer for a container object should thus be a serializer for the
whole database. This introduces a dependency: the serializer for a container
depends on the database structure (the database schema). A schematic overview
of the IbidasMessage serializer is provided in figure 3.2. The database is divided
into tables. These tables have fields, which are of a particular primitive type. For
these primitive types Soaplib offers serializers already. Based on those serializers
we construct a complex serializer for each table (which depends on the table
structure). Eventually the IbidasMessage serializer is a complex serializer built
of all table serializers. As the database schema may be changed these serializers
are not provided with Ibidas, but they are generated upon installing.

The generating script contains a mapping of database fieldtypes to Soaplib
primitive serializers. For each table it generates a serializer based on the current
fields and their types. In the end it will construct the IbidasMessage based on
the serializers it has created previously. Because the serializers are static from
that moment on, a change in the database schema means that it’s necessary
to regenerate the serializers because of the dependencies between the database
schema and the serializers.

22

Figure 3.2: Overview of the SOAP serializers which are present in the Ibidas
system. The white boxes contain the primitive types which are supplied by
Soaplib. The IbidasSerializer is a generic serializer for Ibidas objects. It can
contain all kinds of combinations of these primitive serializers. All serializers
depicted on top of the IbidasSerializer extend this generic serializer. These
serializers are table specific and being generated based on the database schema.
Finally the IbidasMessage is the generic serializer which contains all specific
IbidasSerializers. The IbidasMessage is a serializer for container objects.

23

Chapter 4

Using Ibidas in workflows

To show an example application of Ibidas, the scenario of figure 1.2 is executed
like a researcher would do by using the Taverna workbench. The scenario starts
when the researcher has test results which need to be processed. These test
results could, for example, be gene expression data from a microarray test.
Such a microarray test results in a list of genes with an expression value which
is measured in the amount of mRNA bound to the microarray spot.

The researcher is interested if a set of genes satisfying a particular constraint
(e.g. genes with an expression level above a certain threshold) considered in
the microarray test occurs more often than random within a specific group of
genes (e.g. breast cancer related genes). This type of testing is called gene
set enrichment analysis. An overview is provided in figure 4.1. The result of
a gene set enrichment test is a p-value. If the p-value is less than a particular
(user-defined) threshold, the selected gene set is correlated with the reference
gene set and this set is considered enriched.

When the selected set of differentially expressed genes is actually enriched,
it indicates that this gene set contains genes that are possibly related. Dereg-
ulated expression might have to do with the transcription factors binding to
the gene’s binding sites located somewhere in the upstream region of the gene.
Therefore it’s interesting to get all transcription factors for those genes. Af-
terwards the sequences of the transcription factors can be collected and, for
example, compared to see if there are similar specific subsequences which could
be indicating of a cause of different behavior of the transcription factors and
with that deregulated gene expression.

4.1 Example Taverna workflow

For executing the scenario of figure 1.2 a Taverna workflow was created which
uses the Ibidas Web services defined in the AtomicServices class. The com-
plete workflow is given in figure 4.2. Three of the four parameters determine
the input of the gene set enrichment analysis, which is executed by the re-
turn enriched geneset service. The category id refers to an MSigDB category
which we use here to select the reference gene set. The other two parameters,
’selected list’ and ’microarray genes’, come from the microarray test and contain
the gene set of interest and all the genes present at the microarray respectively.

24

Figure 4.1: Overview of the gene set enrichment analysis. The box spans all
microarray probes. The reference gene set is a functional category of genes
against which the set of differentially expressed genes is tested. The resulting p-
value indicates if the overlap (The Area of Interest, or AoI) between the reference
gene set and the differentially expressed genes can occur by pure chance.

When the calculated p-value is below the threshold (which is the fourth param-
eter), then the gene set is considered enriched and it will be passed on to the
next service (get accession names). If not, the result is an empty set and the
workflow result is also empty.

At the get transcription factors from genes service in figure 4.2 TRANSFAC
is used to obtain the transcription factors of the genes of the enriched set. The
tables in TRANSFAC which are used to do this are gene, factor and site. The
accession names are translated to TRANSFAC gene identifiers. After that the
binding sites for every gene can be retrieved from the site table. The factor
table is then used to obtain the transcription factors binding to each of these
binding sites. The result is again returned to Taverna.

Obtaining the sequence data from TRANSFAC is straightforward. These
sequences are stored with the transcription factors in the factor table. As the
get transcription factors from genes Web service already returned the transcrip-
tion factors for the genes of interest, this list is used by the
get TRANSFAC sequences service for selecting the sequences from the table and
returning them.

In the end, this simple workflow shows how to obtain the sequences of tran-
scription factors of genes in which a researcher is particularly interested. With
the Web services provided by Ibidas this can be done in just a couple of steps.
The services used in this scenario are just a couple of the services offered by
Ibidas. For instance, when not working with sequences, but just identifiers,
there is a Web service which can convert these identifiers to their equivalent
identifiers for other databases or Web services. All data which is being returned
can easily be splitted or converted to an output which is suitable either as input
for any other service (e.g. a Web service or an application etc.) or as resulting

25

Figure 4.2: The workflow for the scenario as drawn by the Taverna workbench.
The green blocks are the actual Web service calls We left out the XML-splitters
(as can be seen in the highlight) which are required for input and output con-
version between services. The ’selected list’ parameter contains the genes of
interest (which satisfy a particular constraint). The ’microarray genes’ parame-
ter contains the world, which are all genes considered in the microarray test. The
threshold is used to determine if the selected list occurs more often than ran-
dom within the reference dataset. The reference set is, in our case, an MSigDB
category defined by the category identifier ’category id’. Based on these user-
defined input paramters (depicted on top of the image) this workflow detects if a
set of genes of interest occurs more often than random within another gene set.
If so, it collects the transcription factors which regulate transcription of these
genes and returns the sequences of these transcription factors. The workflow
output ’output’ will contain the results after executing the workflow.

26

Input Value
selected list [CDKN2B, CDK4, CDK6, ZBTB17, CDKN2A,

CCND1]
microarray genes [EP300, CCNG1, CABP1, BMP10, CDKN2B, CDK4,

CDK6, ZBTB17, SAA2, ANG, CDKN2A, CCND1]
threshold 0.05
category id c1:200

Table 4.1: These inputs correspond to the workflow inputs in figure 4.2. Lists
are placed between square brackets. These input values can be used in our
scenario to reconstruct our test results.

output.

4.2 Example Taverna workflow execution

For testing the workflow of figure 4.2 we chose a number of related genes and
added some arbitrary chosen genes to be the microarray genes. We selected a
couple of these related genes to be the selected list input. A commonly used
threshold is 5%, so we adapted this and took 0.05 to be our threshold. As
our reference dataset, we chose to use category c1:200 of MSigDB. This cat-
egory contains genes in the cytogenetic band of chr9p21. An overview of the
parameters and their contents is given in table 4.1.

CDKN2B, CDKN2A, CDK4, CDK6, ZBTB17, CCND1 and CCNG1 are
genes involved with the G1 phase in the cell cycle. This phase is about cell
growth and it is characterized by a great amount of protein synthesis and a
high metabolic rate in the cell. Because of this rate and the large amount of
proteins to be created, it’s a phase which is error prone and sensitive to changes
in the DNA of the genes encoding for these proteins. We chose six of these genes
to be the input of ’selected list’.

The gene set enrichment test done by return enriched geneset results in a
p-value of 5.81472181842e-05, which is below the threshold of 0.05 we’ve set.
Therefore the accession names are collected by the get accession names ser-
vice. This is done because the accessions which were used as input were trans-
lated to Ibidas item identifiers for the enrichment test. After conversion the
get transcription factors of genes services consults TRANSFAC and obtains the
transcription factors for the genes of the selected list parameter. These tran-
scription factors include the oncogenes CBFA2 and MYC and some other known
transcription factors like SP1 which are known to regulate these genes. After
that the get TRANSFAC sequences service uses these transcription factor ac-
cessions to obtain their sequences. We obtained 113 FASTA sequences in total
of these transcription factors.

The workflow SCUFL file used for this test can be found in the examples
folder in the subversion repository of Ibidas, located at
https://gforge.nbic.nl/svn/ibidas.

27

Chapter 5

Discussion and future work

This chapter will first discuss some issues which arised during the development
of the features discussed in this thesis. Afterwards some future work related to
these will be proposed to further improve Ibidas.

5.1 Discussion

5.1.1 Usergroup resolution

There are various ways of implementing a hierarchy in the database. As already
suggested a parent-child structure is seen often as the most natural way of
storing a hierarchy. When running Ibidas for multiple users (in a mode where
authentication is required), resolving the usergroups to obtain all the user’s
rights is an operation which is done with every database request. Changing
or inserting data in this usergroup requires many key changes in this table.
Adding a usergroup a to another usergroup b requires getting all user rights
from usergroup b (which can also have subgroups) and adding them one by one
to all users of usergroup a. This can be quite a complicated operation, which
fortunately doesn’t occur often. Therefore resolving user rights should be a
one-pass operation to keep the query times low. Although recursive queries are
not an option in such structures, we considered alternatives.

One of them was suggested at the MySQL dev site[3] which uses pointers for
preorder traversal through a hierarchy. Searching this structure might be fast,
but inserting a node which should not be placed at the end of the tree requires
shifting of indices to maintain the preorder advantage. This requires too many
unnecessary key changes in the database which also brings along unnecessary
risks of errors and possibility of data corruption.

The Oracle database allows for travelling through a hierarchy by using a
’connect by’ clause which allows for parent-child relations within a table in such
a way that the child is a parent in its turn of another row. As a connect by clause
is Oracle specific and its not part of the official SQL standard, PostgreSQL will
not adapt such a clause. However, the WITH-clause[16] should work more or
less in the same way as connect by in Oracle. Its part of SQL:1999 and later
and is present in PostgreSQL 8.4. This version was released the 1st of July
2009. By using the WITH-clause, the usergroup hierarchy will be stored in the
more natural parent-child structure. Insertion or modification of this structure

28

currently is an intensive operation which will be made much easier by adopting
the with clause. A comparison should be made between the execution speed
of user rights resolution performed the way we currently do it and the speed
when using a with clause. If the resolution is as fast or faster, the with clause
should be adapted. Although this clause is particularly interesting in recursive
queries like our usergroup hierarchy, for now we want to also support Postgres
databases prior to version 8.4.

5.1.2 Joining order

When performing our filter we chose to first create a list of sets which the user
has access to. From there on this view, the mydatasets view, is used for creating
the final results. This way the filter is performed at the beginning of the query
execution. Another way is to not look at users when executing the query and just
retrieve the data. The join with users will be done later when the sets are joined
with the items. This way the filter is applied at the end of the query execution.
This is likely to impose larger memory usage than the previous way as more
records (and larger results) are put into memory buffers. The queries are less
complex though, which might save processor load compared to the query where
the sets are rst restricted to user. Perhaps the extra memory usage could be
minimized by having a smart way of caching of intermediate results. Basically
it seems that the query is a trade-off between memory usage and CPU load.

5.2 Future work

This section will introduce some thoughts on future work to improve Ibidas.
The ideas range from about reducing computation time to increasing popularity
among researchers. They are based on experiences during implementation of the
discussed features and trends in the development of the WWW.

5.2.1 RESTful transferring

We have implemented the most popular Web service protocols XML-RPC and
SOAP. However, these protocols are ’active’ protocols which send data in pack-
ages to a client. An increasing popular approach is REST[15] (so-called RESTful
approaches). According to REST, everything is considered a resource which has
a representation. These resources are identified through a URI. They can be
called through a URL e.g. /data/msigdb/c1 which would show all data con-
tained in the first category (c1) of MSigDB.

The main benefit of REST over SOAP and XML-RPC is the way of returning
data. REST uses the HTTP or HTTPS protocol without having any type of
vocabulary (like the XML tags) required to transfer data which does not have to
be in a pre-defined specific structure (like SOAP). Because of this, the envelope
(SOAP) and tags (XML-RPC and SOAP) are not necessary and this means
that there’s less overhead when transferring the data to the client. The larger
the dataset to be transferred the larger the advantage of REST becomes. As
Ibidas contains a lot of data we expect that a RESTful approach increases the
data transferring speed of our Web services significantly.

29

5.2.2 Authenticated Web services

Currently Web services are only offered for datasets which do not have lim-
ited access. Private datasets cannot yet be transferred to be used in external
applications. To realize this, authentication should be possible in Web service
sessions. Currently such an initiative is being implemented by the people at
SARA[6]. They are developing a way to use login credentials (from their grid)
with SOAP messages in Taverna.

For us to be able to utilize this a REST interface should be created as already
suggested earlier. Next to that the login credentials for the Sara grid should be
incorporated somewhere in Ibidas to use the REST authentication with Taverna.

5.2.3 Ibidas sessions

In our scenario we’ve seen that when calling an Ibidas Web service, we get back
the results of that service. When using this data as input for another Ibidas Web
service this is not the optimal way as we are retrieving the data and sending it
back again. Therefore when using multiple Ibidas Web services after each other,
a session should be created. This allows for keeping the output of a method at
the Ibidas instance and using it directly as an input for the next service. Instead
of transferring data, a pointer should be generated which identifies either the
physical stored data or the query at the Ibidas instance. This pointer should
be the parameter which is transferred between client and server. This saves a
lot of time and unnecessary data transferring. A session should start when an
Ibidas Web service is called and it should stop when the last Ibidas Web service
of that series is executed. Only when the session stops, data is actually returned
to the client.

Although this saves time for executing a workflow, it increases the amount of
data present at the Ibidas instance if data resulting from a query is stored. For
computations, extra processor load is implied. These are factors which should
be taken into account when creating such a feature.

5.2.4 JSON

JSON[7] stands for Javascript Object Notation. It is an alternative data inter-
change format for XML supported by practically all programming languages.
It has a kind of flat representation which makes it light-weight. Python 2.6
and later includes a JSON encoding and decoding module by default. JSON is
gaining more and more popularity on the Web for presenting data in an easy
way. From a web page, Web services can also be called. A Web interface can be
built which offers all possible offline Ibidas operations through Web services and
visualizes the JSON data. This might convince more users to use and support
Ibidas and offers them to test it out online before using our Web services in
their applications.

30

Bibliography

[1] Cytoscape Consortium. http://www.cytoscape.org/.

[2] W3C consortium WSDL specification. http://www.w3.org/TR/wsdl.

[3] MySQL dev. http://dev.mysql.com/tech-resources/articles/

hierarchical-data.html.

[4] PostgreSQL explain. http://www.postgresql.org/docs/8.3/static/

sql-explain.html.

[5] Python Software Foundation. http://www.python.org/dev/peps/pep-0318/.

[6] SARA grid computing. http://www.sara.nl/.

[7] JSON. http://json.org/.

[8] MSigDB. http://www.broadinstitute.org/gsea/msigdb/.

[9] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil
Wipat, and Peter Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

[10] PostgreSQL Query Optimizer. http://www.postgresql.org/docs/8.3/

interactive/geqo.html.

[11] Oracle. http://www.oracle.com.

[12] PGACL. http://code.google.com/p/pgacl.

[13] PostgreSQL. http://www.postgresql.org.

[14] SE PostgreSQL. http://code.google.com/p/sepgsql.

[15] REST. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[16] PostgreSQL RFP. http://archives.postgresql.org/pgsql-hackers/

2008-02/msg00642.php.

[17] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T.
Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker.
Cytoscape: A software environment for integrated models of biomolecular
interaction networks. Genome Research, 13(11):2498–2504, 2003.

[18] Soaplib. http://trac.optio.webfactional.com/.

31

[19] Aravind Subramaniana, Pablo Tamayoa, Vamsi K. Moothaa, Sayan
Mukherjeed, Benjamin L. Eberta, Michael A. Gillettea, Amanda
Paulovichg, Scott L. Pomeroyh, Todd R. Goluba, Eric S. Landera,
and Jill P. Mesirova. Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-wide expression profiles. PNAS,
102(43):15545–15550, 2005.

[20] Taverna. http://taverna.sourceforge.net/.

[21] TRANSFAC. http://www.gene-regulation.com/pub/databases.html.

[22] PostgreSQL views. http://www.postgresql.org/docs/current/

interactive/tutorial-views.html.

32

