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ABSTRACT

Online advertisement is a multi-billion dollar industry that constitutes a primary source
of income for most publishers offering free content on the Web. Online behavioural
advertisement refers to the practice of serving targeted ads to online users based on
their potential interests. In order to infer these interests, online advertisers aggregate
and process vast amounts of behavioural data collected from the browsing activities of
Internet users. Until recently, online advertisers have been using a device-centric ap-
proach to studying user behaviour and delivering targeted ads. With the development
and widespread adoption of smart devices, it has become commonplace for a person to
own and browse the Web from multiple devices, and online advertisers have been quick
to adapt.

Cross-device tracking (CDT) constitutes the practice of identifying and tracking the
user of a device rather than the device itself. This is usually achieved by grouping devices
based on the likelihood that they belong to the same user. By employing CDT, advertis-
ers are able to build more comprehensive user profiles based on a user’s overall online
behaviour, and serve advertisement tailored to a user’s interests on all of their devices.

While these online advertising practices greatly benefit both advertisers and their
clients, the privacy of online users is compromised by the amount and nature of the
data collected in the process. Various solutions have been proposed over the years for
performing online behavioural advertisement in a privacy-preserving manner, while no
such privacy-conscious technological alternatives have been designed to address CDT
practices, even though the data collected for the purpose of CDT has considerable over-
lap with the data collected for serving targeted ads.

In this thesis, we aim to offer a technological solution to the privacy-issues posed
by the collection and processing of customer data for the purpose of cross-device track-
ing. To this end we design PCDT, a protocol that uses fully-homomorphic encryption
and keyed hash functions to implement both deterministic and probabilistic CDT tech-
niques that operate on encrypted data.

PCDT operates in a two server setting, where both servers engage in privacy-
preserving computations to perform CDT, while simultaneously concealing the secret
device data from each other through cryptographic means. The security of PCDT is
based on the semi-honest security model, where parties attempt to learn as much as
possible from the information presented to them, but do not deviate from the protocol.
PCDT performs deterministic CDT in a privacy-preserving manner by concealing the
relevant device data using a keyed hash function. The deterministic hashes allow for the
fast association of devices through deterministic CDT, while the secrecy of the hashing
key ensures the secrecy of the plaintext data. To perform privacy-preserving probabilistic
CDT, PCDT uses fully-homomorphic encryption to train and evaluate gradient boosting
decision tree models on encrypted device data. To the best of our knowledge, PCDT is
the first protocol designed to perform privacy-preserving CDT.
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1
INTRODUCTION

Online advertisement is multi-billion dollar industry that focuses on conducting adver-
tisement campaigns through the means of the Internet. The major advantages of online
advertising over traditional means of advertising (e.g. television) come from allowing ad-
vertisers to tailor which ads are displayed for which Internet users based on their individ-
ual preferences, as well as measure the success of individual ad campaigns by counting
how many users click on an ad (click-through), or how many users have actually spent
money as a result of the ad (conversion rate) [1]. However, while these online advertising
practices greatly benefit advertisers, they come at the detriment of privacy for Internet
users.

The practice of targeted advertisement requires vast amounts of user data, which are
collected by and shared between dozens of parties within the advertisement ecosystem,
often without the user’s knowledge or consent [2, 3]. This data contains all sorts of sen-
sitive information, such as a user’s Internet browsing behaviour, location, products pur-
chased, religious or political beliefs, etc., and constitutes a serious threat to the privacy
of Internet consumers [4].

In recent years, following the proliferation of smart devices, such as smartphones,
tablets, smart TVs, etc., it has become commonplace for people to browse the Inter-
net using multiple devices. This has caused a shift in the ad-targeting paradigm from a
device-centric approach to a user-centric one [18]. As a result, online advertisers engage
in the process of cross-device tracking, which involves various techniques of identifying
which devices belong to the same user. The knowledge that a group of devices repre-
sents a single potential customer allows advertisers to build more comprehensive user
profiles based on their overall online behaviour, and serve advertisement tailored to a
user’s interests on all their devices.

Various solutions try to address the privacy issues posed by online advertisement,
ranging from outright blocking ads from being displayed on user devices [5], to privacy-
preserving alternatives of existing practices [7, 10–12], while regulators are primarily
concerned with security and transparency [55, 56]. With regards to cross-device tracking,
ad blockers do have functionality that prevents tracking to some extent [6], and regula-
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tors are taking notice of the practice [20], but no privacy-preserving solutions exist in
literature as of the writing of this thesis. This work aims to address that gap and provide
the first privacy-preserving protocol for performing cross-device tracking.

1.1. CROSS-DEVICE TRACKING

Cross-device tracking (CDT) refers to the process of tracking a user across multiple de-
vices in order to construct a cohesive user profile that is linked to all devices owned by
said user. The core building block of CDT is the device association graph [14], in which
nodes representing individual devices are linked based on the likelihood that said de-
vices belong to the same user. Using this graph, devices can be clustered into user pro-
files based on various techniques. Multiple technologies are employed in performing
CDT, such as tracking cookies, data mining, machine learning, and even ultrasound sig-
nals [15, 16, 18, 19, 69, 70]. Based on the techniques involved, CDT is divided into two
categories, deterministic CDT and probabilistic CDT [20].

Determinitic CDT is primarily performed by having a user log into an online account
from multiple devices. When a user logs into a webservice account, e.g. email or so-
cial media account, on both their smartphone and their desktop computer, it informs
the service provider that both devices belong to the same user. Alternatively, websites
can track users even without them signing in, by matching the personally identifiable
information (PII) they input when signing up for an account or a subscription, shopping
online, ordering food, or filling in a questionnaire. This information may include email
addresses, home addresses, phone numbers, credit card numbers etc.

Probabilistic CDT is performed by using statistical analysis to analyse data that has
not been specifically inputted by the user, but is instead inferred from the device or
communication channel used to access the webservice. This data includes IP addresses,
location data, browsing history, temporal information such as location or IP addresses
over time, and terminal information such as browser version, window dimensions, op-
erating system, device model, screen dimensions, etc. IP addresses are given particular
importance, as two devices sharing an IP address is the primary probabilistic indicator
that they might belong to the same user [64, 65, 69]. As none of the information used
in probabilistic CDT is unique, a more involved analysis is required than in the case of
deterministic CDT, usually in the form of machine learning models [69, 70].

While deterministic CDT is the more precise and reliable of the two, probabilistic
CDT is more covert, and can supplement a deterministic approach by tracking users
even when they do not log in or provide PII [15].

The main incentive for the development of CDT technologies lays in their utility in
the field of online advertisement, namely enabling advertisers to monitor user behaviour
and deliver targeted advertisement across devices. However, online advertisement is not
the only use case for CDT. The fields of fraud detection and account security can also
benefit from the use of CDT [20]. For example, tracking which devices belong to a user
would enable companies to detect when a consumer is using a new device and perform
a more thorough authentication procedure than in the case of known devices.
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1.2. PRIVACY ISSUES
The downsides of CDT practices involve lack of transparency, privacy breaches, and the
collection and aggregation of private user information [20].

The lack of transparency stems from the fact that CDT is not obvious from a user
perspective, especially in the case of probabilistic CDT, and webservice providers rarely
inform their users about the practice [13]. Furthermore, users are largely unaware of
the scope and capabilities of CDT practices [21]. To address this issue, the FTC suggests
that organisations disclose their use of CDT technologies in their privacy statements, be
transparent with the types of data being collected for the procedure, and even give their
users the option to opt out.

A major privacy concern regarding CDT comes from the interaction between CDT
and online behavioural advertising, where advertisement tailored based on online ac-
tivities conducted on private devices can appear on public or shared devices (e.g. home
desktop, work laptop), disclosing private information [22, 23]. In regards to this issue,
FTC recommends that online advertisers refrain from engaging in CDT on sensitive top-
ics such as health, financial status, or children information.

Finally, in a similar vein as online behavioural advertisement, CDT practices cause
privacy concerns simply from the collection and aggregation of private user informa-
tion that makes CDT possible. This data can be quite sensitive, involving names, phone
numbers, email addresses, home addresses, location data, Internet browsing history, etc.
This data is collected, aggregated and stored by various parties within the online adver-
tisement ecosystem, which poses serious security risks. In this case, FTC simply requests
companies to only keep data that is necessary for business purposes, and to properly se-
cure the data they do keep.

1.3. RESEARCH GOAL AND MOTIVATION
Most works that approach CDT from a privacy-conscious perspective are concerned
with detecting it [16, 18], preventing it [6, 16], or measuring its impact on user privacy
[13]. In this paper, we address the third privacy issue posed by cross-device tracking,
namely the collection of user data required to perform CDT, from a technical perspec-
tive. Inspired by the works in privacy-preserving data-mining [29, 30, 32], and especially
by Helsloot’s work on privacy-preserving behavioural advertising [7], we aim to design a
system where user data is collected in encrypted form, such that CDT can still be per-
formed without compromising user privacy. The main goal of our research is to answer
the following question:

How can a system become aware of which devices that access an online service
are used by the same user, such that no party has access to a user’s data besides
the user who owns it ?

Based on the main research question, we formulate the following sub-questions:

1. How can user data be made available for the purpose of CDT, without disclosing
the actual meaning of the data ?
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2. How can deterministic CDT be performed without knowledge of a user’s person-
ally identifiable information ?

3. How can probabilistic CDT be performed without knowledge of a user’s inferred
data ?

4. How efficient, and therefore practical, is privacy-preserving CDT ?

The primary motivation behind our work is to limit the impact of CDT on the privacy
of online users. By providing a privacy-preserving technological alternative to existing
CDT practices, we aim to remove the need of online advertisers and service providers to
collect and store sensitive user information for the purpose of cross-device tracking.

The impact of data leaks would also be mitigated as a result of user data being stored
in a format that preserves its secrecy even from the organisations storing it. Addition-
ally, our design would allow organisations to conduct their CDT-related activities while
complying with data collection regulations.

Furthermore, the existence of practical privacy-preserving technologies for both on-
line behavioural advertising and CDT can give policy makers a better case when pushing
for more privacy-conscious practices from online marketers and service providers.

1.4. OUR CONTRIBUTION
In this thesis we present PCDT, a protocol for performing privacy-preserving cross-device
tracking. PCDT operates in a two-server setting, where a privacy service (PS) assists
a tracking service (TS) with privacy-preserving computations in order to perform CDT
over homomorphically encrypted data. The security of PCDT is based on the semi-
honest security model, where parties attempt to learn as much as possible from the in-
formation presented to them, but do not deviate from the protocol.

The main cryptographic primitives employed by PCDT are the BGV fully-homomor-
phic scheme [34], which allows for the computation of arbitrary binary circuits over en-
crypted data, and the keyed hash function AES-CMAC [46], which we modify to compute
hashes over homomorphic ciphertext space.

The protocol is comprised of three main algorithms: an algorithm that allows devices
to update the encrypted data used to perform CDT, an algorithm that updates a device
association graph based on encrypted data received from users, and an algorithm used
to train a prediction model on encrypted data. The prediction model trained by PCDT
is used to perform probabilistic CDT when updating the association graph. The device
association graph produced by the protocol is constructed using both deterministic and
probabilistic CDT.

Deterministic CDT is performed by hashing each PII item supplied by a device and
using simple table-lookup operations to match hashes between devices instead of the
actual PII. This construction is inspired by the searchable encryption scheme proposed
by Bellare et al. [37], which uses hashes of the search keys to allow for sublinear search
times, but does not share the same vulnerability to table-lookup attacks, since TS does
not have the key under which the hashes are computed. To keep the plaintext data hid-
den from both servers and safe from table lookup attacks, the hashes are computed using
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a modified version of AES-CMAC, which takes as input a BGV-encrypted string s and a
key k, and outputs the homomorphic ciphertext encrypting the output of AES-CMAC
given s and k. As a result, PS learns neither the initial strings nor the resulted hashes,
while TS obtains the deterministic values which can be searched for in constant time,
but cannot compute hashes of its own to perform a table lookup attack as it does not
know the hash key.

Probabilistic CDT is performed by evaluating a gradient-boosting decision tree model
on homomorphically encrypted data. The choice of machine learning algorithm was
made based on existing research [69, 70] and winning solutions for CDT-focused data
mining competitions [64–68]. The evaluation and training algorithms are based on exist-
ing constructions for evaluating [73] and training [72] decision trees over homomorphi-
cally-encrypted data, modified to fit the setting of PCDT, and use the BGV encryption
scheme and the comparison algorithm proposed by Cheon et al. in [47]. The use of
homomorphic encryption keeps the user data hidden from PS, while a symmetric en-
cryption scheme is used to hide both the data and the machine learning model from
TS.

One downside of our approach to privacy-preserving probabilistic CDT is that TS
cannot evaluate the output of models that were not produced by the training algorithm
of PCDT, nor can TS learn the plaintext of the trained model. Both design decisions
were made to prevent TS from learning information about the plaintext user data from
the model output, by tracing the decision path in reverse and finding out how values
in the input vector compare against the threshold values in the tree nodes. This is a
consequence of the fact that decision trees are white-box models, so there is a simple,
observable path through the model that connects each input to its respective output.

Overall, this thesis offers three contributions to the field of privacy-preserving cross-
device tracking:

1. PCDT, a protocol for constructing device-association graphs in a privacy-preserving
manner, using both deterministic and probabilistic CDT.

2. An algorithm for evaluating the AES-CMAC function over BGV-encrypted data,
which is used to perform fast searches on encrypted data in both deterministic
and probabilistic privacy-preserving CDT.

3. Privacy-preserving algorithms for training and evaluating gradient-boosting regre-
ssion-tree models on encrypted data using BGV fully-homomorphic encryption,
for the purpose of privacy-preserving probabilistic CDT.

Separate from our contributions to privacy-preserving CDT, our research has also led
us to provide a contribution to the field of searchable encryption in the form of MUSE.
MUSE is a multi-user searchable encryption scheme that uses the homomorphic eval-
uation of AES-CMAC to offer sub-linear complexity for searching over encrypted data.
As MUSE is unrelated to our work on privacy-preserving CDT, we offer the details of this
scheme in a separate paper, which we append to this thesis in Appendix A.
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1.5. THESIS OUTLINE
Section 2 gives an overview of security-related works in the field of cross-device tracking,
as well as relevant works in the field of privacy-preserving technologies, on the topics
of privacy-preserving behavioural advertisement, searchable encryption, and privacy-
preserving data-mining. In section 3, we describe the building blocks used in the con-
struction of the PCDT protocol, namely the underlying cryptographic primitives, the
techniques used for cross-device tracking, and the machine learning algorithms, as well
as their privacy-preserving counterparts. Section 4 gives a detailed description of the
PCDT protocol, the setting in which the protocol operates, and the algorithms that com-
prise it. In section 5, we analyse the security and performance of our construction, with
section 5.1 containing a security analysis of PCDT, and section 5.2 containing both a the-
oretical performance analysis of the algorithms that comprise PCDT, as well as an em-
pirical analysis based on a C++ implementation of PCDT procedures, constructed using
HElib [52]. Finally, section 6 contains a discussion on the properties and capabilities of
PCDT, as well as possible future improvements.

In addition to the main body of the thesis, which focuses of privacy-preserving CDT,
a paper on a multi-user searchable encryption scheme that makes use of the homomor-
phic evaluation of AES-CMAC is presented in Appendix A.



2
RELATED WORK

The existing literature that approaches CDT from a privacy-conscious perspective fo-
cuses on observing the effects of cross-device tracking on user privacy [13, 16, 20], mea-
sure the extent to which CDT technologies are employed on the Internet [13, 16–18], and
evaluate the effectiveness of available countermeasures against online trackers [6, 16].

To the best of our knowledge, this thesis constitutes the first study into offering
privacy-preserving technological alternatives in order to reduce the impact of CDT prac-
tices on the privacy of Internet users. Since no existing prior work explores this specific
subject, we draw inspiration from research into other privacy-preserving technologies,
primarily from the field of privacy-preserving online advertisement, a field we consider
to be closely related to privacy-preserving CDT.

Section 2.1 offers an overview of existing works that study CDT practices and their
impact on the privacy of online users, while section 2.2 describes various works on
privacy-preserving solutions, specifically in fields of privacy-preserving online advertise-
ment, searchable encryption, and secure machine learning.

2.1. DETECTING AND PREVENTING CDT
In 2017, the U.S. Federal Trade Commission (FTC) published a report [20] that describes
the practice of online cross-device tracking, outlining both the benefits and security con-
cerns posed by the practice, and offering suggestions on how to mitigate the impact of
CDT on the privacy of online users. The report offers a broad overview of the techniques
involved in both deterministic and probabilistic CDT, and lists the main use cases of CDT
in the fields of online targeted advertisement, fraud detection, and account security. The
authors also offer insight into the potential security issues posed by CDT practices, par-
ticularly the threats to user privacy that emerge from the use of CDT in the field of online
behaviour advertisement.

One such issue comes in the form of privacy leaks from online targeted ads appear-
ing on shared devices (e.g. work laptop, family desktop), when the ads target online
behaviour conducted on private devices. Such events constitute a significant threat to
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user privacy as they can leak sensitive information about a person’s financial status, ide-
ological views, sexuality, or medical information [22, 23]. In regards to this issue, FTC
recommends that online advertisers refrain from engaging in CDT on sensitive topics
such as health, financial status, or children information.

The report also mentions the specific issue this thesis aims to address, namely the
large amounts of user data collected and stored by the organisations engaging in CDT
practices. As this data contains various types of sensitive information, such as home
addresses, location data, and Internet browsing history, it infringes on the privacy of
users simply by being available to the organisations that collect it, who may be willing
to sell it or share it with additional parties [24]. Additionally, these large collections of
user data are also at risk of being leaked and becoming public or falling into the hands of
malicious parties [25–28]. To address this issue, FTC recommends that companies only
keep data that is necessary for business purposes, and take proper security measures
regarding the storage and handling of the data they do keep.

A third security issue identified in the report constitutes the lack of transparency for
CDT practices. The authors remark that CDT, and especially probabilistic CDT, is not ob-
vious from a user perspective, and that organisation that engage in CDT practices rarely
make this fact apparent to their users. Furthermore, the controls available to users for
opting out of being tracked across devices are limited, do not provide full protection,
or rely on self-regulating practices. The report bases its claims on a paper published by
FTC staff, in which Brookman et al. [13] conduct a study of cross-device tracking prac-
tices within the online advertisement ecosystem, and provide insight into the prevalence
of these techniques, as well as their transparency from a user perspective.

The study evaluates 100 popular websites for activities that could facilitate cross-
device tracking, such as the collection of behavioural data or personally identifiable in-
formation, the use of third-party cookies, or known third-party trackers. The paper is
concerned with both deterministic and probabilistic CDT, as the study accounts for login
sessions, the amount of personally identifiable information collected by each website,
as well as device-identifying cookies or device fingerprinting techniques used in prob-
abilistic CDT. The data involved in the study is collected by using two virtual devices to
simulate the behaviour of a user browsing multiple websites on two distinct devices. The
data is collected over multiple runs in which the virtual devices are used to sign up for
various email and social media accounts and simulate both authenticated and unau-
thenticated users. The results of the study show significant usage of third-party trackers,
which coordinate with each other through the use of third-party cookies. The authors
identify six organisations that enable user login on their platforms, while also collecting
large quantities of data from third-parties across multiple devices. Out of the 100 web-
sites considered by the study, 34 were found to share data used for probabilistic CDT
with third-parties, and 16 were found to share personally identifiable information with
third parties, which is used in deterministic CDT.

The paper also explores how transparent organisations that engage in CDT are about
their practices. By reviewing the privacy policies of the 100 websites involved in the
study, the authors find that only three websites specifically mention third-party cross
device tracking, and 73 websites reserved broader rights for the usage and sharing of
non-personally identifiable information, which is likely used primarily for online be-
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havioural advertisement practices, but can also be used for probabilistic CDT. Addition-
ally, 67 websites provided information on how to limit the use of behavioural data for ad
targeting, but few mention controls for limiting CDT. Out of 100 websites, only 50 men-
tion the "Do Not Track" header, out of which 22 simply state that they do not honor the
setting, while another 26 state that the standard is still being worked out by the industry.

Roesner et al. [16] perform an empirical study of CDT practices by observing the
behaviour of online trackers on a sample of 1000 websites. The authors develop a classi-
fication framework that categorizes tracker behaviour based on the type of interactions
between a user and a tracking service. Based on this framework, the authors design a
Firefox add-on called TrackingTracker that automatically detects and classifies trackers
on websites visited by the user.

Out of the 500 most popular websites considered for the study, the authors find that
445 of them embed at least one cross-site tracker, with an average of 7 trackers per web-
site. Furthermore, the study counts a total of 524 unique trackers, the most popular of
which being Google Analytics, which appears on almost 300 of the 500 domains, and
Doubleclick (also owned by Google), which can track users across almost 40% of these
500 most popular websites.

The paper also explores the utility of various controls that users can employ to at-
tempt to limit cross-device tracking. While none of the controls considered in the ex-
ploration are able to completely prevent CDT, third-party cookie blocking and disabling
JavaScript were found to be the most effective means of thwarting tracking behaviour.
Third-party cookie blocking is obviously effective against third-party trackers, but does
not protect users against trackers visited directly, i.e. when the tracker service is also
the website owner. While disabling JavaScript is effective against trackers that use API
calls to set and read cookies, it is circumvented by trackers that control cookies via HTTP
headers, and comes with the major downside of rendering a lot of modern websites un-
usable.

In the same paper, Roesner et al. also introduce a new defense against CDT in the
form of a Firefox add-on called ShareMeNot. This add-on combines the various defense
techniques considered by the study with a blacklist of known tracker domains to provide
an effective measure for countering online tracking.

In [17], Acar et al. introduce FPDetective, a framework for detecting web-based fin-
gerprinting. Device fingerprinting is a fundamental technique in the field of cross-device
tracking, since in order to track a user across multiple devices, a tracker must first be able
to recognize said device across multiple website visits.

The main forms of fingerprinting studied in the paper are JavaScript-based finger-
printing and plugin-based fingerprinting. JavaScript based fingerprinting uses JavaScript
to capture various properties about a device, such as device model, OS, browser version,
screen dimensions, available fonts, etc.; which in combination provide sufficient infor-
mation for a tracker to distinguish between devices. Plugin-based fingerprinting oper-
ates in a similar way to its JavaScript counterpart, except that the information used for
fingerprinting is collected through plugin applications such as Adobe Flash or Java.

Using FPDetective, Acar et al. perform a crawl of one million popular websites and
find a lower bound of 404 websites that use JavaScript-based font-probing to fingerprint
devices. Furthermore, the authors identify a total of 13 tracking services that provide the
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scripts used to perform this type of device fingerprinting.

In [18], Solomos et al. introduce Talon, a framework for detecting and measuring
probabilistic CDT. The detection method involves the use of artificial online personas
that mimic user behaviour on various devices, followed by the collection and processing
of targeted advertisement for the purpose of detecting CDT.

The artificial users are constructed based on the online behaviour of real-life users
and categorized into various experimental setups based on characteristics such as brows-
ing interests, the duration of browsing, or focused vs diverse browsing behaviour.

When performing an experiment, the framework makes use of three devices, out of
which two use of the same public IP address to facilitate probabilistic CDT, while the
third device acts as control by using a different public IP and mimicking the behaviour of
one of the other devices to establish a baseline set of ads which is then compared against
the ads received by the paired devices. Various machine learning techniques, such as
random forests and linear regression, are used to evaluate the collected advertisement
data and infer whether or not the two test devices were linked using probabilistic CDT.

The experiments performed by Solomos et al. measure the effect of multiple fac-
tors on the performance of probabilistic CDT. From the results of these experiments, the
authors conclude that shared IP addresses play an important role in probabilistic CDT,
while other factors such as browsing interests and even the time and duration of online
activity also influence CDT. Furthermore, the experiments reveal that browsing in incog-
nito mode reduces the effects of CDT, but does not completely remove them. One spe-
cific online activity, namely the browsing of online vendors, was found to significantly
increase the likelihood of the two test devices to be linked through CDT, as those organ-
isations are among the most interested in tracking their users, mainly for the purpose of
online targeted advertisement.

Merzdovnik et al. [6] conduct a study into the extent to which CDT technologies
are employed on the Internet, as well as the effectiveness of existing tools for prevent-
ing online tracking. The authors analyse over 100.000 popular websites and more than
10.000 Android applications to examine the techniques employed for CDT, as well as
their reach and limitations. The authors note that a small number of companies are re-
sponsible for tracking users across the majority of the websites involved in the study.
This is a direct consequence of most websites relying on third-party services to perform
CDT, usually the same parties involved in serving online advertisement. Merzdovnik et
al. also conduct a study into the effectiveness of various tools for preventing CDT, pri-
marily network-based blocking and adblocker browser extensions.

Network-based blocking is performed by blocking devices on a network from access-
ing certain (sub)domains involved in performing CDT. This method offers the advan-
tage of blocking CDT regardless of device or application, i.e. not just web browsers, but
is limited in its degree of finesse. More precisely, if the tracking service uses the same
(sub)domain as a target webservice, network-based techniques cannot block the tracker
without also denying the user access to the webservice.

Following their analysis into the effectiveness of various browser extensions with
track-blocking functionality, Merzdovnik et al. conclude that a small number of such
extensions are capable of blocking the majority of tracking services, but none offer com-
plete protection. The authors also note a lack of available tools for preventing mobile
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tracking, i.e. tracking users through smartphone applications.

2.2. PRIVACY-PRESERVING SOLUTIONS
In this section we give an overview of related works in the field of privacy-preserving so-
lutions, and focus specifically on the fields of privacy-preserving online advertisement,
searchable encryption, and secure machine learning, as they relate to our study.

2.2.1. PRIVACY-PRESERVING ONLINE BEHAVIOURAL ADVERTISEMENT

Toubiana et al. [12] offer a browser-based solution to the privacy concerns involving
online behavioural advertisement. The authors introduce Adnostic, a browser exten-
sion that runs the behavioral targeting algorithm on the user’s browser by processing
the browser’s history. When a user visits a web page containing an ad slot, the browser
extension contacts an advertising network to request a list of multiple advertisements
based on the page content. The extension then selects the most relevant advertisement
from the downloaded list by comparing the topics associated with each advertisement
against the locally-constructed user profile. To report which advertisement was viewed
or clicked on by a user, Adnostic uses a voting system based on homomorphic encryp-
tion. This way, user-ad interactions are reported to the advertisement network without
revealing user interests. While Adnostic reduces the amount of data advertisement net-
works collect about their users, it still reveals a portion of the users’ browsing behaviour
by allowing the advertisement network to know the web pages on which ads were re-
quested.

Guha et al. [11] design PrivAd, a privacy-preserving protocol for online behavioural
advertisement which uses a semi-honest anonymizing proxy that interfaces between
users and the advertisement network. The client software of PrivAd makes advertise-
ment requests to the advertisement network in the form of subscriptions that cover
broad interest keywords and broad non-sensitive demographics. The advertisement
network replies with sets of advertisements that match the keywords and demograph-
ics received from the client. These ads are filtered and stored by the client-side software,
and the ones selected as relevant are shown to the user. Communication between the
client and the advertisement network is anonymized by the proxy, whereas the contents
of the communication are hidden from the proxy by means of public-key cryptography.
If a user has multiple interest categories, these are separately reported in a manner that
prevents linking interests to the same user.

In [10], Backes et al. introduce ObliviAd, a privacy-preserving protocol for online be-
havioural advertisement that uses secure hardware-based private information retrieval.
ObliviAd makes use of local user profiles that consist of collections of keywords which in-
dicate the categories of ads the user may be interested in. The protocol uses an untrusted
broker server, which acts as a matchmaker between multiple advertisers and Web pub-
lishers, and uses a secure coprocessor to match ads with the encrypted keywords re-
ceived from the users. To prevent the broker from knowing which advertisement(s) were
retrieved by which user, which would leak information about the user profiles, ObliviAd
uses an oblivious RAM protocol to hide the access pattern of the secure coprocessor on
the advertisement storage.
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To report advertisement feedback, such as views and clicks, ObliviAd attaches an
encrypted token signed by the secure coprocessor to each ad. These tokens contain in-
formation about their respective ads along with a timestamp. When an user interacts
with an ad, it sends the token back to the broker, who uses the secure coprocessor to
decrypt the ad and, by mixing it with tokens received from other users, obtains a list of
advertisement interactions without knowing which users interacted with which ad. The
authors note that a malicious broker could derive information about a user’s profile by
only allowing the tokens received from that user to reach the secure coprocessor. While
anonymous channels would solve this issue, Backes et al. do not recommend their us-
age due to their associated computational costs and network delays. Instead, ObliviAd
assumes that brokers behave rationally, and prioritise the monetary gains of processing
advertisements over the possibility of associating ads to specific users.

Leon et al. [7–9] offer two protocols for performing privacy-preserving online be-
havioural advertisement, AHEad and BAdASS, that involve the training and evaluation
of a logistic regression machine learning model on encrypted user data.

The first protocol, AHEad, which serves as inspiration for the PCDT protocol pre-
sented in this paper, makes use of a semi-trusted non-colluding third party called a
Privacy Service Provider (PSP), which assists the Web publishers in performing privacy-
preserving computations. The protocol uses a two-party threshold variant of the
additively-homomorphic Paillier encryption scheme to encrypt the user data in a way
that allows the evaluation and training of the logistic regression model.

Within the setting of the protocol, ad publishers use the regression model to predict
a user’s response to various ad campaigns, and rely on PSP to compute which adver-
tisement will generate the most income that among the ones associated with a positive
response. The advertisement itself is encrypted under the public key of the user in order
to keep it private from the PSP.

The logistic regression model is trained on the actual responses made by a user on
various ads, labeled as 1 in the case of a click, or 0 in the case of no click. In order to keep
the user-ad interactions secret from PSP, the protocol relies on the client-side software to
compute the gradient of the loss function used to update the model. Since the gradient
values computed by users have to be kept private from PSP in order to protect the secrecy
of user data, the model update protocol comes at a significant communication cost on
the side of the users.

The second protocol, BAdASS, makes use of additively-homomorphic secret sharing
to securely split user information between advertiser brokers. The protocol allows ad-
vertisers to collaboratively evaluate and train a logistic regression model used to predict
user responses to various ad campaigns. BAdASS also makes use of a hierarchical se-
cure auction protocol to perform advertisement bidding and select the winning ad that
is served to the user. By using threshold secret sharing, BAdASS distributes trust, such
that collusion between any number of parties smaller than a predefined threshold does
not reveal any sensitive information.

BAdASS is shown to be considerably faster than AHEad in terms of ad delivery, and
manages to achieve a practical response time in the order of milliseconds. Although
model updates are expensive in both protocols, the model update phase of BAdASS is
more than 20 times faster than that of AHEad. In terms of communication, both pro-
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tocols have considerable bandwidth requirements due to the transmission of complete
user profiles and update gradients, but BAdASS requires approximately 20% of the band-
width usage of AHEad.

2.2.2. SEARCHABLE ENCRYPTION

Searchable encryption (SE) [40, 41] allows a server to search in encrypted data on be-
half of a client without learning information about the plaintext data. Some schemes
encrypt the data in a manner that allows searches to be performed directly on the ci-
phertext, while others require the client to generate one or more encrypted indices as-
sociated with the data. Most SE schemes require for each document stored on the server
to be associated with a set of keywords, which can be used in search queries to retrieve
matching documents.

Based on the number of parties that are allowed to store encrypted data on a server,
SE schemes are divided into single-writer and multi-writer schemes. Additionally, de-
pending on the amount of parties that can query and retrieve the stored data, SE schemes
are divided into single-reader and multi-reader schemes. A multi-writer/multi-reader
SE scheme, also called a multi-user SE scheme, matches the functionality of a generic
database, since it allows multiple parties to have store and search capabilities.

Most multi-user schemes offer search complexity linear in the total number of stored
documents, except for [37]. Most of them use a third-party for user authentication, and
sometimes for interactive encryption protocols [40].

Dong et al. [42] propose a protocol which uses an El-Gamal proxy re-encryption
scheme in combination with a collision-resistant hash function, in a three-party setting.
The protocol employs a fully trusted key-management server, which is separate from
the data-storage server, and generates the key pairs used by users to encrypt the search
keywords. The key-management server also acts as an access manager that grants and
revokes the users’ permission to query the data-storage server. The keyword ciphertexts
are initially encrypted under each user’s secret key, and are then re-encrypted by the
server so that they can be matched with queries produced by any user. The protocol
offers semantic security under the assumption that the data-storage server is not an au-
thenticated user and cannot generate queries on its own. In terms of efficiency, the stor-
age operation is linear in the amount of keywords associated with a document, while the
search operation is linear in the total amount of keyword-document pairs.

Bao et al. [43] propose a scheme which uses bilinear maps to allows users with dif-
ferent secret keys to generate the same search index for a given keyword. This scheme
introduces a trusted third-party to manage user credentials, which allows for authen-
ticated search queries and the revocation of a user’s permission to query the database.
The scheme offers query privacy as well as query unforgeability, i.e. only registered users
can query the database and users cannot impersonate each other. In terms of efficiency,
the storage operation is linear in the amount of keywords associated with a document,
while the search operation is linear in the total amount of documents in the database.

Wang et al. [44] onstruct a protocol which allows users to perform conjunctive search
queries on the encrypted data, i.e. a document is retrieved only if it matches all the key-
words in the search query. The protocol uses a dynamic accumulator for user authen-
tication and a combinatorial accumulator to build a search index from a padded list of
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hashed keywords. It also makes use of a semi-honest third-party which assists the users
in decrypting the data retrieved via search queries. The protocol offers semantic secu-
rity against chosen-keyword attacks. With regards to efficiency, the storage operation is
linear in the maximum amount of keywords associated with a document, and the search
operation is linear in the total amount of documents.

Bellare et al. [37] propose a multi-writer/multi-reader SE scheme, which makes the
encrypted keywords searchable by appending a hash of the keyword to its ciphertext.
This makes both the storage and the search operations very efficient, i.e. constant in the
total amount of keywords and documents, but lacks semantic security, and the server
can derive the keywords from their hashes through reverse lookup table attacks.

2.2.3. PRIVACY-PRESERVING MACHINE LEARNING
In [32], Mohassel and Zhang provide a number of efficient protocols for training lin-
ear regression, logistic regression, and neural network models in a privacy-preserving
fashion. The authors experiment with a wide range of cryptographic primitives for per-
forming privacy-preserving computations, such as oblivious transfer, garbled circuits,
linearly-homomorphic encryption. The presented protocols operate in the two-server
model, where data owners distribute the training data between two semi-honest, non-
colluding servers who engage in secure two-party computations to train various models
on the joint data.

In [30], Agrawal and Srikant present a protocol that allows an untrusted server party
to train a decision tree classifier on perturbed data aggregated from multiple sources.
First, the data owners apply a randomizing function to perturb the values in their data
sets, e.g. Gaussian or Uniform perturbation, such that they cannot be estimated with
sufficient precision, and will therefore be kept secret from the training server. The server
aggregates perturbed data from multiple sources and uses Bayesian statistical analysis to
approximate the distribution of the original data. The perturbed training set is corrected
such that its distribution matches that of the original data, and the corrected values,
which are not same as the original values, are then used to train the classifier. Through
empirical analysis, the authors conclude that the models trained on perturbed data per-
form similarly to the models trained on the original data, reporting a loss of accuracy
bellow 15%.

Lindell and Pinkas [29] design a privacy-preserving decision tree learning protocol
that allows two semi-honest parties to train a decision tree model on the union of their
data sets without revealing data to each other. The protocol has both parties run the
training algorithm locally, on their their respective data sets, and obtain a set of inter-
mediary values which are then combined using oblivious transfer such that both parties
obtain the complete model.

Akavia et al. [72] construct a CPA-secure protocol for approximate evaluation and
training of decision tree models on homomorphically encrypted data. The protocol uses
the CKKS fully-homomorphic encryption scheme for approximate arithmetic, and sub-
stitute the comparison operation with a polynomial approximation of a step function.
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In this section, we describe the building blocks of our protocol. First, we offer some
insight into the technicalities of CDT, mainly on how to construct a device association
graph using both deterministic and probabilistic approaches. Then, we describe the
machine learning techniques used by PCDT, i.e. gradient boosting decision trees, as well
as how they are used on homomorphically encrypted data. Finally, we cover the cryp-
tographic preliminaries used in our construction, namely the BGV fully-homomorphic
scheme, the homomorphic computations of AES and AES-CMAC, and several algorithms
for performing integer arithmetic on BGV-encrypted data.

3.1. CROSS-DEVICE TRACKING
In this section we give an overview of the techniques used in performing CDT, primarily
how to construct a device association graph using both the deterministic and the prob-
abilistic approaches. Additionally, we discuss how these techniques are adapted by our
protocol in order to operate on encrypted data.

3.1.1. DEVICE ASSOCIATION GRAPH
In order to track users across devices, an organisation must first identify which devices
belong to which users. Since most organisations engaging in CDT only interface with
users indirectly, through the devices of said users, the problem CDT techniques aim to
address can be more accurately formulated as follows:

Given a set of devices, each with an associated collection of data, divide the
set into groups such that the devices in each group belong to the same user.

To this end, organisation engaging in CDT organise the collected device data into
a device association graph [14, 15]. A device association graph is a undirected graph
G = (I D, E), where I D is a set of device identifiers, and E is the set of edges, such that
two devices with identifiers i d1 and i d2 respectively, are considered linked if and only if
{i d1, i d2} ∈ E .

15
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Two linked devices imply the existence of at least one user who has used both de-
vices at some point in the past. Further analysis is necessary to determine if the devices
are personal devices owned by the same user or shared devices used by multiple users
(e.g. household computer, library computers, etc.). Based on this, organisations may
choose to either ignore shared devices, try to differentiate between the multiple users
of a shared device based on behavioural cues, or simply build less specific, shared user
profiles which treat a group of users as a singular person.

Two approaches are considered when building device association graphs, namely
deterministic and probabilistic CDT. The techniques, as well as our privacy-preserving
adaptations, are described in detail in sections 3.1.2 and 3.1.3.

3.1.2. DETERMINISTIC CDT
Deterministic CDT is primarily performed by monitoring the devices used by a client to
access their online accounts. When a user logs into a webservice account, e.g. email or
social media account, on both their smartphone and their desktop computer, it informs
the service provider that both devices belong to the same user. Alternatively, websites
can track users even without them signing in, by matching the personally identifiable
information they input when signing up for an account or a subscription, shopping on-
line, ordering food, or filling in a questionnaire. This information may include email
addresses, home addresses, phone numbers, credit card numbers etc.

To measure the association between two devices based on the personally identifi-
able information collected for each one, a webservice provider simply has to count the
data points shared by both devices. It is worth noting that some matches may be more
significant than others, e.g. matching email addresses are more relevant than matching
physical addresses, since multiple people can live at the same address. To address this,
one can divide the data in multiple categories based on relevance, count the matches in
each category, then multiply it by some index of significance to obtain the final associa-
tion score. The resulting score can then be compared against a threshold value to decide
whether or not to add the pair (i d , i d ′) to the set of edges in the device association graph.
A small value is usually chosen for this threshold, as a single match in the right category,
e.g. email addresses, is enough to assume that both devices are used by the same user,
but a higher value can be chosen to increase precision.

Let Γd denote a set of data categories with different degrees of importance, where
each category is described by a mapping µ, such that µ(i d) represents the set of data in
the category collected from the device with identifier i d , and a value γd representing the
significance of a match in the category, then Equation 3.1 describes how to calculate the
association score between two devices with identifiers i d and i d ′ using deterministic
CDT.

sd (i d , i d ′) = ∑
(µd , γd )∈Γd

γd · |µd (i d)∩µd (i d ′)| (3.1)

For the sake of simplicity, our protocol only considers the case where |Γd | = 1, i.e. all
data matches are assumed to be equally important. However, a protocol for the general
case can be easily derived from PCDT.
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Two approaches were considered for computing the number of matches in a privacy-
preserving way: private set intersection [38, 39] and multi-user searchable encryption
[40, 41]. The main issue with either approach lays in the computational complexity that
arises from having to match each new encrypted data point against all data points pro-
vided by all other devices. As the underlying encryption is assumed to be probabilistic,
the time complexity of this matching process is bound to be at least linear in the amount
of data points collected for deterministic CDT. Given the large amount of devices ser-
viced by the top organisations engaging in CDT [13], any approach with linear complex-
ity would be considered too slow for large-scale practical use.

To address this issue, following the work of Bellare et al. [37], we adjust our secu-
rity requirements to allow the use of deterministic encryption, which in turn allows for
constant-time search operations.

In [37], Bellare et al. present a multi-user searchable encryption scheme with sub-
linear search complexity, which computes the search indices of encrypted documents by
hashing the searchable keywords. However, as a result of using deterministic encryption,
the scheme lacks semantic security, and is therefore vulnerable to table-lookup attacks.
Bellare et al. argue for the security of their scheme, as well as the security of determin-
istic encryption in general, by introducing the notion of PRIV security, which states that
deterministic encryption can be considered secure provided the plaintext space is suffi-
ciently large.

Given the nature of the data used to perform deterministic CDT, it is obvious that the
requirement of a sufficiently large plaintext space cannot be met. For example, it is com-
putationally feasible for a server that stores hashed phone numbers or email addresses
to match the stored hashes against hashes of large lists of known values and compro-
mise the secrecy of the data. As a result, our construction makes use of a two-server
setting and an algorithm for computing a keyed hash function over homomorphically
encrypted data, to hide the device data behind hashes computed using a key unknown
to the storage server. Since the hash key is kept secret from the storage server, it can-
not compute hashes of values of its choice, and therefore cannot conduct a table-lookup
attack. This approach allows our protocol to perform privacy-preserving deterministic
CDT in constant time, with respect to the amount of collected device data.

In order to conceal the plaintext data from the server computing the hashes, we con-
struct an algorithm for the homomorphic computation of AES-CMAC, and give a pseu-
docode representation in Pseudocode 4, section 4.3.1. This algorithm is employed when
storing device data in preparation of performing deterministic CDT, see Pseudocode 1 in
section 4.2.2. Finally, procedure TS:UPDATE-DET (Pseudocode 2, section 4.2.3) shows
how these hashes are used in PCDT to update a device association graph by performing
privacy-preserving deterministic CDT.

3.1.3. PROBABILISTIC CDT
Probabilistic CDT is performed by using statistical analysis on data inferred from the de-
vice or communication channel used to access the webservice. This data includes IP
addresses, location data, browsing history, temporal information such as location or IP
addresses over time, and terminal information such as browser version, window dimen-
sions, operating system, device model, screen dimensions, etc. IP addresses are given
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particular importance, as two devices sharing an IP address is the primary probabilistic
indicator that they might belong to the same user [64, 65, 69].

In order to perform probabilistic CDT, a webservice provider must first construct
a model for predicting the likelihood of two devices belonging to the same user. This
model is often constructed using machine learning techniques [70]. The machine learn-
ing algorithm selected for our protocol is gradient-boosting decision trees (GBDT), cho-
sen based on existing research [69, 70] and its performance in data-analysis competi-
tions focusing on CDT [64–68].

The main limitation of using GBDT to perform cross-device tracking stems from the
difficulty of constructing reliable training data sets. Since GBDT is a supervised learn-
ing algorithm, the training algorithm used for model construction requires labeled data,
where each training data point has an associated target value which indicates whether
or not the data point corresponds to a pair devices that share a user. Unlike the case of
online behavioural advertisement, where users provide feedback for the machine learn-
ing models in the form of clicks [7], CDT techniques receive no confirmation on whether
or not a device was linked to the appropriate user profile, which makes the construction
of training data sets particularly challenging.

To address this issue, organisations engaging in CDT rely on the performance of de-
terministic techniques, which can be used to provide feedback for probabilistic tech-
niques [70]. More precisely, when training a machine learning model to perform proba-
bilistic CDT, the training set can be constructed by using the output of deterministic CDT
techniques to label the data. This is exactly the approach used in PCDT, where a GBDT
regression model is trained on data labeled with the scores obtained from performing
deterministic CDT.

Another challenge posed by probabilistic CDT comes from the computational com-
plexity involved in the task. Since the machine learning model is designed to evaluate
one pair of devices at a time, the resulting complexity of both constructing a device asso-
ciation graph and training a model becomes quadratic in the number of devices involved
in the analysis. To address this issue, PCDT uses a down-sampling method inspired from
[66–68], where a pair is only considered if the two devices share an IP address among
those used withing a given time-frame. This way, PCDT only considers device pairs that
are already likely to share a user, both when performing probabilistic CDT or construct-
ing the GBDT model.

In order to perform probabilistic CDT in a privacy-preserving manner, our protocol
uses homomorphic encryption to conceal the device data, while allowing the computa-
tions necessary for training and evaluating GBDT models to be performed in ciphertext
space. As a result, PCDT uses special algorithms for training and evaluating GBDT mod-
els on homomorphically encrypted data, see Pseudocode 13 in section 4.3.10, and Pseu-
docode 14 in section 4.3.11. Pseudocode 1 in section 4.2.2 details the steps taken in the
collection of device data, such that the plaintext data is concealed from the tracking ser-
vices without impeding the performance of probabilistic CDT. Procedure TS:UPDATE-
PROB of Pseudocode 2, section 4.2.3, shows how probabilistic CDT is performed on en-
crypted data, while Pseudocode 3 in section 4.2.4 shows how encrypted device data is
used to train a GBDT model to perform probabilistic CDT.
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3.2. MACHINE LEARNING ALGORITHMS
In this section we describe the machine learning algorithms employed by our protocol,
namely the training and evaluation of gradient boosting decision trees. We also provide
insight into how these algorithms can be adapted to operate on encrypted data through
the use of fully-homomorphic encryption.

3.2.1. GRADIENT BOOSTING
Gradient boosting [57] is a machine learning technique used for regression and clas-
sification. The prediction model produced by this method takes the form of an initial
prediction value p0, a learning rate γ, and an ensemble of n weaker prediction models
Ti∈{1, ..., n} trained to predict residual values. A residual, as shown in Equation 3.4 is the
difference between the target value and the current prediction. The main idea behind
gradient boosting is to combine a group of weaker models so that each predictor makes
a small additive contribution to the overall prediction. This way, the overall model be-
comes more powerful as the number of weak predictors increases.

Let x be a vector of m feature vectors x j∈{1, ..., m}, and y be a vector of target values
y j∈{1, ..., m}, such that y j is the target value associated with x j for all j ∈ {1, ..., m}. When
training a gradient boosting decision tree (GBDT) model, one must first compute the
initial prediction value, which is equal to the average of the target values, as shown in
Equation 3.2. The decision trees are then trained iteratively, where each tree Ti , with
i ∈ {1, ..., n}, is trained on a data set composed of feature vectors x j∈{1, ..., m} that uses
as target values the residuals ri−1, j∈{1, ..., m} produced by the previous trees. The residual
values are computed based on the predictions made by the model so far, as shown in
Equation 3.4, while the prediction themselves are computed in accordance with Equa-
tion 3.3, where Ti (x j ) represents the vector of predictions made by the decision tree Ti

on input vector x j , and γ is the learning rate. The learning rate γ is a constant used to
control the speed at which the model predictions approach the target values, in order to
reduce the likelihood of overfitting.

In order to evaluate the prediction y of a GBDT model (p0, γ, Ti∈{1, ..., n}) on input x,
one must simply evaluate pi , j as given in Equation 3.3, with x j = x, and p0, j = p0.

p0, j =
∑m

k=1 yk

m
, ∀ j ∈ {1, ..., m} (3.2)

pi , j = pi−1, j +γ ·Ti (x j ) (3.3)

ri , j = y j −pi , j (3.4)

The PCDT protocol provides an algorithm for training a GBDT model on homomor-
phically encrypted data. This algorithm is described in detail in section 4.3.11, and a
pseudocode representation is given in Pseudocode 14. Since the target values are pub-
lic, the average value is computed in plaintext, while the homomorphic computations
only concern the private training of the underlying decision tree models. Similarly, the
model evaluation is performed by homomorphically computing the predictions of the
decision tree ensemble, which are decrypted and used to compute the prediction of the
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overall model. The evaluation algorithm is described in detail in section 4.3.10, and the
pseudocode representation is given in Pseudocode 13.

3.2.2. DECISION TREES

A decision tree is a predictive model used in the fields of statistics, data mining, and
machine learning, to perform regression and classification [59–61]. A decision tree is
composed of a series of nodes arranged in the structure of a complete binary tree, where
each node t has two child nodes t .le f t and t .r i g ht , except for leaf nodes. Each non-leaf
node is also associated with a feature index t . f eatur e and a threshold value t .θ, used to
partition the input space along one dimension.

When evaluating a decision tree on a feature vector x, the evaluation path starts with
the root node, and each non-leaf node t in the path decides which of its two children is
the next node in the path based on a comparison between x[t . f eatur e] and t .θ.

Leaf nodes have no children and are described by a value t .value. The evaluation of
a decision tree model ends when the evaluation path reaches a leaf node, and the result
of the evaluation is the value stored in said leaf node. This value can be a class label if
the model is used for classification, or a value from a continuous range of numbers if the
model performs regression.

Let x be a vector of m feature vectors x j∈{1, ..., m}, and y be a vector of target values
y j∈{1, ..., m}, such that y j is the target value associated with x j for all j ∈ {1, ..., m}. The
training algorithm for decision tree models aims to produce a model T such that its eval-
uation on input x j is equal to y j for as many training data points as possible. Ideally, the
algorithm would output a model such that ∀ j ∈ {1, ..., m} T (x j ) = y j , but this task is
known to be NP-complete [62], and even if an efficient algorithm that produces the ideal
model would exist, the model would suffer from overfitting [63]. Instead, the training
algorithm uses a greedy approach, which optimizes the local quality of each node, such
that the chosen pair of feature index and threshold partitions the data as cleanly as pos-
sible. For example, when training a classifier on a training set with two classes A and B ,
an ideal node splits the data such that one partition contains all the points labeled as A,
and the other partition contains all the nodes labeled as B .

Different approaches are used when measuring the quality of a node for either re-
gression or classification. When training a classifier, metrics like Gini impurity, good-
ness, or entropy [60], are used to measure the quality of non-leaf nodes based on the
class distributions they produce. When training a regression tree, the quality of nodes is
decided based on the mean deviation of each partition [60]. More specifically, regression
trees are trained to minimise the mean squared error (MSE) between the target values
and the mean target value in both partitions produced by each node. Given a vector of
m target values y j∈{1, ..., m}, the formula for computing the MSE used by the training al-
gorithm is given by Equation 3.5. When training a node, the algorithm iterates over a
set of combinations of feature indices and threshold values, and selects the pair which
produces the minimum MSE.

MSE= 1

m

m∑
j=1

(y j − y)2 , where y = 1

m

m∑
j=1

y j (3.5)
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cmp(x, y) =
{

1 x ≤ y
0 x > y

(3.6)

t (x) =


t .value t is a leaf node
cmp(x[t . f eatur e], t .thet a) · t .le f t (x) t is not a leaf node
+ (1− cmp(x[t . f eatur e], t .thet a)) · t .r i g ht (x)

(3.7)

Private evaluation of decision trees [71–73] makes use of the evaluation function
given in Equation 3.7. A fully-homomorphic encryption scheme that allows for private
comparison, multiplication, and addition operations can be used to evaluate a decision
tree over encrypted data. In [71, 72], approximate evaluation algorithms are used for pri-
vate decision tree evaluation. These algorithms make use of CKKS, a fully-homomorphic
encryption scheme for approximate arithmetic, and substitute the comparison opera-
tion with a polynomial approximation of a step function. Our evaluation algorithm is in-
spired from these works, but uses the BGV fully-homomorphic encryption scheme and
the private comparison function proposed by Cheon et al. [47] to obtain exact results.
The algorithm used by PCDT to homomorphically evaluate decision trees is described in
detail in section 4.3.12, and a pseudocode representation is given in Pseudocode 15.

Note that the comparison function used to divide the data between left and right
child-nodes is arbitrary, and either operation from the set {<, ≤, >,≥} can be used, pro-
vided that it is used consistently across nodes and in both the training and the evaluation
procedures. To simplify the homomorphic circuit, our construction uses the less-than
operation in the homomorphic evaluation and training of decision trees.

Akavia et al. [72] offer an algorithm for training decision tree classification models on
homomorphically encrypted data. Same as with their evaluation algorithm, the training
algorithm uses the CKKS fully-homomorphic encryption scheme and an approximate
step-function for comparison. Again, our protocol uses the BGV fully-homomorphic
scheme instead, as well as an exact comparison algorithm. Since we want our algorithm
to perform regression instead of classification, we also change the function used to mea-
sure the quality of each node, from the Gini impurity to MSE.

Another important aspect of the original algorithm, which we preserve in our con-
struction, is the use of a set of thresholds Sθ supplied as input, from which threshold
values are selected during the training procedure. In plaintext decision tree training,
threshold values are selected for each feature from the range of values in the training set.
When training on encrypted data, the range in the training set is unknown, so threshold
values have to be selected from the entire range of feature values. To address this issue,
Akavia et al. limit the range of feature values to the interval [−1, 1], and prepare the
threshold set Sθ = {0.05 · i | i ∈Z and −20 < i < 20}. Our algorithm uses a similar, albeit
more generic approach, adapted to accommodate integer values. The algorithm used
by PCDT to homomorphically evaluate decision trees is described in detail in section
4.3.13, and a pseudocode representation is given in Pseudocode 16.
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3.3. CRYPTOGRAPHIC PRIMITIVES

In this section we cover the cryptographic primitives used by PCDT, namely the BGV
fully-homomorphic scheme, the homomorphic computations of AES and AES-CMAC,
and several algorithms for performing integer arithmetic on BGV-encrypted data.

3.3.1. BGV HOMOMORPHIC ENCRYPTION

BGV [34] is an asymmetric non-deterministic fully-homomorphic encryption scheme
based on the ring learning with errors problem (RLWE). Both ciphertexts and secret keys
are vectors over a polynomial ring R =Z[X ]/Φm(X ), which represents the ring of integers
over the m-th cyclotomic number field. The plaintext space is the space of polynomials
Rp = R/pR = Z[X ]/(Φm(X ), p), for some fixed p ≥ 2, which represents the set of integer
polynomial of degree up to φ(m)−1, reduced modulo p. The plaintext space of binary
polynomials R2 is of particular interest, as it allows for the evaluation of binary circuits.

BGV is fully homomorphic, allowing the computation of both addition and multipli-
cation on encrypted data. Given two ciphertexts [x] and [y], encoding ring elements x
and y , a party can compute both [x+ y] and [x y] without knowing x or y . At any point in
the homomorphic evaluation, there is a current secret key s under which the ciphertext
is valid, and a current modulus q , both of which change as the homomorphic evaluation
progresses. The polynomial [〈c, s〉 mod Φm(X )]q , obtained from computing the inner
product over Rq between the ciphertext vector c and the current secret key s, where q is
the current modulus, represents the noise of the ciphertext c. A ciphertext c is valid with
respect to key s and modulus q if the magnitude of its noise is sufficiently small relative
to q , so that it does not wrap around q when performing homomorphic operations.

Homomorphic addition has no effect on the current modulus or key, and the noise
magnitude is at most the sum of noises of the arguments. Homomorphic multiplica-
tion does not change the current modulus, but it does change the key. If the two input
ciphertexts are valid under an n-dimension key s, then the output ciphertext is valid un-
der the n2-dimension key equal to the tensor product of s with itself. The scheme offers a
key switching operation, which is used to reduce the size of the key after a multiplication.
With respect to noise, the multiplication operation will produce a ciphertext with a noise
magnitude equal to the product of the noises of the arguments. Since this may cause the
noise to grow too large, the modulus switching operation is used before each multiplica-
tion. The scheme is instantiated with a list of L moduli, q0 < q1 < ... < qL−1, where L is
the depth of the homomorphic circuit to be evaluated. After a ciphertext reaches the last
modulus in the list, it can no longer be used for homomorphic computations, except by
using bootstrapping.

Smart and Vercauteren show in [35] that the structure of the BGV plaintext space al-
lows for the evaluation of single instructions, multiple data (SIMD) operations. By setting
m odd, the plaintext space R2 is isomorphic to the direct sum of l copies of GF(2d ), where
l =φ(m)/d . This way, plaintexts can be treated as l-vectors of elements of GF(2d ), where
arithmetic operations over plaintexts corresponds to element-wise operations over l -
vectors. The elements of these l -vectors are called slots. In [36], Gentry et al. show how
to permute the contents of these slots through the use of automorphisms over R2, as well
as how to raise slot contents to powers of 2 through the use of Frobenius automorphisms.
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3.3.2. ADVANCED ENCRYPTION STANDARD (AES)
The AES [45] block cipher is a substitution-permutation network which symmetrically
encrypts 128-bit messages. AES-128 is a specification of the AES cipher which uses 128-
bit keys. The encryption operation of AES-128 consists of 10 rounds operating on 128-bit
blocks of data organised as a 4×4 matrix of bytes. The bytes are viewed as elements of
GF(28) defined by the polynomial x8+x4+x3+x+1. Each round consists of the following
operations, except for the last round which does not use MixColumns:

1. AddRoundKey: XOR the data with the 128-bit round key derived from the secret
key.

2. SubBytes: compute the multiplicative inverse of each byte over GF(28) and apply
an invertible affine transformation over GF(2).

3. ShiftRows: using the matrix representation of the data, right-shift the elements of
each row i by i positions.

4. MixColumns: left-multiply the state matrix by a fixed matrix of the same dimen-
sions.

Since all operations performed by the encryption function are reversible, to decrypt
an AES-128 ciphertext, simply perform the inverse operations in the reverse order as in
the encryption.

In [50], Gentry et al. describe how to modify the operations of AES-128 in order to
evaluate the cipher over BGV-encrypted data. Their approach uses packed ciphertexts,
which encode one or more 128-bit blocks of data and are operated on using automor-
phisms and SIMD operations.

The scheme is initialized such that the plaintext space allows operations over the
finite field F28 . The polynomial Φm is chosen so that it factors modulo 2 into at least
16 irreducible polynomials of degree d , with d divisible by 8. This results in each slot
holding one byte of the data, and the number of slots being large enough to store an
entire block. Additionally, m is chosen so that there exists an element g ∈ Z∗

m that has
order 16 in both Z∗

m and the quotient group Z∗
m/〈2〉. This way, if the 16 bytes of the state

block are placed in slots t , t ·g , ..., t ·g 15, for some t ∈Z∗
m , then the conjugation operation

X → X g implements a cyclic right-shift over these sixteen bytes. The 4x4 state matrix is
encoded by placing the 16 bytes into slots in column-ordering, i.e. for each row i and
column j , byte αi j is stored in slot t · g 4· j+i .

The AddRoundKey operation is performed through a homomorphic addition be-
tween the state and key ciphertexts.

The SubBytes operation is implemented using Frobenius automorphisms, X → X 2 j
.

For a power of two k = 2 j , the transformation κk (a(X )) = (a(X k ) modΦm(X )) is ap-
plied separately to each slot, and can be used to transform the byte vector (αi )l

i=1 into

(αk
i )l

i=1. The inversion over F28 , i.e. α−1 = α254, is computed using three Frobenius au-
tomorphisms and four multiplications arranged in a depth-3 circuit. The affine trans-
formation TAES over F2 is converted to an affine transformation over F28 by computing

the constants γ0, γ1, ..., γ7, δ ∈ F28 , such that TAES (α−1) = δ+∑7
j=0γ j · (α−1)2 j

over F28 .
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The affine transformation is applied using Frobenius automorphisms to compute the ci-
phertexts encrypting the polynomials κ2 j for j = 0, ..., 7, and applying the appropriate
linear combination with coefficients γ j for j = 0, ..., 7, to get the encryption of the vector
(TAES (α−1))l

i=1.
The ShiftRows and MixColumns operations are combined into a single linear trans-

formation over vectors from (F28 )16. Due to the choice of parameter m and the place-

ment of state bytes into plaintext slots, the operation X → X g i
can be used to right-rotate

row i of the AES state matrix by i positions. By combining these rotation operations with
select operations, four ciphertexts are computed, each encoding the appropriate per-
mutation of each row. These four ciphertexts are then combined via a linear operation
with coefficients X , (1+X ), and 1, to obtain the final state of the round.

Gentry et al. estimate the depth of the homomorphic AES circuit to be of 4 levels per
round, for a total depth of 40 levels for the homomorphic computation of AES-128.

3.3.3. AES-CMAC
The Cipher-based Message Authentication Code (CMAC) algorithm is a keyed hash func-
tion based on a symmetric-key block cipher. The AES-CMAC [46] algorithm is a specifi-
cation of CMAC that uses AES as its underlying block cipher. AES-CMAC takes as input a
128-bit key K and an arbitrary-length message m. Using K , two derived keys K1 and K2

are computed. The message m is divided into n blocks of 128 bits, denoted as mi , where
i ∈ {1, ...,n}. If necessary, 10∗-padding is used so that the bit-length of m is a multiple of
128. Let AES(x,K ) be the output of AES-128 on block x and key K , and let Kx = K2 if the
message m was padded, and Kx = K1 otherwise, then the 128-bit output of AES-CMAC
is computed as shown in Equation 3.8, where hi∈{1, ..., n−1} represent the intermediary
hashes computed in accordance with Equations 3.9 and 3.10.

AES-CMAC(m, K , Kx ) = AES(hn−1 ⊕mn ⊕Kx , K ) (3.8)

h1 = AES(m1, K ) (3.9)

hi = AES(hi−1 ⊕mi , K ) (3.10)

Building on the homomorphic evaluation of AES-128, we implement the homomor-
phic evaluation of AES-CMAC and give a detailed description of the algorithm and its
pseudocode in section 4.3.1.

3.3.4. INTEGER OPERATIONS OVER HOMOMORPHIC CIPHERTEXT SPACE
The BGV scheme allows the computation of modular addition and multiplication op-
erations on encrypted integers. However, PCDT involves the training and evaluation of
gradient-boosting decision tree models, which require more complex operations over
ciphertext space, such as comparison and division. To compute these operations, we
restrict the plaintext space to R2, which allows us to use boolean circuits to compute ar-
bitrary functions on bit-wise encrypted integers. More precisely, using R2 as plaintext
space allows us to compute boolean operations over ciphertext data as follows:
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• homomorphic addition is equivalent to logical XOR

• homomorphic multiplication is equivalent to logical AND

• homomorphic addition by 1 is equivalent to logical NOT

Integer representation. The algorithms used in this paper to perform homomorphic
arithmetic operations over integers follow the intuition of Cheon et al. [47], who repre-
sent integers using packed ciphertexts over binary plaintext and operate on them using
SIMD operations and automorphisms, mainly rotations over the array of plaintext slots.
In this representation, each plaintext slot encodes one bit of the binary representation
of an integer, with one ciphertext encrypting all bits of an integer.

Let Ns be the number of plaintext slots of an initialized BGV scheme, and Lb be the
desired bit-length of an integer encoding. Since the integer arithmetic algorithms are at
least linear in Lb , it quickly becomes unfeasible for Ns and Lb to be equal, as Ns increases
with the security level of the scheme. As a result, we expect Lb to be considerably smaller
than Ns , which causes rotations over plaintext slots to no longer coincide with rotations
over integer bits. To solve this, the scheme is initialized such that Lb |Ns , and the plaintext
slots are arranged in an Lb×(Ns /Lb)-matrix using the 2-dimensional representation [52].
This way, a ciphertext can encode multiple integers, one in each row, to allow parallel
computation, and rotations over the 1st dimension correspond to rotations over the bits
of each integer.

Integers are encoded in binary notation using two’s complement to allow arithmetic
operations over signed numbers, with the bits arranged from left to right starting with
the most significant bit.

Homomorphic Less-than Operation. To evaluate decision trees over homomorphically
encrypted data, the PCDT protocol requires an algorithm that can evaluate a comparison
function over the homomorphic ciphertext space. In [47], Cheon et al. propose an algo-
rithm for computing the less-than function over bit-wise homomorphically encrypted
integers.

Let x = (xLb , ..., x1) and y = (yLb , ..., y1), be two integers and their binary represen-
tations, then the function l t (x, y), as given in Equation 3.11 evaluates to 1 if x < y , and 0
otherwise.

l t (x, y) = xLb + yLb + (1+xLb ) · yLb +
Lb−1∑
i=1

((1+xi ) · yi ·
Lb∏

j=i+1
(1+x j + y j )) (mod2) (3.11)

The main insight of Cheon et al. is the use of SIMD operations and rotations to eval-
uate l t by performing only 2Lb−2 homomorphic multiplications and using a homomor-
phic circuit of depth log(Lb). For example, (1+ xi ) · yi can be computed for all i using a

single homomorphic addition and a single multiplication, and
∏Lb

j=i+1(1+x j +y j ) can be

computed for all i through Lb −1 rotations and 2Lb −4 multiplications. A pseudocode
representation of the algorithm is given in Pseudocode 8 in section 4.3.5.
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Homomorphic Addition Operation. In [47], Cheon et al. also propose an algorithm that
performs integer addition over homomorphically encrypted bit-strings. The addition al-
gorithm is similar to the comparison one, using packed ciphertexts and leveraging SIMD
operations and automorphisms to speed up computation.

Given two integers in binary encoding, x = (xLb , ..., x1) and y = (yLb , ..., y1), the bits
of the sum value s = (sLb , ..., s1) can be calculated as shown in Equation 3.12.

si = xi + yi +
i−1∑
j=0

(x j · y j ·
i−1∏

k= j+1
(xk + y j )) (mod2) (3.12)

The original algorithm given by Cheon et al. can compute s by performing 3Lb − 5
homomorphic multiplications, using a circuit of depth log(Lb − 2)+ 1. Hou et al. [48]
propose an improved algorithm which computes s with only 3Lb/2− 4 homomorphic
multiplications while maintaining logarithmic circuit depth. A pseudocode of this algo-
rithm is given in section 4.3.6, Pseudocode 9.

Based on this addition algorithm, a homomorphic subtraction algorithm (Pseudocode
10 in section 4.3.7) and a multiplication algorithm (Pseudocode 11 in section 4.3.8) can
be easily derived.

Homomorphic Division Operation. An integer division algorithm that operates on en-
crypted data is required to calculate averages in the process of training decision trees on
encrypted data.

In [49], Chen et al. adapt the non-restoring division algorithm to work on BGV-
encrypted data. Since their algorithm uses a bit-sliced integer representation, where
bits are encrypted in separate ciphertexts, we adapt it to use packed ciphertexts in order
to use it in our construction. Pseudocode 12 in section 4.3.9 offers a pseudocode rep-
resentation of this division algorithm that uses the same integer encoding as the other
algorithms mentioned in this section.
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PRIVACY-PRESERVING

CROSS-DEVICE TRACKING (PCDT)

In this section, the PCDT protocol for performing cross-device tracking in a privacy-
preserving manner is presented in detail. The main goal of PCDT is to produce a device
association graph that links devices based on the likelihood that they belong to the same
user, while keeping the user data collected for this task secret from all parties involved
in the protocol. To this end, the protocol involves the privacy-preserving aggregation
of data from various devices, the training of a GBDT model for performing probabilistic
CDT on encrypted data, and the construction of a device association graph in a privacy-
preserving manner, using both deterministic and probabilistic techniques.

Section 4.1 offers an overview of the parties involved in the protocol, including the
assumptions made about their behaviours and interactions. Section 4.2 gives a detailed
description of the main algorithms that comprise the PCDT protocol, while section 4.3
describes the auxiliary algorithms used for various privacy-preserving operations.

The following tables present the meaning of various symbols and notations used
when describing the algorithms of PCDT. Table 4.1 gives a list of notations used to repre-
sent cryptographic operations, such as encryption, decryption, and homomorphic com-
putation, as well as the list of keys used by the various cryptographic schemes employed
by the protocol. Table 4.2 offers a list of mathematical notations used throughout the
section, along with various constants and important variables used by the protocol. Fi-
nally, Table 4.3 describes the constants and symbols used by the machine learning algo-
rithms employed by PCDT.

27
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Table 4.1: Cryptographic symbols and notations

Notation Meaning

[x]pk The encryption of x using the encryption key pk under the
corresponding scheme; element-wise if x is a vector or a
set.

Dec([x]pk , sk) The decryption of [x]pk using the decryption key sk, re-
turns the plaintext value x.

pkBGV −AES The public key of the BGV scheme used in the homomor-
phic evaluation of AES.

skBGV −AES The secret key of the BGV scheme used in the homomor-
phic evaluation of AES.

pkBGV −I A The public key of the BGV scheme used for homomorphic
integer arithmetic.

skBGV −I A The secret key of the BGV scheme used for homomorphic
integer arithmetic.

K AES The secret hash key used by PS.
KC M AC 1 The no-pad key derived from K AES , used to compute AES-

CMAC hashes.
KC M AC 2 The with-pad key derived from K AES ,used to compute

AES-CMAC hashes.
ψn Automorphism performing a right-rotation by n slots over

each segment of Lb slots in a packed BGV-IA ciphertext.
[x ⊕ y]pkBGV −I A Homomorphic addition of ciphertexts encrypting bit-

strings x and y under the BGV-IA scheme.
[x ∧ y]pkBGV −I A Homomorphic multiplication of ciphertexts encrypting

bitstrings x and y under the BGV-IA scheme.
[x + y]pkBGV −I A Homomorphic integer addition, equivalent to computing

HE-ADD([x]pkBGV −I A , [y]pkBGV −I A ) (Pseudocode 9, section
4.3.6).

[x − y]pkBGV −I A Homomorphic integer subtraction, equivalent to comput-
ing HE-SUBTRACT([x]pkBGV −I A , [y]pkBGV −I A ) (Pseudocode
10, section 4.3.7).

[x · y]pkBGV −I A Homomorphic integer multiplication, equivalent to
computing HE-MULTIPLY([x]pkBGV −I A , [y]pkBGV −I A ) (Pseu-
docode 11, section 4.3.8).

HE-AES
([m]pkBGV −AES , K AES )

Homomorphic computation of AES as described in section
3.3.2, on input m and key K AES , equivalent to
[AES(m, K AES )]pkBGV −AES .

AES-CMAC (m, K AES ,
KC M AC 1, KC M AC 2)

Plaintext computation of AES-CMAC, as described in sec-
tion 3.3.3.
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Table 4.2: Important symbols, constants and mathematical notations

Notation Meaning

bx The bit string consisting of x repetitions of b ∈ {0, 1}.
|x| The number of elements in x, where x is a vector, set, or

string.
|| Concatenation operator for strings and vectors.
pad10∗(x,L) x||10L−|x|−1.
() Empty vector.
(xi )n

i=1 A vector of n elements (x1, ..., xn).
xd A set of strings used for deterministic CDT.
xp A feature vector used for probabilistic CDT.
Ld The length of the strings in xd after padding.
Lp The number of elements in xp .
Lb The bit-length of integers used for homomorphic integer

arithmetic.
ε The chosen precision for simulating rational number arith-

metic using integer arithmetic.
I D The set of device identifiers.
E The set of edges in the device association graph.
G The device association graph (I D , E).
θI P The minimum amount of time after which an IP address is

no longer relevant for a device.
θE The minimum deterministic or probabilistic association

score for a pair of devices to be connected in the device
association graph.

τ Current time as integer value.
µd Maps each device identifier to the set of all hashes used for

deterministic CDT received from the associated device.
µ−1

d The inverse of µd , mapping each hash to the set of devices
which share the hash.

µp Maps each device identifier to the latest encrypted xp re-
ceived from the associated device.

µI P Maps each device identifier to the set of all hashed IP ad-
dresses from which the corresponding device has sent up-
dates.

µ−1
I P The inverse of µI P , mapping each IP address hash to the

set of devices which sent updates from that address.
σI P Maps each pair of device identifier and IP address hash to

the latest time when the corresponding device has sent an
update from that address.
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Table 4.3: Machine-learning symbols and notations

Notation Meaning

θp The bound on the values in xp , i.e. if xp = (xpi )
Lp

i=1, then
∀i ∈ {1, ..., Lp } : xpi ∈ [−θp , θp ].

∆p The difference between two consecutive thresholds se-
lected from [−θp , θp ].

Sθ The set of thresholds used to train decision tree models,

Sθ = {i ·∆p | − θp

∆p
< i < θp

∆p
}

A Average value used by the GBDT model.
n The number of decision trees in the GBDT model.
dmax The depth of each decision tree in the GBDT model.
γ The learning rate of the GBDT model.
t . f eatur e Index of the feature checked by tree node t .
t .θ Threshold value used by tree node t .
t .r i g ht Right child node of tree node t .
t .l e f t Left child node of tree node t .
t .value Value stored in leaf node t .

4.1. SETTING
The setting in which PCDT operates contains two parties of interest, the tracking service
(TS) and the privacy service (PS), as well as any amount of devices (Did) to be tracked,
identified by their unique i ds.

Did provides encrypted data to TS, so that TS can link Di d to other devices and con-
struct a device-association graph. The devices do not interact with each other in any
stage of the protocol, nor does any operation involving a device require other devices to
be online.

TS engages with PS in interactive privacy-preserving computations in order to con-
struct a device association graph and train a GBDT model on the encrypted information
collected from the devices.

PS acts as a middleman between the device and the TS, to allow the device to conceal
its IP, and assists TS in performing data analysis on encrypted device data. The purpose
of PS is to ensure that no party besides the original owner of the data, not even PS itself,
gains knowledge about the plain-text device data.

These parties are assumed to be "honest-but-curious", meaning that they follow the
protocol but will derive as much knowledge as possible from the data presented to them.
All communication is assumed to be performed over secure channels.

The reason for using a two-server setting stems from the need of privacy-preserving
computations involving data aggregated from multiple sources. In the case of a sin-
gle source of data, homomorphic encryption is sufficient to allow a server to perform
privacy-preserving computations and allow the data owner to learn and potentially share
the result. In the case of our protocol however, the result is dependent on data from mul-
tiple sources, and other techniques have to be employed. One such technique would be
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the use of an interactive algorithm in which all data owners participate in the compu-
tation [9, 33]. We consider this approach infeasible, as it would require all participating
devices to be online every time TS updates the device association graph, or the GBDT
model. Instead, our protocol uses a similar approach as [8, 32], and divides the privacy-
preserving computations between two non-colluding server parties, TS and PS. This way,
the algorithm for updating the profile of a device is the only algorithm in which devices
are involved, and only one at a time.

4.2. PROTOCOL ALGORITHMS
This section describes the four main algorithms that comprise the PCDT protocol:

1. Setup: initializes the underlying cryptographic schemes.

2. Update device profile: allows a device to update the data used by TS to perform
CDT.

3. Update device association graph: allows TS to update the device association graph
based on new device data.

4. Update model: allows TS to train a GBDT model to perform probabilistic CDT on
encrypted data.

4.2.1. SETUP
TS initializes two BGV cryptosystems. The first cryptosystem is initialized as described
in section 3.3.2 so that it uses plaintext space F28 to facilitate the homomorphic com-
putation of AES-CMAC hashes. Its corresponding secret and public keys are denoted by
skBGV −AES and pkBGV −AES respectively. The second cryptosystem is initialized as de-
scribed in section 3.3.4 so that it uses plaintext space R2 and allows the homomorphic
evaluation of arithmetic operations over binary encoded integers. Its corresponding se-
cret and public keys are denoted by skBGV −I A and pkBGV −I A respectively. TS sends the
encryption keys pkBGV −AES and pkBGV −I A to PS, who will share them with any device
that participates in the protocol.

PS initializes a symmetric encryption scheme, e.g. AES-GCM or any other scheme
with IND-CCA security, and generates the symmetric key KSE . PS also generates the
secret key K AES used for the homomorphic computation of AES-128, and the two keys
KC M AC 1 and KC M AC 2 derived from K AES using the AES-CMAC key derivation algorithm.

A new device joins the setting by making a request to PS, which generates a unique
identifier i d for the device, shares it with TS, and replies with the information needed by
the device to participate in the protocol, namely the vector (i d , pkBGV −AES , pkBGV −I A).

4.2.2. UPDATE DEVICE PROFILE
For each device, TS maintains a profile consisting of a collection of data used to identify
the user associated with said device. In this stage of the protocol, a device sends its latest
data to TS in order to update the corresponding device profile. This data can be split into
two categories, data explicitly sent by the device and data inferred from the interaction
between parties.
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The explicit data is composed of a device identifier i d , a set xd of strings that con-
stitute user-identifiable information, which is used to perform deterministic CDT, and
a feature vector xp , containing data used for probabilistic CDT. The vector xd contains
user identifiable information which can be used for deterministic CDT. This information
may include email addresses, home addresses, phone numbers, or cookies from current
or previous login sessions. The feature vector xp represents data that is used by the TS
to perform probabilistic cross-device tracking. This includes location data, device infor-
mation such as browser, operating system, device model, etc., and a set of cookies used
to track the device browsing history. To lower the communication and computational
complexity, feature hashing is used to transform this data into a feature vector of fixed
length Lp . The values in xp are also normalised to the range [−θp ,θp ]. This range restric-
tion allows for a simpler process of generating threshold values when training decision
tree models on the data in xp . To simplify the process of updating device data, each Di d

is assumed to maintain a local profile containing all the data needed by TS.
The inferred data consists of the IP address of the device and time-related data.

The device IP address is a very important piece of information for probabilistic CDT
[13, 68, 69], since most devices owned by a user connect to the Internet using the same
external IP, the user’s home IP address. Because of this, the protocol assumes that the
devices are not concealing their IP addresses from the parties they interact with, i.e.
through anonymity networks. On the other hand, IP addresses are considered personal
information [55], and therefore must be concealed from TS. Time-related data is also
very useful in cross-device tracking, since it allows TS to asses the relevance of various
events, such as distinguishing a public WiFi network from a home one based on location
and time. Furthermore, timestamps are used to assess the relevance of device IP match-
ing, since IP changes with time, as well as differentiating between users who share one or
multiple devices. Time data is included in the device local profile, e.g. location data over
time or browsing history over time, and is also inferred by the other parties participating
in the protocol from the time of an interaction.

Pseudocode 1 shows the steps performed during the profile update phase. The de-
vice Di d calls the UPDATE procedure and provides as input the device identifier i d , the
set of strings xd used for deterministic CDT, and the feature vector xp used for proba-
bilistic CDT. Each element in xd is 10∗-padded to length Ld if necessary, and a padding
flag is paired with each string to aid in the homomorphic computation of AES-CMAC
hashes. The padding flag is set to 1128 if the string was padded, and to 0128 if it was not.
This produces a set of string pairs denoted by x ′

d . Finally, Di d encrypts both x ′
d and xp

element-wise, under the encryption keys pkBGV −AES and pkBGV −I A respectively, and
sends the tuple (i d , [x ′

d ]pkBGV −AES , [xp ]pkBGV −I A ) to PS.
PS infers the IP address of Di d , and computes the AES-CMAC hash of it, denoted as

hI P . PS also uses the homomorphic computation of AES-CMAC to compute [hd ]pkBGV −AES ,
the set of BGV-encrypted hashes of the strings in xd . PS also encrypts the BGV-encrypted
vector [xp ]pkBGV −I A under its secret key KSE , using the symmetric encryption scheme. Fi-
nally, PS sends the update data (i d , hI P , [hd ]pkBGV −AES , [[xp ]pkBGV −I A ]KSE ) to TS.

Upon receiving the update data, TS decrypts the hashes in hd , and stores the relevant
device data using the following mappings:

1. µd maps each device i d to the set of all hashes representing data relevant for de-
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terministic CDT received from the device

2. µ−1
d is the inverse of µd , mapping each hash to the set of i ds of devices to which it

corresponds

3. µp maps each device i d to the latest encrypted vector [[xp ]pkBGV −I A ]KSE received
from that device

4. µI P maps each device i d to the set of all hashed IP addresses from which that
device has sent updates

5. µ−1
I P is the inverse of µI P , mapping each IP address hash to the set of i ds which

sent updates from that address

6. σI P maps each pair of device i d and IP address hash to the latest time when the
corresponding device has sent an update from that address

TS updates each mapping accordingly, including updating σI P (i d , hI P ) to the cur-
rent time τ.

4.2.3. UPDATE DEVICE ASSOCIATION GRAPH
In order to associate devices with user profiles, TS has to first group devices based on
the likelihood that they belong to the same user, and then associate each group with a
user profile. This grouping is performed based on association scores assigned to each
pair of devices through both deterministic and probabilistic CDT. TS maintains a de-
vice association graph G = (I D,E), in which two devices with identifiers i d1, i d2 ∈ I D
are connected, i.e. {i d1, i d2} ∈ E , if either the deterministic or probabilistic association
scores corresponding to the pair are above a certain threshold θE . As devices update
their profiles, TS must also update G according to the current information. Pseudocode
2 offers a pseudocode representation of this process, where the association graph G is
updated based on new information provided by some device Di d . This process can be
initiated by TS each time a device updates its profile, or for a batch of devices that have
updated their profiles after the last time the association graph was updated.

The procedure TS:UPDATE-DET updates G based on association scores computed
using deterministic CDT. Using µd and µ−1

d , the procedure maps each pair of distinct
identifiers (i d , i d ′) to an association score equal to the number of hashed user-identifiable
information pieces submitted by both devices, i.e. |µd (i d)∩µd (i d ′)|.

The procedure TS:UPDATE-PROB updates G by performing probabilistic CDT over
encrypted data. TS maintains a GBDT model which performs regression to produce an
association score, which is later compared to θE do decide whether two devices belong
to the same user or not. Since it may not be feasible to run the model for every pair, the
data is down-sampled based on shared IP addresses, following a method inspired from
[66–68]. This method only runs the model on pairs of devices that have sent updates
from the same IP address within a relevant time-frame. Since most devices owned by a
user connect to the Internet using the same external IP address, the devices paired this
way are more likely to belong to the same user. TS performs this down-sampling by only
running the model on device pairs that share relevant IP address hashes in their respec-
tive µI P mappings. An IP address hash i pH ash is considered relevant for device Di d if
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Pseudocode 1 Update device profile, PPCDT protocol

1: procedure Di d :UPDATE(i d , xd , xp )
2: Let x ′

d =;.
3: for all x ∈ xd do
4: if |x| < Ld then
5: x ′

d ← x ′
d ∪ {(pad10∗(x,Ld ), 1128)}

6: else if |x| = Ld then
7: x ′

d ← x ′
d ∪ {(x, 0128)}

8: else
9: return ⊥

10: end if
11: end for
12: PS:UPDATE(i d , [x ′

d ]pkBGV −AES , [xp ]pkBGV −I A )
13: end procedure

14: procedure PS:UPDATE(i d , [x ′
d ]pkBGV −AES , [xp ]pkBGV −I A )

15: I P ← Infer the device IP address.
16: hI P ← AES-CMAC(I P , K AES , KC M AC 1, KC M AC 2)
17: [hd ]pkBGV −AES ←;
18: for all [(x, p)]pkBGV −AES ∈ [x ′

d ]pkBGV −AES do
19: [h]pkBGV −AES ← HE-AES-CMAC([x]pkBGV −AES , [p]pkBGV −AES ,

K AES , KC M AC 1, KC M AC 2)
20: [hd ]pkBGV −AES ← [hd ∪ {h}]pkBGV −AES

21: end for
22: TS:UPDATE(i d , hI P , [hd ]pkBGV −AES , [[xp ]pkBGV −I A ]KSE )
23: end procedure

24: procedure TS:UPDATE(i d , hI P , [hd ]pkBGV −AES , [[xp ]pkBGV −I A ]KSE )
25: hd ← Dec([hd ]pkBGV −AES , skBGV −AES )
26: µd (i d) ←µd (i d)∪hd

27: for all h ∈ hd do
28: µ−1

d (h) ←µ−1
d (h)∪ {i d}

29: end for
30: µp (i d) ← [[xp ]pkBGV −I A ]KSE

31: µI P (i d) ←µI P (i d)∪ {hI P }
32: µ−1

I P (hI P ) ←µ−1
I P (hI P )∪ {i d}

33: σI P (i d , hI P ) ← τ

34: end procedure
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the difference between the current time and the time of the last update made from that
address, i.e. σI P (i d , i pH ash), is lower than a threshold value θI P . The data presented to
the model for a pair of devices (Di d , Di d ′ ) consists of the concatenation of the encrypted
feature vectors µp (i d) and µp (i d ′). The pseudocode of the model evaluation procedure
GBDT-EVAL is given in Pseudocode 13 in section 4.3.10.

Pseudocode 2 Update device association graph, PPCDT protocol

1: procedure TS:UPDATE-ASSOCIATIONS(i d)
2: TS:UPDATE-DET(i d)
3: TS:UPDATE-PROB(i d)
4: end procedure

5: procedure TS:UPDATE-DET(i d)
6: for all h ∈µd (i d) do
7: for all i d ′ ∈µ−1

d (h) do
8: sd ←|µd (i d)∩µd (i d ′)|
9: if sd ≥ θE then

10: E ← E ∪ {{i d , i d ′}}
11: end if
12: end for
13: end for
14: end procedure

15: procedure TS:UPDATE-PROB(i d)
16: for all hI P ∈µI P (i d) do
17: if τ−σI P (i d , hI P ) < θI P then
18: for all i d ′ ∈µ−1

I P (hI P ) do
19: if {i d , i d ′} 6∈ E and τ−σI P (i d ′, hI P ) < θI P then
20: [[xp ]pkBGV −I A ]KSE ←µp (i d)||µp (i d ′)
21: sp ← TS:GBDT-EVAL([[xp ]pkBGV −I A ]KSE )
22: if sp ≥ θE then
23: E ← E ∪ {{i d , i d ′}}
24: end if
25: end if
26: end for
27: end if
28: end for
29: end procedure

4.2.4. UPDATE MODEL
The machine learning model used to perform probabilistic CDT is trained on the en-
crypted data to predict association scores. A data point represents the concatenation of
µp (i d) and µp (i d ′) for a pair of devices (Di d , Di d ′ ). Since there is no feedback on whether
a device was correctly linked to a user profile, the training process relies on the assump-
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tion that deterministic CDT is sufficiently reliable, and uses the association scores pro-
duced deterministically, i.e. |µd (i d)∩µd (i d ′)|, as the target labels for the data.

Pseudocode 3 shows the steps involved in this procedure. First, TS down-samples the
training data based on shared IP addresses from which updates were received within a
time-frame no larger than θI P . The down-sampled data is then passed to the procedure
TS:GLDB-TRAIN, which implements the GBDT training algorithm in a way that allows
training over homomorphically encrypted data. The pseudocode for this procedure is
given in Pseudocode 14 in section 4.3.11.

Pseudocode 3 Update model, PPCDT protocol

1: procedure TS:UPDATE-MODEL

2: D ← ()
3: for all (i d1, i d2) ∈ I D × I D , s.t. i d1 < i d2 do
4: S I P ←µI P (i d1)∩µI P (i d2)
5: if ∃i p ∈ S I P s.t. |σI P (i d1, i p)−σI P (i d2, i p)| < θI P then
6: y ←|µd (i d1)∩µd (i d2)|
7: [[xp ]pkBGV −I A ]KSE ←µp (i d1)||µp (i d2)
8: D ← D||(([[xp ]pkBGV −I A ]KSE , y))
9: end if

10: end for
11: TS:GBDT-TRAIN(D)
12: end procedure

4.3. AUXILIARY ALGORITHMS
This section describes various auxiliary algorithms used by the PCDT protocol to per-
form more involved operations on homomorphic ciphertexts.

4.3.1. HOMOMORPHIC COMPUTATION OF AES-CMAC
Pseudocode 4 shows the steps involved in evaluating the AES-CMAC function over BGV-
encrypted strings. The HE-AES-CMAC procedure makes use of the homomorphic evalu-
ation of AES-128 to homomorphically compute the AES-CMAC hash of the BGV-encrypted
input value m. It is necessary for m to be 10∗-padded to a size divisible by 128 prior to
calling the HE-AES-CMAC procedure, and the padding flag p to be set to 1128 if m was
padded or 0128 otherwise. The padding flag is also encrypted to hide the information
from the computing party.

The input string is divided into 128-bit blocks mi∈{1, ..., n}. Through homomorphic
addition and multiplication, the appropriate key is selected based on the padding flag,
such that K ∗ = K1 if p = 0128, and K ∗ = K2 if p = 1128. The output hash h is initialized
to the homomorphically computed AES encryption of the first message block m1. For
each subsequent block mi , with i = 1, ..., n −1 , the current value of h is XORed with mi

using homomorphic addition, and the AES cipher is homomorphically applied to this
value to produce the next value of h. On the last step of the algorithm, h is XORed with
mn and K ∗, and the AES cipher is homomorphically applied one last time to produce
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the final result. Note that this final result, as well as all intermediate values of h, are
BGV-encrypted strings.

Pseudocode 4 Homomorphic AES-CMAC algorithm

1: procedure HE-AES-CMAC([m]pkBGV −AES , [p]pkBGV −AES , K AES , K1, K2)
2: Let [m]pkBGV −AES = [m1||...||mn]pkBGV −AES , s.t. |m1| = ... = |mn | = 128.
3: [K ∗]pkBGV −AES ← [((1128 ⊕p)∧K1)⊕ (p ∧K2)]pkBGV −AES

4: [h]pkBGV −AES ← HE-AES([m1]pkBGV −AES , K AES )
5: for i ← 2, ..., (n −1) do
6: [h]pkBGV −AES ← HE-AES([h ⊕mi ]pkBGV −AES , K AES )
7: end for
8: return HE-AES([h ⊕mn ⊕K ∗]pkBGV −AES , K AES )
9: end procedure

4.3.2. AGGREGATE OPERATION
Pseudocode 5 presents an aggregation algorithm that takes as parameters an associative
binary operand� and a vector x = (xi )|x|i=1, and uses a circuit of depth log(|x|) to compute
the value of x1 �x2 � ....�x|x|. This algorithm is used to reduce the multiplicative depth
of other homomorphic operations.

Pseudocode 5 Aggregation algorithm

1: procedure AGGREGATE(�, x)
2: Let x = (x1, x2, ..., x|x|).
3: ∆←|x|
4: while ∆> 1 do
5: χ←∆ mod 2
6: ∆←b∆/2c
7: for i ← 1, ..., ∆ do
8: xi ← xi �xi+∆
9: end for

10: if χ= 1 then
11: x∆+1 ← x2·∆+1

12: ∆←∆+1
13: end if
14: end while
15: return x1

16: end procedure

4.3.3. HOMOMORPHIC BITSHIFT OPERATION
Procedure HE-BITSHIFT presented in Pseudocode 6 performs the bitshift operation over
the homomorphically encrypted input integer x, by moving the contents of its bits to the
right by n places, or to the left by −n places if n < 0. This operation differs from a bit ro-
tation as performed by ψn in that the bits that would “loop around" in a rotation are
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instead replaced by the input value b. The algorithm simply applies a mask, i.e. a homo-
morphic multiplication by a constant, to zero out the bits that would be replaced, applies
the rotation ψn , then fills in the value b at the right locations through a homomorphic
addition.

Pseudocode 6 Homomorphic bitshift algorithm

1: procedure HE-BITSHIFT([x]pkBGV −I A , n, b)
2: if |n| ≥ Lb then
3: return [bLb ]pkBGV −I A

4: end if
5: if n < 0 then
6: return [ψn(x ∧ (0−n ||1Lb+n))⊕ (0Lb+n ||b−n)]pkBGV −I A

7: end if
8: return [ψn(x ∧ (1Lb−n ||0n))⊕ (bn ||0Lb−n)]pkBGV −I A

9: end procedure

4.3.4. HOMOMORPHIC BIT-AGGREGATE OPERATION
Pseudocode 7 describes the steps of procedure HE-BIT-AGGREGATE, which takes as in-
put an operand � ∈ {⊕, ∧} and a ciphertext encrypting an integer x = xLb ||...||x1, and
outputs the encrypted integer bLb , where b = xLb � ...� x1. The result is computed over
log(Lb) iterations, where on each iteration the value of x is updated to x � x∆, where x∆
is the current value of x bit-rotated by ∆ ∈ {1, 2, 4, ..., Lb/2}. This way, the result is com-
puted using a circuit of depth log(Lb). Note that the algorithm only works if Lb = 2k for
some k ∈N.

Pseudocode 7 Homomorphic bit-aggregate algorithm

1: procedure HE-BIT-AGGREGATE(�, [x]pkBGV −I A )
2: ∆← 1
3: while ∆< Lb do
4: [x∆]pkBGV −I A ←ψ∆([x]pkBGV −I A )
5: [x]pkBGV −I A ← [x �x∆]pkBGV −I A

6: ∆← 2 ·∆
7: end while
8: return [x]pkBGV −I A

9: end procedure

4.3.5. HOMOMORPHIC INTEGER COMPARISON
Pseudocode 8 presents the steps of the homomorphic comparison algorithm described
by Cheon et al. in [47]. Procedure HE-LESS-THAN take as parameters two ciphertexts
encrypting two integer values x = xLb ||...||x1 and y = yLb ||...||y1. On the first step, homo-
morphic multiplication is used to select the bits xLb and yLb , which are then used to com-
pute l t , having the first bit l tLb = xLb ⊕ yLb ⊕((1⊕xLb )∧ yLb ) and the rest l ti = (1⊕xi )∧ yi
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for all i ∈ {1, ..., Lb −1}. The values di∈{0, ..., Lb−1} are mapped to i -rotations of 1Lb ⊕x ⊕ y ,
such that when multiplying them together, the result d∧ holds in each bit i the product∏Lb

j=i+1 1⊕ x j ⊕ y j . Finally, the l t and d∧ are multiplied together, and the procedure HE-

BIT-AGGREGATE is used to sum up the resulted bits to obtain the final result bit b, as
given by Equation 3.11, section 3.3.4. The algorithm outputs a ciphertext encrypting the
integer bLb , where b = 1 if x < y , and b = 0 otherwise.

Pseudocode 8 Homomorphic less-than algorithm

1: procedure HE-LESS-THAN([x]pkBGV −I A , [y]pkBGV −I A )
2: [l t ]pkBGV −I A ← [((1Lb ⊕x)∧ y)⊕ ((1||0Lb−1)∧ (x ⊕ y))]pkBGV −I A

3: [d0]pkBGV −I A ← [1Lb ⊕x ⊕ y]pkBGV −I A

4: for i ← 1, ..., Lb −1 do
5: [di ]pkBGV −I A ← HE-BITSHIFT([d0]pkBGV −I A , i , 1)
6: end for
7: [d∧]pkBGV −I A ← AGGREGATE(∧, [(d1, ..., dLb−1)]pkBGV −I A )
8: return HE-BIT-AGGREGATE(⊕, [l t ∧d∧]pkBGV −I A )
9: end procedure

4.3.6. HOMOMORPHIC INTEGER ADDITION
Pseudocode 9 presents the steps of the improved homomorphic addition algorithm de-
scribed by Hou et al. in [48]. Procedure HE-ADD take as parameters two ciphertexts
encrypting two integer values x = xLb ||...||x1 and y = yLb ||...||y1.

The intermediary values si∈{0, ..., (Lb /2)−1} are computed by starting with s0 = x⊕y , and
s1 being equal to s0 with its least-significant-bit zeroed out and then bit-shifted to the
left by 1 bit. The subsequent values are computed iteratively according to the following
rules:

1. if i = 2(k+1) for some integer k, then si = s2k ∧ s′, where s′ is equal to s2k bit-shifted
to the left by k;

2. if i = 2k + j , with j < 2k , then si = s2k−1 ∧ s′, where s′ is equal to si+1−2k bit-shifted
to the left by k −1.

The intermediary values ci∈{0, ..., Lb−1} are computed by starting with c0 = x ∧ y , and
c1 being equal to c0 bit-shifted to the left by 1 bit. The subsequent values are computed
iteratively according to the following rules:

1. if i = 2(k+1) for some integer k, then ci = s2k ∧c ′, where c ′ is equal to c2k bit-shifted
to the left by k;

2. if i = 2k + j , with j < 2k , then ci = s2k−1 ∧ c ′, where c ′ is equal to ci+1−2k bit-shifted
to the left by k −1.

Using these aforementioned intermediate values, all the bits in

((
∑i−1

j=0(x j · y j ·∏i−1
k= j+1(xk + y j ))) mod 2)Lb

i=1 can be calculated together by homomor-

phically computing ⊕Lb−1
i=1 ci . Finally, the values s0, c1, ..., cLb−1 are homomorphically
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summed to evaluate the formula given in Equation 3.12 of section 3.3.4, for all bits i ∈
{1, ..., Lb}.

Pseudocode 9 Homomorphic addition algorithm

1: procedure HE-ADD([x]pkBGV −I A , [y]pkBGV −I A )
2: [s0]pkBGV −I A ← [x ⊕ y]pkBGV −I A

3: [s1]pkBGV −I A ← [ψ−1(s0 ∧ (0||1Lb−2||0))]pkBGV −I A

4: pow = 1
5: for i ← 2, ..., Lb/2−1 do
6: if i = 2 ·pow then
7: [s′]pkBGV −I A ← HE-BITSHIFT([spow ]pkBGV −I A , −pow , 0)
8: [si ]pkBGV −I A ← [spow ∧ s′]pkBGV −I A

9: pow ← i
10: else
11: [s′]pkBGV −I A ← HE-BITSHIFT([si−pow+1]pkBGV −I A , 1−pow , 0)
12: [si ]pkBGV −I A ← [spow−1 ∧ s′]pkBGV −I A

13: end if
14: end for
15: [c0]pkBGV −I A ← [x ∧ y]pkBGV −I A

16: [c1]pkBGV −I A ← HE-BITSHIFT([c0]pkBGV −I A , −1, 0)
17: pow = 1
18: for i ← 2, ..., Lb −1 do
19: if i = 2 ·pow then
20: [c ′]pkBGV −I A ← HE-BITSHIFT([cpow ]pkBGV −I A , −pow , 0)
21: [ci ]pkBGV −I A ← [spow ∧ c ′]pkBGV −I A

22: pow ← i
23: else
24: [c ′]pkBGV −I A ← HE-BITSHIFT([ci−pow+1]pkBGV −I A , 1−pow , 0)
25: [ci ]pkBGV −I A ← [spow−1 ∧ c ′]pkBGV −I A

26: end if
27: end for
28: return AGGREGATE(⊕, [(s0,c1, ...,cLb−1)]pkBGV −I A )
29: end procedure

4.3.7. HOMOMORPHIC INTEGER SUBTRACTION
Pseudocode 10 describes the homomorphic subtraction procedure HE-SUBTRACT. Since
integers are encoded using two’s complement, addition can be used to carry out subtrac-
tion as follows. First convert the subtrahend y to −y by applying two’s complement (XOR
with 1Lb and add 1), then add −y to the minuend.

4.3.8. HOMOMORPHIC INTEGER MULTIPLICATION
Pseudocode 11 describes the homomorphic multiplication procedure HE-MULTIPLY.
The procedure takes as input two ciphertexts encrypting two integer values x = xLb ||...||x1

and y = yLb ||...||y1, and outputs one ciphertext encrypting the product x · y . For each bit
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Pseudocode 10 Homomorphic subtraction algorithm

1: procedure HE-SUBTRACT([x]pkBGV −I A , [y]pkBGV −I A )
2: return [(y ⊕1Lb )+ (0Lb−1||1)+x]pkBGV −I A

3: end procedure

yi , the algorithm computes a corresponding value ti = x∧(yi )Lb . The intermediary value
(yi )Lb is computed using a homomorphic multiplication to zero-out all the bits in y ex-
cept yi , and then using the HE-BIT-AGGREGATE procedure to copy it to all other slots.

The final result is obtained by computing
∑Lb

i=1 ti .

Pseudocode 11 Homomorphic multiplication algorithm

1: procedure HE-MULTIPLY([x]pkBGV −I A , [y]pkBGV −I A )
2: for i ← 1, ..., Lb do
3: [ti ]pkBGV −I A ← HE-BIT-AGGREGATE(⊕, [y ∧ (0Lb−i ||1||0i−1)]pkBGV −I A )
4: [ti ]pkBGV −I A ← HE-BITSHIFT([ti ∧x]pkBGV −I A , 1− i , 0)
5: end for
6: return AGGREGATE(+, [(ti )Lb

i=1]pkBGV −I A )
7: end procedure

4.3.9. HOMOMORPHIC INTEGER DIVISION

Pseudocode 12 presents the steps of the non-restoring division algorithm adapted to
operate on homomorphically encrypted integers. The procedure HE-DIVIDE takes as
input two ciphertexts encrypting two integer values x = xLb ||...||x1 and y = yLb ||...||y1,
and outputs one ciphertext encrypting the quotient q = bx/yc.

The algorithm first computes the intermediary value r = (xLb ||0Lb−1)− y and the ini-
tial quotient value q = (1⊕rLb )||0Lb−1. The algorithm then iterates over the bits of q from
qLb−1 to q1, computing each bit qi as follows:

1. compute c = (rLb )Lb ;

2. if c = 1Lb , then y ′ = y , otherwise y ′ equals the complement of y , plus one;

3. bitshift r by 1 to the left;

4. compute r ′ = 0Lb−1||xi ;

5. XOR r and r ′ to set the last bit of r to xi , then add y ′ using the homomorphic
integer addition algorithm and assign the result to r ;

6. compute q ′ = 0Lb−i ||(1⊕ rLb )||0i−1, where rLb is the most significant bit of r ;

7. set the bit qi to the correct value by XORing q and q ′.
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Pseudocode 12 Homomorphic division algorithm

1: procedure HE-DIVIDE([x]pkBGV −I A , [y]pkBGV −I A )
2: [r ]pkBGV −I A ← [(1||0Lb−1)∧x]pkBGV −I A

3: [r ]pkBGV −I A ← [r − y]pkBGV −I A

4: [q]pkBGV −I A ← [(1||0Lb−1)∧ (r ⊕ (1||0Lb−1))]pkBGV −I A

5: for i ← Lb −1, ..., 1 do
6: [c]pkBGV −I A ← HE-BIT-AGGREGATE(⊕, [r ∧ (1||0Lb−1)]pkBGV −I A )
7: [y ′]pkBGV −I A ← [(c ∧ y)⊕ ((1Lb ⊕ c)∧ ((y ⊕1Lb )+ (0Lb−1||1)))]pkBGV −I A

8: [r ]pkBGV −I A ← HE-BITSHIFT([r ]pkBGV −I A , −1, 0)
9: [r ′]pkBGV −I A ← [ψi−1(x ∧ (0Lb−i ||1||0i−1))]pkBGV −I A

10: [r ]pkBGV −I A ← [(r ⊕ r ′)+ y ′]pkBGV −I A

11: [q ′]pkBGV −I A ← [ψLb−i ((1||0Lb−1)⊕ (r ∧ (1||0Lb−1)))]pkBGV −I A

12: [q]pkBGV −I A ← [q ⊕q ′]pkBGV −I A

13: end for
14: return [q]pkBGV −I A

15: end procedure

4.3.10. HOMOMORPHIC EVALUATION OF GRADIENT BOOSTING DECISION

TREES

Pseudocode 13 describes the evaluation procedure of evaluating a GBDT model on the
homomorphically encrypted feature vector xp . This vector is doubly-encrypted, first
under the BGV-IA encryption scheme and then under the symmetric scheme used by
PS.

The BGDT model maintained by TS consists of an average value A and n trees of
depth dmax . Each tree of index i is described by a tree node ti representing the root of
the tree. Each non-leaf tree node t contains a threshold value t .θ ∈ Sθ, a feature index
t . f eatur e ∈ {1, ...,2Lp }, and two children nodes, t .r i g ht and t .le f t . Each leaf tree node
t contains an integer value t .value. The threshold and leaf values are also doubly en-
crypted to keep them secret from both TS and PS. This is done to prevent either party
from learning information about the input data from the model predictions.

TS first sends the tree ensemble T and the feature vector xp to PS, and receives the
BGV-encrypted vector y containing the n predictions made by the trees in T when pre-
sented with the data in xp . TS decrypts y and calculates the sum of its values. Since the
decision trees are trained on target values scaled up by a factor of 10ε to simulate rational
number arithmetic using integers, TS will divide the sum of predictions by 10ε to bring it
to the correct scale. This value is then multiplied by the learning rate γ and added to the
average value A to obtain the final prediction of the model. Note that only the encrypted
values are integers. When computing in plaintext space, floating-point arithmetic can
be used for increased precision.

The procedure PS:GBDT-EVAL details the steps taken by PS to evaluate the trees in
ensemble T on the feature vector xp . PS first decrypts xp , as well as the threshold and leaf
values of the trees in the ensemble, using its symmetric key KSE . As these values are now
encrypted only under the BGV-IA homomorphic scheme, the prediction of each tree can
be homomorphically evaluated using the procedure PS:TREE-EVAL. The pseudocode of
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this procedure is given in Pseudocode 15 of section 4.3.12. After obtaining the list of
predictions y of each tree, PS sends y to TS.

Pseudocode 13 Homomorphic evaluation of gradient boosting decision trees

1: procedure TS:GBDT-EVAL([[xp ]pkBGV −I A ]KSE )
2: [y]pkBGV −I A ← PS:GBDT-EVAL(T , [[xp ]pkBGV −I A ]KSE )
3: y ← Dec([y]pkBGV −I A , skBGV −I A)
4: Let y = (yi )n

i=1.

5: return A+γ ·
∑n

i=1 yi

10ε

6: end procedure

7: procedure PS:GBDT-EVAL(T , [[xp ]pkBGV −I A ]KSE )
8: [xp ]pkBGV −I A ← Dec([[xp ]pkBGV −I A ]KSE ,KSE )

9: Let T = (ti )|T |
i=0.

10: T ′ ← ( PS:DECRYPT-TREE(ti ) )|T |
i=0

11: Let T ′ = (t ′i )|T
′|

i=0.

12: [y]pkBGV −I A ← ( PS:TREE-EVAL(t ′i , [xp ]pkBGV −I A ) )|T
′|

i=0
13: return [y]pkBGV −I A

14: end procedure

15: procedure PS:DECRYPT-TREE(t )
16: if t is a leaf node then
17: [t .value]pkBGV −I A ← Dec([[t .value]pkBGV −I A ]KSE ,KSE )
18: return t
19: end if
20: [t .θ]pkBGV −I A ← Dec([[t .θ]pkBGV −I A ]KSE ,KSE )
21: t .r i g ht ← PS:DECRYPT-TREE(t .r i g ht )
22: t .l e f t ← PS:DECRYPT-TREE(t .l e f t )
23: return t
24: end procedure

4.3.11. HOMOMORPHIC TRAINING OF GRADIENT BOOSTING DECISION TREES
Pseudocode 4.3.11 describes the steps taken to train a GBDT model on encrypted data.
The procedure TS:GLDB-TRAIN takes as input a vector D of pairs (xpi , yi )i∈{1, ..., |D|},
where xpi is the feature vector of a training data point, and yi is its corresponding target
prediction. The feature vectors are provided in doubly-encrypted form, first under the
public key pkBGV −I A , and then under the symmetric key KSE , while the target values are
provided in plaintext form. It is worth mentioning that the target values are unencrypted
because they are already known to TS, and not because the operations involved necessi-
tate it. An algorithm that operates on encrypted target values could easily be derived.

First, the average value A of the GBDT model is computed in plaintext space. A new
value A′ is derived from A by multiplying it by 10ε. This value is then encrypted under the
BGV-IA scheme to hide it from PS. The data vector D ′ is derived from D by multiplying
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each target value by 10ε and then encrypting them under BGV-IA. The multiplications
with 10ε allow us to use integer arithmetic to simulate rational number arithmetic up to
ε decimal digits of precision when performing computations on homomorphic cipher-
texts. θp and∆p are parameters required to compute the threshold set Sθ, describing the
range of values in the feature vector and the difference between consecutive threshold
values respectively. γ, n, and dmax are training parameters selected by TS, correspond-
ing to the learning rate, the number of decision trees in the GBDT model, and the depth
of each tree respectively. Lastly, TS sends the data tuple (D ′, [A′]pkBGV −I A , θp , ∆p , γ, n,
dmax ) to PS and receives a vector T ′ of n decision tree models trained on the data in
D ′. The threshold and leaf values of the decision trees are doubly-encrypted under both
BGV-IA and the symmetric scheme employed by PS, in order to hide them from TS. The
feature indices are only encrypted under the BGV-IA homomorphic scheme, which al-
lows TS to decrypt them. Having the feature indices in plaintext form allows for a faster
evaluation of model predictions.

The procedure PS:GLDB-TRAIN executed by PS takes as input the data sent by TS
and outputs a vector of decision trees homomorphically trained on this data. The set of
threshold values Sθ is constructed based on the two constants θp and ∆p . For security
reasons, the procedure only accepts parameters that will result in at least two threshold
values, and terminates if |Sθ| ≤ 1. PS then derives a vector Dw from D ′ by decrypting
the symmetrically encrypted feature vectors xpi , homomorphically subtracting A′ from
each target value y ′

i , and attaching a third value to each data point pair, which represents
the path flag used for the homomorphic decision trees training algorithm, and is set to
1Lb for all data points. Note that each value in Dw is still homomorphically encrypted
and therefore hidden from PS. PS uses the procedure PS:TREE-TRAIN to train n trees on
the the data in Dw , effectively training each tree to predict the residual between the final
target value y ′

i and the prediction of the model so far. The pseudocode for this procedure
is given in Pseudocode 16 of section 4.3.13. After training each tree, its predictions are
multiplied by the learning rate and subtracted from the corresponding target values to
update Dw in preparation for training the next tree. After training n trees, PS returns the
tree ensemble to TS.

4.3.12. HOMOMORPHIC EVALUATION OF A DECISION TREE

Pseudocode 15 shows the steps taken by PS to evaluate a decision tree model on BGV-
encrypted input. Procedure PS:TREE-EVAL takes as input a tree node t and a BGV-
encrypted feature vector xp . If t is a leaf node, then the procedure returns the encrypted
value of the node. If t is not a leaf node, then the output values of its left and right sub-
trees are recursively computed and denoted by vL and vR respectively. The comparison
value l t is also homomorphically computed using the procedure HE-LESS-THAN (Pseu-
docode 8 in section 4.3.5). This value is set to a BGV-encryption of 1Lb if the element of xp

with index t . f eatur e is less than the threshold value of the node t .θ, and to an encryp-
tion of 0Lb otherwise. The correct return value is selected between l v and r v through
homomorphic multiplications and additions as shown on line 8 of the algorithm.
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Pseudocode 14 Homomorphic training of gradient boosting decision trees

1: procedure TS:GBDT-TRAIN(D)
2: Let D = (([[xpi ]pkBGV −I A ]KSE , yi ))|D|

i=1.

3: A ←
∑|D|

i=1 yi

|D|
4: A′ ← A ·10ε

5: D ′ ← (([[xpi ]pkBGV −I A ]KSE , [yi ·10ε]pkBGV −I A ))|D|
i=1

6: T ′ ← PS:GBDT-TRAIN(D ′, [A′]pkBGV −I A , θp , ∆p , γ, n, dmax )
7: Let T ′ = (ti )n

i=1.
8: T ← ( TS:DECRYPT-FEATURES(ti ) )n

i=1
9: end procedure

10: procedure PS:GBDT-TRAIN(D ′, [A′]pkBGV −I A , θp , ∆p , γ, n, dmax )

11: Sθ ← {i ·∆p | − θp

∆p
< i < θp

∆p
}

12: if |Sθ| ≤ 1 then
13: return ()
14: end if
15: Let D ′ = (([[x ′

pi
]pkBGV −I A ]KSE , [y ′

i ]pkBGV −I A ))|D
′|

i=1.
16: [Dw ]pkBGV −I A ←

((Dec([[x ′
pi

]pkBGV −I A ]KSE , KSE ), [y ′
i − A]pkBGV −I A , [1Lb ]pkBGV −I A ))|D

′|
i=1

17: Let T = (ti )n
i=1.

18: for i ← 1, ..,n do
19: (ti , [P ]pkBGV −I A ) ←

PS:TREE-TRAIN([Dw ]pkBGV −I A , [Sθ]pkBGV −I A , 1, dmax )
20: if i = n then
21: return T
22: end if
23: Let Dw = ((x ′

p j
, y ′

j , w j ))|Dw |
j=1 .

24: Let P = (p j )|P |
j=1.

25: [Dw ]pkBGV −I A ← [((x ′
p j

, y ′
j − (γ ·p j ), w j ))|Dw |

j=1 ]pkBGV −I A

26: end for
27: end procedure

28: procedure TS:DECRYPT-FEATURES(t )
29: if t is a leaf node then
30: return t
31: end if
32: t . f eatur e ← Dec([t . f eatur e]pkBGV −I A , skBGV −I A)
33: t .r i g ht ← TS:DECRYPT-FEATURES(t .r i g ht )
34: t .l e f t ← TS:DECRYPT-FEATURES(t .le f t )
35: return t
36: end procedure



4

46 4. PRIVACY-PRESERVING CROSS-DEVICE TRACKING (PCDT)

Pseudocode 15 Homomorphic evaluation of a decision tree

1: procedure PS:TREE-EVAL(t , [xp ]pkBGV −I A )
2: if t is a leaf node then
3: return [t .value]pkBGV −I A

4: end if
5: [vL]pkBGV −I A ← PS:TREE-EVAL(t .le f t , [xp ]pkBGV −I A )
6: [vR ]pkBGV −I A ← PS:TREE-EVAL(t .r i g ht , [xp ]pkBGV −I A )

7: Let xp = (xpi )
2Lp

i=1 .
8: [l t ]pkBGV −I A ← HE-LESS-THAN([xt . f eatur e ]pkBGV −I A , [t .θ]pkBGV −I A )
9: return [(l t ∧ vL)⊕ ((l t ⊕1Lb )∧ vR )]pkBGV −I A

10: end procedure

4.3.13. HOMOMORPHIC TRAINING OF A DECISION TREE MODEL
Pseudocode 16 presents the steps taken by PS to train a decision tree model on an en-
crypted training set. The procedure PS:TREE-TRAIN takes as input a collection of en-
crypted training data Dw , a set of encrypted threshold values Sθ , the current depth d of
the tree, and the maximum depth dmax , and recursively builds a decision tree by select-
ing for each non-leaf node the combination of feature index and threshold value that
minimise the mean squared error between the target values present in a child branch
and the mean of the target values present in said branch.

The collection Dw is composed of tuples (xi , yi , wi )i∈{1, ..., |Dw |}, where each xi is a
feature vector of length 2Lp representing a data point in the training set, yi is its associ-
ated target value, and wi is a flag that marks whether or not the data point is relevant for
the current node. When d = 1, wi = 1Lb for all i ∈ {1, ..., |Dw |}, but as the data is split by
the tree nodes based on features and thresold values, a data point with index i that is no
longer in the path has wi = 0Lb .

All the values in Dw and Sθ are encrypted under the BGV-IA homomorphic scheme.
The procedure returns a tuple (t , P ), where t is a tree node and P is the prediction made
by the subtree t on the set of feature vectors xi present in the path, i.e wi = 1Lb .

If d = dmax , then PS:TREE-TRAIN returns a leaf node t and the recursion ends. The
leaf value t .value is set to the mean of the yi values of data points still present in the
path. The leaf value is also encrypted using the symmetric key KSE to hide it from TS.
When computing the mean of the target values, each yi value is multiplied by its cor-
responding flag value wi and their sum, ySum, is computed homomorphically. The
number of data points still present in the path, wSum, is computed by converting each
value wi = bLb , with b ∈ {0, 1}, to a new value (0Lb−1||b) through homomorphic multipli-
cation, and summing them up. Finally the mean is computed using the homomorphic
division procedure HE-DIVIDE (Pseudocode 12 in section 4.3.9). The prediction vector
P is constructed such that it’s value at index i is equal to the leaf value if wi = 1Lb , and
equal to 0Lb otherwise.

To account for the possibility of zero data points being present in the path, in which
case the leaf value would be the result of a division by 0, wSum is homomorphically
compared with 1 using the procedure HE-LESS-THAN (Pseudocode 8 in section 4.3.5),
and the flag di v0 is set to 1Lb if wSum = 0, and to 0Lb otherwise. Based on the value of
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di v0, through homomorphic multiplications and additions, the leaf value is set to 0 if a
division by 0 occurred, to remove the contribution of the tree to the overall GBDT model
prediction for data points that reach that leaf.

If d < dmax , then PS:TREE-TRAIN returns a non-leaf node, characterised by a thresh-
old value t .θ ∈ Sθ, and a feature index t . f eatur e ∈ {1, ..., 2Lp }. The algorithm iterates
over all possible combinations of feature and threshold, selecting the pair that mini-
mizes the mean squared error between the predictions and target values. To do so, for
each pair feature-threshold pair ( f , θ), the algorithm uses the HE-LESS-THAN proce-
dure to obtain a vector l t f , θ , where the value at index i is equal to 1Lb if xi , f < θ, and
0Lb otherwise, where xi , f is the element at index f in the i -th feature vector in Dw . Us-
ing l t f , θ and the wi values in Dw , two vectors of flag values are computed, wL and wR ,
marking the data points in the path of each subtree. In a similar fashion to the way leaf
values are computed, the average target values are computed for both the left and right
subtree, denoted by yL and yR respectively. For each data point with index i , its cor-
responding error is equal to the difference between its target value yi and the average
value y ∈ {yL , yR } of the path it is in. The sums of the squared errors are computed for
each subtree and denoted by eL and eR , and the mean squared error e is computed by
dividing (eL +eR ) by the total number of data points in the path.

If no data points are present in the path or in the path of either subtree, the error
obtained is a result of one or more divisions by 0. To account for this, two flag values
di v0L and di v0R are computed in the same fashion as in the leaf-node case, and their
values are combined into a single flag di v0. Based on di v0, the error produced by a
feature-threshold pair is set to (0||1Lb−1), i.e. the highest integer allowed by the encoding,
if any divisions by 0 were involved in its computation. This way, a useless node that does
not cause a split in the training data is only produced if no better alternative exists.

The iteration produces an error value for each possible feature-threshold pair. These
values are stored in a vector of tuples Ve = (( fi , θi , l t fi ,θi , ei ))|Ve |

i=1, where fi denotes the
feature index, θi denotes the threshold value, l t fi ,θi is the comparison vector produced
by the feature-threshold pair, and ei is the error value. The procedure PS:BEST-NODE
returns the tuple ( f ∗, θ∗, l t f ∗,θ∗ , e∗) in Ve that contains the minimum error, which it
computes using a circuit with depth log(|Ve |) of homomorphic comparisons, additions,
and multiplications. The tree node returned by the procedure has its feature index set
to f ∗ and its threshold value set to θ∗. Both values are BGV-encrypted as a result of
homomorphic operations, and the threshold value is additionally encrypted by PS using
the symmetric key KSE to keep it secret from TS. The comparison vector l t f ∗,θ∗ is used
to compute the path flags for each subtree of the node, and the procedure recursively
computes the two children of the current node.

Along with the child nodes, the recursive calls also produce two prediction vectors,
one for each subtree. Since each data point reaches a single leaf node, given a data point
with index i , only one of the two prediction vectors can have a non-zero value at index
i . Because of this, an element-wise homomorphic addition is sufficient to combine the
prediction vectors from the left and right subtrees.
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Pseudocode 16 Homomorphic training of a decision tree

1: procedure PS:TREE-TRAIN([Dw ]pkBGV −I A , [Sθ]pkBGV −I A , d , dmax )

2: Let Dw = ((xi , yi , wi ))|Dw |
i=1 .

3: Let xi = (xi , j )
2Lp

j=1 for all i ∈ {1, ..., |Dw |}.

4: if d = dmax then
5: t ← leaf node
6: [ySum]pkBGV −I A ← AGGREGATE(+, [(wi ∧ yi )|Dw |

i=1 ]pkBGV −I A )

7: [wSum]pkBGV −I A ← AGGREGATE(+, [(wi ∧ (0Lb−1||1))|Dw |
i=1 ]pkBGV −I A )

8: [val ]pkBGV −I A ← HE-DIVIDE([ySum]pkBGV −I A , [wSum]pkBGV −I A )
9: [di v0]pkBGV −I A ← HE-LESS-THAN([wSum]pkBGV −I A , [0Lb−1||1]pkBGV −I A )

10: [val ]pkBGV −I A ← [(1Lb ⊕di v0)∧ val ]pkBGV −I A

11: [[t .value]pkBGV −I A ]KSE ← [[val ]pkBGV −I A ]KSE

12: [P ]pkBGV −I A ← [(wi ∧ val )|Dw |
i=1 ]pkBGV −I A

13: return (t , [P ]pkBGV −I A )
14: end if
15: [Ve ]pkBGV −I A ← ()
16: for all ( f , [θ]pkBGV −I A ) ∈ {1, ...,2Lp }× [Sθ]pkBGV −I A do

17: [l t f ,θ]pkBGV −I A ← ( HE-LESS-THAN([xi , f ]pkBGV −I A , [θ]pkBGV −I A ) )|Dw |
i=1

18: Let l t f ,θ = (l t f ,θ,i )|Dw |
i=1 .

19: [wL]pkBGV −I A ← [(l t f ,θ,i ∧wi )|Dw |
i=1 ]pkBGV −I A

20: Let wL = (wLi )|Dw |
i=1 .

21: [wSumL]pkBGV −I A ← AGGREGATE(+, [(wLi ∧ (0Lb−1||1))|Dw |
i=1 ]pkBGV −I A )

22: [ySumL]pkBGV −I A ← AGGREGATE(+, [(wLi ∧ yi )|Dw |
i=1 ]pkBGV −I A )

23: [yL]pkBGV −I A ← HE-DIVIDE([ySumL]pkBGV −I A , [wSumL]pkBGV −I A )

24: [eL]pkBGV −I A ← AGGREGATE(+, [(wLi ∧ (yi − yL)2)|Dw |
i=1 ]pkBGV −I A )

25: [wR ]pkBGV −I A ← [((1Lb ⊕ l t f ,θ,i )∧wi )|Dw |
i=1 ]pkBGV −I A

26: Let wR = (wRi )|Dw |
i=1 .

27: [wSumR ]pkBGV −I A ← AGGREGATE(+, [(wRi ∧ (0Lb−1||1))|Dw |
i=1 ]pkBGV −I A )

28: [ySumR ]pkBGV −I A ← AGGREGATE(+, [(wRi ∧ yi )|Dw |
i=1 ]pkBGV −I A )

29: [yR ]pkBGV −I A ← HE-DIVIDE([ySumR ]pkBGV −I A , [wSumR ]pkBGV −I A )

30: [eR ]pkBGV −I A ← AGGREGATE(+, [(wRi ∧ (yi − yR )2)|Dw |
i=1 ]pkBGV −I A )

31: [wSum]pkBGV −I A ← [wSumL +wSumR ]pkBGV −I A

32: [e]pkBGV −I A ← HE-DIVIDE([eL +eR ]pkBGV −I A , [wSum]pkBGV −I A )
33: [di v0L]pkBGV −I A ←

HE-LESS-THAN([wSumL]pkBGV −I A , [0Lb−1||1]pkBGV −I A )
34: [di v0R ]pkBGV −I A ←

HE-LESS-THAN([wSumR ]pkBGV −I A , [0Lb−1||1]pkBGV −I A )
35: [di v0]pkBGV −I A ← [di v0L ⊕di v0R ⊕ (di v0L ∧di v0R )]pkBGV −I A

36: [e]pkBGV −I A ← [(di v0∧ (0||1Lb−1))⊕ ((di v0⊕1Lb )∧e)]pkBGV −I A

37: [Ve ]pkBGV −I A ← [Ve ||(( f , θ, l t f ,θ, e))]pkBGV −I A

38: end for
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39: [( f ∗, θ∗, l t f ∗,θ∗ , e∗)]pkBGV −I A ← PS:BEST-NODE([Ve ]pkBGV −I A )

40: Let l t f ∗,θ∗ = (l t f ∗,θ∗,i )|Dw |
i=1 .

41: t ← non-leaf node
42: [t . f eatur e]pkBGV −I A ← [ f ∗]pkBGV −I A

43: [[t .θ]pkBGV −I A ]KSE ← [[θ∗]pkBGV −I A ]KSE

44: [DL]pkBGV −I A ← [(xi , yi , l t f ∗,θ∗,i ∧wi )|Dw |
i=1 ]pkBGV −I A

45: (t .le f t , [PL]pkBGV −I A ) ←
PS:TREE-TRAIN([DL]pkBGV −I A , [Sθ]pkBGV −I A , d +1, dmax )

46: [DR ]pkBGV −I A ← [(xi , yi , (1Lb ⊕ l t f ∗,θ∗,i )∧wi )|Dw |
i=1 ]pkBGV −I A

47: (t .r i g ht , [PR ]pkBGV −I A ) ←
PS:TREE-TRAIN([DR ]pkBGV −I A , [Sθ]pkBGV −I A , d +1, dmax )

48: [P ]pkBGV −I A ← [PL ⊕PR ]pkBGV −I A

49: return (t , [P ]pkBGV −I A )
50: end procedure

51: procedure PS:BEST-NODE([Ve ]pkBGV −I A )

52: Let Ve = (( fi , θi , l t fi ,θi , ei ))|Ve |
i=1.

53: if |Ve | = 1 then
54: return [( f1, θ1, l t f1,θ1 , e1)]pkBGV −I A

55: end if
56: [( fL , θL , l t fL ,θL , eL)]pkBGV −I A ←

PS:BEST-NODE([(( fi , θi , l t fi ,θi , ei ))b|Ve |/2c
i=1 ]pkBGV −I A )

57: [( fR , θR , l t fR ,θR , eR )]pkBGV −I A ←
PS:BEST-NODE([(( fi , θi , l t fi ,θi , ei ))|Ve |

i=b|Ve |/2c+1]pkBGV −I A )
58: [l te ]pkBGV −I A ← HE-LESS-THAN([eL]pkBGV −I A , [eR ]pkBGV −I A )
59: [g te ]pkBGV −I A ← [l te ⊕1Lb ]pkBGV −I A

60: [ f ∗]pkBGV −I A ← [(l te ∧ fL)⊕ (g te ∧ fR )]pkBGV −I A

61: [θ∗]pkBGV −I A ← [(l te ∧θL)⊕ (g te ∧θR )]pkBGV −I A

62: [l t f ∗,θ∗ ]pkBGV −I A ← [(l te ∧ l t fL ,θL )⊕ (g te ∧ l t fR ,θR )]pkBGV −I A

63: [e∗]pkBGV −I A ← [(l te ∧eL)⊕ (g te ∧eR )]pkBGV −I A

64: return [(i∗, θ∗, l t f ∗,θ∗ , e∗)]pkBGV −I A

65: end procedure



5
ANALYSES

5.1. SECURITY EVALUATION
In this section we evaluate the security of our protocol. We first offer an overview of
the threat model and assumptions under which we conduct our analysis. We then con-
struct an argument based on the security properties of the underlying primitives, to sup-
port our claim that PCDT preserves the secrecy of the collected device data. Finally, we
analyse the impact of collusion attacks against PCDT, since they often pose a significant
threat to multi-server systems.

We divide the device data into two categories, based on whether it is used when per-
forming deterministic or probabilistic CDT. The device data used for deterministic CDT
consists of the string sets xd provided by devices as shown in Pseudocode 1, section 4.2.2,
while the data used for probabilistic CDT consists of the feature vectors xp and the IP ad-
dresses collected by PS. We use the symbol Xd to denote the collection of all data shared
by devices for the purpose of deterministic CDT. Similarly, we use the symbol Xp to de-
note the set of all xp vectors shared by all devices, and the symbol Πp to denote the set
of all decision tree nodes trained on the data in Xp .

As PCDT employs multiple security schemes to preserve the secrecy of each category
of device data from each server party, in the following sections we analyse the security of
PCDT for each type of device data and each adversary P ∈ {PS, TS}.

5.1.1. THREAT MODEL

We base our analysis on a semi-honest security model, where the parties involved try to
infer any information they can from the data presented to them, but they do not deviate
from the protocol, nor do they collude with each other. Additionally, we assume that
all communication takes place over secure channels and direct our analysis towards the
privacy-preserving properties of PCDT. We treat PS and TS as adaptive, computationally-
bound adversaries, whose goal is to obtain plaintext device data from the encrypted data
shared by a device.

50
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5.1.2. SECURITY OF DETERMINISTIC CDT
All the strings in Xd are hidden from PS using the BGV fully-homomorphic encryption
scheme. The data derived from these strings, mainly the associated padding flags and
AES-CMAC hashes, is also encrypted under BGV. Since the AES-CMAC hashes are com-
puted homomorphically, as shown in Pseudocode 4, section 4.3.1, PS never learns the
plaintext hashes of the strings provided by the device.

As PS only has access to BGV ciphertexts related to Xd , it follows that PCDT offers the
same level of security as BGV for the data in Xd stored on PS. Since the BGV encryption
scheme is proven to be IND-CPA secure under the assumption that the “General Learn-
ing with Errors" (GLWE) problem is hard (Theorem 5 in [34]), we conclude that PCDT
offers IND-CPA security for the device data that is stored on PS and used in determinis-
tic CDT, under the GLWE assumption.

The only information related to Xd received by TS consists of the collection of AES-
CMAC hashes computed homomorphically by PS. The choice of using a keyed hash
function as opposed to a non-keyed one results from the security consideration of ad-
dressing reverse lookup-table attacks. Since PCDT employs deterministic encryption to
allow constant-time search operations, it does not offer semantic security for data in Xd

stored on TS. As a result, if TS were able to compute hashes of values of is choice, the
privacy of Xd would be compromised in two ways. First, for any bit-string m, TS would
be able to find whether or not m ∈ Xd by computing its hash and comparing it against
the hashes received from PS. Second, by iteratively exploring the plaintext space of bit-
strings in Xd , TS would be able to construct a table of hash values which, when matched
against any hash received from PS, would allows TS to obtain the plaintext device data
of any hashes received in the future.

Bellare et al. [37] offer an argument for the security of deterministic encryption under
the assumption that the plaintext space has sufficiently large min-entropy. We note that
the strings used for deterministic CDT do not meet this requirement, as they belong to
specific domains, e.g. phone numbers, email addresses, etc.; which restrict the plaintext
space considerably. To address this issue, we use the AES-CMAC function as a keyed
hash, which allows us to extend the size of the plaintext space of deterministic CDT by a
factor of 2128, i.e. the size of the keyspace of AES-CMAC. This way, TS cannot hash values
of its choice without knowing the key K AES , which is kept secret by PS.

We base the security of data in Xd that is stored on TS on the security of AES-CMAC,
which is in turn based on the security of AES-128. We say that a scheme has passive secu-
rity, if there is no strategy better than brute-force for an adversary to obtain the plaintext
M or the encryption key K from a ciphertext C obtained by encrypting M with K . We
conclude that PCDT offers passive security for the data that is used in determinitic CDT
and stored on TS, under the assumption that AES-128 offers passive security.

5.1.3. SECURITY OF PROBABILISTIC CDT
Since PS is the party with which the devices communicate, PCDT offers no security for IP
addresses stored on PS. This is an unavoidable consequence of Internet communication,
and we leave it to the device users to use VPNs or anonymizing networks if they wish to
keep their IP addresses secret.

Since TS only receives the AES-CMAC hashes of the IP addresses collected by PS,
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PCDT offers the same level of security for the device IP data stored on TS as it does for
the data used in deterministic CDT, namely passive security.

All the data related to Xp and the GBDT models, including the training data used
for the PS:GBDT-TRAIN procedure, are kept secret from PS using the BGV encryption
scheme. Since both the evaluation and training algorithms operate on homomorphic ci-
phertexts, PS does not learn information about the device data from the machine learn-
ing operations used for probabilistic CDT. In similar fashion with the security of Xd on
PS, we conclude that PCDT offers IND-CPA security for the device data that is stored on
PS and used in probabilistic CDT, under the GLWE assumption.

Any BGV ciphertext of device data xp ∈ Xp is encrypted by PS using a symmetric
encryption scheme before being sent to TS. The BGV ciphertexts of all threshold or leaf
values of decision-tree nodes trained by PS are also encrypted using the same symmetric
scheme. The decision to encrypt the threshold and leaf values of the GBDT model in
order to keep them secret from TS was made to prevent TS from deriving information
about elements of Xp from the results of evaluating the model.

Consider the case of a decision tree of depth 2, consisting of a non-leaf node t with
threshold value t .θ and feature index t . f eatur e, and two leaf nodes t .l e f t and t .r i g ht ,
with values t .l e f t .val = α and t .r i g ht .val = β. If TS knows these values, then given
an encrypted feature vector xp and the plaintext result y of evaluating t on xp , then TS
learns that x.p[t . f eatur e] < t .θ if y =α, or x.p[t . f eatur e] ≥ t .θ if y =β.

Since both Xp andΠp are stored on TS while encrypted under the symmetric key KSE ,
which is kept secret by PS, it follows that PCDT offers the same level of security for the
data in Xp stored on TS, as the symmetric encryption scheme used by PS. We conclude
that PCDT offers IND-CCA security for the data in Xp stored on TS, if the symmetric
scheme employed by PS is IND-CCA secure.

5.1.4. EFFECTS OF COLLUSION ON THE SECURITY OF PCDT
The security of the PCDT protocol relies on the fact that both server parties employ en-
cryption schemes to keep the device data secret from each other. As a result, if PS and TS
collude with one another, then they will both have the information necessary to decrypt
the collected device data in its entirety.

By colluding with a device, TS can gain the ability to compute AES-CMAC hashes on
chosen values, which can be leveraged to conduct a chosen-plaintext attack against the
privacy of all device data used for deterministic CDT, as well as all device IP addresses.
However, this type of collusion would be easily detectable by any monitoring or auditing
party. Since PS acts as a proxy for TS, any communication between TS and any other
party besides PS would fall under suspicion.

By colluding with a device, PS cannot learn anything about the data of other devices,
as PS gains no additional capabilities from the collusion.
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5.2. PERFORMANCE ANALYSIS
In this section we analyse the performance of PCDT with respect to both computational
and communication complexities. Section 5.2.1 offers an evaluation of the depth of ho-
momorphic circuits employed by PCDT procedures, while sections 5.2.2 and 5.2.3 con-
tain theoretical analyses into the computational and communication complexities of
PCDT procedures. In section 5.2.4, we examine the performance of deterministic and
probabilistic privacy-preserving CDT as performed by an implementation of our con-
struction.

Throughout this section, we divide the procedure TS:UPDATE-ASSOCIATIONS into
its constituent methods, namely TS:UPDATE-DET and TS:UPDATE-PROB, in order to
distinguish between the deterministic and probabilistic CDT functionalities offered by
PCDT.

The symbols and notations used in this section follow those presented in Tables 4.1,
4.2, and 4.3, from section 4, with a few additions shown in Table 5.1.

Table 5.1: Performance analysis notations

Notation Meaning

x Input vector for the AGGREGATE procedure.
� Binary operation passed as argument to procedures AG-

GREGATE and HE-BIT-AGGREGATE.
µ∗

d Largest set of collected PII hashes.
µ∗

I P Largest set of collected IP hashes.
I Dd Set of device identifiers that share a PII string with the de-

vice considered by the procedure.
I Di p Set of device identifiers that share a relevant IP address

with the device considered by the procedure procedure.
D Data-set used to train the GBDT model.

5.2.1. HOMOMORPHIC CIRCUIT DEPTH
In this section we evaluate the depth of the homomorphic circuits used by the various
algorithms employed by PCDT. The depth of a homomorphic circuit refers to the num-
ber of modulus switching operations performed on a ciphertext in order to maintain its
validity, i.e. keep its noise within bounds. We denote byL(P ) the circuit depth of a proce-
dure P , and say that the evaluation of P consumes L(P ) levels. Different homomorphic
operations have different impacts on the noise magnitude of ciphertexts, which trans-
lates to different requirements for modulus switching [53]. We list the homomorphic
operations employed by PCDT and their associated levels:

1. Homomorphic addition has a small impact on the noise magnitude, and does not
increase the circuit depth.

2. Rotation automorphisms have a small impact on the noise magnitude, and do not
increase the circuit depth.
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3. Homomorphic multiplication of ciphertexts has a significant impact on the noise
magnitude, and increases the circuit depth by 1.

4. Homomorphic multiplication between a ciphertext and a plaintext value has a
moderate impact on the noise magnitude, and increases the circuit depth by 0.5.

Following the aforementioned rules, we evaluate the circuit depths of the auxiliary
procedures employed by PCDT and show the results in Table 5.3. Using these values, we
calculate the circuit depths of the PCDT main procedures, namely
Di d :UPDATE, TS:UPDATE-DET, TS:UPDATE-PROB, and TS:UPDATE-MODEL,
and show the results in Table 5.2.

The only homomorphic computations performed by the Di d :UPDATE procedure
consist of evaluating the AES-CMAC hashes over homomorphic ciphertext space. As
these hashes are computed independently, the circuit depth of Di d :UPDATE is equal
to the depth of procedure HE-AES-CMAC, which is calculated as L(HE-AES-CMAC) =
0.5 + 5

16 Ld , based on the depth of HE-AES evaluated by Gentry et al. [50] as L(HE-
AES) = 40.

Procedure TS:UPDATE-DET has no homomorphic circuit, as all the homomorphic
computations required for deterministic CDT are performed by Di d :UPDATE.

Procedure TS:UPDATE-PROB evaluates the GBDT model on each pair of device fea-
ture vectors independently. As a result, TS:UPDATE-PROB has the same circuit depth
as procedure PS:GBDT-EVAL, which in turn has the same depth as PS:TREE-EVAL, since
the trees in the ensemble are evaluated using independent circuits.

Finally, TS:UPDATE-MODEL delegates all homomorphic computations to PS:GBDT-
TRAIN, so the two procedures have the same circuit depth. Procedure PS:GBDT-TRAIN
trains each tree Ti on the residuals computed from the previous i −1 trees. As a result,
the circuit will require n subsequent evaluations of the circuit of procedure PS:TREE-
TRAIN. One HE-SUBTRACT operation is used to compute the first residual vector, while
the next n − 1 residual vectors are computed using one HE-SUBTRACT and one HE-
MULTIPLY operation. Note that the elements of the residual vectors are computed inde-
pendently from each other. The circuit depth of procedure PS:TREE-TRAIN is given by
the depth of the circuit for training a single branch, which is comprised of dmax −1 cir-
cuits for training a non-leaf node and one circuit for training a leaf node. Training a non-
leaf node involves the independent computation of errors for each feature-threshold
combination, followed by running procedure PS:BEST-NODE to find the minimum er-
ror. Procedure PS:BEST-NODE uses a log(|D|)-depth circuit that performs an HE-LESS-
THAN operation and a homomoprhic multiplication at each level, thereforeL(PS:BEST-
NODE) = log(|D|) · (3.5+ log(Lb)). The circuit for training a leaf node involves three ho-
momorphic multiplications, one use of the HE-DIVIDE procedure, and a log(|D|)-depth
circuit that uses HE-ADD at each level.

Based on these results, we compute the length of the modulus chain required by each
BGV scheme involved in PCDT, such that the protocol can be executed without boot-
strapping. We use LBGV −AES and LBGV −I A to denote the number of required moduli for
the BGV-AES and BGV-IA schemes respectively, and give their evaluations in Equations
5.1 and 5.2. Note that, since the GBDT model contains BGV ciphertexts resulted from the
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Table 5.2: PCDT - Depth of homomorphic circuits (main procedures)

Procedure Levels

Di d :UPDATE 0.5+ 5
16 Ld

TS:UPDATE-DET 0
TS:UPDATE-PROB L(PS:GBDT-EVAL)
TS:UPDATE-MODEL L(PS:GBDT-TRAIN)

Table 5.3: PCDT - Depth of homomorphic circuits (auxiliary procedures)

Procedure Levels

HE-AES-CMAC 0.5+ 5
16 Ld

AGGREGATE log(|x|) ·L(�)
HE-BITSHIFT 0.5
HE-BIT-AGGREGATE log(Lb) ·L(�)
HE-LESS-THAN 2.5+ log(Lb)
HE-ADD 1.5log(Lb)
HE-SUBTRACT 3log(Lb)
HE-MULTIPLY 1.5log2(Lb)+1.5
HE-DIVIDE 1+3log(Lb)+1.5Lb

PS:TREE-EVAL dmax (3.5+ log(Lb))
PS:TREE-TRAIN 3 + 1.5log(|D|) · log(Lb) + (dmax − 1) · (11 + 11.5log(Lb) +

3.5log(|D|)+4log(|D|) · log(Lb)+1.5log2(Lb)+3Lb)
PS:GBDT-EVAL dmax (3.5+ log(Lb))
PS:GBDT-TRAIN L(HE-SUBTRACT) + (n − 1) · (L(HE-SUBTRACT) + L(HE-

MULTIPLY))+n ·L(PS:TREE-TRAIN)

evaluation of procedure PS:GBDT-TRAIN, the total amount of levels required for BGV-IA
is LBGV −I A =L(TS:UPDATE-PROB) +L(TS:UPDATE-MODEL).

LBGV −AES = 0.5+ 5

16
Ld (5.1)

LBGV −I A = n · ((dmax −1) · (11+11.5log(Lb)+3.5log(|D|)+4log(|D|) · log(Lb)

+1.5log2(Lb)+3Lb)+4.5+1.5log(|D|) · log(Lb)+3log(Lb)

+1.5log2(Lb))−1.5 · (log2(Lb)+1)+dmax (3.5+ log(Lb))

(5.2)

Due to the slow scaling of the circuit depth involving the BGV-AES scheme, it is possi-
ble to employ BGV-AES without using bootstrapping for some small but sufficient values
of Ld . On the other hand, it is clear that the BGV-IA scheme, which is used for probabilis-
tic CDT, requires too many levels to evaluate all procedures without the use of bootstrap-
ping, for any practical parameter values.
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5.2.2. COMPUTATIONAL COMPLEXITY ANALYSIS

The BGV scheme [34] offers two initialization methods that affect the per-gate computa-
tional complexity in terms of the circuit depth L and the security parameter λ. Depend-
ing on the choice of BGV scheme, we can have the per-gate computational complexity
beO(λ ·L3) orO(λ2), where the latter complexity is achieved by using bootstraping. In
the implementation of HElib, a C++ library that implements the BGV and CKKS fully-
homomorphic encryption schemes, Halevi et al. [54] use a construction in which a ci-
phertext can be used until a small amount L of levels have been consumed, at which
point the ciphertext can be refreshed using bootstrapping to allow L more levels, and so
on. Since this bootstrapping operation has computational complexityO(λ2), the result-
ing per-gate complexity is still an amortisedO(λ2).

Let Comp(P ) denote the computational complexity of a procedure P . We denote by
OBGV the complexity class of homomorphic computations, such that OBGV (1) ∈
{O(λ ·L3), O(λ2)}.

Table 5.5 shows the computational complexities of the auxiliary procedures employed
by PCDT. These results are used to evaluate the complexities of the four main procedures
shown in Table 5.4.

Procedure Di d :UPDATE involves iterating over all elements in xd and xp and en-
crypting them under the corresponding BGV scheme. Additionally, the elements of xd

are separated into 1
128 Ld blocks of 128 bits before encryption, which are then iterated

over by the HE-AES-CMAC procedure. Overall, the computational complexity of
Di d :UPDATE isOBGV (|xd | ·Ld +Lp ).

Procedure TS:UPDATE-DET computes the deterministic association scores between
a device Di d and all devices that share a hash with it, by counting the number of common
hashes. As a result, Comp(TS:UPDATE-DET) =O(|µ∗

d | · |I Dd |).

Procedure TS:UPDATE-PROB performs an IP-based down-sampling technique by it-
erating over the sets of collected IP addresses with O(µ∗

I P · |I Di p |) computational com-
plexity, and invokes TS:GBDT-EVAL for each device pair selected by the sampling proce-
dure. Procedure TS:GBDT-EVAL invokes PS:GBDT-EVAL, and then performs n decryp-
tion operations. Procedure PS:GBDT-EVAL first decrypts the feature vector xp , then iter-
ates over all n trees in the ensemble, evaluating each one using the PS:TREE-EVAL pro-
cedure. In turn, procedure PS:TREE-EVAL evaluates each node using a constant amount
of homomorphic operations, including an HE-LESS-THAN operation.

Procedure TS:UPDATE-MODEL iterates over all device pairs and their IP addresses
in order to construct the training data set which is passed to procedure TS:GBDT-TRAIN.
The computational complexity of TS:GBDT-TRAIN is equal to that of procedure PS:GBDT-
TRAIN, which iterates over all n trees in the ensemble, training each one using the PS:TREE-
TRAIN procedure. When training a non-leaf node, procedure PS:TREE-TRAIN iterates
over all 2Lp · |Sθ| combinations of feature index and threshold, and calculates the er-
ror corresponding to each pair. The computation of one error involves an amount lin-
ear in |D| of homomorphic multiplications, HE-LESS-THAN, HE-ADD, HE-SUBTRACT,
and HE-MULTIPLY operations, as well as a constant amount of HE-DIVIDE and AGGRE-
GATE operations, where � = HE-ADD, and |x| = |D|. The procedure PS:BEST-NODE it-
erates over the 2Lp · |Sθ elements of Ve , performing one HE-LESS-THAN operation and a
constant amount of homomorphic additions and multiplications at each step. The data
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partitions DL and DR are computed using 2|D| homomorphic multiplications, while the
prediction vector P is computed using an additional |D| homomorphic additions. The
complexity class of training a leaf node is lower than that of computing a single error for
a non-leaf node.

Table 5.4: PCDT - Computational complexities (main procedures)

Procedure Complexity

Di d :UPDATE OBGV (|xd | ·Ld +Lp )
TS:UPDATE-DET O(|µ∗

d | · |I Dd |)
TS:UPDATE-PROB O(µ∗

I P · |I Di p | ·Lp )+OBGV (µ∗
I P · |I Di p | ·n ·Lb ·2dmax )

TS:UPDATE-MODEL O(|I D|2 · |µ∗
I P |)+OBGV (n ·2dmax · |D| · |Sθ| ·Lp ·L2

b)

Table 5.5: PCDT - Computational complexities (auxiliary procedures)

Procedure Complexity

HE-AES-CMAC OBGV (Ld )
AGGREGATE O(|x|) ·Comp(�)
HE-BITSHIFT OBGV (1)
HE-BIT-AGGREGATE OBGV (log(Lb))
HE-LESS-THAN OBGV (Lb)
HE-ADD OBGV (Lb)
HE-SUBTRACT OBGV (Lb)
HE-MULTIPLY OBGV (L2

b)
HE-DIVIDE OBGV (Lb · log(Lb))
PS:TREE-EVAL OBGV (Lb ·2dmax )
PS:TREE-TRAIN OBGV (2dmax · |D| · |Sθ| ·Lp ·L2

b)
TS:GBDT-EVAL O(Lp )+OBGV (n ·Lb ·2dmax )
PS:GBDT-EVAL O(Lp )+OBGV (n ·Lb ·2dmax )
TS:GBDT-TRAIN OBGV (n ·2dmax · |D| · |Sθ| ·Lp ·L2

b)
PS:GBDT-TRAIN OBGV (n ·2dmax · |D| · |Sθ| ·Lp ·L2

b)

5.2.3. COMMUNICATION COMPLEXITY ANALYSIS
In this section we use OBGV to denote the communication complexity related to trans-
ferring BGV ciphertexts over the communication channels, where OBGV (1) represents
the size of one ciphertext.

Table 5.6 shows the communication complexities of all PCDT procedures that trans-
fer data between parties.

Procedure Di d :UPDATE sends the BGV-encrypted set xd and vector xp to PS, which
then forwards |xd | BGV-encrypted AES-CMAC hashes and the doubly-encrypted xp to
TS. Since the number of ciphertexts required to encrypt xd depends on Ld , and |xp | = Lp ,
the overall communication complexity of Di d :UPDATE isOBGV (|xd |·Ld +Lp ). It is worth
noting that the bit-length Lb used to represent the integer values in xp does not factor
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into the communication complexity, since all the bits of an integer are encrypted within
a single ciphertext.

Procedure TS:UPDATE-PROB invokes procedure TS:GBDT-EVAL for every device found
to share a relevant IP address with Di d , where i d is he parameter passed when invoking
TS:UPDATE-PROB. Procedure TS:GBDT-EVAL sends a doubly-encrypted feature vector
of length 2Lp to PS, along with the tree ensemble to be evaluated. PS returns a single
ciphertext, which is inconsequential.

Note that an efficient implementation of TS:UPDATE-PROB would have TS only send
the ensemble once, together with all the sampled feature vectors. The pseudocode how-
ever is left as is for readability purposes.

TS:UPDATE-MODEL invokes procedure TS:GBDT-TRAIN, which sends the data set
D to PS, each element consisting of 2Lp+1 BGV ciphertexts. PS replies with an encrypted
decision tree ensemble, which is comprised of 1.5n ·2dmax ciphertexts.

Table 5.6: PCDT - Communication complexities

Procedure Complexity

Di d :UPDATE OBGV (|xd | ·Ld +Lp )
TS:UPDATE-PROB OBGV (|I Di p | · (Lp +n ·2dmax ))
TS:UPDATE-MODEL OBGV (|D| ·Lp +n ·2dmax ))
TS:GBDT-EVAL OBGV (Lp +n ·2dmax )
TS:GBDT-TRAIN OBGV (|D| ·Lp +n ·2dmax ))

5.2.4. EXPERIMENTAL ANALYSIS
The most computationally-intensive procedures of PCDT are those that involve homo-
morphic computations, such as HE-AES-CMAC, PS:TREE-EVAL, and PS:TREE-TRAIN.
To test the performance of our protocol, we build a C++ implementation of these pro-
cedures [74] and use it to analyse their run-time through a series of experiments. Our
implementation makes use of the implementation of the BGV homomorphic encryption
scheme offered by the HElib [52] open-source library.

The experiments described in this section were performed on the TU Delft HPC clus-
ter, which uses the CentOS Linux operating system, allocating one CPU core, model
Intel® XeonTM E5-2620 v4 2.10GHz, and 16 GB of memory to each experiment. We run
each experiment 10 times and average the results.

Table 5.7 shows the parameters used to initialize each BGV scheme involved in our
experiments. Since all operations are performed over binary values, the prime modulus
is set to 2 for every scheme. The parameter m represents the order of the cyclothomic
polynomial used by each scheme, and the lists denoted as g ens and or d s represent the
generators used to decide the dimensionality of the ciphertext hypercube, and their re-
spective orders. The number of generators decides the number of dimensions of the
ciphertext hypercube, while the order of each generator decides the number of slots in
each dimension. The generators have to be specifically selected such that the product of
their orders is equal to the totient of m divided by the multiplicative order of 2 modulo
m. Finally, log(q) denotes the bit-length of the modulus chain.
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For each scheme, we are interested in a set of parameters that offer a specific dimen-
sionality of the ciphertext hypercube, a modulus chain that allows for a practical number
of subsequent homomorphic computations without bootstrapping, and a security level
above 80, which is considered sufficient by existing research [51].

The HE-AES-CMAC procedure requires that the underlying BGV scheme is initialized
such that one dimension of the hypercube is a multiple of 16. The scheme is also initial-
ized with a sufficiently long modulus chain to evaluate up to three AES blocks without
bootstrapping. For the case of deterministic CDT, we argue that a length of 32 or 48 bytes
would be sufficient for any PII string, and therefore the evaluation of HE-AES-CMAC
does not need to employ bootstrapping.

For the PS:TREE-EVAL and PS:TREE-TRAIN procedures, we are interested in param-
eters that produce ciphertexts in which one dimension of the hypercube holds a number
of slots equal to the number of bits Lb chosen for our integer representation. The length
of the modulus chain is chosen to obtain the required security level, while the homo-
morphic circuit depth is decided by the bootstrapping operation.

Table 5.7: BGV parameters

Scheme m g ens or d s log(q) Security
level

BGV-AES 65281
= 97 ·673

{43073,
22214}

{96, −14} 1800 83

BGV-IA
(8-bit
integers)

32317
= 17 ·1901

{3} {8} 600 118

BGV-IA
(16-bit
integers)

35377
= 17 ·2081

{3, 725} {2, 16} 600 139

BGV-IA
(32-bit
integers)

58803
=
3 ·17 ·1153

{11, 5} {4, 32} 600 166

Figure 5.1 shows the average run-time of the HE-AES-CMAC procedure on input
strings of one, two, and three 128-bit blocks. Based on these results, we argue that a
device profile update would, in practice, take between 10 and 15 minutes per PII string,
depending on the choice of Ld , and with PS performing most of the computations. As
these hashes are computed independently, PS could leverage parallelism to speed up the
process.

To study the performance of the PS:TREE-TRAIN procedure, we measure its average
run-time in relation to the depth of the tree and the selected integer bit-length. The tree-
depth values used in our experiments are chosen based on existing implementations of
GBDT [58], which tend to use fairly short trees, with depth lower than 10, in order to pre-
vent overfitting. PCDT requires for the integer bit-length Lb to be a power of two. While
modern computers use 32 or 64 bits to represent integer values, we consider a 16-bit
representation sufficient for most use cases of our protocol. In addition to the 16-bit in-
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Figure 5.1: Run-time analysis of the HE-AES-CMAC operation based input size.

teger representation, we also explore the 8-bit representation, which provides the high-
est speed while still being potentially useful in practice, and the 32-bit representation,
which may be used in applications that involve large numbers or require high-precision
rational-number computations.

The experimental results shown in Figure 5.2 indicate that PCDT can homomorphi-
cally evaluate a decision tree with depth 6 or lower in under 40 minutes, for any integer
representation, and as fast as 10 minutes for the 8-bit representation. For depth values
above 6, the exponential scaling in the number of nodes creates a substantial difference
in run-time based on the integer representation, from 40 minutes for 8 bits, to 75 min-
utes for 16 bits, and 160 minutes for 32 bits, in the case of a tree with depth 8.

Due to unresolved technical issues, our implementation of PS:TREE-EVAL does not
employ bootstrapping, and instead mimics it by re-encrypting the ciphertexts when nec-
essary. As a result, the values offered in Figure 5.2 serve as a lower-bound on the actual
execution times of a method that employs bootstrapping.

In their implementation of BGV, Halevi and Shoup [54] offer a fast bootstrapping op-
eration named thin bootstrapping, optimised for schemes initialised with prime mod-
ulus 2. The experimental results shown in their paper indicate that this operation can
re-encrypt homomorphic ciphertexts larger than the ones used in our experiments in
less than 5 minutes.

Through our experiments, we evaluate an average number of 2, 3, and 4, bootstrap-
ping operations per tree level required by the 8-bit, 16-bit, and 32-bit setups respectively.
Given these results, we estimate that the run-time of PS:TREE-EVAL would increase by
at most 10, 15, and 20 minutes per tree-level, for each respective setup.

In order to perform probabilistic CDT, PCDT employs the PS:TREE-EVAL procedure
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to evaluate an ensemble of trees. Existing implementations indicate that the usual num-
ber of trees in a GBDT ensemble exceeds 100 [58]. By assuming an ensemble containing
100 predictors, we estimate that the computational time required to evaluate the prob-
abilistic association score of a pair of devices ranges from three days to three weeks, de-
pending on other parameters. This could however be sped up trough the use of parallel
computations, since the trees can be evaluated independently.

Figure 5.2: Run-time analysis of the PS:TREE-EVAL operation based tree depth.

Unfortunately, a functioning implementation of PS:TREE-TRAIN could not be com-
pleted in time for its performance to be analysed experimentally, and as a result, we
cannot offer an estimate of the time required for PCDT to train a GBDT model.



6
DISCUSSION AND FUTURE WORK

In this section we give an overview of our contribution and how it relates to the problem
at hand. To this end, we return to the research questions formulated in the introduction
section and offer answers based on the results of our exploration. We also discuss the
limitations of our work and give a list of possible improvements that can be explored in
future research. Finally, this section ends with a few concluding remarks which reiterate
the contributions presented in this thesis in relation to the motivations behind our study.

6.1. DISCUSSION
We first restate our research question and its four sub-questions.

Research question: How can a system become aware of which devices that access an
online service are used by the same user, such that no party has access to a user’s data
besides the user who owns it ?

Sub-questions:

1. How can user data be made available for the purpose of CDT, without disclosing
the actual meaning of the data ?

2. How can deterministic CDT be performed without knowledge of a user’s person-
ally identifiable information ?

3. How can probabilistic CDT be performed without knowledge of a user’s inferred
data ?

4. How efficient, and therefore practical, is privacy-preserving CDT ?

The overall design of PCDT answers the main research question by demonstrating
a practical method of performing cross-device tracking in a privacy-preserving manner.
Our protocol uses a two-server setting, in the semi-honest security model, and employs
cryptographic techniques such as fully-homomorphic encryption, symmetric encryp-
tion, and keyed hashing, in order to construct a device association graph through both
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deterministic and probabilistic CDT without either server learning the plaintext device
data.

To address the first sub-question, our protocol makes use of three cryptographic
schemes to maintain the secrecy of device data while allowing the server parties to per-
form CDT-related computations. First, fully-homomorphic encryption is used to hide
the plaintext data from PS, while allowing the evaluation of machine-learning algorithms
and the AES-CMAC function over homomorphic ciphertext space. Furthermore, to keep
the device data secret from TS, PS will homomorphically compute the AES-CMAC hashes
of the data used for deterministic CDT, and use a symmetric encryption scheme to doubly-
encrypt the ciphertexts of the data used for probabilistic CDT. AES-CMAC hashes are also
used to conceal the device IP addresses from TS.

The use of a keyed hash function protects the secrecy of device data and IP addresses
from reverse lookup table attacks, while allowing TS to perform both deterministic CDT
and the IP-related down-sampling method used in probabilistic CDT at the same speed
as if operating over plaintext values. The two-fold encryption used on data collected
for probabilistic CDT conceals the data from both servers and allows PS to evaluate and
train decision tree models using encrypted values, and TS to retrieve the plaintext results
of model evaluations, which are used to perform probabilistic CDT.

PCDT performs deterministic CDT by matching hashes of the device data instead
of plaintext strings. The hash values are computed using the keyed hash function AES-
CMAC, in order to protect the data against reverse table lookup attacks. If the values
were simply hashed without a secret key, TS would be able to compute hashes of chosen
values and, by comparing them against the collected hashes, compromise the secrecy
of the device data. In order to conceal the plaintext strings from PS, they are first en-
crypted using the BGV fully-homomorphic encryption scheme. By operating on these
homomorphic ciphertexts, PS is able to obtain the BGV-encrypted AES-CMAC hashes,
which are then decrypted by TS to obtain the deterministic hashes. Since these hashes
are computed deterministically, and considering that the chance of a hash collision is
negligible for AES-CMAC, two devices sharing the same hash indicates the existence of
a common data point used for deterministic CDT.

The protocol computes the deterministic association score between two devices as
the number of hashes they have in common. This score is then compared against a
threshold value, to decide whether or not the two devices should be linked in the de-
vice association graph. In practical applications, the importance of a single match may
depend on the type of data, e.g. a shared email address may be more conclusive than
a shared home address. While PCDT assumes that all strings collected for deterministic
CDT are equally important, the protocol can be easily extended to the general case by us-
ing separate hash sets for each category of data, and multiplying the number of matches
in each category by a weight factor representing the relevance of the category.

In terms of performance, the use of deterministic hashes allows PCDT to perform de-
terministic CDT just as fast as if it was operating on plaintext values. The only increase in
computation related to deterministic CDT comes from the evaluation of AES-CMAC over
homomorphic ciphertext space, an operation which takes place during the data collec-
tion phase, i.e. the update device profile operation described in section 4.2.2. As shown
in section 5.2.4, one evaluation of the hash function takes approximately 10 minutes for
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a practical input length of 32 characters. We consider this to be sufficiently fast for most
CDT applications.

PCDT performs probabilistic CDT by training and evaluating a gradient-boosting de-
cision tree model on BGV-encrypted data. Unlike the case of online behavioural adver-
tisement, the users do not provide any feedback with which to measure the accuracy of
CDT techniques. As a result, the model used to perform probabilistic CDT is trained to
predict the association scores obtained through deterministic CDT, a decision based on
the assumption that deterministic CDT is the more reliable of the two.

The protocol computes the probabilistic association score of a pair of devices as the
result of the GBDT model when evaluated on the concatenated feature vectors supplied
by both devices. This score is then compared against a threshold value to decide whether
or not to link the two devices in the device association graph. Because we expect a very
large number of device pairs, we consider it unfeasible to evaluate the model on all de-
vice pairs. As a result, when constructing a set of device-pair data for either model train-
ing or evaluation, we apply an IP-based down-sampling rule that limits the amount of
device pairs considered in the data set. According to this rule, a pair of devices is further
considered for probabilistic CDT only if there is an IP address from which both devices
have connected to PS within a relevant time-frame.

Since the devices communicate with PS directly, the device IP addresses are known
to PS, while being hidden from TS in the form of AES-CMAC hashes. In a similar fash-
ion as when performing deterministic CDT, the deterministic hashes of the IP addresses
allow TS to quickly down-sample the device data in accordance to the aforementioned
IP-based rule.

In order to prevent TS from deriving information about the device data from the
GBDT model or the results of its evaluations, the model produced by PCDT is encrypted
by PS using a symmetric encryption scheme. As a consequence, TS cannot evaluate
models that were not produced by the training algorithm of PCDT, or learn the plain-
text of the trained model, perform model optimization techniques, such as pruning.
This poses substantial limitations on the practical uses of PCDT with respect to privacy-
preserving probabilistic CDT.

In terms of performance, the results shown in section 5.2.4 indicate that a large num-
ber of trees in the GBDT ensemble, which exceeds 100 in most practical applications,
would render the probabilistic CDT performed by our protocol infeasible without signif-
icant use of parallelism.

The evaluation procedure stands to benefit considerably from parallel computation,
as the trees in the ensemble can be evalauted independently from each other. Further-
more, the evaluation of each individual decision tree model can be sped up through par-
allelism since each child subtree of a non-leaf node can be evaluated independently from
its sibling.

While the decision trees in the ensemble have to be trained sequentially, as each new
tree model is trained on the residuals produced by the already models, the training al-
gorithm can still benefit from parallelism in three ways. First, the child sub-trees of a
non-leaf node are trained independently from each other, and can therefore be trained
in parallel. Second, the errors associated with each feature-threshold pair can be com-
puted in parallel, as they do not depend on each other. Third, computing the minimum
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error and its associated feature index and threshold values is similar to the procedure of
evaluating a decision tree, and can therefore benefit from parallelism in a similar fash-
ion.

6.2. FUTURE WORK
To the best of our knowledge, PCDT is the first protocol designed to perform cross-device
tracking while preserving the privacy of the collected device data. However, it explores
only a narrow approach to the issue of privacy-preserving CDT, resulted from our choices
concerning the balance between security and performance. As a result, a wide variety of
improvements and alternative approaches can be explored in future research, several of
which are described in this section.

Identifying users on shared devices. One aspect of CDT which is not accounted for
in our protocol refers to the ability of tracking services to differentiate between multiple
users on the same device. In practice, this is usually performed based on behavioural
changes in the browsing activity of a device at different time instances. PCDT assumes
that all data collected from a device corresponds to a single user, and does not offer any
procedures for analysing the encrypted behaviour data to detect multiple users. One
possible extension that would allow PCDT to account for shared devices is to perform
the user differentiation locally, i.e. on the device-side software, then maintain multiple
device profiles, one for each separate user. However, further exploration into this issue is
required to verify that this extension is sufficient for identifying users on shared devices.

Multi-server setting. PCDT relies on the assumption that TS and PS do not col-
lude with one another. If PS and TS were to collude, the secrecy of all collected device
data would be compromised. One way of addressing this issue, and making privacy-
preserving CDT more resilient to collusion attacks, would be to use a multi-server setting
where a group of n servers engage in secure multi-party computation to perform CDT in
a federated manner. This scheme could make use of secret sharing, oblivious transfer, or
multi-key homomorphic encryption to perform CDT while preserving the secrecy of the
data in a k-out-of-n model of security, i.e. a collusion attack will not compromise the
security of the device data if the number of colluding servers is less than k.

Use plaintext ML models. A major downside of PCDT comes from the fact that the
machine learning evaluation procedure only works on models produced by the training
procedure of the protocol. Additionally, these models are encrypted and kept secret from
the tracking service, so that the service cannot derive information about the device data
from the results of the model evaluation. As a consequence, the tracking service cannot
use models trained by other means, nor can it perform model optimization techniques,
such as pruning, on the encrypted model. In order to overcome these limitations, one
must first address the issue of information leakage associated with the model evaluation
procedure. To prevent information leakage, a privacy-preserving CDT protocol would
have to either obfuscate the connection between an input value and its result, or change
the evaluation procedure such that it outputs an encrypted result, which can be used to
link devices in the device association graph without revealing its plaintext value. Once
the model evaluation procedure has been modified to evaluate plaintext models without
revealing information about the input data, the training procedure would no longer need
to encrypt the output model to keep it secret from TS, and TS would be able to provide
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arbitrary models to the model evaluation procedure.
Increase performance by encoding multiple integer values into one ciphertext. In

our construction, each homomorphic ciphertext used to perform probabilistic CDT en-
codes a single integer value. While the privacy-preserving machine learning algorithms
employed by PCDT make use of SIMD operations to speed up homomorphic integer op-
erations, such as addition and comparison, further speedup can be achieved by encod-
ing multiple integer values within a single homomorphic ciphertext. While not trivial,
it is possible to adapt the algorithms used to perform homomorphic integer operations
such that they perform vector-wise operations within the same computational complex-
ity as their element-wise counterparts. By packing a vector of integers within a single ci-
phertext, and leveraging SIMD operations, the resulting scheme would offer significantly
reduced execution times for privacy-preserving probabilistic CDT, especially in the case
of the model training procedure.

Use a more secure searchable encryption scheme for deterministic CDT. Deter-
ministic encryption allows PCDT to perform deterministic CDT over encrypted data at
a speed similar to performing it over plaintext data. On the other hand, deterministic
encryption does not offer security against chosen-plaintext attacks, and therefore, the
secrecy of device data used for deterministic CDT relies on the assumption that TS is un-
able to encrypt values of its choosing. Should TS gain the ability to compute AES-CMAC
hashes under the secret key of PS, either by colluding with a device or by impersonat-
ing a device, the secrecy of the PII used for deterministic CDT would be compromised.
Searchable encryption schemes that use probabilistic encryption can be employed to
address this issue and offer a more secure protocol for privacy-preserving deterministic
CDT, at the expense of performance. When using probabilistic encryption, the compu-
tational complexity of finding the set of devices that share a common data point is at
least linear in the number of devices considered in the search, which is expected to be
very large. Further research would have to be conducted into the possibility of using
such schemes in practice, as well as methods of reducing their computational complex-
ity. One such method that could be explored in future works consists of reducing the
search space based on additional device information. For example, devices could be
grouped based on geographical proximity using their location data, and only devices
within the same geographical region would be considered when searching for common
data points.

6.3. CONCLUDING REMARKS
The objective of our research is to reduce the impact of cross-device tracking on the pri-
vacy of online users by offering a privacy-preserving technological alternative to stan-
dard CDT practices. Through our solution, we seek to offer an argument against the
necessity of collecting and storing plaintext sensitive user information for the purpose
of cross-device tracking. To this end we design PCDT, a protocol for constructing device
association graphs using both deterministic and probabilistic techniques, that operates
on encrypted data.

PCDT employs fully-homomorphic encryption and the AES-CMAC keyed hash func-
tion to perform deterministic CDT in a privacy-preserving manner. The use of deter-
ministic hashes allows privacy-preserving deterministic CDT to be performed at a speed



REFERENCES

6

67

comparable to its non-privacy-preserving counterpart, but offers very limited security,
and the secrecy of device data relies on the secrecy of the key used to compute the AES-
CMAC hashes.

Probabilistic CDT is performed by training and evaluating machine learning mod-
els on device data encrypted using fully-homomorphic encryption. Based on existing
research in the field of probabilistic CDT, we have chosen gradient-boosting decision
trees as the machine learning algorithm employed by PCDT. In the case of probabilistic
CDT, the increase in user privacy comes with a significant decrease in speed, to the point
where it would require significant use of parallelism to be considered practical.

Finally, we implement two of the most computationally-intensive PCDT procedures
in the C++ programming language, using the BGV implementation provided by the HElib
library, and evaluate their performance through experimental analysis.

In addition to performing deterministic CDT, we also use the homomorphic evalu-
ation of AES-CMAC to construct a multi-user searchable encryption scheme, which is
described in detail in the paper presented in Appendix A.
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Abstract. Conventional encryption is sufficient to preserve the secrecy
of data stored on untrusted servers, but comes at the cost of reduced
usability, as encrypted data cannot be easily queried. Searchable encryp-
tion allows the storage server to perform search queries on encrypted
data on behalf of a client, without learning the plaintext data. Exist-
ing multi-user searchable encryption schemes compromise on speed to
meet security requirements, and as a result offer search complexity at
least linear in the number of stored entries. Deterministic encryption of
search keywords can be used to achieve constant search complexity, but
this approach makes a scheme vulnerable to lookup table attacks. In this
paper, we present MUSE, an interactive multi-user searchable encryp-
tion protocol, which uses homomorphically computed keyed hashes to
offer both constant search complexity and resilience against lookup ta-
ble attacks. As is the case with most searchable encryption schemes, our
protocol encrypts search keywords separately from the associated data.
The search keywords are hashed under the secret keys of two distinct
parties. Fully homomorphic encryption is employed to evaluate the hash
function without revealing the plaintext value to either party. This way,
searches become simple table-lookup operations, while neither party is
able to individually compute arbitrary hashes and construct lookup ta-
bles. The actual data entries are encrypted using a proxy re-encryption
scheme, which allows clients to share data access with each other.

Keywords: searchable encryption · homomorphic encryption · remote
data storage · secure data storage · privacy

1 Introduction

Remote storage services offer data storage, as well as data availability, accessibil-
ity, security, and redundancy. To reduce operational costs, or sometimes due to
regulatory reasons, many organisations make use of such services to store their
data. However, these services cannot always be trusted, as server administrators
would have access to the stored data, as would threat agents in case of a se-
curity breach. Conventional encryption allows clients to securely store sensitive
information on an untrusted server, but hinders their ability to query the data.
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Searchable encryption (SE) allows a server to search in encrypted data on
behalf of a client without learning information about the plaintext data. Some
schemes encrypt the data in a manner that allows searches to be performed
directly on the ciphertext, while others require the client to generate one or
more encrypted indices associated with the data. Most SE schemes require for
each document stored on the server to be associated with a set of keywords,
which can be used in search queries to retrieve matching documents. Based on
the number of parties that are allowed to store encrypted data on a server, SE
schemes are divided into single-writer and multi-writer schemes. Additionally,
depending on the amount of parties that can query and retrieve the stored data,
SE schemes are divided into single-reader and multi-reader schemes. A multi-
writer/multi-reader SE scheme, also called a multi-user SE scheme, matches the
functionality of a generic database, since it allows multiple parties to have store
and search capabilities.

In conventional databases, search and storage operations on indexed data
have logarithmic or constant time complexity [1], depending on the data struc-
tures used in the implementation. In this paper we consider a table lookup
operation to have constant time complexity. Most multi-user SE schemes have
at best linear complexity for search operations in order to meet security require-
ments. Bellare et al. [16] describe how deterministic encryption can be used to
achieve constant search and storage complexity, and evaluate the security of such
schemes. The main issue with deterministic encryption is that it does not offer
semantic security, and is therefore susceptible to lookup table attacks. Bellare
et al. give an alternative definition of security which deems a scheme that uses
deterministic encryption secure on the assumption that the plaintext space has
high min-entropy and is therefore resilient to lookup table attacks. This assump-
tion limits the type of data that can be used as search keywords. For example, in
the case of storing personally identifiable information, data such as phone num-
bers, birth dates, names, or email addresses would be desirable search keywords,
but also highly susceptible to lookup table attacks due to low plaintext space.

In this paper we present MUSE, an interactive multi-user SE protocol, which
makes use of deterministic encryption to achieve constant search time while being
resilient to lookup table attacks without requiring a high min-entropy plaintext
space. Similarly to most SE schemes, our protocol encrypts the search keywords
separately from their associated documents, to allow the server to query the
data. These keywords are hashed under the keys of two distinct parties using an
interactive algorithm built on the homomorphic evaluation of a keyed hashing
algorithm. Similar to other SE schemes [12, 18, 19], MUSE employs the use of a
third-party to help with privacy-preserving computations. More specifically, this
third-party manages the keys of a fully homomorphic encryption scheme, namely
Brakerski et al.’s BGV [21] scheme. The interactive hashing algorithm starts
with the client encrypting a keyword value under the BGV encryption scheme
and sending the cyphertext to the data storage server. The server evaluates
the AES-CMAC [25] hash of the keyword by operating on the homomorphic
ciphertext, keying the hash with its own secret key. The result is forwarded to the
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third-party, which decrypts the intermediate value and computes the final hash
using its own secret key. Thus, a keyed hash is computed without either server
learning the original value or the full hash key. Because the hashing algorithm
is deterministic, searching for a specific keyword requires a simple table-lookup
operation of constant complexity. Additionally, because neither server knows
the other one’s hash key, they cannot individually compute arbitrary hashes and
construct a lookup table. The documents associated with these keywords are
encrypted using Shao and Cao’s unidirectional proxy re-encryption scheme [28].
This way, clients can share access to their data with each other by enabling
the server to re-encrypt documents such that specific clients are able to decrypt
them.

2 Related Work

IND1-CKA security, introduced by Goh in [5], describes index security as se-
mantic security against adaptive chosen keywords attacks. The notion of index
security requires that the contents of an encrypted document cannot be deduced
from its index, i.e. the encrypted form of the keywords associated with it. How-
ever, index security does not require the trapdoors of the search queries to be
secure. Curtmola et al. [6] introduced two new adversarial models for SE, an
adaptive model, IND-CKA1, and a non-adaptive one, IND-CKA2. The IND-
CKA models require that nothing is leaked from the remotely stored files or
their indices, beyond the outcome and the search pattern of the queries. Addi-
tionally, the authors introduce the concept of trapdoor security, which require
that query trapdoors do not leak information about the keywords besides what
can be inferred from the search and access patterns. IND-CKA1 and IND-CKA2
are considered the standard definitions of security for SE. Bellare et al. [16] in-
troduce the notion of PRIV security for SE schemes that use deterministic en-
cryption. A scheme that offers PRIV security is considered sufficiently secure if
its plaintext space has high min-entropy. Shen et al. [10] formulate the definition
of full security, which involves index, trapdoor, and search-pattern privacy.

In the single-writer/single-reader category, the schemes presented in [6–9],
achieve optimal search efficiency, i.e. linear in the number of documents that
contain the query keyword and constant in everything else. They achieve this by
using deterministic keyword hashes for indexing documents and lookup tables
for searching. Also in the single-writer/single-reader category, the schemes [10]
and [11] use the inner-product between the trapdoor and the searchable content
to find the documents that match the search query. This way, they achieve
search-pattern privacy at the expense of a search complexity linear in the total
number of keywords. Bösch et al. [11] also mention an extension to their scheme
which offers access-pattern privacy.

In the single-writer/multi-reader category, Raykova et al. [12] propose a
scheme which uses reroutable encryption, and Yang et al. [13] propose a scheme
which uses bilinear maps. The scheme in [12] uses a third-party responsible for
user authentication and query re-encryption. The scheme achieves sub-linear
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search complexity by using deterministic encryption, at the expense of semantic
security. The scheme in [13] offers index and query privacy, as well as a search
complexity constant in the number of keywords and documents. The main draw-
back of [13] is the complexity of the storage operation, linear in the number of
keywords and documents. Curtmola et al. [6] propose a construction which uses
broadcast encryption on top of a single-writer/single-reader SE scheme.

Most multi-writer/single-reader schemes are variations of PEKS [14], the first
SE scheme to use asymmetric encryption. Proposed by Boneh et al. in 2004, the
scheme uses identity-based encryption, where the keyword acts as the identity.
Due to the use of asymmetric encryption, multiple users can generate searchable
content encrypted under the public key of the single reader, and only the holder
of the private key can query or decrypt the data. Both the store and search
operations are constant in the total amount of documents and keywords. In terms
of security, the scheme is vulnerable to offline keyword-guessing attacks [20], in
which an attacker matches a search-query trapdoor against a table of keyword
ciphertexts computed using the reader’s public key, to obtain the keywords in
the search query. Abdalla et al. [15] offer an improved PEKS scheme, which uses
hierarchical identity-based encryption to generate trapdoors that are only valid
in a specific time interval. This time interval prevents the server from matching
a trapdoor with past or future ciphertexts outside the chosen interval, which
makes the scheme more resilient against offline keyword-guessing attacks.

Most multi-writer/multi-reader schemes offer search complexity linear in the
total number of stored documents, except for [16]. Most of them use a third-party
for user authentication, and sometimes for interactive encryption protocols. Bel-
lare et al. [16] propose a multi-writer/multi-reader SE scheme, which makes the
encrypted keywords searchable by appending a hash of the keyword to its ci-
phertext. This makes both the storage and the search operations very efficient,
i.e. constant in the total amount of keywords and documents, but lacks semantic
security, and the server can derive the keywords from their hashes through a dic-
tionary attack. Dong et al. [17] propose a protocol which uses an El-Gamal proxy
re-encryption scheme in combination with a collision-resistant hash function, in a
three-party setting. The protocol employs a fully trusted key-management server,
which is separate from the data-storage server, and generates the key pairs used
by users to encrypt the search keywords. The key-management server also acts
as an access manager that grants and revokes the users’ permission to query the
data-storage server. The keyword ciphertexts are initially encrypted under each
user’s secret key, and are then re-encrypted by the server so that they can be
matched with queries produced by any user. The protocol offers semantic secu-
rity under the assumption that the data-storage server is not an authenticated
user and cannot generate queries on its own. In terms of efficiency, the storage
operation is linear in the amount of keywords associated with a document, while
the search operation is linear in the total amount of keyword-document pairs.
Bao et al. [18] propose a scheme which uses bilinear maps to allows users with
different secret keys to generate the same search index for a given keyword. This
scheme introduces a trusted third-party to manage user credentials, which al-
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lows for authenticated search queries and the revocation of a user’s permission
to query the database. The scheme offers query privacy as well as query un-
forgeability, i.e. only registered users can query the database and users cannot
impersonate each other. In terms of efficiency, the storage operation is linear in
the amount of keywords associated with a document, while the search operation
is linear in the total amount of documents in the database. Wang et al. [19] pro-
pose a protocol which allows users to perform conjunctive search queries on the
encrypted data, i.e. a document is retrieved only if it matches all the keywords in
the search query. The protocol uses a dynamic accumulator for user authentica-
tion and a combinatorial accumulator to build a search index from a padded list
of hashed keywords. It also makes use of a semi-honest third-party which assists
the users in decrypting the data retrieved via search queries. The protocol offers
semantic security against chosen-keyword attacks. With regards to efficiency, the
storage operation is linear in the maximum amount of keywords associated with
a document, and the search operation is linear in the total amount of documents.

3 Cryptographic Preliminaries

We provide a summary of the cryptographic preliminaries employed by our
protocol, namely BGV homomorphic encryption, AES-CMAC, and proxy re-
encryption.

3.1 BGV Homomorphic Encryption

BGV [21] is an asymmetric non-deterministic fully-homomorphic encryption
scheme based on the ring learning with errors problem (RLWE). Both cipher-
texts and secret keys are vectors over a polynomial ring R = Z[X]/Φm(X),
which represents the ring of integers over the m-th cyclotomic number field. The
plaintext space is the space of polynomials Rp = R/pR = Z[X]/(Φm(X), p),
for some fixed p ≥ 2, which represents the set of integer polynomial of degree
up to φ(m)− 1, reduced modulo p. Since this paper is only concerned with the
homomorphic evaluation of binary circuits, the plaintext space is restricted to
the space of binary polynomials, R2.

BGV is fully homomorphic, allowing the computation of both addition and
multiplication on encrypted data. Given two ciphertexts [x] and [y], encoding
ring elements x and y, a party can compute both [x+y] and [xy] without knowing
x or y. At any point in the homomorphic evaluation, there is a current secret key
s under which the ciphertext is valid, and a current modulus q, both of which
change as the homomorphic evaluation progresses. The polynomial [< c, s >
mod Φm(X)]q, obtained from computing the inner product over Rq between

the ciphertext vector c and the current secret key s, where q is the current
modulus, represents the noise of the ciphertext c. A ciphertext c is valid with
respect to key s and modulus q if the magnitude of its noise is sufficiently small
relative to q, so that it does not wrap around q when performing homomorphic
operations.
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Homomorphic addition has no effect on the current modulus or key, and the
noise magnitude is at most the sum of noises of the arguments. Homomorphic
multiplication does not change the current modulus, but it does change the key. If
the two input ciphertexts are valid under an n-dimension key s, then the output
ciphertext is valid under the n2-dimension key equal to the tensor product of s
with itself. The scheme offers a key switching operation, which is used to reduce
the size of the key after a multiplication. With respect to noise, the multiplication
operation will produce a ciphertext with a noise magnitude equal to the product
of the noises of the arguments. Since this may cause the noise to grow too large,
the modulus switching operation is used before each multiplication. The scheme
is instantiated with a list of L moduli, q0 < q1 < ... < qL−1, where L is the depth
of the homomorphic circuit to be evaluated. After a ciphertext reaches the last
modulus in the list, it can no longer be used for homomorphic computations,
except by using bootstrapping.

Smart and Vercauteren show in [22] that the structure of the BGV plaintext
space allows for the evaluation of single instructions, multiple data (SIMD) op-
erations. By setting m odd, the plaintext space R2 is isomorphic to the direct
sum of l copies of GF(2d), where l = φ(m)/d. This way, plaintexts can be treated
as l-vectors of elements of GF(2d), where arithmetic operations over plaintexts
corresponds to element-wise operations over l-vectors. The elements of these l-
vectors are called slots. In [23], Gentry et al. show how to permute the contents
of these slots through the use of automorphisms over R2, as well as how to raise
slot contents to powers of 2 through the use of Frobenius automorphisms.

3.2 AES-CMAC

The Cipher-based Message Authentication Code (CMAC) algorithm is a keyed
hash function based on a symmetric-key block cipher. The AES-CMAC [25] algo-
rithm is a specification of CMAC that uses the Advanced Encryption Standard
(AES) [26] algorithm as its underlying block cipher.

AES-CMAC takes as input a 128-bit key K and an arbitrary-length message
m. Using K, two derived keys K1 and K2 are computed. The message m is
divided into n blocks of 128 bits, denoted as mi, where i ∈ {1, ..., n}. If necessary,
10∗-padding is used so that the bit-length of m is a multiple of 128. Let AES(x,K)
be the output of AES-128 on block x and key K, and let Kx = K2 if the message
m was padded, and Kx = K1 otherwise, then the 128-bit output of AES-CMAC
is computed as shown in Pseudocode 1.

Pseudocode 1 AES-CMAC algorithm

1: procedure AES-CMAC(m1, m2, ..., mn, K, Kx)
2: h← AES(m1,K)
3: for i← 2, ..., (n− 1) do
4: h← AES(h⊕mi,K)
5: end for
6: return AES(h⊕mn ⊕Kx,K)
7: end procedure
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In [27], Gentry et al. describe how to modify the operations of AES-128
in order to evaluate the cipher over BGV-encrypted data. Their approach uses
packed ciphertexts, which encode one or more 128-bit blocks of data and are
operated on using automorphisms and SIMD operations. The polynomial Φm is
chosen so that it factors modulo 2 into at least 16 irreducible polynomials of
degree d, with d divisible by 8. This way, each slot holds one byte of the data,
and the number of slots is large enough to store an entire block.

Building on the homomorphic evaluation of AES-128, we can implement the
homomorphic evaluation of AES-CMAC for messages with bit-length divisible
by 128. Pseudocode 1 can be converted to represent the homomorphic evaluation
of AES-CMAC with the following changes in notation:

1. mi represents the BGV encryption of the i-th 128-bit message block
2. Kx is the no-pad key derived from K
3. AES(x,K) represents the homomorphic evaluation of AES-128
4. ⊕ represents homomorphic addition over R2

3.3 Proxy re-encryption (PRE)

A proxy re-encryption scheme allows a party A to delegate access to data en-
crypted under its public key pkA to a different party B, without revealing its
secret key skA to B. This process is facilitated by a proxy party, which uses a
re-encryption mechanism to transform a ciphertext of a message m under a pub-
lic key pkA into a ciphertext of the same message m, encrypted with a different
public key pkB . In [28], J. Shao and Z. Cao present a unidirectional single-hop
proxy re-encryption scheme that offers IND-CCA security. Their construction
uses signatures of knowledge and the Fijisaki-Okamoto transformation, and re-
lies on the Decisional Diffie-Hellman security assumption. The operations that
comprise the scheme are as follows:

Setup: Takes as input the bit-length n of messages to be encrypted, and two
security parameters k1 and k2, and outputs three cryptographic hash functions
H1 : {0, 1}∗ → {0, 1}k1 , H2 : {0, 1}∗ → {0, 1}n, and H3 : {0, 1}∗ → {0, 1}k2 .
Key Generation: Chooses two safe-prime numbers p and q, used to compute
the cyclic group order N2 = (pq)2, and outputs three keys pk, sk, and wsk,
where pk is the public encryption key, sk is the long-term secret key, and wsk
is the weak secret key.
Re-encryption Key Generation: On input a public key pkY , a weak secret
key wskX , and the long-term secret key skX , outputs the unidirectional re-
encrypion key rkX→Y .
Encryption: On input a public key pk and a message m ∈ {0, 1}n, outputs the
ciphertext [m]pk.
Re-encryption: On input a re-encryption key rkX→Y and a ciphertext [m]pkX ,
outputs the re-encrypted cyphertext [m]rkY .
Decryption: On input a ciphertext [m]pkX or [m]rkX , and a weak secret key
wskX or a long-term secret key skX , outputs the plaintext message m.
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4 Multi-User Searchable Encryption (MUSE)

Our Multi-User Searchable Encryption (MUSE ) protocol allows users to store
data on a remote server without compromising its secrecy and perform search
queries on it with constant time complexity. Additionally, users can query and
retrieve data stored by other users, provided they have permission from the user
who uploaded it.

4.1 Setting

The setting in which our protocol operates contains two parties of interest, the
data storage server (DS) and the privacy service (PS), as well as any amount
of client parties (Ci), where i is a unique client identifier.

Ci represents the data owner that wants to store and retrieve documents to
and from the cloud in a privacy-preserving manner. To store a document, it
provides DS with the encrypted document d and an associated set of keywords
{w1, ..., wn}, also in encrypted form. To retrieve one or more documents, it pro-
vides DS with the encryption of a keyword w, and receives the set of encrypted
documents {d1, ..., dm} associated with w. These documents are encrypted us-
ing a proxy re-encryption scheme, which allows clients to share access to the
encrypted data with each other.

DS represents the server on which data is stored. It allows authorised clients
to store encrypted documents associated with encrypted keywords, as well as
retrieve encrypted documents based on encrypted keywords, while deriving no
knowledge about the plaintext documents or keywords.

PS represents a semi-honest third-party server which assists DS in hash-
ing the search keywords, without deriving any knowledge about the plaintext
documents or keywords.

These parties are assumed to be honest-but-curious, meaning that they follow
the protocol but derive as much knowledge as possible from the data presented
to them. All communication is assumed to be performed over secure channels.

4.2 Protocol Algorithms

Now we describes the algorithms that compose the presented SE protocol: setup,
compute hash, grant access, store, retrieve, and revoke access. Table 1 explains
the notations used throughout the section.

Setup. PS generates the key pair (pkBGV , skBGV ) used for the BGV cryptosys-
tem and shares the public key pk with DS. PS also generates a 128-bit secret
key KPS used to key the AES-CMAC algorithm. DS initializes all the relevant
parameters for the proxy re-encryption scheme, and shares the public values
with the clients. DS also generates the secret keys KDS1 and KDS2, used for the
homomorphic computation of AES-CMAC. KDS1 is used for the homomorphic
computation of AES-128, and KDS2 is derived from KDS1 using the AES-CMAC
key derivation algorithm. DS maintains a mapping µ : {0, 1}128 → P (I × D),
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Table 1: Symbols and Notations
Notation Description

[x]pk The encryption of x under the public key pk, using the
scheme corresponding to pk.

Lw The fixed bit-length of a padded keyword string, must be a
multiple of 128.

|x| The bit-length of string x.

0x The bit-string cnsisting of x repetitions of 0.
|| The concatenation operator.

pad10∗(x, L) x||10L−|x|−1

HeAES ([x]pk, K) The homomorphic computation of AES-128 with key K,
where [x]pk is the BGV-encryption of a 128-bit block x.

AES-CMAC (x, K) The computation of AES-CMAC on input string x under
AES key K.

ReKeyGen (ski, pkj) The procedure which generates the re-encryption key rki→j .

Dec ([x]pk, sk) The decryption of [x]pk using the secret key sk, equivalent
to x.

ReEnc ([x]pki , rki→j) The re-encryption of [x]pki into [x]pkj , using the re-
encryption key rki→j .

where D is the set of encrypted documents, I is the set of client identifiers,
and P (I ×D) is the power set of identifier-document pairs. This mapping asso-
ciates keyword hashes to the corresponding sets of encrypted documents. Initially
µ(x) = ∅ for all x ∈ {0, 1}128. DS also maintains a mapping ρ : I × I → R,
where I is the set of client identifiers and R is the set of re-encryption keys that
can be generated by the proxy re-encryption scheme. This mapping associates
a re-encryption key to each ordered pair of clients. Initially, ρ(i, j) = ⊥ for all
i, j ∈ I. Each client Ci generates a pair of keys (pki, ski) according to the key
generation procedure of the proxy re-encryption scheme, where pki denotes the
public key used to encrypt the documents that are stored on DS, and ski denotes
the concatenation on the weak and long-term secret keys used for decryption.

Compute hash. Pseudocode 2 describes the auxiliary hashing algorithm per-
formed to maintain the secrecy of the search keywords. DS receives an encrypted
string [x]pkBGV

, composed of a list of Lw/128 ciphertexts, where each ciphertext
[xi]pkBGV

represents the BGV encryption of the i-th 128-bit block of the input
string x. It then homomorphically computes the AES-CMAC hash of x using the
algorithm described in section 3.2. This encrypted hash is sent to PS, which de-
crypts it and uses it to compute another hash, using its own key and the regular
AES-CMAC algorithm. It is worth mentioning that under the assumption that
DS is honest-but-curios, the compute hash algorithm is only run at the request
of a client, and that DS cannot use it to compute hashes of arbitrary values and
construct a lookup table. In practice, this constraint can be enforced by having
PS verify that a client initiated the operation.

Grant access. Pseudocode 3 describes the grant access algorithm which allows
a client Ci to give any other client Cj access to the documents Ci has stored on
DS. Ci generates a re-encryption key rki→j using the procedure described in
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section 3.3. Ci then sends rki→j to DS, allowing DS to re-encrypt documents
stored by Ci so that Cj can decrypt them.

Pseudocode 2 Compute hash algorithm

1: procedure DS:hash([x]pkBGV )
2: [h]pkBGV ← [0128]pkBGV

3: for i← 1...(Lw/128) do
4: if i = Lw/128 then
5: [h]pkBGV ←

[h+KDS2]pkBGV

6: end if
7: [h]pkBGV ← HeAES(

[h+ xi]pkBGV , KDS1)

8: end for
9: return PS:hash([h]pkBGV )

10: end procedure

11: procedure PS:hash([h]pkBGV )
12: h← Dec([h]pkBGV , skBGV )
13: return AES-CMAC(h, KPS)
14: end procedure

Pseudocode 3 Grant access algorithm

1: procedure Ci:grant-access(j)
2: rki→j ← ReKeyGen(ski, pkj)
3: DS:grant-access(i, j, rki→j)
4: end procedure

5: procedure DS:grant-access
(i, j, rki→j)

6: ρ(i, j)← rki→j

7: end procedure

Store. Pseudocode 4 describes the store algorithm used to upload documents
to the data server along with a set of associated keywords. Ci first pads the
keywords so that they all have the same length Lw. Afterwards, it encrypts
them under the BGV scheme, using the encryption key pkBGV received from
PS. The document d is encrypted under the PRE scheme using the public key
pki. The encrypted document and keywords are then sent to DS. DS computes
the hash of each keyword using the compute hash algorithm, and updates µ so
that the hash of each keyword will now be mapped to a set that includes the
encryption of d. Each document is paired with the identifier of the client that
uploaded it so that it can be re-encrypted using the correct keys when retrieved
by other clients.

Search. Pseudocode 5 returns the list of encrypted documents associated with
the provided keyword w. Ci first pads w so that it has length Lw, then sends the
BGV-encryption of the padded keyword to DS. DS computes the hash of the
keyword using the compute hash algorithm, and retrieves the set of documents
that corresponds to said hash in the mapping µ. Based on the client identifier
paired with each encrypted document, DS decides which ciphertexts will be
returned to Ci. If a document d is encrypted under the public key of a client
different from i, and Ci is authorised to access it, i.e. a re-encryption key is
available in ρ, then DS will re-encrypt d so that Ci can decrypt it using private
key ski.

Revoke access. Pseudocode 6 allows a client Ci to revoke the access it granted
to a client Cj . This algorithm only requires that DS removes the corresponding
re-encryption key from ρ. This way, the documents uploaded by Ci will be ignored
in queries performed by Cj , since Cj would no longer be able to decrypt them.
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Pseudocode 4 Store algorithm

1: procedure Ci:STORE
({w1, w2, ..., wn}, d)

2: W ← {[pad10∗(wj , Lw)]pkBGV |
j ∈ {1, ..., n}}

3: DS:STORE(i, W , [d]pki)
4: end procedure

5: procedure DS:STORE(i, W , [d]pki)
6: for all [w]pkBGV ∈W do
7: h← DS:hash([w]pkBGV )
8: µ(h)← µ(h) ∪ {(i, [d]pki)}
9: end for

10: end procedure

Pseudocode 5 Search algorithm

1: procedure Ci:SEARCH(w)
2: Dw ← ∅
3: R← DS:SEARCH(i,

[pad10∗(w,Lw)]pkBGV )
4: for all [d]pki ∈ R do
5: Dw ← Dw ∪ {Dec([d]pki , ski)}
6: end for
7: return Dw

8: end procedure

9: procedure DS:SEARCH
(i, [w]pkBGV )

10: h← DS:hash([w]pkBGV )

11: R← ∅
12: for all (j, [d]pkj ) ∈ µ(h) do
13: if i = j then
14: R← R ∪ {[d]pkj}
15: else if ρ(i, j) 6= ⊥ then
16: [d]pki ←

ReEnc([d]pkj , ρ(i, j))
17: R← R ∪ {[d]pki}
18: end if
19: end for
20: return R
21: end procedure

Pseudocode 6 Revoke access algorithm

1: procedure Ci:revoke-access(j)
2: DS:revoke-access(i, j)
3: end procedure

4: procedure DS:revoke-access(i, j)
5: ρ(i, j)← ⊥
6: end procedure

5 Security Evaluation

In this section we define the notions of security relevant for SE schemes and
evaluate the security of our protocol with regards to these definitions under the
assumption that each party is an honest-but-curious actor.

Definition 1 (Read-access). Let d be a document stored on DS by a party
Ci. A party Cj has read-access to d if and only if i = j or there exists a valid
re-encryption key rki→j stored by DS as a result of the grant access algorithm.

Definition 2 (Document privacy). A multi-user searchable encryption scheme
offers document privacy if and only if no information can be derived about a doc-
ument plaintext from its ciphertext without the private key of a party that has
read-access to said document.

Theorem 1. If the underlying proxy re-encryption scheme is IND-CCA secure,
then the MUSE protocol offers document privacy.
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Proof. Let Ct be a target user, pkt be the public key of Ct for the PRE scheme,
ρt be the set of re-encryption keys of type rkt→i with i 6= t, and dt be a target
documents that Ct has stored on DS. All the information DS has in relation to
dt consists of the ciphertext [dt]pkt computed under public key pkt, and a set of
re-encrypted ciphertexts Rt = {[dt]pki | rkt→i ∈ ρt}.

In order for DS to be able to obtain document plaintexts, there must exist
a polynomial-time algorithm A′ which takes as input a document ciphertext
[dt]pkt , a set of re-encryption keys ρt, and a set Rt of re-encrypted ciphertexts
of dt under different public keys, and outputs the document plaintext dt. Let n
be the required size of ρt and Rt. Note that if A′ exists, then the cardinality of
both ρt and Rt is bound by polynomial complexity.

Definition 9, given in the appendix, describes the IND-CCA security game
for proxy re-encryption schemes presented in [29]. Let A∗ = (A∗1, A

∗
2) be a

polynomial-time adversary for the IND-CCA PRE security game, where A∗2 is
as follows:

1. Take as input plaintexts m0 and m1, ciphertext c∗ encrypted under public
key pk∗, and state s.

2. Call Oh n times and retrieve a set π consisting of n public keys with indices
in LH .

3. Use Ork to compute ρ∗ = {Ork(pk∗, pki) | pki ∈ π}.
4. Use Oreenc to compute
R∗ = {Oreenc(pk∗, pki, c∗) | pki ∈ π}.

5. Return the output of running A′ on input c∗, ρ∗, R∗.

Since adversary A∗ wins the IND-CCA security game for PRE with probabil-
ity 1, if the underlying PRE scheme is IND-CCA secure, then A′ does not exist,
and therefore DS cannot obtain document plaintexts. Since DS is the only party
that has access to document ciphertexts for which it does not know the decryp-
tion key, we can conclude that the MUSE protocol offers document privacy if
the underlying PRE scheme is IND-CCA secure.

Definition 3 (Query privacy). A multi-user searchable encryption scheme
offers query privacy if and only if the ciphertext of a search query does not
reveal information about the plaintext keywords that compose the query.

Since our protocol relies on deterministic encryption to achieve sub-linear
search complexity, it obviously does not offer CPA security for the search queries.
Bellare et al. explore this trade-off in [16] and offer a weaker definition of security
called PRIV security. According to this definition, a deterministic encryption
scheme can be considered secure, provided it has high min-entropy, i.e. it has a
sufficiently large plaintext space to be resilient against dictionary attacks.

Theorem 2. Let Π be a searchable encryption scheme which encrypts a keyword
by appending its hash to the ciphertext produced by an underlying asymmetric
encryption scheme AE. Π is PRIV secure in the random oracle model, if AE
is IND-CPA secure and the min-entropy of the data is high enough to preclude
a dictionary attack.
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Theorem 2 is proven in [16].

Theorem 3. If the BGV encryption scheme is IND-CPA secure, then the MUSE
protocol offers query privacy, in the random oracle model, under the PRIV def-
inition of security.

Proof. In MUSE, the data made available to DS by a search query is comprised
of the keyword ciphertexts under the BGV encryption scheme and the keyword
hashes, both computed under the secret keys of PS. Since DS does not know
the key used by PS to produce the keyword hashes, the min-entropy of the data
is supplemented by the key space of the PS hashing key, making the scheme
resilient to dictionary attacks. Similarly, PS cannot execute a dictionary attack
on the keyword hashes received from DS, because it lacks the hashing key used
by DS. Since the underlying hashing method is resilient to dictionary attacks,
theorem 2 implies that if the BGV encryption scheme is IND-CPA secure, then
the MUSE protocol offers query privacy, in the random oracle model, under the
PRIV definition of security.

Definition 4 (Index privacy). A multi-user searchable encryption scheme of-
fers index privacy if and only if the search indices associated with a document
do not reveal information about the document plaintext or the plaintext search
keywords associated with the document.

Theorem 4. If the MUSE protocol offers query privacy, then it also offers index
privacy.

Proof. The MUSE protocol uses the list of double-keyed hashes of the keywords
associated with a document as the index of that document. Since these hashes
are computed in the same manner as when performing a search operation, it is
clear that index computation provides no additional information to any party
compared to the evaluation of a search query. Therefore, if a search query does
not reveal information about the underlying keywords, the indices do not reveal
this information either. Since the search indices are computed independently
from the associated documents, they do not contain any information about the
document plaintexts besides the associated keywords.

Definition 5 (Search-pattern privacy). A multi-user searchable encryption
scheme offers search-pattern privacy if and only if no party besides the query
issuer can verify if two query ciphertexts encrypt identical search queries or if
the queries have keywords in common.

Theorem 5. The MUSE protocol does not offer search-pattern privacy.

Proof. Since query keywords are encrypted individually using a deterministic
algorithm, both DS and PS can identify the exact number of shared keywords
between any two queries.
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Definition 6 (Access-pattern privacy). A multi-user searchable encryption
scheme offers access-pattern privacy if and only if no party besides the user who
generated the search query is aware of which document ciphertexts were returned
in response to said query.

Theorem 6. The MUSE protocol does not offer access-pattern security.

Proof. DS knows the result of matching a search query against a document index
for each individual document. Therefore, DS knows exactly which document
ciphertexts were returned for each query.

It is also worth noting that, while the protocol is resilient to dictionary at-
tacks, its interactive nature makes it vulnerable to collusion attacks. If DS and
PS were to collude, they would be able to retrieve all the search keyword plain-
texts, since DS has their BGV ciphertexts for which PS holds the decryption
key. If either DS or PS collude with a client, they would gain the ability to com-
pute hashes for chosen values and build a lookup table, which would eventually
reveal all search keyword plaintexts. Regarding document privacy, in order for
DS to retrieve a document plaintext it would need to collude with a client with
read-access to that document.

6 Efficiency Analysis

To test the efficiency of our protocol we build an implementation of it in C++,
available at [35]. Our implementation uses the HElib [33] open-source library for
its implementation of the BGV homomorphic encryption scheme. We also use
the Crypto++ [34] open-source library for its implementation of AES-CMAC,
large number arithmetic, and large prime number generation.

As the homomorphic evaluation of AES-128 requires a modulus chain of
length 40 [27], the homomorphic evaluation of AES-CMAC requires a modulus
chain of length 40 · Lw/128, where Lw is the bit-length of the input message.
Note that the intermediary homomorphic addition has no impact on the count of
moduli. For our experiments, we use an input length of 256 bits, which requires
a modulus chain of length 80 without using bootstrapping. We also choose the
parameters of the BGV scheme as to obtain a security level of 80 or higher,
which would be at least equivalent with the security level of AES-128 [24]. To
fulfil these requirements, we initialize the BGV cryptosystem with a cyclotomic
polynomial of order m = 65281, generators g1 = 43073 with order n1 = 96, and
g2 = 22214 with order n2 = −14, and a modulus length of log q = 1600.

The underlying proxy-reencryption scheme requires three security param-
eters k1, k2, and kp. k1 and k2 are used to dictate the output length of the
cryptographic hash functions used by the scheme, while kp is used to decide the
bit-length of prime numbers p and q, which are used to compute the cyclic group
modulo N2 = (pq)2. The PRE scheme is similar to the RSA cryptosystem, as
its computational security relies on the complexity of factoring N . Since the
NIST standard recommends a modulus size of at least 2048 bits for RSA [31],
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we choose kp to be 1024, such that N will have 2048 bits. For consistency, we use
the same value for k1 and k2, even if cryptographic hash functions are considered
secure at lower output sizes [32].

We evaluate the efficiency of our protocol with regard to five variables: key-
word size, document size, total number of stored documents, number of keywords
associated with one document, and number of documents associated with one
keyword. For each variable, we run a series of experiments where we set the
other variables to the values shown in column Default value of Table 2, while
the selected variable iterates over the values shown in column Experiment values.
For each experiment, we measure the run-time of a store operation, a search op-
eration where the retrieved documents were published by the client performing
the query, and a search operation where a client retrieves documents stored by a
different client, which involves re-encryption. We perform these experiments on
the TU Delft HPC cluster, which uses the CentOS Linux operating system, allo-
cating one CPU core, model Intel® XeonTM E5-2620 v4 2.10GHz, and 16 GB of
memory to each experiment. We run each experiment 10 times and average the
results. The results are shown in Figures 1 to 5. The search run-times shown in
these figures represent both search operations, with and without re-encryption,
because there was no difference between the two measurements.

Table 2: Experiment variables and values

Variable
Default
value

Experiment values

keyword size 8 bytes 8, 16, 24, 32 (bytes)

document size 10 MB 1, 1.5, 2, 2.5, 3, 3.5, 4 GB

total number of documents 1 8, 16, 24, 32, 40

keywords / document 1 8, 16, 24, 32, 40

documents / keyword 1 8, 16, 24, 32, 40

The AES-CMAC algorithm is linear in the number of 128-bit blocks in its
input, and so is its homomorphic evaluation. As a result, the compute hash algo-
rithm is linear in the amount of blocks in the padded keyword. Since both store
and search operations encrypt the keywords using the compute hash algorithm,
we expect their run-times to scale linearly with the amount of 128-bit blocks in
the padded keywords. Our expectations are confirmed by the experiment results
shown in Figure 1. Note that for this analysis we treat the depth of the homo-
morphic circuit as a constant, which, in this specific set of experiments, allows for
the hashing of keywords of at most two blocks. The encryption, re-encryption,
and decryption operations of the underlying PRE scheme are linear in the size
of the plaintext size. As these are the only operations MUSE performs in re-
lation to document plaintexts, we expect both store and search operations to
be linear with regards to document sizes. This linear relation between run-time
and document size is shown in Figure 2. As documents are stored and retrieved
independently from each other we expect both operations to be constant in the
number of total documents stored on the server. The experiment results shown
in Figure 3 corroborate our expectations. Since the keywords of one document
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Fig. 1: Run-time analysis of MUSE op-
erations based on keyword size.

Fig. 2: Run-time analysis of MUSE op-
erations based on document size.

Fig. 3: Run-time analysis of MUSE op-
erations based on the total number of
stored documents.

Fig. 4: Run-time analysis of MUSE op-
erations based on the number of docu-
ments associated with a keyword.

Fig. 5: Run-time analysis of MUSE operations based on the number of keywords
associated with a document.

are encrypted separately from the keywords of other documents, we expect the
number of documents associated with a keyword to have no influence on the
run-time of store operations. On the other hand, a search operation will return
all documents that match the query keyword. We therefore expect the search
run-time to scale linearly with the number of documents associated with the
search keyword. Figure 4 shows that indeed, the number of documents associ-
ated with a keyword has no effect on the storage run-time, while causing a linear
increase in the search run-time. The store operation encrypts all the keywords
associated with the stored document. We therefore expect the store run-time to
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scale linearly with the number of keywords associated with a document. On the
other hand, since keyword hashes are independently mapped to sets of associ-
ated documents, we expect the number of keywords associated with a document
to have no impact on the search run-time. The graph in Figure 5 shows the
expected linear increase in storage run-time, as well as the lack of impact on the
search run-time.

7 Conclusions

In this paper we present MUSE, an interactive multi-user searchable encryption
protocol that uses deterministic encryption to achieve constant search complex-
ity, without being vulnerable to lookup table attacks. As part of our protocol, we
design an interactive keyed hash algorithm which allows two parties to compute
a keyed hash value without learning the input value or the full hash key, and
thus preventing them from performing dictionary attacks on the hashed values.
The design incorporates an algorithm for evaluating AES-CMAC using fully ho-
momorphic encryption, based on Gentry et al.’s algorithm for the homomorphic
evaluation of AES-128. We show that MUSE offers document, query, and index
privacy for arbitrary search keywords, in the semi-trusted model and under the
PRIV definition of security. In terms of short-comings, our protocol does not
offer search-pattern or access-pattern privacy, and is vulnerable to collusion at-
tacks due to its interactive nature. We demonstrate that our protocol achieves
constant time-complexity with respect to the total number of stored documents,
for both search and store operations. Compared to multi-user SE schemes that
do not use deterministic encryption, our protocol is more efficient but less secure.
Compared to schemes that make use of deterministic encryption, our protocol
is comparably efficient, while offering resilience against lookup table attacks.
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A Security Definitions for Proxy Re-encryption

Definition 7 (Derivative of a PRE ciphertext). Let Σ = (KeyGen, ReKey,
Encrypt, ReEncryt, Decrypt) be a proxy re-encryption scheme. Given the chal-
lenge ciphertext (pk∗, c∗), then:

– The challenge ciphertext (pk∗, c∗) is a derivative of itself.
– A pair (pkj , cj) is a derivative of the challenge (pk∗, c∗) if (pkj , cj) is a

derivative of the challenge (pki, ci) and (pki, ci) is also a derivative of (pk∗, c∗).
– If a triple (pki, pkj , ci) has been queried to a re-encryption oracle by the

adversary, who in turn obtains a re-encrypted ciphertext cj as response, then
(pkj , cj) is a derivative of (pki, ci).
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– If (pki, pkj) has been queried to the re-encryption key generation oracle by the
adversary, and Decrypt(pkj, cj) ∈ {m0,m1}, then (pkj , cj) is a derivative
of all pairs (pki, c).

Definition 8 (PRE Oracles). Let Σ = (KeyGen, ReKey, Encrypt, ReEncryt,
Decrypt) be a proxy re-encryption scheme. Let LH and LC be the index lists of
honest and corrupt users respectively. The target user is considered honest and
has index i∗ ∈ LH . Let pki∗ and ski∗ be the public and private keys of the target
user. The following oracles can be made available to the adversary:

– Oh: Takes as input a key pair (pki, ski) outputted by KeyGen, inserts i into
LH , and outputs the public key pki.

– Oc: Takes as input a key pair (pki, ski) outputted by KeyGen, inserts i into
LC , and outputs the key pair (pki, ski).

– Ork: Takes as input two public keys pki and pkj, and outputs a re-encryption
key rki→j as produced by ReKey. The adversary can only make queries in
which i 6= j and either i, j ∈ LH or i, j ∈ LC .

– Oreenc: Takes as input a triple (pki, pkj , c) in which i 6= j and i, j ∈ LH ∪
LC and outputs the re-encrypted ciphertext c′ ← ReEncrypt(rki→j, c). The
adversary is not allowed to make queries in which j ∈ LC and (pki, c) is a
derivative of (pk∗, c∗).

– Odec: Takes as input a ciphertext (pki, c) in which i ∈ LH ∪LC , and outputs
m ← Decrypt(ski, c). The adversary is not allowed to make queries such
that (pki, c) is a derivative of (pk∗, c∗).

Definition 9 (CCA security for proxy re-encryption). Let Σ = (KeyGen,
ReKey, Encrypt, ReEncryt, Decrypt) be a proxy re-encryption scheme, A = (A1,
A2) be a polynomial-time adversary, and O1 and O2 be the sets of available
oracles for A1 and A2 respectively. Both algorithms have access to the key oracles
Oh, Oc, and Ork, but access to the Oreenc and Odec oracles is dependent on the
attack model. Let CCAi,j be an attack model for PRE, and t ∈ {1, 2}, then
Odec ∈ Ot if i ≥ t, and Oreenc ∈ Ot if j ≥ t.

For i, j ∈ {0, 1, 2}, b ∈ {0, 1} and the security parameter k ∈ mathbbK, the
indistinguishability game is defined by the following experiment:

Exp
IND-CCAi,j
Σ,A,b (k) :

(pk∗, sk∗)← KeyGen(k);
(m0,m1, s)← A1(pk∗);
c∗ ← Encrypt(pk∗, mb);
d← A2(m0,m1, s, c

∗);
return d.
For i, j ∈ {0, 1, 2} and k ∈ K, the advantage of A to win Exp

IND-CCAi,j
Σ,A,b (k) is

Adv
IND-CCAi,j
Σ,A (k) = |Pr[Exp

IND-CCAi,j
Σ,A,1 (t) = 1]−Pr[Exp

IND-CCAi,j
Σ,A,0 (t) = 1]|.

The proxy re-encryption scheme Σ is said to be IND-CCAi,j secure if the

advantage Adv
IND-CCAi,j
Σ,A (k) is negligible.

A proxy re-encryption scheme Σ is said to be IND-CCA secure if it is IND-CCA2,2
secure, in which both algorithms A1 and A2 have access to both Oreenc and Odec
oracles.
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