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ABSTRACT

With fast development of both hardware and software, 3D real-world scene
data, for example multi view stereo mesh, can be acquired efficiently. And
since 3D city data are more realistic and more useful in some applications,
they begin to appear in the market.

Although the generation of 3D city data like multi view stereo mesh
can be fast, the data might contain many measurement errors. Because
of these measurement errors, some regular objects such as building, ground
etc sometimes are not exactly flat. Points which should be on the same
plane have small deviations from the plane they belong to, which makes the
flat surface bumpy. One way to solve this problem is to control the quality
of data acquisition and data processing. Unfortunately, even the data error
sources are known, it is not possible to eliminate all the errors, and accurate
but expensive data acquisition equipment sometimes are not affordable. In
that case, processing existing data is much more economic and time saving
compared with collecting data again.

This MSc thesis aims at solving above problem. It provides a methodology
on straightening planar parts of multi view stereo mesh of the city. After
straightening the mesh, this thesis also tries to simply the mesh by removing
redundant vertices and faces in the mesh, so that the data will be clean and
the data storage can be reduced.
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1 INTRODUCT ION

Due to the fast development of hardware and software, nowadays comput-
ers can store and handle huge data compared to the situation decades ago.
The needs for 3D models are growing and expanding rapidly in a variety
of fields. Compare with traditional 2D GIS, 3D indeed has the same func-
tionality: 1) data capture, 2) data structuring 3) data manipulating 4) data
analysis and 5) data prensentation [Zlatanova, 2000]. However, the differ-
ence is that 3D representation of objects is closer to reality which means
it will provide more realistic feelings for 3D GIS users. As many people
may have experienced, when they try to locate themselves in a city, there
are always some difficulties of linking 2D maps with real city objects while
people can easily link them to 3D models according to the shape, size, tex-
ture and other information. Moreover, the way of using 3D is also changing.
Visualization used to be almost the only function for 3D city model, but
now the function of 3D model is extended. Now there are two types of
applications of 3D city model: Non-Visualization and Visualization-Based
applications. For Non-Visualization application, for example there are esti-
mation of the solar irradiation, energy demand estimation, aiding position-
ing, determination of the floorspace and classifying building types etc. For
Visualization-Based applications, there are Geo-Visualisation and visualisa-
tion enhancement, visibility analysis, estimation of shadows cast by urban
features, estimation of the propagation of noise in an urban environment,
3D cadastre, visualisation for navigation etc [Biljecki et al., 2015].

Although 3D modelling has many advantages, the fact that 3D model is
hard to maintain cannot be denied. 3D models often suffer from low accu-
racy. These models with low quality will lead to serious error or crashing
of the downstream applications [Zhao et al., 2013]. Besides, if the data has
low quality, it may contain many noises so that flat objects are no longer
exactly flat. Thus many studies are focusing on how to improve the quality
of different kinds of 3D models with different approaches.

1.1 background

There are various ways for 3D representations. Among them, boundary
representation is widely used in many applications. Boundary representa-
tions explicitly store topological information as faces, edges, and vertices
[Lienhardt, 1991]. In computer graphics, this kind of representation is often
referred as polygon mesh such as triangle mesh, and triangle mesh is often
used to represent the surface. Moreover, they can be rendered efficiently
with additional bitmap texture information [Wiemann et al., 2016].

The triangle mesh can be generated from different data sources as well.
First, the spatial data can be collected with two kinds of sensors: active sen-
sors such as laser scanners or passive sensors like cameras. With these two
kinds of sensors, the triangle mesh can be generated based on point cloud

1



2 introduction

(a) Input imagery (b) Posed imagery

(c) Reconstructed 3D geometry (d) Textured 3D geometry

Figure 1.1: Example of a multi-view stereo pipeline from (a) to (d) [Furukawa et al.,
2015]

data [Wiemann et al., 2016] or images using photogrammetry methods [Re-
mondino and El-Hakim, 2006].

The images used for generating 3D mesh is called multi view stereo im-
agery. It makes it possible to generate dense meshes from the images ac-
quired from different sources [Rouhani et al., 2017]. The generation of multi
view stereo mesh is based on photogrammetric method. Furukawa et al.
[2015] concluded the overall approach of generating multi view stereo mesh:

• Collect images

• Compute camera parameters for each image

• Reconstruct the 3D geometry of the scene from the set of images and
corresponding camera parameters.

• Optionally reconstruct the materials of the scene

As shown in Figure 1.1, first multi view stereo images can be posed (Fig-
ure 1.1) according to the parameters of the cameras. Tie points can be found
in overlapping images. If the parameters of the cameras are known, by in-
tersecting corresponding image rays (two red lines in Figure 1.1 (c)), the
3D coordinates (x, y, z) can be calculated by image coordinates of two tie
points (x1, y1) and (x2, y2). By proper sampling, points with some density
can be acquired and by triangulating these points, a multi stereo mesh can
be generated.

The data can be collected efficiently, with cameras mounted on cars or
drones. Besides, existing airborne images can be reused to generate meshes
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Figure 1.2: Multi view stereo mesh of city of Amsterdam : Amsterdam 3D (Cyclo-
Media Technology, Inc)

as well. Thus, it is really helpful for creating and updating city models in a
short time. A big advantage of image based triangle meshes is that images
contain abundant texture information. The textures not only contribute to
the realistic scenes but also to some analysis. For example, each vertex can
be enriched with texture information. It provides more references together
with other features for classification and segmentation of the mesh [Rouhani
et al., 2017].

For this MSc project, the experiment data was collected by CycloMedia
Technology, Inc in 2015. The datasets are multi view stereo meshes from
the city of Amsterdam (Figure 1.2). The data cover 900km roads and 100km2

area. They are collected by cameras mounted on cars. However, the roof
parts will be missed by this means, so the roof data is from aerial images.

1.2 problem statement
Although the generation of multi view stereo mesh can be fast, the quality
of the mesh cannot be guaranteed. There are many data error sources from
data collection to the output meshes. For example, the quality of the mesh
depends on the inner and exterior orientation of the camera. Because in or-
der to get accurate meshes, the distortion of the images should be corrected,
the accuracy of localizing and orientating the camera should be guaranteed.
Moreover, in data processing procedure, overlapping images are matched in
order to generate stereo. The accuracy of imaging matching is also a factor
that has influence on the output meshes.

As shown in Figure 1.3, two subfigures show the same area of a building
facade. Without texture, it is clear to see that the facade is bumpy. Due to the
data errors, points often have small deviations from the actual planes they
belong to. Thus these points are on either side of the plane. However, based
on our knowledge about the real world, man-made objects usually have reg-
ular shapes. The facade of the building should be straight and flat. Thus
bumpy objects sometimes are misleading and have a negative influence on
the recognition of the objects. Moreover in many 3D city modelling, buid-
ings are often modelled by CityGML, and CityGML model defines build-
ings as regular objects in different level of details (LoD) [Fan et al., 2009]. So
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(a) Test data with texture

(b) Test data without texture

Figure 1.3: Bumpy facade in triangle mesh

straight and flat city object representation is more consistent with different
formats of city models.

One way to solve this problem is to control the quality of data acquisition
and processing. Unfortunately, although the data error sources are known,
it is impossible to eliminate all the errors. And in reality, not all applications
can afford accurate but expensive equipment and some applications focus
more on the speed of data acquisition instead of accuracy. So the solution to
improve the quality of the data is not feasible sometimes. Processing exist-
ing data is much more economic and time saving compared to re-collecting
data, thus how to improve poor-quality data becomes a challenging topic.

1.3 research questions

As the problem is stated in the previous section, the aim of this MSc thesis is
to straighten the bumpy objects in the triangle meshes based on plane fitting
methods, so that the regular objects in the mesh can have straight and flat
shapes. As explained in Section 1.1 and 1.2, the data have low quality. In
order to detect planes from such data, RANSAC algorithm is adopted. A
most important feature for RANSAC is that it can deal with data with a
large portion of gross error, this will formally dicussed in Section 3.4.

The research aims to answer the following question: ”Can RANSAC al-
gorithm based method yield similar or better result than existing approaches for
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Figure 1.4: Low-quality roofs

straightening multi view stereo mesh”. In order to answer the research ques-
tion, there are several sub research questions need to be anwsered as well:

• What methods are currently used? What are the advantages and dis-
advantages?

• How can some plane constraints be used for straightening meshes?

• How can geometry/topology/texture information be used?

• Is it feasible to simplify the straightened meshes regarding data stor-
age and attach textures to simplified meshes?

1.4 research scope
The thesis focuses especially on the man-made objects, trying to restore
regular shapes of these objects and ignore unnecessary details so that the
representation of the objects can be simplified. This thesis mainly works on
planar areas in the city models. Since there is no semantic information in
the data, according to the observation, these planar areas are often: facades
of the buildings, ground, windows and doors, balconies etc. These planar
objects should be straightened in the output mesh. During the procedure,
many redudant details might be ignored so that the output mesh is a more
simplified representation of the objects compared with the original mesh.
However, some important features should be retained, such as some big
windows and balconies on the facade.

By observation of the data, there are some vegetations. The vegetations
are natural objects and they are often not in regular shapes. Similarly non-
planar areas will remain the same in the output mesh.

Roofs of the buildings are regular so they are supposed to be straight-
ened as well. However, the data that this thesis mainly works with has
really poor-quality roofs. The roofs are generated by airborne images, due
to the equipment, flight conditions etc, the quality of the roofs becomes low.
Figure 1.4 shows part of the roof areas, it is clear to see that roofs are not
planar in these data. Thus it is not possible to deal with these parts either.
But the workflow and method can be applied to any similar data with better
quality so that the roofs can be straightened as well.
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1.5 research relevance
In recent years, there are more and more ways of data acquisition. All the
data collection methods have different purposes. Some of them aim at high
accurate measurement, the others aim at less accurate but more convenient
and fast data acquisition. Compared with 2D data, 3D data is more difficult
to maintain, regarding in many aspects such as geometry, topology, texture
etc. Different studies focus on soloving problems caused by low quality,
for example the research from Zhao et al. [2014] is to set up a framework
for geometric repair of CityGML models. Similarly, this thesis focuses on
setting up a workflow for straightening multi view stereo mesh.

Some studies about how to straighten the meshes have been done with
different approaches, they are formally discussed in Chapter 2. However,
some methods have complex math models and steps. This research has a
more understandable workflow, and it is tested on poor-quality data, which
means it is more portable to data with better quality. Besides, the data comes
from real application which means the research can not only have theratical
values but also practical values.

1.6 reading guide
There are in total 6 chapters. Chapter 2 organises some related works. Chap-
ter 3 explains conceptual framework, workflow and principles of some al-
gorithms related to this research. The details of implementation and exper-
iments are presented in Chapter 4. Then following Chapter 5 will focus on
the analysis of the result and make comparisons with other study of this
topic. Finally, conclusions will be drawn and the research question will be
answered in Chapter 6. Moreover, some existing problems, recommenda-
tions and protential future works will be given in the final chapter as well.



2 RELATED WORK

Several relevant aspects of this thesis have been studied by other researchers.
The following chapter gives an overview of the related studies. Some related
works cover more than one aspect, so they will be discussed more than once
with different perspectives in different sections.

There are four parts in this chapter. First, Section 2.1 discusses some en-
riched features used in different studies for segmentation or classification.
Second, Section 2.2 provides an overview about different approaches for
segmentation. Section 2.3 introduces some related studies about plane de-
tection. Finally, Section 2.4 focuses on how to regularize and refine the fitted
planes. The regularization of the plane is to make the fitted plane more reg-
ular considering the relations to the other planes. The refinement of the
plane is to improve the quality of the fitted plane.

In 3D city modelling, there are not many studies fully focus on multi
view stereo mesh. Jonsson [2016] did a similar topic on multi view stereo
mesh, so in the sections of this chapter, the study from Jonsson [2016] will
be discussed first and in details. Besides, there are plenty of research about
point cloud. Due to some similarities between point cloud and multi view
stereo mesh, for exmple they both contain dense points, the studies about
point cloud are also relevant to this thesis. Moreover, there are many studies
about segmentation, classification on images from (multispectral) remote
sensing. Since multi view stereo mesh in many cases contains also spectral
information (normally referred as texture), the studies about segmentation
and classification of images are also considered relevant.

2.1 feature enrichment

For multi view stereo meshes, the primitives are vertex, edge and face.
Among them, vertex contains geometry information while topology infor-
mation is formed by edges which connect adjacent points. In order to
segment the points well, only using geometry and topology information
is usually not enough. So some other features are enriched to the points. In
this section, some common features that can be enriched to points or other
segmentation unit such as triangle will be discussed.

As mentioned before, Jonsson [2016] also did research in detection and
correction of planar regions in triangle meshes. Figure 2.1 shows his result.

The most relavant feature used in this MSc thesis is curvature. In 2D
space, each point on a curve has a corresponding tangent vector, then cur-
vature is the measurement on the rate of change of this tangent vector. So
it describes how much a curve deviates from a straight line. Extend this no-
tion to 3D, since each point on the curved surface has non-unique tangent
vectors in different directions, the curvature coresponds to chosen tangent
vector, which means it is not unique either. Among all the curvatures, the
two principle curvatures are defined as the maximum and minimum cur-

7
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(a) Original mesh

(b) Flattened mesh

Figure 2.1: Result from Jonsson [2016]

vatures. These two values are input to the defined probablity function to
caculate the probablities of a point is a planar point. As a sequent step,
Markov random field (MRF) is used to make decision on labelling planar
points. More detailed theoratical definition of curvature of a surface is ex-
plained by Taubin [1995], while [Douros and Buxton, 2002] provides more
insights on 3D surface curvature estimation with quadric surface patches.
Curvature feature Jonsson [2016] used is a good indicator for planarity. The
points in planar areas have low curvature, thus planar areas can be detected
well by this feature. However, curvature estimation can achieve decent re-
sults when the data have good quality. If the data contain too much noise,
curvature might not be estimated accurately.

In point cloud related studies, the normal is one of the most important
feature apart from geometry of the point [Sampath and Shan, 2010]. Besides,
they also mentioned that the eigen values of the covariance matrix formed
by neighboring points can indicate whether a point is planar or not. If the
normalized eigen value is small enough, the point should be planar.

Many studies of point cloud also tend to combine point cloud data with
another data for information enrichment, for example, Demir and Baltsavias
[2012] used a combination of point cloud data and multispectual image to
automatically model building roofs. Although the study does not enrich the
features of point cloud directly, it does use additional features for point clas-
sification. First, it uses slope as feature to separate ground and non-ground
points, then NIR (Near InfraRed), R (red), G (green), B (blue) are used for
classification to distinguish buildings, bare ground, roads, shadows, grass
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and trees. Additionaly, in order to better classify trees, point cloud vertical
density can also be a feature since it is generally much higher at trees than
at open terrain or buildings. Their study gives an inspiration of combin-
ing color information and geometry information flexibly to better process
points. A more related work was carried out by Martinovic et al. [2015]. The
same as the study of Demir and Baltsavias [2012], the data is a combination
of point cloud and image. For Random Forest (RF) classifier, the following
features are used: mean RGB values of the point as seen in images, LAB val-
ues of the mean RGB, normal of the point, spin-image descriptor [Johnson
and Hebert, 1999], height of the point above estimated ground plane and so
forth, in total 132-dimensional feature space.

In many mesh related studies, classification is a neccesity, thus features
are important factors in the research of this area. Verdie et al. [2015] classi-
fied based on superfacet instead of individual triangle facet. These super-
facets are clusterd based on shape operator matrix [Cohen-Steiner and Mor-
van, 2003] and image analysis. The features are enriched on each triangle
facet instead of point: the relative elevation, planarity derived from surface
variation [Pauly et al., 2002], and horizontality. These features are normal-
ized within 0 and 1. Then the features for each superfacet are caculated as
area-weighted sum of the features for each facet, also the same procedure
takes on the normal of the superfacet. For more examples, Valentin et al.
[2013] used surface curvature, singular values extracted from principal com-
ponent analysis (PCA), shape diameter feature (SDF), shape contexts (SC)
and spin images as geometric features for Conditional Random Field (CRF)
energy model.

In conclusion, considering the data of this project, normal features is con-
sidered necessary and it can be enriched on each vertex based on normal
estimation method or based on normals of the faces. There are too much
noise in the data, thus near planar parts may become bumpy, so that cur-
vature and planarity are assumed to be less distinctive. The data is also
textured so color information can also be used since facade, windows and
other objects are usally in different colors.

2.2 segmentation
The segmentation of mesh is a necessary part in many applications of com-
puter graphics [Katz et al., 2005]. Besides, segmentation can also be appied
to different kinds of data such as image, point cloud etc. Because of the
different formats of the data, the segmentation can base on points in point
cloud, pixels in images, vertices or faces in mesh etc. Although the data
are different, the idea of segmentation can be identical. The aim of the seg-
mentation is to integrate the basic unit such points, pixels etc into segments,
thus more anlayses can be applied on the segments instead of individual
basic unit.

In this section, in order to get an complete overview, all different forms of
segmentation on different kinds of data are discussed

First, there are some mesh related studies which apply segmentation
methods. Jonsson [2016] segmented the mesh by region growing and it
relies on the label assigned to each vertex. Planar segments are kept for
plane fitting and non-planar segments are disgarded. Besides, in order to
find both big planes such as building facade and small planes like windows
and chimney sides, plane fitting approach is carried on different scales by
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Figure 2.2: Segmentation on different scales [Jonsson, 2016]

Figure 2.3: Curvature segmentation result [Jonsson, 2016]

using scaling factor σ. This scaling factor is a parameter to control the la-
beling for points. Figure 2.3 shows segmentation on different scales from
largest scale (top) to smallest scale (bottom) , and the blue points are la-
belled as planar points. In the largest scale in Figure 2.3, all the points will
be segmented as a big cluster, thus a big plane will be fitted and the fitted
planes become smaller and smaller by decreasing the scale. It provides an
idea for this project that plane fitting can be carried on different scales to
get different size of planes of the buildings.

Verdie et al. [2015] also applied region growing, but the region growing is
not based on points but on face segments of the mesh. First faces of the mesh
are oversegmented into superfacet based on region growing by comparing
ths similairy of shape operator matrix. The shape operator matrix is esti-
mated for each triangle facet on a local spherical mesh neighborhood with
radius R. Then they use Markov Ramdom Field to label superfacet from the
geometric attributes computed per superfacet. After labelling, they identify
a set of nearly planar superfacets by selecting the ones labelled as roof or
facade. For each of them, least square is applied for plane fitting.
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In many point cloud related studies, region growing methods assign label
to each point, for example the research from Elberink and Vosselman [2009],
Sampath and Shan [2010] and Sun and Salvaggio [2013], while Orthuber
and Avbelj [2015] proposed a different TIN-based region growing where
the label is assigned to each triangle instead of point. So TIN-based region
growing starts from a seed triangle, iteratively include more homogenous
triangles into a segment. Since for triangle meshes, each face is also a tri-
angle so this TIN-based region growing can be applied the MVS mesh as
well. Further more, in order to imporve the performance of region growing,
Chauve et al. [2010] designed a seeding strategy that points of better pla-
narity have priority to be seed points. This will make region growing more
efficient.

Despite of region growing based segmentation, there are some other stud-
ies of point cloud which adopt other segmentation methods i.e cluster-
ing[Filin and Pfeifer, 2006]. ? mentioned an edge-based method which can
determine the edges in the data set and connect them to form regions. Be-
sides they concluded some types of available clustering [Jain et al., 1999][Berkhin,
2006][PEH, 2007] : hierachical methods including bottom up and top down,
partitioning methods such as k-means, model based methods and density
based methods. Among them, they used fuzzy k-means clustering and the
number of clusters are estimated by calculating likelyhood. Alharthy and
Bethel [2004] also used clustering method but the clustering is also based
on region growing.

Woo et al. [2002] gives another perspective for point cloud segmentation.
Unlike traditional point cloud segmentation which is based on point, this
method is based on subdivision of 3D grid. A original 3D grid is created
with relatively large voxel size and the size of the voxel decreases by itera-
tively subdividing the voxel. A voxel is not divided until the deviation of
points in this voxel is low enough. Similarly base on voxel, Tseng and Hung
[2016] applied split-and-merge segmentation [Wang and Tseng, 2010][Wang
and Tseng, 2011] using octree structure.

Rouhani et al. [2017] concluded the simplest form of mesh segmentation
may be seen as unsupervised clustering problem based on geometic criteria
[Shlafman et al., 2002]. Besides, there are some deterministic approaches
such as region growing [Koschan, 2003], spectral analysis [Zhang et al.,
2010] and some probabilistic approaches such as MRFs or CRFs. In general,
region growing seems to be the most popular method for segmentation both
on points and image pixels.

For this project, since the mesh contains both point geometry and image
texture, region growing can be suitable for mesh segmentation. There are
also some studies which labelling the mesh segment, but for this project,
thereg can be semantic enrichment but it is not a focus.

2.3 plane detection
Building is one of the most important type of object in 3D city modeling.
And it normally consists of several planes, for example walls, flat roofs etc
[Fan et al., 2009]. The following section will provide some related works
with the aspect of plane dectection.

RANSAC is a widely used method for model fitting. It was proposed
by Fischler and Bolles [1981] in image analysis and automated cartography.
They mentioned that RANSAC was capable of intepreting/smoothing data
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(a) 3D mesh provided by the Tango (b) Equivalent point cloud

(c) Extracted patches (d) Patches corresponding to walls and
floor

Figure 2.4: Planar patch detection using RANSAC [Diakité and Zlatanova, 2016]

with a significant percentage of gross errors. Roth and Levine [1993] did
a statistic research showing that this percentage can be even 50%. Since
shapes are often parametric model, many studies use RANSAC to detect
shapes.

Gallup et al. [2010] applied RANSAC on depth map to detect planes.
Schnabel et al. [2007] used RANSAC for point cloud shape detection. The
aims are not only planes, but also cylinders, cones. Each point fixes only
one parameter of the shape. Diakité and Zlatanova [2016] applied RANSAC
on TANGO tablet scanning data to detect indoor planar patches, the result
is shown in Figure 2.4.

Tarsha-Kurdi et al. [2008] proposed an extended RANSAC algorithm for
roof detection from point cloud. The extension of RANSAC includes two
parts: improve the data quality and improve RANSAC algorithm. The algo-
rithm can be improved in two aspects:

• The shape does not necessarily include as many points as possible. Be-
fore the algorithm iteratively replaces the shape with less points with
the one with more points, standard deviation needs to be considered
in order to decide whether it should be replaced.

• If a detected plane does not meet the requirement, the points that fit
this plane should be reassigned to original cloud.

It provides some ideas for this project about how to control the quality of
the shapes detected by RANSAC.

Besides RANSAC, the Hough Transform [VC, 1962] is a classic shape de-
tection method for detecting parameterized objects, typically lines and cir-
cles. It is often applied on image data, but it is not a necessity. For example,
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Borrmann et al. [2011] used Hough Transform to detect planes in 3D point
clouds. Duda and Hart [1972] explained that, in 2D space, each figure point
in original space is a straight line in Hough space and if there are many lines
intersect at one point in Hough space, the intersection point indicates a line
in original space. This notion can be extended to 3D. Borrmann et al. [2011]
explained a method that transform each point to a Hough space defined by
Duda and Hart [1972], where each point in original space is a surface in this
Hough space. If the intersection curves between different surfaces intersect
at one point, this point is a indication of a plane in original space. Tarsha-
Kurdi et al. [2007] explained more details about the implementation of 3D
Hough Transform algorithm, and how to apply it on automatic detection of
3D building roof planes.

In conclusion, there are several methods which are capable of detecting
shapes in 3D applications, for example, Hough Transform, RANSAC and
some other ways such as tensor voting [Kim et al., 2009]. Tarsha-Kurdi et al.
[2007] compared Hough Transform and RANSAC in their experiment. The
conclusion is RANSAC algorithm provides not only results in a shorter time
but also the quality of the result is higher. As explained in Section 1.3, the
data this project uses have low quality, and RANSAC has strong ability to
deal with data containing much noise. So for this project, RANSAC will be
adopted as plane fitting method, and it is also a key factor for this project.
More principles and details of RANSAC will be give in Chapter 3.

2.4 plane regularization and refinement

Since plane fitting is a key component, the quality of the fitted plane is vital.
In city model, buildings are usually relatively regular shaped objects, thus
some rules can be applied to get better models.

Jonsson [2016] did plane refinement by plane growing and merging. First,
planes are placed restrictively according to the segmentation result, which
means the initial planes will be small. Second the plane will grow to include
more triangles into the plane. Then the planes will be merged combining
small planes, if the total vertex-to-plane projection error for the combined
plane is not too high. Figure 2.5 shows the result for each step.

Kada and Wichmann [2013] detected planar segments from point cloud
then each planar segment can be mapped to planar half-space [Mäntylä,
1988]. A single 3D building model can be described as the collection of pla-
nar half-spaces (Figure 2.6). Based on this half-space modeling, Wichmann
and Kada [2014] proposed 3D building adjustment by regularizing planar
half-space. There are two scales for the adjustment: local and global adjust-
ment. Local adjustment is for regularizing the shape of one single building
based on the fact that the component of most buildings are symmetric and
regular (i.e. with 90◦ corners). Thus there are three steps:

• Slope adjustment: half-spaces with similar slope are adjust to their
average value.

• Orientation adjustment: half-spaces with similar x-y directions are ad-
just to their average angular value by rotating around z axis.

• Position adjustment: vertical half-spaces are moved be sysmetric and
regular.
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(a) Initial planes extracted through hierar-
chical curvature segmentation

(b) Plane growing

(c) Planar region merged

Figure 2.5: Plane refinement [Jonsson, 2016]

Figure 2.6: Pitched roof building described by half-spaces from H1 to H7 [Kada and
Wichmann, 2013]

Global adjustment uses the similar concept but it is applied on all the
buildings. Because buildings in a region often follow some patterns (i.e the
facades of the buildings might all face towards south in an area).

The thesis adopts the method from Verdie et al. [2015], a detection-then-
regularizaiton strategy. First the geometric relationships between differ-
ent planes are detected, including parallelism, orthogonality, Z-symmetry,
coplanarity. Then the orthogonal and z-symmetric planes will be re-orientated
and the coplanar planes will be re-positioned. More details will be discussed
in Section 3.5.



3 CONCEPTUAL FRAMEWORK TO
STRA IGHTEN C ITY MESH

The following chapter provides the conceptual framework to straighten the
mesh, mainly focusing on the theoratical aspects of the project. First Sec-
tion 3.1 shows the workflow and a diagram is given to illustrate the steps
involved. In this section, the reason for such a design is explained as well.
Then the following sections describe some important methods and algo-
rithms used in the workflow. Section 3.2 introduces the method used for
estimating normal for each point. Section 3.3 characterises texture infor-
mation and how it can be enriched to each point in the mesh. Section 3.4
introduces the principle and some characteristics of RANSAC algorithm
which is used for plane detection. Besides, the explanation of its parame-
ters will be given in this section as well. Section 3.5 explains the method
adopted in this project to regularize the planes. Section 3.6 introduces two
kinds of snapping operations. Section 3.7 gives detailed steps and criteria
for segmenting the mesh. Section 3.8 provides details about how to split the
segment after local fitting in order to detect and remove spikes. After the
mesh is straightened, Section 3.9 explains the way to simplify the mesh so
that the data storage can be reduced.

3.1 methodology

In general, the method consists of two scales: global scale and local scale.
The aim of global scale is to detect large planes for example building facade,
ground, roof etc. Global fitting takes precedence of local fitting because
these parts of city objects will make a sketch of the city model. That is
to say, assume that these planes are already detected, the frame of the city
models is known. Besides, no matter in point cloud data or multi view
stereo mesh, these large planes contain most of the points, it is much easier
to detect these parts than small details. For these reasons these parts should
be processed first, and the leftover points in this stage will be ones that
describe the details of the models. In the following local scale, these leftover
points from global scale will be the input. The aim of local scale is to detect
small planes that fit well in local area, in order to straighten small objects
such as windows, balconies etc.

Figure 3.1 shows the workflow of the project. The loop formed by the
green boxes are global fitting and local fitting operations. First the texture
information will be enriched to each vertex in the mesh. Then the normal of
each vertex is estimated by the normal of its incident faces. After these two
steps of information enrichment, the points are input to Random Sample
Consensus (RANSAC) algorighm to detect planes, and right after it is regu-
larizing the detected planes. With all these planes, points will be snapped
to their corresponding planes. Snapping operation is to project the point
to the plane to get the intersection point, then relocate the point to this in-
tersection point. After snapping, the global fitting is done, then the points

15
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Figure 3.1: Workflow diagram of straightening and simplifying Multi View Stereo
mesh

which are not snapped in global fitting will be segmented into region seg-
ments. In local fitting, each segment will be input seperately to RANSAC
to get smaller planes, so different paramters are used. Then the same as
global fitting, it is followed by plane regularization and snapping. After
local fitting, most points are already snapped to one plane. Points snapped
to the same plane will become a segment in this stage. In the next step, the
segments will be splitted into smaller segments defined as spikes. These
spikes will be removed by snapping operation again. The following step is
mesh simplification. Since many parts of the mesh are already straightened
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Figure 3.2: Normal estimation by the normal of incident faces

before this step, the vertices can be thinned according to the flatness of the
neighborhood.

3.2 normal estimation
By definition, the normal of a point in a continous surface should be the
normal of the tangent plane of the point. In surface sampled by points, the
normal of the point is normally estimated by its neighbor points, and there
are various ways for estimating normal [Klasing et al., 2009] such as plane
singular value decomposition (SVD) [Hoffman and Jain, 1987][Huang and
Menq, 2001] and plane principle component analysis (PCA).

However, this project adopts a simple and efficient normal estimation
method. Because compare to point cloud , multi view stereo mesh has
topology information, thus it is not neccessary to find nearest neighbors.
Considering topology information, each vertex shared by several faces, the
normal can be estimated by all the normal of incident faces. The normal of
a vetex ni can be calculated as follows:

ni(x, y, z) =
n

∑
j=1

nj(xj, yj, zj) j ∈ { all in incident faces of vertex i }

|v| = 1

As shown in Figure 3.2, the normal of P1 is N, and the normals of the
incident face F1, F2, F3, F4 are N1, N2, N3, N4 respectively. N can be estimated
by the normal addition from N1 to N4. With the method above, each point
will contain normal information after this step, which is neccessary for plane
detection.

3.3 texture information enrichment
Apart from normal information, texture information can also be enriched
for each vertex. UV mapping is a texture mapping method for projecting
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Figure 3.3: UV mapping from triangle mesh to texture image

2D image to 3D model surface. For a triangle mesh, UV coordinates can be
generated for each vertex. The triangle mesh is unfolded at the seams with
each triangle laying on a flat page. Thus each triangle has three UV coordi-
nates for three vertices, and these three UV coordinates define a triangle part
on the texture image which can be automatically linked to its correspond-
ing triangle in the mesh (Figure 3.3). Besides, UV coordinates are optionally
applied per face [Murdock, 2008] so that a shared vertex can have different
UV coordinates for its related triangles. Thus adjacent triangles can be to-
tally separated in texture image. For example in Figure 3.3, p4(x4, y4, z4) are
linked to q4(u4, v4) and q′4(u

′
4, v′4), thus triangle T(p2, p3, p4) and triangle

T(p4, p5, p6)are positioned in different areas in texture image.
UV coordinates range is normalized to [0,1]. In order to get RGB infor-

mation for each vertex, there should be a coordinate transformation from
UV coordinates to image coordinates. For this project, the origin of UV
coordinates is bottom left corner and the origin of image coordinate is top
left corner, equation 3.1 is the transformation from UV coordinates to image
coordinates. From image coordinate (x, y), the RGB value of the image can
be acquired.{

x = bu× width + 0.5c
y = b(1− v)× height + 0.5c

(3.1)

3.4 random sample consensus algorithm
Random sample consensus (RANSAC) [Fischler and Bolles, 1981] is a widely
used method for parameter estimation of a mathematical model. The most
important feature for RANSAC is that it can deal with data with a large
portion of gross error. There are two important terms for RANSAC: inlier
and outlier. Compared to least squares which fits model based on all the
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(a) Blue line is fitted by RANSAC and
green line is fitted by least squares

(b) Plane fitting by RANSAC

Figure 3.4: Model fitting on data with inliers (blue points) and outliers (red points)

input data, RANSAC will detect which points can fit a model best, and
the other points will be ignored. So RANSAC is also an outlier detection
method. Figure 3.4 (a) shows the result from RANSAC and least squares in
line fitting in 2D space, it is clearly to see the result from least squares will be
influenced by outliers and RANSAC fits a better line. The same with plane
fitting shown in subfigure (b). Because of this characteristic, RANSAC is
capable of robustly dealing with data containing more than 50% of outliers
[Schnabel et al., 2007].

RANSAC can be described as the following steps:

1. Randomly choose a set of points as inliers. The number of points
should be just enough for estimating the model.

2. Estimate the parameters of the model based on these inliers.

3. Check all the other points whether they can fit to the estimated model
within a error tolerance. If so, add all these points (inliers) to consen-
sus set.

4. If there are enough points in consensus set, use all these points to
compute a new model, otherwise repeat the previous steps.

5. After predetermined number of trials, if a consensus set with more
points cannot be found, return the model fitted by the largest consen-
sus set.

There are some parameters required for RANSAC. In the context of plane
detection, the following parameters are needed for this project:

• epsilon (ε): It defines the absolute maximum tolerance Euclidean dis-
tance between the point and the plane. Only points within the epsilon
will be included as inliers.

• normal threshold (σ): The threshold of the deviation between the esti-
mated normal of the point and the normal of the plane. The deviation
is described as dot product of two normals, and the closer the dot
product is to 1, the smaller deviation is between the two normals. For
inliers, the deviation should not exceed this threshold.

• cluster epsilon (E): Clustering of the points into connected compo-
nents covered by a detected shape is controlled via parameter E, the
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(a) A large value for clus-
ter epsilon E leads to de-
tecting a single planar
shape

(b) A moderate value for
cluster epsilon E yields
the detection of four
squares

(c) A small value for cluster
epsilon E leads to over-
segmentation

Figure 3.5: Parameter cluster epsilon E controls the connectivity of the points cov-
ered by a detected shape. The input point set is sampled on four coplanar
squares.[Oesau et al., 2017]

influence of this paramter is shown in Figure 3.5. A large cluster ep-
silon will lead to relatively large planes and some details will not be
distinguished while small cluster epsilon yield more detailed plane de-
tection but might lead to oversegmentation as well. Figure 3.6 shows
results from different cluster epsilon E.

• probability (p): RANSAC cannot always ensure the model is esti-
mated by the largest consensus set, this parameter defines the proba-
bility of missing the largest plane. A lower probability provides more
reliable results but it leads to more iterations and runtime.

• min points (n): It defines the minimum points used for estimating
the model. However this parameter is not strict, based on the chosen
probability, planes may also be detected by a lower number of points.

The parameters of RANSAC are important for detecting planes. For this
project, there are two scales, the parameters should be set differently for
them.

For global fitting, the aim is to detect large planes such as facade, thus n
should be a large number. Besides, in order to avoid oversegmentation in
this stage, E should be relatively large as well. Because in global fitting, the
detected planes are main planes, the quality of them should be guaranteed.
And the points on the facade are normally regular than the other parts, σ
should be close to 1 and ε should be small enough to strictly throw out
outliers and avoid generating spikes. It is meant that all the window points
etc will be regarded as outliers, then they will be detected in the local fit-
ting. p should be small so that it allows more iterations to get more reliable
detections.

For local fitting, small planes such as windows should be detected thus n
and E should be small. For this data, the normal of the points in small parts
have more deviations, so σ should be relaxed but ε should still be small to
avoid spike problem. p should be small in order to ensure the quality of the
detected planes.
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(a) Input point set (b) cluster epsilon E set to 2.0 (one color
per detected shape)

(c) cluster epsilon E set to 0.5 (d) cluster epsilon E set to 0.25

Figure 3.6: Impact of cluster epsilon E over level of details of the detection [Oesau
et al., 2017]

3.5 plane regularization
With the proper design of the parameters, RANSAC can detect generally
reasonable planes, however, it only considers the distribution of the points
instead of considering the city model as a whole. For example for a building
model, there should be some constraints with the plane components [Wich-
mann and Kada, 2014]. For example, Figure 3.7 shows a problem caused
by unregularized planes. After plane detection, points as inliers will be
projected on the plane and moved to the location of projected point, this
operation is referred as snapping in this project (Figure 3.7 (a)). However,
if two planes are near coplanar as shown in Figure 3.7 (b), there are two
planes fitted on these points, two green points are inliers of the green plane
and three blue points are inliers of the blue plane. After snapping, they will
be projected to their corresponding planes, then some spikes will appear.
Thus, plane regularization is neccessary.

For this project, the method from Verdie et al. [2015] is adopted. They
defined 4 types of geometric relationships between planes as follows:

let P1, P2 be two planes, n1,n2 be their normal vectors respectively, c1 be
the centroid of points fitted to P1 and c2 be the centroid of points fitted to
P2.

• Parallelism. P1 and P2 are ε-parallel if |n1 · n2| ≥ 1− ε.

• Orthogonality. P1 and P2 are orthogonal if |n1 · n2| ≤ ε.

• Z-symmetry. P1 and P2 are ε-Z-symmetric if ||n1 · nz| − |n2 · nz|| ≤ ε.
nz is the vertical z-axis. Z-sysmmetry is mainly for regularizing roofs.
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(a) Point snapping (b) Near coplanar planes problem

Figure 3.7: Snapping points and spikes problem caused by near coplanar planes

(a) Planes fitted in global fitting and local
fitting

(b) Remove unregularized planes

Figure 3.8: Regularization of small planes

• Coplanarity. P1 and P2 are d-ε-coplanar if they are ε-parallel and the
|d⊥(c1, P2) + d⊥(c2, P1)| < 2d.

For this project, these four geometric relationships are reused. Based on
them, near parallel, orthogonal, Z-symmetric and coplanar are made exactly
parallel, orthogonal, Z-symmetric and coplanar respectively. [Oesau et al.,
2017].

Apart from the rules explained above, another problem is that RANSAC
does not consider if a detected plane is actually valid in reality. In local
fitting, because the parameters of RANSAC are relaxed and sometimes it is
difficult to get decent segmentation result, some unreasonable planes might
be detected. Thus it is neccessary to regularize the detected planes in this
stage. Figure 3.8 shows the simulating planes from global fitting and local
fitting. There are three big planes fitted in global fitting, and several small
planes fitted in local fitting. In order to remove unreasonable planes such
as the yellow plane in Figure 3.8 (a), first the directions of the main planes
are stored in a set N. Then all the small planes should be either parallel
or orthogonal to one of the main direction in N. In Figure 3.8, there are
three main planes with two main directions, clearly the yellow plane does
not satisfy the constraints so it will be removed (Figure 3.8 (b)).
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(a) Original mesh and fitted planes (b) Snapping vertices to the corresponding
plane

(c) Original mesh and two fitted planes (d) Snapping vertices to the intersection
line

Figure 3.9: Snapping operations

3.6 snapping
Snapping is an important operation in this project. The advantage of snap-
ping is that it is simple and it keeps the original topology of the mesh. There
are two kinds of snapping operations:

• Snapping points to planes: After planes are detected by RANSAC, dif-
ferent points belong to different planes as inliers. These inliers are
projected to the planes and they are moved to their projected posi-
tions. By snapping the points to the planes, bumpy surfaces can be
straightened.

• Snapping points to intersection lines: In global fitting, there are some
main planes detected. The intersection lines of these planes can be the
corners. In order to sharpen the corners, the points near these inter-
section lines are projected to the lines and moved to their projected
positions.

Figure 3.9 shows two types of snapping operations in this project. By
snapping the vertices to their corresponding plane, the mesh will be straight-
ened. And by snapping points to the intersection lines, the corners will be
more regular and clean. The results are shown in Section 4.5.2.

3.7 mesh segmentation
After global fitting, the points on the large planes such as facade are snapped.
The leftover points are windows, doors and other details on the main plane
or some other noisy objects like vegetations or cars etc. In order to detect
planes from these points and straighten them, first it is neccessary to seg-
ment them then detect planes on each segment.
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There are various methods to segment a mesh. As it is mentioned in
Chapter 2, region growing is one of the most popular method used for
segmentation, so it is adopted in this project. There are three kinds of in-
formation used in mesh segmentation. First, topology relationship is used
for finding the connected points. It is explicit information for a mesh be-
cause the neighboring points of a vertex share edges with it, thus they are
connected in the mesh. As explained in Section 3.2 and 3.3, every vertex in
the mesh already contains normal and texture information. Based on these
three kinds of information, Algorithm 3.1 shows the steps of region growing
and it can be described as follows:

1. Add seed point pseed to a region

2. For each point pi in the region, find its unsnapped neighbor points pj.

3. Compare the similarity of the normal between pseed and pj, if it is
within a threshold, add pj to the segment.

4. If not, compare the RGB distance between pseed and pj, if the distance
is within a threshold, add pj to the segment.

5. Repeat step 1 to step 4 until no more point is added to the segment

6. Start a new segment with another seed point.

7. Continue until every unsnapped point belongs to a segment.

Algorithm 3.1: Mesh segmentation: Region growing (Breath First
Search)

Data: Points
Result: List of segments

1 while Points is not empty do
2 segment.add(pseed)
3 Points.remove(pseed)
4 for point pi in segment do
5 for neighbor point pj of pi do
6 if pj not in segment & pj is not snapped then
7 if |nseed · nj| > threshold σ then
8 segment.add(pj)
9 Points.remove(pj)

10 else if RGB(pseed)-RGB(pj) < threshold λ then
11 segment.add(pj)
12 Points.remove(pj)
13 end
14 end
15 if segment.size > threshold n then
16 SegmentList.add(segment)
17 end
18 return SegmentList

Manhattan distance is used for measureing RGB distance for this project
since it is simple, fast and it performs the best for evaluating the similarity
of texture compared with Euclidean distance, Vector Cosine Angle distance
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(a) connected vertices with texture and
normal information

(b) Segment (green) after region growing

Figure 3.10: Region growing based on topology, normal and texture information

[Vadivel et al., 2003]. The definition of Manhattan distance in terms of tex-
ture is shown in Equation 3.2:

D(pi, pj) = |R(pi)− R(pj)|+ |G(pi)− G(pj)|+ |B(pi)− B(pj)| (3.2)

Figure 3.10 shows an example result of this method. After P1 is added
to the segment as seed point, its adjacent points P2 to P5 will be regarded
as candidates. Since P2, P3 have similar normal as P1, they will be added
to the segment. The normal deviation between P1 and P4 is relatively large,
however their RGB distance is small, so P4 will be added to the segment
as well. Finally P1 to P4 will belong to the same segment, and P5 will be
excluded.

This region growing method takes both normal and texture into consider-
tion. The advantage is that according to the observations to textured mesh,
segments normally have similar colors. And there might be some errors
when estimating normals so if region growing is only based on normals,
some points which are supposed to be in the same segment will be sepa-
rated for example P1 and P4 in Figure 3.10. However, normal should still be
the prior criteria because it is an indicator to planarity and texture is not key
factor for a segment. For example, some areas on the facade are in shadows,
so they have totally different colors from the other part of the facade but all
the facade points are supposed to be in the same segment. Moreover, the
number of points that a segment contains should be larger than a threshold,
otherwise no reliable planes can be fitted on the segment.

3.8 segment split
After local fitting, most points are already snapped to one certain plane,
while some still remain unsnapped. According to the plane they are snapped
to, a label will be assigned to each vertex. Based on these labels, all the
points are classified to different big segments. These segments are sub-
stantially formed by RANSAC algorithm, so points in the same segment
have similar normals and they can fit to the same plane model. However,
RANSAC does not consider the topology of the points, which means the
points in the same segment may be separated in space. As shown in Figure
3.11, in previous plane fitting step, points are snapped to different planes,
the blue points are snapped to blue plane and the red points are snapped
to red plane. Based on the planes they are snapped to, there are two seg-
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(a) Points belong to one segment are
separated in 2D space

(b) Spikes problem in 3D space

Figure 3.11: Disconnected segment and spikes problem

ments the red one and the blue one at this stage. However, in Figure 3.11

(a), the red segment actually has two disconnected components, circled by
dash lines. In Figure 3.11 (b), the 3 red points make a spike in the mesh, in
order to remove the spike, it is neccessary to split the red segment into two
separated segments.

Region growing is again adopted but with a different rule. The following
is the description of the algorithm and pseudo code (Algorithm 3.2):

1. Add seed point to a region

2. For each point pi in the region, find its neighbor points pj.

3. Check if pi and pj have the samel label (snapped to the same plane), if
so, add pj to the region.

4. If not, mark pj as an edge point, and record the label of pj.

5. Repeat step 2 and 4 until no more point is added to the segment.

6. Start a new segment with another seed point.

7. Terminate until every point belongs to a segment.

After the algorithm, segments which contain disconnected components
are split so that the points in one segment are all connected. The connec-
tivity between different segments are checked when splitting the segments.
Then a segment is defined a spike if:

1. The number of points in the segment is less than a threshold n.

2. More than half of the edge points of this segment are connected to the
same segment.

If more than half of the edge points of the segment i are connected to
another segment j, merge these two segments and snap all the points in
segment i to the plane corresponding to segment j.

As shown in Figure 3.12, the original red segment (Figure 3.11) is split
into two segments, the green one and the red one. The green segment
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Algorithm 3.2: Segment split
Data: Points
Result: List of segments

1 while Points is not empty do
2 segment.add(seedpoint)
3 Points.remove(seedpoint)
4 for point pi in segment do
5 for neighbor point pj of pi do
6 if pj not in segment & label(pj) 6=label(pi) then
7 segment.add(pj)
8 Points.remove(pj)
9 else if pj is snapped then

10 Connectivity(segment, label(pj))++
11 end
12 end
13 SegmentList.add(segment)
14 end
15 return SegmentList

(a) Split red segment into two segments
(green and red)

(b) Refine the mesh by removing the spike

Figure 3.12: Split segment and remove spikes

only contains three points and all its edge points are connected to the blue
segment, so it is an ”island” on the blue segment. By definition the green
segment is a spike and all the three points are snapped to the blue plane so
that the mesh will be refined.

3.9 mesh simplification

After straightening the multi view stereo (MVS) mesh, many points are al-
ready snapped to planes. Many triangles are on the same planes, so it is not
necessary to keep all the triangles. In order to reduce the data storage, two
steps are adopted to simplify the mesh: (1) remove unnecessary vertices (2)
retriangulate the mesh. In removing vertices step, there are three rules:
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(a) Original mesh (b) P1 and P2 are defined as unneccessary
points according to the rules

(c) Remove unneccessary points (d) Retriangulate the mesh

Figure 3.13: The mesh simplification process: from (a) to (d)

• If a vertex and all its adjacent vertices in mesh are snapped to the same
plane, it is defined as an unnecessary vertex thus it will be removed.

• If a vertex is not snapped to any plane, it will be kept.

• If a vertex has unsnapped neighbors, it will be kept.

Retriangulation of the faces is based on 2D constrained Delaunay triangu-
lation instead of 3D [Shewchuk, 1997]. According to the rules in removing
unnecessary vertices step, only one type of faces in all the original faces
will be removed, that is the face with 3 vertices all snapped to the same
plane, all the other faces can be kept. So among all the points that are kept,
only points that are snapped need to be triangulate. The 3D coordinates of
these snapped points are transferred to 2D coordinates in the plane they are
snapped to, then they are triangulated in 2D space. These newly generated
triangle faces are added to the face list, then the simplified mesh can be
acquired.

In order to fill the empty spaces shown in Figure 3.13 with new triangles,
it is required to get segments of edge points of these empty spaces, for ex-
ample in Figure3.13, the green points should be put into the same segment,
and these green points which are needed for triangulation are connected by
edges that only have one incident face, so other edges with more than one
incident will be removed first. Then, a edge based region growing is carried
out. The region grows based on edge structure instead of vertex.
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Figure 3.14: Incenter of new triangles

Edge based region growing starts from a seed edge and the edges grow
in one direction. It includes the incident edge in every step until no more
edges can be added into the segment. For example, in Figure 3.14, AB is
a seed edge, then in next step, edge BC or AF will be included. Assume
BC is included after AB, then CD, EF, FA will be included in the segment
consecutively. Finally, the vertices are collected from the segments of edges,
so vertices ABCDEF will be in the same segment.

Since the empty spaces sometimes can be concave polygons while 2D
Delaunay triangulation generates convex triangulation area, it is neccessary
to constrain the new triangles. In this thesis, incentre is calculated for each
triangle. Assume the triangle ABC has three vertices A(x1, y1), B(x2, y2),
C(x3, y3), and three edges a = BC, b = AC, c = AB.

a =
√
(x2 − x3)2 + (y2 − y3)2

b =
√
(x1 − x3)2 + (y1 − y3)2

c =
√
(x1 − x2)2 + (y1 − y2)2

The incenter points C(xc, yc) can be calculated as:

xc =
ax1 + bx2 + cx3

a + b + c

yc =
ay1 + by2 + cy3

a + b + c
As shown in Figure 3.14, polygon ABCDEF is concave. Newly generated

triangles are4ABF,4BFC,4FCE,4CDE,4BCD with the incenter points
C1, C2, C3, C4, C5 respectively. Since C5 is outside the concave polygon
ABCDEF, so 4BCD will be removed.





4
IMPLEMENTAT ION AND
EXPER IMENTS W ITH REAL-WORLD
DATASETS

This chapter explains the implementation details and some experiments on
test data sets. This chapter is organised based on the workflow described
in Section 3.1, so each section explains one particular step in the workflow.
First Section 4.1 introduces some tools and libraries used in the project. Sec-
tion 4.2 describes the data used for this project, and gives more detailed
description on the test data sets. Section 4.3 and 4.4 shows some results on
normal estimation and texture information enrichment. Section 4.5 and 4.6
describe detailed implementation in global fitting and local fitting respec-
tively. Section 4.7 shows the implementation and experiments on segments
split and removing spikes. Finally Section 4.8 explains the implementation
and experiments of mesh simplification.

4.1 tools and libraries
There are some tools and libraries used for this project. For the development,
object-oriented programming language C++ is used. The most important li-
brary used is CGAL, it provides various geometric algorithms in the form
of a C++ library [The CGAL Project, 2017]. Some important packages of
CGAL used for this project are listed in the following:

• Polygon Mesh Processing [Loriot et al., 2017] : Normal estimation.

• Point Set Shape Detection [Oesau et al., 2017] : Plane detection and
plane regularization.

• 2D Triangulation [Yvinec, 2017] : Mesh simplification.

CImg [Tschumperlé, 2012] is a lightweight, open-source C++ toolkit for
image processing. In this project, it is used for texture information enrich-
ment. Besides, there are some software used for this project. FME is used for
converting 3D data format. Cloud Compare [Girardeau-Montaut, 2017] im-
plements plane detection so it is used for some preliminary results. Meshlab
[Cignoni et al., 2008] is mainly for visualization of the mesh.

4.2 data
As briefly mentioned in Section 1.1, the data was collected by CycloMedia
Technology, Inc. The data was collected by different means. The building fa-
cade, ground etc is collected by cameras mounted on cars and the roof parts
are from airborne images. As explained in Section 1.1, by photogrammetric
method, overlapping images can be matched and the coordinates of each
pixel in the image can be calculated. By resampling and triangulation, the
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multi view stereo mesh can be generated. Because the data is from different
source, the quality is not the same in one data set. For these data sets, the
roof parts have much lower quality.

The data sets are 3D city models of the city of Amsterdam. The data is
originally in COLLADA format (usually with .dae file extension), which is
for interactive 3D applications. In order to operate more easily, the data is
converted into OBJ file (with .obj file extension).

OBJ file represents 3D geometry with the following components:

• geometry of vertex: v x y z

• vertex normals: vn x y z (normal is not necessary normalized)

• UV coordinates: vt u v

• face, depending on what information is available, face can have different
formats, for example: f v1/vt1 v2/vt2 v3/vt3 or v1/vt1/vn1 v2/vt2/vn2
v3/vt3/vn3 (v, vt and vn represent the indices of vertex, UV coordinates
and normal respectively).

Apart from OBJ file, each OBJ file is linked to several texture files which
are in JPEG data format. MTL material file (.mtl) is the link between OBJ
and texture files.

The data are clipped into different files and each one only covers a small
part of Amsterdam. In order to test if the method works well in different
kinds of situations, there are four test date sets in these experiments and
they are shown in Figure 4.1. Different data sets have different features:

• Test data I consists of two gable roof buildings and one flat roof build-
ing, it also contains part of the ground. It contains 52879 vertices and
104842 faces.

• Test data II has also several buildings, so it is similar to test data I,
but the buildings have different shapes. There are some noises in this
dataset, for example, some vegetations are attached to the facade. The
size of the data is a little bigger than test data I with 54962 vertices
and 109082 faces.

• Test data III has one single building but compared with test data I and
II, it also contains more than one corner. Besides, it also has some
other objects such as the cars on the ground. There are 91898 vertices
and 182114 faces in test data III.

• Test data IV is a more complex scene. It has multiple buildings and
the difference is that the buildings are on the two sides of the road.
Besides, there are some extra objects on the road such as cars, bench
etc. The size is a little larger than test data III with 100466 vertices and
199348 faces.

The whole workflow will operate on each test data set in later sections.
For each test data set, some implementation details will be explained and
the results and analyses will be given after important steps.
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(a) Test data I without texture (b) Test data I with texture

(c) Test data II without texture (d) Test data II with texture

(e) Test data III without texture (f ) Test data III with texture

(g) Test data IV without texture (h) Test data IV with texture

Figure 4.1: Test data
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Face index Vertex indices/UV indices Texture file
1 1757/1757 1758/1758 1759/1759 fx-i-0.jpg
2 5024/5024 5025/5025 1758/1758 fx-i-0.jpg
... ... ...
5746 44245/45513 44246/45514 44247/45515 fx-i-1.jpg

Table 4.1: Relationship between faces and texture files

Vertex index UV coordinates Texture file Image coordinates RGB
2045 (0.258845 0.976459) fx-i-0.jpg (207,24) (197,125,28)
2045 (0.391349 0.095430) fx-i-0.jpg (313,905) (200,145,30)
2045 (0.612067 0.534668) fx-i-1.jpg (490,465) (180,130,35)

Table 4.2: Relationship between vertex and RGB value

4.3 normal estimation
The OBJ file is loaded and if there is no normal information contained, the
normal will be first estimated. It is implemented by CGAL Polygon Mesh
Processing, computing normals package. As explained in Section 3.2, the
normal is estimated for each vertex, as the average of its incident face nor-
mals.

4.4 texture information enrichment
In the original data set, vertices do not contain texture information. In order
to attach texture information to each vertex, the link between vertex and the
pixel should be found. In OBJ file, different faces may link to different im-
ages, it is neccessary to store the relationship between face and image. The
relationships is described in Table 4.1. According to this relationship, each
vertex will be related to a pixel of a certain image using its UV coordiantes.
The Equation 3.1 shows the relationship between image coordinates and UV
coordinates. Each vertex can be related to several pixels from different im-
ages, so the average RGB value is calculated and assigned to this vertex, this
relationship is shown in Table 4.2.

After this step, each vertex is enriched with an RGB value, then the ver-
tices with color can be visualized by generating a new mtl file, defining
different colors, and OBJ file can be linked to this mtl file so that each vertex
can be colored. The texture enriched vertices are shown in Figure 4.2. It is
clear to see that vertices are correctly enriched with texture information.

4.5 global fitting

4.5.1 Main plane fitting

After normal estimation and texture enrichment, the first step is global fit-
ting. In this step, the whole test data will be the input and parameters
should be strict in order to get accurate main planes such as facade, ground,
roof etc. As mentioned in Section 3.4, RANSAC parameters setting is an
important factor for the performance of the method. Parameters should be
set properly to adjust to the test data set, and they should be set differently
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(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.2: Textured vertices

for global fitting and local fitting. In order to get a better understanding
of the influcence of some important parameters for global fitting, test data
I is used as an example to test different settings of parameters. And since
RANSAC has some randomness because it randomly chooses the hypothet-
ical inliers (see Section 3.4), the tests on parameters are performed several
times to reduce the influence of randomness on the conclusions.

First, different probabilities are tested. Two extreme examples are chosen,
one is when p = 0.05 and the other is when p = 0.95. As shown in Figure 4.7,
when p = 0.95 the facade plane is not extended to cover the whole facade
points, the facade plane is detected and it already satisfies the requirement
for minimum number of points for estimating the plane, so the iteration
stops. Compared with the situation when p = 0.05, the facade plane is
better fitted and includes all the facade points, moreover, an extra roof plane
is detected while it is often ignored when p = 0.95. So in global fitting,
probability p should be set as a very low number.

Min points (definition see Section 3.4) is also an important parameter. It
determines the size of the planes detected in this stage. Figure 4.4 shows
the results when n = 200 and n = 1000. 14 planes are detected when
n = 200, these planes include facade, roof, ground and some windows.
When n = 1000, only 3 planes are detected. The aim of global fitting is only
to find main planes, so that the windows and other details should be left for
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(a) p = 0.05 (b) p = 0.95

Figure 4.3: Different probabilities p

(a) n = 200 (b) n = 1000

Figure 4.4: Test on parameter min points n

local fitting, thus n should be reasonably large. Besides, if n is small, instead
of fitting a complete facade plane, all the facade points will be divided into
several parts and be fitted to different planes since a plane does not require
many points. This will probably lead to spikes problem (in Figure 4.4).

Epsilon ε determines how close the point to the plane should be. Large ε
will lead to spike problem while small ε will make less points fit to a model
but fit more accurate model. Figure 4.5 shows when ε = 0.5, many points
that are actually far away from the facade plane are snapped to the facade,
for example many points on the window are moved to the facade. This
causes severe problem to the model, so in order to avoid this, ε must be a
small number.

Besides above mentioned parameters, there are two parameters cluster
epsilon E and normal deviation σ. Since in global fitting, it only focuses on
the main planes, some details can be ignored, thus E should be relatively
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(a) ε = 0.5 (b) ε = 0.03

Figure 4.5: Test on parameter ε

large. And for points on the main surfaces such as facade, the quality of
the normal is relatively high, so the normal deviation should be small. To
conclude the parameters setting, in general the parameters used for global
fitting can be set as:

• probability p = 0.03

• min points n = 1000

• epsilon ε = 0.05

• cluster epsilon E = 1

• normal threshold σ = 0.98

However, depends on the quality of the results, the parameters can change
a little to adjust to the test data better.

4.5.2 Snapping

As explained in Section 3.6, there are two types of snapping in global fitting.
First, after detecting planes, inlier points are snapped to their correspond-
ing planes. Second, points that are close to the intersection lines of the
main planes, will be snapped to the intersections between planes so that the
corners can be sharpened.

Figure 4.6 shows the result of test dataset II before and after snapping
points to planes. It can be seen that after snapping, the facade and the
ground are straightened.

Because the normal of the edge point is usually not regular, which means
it is not in the direction of one of the two main planes, and the direction
is usually in between. Thus these points will not be snapped to the main
planes, leading to ragged edge problem. Figure 4.5 (a) shows the ragged
edge problem, and after snapping points to the intersection lines, the quality
of the edge is much improved.
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(a) Test dataset II before snapping (b) Test dataset II after snapping

Figure 4.6: Global fitting result of test dataset II

(a) Test datset III before snapping (b) Test datset III after snapping

Figure 4.7: Comparison between before and after snapping points to intersetion
lines

After global fitting, points on main surfaces are snapped. In order to
check which areas have been straightened, the triangle faces can be classified
into 3 classes based on the number of points snapped in the triangle:

1. red: no vertex is snapped.

2. orange: one vertex is snapped.

3. yellow: two vertices are snapped.

4. green: all three vertices are snapped.

Figure 4.8 shows the classification results of all four test datasets. The
green areas are flat while the red areas remain the same as the original
data. It can be seen that after global fitting, most parts of the facade are
straightened and the windows, balconies are not processed yet.

4.5.3 Mesh segmentation

As shown in Figure 4.8, there are still many points unsnapped. In order
to fit small planes on these points, it is neccessary to get segments of these
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(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.8: Classification of faces after global fitting

points, and input these segmetns to RANSAC. It is because in local fitting,
the parameters of RANSAC are relaxed and RANSAC does not consider
if the points are actually on the same plane in real world, as long as the
requirements are satisfied, the plane can be modelled.

The mesh segmentation is based on region growing in Section 3.7. In or-
der to grow regions efficiently, the topology information needs to be used. A
triangle mesh contains many faces and each face has 3 vertices, thus these 3

vertices are connected to each other. From the face information, it is possible
to make a structure to store neighboring points for each vertex.

After that, for each vertex, compare the similarity between its adjacent
points and the seed point of the segment, if they are similar, they will be put
into the same segment. There are two criteria for similarity in this project:

• normal deviation: compare the normal of the seed point and the nor-
mal of the adjacent vertices, if the deviation of the normals is not high,
they belong to the same segment.

• RGB mahattan distance: if the deviation of the normals is high, com-
pare the RGB mahattan distance between the seed point and adjacent
vertex, if the distance is short enough, they belong to the same seg-
ment.
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(a) Test data I region growing without tex-
uture information

(b) Test data I region growing with texture
inforamtion

Figure 4.9: Comparison between with and without texture information in region
growing

The quality of the data is low, thus the results of the segmentation some-
times can be unsatisfying. Oversegmentation is the main problem in this
stage, because the mesh is bumpy so the deviations of the normals are large.
However, with the help of texture information, oversegmentation can be
reduced. Figure 4.9 shows the results between with and without texture
information when region growing. Colors are reused for segments, so two
different segments might have the same color. It can be seen that in some
parts, oversegmentation problem is reduced, but in general, the mesh is still
oversegmented.

Figure 4.10 shows the segmentation results of all 4 test datasets. White
parts in the figure are already straightened in global fitting and the vertices
are colored based on segments. It can be seen that due to the quality of the
data, oversegmentation cannot be avoid.

4.6 local fitting

4.6.1 Small plane fitting

Each segment from mesh segmentation will be input individually to RANSAC
to detect smaller planes. Considering the influence of each parameters of
RANSAC explained in Section 4.5.1, the paramters should be changed to ad-
just to local fitting. Generally speaking, the parameters should be relaxed,
thus it allows more planes to be detected. The parameters used for local
fitting is listed below, and for different datasets there might be some minor
adjustments:

• probability p = 0.05

• min points n = 80

• epsilon ε = 0.03

• cluster epsilon E = 0.5

• normal threshold σ = 0.9
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(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.10: Mesh segmentation

In this step, much more planes are detected, and since the parameters for
detecting planes are relaxed, some of them might be invalid. Thus there
should be more constraints on these planes. As explained in Section 3.5,
detected planes in local fitting should be orthogonal or parallel to main
planes detected in global fitting.

Figure 4.11 shows the results of small plane fitting with and without plane
constraint. In subfigure (a), there are some planes detected which clearly
does not exsit in reality for example the oblique plane on the ground. After
constrain the planes by the rules, sub figure (b) shows that some invalid
small planes are removed thus unreasonable fitting can be controlled by
this means.

4.6.2 Snapping

After detecting small planes, similar to global fitting, following is snapping .
However, different from global fitting, in local fitting there is only one kind
of snapping operation, that is snapping inlier points to the planes. Because
small planes are less regular and their intersection lines usually do not fit to
the intersection lines in reality.



42 implementation and experiments with real-world datasets

(a) Test data II unconstrained planes (b) Test data II constrained planes

Figure 4.11: Comparison between unconstrained and constrained planes in local fit-
ting

(a) Global fitting (b) Local fitting

Figure 4.12: Comparison between result of global fitting and local fitting, test
dataset II

Figure 4.12 compares the result of global fitting and local fitting of test
dataset II. Compared with the results from global fitting, windows and some
other small parts of the model are straightened after local fitting. However,
in some parts where the original data is in bad quality, there will be many
spikes and the mesh will become less smooth than the original mesh.

The same as the classification rules in global fitting in Section 4.5.2, tri-
angles can be classified into 4 classes. Figure 4.13 shows the classification
result. As shown in the figure, compared with the classification result after
global fitting, most points are snapped to one plane after local fitting. How-
ever there are still many points remain unprocessed. These points mainly
are on the edges.
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(a) After global fitting (b) After local fitting

Figure 4.13: Comparison of the classification after global fitting and local fitting

Figure 4.14: Two separate points in one segment are snapped to the same plane

4.7 segments split and removing spikes
In local fitting, most points are snapped to some plane. And based on
the plane they are snapped to, all the snapped points can be labelled with
plane ID and can be classified into different segments according to these
IDs while all the unsnapped points can be classified into the same segment.
As explained in Section 3.8, the segments often have several disconnected
components. In order to define and remove spikes, it is neccessary to split
these disconnected components into different segments.

As shown in Figure 4.14, one color represents one segment. It is clear
to see that some disconneted points are snapped to the same plane thus
they are in the same segment. For exmaple two white points circled by red
dashed lines, clearly they are snapped to the same plane but they are totally
separate. Thus they should be split into two segments so that they can be
defined as spikes and be removed.

A segment is defined as a spike if it meets the requirements described
in Section 3.8. The idea is to remove all the small segments which are
surrounded by large segments. It is noticeable that there are many spikes
after local fitting, in order to get more smooth surfaces, it is neccessary
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(a) Spikes on facade (b) After removing spikes

Figure 4.15: Comparison between before and after removing spikes

(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.16: Remove spikes and recolor the mesh

to remove them. If a segment is defined as a spike, all the points of the
segments will be snapped. Figure 4.15 shows a small part of the facade of
test data set II. The colors of the two subfigures are the same, and the purple
part is the facade. In subfigure (a), there are several spikes on the facade and
in subfigure (b), they are detected and snapped to the facade plane, thus the
facade becomes more smooth.

After removing spikes, all the vertices are recolored based on the planes
they are snapped to. Figure 4.16 shows the colored final results of 4 test
datasets. Colored parts of the mesh are already straightened and the white
parts remain unprocessed.
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4.8 mesh simplification
According to the rules of removing verices in Section 3.9, some vertices will
be removed. Figure 4.17 (a) shows the result of removing unneccessary ver-
tices. It is clearly to see that many points on the planes are gone, and it is
still possible to see the shape of the building including windows and bal-
conies, because important vertices describing the features of the buildings
are kept. In Section 3.9, it is also mentioned that some faces can be kept,
Figure 4.17 (b) shows the kept faces. There are many empty spaces in these
straighten areas, if these areas are triangulated, the mesh will be complete
and there will be less faces and vertices so that the data storage will be
reduced.

(a) After removing unnecessary points (b) Kept faces

Figure 4.17: Mesh simplification

Figure 4.18: Segmented points on the edges of the empty spaces

Figure 4.18 shows the result of segmented points. Points belong to the
same segment are colored the same (colors are reused). It can be seen that
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(a) Original mesh

(b) Simplified mesh

Figure 4.19: Comparison between original mesh and simplified mesh

the empty spaces are surrounded by points in the same color. These seg-
ments of points will be triangulated separately and newly generated tri-
angles will be constrained by the method proposed in Section 3.9. After
triangulation, the empty spaces will be filled with new triangles. Figure
4.19 shows the comparison between original mesh and simplified mesh, it
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is clearly to see that in planar areas, original small dense triangles are re-
placed by large sparse triangles. The original mesh has 54962 vertices and
109082 faces while the simplified mesh has 44624 vertices and 88452 faces,
since simplified mesh has less vertices and triangles, the data storage can be
reduced.





5 ANALYS IS AND COMPAR ISON

In this chapter, the results will be analysed in details. Section 5.1 will show
the good and bad aspects of the results. In some situations, the mesh can be
well straightened however in other situations, the method might not work
very well. Section 5.2 compares the results from this thesis and Jonsson
[2016]. These two thesis have the same aim but use different method and
data. In this section, the results of these two methods will be compared.

5.1 result analysis
Some results are already shown in Chapter 4. The datasets used in this
thesis are real world data, so they contain much noise.

It can be seen that global fitting has reliable detected planes. Because
these main surfaces contain many points so that the noise has little influence
on the detected planes. So in general, main surfaces like facade are well
straightened (shown in Figure 5.1).

Figure 5.1: Straightened facade

However, the detailed parts like windows etc are much more problematic.
In some situations, the small parts can be well straightened, for example in
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Figure 5.2: Well and badly straightened windows

(a) Original mesh (b) Spikes problem

Figure 5.3: Unsolved spike problem caused by unsnapped neighbors

Figure 5.2, the inside of the window in purple are well straightened. But
in more situations, these parts cannot be straightened. According to the
observations, the inner parts of the windows are often bumpy, which means
the normals are not consistent and the deviations of the points are large
thus it is difficult to detect planes automatically in these parts. As shown
in Figure 5.2, some windows are partly straightened (green part) or not
straightened at all (white part).

5.1.1 Spike problem

Some common problems will happen in straightening process. The first one
is spike problem. Although this method tries to remove as many spikes
as possible, it is still an unavoidable problem. For example in Figure 5.3,
because the neighboring points of the spikes (in purple and green) are not
straightened, the spikes cannot be snapped to any planes according to the
method, thus in this situation, the spikes cannot be removed.

Apart from the situations where the neighbors of the spikes are not snapped
to any planes, Figure 5.4 shows another situation where the neighbors of the
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(a) Original mesh (b) Spikes problem

Figure 5.4: Unsolved spike problem caused by mixed neighbors

(a) Original mesh

(b) ”Wedding cake” effect

(c) Threshold θ = 1◦

Figure 5.5: ”Wedding cake” effect caused by inclined surface

segment are snapped to different planes or unsnapped so that it does not
meet the requirement of defining a spike. In this situation, the spikes are
not defined as spikes so that they will not be removed.

5.1.2 ”Wedding cake” effect

Another problem is ”Wedding cake” effect. It often happens in global fitting
on large surfaces especially ground surfaces. Because ground surfaces often
have many points, and if the ground is not exactly horizontal, these points
might be separated into several parts and fitted to different planes. Because
these planes are constrained, the detected planes will be made orthogonal
if they are near orthogonal. This sometimes leads to stage problem shown
in Figure 5.5 (b). In order to solve this problem, the threshold of the angle θ
to orthogonality should be small (shown in Figure 5.5 (c)).
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(a) Vreta Church data set

(b) Vasallen data set (c) Container data set

Figure 5.6: Input datasets of Jonsson [2016]

5.2 comparison
The method of this thesis is compared with the method from Jonsson [2016].
As explained in Chapter 2, Jonsson [2016] used segmentation based method.
Generally speaking, the planar areas are detected based on curvature of the
vertices then planes will be fitted on these planar areas. This method works
very well when the data has good quality so that planar areas are easier to
be detected and they are complete in general. However with low-quality
data, oversegmentation is a problem so it might has negative influences on
the results of straightening.

As shown in Figure 5.6, the three input datasets of Jonsson [2016] have
good quality, the meshes are smooth and have little noise. However, the
datasets used in this thesis have much lower quality, so it is not possible to
apply the same method on these datasets.

In order to compare if the method of the project can yield similar results,
besides the data collected by Cyclomedia Technology Inc, the method is also
tested on other dataset from Jonsson [2016]. Figure 5.7 shows the test data
used for comparison. It can be seen that this dataset has better quality and it
contains much less noises. The data contains ground, a building and several
trees.
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(a) Overview of the data

(b) Small part of the data

Figure 5.7: Other test dataset

Figure 5.8 compares the results of Jonsson [2016] and the method of this
thesis applying on the dataset with similar quality. It seems two methods
can yield similar results, but since these two results are not from exactly
the same dataset, there are still some differences. A clear difference is that
the method of this thesis removes the windows on the facade according to
the chosen parameters because as shown in Figure 5.7, the windows in this
dataset are very shallow.

Two methods can achieve similar results on main surfaces, however the
method of this thesis also refines the edges. A common problem of straight-
ening the mesh is that the edges are always ignored because the points on
the edges often have irregular normals. In the method of Jonsson [2016],
points on the edges have higher curvatures thus they are often not defined
as planar areas. After straightening the mesh, these points will remain the
same. However, this thesis provides an inspiration that edges can be refined
by snapping points to the edges. Figure 5.9 compares the results between
unrefined and refined edges.
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(a) Result from Jonsson [2016]

(b) Result from this thesis

Figure 5.8: Comparison of the results

(a) Result from Jonsson [2016] (b) Result from this thesis

Figure 5.9: Comparison of the results on edges
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5.3 result validation
Most of the result estimation is done by visualization in this thesis. By
visually checking whether the planar parts of the mesh are straightened,
the result can be estimated as good or bad. Chapter 4 and previous sections
in ?? have shown some result estimation visually. Besides that, the output
meshes are also checked with validation of the geometry, the following table
shows the validation result.

Test data I Self intersecting faces Non manifold edges Non manifold vertices
Original mesh 414 414 179

Straightened mesh 3542 414 179

Table 5.1: Validation result of Test data I

Test data II Self intersecting faces Non manifold edges Non manifold vertices
Original mesh 778 523 190

Straightened mesh 3662 523 190

Table 5.2: Validation result of Test data II

Test data III Self intersecting faces Non manifold edges Non manifold vertices
Original mesh 1477 661 257

Straightened mesh 13186 661 257

Table 5.3: Validation result of Test data III

Test data IV Self intersecting faces Non manifold edges Non manifold vertices
Original mesh 1738 1326 451

Straightened mesh 12692 1326 451

Table 5.4: Validation result of Test data IV

Self intersecting faces, non manifold edges and non manifold vertices are
checked for validation. It can be seen from the table that the numbers of self
intersecting faces significantly increase, while the number of non manifold
edges and non manifold vertices do not change.

Meshlab is used for result validation. And according to the observation
to the original mesh and straightened mesh, many faces actually do not
intersect but they are defined as self intersecting faces (see Figure 5.10). By
comparing Figure 5.10 (a) and (b), it is clearly that the shapes of some faces
do not change much but they become self intersecting in the straightened
mesh (in red dashed cirle) while some faces become valid instead in the
straightened mesh (in yellow dashed cirle).

The reason why there become more unlikely self intersecting faces and
how to validate these geometries including self intersecting faces, non man-
ifold edges and non manifold vertices, should be investigated in future
work.
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(a) Self intersecting faces in orignal mesh

(b) Self intersecting faces in straightened mesh

Figure 5.10: Self intersecting faces



6 CONCLUS ION AND
RECOMMENDAT IONS

The aim of this thesis is to design a method which can straighten multi view
stereo meshes. Since the data is real world data and it contains many noises,
the method has to be applicable to low-quality data. First in Section 6.1,
reseach questions defined in Section 1.3 will be answered. Then there will
be some discussions on the methods and the results in Section 6.2. Finally
in Section 6.3 some recommendations and future works will be given.

6.1 research questions
In this section, the research questions posed in Section 6.1 will be answered.

• ”Can RANSAC algorithm based method yield similar or better result than
existing approaches for straightening multi view stereo mesh”.

According to the comparison in Chapter 5, the method of this the-
sis yields similar result and it is capable of dealing with data with
low quality. According to the experiment, plane fitting method like
RANSAC is capable of detecting planes in the datasets with a lot of
noises. Compared with segmentation based methods, using plane fit-
ting method can be more efficient and robust. The method of this
thesis actually combines both plane fitting and segmentation in global
fitting and local fitting respectively. The reason is that in global fitting,
main planes are the aims and it is not neccessary to segment them be-
cause it is easy to detect these planes directly. However, in local fitting,
because the parameters of the plane fitting method are relaxed, it is
neccessary to get planar segments first.

Besides the main research question, the sub research questions can
also be answered:

• What methods are currently used? What are the advantages and disadvan-
tages?

As discussed in Chapter 2, most methods resort to detecting planar
areas first. Then the planes are fitted on these planar areas. These
methods provide stable result because the points in these planar areas
are highly spatial related and share similar features, which means the
planes fitted on these planar areas are very likely to exist in reality.
However, these methods require good segmentation result, so if the
data have high quality, these methods will perform well, while when
the data contain too much noise, it is difficult to get decent result.

• How can some plane constraints be used for straightening meshes?

Plane constraints can be used to improve the quality of detected planes.
Sometimes detected planes might have small errors so they are nearly
but not exactly orthogonal, coplanar etc. Plane constraints can help
to correct these small deviations. However, plane constraints should
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be used carefully otherwise they will have negative influences on the
detected planes.

• How can geometry/topology/texture information be used?

Geometry is the basic information of MVS mesh. Plane fitting is based
on the geometry of the points.

Topology information is useful in mesh segmentation. Since MVS
mesh already provides topology information, which means the inci-
dents of each points are known. Thus region growing can be based
on this topology information. Besides, it is also used for calculating
normal for each vertex from incident faces. Moreover, in mesh sim-
plification, the topology information is used as well. By comparing if
a vertex and its incidents are snapped to the same plane, it is decid-
able whether a vertex should be kept or removed. Moreover, topol-
ogy information is important for edge based region growing in mesh
simplification, because the edge structure stores incident edges of the
edge.

Texture inforamtion is additional information in MVS mesh, this project
also tests how texture information can be involved. Due to low qual-
ity of the data, oversegmentation is a common problem. According
to the experiments, texture information can reduce this problem in re-
gion growing, because it is expected that same segment should have
similar color, region growing will not stop easily because of the large
deviations of normals.

• Is it feasible to simplify the straightened meshes regarding data storage and
attach textures to simplified meshes?

According to the final results, MVS mesh is straightened and many
unnecessary details are removed at the same time. Thus the repre-
sentation of the model is simplified which is an advantage of 3D city
modeling because in 3D models, some details are not important and
useful. After MVS mesh is straightened, the project also tests whether
the mesh can be simplified with data storage. Since many vertices are
snapped to the same planes, it is not necessary to keep all the trian-
gles, so many triangles are removed after simplification. Less vertices
and faces means the straightend meshes are simplified regarding data
storage.

Because after removing vertices, the mesh is retriangulated, the indices
of the vertices and the number of triangles are changed. The texture
information is highly related to triangles and indices, thus it is tricky
to attach textures back to simplified meshes. In order to attach texture
back, it is necessary to find the links between original triangles and
new triangles and create new texture image for new UV mapping.

6.2 discussion
In this section, the choice of the methods and some shortcomings of the
methods will be discussed.

As explained before, a lot of research prefers segmentation based method.
They use different approaches to get planar areas based on normal, curva-
ture etc. Then planes are fitted on these planar areas. Segmentation based
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Figure 6.1: Problem in texture enrichment

methods can achieve good results when the data contains a few noises. In-
stead of plane fitting method, this thesis adopts plane fitting method di-
rectly in global fitting without segmentation, because it is relatively easier
to detect these main planes so it is not neccessary to segment the mesh first.
Besides, the data of this thesis uses has low quality, it is difficult to achieve
decent segmentation results. RANSAC has strong ability to detect planes
with many outliers, so it is suitable for the datasets of this project.

In local fitting, this thesis also adopts segmentation method, because
compare with global fitting, local fitting is more tricky. RANSAC does
not consider if points are spatially related, and in fact, these details to be
straighten in local fitting are always separate, so they should be segmented
first. In mesh segmentation, oversegmentation and undersegmentation are
two main problems. Between these two problems, according to the experi-
ment, oversegmentation is preferable, because if the mesh is oversegmented,
plane fitting method will ignore many non planar areas, these parts will
remain the same as the original mesh. However, if the mesh is underseg-
mented, plane fitting method will fit some planes which do not exist in
reality. If the points are snapped to these planes, the quality of the mesh
will decrease.

Texture information is enriched to each vertex in this thesis. It is used in
region growing in this project. And because the data has relatively low qual-
ity, normal based region growing often leads to oversegmentation. Includ-
ing texture information in segmentation can reduce this problem. However,
texture information on each vertex is limited, much texture information is
lost because vertices are discret but texture is continous and stored in face
unit. Because of this, adjacent vertices sometimes have totally different col-
ors. Figure 6.1 shows part of a window. P1 and P2, P3 and P4 are connected.
However, because there is a distance between adjacent vertices, P2 and P4
will get RGB values of blue, while P1 is black and P3 is white. For this reason,
texture information can only be a supplyment during mesh segmentation.

Regarding of mesh simplification, the theory works with some prerequi-
sites:

• The polygons of empty spaces should be closed.

• The polygons of empty spaces should be simple, which means poly-
gons do not self intersect.
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As shown in Figure 6.2 (a), if the shape of the empty space is not a closed
polygon, the newly generated triangles cannot recover the original shape of
the empty space. So it is necessary to keep the boundary points in order to
make the polygon closed, as shown in Figure 6.2 (b).

(a) Non-closed polygon result (b) Closed polygon result

Figure 6.2: Comparison between original mesh and simplified mesh

If the polygon of empty space is not simple polygon, it is not possible
to check whether the incenter of the triangle lies inside the polygon or not,
thus the generated triangle area will be convex. As shown in Figure 6.3,
the original shapes are concave, however, these polygons are not simple
because they self-intersect, thus it is not possible to remove triangles outside
the shape so that the shapes will become convex (shown in Figure 6.3 (b)).
Non-simple polygon problem is caused by inappropriate input order of the
vertices of the polygon. It is often caused by adding extra vertices that
do not belong to the polygon because the original mesh is not manifold.
In a manifold mesh, edges with only one incident face should only have
two incident neighbor edges (one previous edge and one following edge).
However since the mesh is not manifold, there will be some extra edges
(red circle shown in Figure 6.3). If the region grows based on edge with
the direction of the arrow from P1 to P6 in Figure 6.3 (a), after tracing the
vertices from the edges, the polygon will end up with self intersection. In
conclusion, in order to get decent result of mesh simplification, the above
two problems need to be solved first.

6.3 recommendations and future works
There are several aspects that can be improved in this thesis. Besides, there
are some related future work that this thesis can contribute to.

In this thesis, the input of global fitting is the whole dataset. The founda-
tion of this way is that RANSAC is capable of detecting planes among all
the points with noises. However, farther points have less spatial relations
and RANSAC does not consider spatial relations but only relies on the pa-
rameters of detecting a plane. The consequence is that RANSAC might fit
planes on points that are far away, which means these planes might not be
valid in reality. There are two recommendations for solving this problem.
The first one is segmentation. The reason why a lot of research resorts to
segmentation before actual operations on the mesh is that segmentation is
a way to find highly spatially related points, because points in a segment
often have more spatial relations. However there are situations where it is
not possible to get decent segmentation results. Then the second way is to
clip the whole data into several parts. First, ground points can be found
and based on this, separate buildings can be clipped into different datasets.
Because the points on the same building have more spatial relations, thus
the best way is to clip separate buildings and input them to RANSAC. By
this means, the detected planes are more likely to be valid.
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(a) Original concave shapes of the polygon

(b) Convex shapes after triangulation

Figure 6.3: Problem caused by non-simple polygon

The way of using texture information can be improved as well by using
image processing method. In order to solve the texture problem stated in
Section 6.2, there are two recommendations. First the texture images can
be blurred using some filters. Thus adjacent vertices are less likely to be
influenced by some details in the texture images. Besides, as explained
before, much texture information is in faces, so the average color value of
the incident faces of the vertex might be a better indicator of the texture of
the point.
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(a) Edge-based region growing on non-manifold mesh

(b) Self-intersection problem

Figure 6.4: Self-intersection problem caused by non-manifold mesh

Snapping points to edges is a way to refine the edges in this thesis. Edges
are defined as the intersection lines of the planes. Planes are infinite so that
every two planes will have one infinite intersection line. However in reality,
a building consists of several polygons instead of planes, which means some
planes detected in this project will not intersect in reality. So it is necessary
to transfer detected planes into polygons, and use the intersection line seg-
ment of two polygons as edge. Besides, using polygon representation has
advantage of defining, generating other format of city models.

Apart from recommendations on the methods used in this MSc project,
there are also some related works:

Semantic enrichment is an important topic in city modeling. Verdie et al.
[2015] provides an idea of labeling segments as ground, roof, facade etc
based on planarity, elevation, horizontality. Besides, texture information
enrichment can be used for semantic enrichment as well. For example, veg-
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etation can be identified with texture and planarity. If the mesh is enriched
with semantic information, detected planes can have their own attribute,
which can be helpful for straightening the mesh.

In addition, if the mesh and the detected planes are enriched with se-
mantics, it would be possible to translate MVS mesh to other format of
city model such as cityGML. There are several Level Of Details (LODs) in
cityGML. Considering the condition of the MVS mesh used in this project,
it is better to start with LOD 0. LOD 0 only contains ground and foot prints
of the buildings, and since the facade of the buildings and ground plane can
be detected, by intersecting these planes, the foot prints of the buildings can
be acquired thus LOD 0 can be generated. As described in Chapter 1, the
roof of the MVS mesh in this project has bad quality, it is difficult to restore
the shape of the roof. However, it is still possible to get elevation values for
each roof according to some statistics on roof points. If the elevation of the
roof is known, LOD 1 can be generated. LOD 2 is more problematic because
the shape of the roof is the characteristics of LOD 2. In order to solve this
problem, some other data can be combined with MVS mesh. For example
AHN3 data has much more accurate point cloud on roof areas, it might be
feasible to replace the roof areas of MVS mesh with AHN3 data so that the
quality of the roof can be improved.
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