
1 

 



2 

Understanding Household Solar PV Adoption:  

An Innovative Approach with Large Language Models 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MSc. Metropolitan Analysis, Design and Engineering (MADE) 

Author: 

Yifan Yang 

Student number: 1324373 / 6009506 

Supervisor: 

Aksel Ersoy 

Department of Management in the Built Environment,  

Faculty of Architecture and the Built Environment, TU Delft 

Erkinai Derkenbaeva  

Urban Economics, Social Science Department, Wageningen University 

mailto:Y.Yang-82@student.tudelft.nl
mailto:A.Ersoy@tudelft.nl
mailto:erkinai.derkenbaeva@wur.nl
mvanadrichem
Doorhalen



3 

 

Abstract 
Residential solar photovoltaic (PV) systems play a crucial role in energy transition and climate 

change mitigation in urban areas. However, the adoption process shows social disparities, 

raising concerns about energy justice. Current research has limitations in understanding the 

complex mechanisms behind household solar adoption decisions. Therefore, this study 

explores using large language model (LLM)-based agents to simulate household solar 

adoption decisions.  

Based on a literature review, we developed a framework covering four key factor categories: 

technical attributes, household characteristics, personal beliefs, and external contexts. We 

created an LLM-based household agent model (PVAgent) that converts influencing factors 

into structured prompts, expanding from individual decision-making to multi-agent systems, 

with both decisions and reasoning statements as output. Using three neighborhoods in 

Amsterdam as a case study, we simulated solar adoption behavior across different social 

groups. Using three neighborhoods in Amsterdam as a case study, we simulated solar 

adoption behavior across different social groups. 

The result shows that the LLM agent model can generate reasonable individual decision logic 

and group-level structural patterns. It also shows how household adoption dynamics change 

over time with evolving motives and barriers. Based on these insights, we propose three 

principles for future policymaking: comprehensive strategic frameworks, structural 

innovation, and differentiated approaches for specific groups. 

In summary, this research contributes by introducing LLMs to energy behavior modeling. 

Although there are limitations, such as the subjectivity of prompt design, this research 

provides an innovative approach to understanding complex household decision-making. 

Future studies can further develop this approach and explore more extensive application 

scenarios with advanced methodological integration and interdisciplinary cooperation. 

 

Keywords: Solar photovoltaic adoption, large language models, agent-based modeling, 

energy transition, energy justice 
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Chapter 1 Introduction 

1.1 Background 

The transition toward renewable energy has become widely accepted as a critical solution 

for global challenges like energy security and climate change [1]. Urban areas, which 

consume approximately one-third of global energy, have positioned residential solar 

photovoltaic (PV) systems as a key solution to energy transition efforts [2], [3], [4]. These 

residential rooftop PV systems can be easily integrated into already-existing urban built 

environments, benefiting residents’ health and economy, as well as reducing greenhouse gas 

emissions and air pollution [5], [6]. As a result, the global adoption of household solar PV 

systems has grown significantly in recent years. Several factors drive this growth, including 

falling costs and advancing technology [7]. Policy support and financial incentives from many 

countries have also contributed, including feed-in tariffs and net metering policies [8], [9], 

[10].  

Despite the rapid growth in household solar PV adoption, concerns about equality in the 

energy transition are increasing. As noted, inequalities are inevitable in energy transitions 

and may lead to or worsen socially unjust outcomes [11], [12], [13]. In this context, energy 

justice has emerged as a new field of research [14]. This concept usually includes 

representation and inclusion in the decision-making process, as well as the fair allocation of 

energy service costs and benefits among various socioeconomic groups [15]. Another 

influential framework comes from McCauley et al.[16], who identified three key dimensions 

of energy justice: distributional justice, recognitional justice, and procedural justice. 

A systematic literature review by Jenkins et al. [14] shows that solar energy is one of the 

most studied energy technologies in energy justice research. Many studies have shown that 

social stratification significantly affects residential solar PV adoption. Several disadvantaged 

groups face higher adoption barriers. These include low-income households [17], [18], [19], 

[20], ethnic minorities [21], and social housing residents [19], [21], [22]. In addition to 

socioeconomic factors, urban environmental features and spatial layouts also contribute to 

these adoption disparities [18], [23]. 

Understanding household decision-making behavior is essential for promoting justice in 

household PV adoption. This understanding helps identify specific barriers that prevent 

different groups from adopting solar technology, which may cover a range of elements such 

as financial, technological, informational, and sociocultural aspects [24], [25], [26]. Detailed 
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analysis of household solar PV decision-making can also reveal structural problems in current 

policies and programs. For example, studies suggest that some incentive schemes could 

unintentionally exacerbate income disparity, while some housing subsidy may overlook the 

requirements of renters [27]. Therefore, understanding the decision-making process 

therefore enables the development of more equitable participation approaches and inclusive 

policy actions [25], [28], [29]. 

Despite many studies have examined factors that influence household solar PV adoption, 

there are still methodological barriers to comprehending these complex decision-making 

processes [30]. While previous research has recognized the complex mechanisms underlying 

PV adoption [31], conventional research methodologies struggle to integrate multiple factors 

at the same time. With more emphasis on socioeconomic characteristics (such as income 

and ethnicity), their relationship between environmental factors, policy framework, and 

social networks is sometimes oversimplified [29]. Many other factors affect households as 

they gather information, consider options, and make decisions. However, traditional 

statistical techniques and basic agent-based models cannot effectively capture this dynamic 

and context-dependent process [32]. Furthermore, most research concentrates on macro-

level analyses at the city or district level due to data collection limitations, failing to fully 

examine variations in decision-making behavior at the household level [33]. These 

methodological limitations highlight the need for new modeling approaches to better 

understand and simulate household behavioral patterns in solar energy adoption. 

In recent years, Generative AI (GenAI) has become one of the most important technical 

developments. It can generate content that closely resembles human-produced work [34], 

[35]. Large Language Models (LLMs) are particularly promising within this field, which offer 

new opportunities for understanding household solar PV adoption complexity. Due to their 

advanced natural language processing and text production capabilities, LLMs show human-

like environmental observation and decision-making abilities [36], [37]. These features allow 

for sophisticated role-playing functions, which motivates researchers to investigate LLM-

based agents for creating virtual environments to simulate social phenomena. Compared to 

traditional agent-based modeling methods, LLM-based agents provide a number of 

advantages. They can enable sensitive interactions between agents [40], replicate more 

complex decision-making logic without explicit rules for reasoning [39], and integrate various 

information and data sources [38]. They are therefore particularly suitable for simulating 

decision-making behavior. Also, their technological scalability and zero-shot generalization 

capabilities enable fine-tuning for adoption to a variety of contexts and research topics [38]. 

For example, this technology has been applied in fields such as personal travel behavior [39], 

classroom scenarios [40], and social networking [41].   
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These advances provide new possibilities to improve our understanding of how households 

make decisions about using solar energy. However, LLM-based agents also have limitations 

and challenges. Their robustness remains uncertain, and their applicability to specific tasks 

needs exploration [42], [43]. On the other hand, their resource consumption and 

computational efficiency present problems for large-scale applications [44]. Like other AI-

driven methods, they also face limitations such as privacy concerns and hallucination [44], 

[45]. Therefore, the potential application value of these technologies in the specific field of 

solar PV adoption remains to be explored.  

1.2 Research Aims and Questions 

In order to offer new insights for promoting just energy transition, this study aims to explore 

how LLM-based agents can be used to model household decision-making processes in solar 

PV adoption. Theoretically, this study will examine the various factors that impact solar 

adoption a across different groups and how these factors interact. This will provide new 

insights to explain disparities in household PV adoption and energy transition patterns. In 

terms of methodology, this project will investigate how this new approach can be used in 

household energy decision research. With the development of an LLM-based agent model, 

this research intends to provide empirical support for developing more inclusive policies and 

fostering a more equal energy transition by simulating and understanding the decision-

making of various households. 

Specifically, this research aims to address the following research question: 

How can LLM-based agents be used to simulate and understand household decision-

making in solar PV adoption? 

To systematically address this main question, the research is structured around three related 

sub-questions: 

 What factors influence household decisions on solar PV adoption? 

 To what extent can LLM-based agents effectively simulate household decision-making 

processes for solar PV adoption？ 

 How can simulation results from LLM-based agents inform policy recommendations for 

solar PV adoption? 

The first question establishes fundamental knowledge of adoption dynamics by examining 

multidimensional factors. This provides crucial inputs for the modeling framework. The 

second question then addresses the methodological challenges while converting the 

theoretical knowledge into optionable models. The third one, which comes last, is about 

analyzing simulation results and turning them into practical policy suggestions. These three 
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questions approach the study from interrelated perspectives: input, implementation, and 

output. They integrate theoretical understanding with real-world applications to promote a 

more equitable energy transition. 

1.3 Research Scope - Amsterdam as A Case Study 

This study focuses on Amsterdam as a case study. Amsterdam is a highly representative case 

in residential solar PV adoption. In addition to setting aggressive goals for renewable energy, 

the city has put in place several measures to encourage the use of solar PV in residential 

buildings. As a densely populated city with diverse architectural forms, Amsterdam faces 

common technical, economic, and social challenges in promoting distributed PV systems. Its 

experience provides important insights into the energy transition of other cities. 

Furthermore, a strong basis for carrying out this research is provided by Amsterdam's 

extensive data sharing as well as its rather open policy-making process. By methodically 

examining Amsterdam's circumstances, we aim to provide universally applicable insights for 

understanding and advancing urban energy transitions. 
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Chapter 2 Theoretical Background and 

Conceptual Framework 
 

2.1 Solar PV Adoption Decision-Making 

2.1.1 Evolution of PV adoption research 

Adoption of solar PV is not a fresh area of study. Various disciplines, such as sociology, 

economics, and psychology, have contributed to the interdisciplinary nature of research in 

this field [1]. The evolution of studies on residential solar PV adoption reflects our deepening 

understanding of this complex household decision-making behavior.  

Research in this field started in the 1980s, when distributed PV was still in its early stages. 

Most studies focused on technical and economic factors, while some employed the Diffusion 

of Innovation Theory (DOI) to explain early adopters' motivations [2], [3]. Since the 2010s, 

solar PV installations have expanded quickly due to cost reductions and technological 

advancements. In this period, research attention has shifted toward a more comprehensive 

understanding of adoption behavior [4]. As a result, theories from social science and 

economics have been integrated into this research field. According to the literature review by 

Ashraf Fauzi et al. [5], theories including the Theory of Planned Behavior (TPB), Value-Belief-

Norm Theory (VBN), and Technology Acceptance Model (TAM) have been introduced in this 

research field. This reflects the recognition that complex interactions between social, 

economic, and psychological factors influence PV adoption decisions [6]. Around 2020, 

awareness of social inequalities in PV adoption began to rise. This resulted in increasing 

attention to distributional disparities and barriers faced by vulnerable groups. Since then, 

research on residential PV adoption has also taken energy justice concerns into account [7]. 

In terms of methodology, statistical analysis has long been the dominant approach. Modeling 

and simulation have become the second most popular methods in this field due to rapid 

developments of agent-based modeling and spatial analysis since the 2010s [8]. In recent 

years, artificial intelligence and machine learning have also been integrated, providing new 

opportunities to understand the socioeconomic complexities behind variations in PV 

adoption [9]. 
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However, developing comprehensive frameworks remains challenging.  

In a systematic review of 173 papers, [10] pointed out that a significant problem is the lack of 

frameworks that successfully combine different predictive factors toward PV adoption. There 

are other limitations in current research methods. They primarily focus on final adoption 

behavior, while overlooking the process of attitude and the influence of behavioral control 

factors. Besides, model analysis are overly simplistic and direct, which often lacks depth and 

innovation [8].  

To better understand the development and current state of research on household PV 

adoption decisions, the main theories and research methodologies in existing literature will 

be discussed in the following sections. 

2.1.2 Key theories of household decision-making process 

As summarized by [8], frequently employed behavioral theories and models in this research 

field include the Diffusion of Innovation Theory (DOI), the Value-Belief-Norm Theory (VBN), 

the Unified Theory of Acceptance and Use of Technology (UTAUT), the Theory of Reasoned 

Action (TRA), the Technology Acceptance Model (TAM), and the Theory of Planned Behavior 

(TPB). Among these, DOI, TPB, and VBN are the most commonly used.  

DOI is one of the first theories applied to residential PV adoption research. This theory 

analyzes five key factors (relative advantage, compatibility, complexity, trialability, and 

observability), and classifies users from innovators to laggards to explain how new 

technologies spread within social groups [11]. The practical application of this theory was 

further advanced by [12], who integrated spatial analysis to reveal the impact of peer effects 

on household solar diffusion curves. A study conducted in India showed that the relative 

advantage, observability, and compatibility of solar PV devices significantly influenced 

consumers' behavioral intentions, which in turn had a positive impact on adoption [13]. The 

adoption of solar PV is also influenced by sociodemographic and economic factors, as well as 

individual motivations, according to research by [14]. The study further highlights that 

adopters, potential adopters, and non-adopters have different motives and perspectives. 

However, DOI does have certain limitations. It attributes the non-adoption of innovations to 

individuals while overlooking structural and contextual barriers that may hinder adoption 

[15]. Furthermore, it fails to explain people's deeper psychological decision-making 

processes, such as sense of responsibility and environmental awareness [16]. 

Research on solar adoption has also extensively used the Theory of Planned Behavior (TPB). 

Proposed by Ajzen [17], TPB emphasizes that an individual’s behavior is influenced by three 

main psychological factors: attitudes, subjective norms, and perceived behavioral control. In 
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the context of household PV adoption, attitudes reflect household’s positive or negative 

evaluations of PV adoption and their environmental awareness; subjective norms relate to 

social networks and peer influences; and perceived behavioral control involves how 

households perceive their capacity to purchase and install PV systems, including affordability 

and home ownership [18]. However, TPB has limitations in terms of static decision-making 

and ignores the impact of emotional processes and feelings on individual energy decisions, 

as it is based on the rational choice of utility maximization [19], [20].  

VBN offers an alternative perspective by emphasizing the importance of moral obligations 

and environmental values in adoption decisions. According to VBN theory, pro-

environmental behavior is driven by a causal chain that begins with relatively stable value 

orientations, progresses to specific beliefs about environmental conditions and human 

responsibility, and finally activates moral standards that guide action [21]. Research indicates 

that households with strong environmental values and a sense of responsibility toward 

climate change are more likely to adopt PV systems [22]. However, it is important to 

recognize that although respondents cite environmental factors as one reason for installing 

solar systems, this is by no means the sole driver [23]. 

It is evident that each of these theories has specific strengths and limitations in explaining 

the decision-making behavior. Given the complexity of PV adoption decisions, researchers 

are attempting to integrate multiple theoretical frameworks. [24] combined variables from 

the VBN, TPB, and DOI theories to explain consumer interest in residential PV. They 

categorized these predictors into several major groups, including technology-specific beliefs, 

personal dispositions, external influences, values, and household constraints. Similarly, [6] 

integrated perceived behavioral control from TPB, personal intentions from VBN, and 

product perception from DOI to propose different variant models.  

These approaches acknowledge that household decision-making is influenced by multiple 

factors, including individual characteristics and external contexts. Based on these 

frameworks, the variables from the aforementioned theories can be classified into four 

dimensions: technology attributes, external context factors, personal beliefs and intentions, 

and individual (household) characteristics (see Figure 2-1). This approach produced a more 

comprehensive picture of household decision-making. 
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Although these research and integrated frameworks offer valuable insights into how 

households make decisions, modeling and analyzing how these multiple factors interact in 

real-world situations remain challenging. This complexity is amplified when accounting for 

the varied conditions experienced by different social groups. This highlights the need for 

advanced methodological approaches that can handle both complex factor interactions and 

cross-population variations. 

2.1.3 Current research methods and limitations 

As previously mentioned, the primary research methodologies in residential solar PV 

adoption research include statistics, modeling, simulation, and qualitative analysis. 

The most common method has always been statistical analysis, including econometric 

approaches and regression [8]. These methods usually rely on quantitative surveys and cross-

sectional or panel data [25]. Statistical analysis is excellent at finding connections between 

socioeconomic variables and adoption outcomes in big datasets to determine the main 

elements impacting adoption decisions [6]. However, this approach often struggles to 

capture the dynamic nature of the decision-making process and the interactive relationships 

between different factors. 

The second most popular approach is modeling and simulation, especially agent-based 

modeling (ABM) and spatial analysis [8]. In practice, these two methods are often combined. 

For instance, a hybrid AMB based on a GIS platform was developed to model the 

Figure 2-1 Theories related to household decision-making and variable categorizations 
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neighborhood-level market diffusion of rooftop solar PV installations [26]. Similarly, [20] 

developed the ENERGY Pro model, which simulates building energy retrofit decisions in 

Amsterdam by incorporating geographical and social layers. These approaches provide tools 

for assessing neighborhood effects and social factors. To be specific, ABM allows researchers 

to simulate how individual decisions aggregate to generate adoption patterns at the 

neighborhood scale while considering temporal variations [27]. However, current ABM 

implementations usually rely on fixed and oversimplified decision rules that cannot 

accurately capture the complexity of household decision-making, particular regarding social 

and psychological aspects. 

Machine learning techniques have also been increasingly used in PV adoption studies in 

recent years. They offer new capabilities for pattern identification and predictive modeling 

and are particularly advantageous when dealing with unknown relationship and nonlinear 

functions. For instance, [9] applied conditional inference trees (CTREE) after analyzing four 

other machine learning algorithms, and their results helped to clarify some conflicting 

findings from earlier research. However, the black box nature of these techniques might limit 

their applicability for policy insights by making it difficult to understand the underlying 

decision mechanisms.  

Additionally, qualitative methods like interview provide valuable insights. They can offer a 

more profound comprehension of individuals’ decision-making processes and their motives, 

preferences and barriers [13], [28]. However, sample size, representativeness and possible 

discrepancies between expressed preferences and actual behavior are some of the 

challenges of these qualitative approaches. 

These current methods also share some common limitations. First, the generalizability and 

granularity of study findings are often influenced by limitations in data collection and the 

inaccessibility of micro-data. Second, most approaches find it difficult to integrate various 

theories and data types, making it challenging to capture the dynamic interactions between 

social, psychological, and institutional factors while maintaining explainability. As a result, 

emerging methodologies such as LLMs provide new opportunities to solve these constraints 

and better understand household solar energy adoption decisions. The advantages of these 

approaches will be discussed in the next section. 
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2.2 Large Language Models as Decision-Making 

Agents 

2.2.1 Characteristics of LLMs and LLM-based agents 

Generative artificial intelligence (GenAI) represents one of the most significant developments 

in artificial intelligence technology in recent years, with its ability to generate or synthesize 

contents that is often indistinguishable from human-created ones [29], [30]. This 

advancement has been significantly facilitated by models such as transformers, language 

models, diffusion models, and generative adversarial networks [31]. GenAI has been widely 

applied across diverse disciplines, such as art, education, biology, architecture, construction 

and engineering (ACE), significantly influencing several types of businesses as well as society 

in general [30].  

GenAI also shows great potential in urban planning. According to [32] and [33], incorporating 

AI into urban planning procedures is essential for addressing urban growth-related 

challenges, improving residents' quality of life, and achieving smart and sustainable 

development. [34] conducted a systematic study into the use of AI in local governments and 

found four primary uses: data analysis and decision support, automation and efficiency 

enhancement, predictive scenario analysis, and citizen participation. [35] further note that 

GenAI offers promising support for urban research and management, especially in smart city 

development. This is due to its advantages in data augmentation, synthetic data and scenario 

production, and three-dimensional urban modeling. Similarly, the analysis of [36] shows that 

data processing, communication, and automation are the main areas where AI excels in 

urban planning. This potential possibility has been generally recognized by urban 

administrators, despite some present challenges [37]. 

Large language models (LLMs) are one of the main driving models in recent applications. 

LLMs are the most recent paradigm in language modeling. They have developed from earlier 

models such as neural and statistical models [38], [39]. These models use transformer-based 

deep learning architectures trained on large language datasets, which typically contain 

billions of parameters [29], [40]. 

LLMs demonstrate powerful capabilities in natural language processing and text generation 

[41]. Additionally, because their training models encode a wide range of human behaviors, 

LLMs possess abilities similar to human environmental perception and decision-making, 

enabling them to solve complex reasoning and planning tasks [42], [43], [44], [45]. This 

capability enables them to “role-play” and simulate various human social behaviors. 
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As mentioned, Agent-based modeling (ABM) is one of the methods for researching complex 

human decision-making. However, traditional ABM has several drawbacks. These include 

excessively complicated model parameters [46], difficulty in handling comprehensive 

simulations of complex tasks and real-world problems [47], and dependence on 

straightforward "perception-action" loops for decision-making. Traditional ABM relies on 

these simple loops rather than intricate internal world models or sophisticated reasoning 

processes [48]. These limitations lead to discrepancies between simulation results and real 

situations. 

Fortunately, LLM-based agents provide new ways to overcome these restrictions. Their 

special advantages include: 

First, LLM-based agents are more capable of reasoning and making flexible decisions. Unlike 

traditional ABM with predefined rules, LLM agents can understand and process complex 

contextual information through natural language without explicit rules [44]. They can 

perform multi-step reasoning and make decisions that better align with human cognitive 

characteristics [49]. The Chain of Thought prompting technique is one typical example of 

LLMs' sophisticated thinking abilities. This technique breaks questions down into several 

successive intermediate steps to reach a final solution [50]. [51] further introduced the Tree 

of Thoughts framework. This framework allows LLMs to make thoughtful judgments by 

analyzing several lines of reasoning and conducting self-evaluation. By enabling agents to 

deal with more ambiguous and uncertain situations, this language model-based approach 

can improve the modeling of real-world decision-making processes. 

Second, LLM-based agents show superior ability to integrate and transfer knowledge and 

data. LLMs have acquired extensive knowledge from pre-training, which enables them to 

comprehend and apply concepts from various fields. That helps agents achieve zero-shot or 

few-shot generalization by efficiently transferring information and drawing comparisons 

when confronted with novel situations [52], [53], [54]. Through Turing experiments, [55] 

have confirmed that LLMs can reproduce well-known studies in social psychology, 

psycholinguistics, and economics. LLMs can also adapt to changing settings and continually 

learn from new data [56], [57]. In particular, the combination of retrieval-augmented 

generation (RAG) allows for dynamic integration of user queries with relevant data from 

external knowledge bases. This helps to produce more precise and contextually relevant 

answers and exhibits strong knowledge manipulation skills in knowledge-intensive tasks [58]. 

These features greatly enhance agents' capacity to manage challenging real-world issues and 

bring simulations closer to actual situations. 

Third, LLM-based agents are capable of complex interactions. On one hand, LLM-based 
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agents can use natural language to communicate with their surroundings [59]. While tools 

broaden the agents’ action space [44], [60], multimodal fusion models can process different 

kinds of environmental input [61]. This interaction is not restricted to text and 

predetermined rules. In addition to properly perceiving and interacting with their 

surroundings, LLM-based agents may also communicate with other agents[40], [49], [62]. 

This capability enables intricate negotiations, game theory applications, and collaboration in 

multi-agent systems. Therefore, this language-based interaction mode makes agent 

interactions more natural and diverse. It allows for more realistic simulation of complex 

interaction processes in human society. This approach has been used in many social 

simulation projects, including S3 to simulate the spread of information in social networks 

[63] and SocialAI School [64] to research and simulate developmental psychology. According 

to [65], LLM-based agents are able to replicate fundamental behavioral traits of human 

society, including consensus-building and conformity effects, which are consistent with 

theories in social psychology. MetaGPT, proposed by [66], achieves effective decomposition 

and collaborative completion of complex tasks by assigning specific roles to different agents. 

Similarly, [67] showed how multi-agent systems can use discourse to accomplish a variety of 

tasks. These advanced interaction capabilities enable LLM-based agents to exhibit collective 

intelligence and social phenomena. 

Last but not least, LLM-based agents exhibit notable technical scalability. Training on a large 

dataset establishes fundamental zero-shot generalization capabilities. These agents can also 

be easily fine-tuned for other tasks to accommodate different application contexts [68], [69]. 

Using methods like prompt engineering and fine-tuning, researchers can easily customize the 

decision preferences and behavioral traits of agents. This significantly reduces the 

technological obstacles to creating complex agents and enables large-scale social simulation 

[54].  
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2.2.2 Framework and architecture of LLM-based agents 

As a bottom-up research approach, agent-based model usually includes three basic 

components. Agents are individual entities within the system, each with unique attributes, 

behaviors, and decision-making mechanisms. Environment refers to the space in which 

agents operate and interact, as well as external factors that influence their behavior. 

Additionally, the interaction includes the mechanisms governing connections between 

agents and their environment, in addition to interactions among agents themselves [47]. 

Building upon these foundational concepts, many LLM-based agent architectures and 

frameworks typically incorporate several key architectural components that enable these 

enhanced capabilities. 

ReAct [45] is a well-known system that combines environmental interaction with the Chain-

of-Thought reasoning power of LLMs. To accomplish complicated tasks, this framework uses 

a Think-Act-Observe loop. The agent first reasons about the current situation (Thought), then 

decides on and carries out a suitable action (Action), and finally receives feedback from the 

environment (Observation) to guide the subsequent reasoning step. This integrated method 

of action and reasoning makes it possible for agents to do multi-step tasks more efficiently.  

Figure 2-2 Basic components of Agent-based model 

Figure 2-3 ReAct framework (edited by the author based on [45]) 
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Another important framework is Generative Agents, proposed by [49]. This architecture is 

designed to generate realistic behaviors by simulating human cognitive processes. This 

process includes three core modules: memory retrieval, reflection and planning. 

These three modules work together to produce a closed-loop system. In this system, actions 

create new memories that impact future reflection and planning in turn. Notably, this 

architecture has been used to create a virtual village with 25 agents that displayed social 

behaviors similar to those of humans. 

[70] also proposed a unified framework built upon existing research to further enhance the 

capability of LLMs as agents in their systematic literature review. There are four main 

modules in this framework: 

 

Figure 2-4 Generative agents framework (edited by the author, based on [49]) 

1) Retrieve: This module stores and retrieves the agent's experiences. It filters memories based on 

relevance, recency, and importance. 

2) Reflect: This module synthesizes memories into higher-level reasoning. It helps the agent develop an 

understanding of itself and others. 

3) Plan: This module creates tangible action plans based on these insights and the existing environment. 

Figure 2-5 A unified LLM-based agent proposed by [70] (edited by the author) 

1) Profile: This module determines the role of the agent and provides contextual guidance to 

other modules.. 

2) Memory: This module gives the agent the ability to remember previous actions and sense a 

changing environment. 

3) Planning: This module aids in creating action plans for the future based on historical data and 

the present situation. 

4) Action: This module is responsible for converting the agent's choices into tangible results. 
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Dynamic interactions exist between these modules. The Profile Module shapes the Action 

Module, and the Memory and Planning Modules are influenced by the Profile Module. This 

interconnectedness creates a cohesive and flexible agent framework. With this framework, 

LLM-based agents can acquire autonomous learning and evolutionary skills. 

Similarly, [71] proposed another general architecture, consisting of three core components 

(see Figure 2-6). This structure enables agents to better perceive their surroundings, make 

informed decisions, and effectively execute tasks, making it applicable across various real-

world scenarios. 

 

Although different architectures may vary in implementation and organization, several core 

modules are essential for building a well-functioning and highly capable LLM-based agent. 

These include:  

(1) Profile Module 

As the fundamental component of an LLM-based agent, the Profile Module is responsible for 

establishing and preserving its essential identification and traits. This module establishes 

important traits such as identity, personality, cognitive abilities, goals, and behavioral norms. 

Typical examples of these attributes include age, gender, occupation, psychological traits, 

and social network [49], [65]. These characteristic definitions form the agent's persona and 

serve as an important reference for other modules. By providing contextual support for other 

modules, it ensures behavioral consistency and predictability [72]. There are several 

approaches for generating these profiles, including manual configuration, LLM-based 

Figure 2-6 A unified LLM-based agent proposed by [71] (edited by the author) 

1) Brain: This is the central component of the agent. It is powered by an LLM and is responsible for 

information processing, memory storage, thinking, planning, and decision-making. 

2) Perception: This component enables a more thorough comprehension of the surroundings by 

extending the agent's sensory capacities beyond text to multimodal information, such as vision, 

sound, and touch. 

3) Action: This component uses tools or specific acts to engage with and impact the outside world. 
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generation, and dataset alignment methods [70]. 

(2) Memory Module 

An agent's ability to store, manage, and retrieve information from its surroundings depends 

heavily on the Memory Module. It enables the agent to remember prior experiences and 

apply them to future decision-making. According to [70], memory of LLM-based agents is 

often divided into two types: One is short-term memory. It mainly achieved by in-context 

learning. It stores immediate, task-relevant knowledge for a brief period within the agent's 

context window. However, context length restrictions are an inherent shortcoming of this 

approach. Another type is long-term memory, which provides the ability to efficiently 

retrieve past events and experiences as needed. It is usually stored in external vector 

databases. The integration of both types greatly improves the agent's capacity to participate 

in long-term reasoning and experience accumulation [73].  

Memory retrieval can be optimized by some automated memory assessment procedures. For 

example, [49]introduces three important criteria to prioritize memory retrieval in their agent 

simulation: the memory's temporal proximity to the present circumstance (Recency), how 

important the memory is to the agent's goals (Importance) ,and the extent to which the 

memory relates to the current task (Relevance). This structured retrieval mechanism enables 

agents to effectively reuse past experiences, refine their problem-solving strategies, and 

adapt to new scenarios. 

(3) Reasoning and Planning Module 

The reasoning and planning module is the decision-making center of the agent system and 

handles sophisticated cognitive processing. This module first analyzes and reasons about the 

present state of affairs (e.g., the Thought phase in the ReAct framework), and then creates 

thorough task execution plans [45]. The module can dynamically modify planning in 

response to contextual changes and carry out high-level reflection based on memory (like 

the Reflection phase in Generative Agents) [49]. Furthermore, this module can decompose 

jobs into smaller, more manageable tasks, which increases the agent's effectiveness in 

solving complex issues. The chain-of-thought and the tree-of-thought we have mentioned 

above are examples of typical reasoning and planning procedures [50], [51]. 

Additionally, to improve the agent's capacity for planning and reasoning for certain tasks, 

there are common methods. For example, fine-tuning is to adjust model parameters by 

training on a specific task dataset. The handiest method is prompt engineering. And some 

apply mechanism engineering, which means introducing additional specialized modules [70]. 
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(4) Action module:  

The action module is the execution unit of the agent system. It usually collaborates closely 

with the memory and planning modules and uses a clearly defined action space to translate 

the language model's output into executable actions. Task completion, exploration, and 

engagement are typical action objectives [70].  

In terms of task execution, LLMs are now capable of text output in multilingual environments 

[74]. Additionally, by integrating tool-use capabilities, this module can call a variety of other 

tools and APIs flexibly [44], [57]. This module also facilitates communication and 

collaboration among agents, establishing suitable social behaviors based on environmental 

awareness and information collection [47], [62], [65]. 

In addition to these four fundamental modules, LLM-based agents provide a significant 

architectural flexibility. This enables the development of more specialized modules to satisfy 

particular task needs. This modular extensibility, combined with their advanced reasoning 

and decision-making abilities, enables them to overcome some limitations of traditional 

ABM. This opens up new possibilities for studying and simulating complex systems by 

enabling them to interact with their surroundings and adapt to different conditions more 

skillfully. 

2.3 Summary and Conceptual Framework 

The above literature review examines the theoretical foundations, current research state, 

and methodological limitations in household PV adoption research. It highlights the necessity 

of integrating multiple theories and overcoming existing limits in modeling complex decision-

making processes and multidimensional interactions. Additionally, this review explores the 

potential and implementation of LLM-based agents as decision simulators.  

       
      

      
      

               
      

      
      

Decision

Decision
Processes
/reasons

Technology 
Attributes

Input

LLM-based agent

Output

External 
Context

Personal Beliefs 
and Intentions

Household 
Characteristics

Figure 2-7 Conceptual Framework 



30 

 

Given that the main purpose of this paper is to explore the application of LLM-based agents 

in simulating household solar energy decisions, this paper will use the unified LLM agent 

framework mentioned above as the main theoretical framework. The goal is to explore new 

insights for promoting just adoption that this methodological innovation might bring. 

This approach is supplemented by integrated decision-making theory, which provides a 

complementary theoretical perspective. It will guide the development of the input section, 

which will include household characteristics, personal beliefs, technical attributes, and other 

external context such as policy environment and peer effects. These inputs will provide the 

theoretical foundation for profile creation and reasoning logic. By doing this, we aim to 

ensure that the agent system acts as an interpretable decision-maker rather than a black-box 

predictor. 

 

Reference 
[1] S. R. Shakeel and A. Rajala, ‘Factors Influencing Households’ Intention to Adopt Solar 

PV: A Systematic Review’, in Advances in Human Factors, Business Management and 

Leadership, vol. 1209, J. I. Kantola, S. Nazir, and V. Salminen, Eds., in Advances in 

Intelligent Systems and Computing, vol. 1209. , Cham: Springer International 

Publishing, 2020, pp. 282–289. doi: 10.1007/978-3-030-50791-6_36. 

[2] D. G. Labay and T. C. Kinnear, ‘Exploring the Consumer Decision Process in the Adoption 

of Solar Energy Systems’, J CONSUM RES, vol. 8, no. 3, p. 271, Dec. 1981, doi: 

10.1086/208865. 

[3] S. W. Sawyer, ‘Leaders in change: Solar energy owners and the implications for future 

adoption rates’, Technological Forecasting and Social Change, vol. 21, no. 3, pp. 201–

211, Jun. 1982, doi: 10.1016/0040-1625(82)90050-6. 

[4] N. Li, T. Lv, X. Wang, X. Meng, J. Xu, and Y. Guo, ‘Research progress and hot topics of 

distributed photovoltaic: Bibliometric analysis and Latent Dirichlet Allocation model’, 

Energy and Buildings, vol. 327, p. 115056, Jan. 2025, doi: 

10.1016/j.enbuild.2024.115056. 

[5] M. Ashraf Fauzi, N. Hanis Zainal Abidin, N. Mohd Suki, and A. Mokhtar Albshir Budiea, 

‘Residential rooftop solar panel adoption behavior: Bibliometric analysis of the past 

and future trends’, Renewable Energy Focus, vol. 45, pp. 1–9, Jun. 2023, doi: 

10.1016/j.ref.2023.02.002. 

[6] E. Schulte, F. Scheller, D. Sloot, and T. Bruckner, ‘A meta-analysis of residential PV 

adoption: the important role of perceived benefits, intentions and antecedents in solar 

energy acceptance’, Energy Research & Social Science, vol. 84, p. 102339, Feb. 2022, 

doi: 10.1016/j.erss.2021.102339. 

[7] G. Konzen, R. Best, and N. J. De Castro, ‘The energy injustice of household solar energy: 

A systematic review of distributional disparities in residential rooftop solar adoption’, 



31 

 

Energy Research & Social Science, vol. 111, p. 103473, May 2024, doi: 

10.1016/j.erss.2024.103473. 

[8] M. Alipour, H. Salim, R. A. Stewart, and O. Sahin, ‘Residential solar photovoltaic 

adoption behaviour: End-to-end review of theories, methods and approaches’, 

Renewable Energy, vol. 170, pp. 471–486, Jun. 2021, doi: 

10.1016/j.renene.2021.01.128. 

[9] H. Lan, Z. Gou, and Y. Lu, ‘Machine learning approach to understand regional disparity 

of residential solar adoption in Australia’, Renewable and Sustainable Energy Reviews, 

vol. 136, p. 110458, Feb. 2021, doi: 10.1016/j.rser.2020.110458. 

[10] M. Alipour, H. Salim, R. A. Stewart, and O. Sahin, ‘Predictors, taxonomy of predictors, 

and correlations of predictors with the decision behaviour of residential solar 

photovoltaics adoption: A review’, Renewable and Sustainable Energy Reviews, vol. 

123, p. 109749, May 2020, doi: 10.1016/j.rser.2020.109749. 

[11] E. M. Rogers, Diffusion of innovations, 3rd ed. New York: Free press, 1983. 

[12] M. Graziano and K. Gillingham, ‘Spatial patterns of solar photovoltaic system adoption: 

The influence of neighbors and the built environment’, Journal of Economic Geography, 

vol. 15, no. 4, pp. 815–839, Jul. 2015, doi: 10.1093/jeg/lbu036. 

[13] K. K. Kapoor and Y. K. Dwivedi, ‘Sustainable consumption from the consumer’s 

perspective: Antecedents of solar innovation adoption’, Resources, Conservation and 

Recycling, vol. 152, p. 104501, Jan. 2020, doi: 10.1016/j.resconrec.2019.104501. 

[14] E. Ruokamo, M. Laukkanen, S. Karhinen, M. Kopsakangas-Savolainen, and R. Svento, 

‘Innovators, followers and laggards in home solar PV: Factors driving diffusion in 

Finland’, Energy Research & Social Science, vol. 102, p. 103183, Aug. 2023, doi: 

10.1016/j.erss.2023.103183. 

[15] S. Syed, A. Acquaye, M. M. Khalfan, T. Obuobisa-Darko, and F. A. Yamoah, ‘Decoding 

sustainable consumption behavior: A systematic review of theories and models and 

provision of a guidance framework’, Resources, Conservation & Recycling Advances, vol. 

23, p. 200232, Nov. 2024, doi: 10.1016/j.rcradv.2024.200232. 

[16] K. S. Wolske, P. C. Stern, and T. Dietz, ‘Explaining interest in adopting residential solar 

photovoltaic systems in the United States: Toward an integration of behavioral 

theories’, Energy Research & Social Science, vol. 25, pp. 134–151, Mar. 2017, doi: 

10.1016/j.erss.2016.12.023. 

[17] I. Ajzen, ‘The theory of planned behavior’, Organizational Behavior and Human 

Decision Processes, vol. 50, no. 2, pp. 179–211, Dec. 1991, doi: 10.1016/0749-

5978(91)90020-T. 

[18] C. W. Kraaijvanger, T. Verma, N. Doorn, and J. E. Goncalves, ‘Does the sun shine for all? 

Revealing socio-spatial inequalities in the transition to solar energy in The Hague, The 

Netherlands’, Energy Research & Social Science, vol. 104, p. 103245, Oct. 2023, doi: 

10.1016/j.erss.2023.103245. 

[19] T. Brosch, M. K. Patel, and D. Sander, ‘Affective Influences on Energy-Related Decisions 

and Behaviors’, Front. Energy Res., vol. 2, Mar. 2014, doi: 10.3389/fenrg.2014.00011. 

[20] E. Derkenbaeva, G. J. Hofstede, E. Van Leeuwen, and S. Halleck Vega, ‘Simulating 

households’ energy transition in Amsterdam: An agent-based modeling approach’, 



32 

 

Energy Conversion and Management, vol. 294, p. 117566, Oct. 2023, doi: 

10.1016/j.enconman.2023.117566. 

[21] P. C. Stern, T. Dietz, T. D. Abel, G. A. Guagnano, and L. Kalof, ‘A Value-Belief-Norm 

Theory of Support for Social Movements: The Case of Environmentalism’, Human 

Ecology Review, vol. 6, pp. 81–97, 1999. 

[22] W. Jager, ‘Stimulating the diffusion of photovoltaic systems: A behavioural perspective’, 

Energy Policy, vol. 34, no. 14, pp. 1935–1943, Sep. 2006, doi: 

10.1016/j.enpol.2004.12.022. 

[23] C. Schelly, ‘Residential solar electricity adoption: What motivates, and what matters? A 

case study of early adopters’, Energy Research & Social Science, vol. 2, pp. 183–191, 

Jun. 2014, doi: 10.1016/j.erss.2014.01.001. 

[24] K. S. Wolske, P. C. Stern, and T. Dietz, ‘Explaining interest in adopting residential solar 

photovoltaic systems in the United States: Toward an integration of behavioral 

theories’, Energy Research & Social Science, vol. 25, pp. 134–151, Mar. 2017, doi: 

10.1016/j.erss.2016.12.023. 

[25] J. Palm, ‘Household installation of solar panels – Motives and barriers in a 10-year 

perspective’, Energy Policy, vol. 113, pp. 1–8, Feb. 2018, doi: 

10.1016/j.enpol.2017.10.047. 

[26] M. Lee and T. Hong, ‘Hybrid agent-based modeling of rooftop solar photovoltaic 

adoption by integrating the geographic information system and data mining technique’, 

Energy Conversion and Management, vol. 183, pp. 266–279, Mar. 2019, doi: 

10.1016/j.enconman.2018.12.096. 

[27] V. Rai and A. D. Henry, ‘Agent-based modelling of consumer energy choices’, Nature 

Clim Change, vol. 6, no. 6, pp. 556–562, Jun. 2016, doi: 10.1038/nclimate2967. 

[28] S. Karjalainen and H. Ahvenniemi, ‘Pleasure is the profit - The adoption of solar PV 

systems by households in Finland’, Renewable Energy, vol. 133, pp. 44–52, Apr. 2019, 

doi: 10.1016/j.renene.2018.10.011. 

[29] C. Ebert and P. Louridas, ‘Generative AI for Software Practitioners’, IEEE Softw., vol. 40, 

no. 4, pp. 30–38, Jul. 2023, doi: 10.1109/MS.2023.3265877. 

[30] P. Gupta, B. Ding, C. Guan, and D. Ding, ‘Generative AI: A systematic review using topic 

modelling techniques’, Data and Information Management, vol. 8, no. 2, p. 100066, 

Jun. 2024, doi: 10.1016/j.dim.2024.100066. 

[31] A. Bandi, P. V. S. R. Adapa, and Y. E. V. P. K. Kuchi, ‘The Power of Generative AI: A Review 

of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges’, 

Future Internet, vol. 15, no. 8, p. 260, Jul. 2023, doi: 10.3390/fi15080260. 

[32] T. H. Son, Z. Weedon, T. Yigitcanlar, T. Sanchez, J. M. Corchado, and R. Mehmood, 

‘Algorithmic urban planning for smart and sustainable development: Systematic review 

of the literature’, Sustainable Cities and Society, vol. 94, p. 104562, Jul. 2023, doi: 

10.1016/j.scs.2023.104562. 

[33] T. W. Sanchez, X. Fu, T. Yigitcanlar, and X. Ye, ‘The Research Landscape of AI in Urban 

Planning: A Topic Analysis of the Literature with ChatGPT’, Urban Science, vol. 8, no. 4, 

p. 197, Nov. 2024, doi: 10.3390/urbansci8040197. 

[34] T. Yigitcanlar et al., ‘Artificial intelligence and the local government: A five-decade 



33 

 

scientometric analysis on the evolution, state-of-the-art, and emerging trends’, Cities, 

vol. 152, p. 105151, Sep. 2024, doi: 10.1016/j.cities.2024.105151. 

[35] H. Xu, F. Omitaomu, S. Sabri, S. Zlatanova, X. Li, and Y. Song, ‘Leveraging generative AI 

for urban digital twins: a scoping review on the autonomous generation of urban data, 

scenarios, designs, and 3D city models for smart city advancement’, Urban Info, vol. 3, 

no. 1, p. 29, Oct. 2024, doi: 10.1007/s44212-024-00060-w. 

[36] J. Du, X. Ye, P. Jankowski, T. W. Sanchez, and G. Mai, ‘Artificial intelligence enabled 

participatory planning: a review’, International Journal of Urban Sciences, vol. 28, no. 2, 

pp. 183–210, Apr. 2024, doi: 10.1080/12265934.2023.2262427. 

[37] T. Yigitcanlar, D. Agdas, and K. Degirmenci, ‘Artificial intelligence in local governments: 

perceptions of city managers on prospects, constraints and choices’, AI & Soc, vol. 38, 

no. 3, pp. 1135–1150, Jun. 2023, doi: 10.1007/s00146-022-01450-x. 

[38] J. R. Bellegarda, ‘Statistical language model adaptation: review and perspectives’, 

Speech Communication, vol. 42, no. 1, pp. 93–108, Jan. 2004, doi: 

10.1016/j.specom.2003.08.002. 

[39] G. Melis, C. Dyer, and P. Blunsom, ‘On the State of the Art of Evaluation in Neural 

Language Models’, 2017, arXiv. doi: 10.48550/ARXIV.1707.05589. 

[40] M. Shanahan, K. McDonell, and L. Reynolds, ‘Role play with large language models’, 

Nature, vol. 623, no. 7987, pp. 493–498, Nov. 2023, doi: 10.1038/s41586-023-06647-8. 

[41] W. X. Zhao et al., ‘A Survey of Large Language Models’, 2023, arXiv. doi: 

10.48550/ARXIV.2303.18223. 

[42] D. Arora, H. G. Singh, and Mausam, ‘Have LLMs Advanced Enough? A Challenging 

Problem Solving Benchmark For Large Language Models’, in The 2023 Conference on 

Empirical Methods in Natural Language Processing, 2023. [Online]. Available: 

https://openreview.net/forum?id=YHWXlESeS8 

[43] J. Huang and K. C.-C. Chang, ‘Towards Reasoning in Large Language Models: A Survey’, 

in Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada: 

Association for Computational Linguistics, 2023, pp. 1049–1065. doi: 

10.18653/v1/2023.findings-acl.67. 

[44] T. Schick et al., ‘Toolformer: Language Models Can Teach Themselves to Use Tools’, 

2023, arXiv. doi: 10.48550/ARXIV.2302.04761. 

[45] S. Yao et al., ‘ReAct: Synergizing Reasoning and Acting in Language Models’, arXiv 

preprint arXiv:2210.03629, 2022. 

[46] M. Wooldridge and N. R. Jennings, ‘Intelligent agents: theory and practice’, The 

Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152, Jun. 1995, doi: 

10.1017/S0269888900008122. 

[47] C. Gao et al., ‘Large language models empowered agent-based modeling and 

simulation: a survey and perspectives’, Humanit Soc Sci Commun, vol. 11, no. 1, p. 

1259, Sep. 2024, doi: 10.1057/s41599-024-03611-3. 

[48] C. M. Macal and M. J. North, ‘Tutorial on agent-based modeling and simulation’, in 

Proceedings of the Winter Simulation Conference, 2005., Orlando, FL. USA: IEEE, 2005, 

pp. 2–15. doi: 10.1109/WSC.2005.1574234. 

[49] J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein, ‘Generative 



34 

 

Agents: Interactive Simulacra of Human Behavior’, in Proceedings of the 36th Annual 

ACM Symposium on User Interface Software and Technology, San Francisco CA USA: 

ACM, Oct. 2023, pp. 1–22. doi: 10.1145/3586183.3606763. 

[50] J. Wei et al., ‘Chain-of-Thought Prompting Elicits Reasoning in Large Language Models’, 

2022, arXiv. doi: 10.48550/ARXIV.2201.11903. 

[51] S. Yao et al., ‘Tree of Thoughts: Deliberate Problem Solving with Large Language 

Models’, in Thirty-seventh Conference on Neural Information Processing Systems, 2023. 

[Online]. Available: https://openreview.net/forum?id=5Xc1ecxO1h 

[52] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, ‘Large Language Models are 

Zero-Shot Reasoners’, 2022, arXiv. doi: 10.48550/ARXIV.2205.11916. 

[53] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su, ‘LLM-Planner: Few-

Shot Grounded Planning for Embodied Agents with Large Language Models’, 2022, 

arXiv. doi: 10.48550/ARXIV.2212.04088. 

[54] J. Wei et al., ‘Finetuned Language Models Are Zero-Shot Learners’, 2021, arXiv. doi: 

10.48550/ARXIV.2109.01652. 

[55] G. V. Aher, R. I. Arriaga, and A. T. Kalai, ‘Using Large Language Models to Simulate 

Multiple Humans and Replicate Human Subject Studies’, in Proceedings of the 40th 

International Conference on Machine Learning, A. Krause, E. Brunskill, K. Cho, B. 

Engelhardt, S. Sabato, and J. Scarlett, Eds., in Proceedings of Machine Learning 

Research, vol. 202. PMLR, Jul. 2023, pp. 337–371. [Online]. Available: 

https://proceedings.mlr.press/v202/aher23a.html 

[56] Q. Dong et al., ‘A Survey on In-context Learning’, 2023, arXiv. doi: 

10.48550/ARXIV.2301.00234. 

[57] Y. Qin et al., ‘ELLE: Efficient Lifelong Pre-training for Emerging Data’, 2022, arXiv. doi: 

10.48550/ARXIV.2203.06311. 

[58] A. Bruzzone, A. Giovannetti, G. Genta, and D. Cefaliello, ‘Generative AI and Retrieval-

Augmented Generation (RAG) in an Agent-Based Simulation Framework for Urban 

Planning’, in Proceedings of the 23rd International Conference on Modelling and 

Applied Simulation, CAL-TEK srl, 2024. doi: 10.46354/i3m.2024.mas.021. 

[59] L. Wang et al., ‘User Behavior Simulation with Large Language Model based Agents’, 

2023, arXiv. doi: 10.48550/ARXIV.2306.02552. 

[60] X. Zhu et al., ‘Ghost in the Minecraft: Generally Capable Agents for Open-World 

Environments via Large Language Models with Text-based Knowledge and Memory’, 

2023, arXiv. doi: 10.48550/ARXIV.2305.17144. 

[61] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, ‘MiniGPT-4: Enhancing Vision-Language 

Understanding with Advanced Large Language Models’, in The Twelfth International 

Conference on Learning Representations, 2024. [Online]. Available: 

https://openreview.net/forum?id=1tZbq88f27 

[62] H. Li et al., ‘Theory of Mind for Multi-Agent Collaboration via Large Language Models’, 

in Proceedings of the 2023 Conference on Empirical Methods in Natural Language 

Processing, Singapore: Association for Computational Linguistics, 2023, pp. 180–192. 

doi: 10.18653/v1/2023.emnlp-main.13. 

[63] C. Gao et al., ‘S3: Social-network Simulation System with Large Language Model-



35 

 

Empowered Agents’, 2023, arXiv. doi: 10.48550/ARXIV.2307.14984. 

[64] G. Kovač, R. Portelas, P. F. Dominey, and P.-Y. Oudeyer, ‘The SocialAI School: Insights 

from Developmental Psychology Towards Artificial Socio-Cultural Agents’, 2023, arXiv. 

doi: 10.48550/ARXIV.2307.07871. 

[65] J. Zhang, X. Xu, N. Zhang, R. Liu, B. Hooi, and S. Deng, ‘Exploring Collaboration 

Mechanisms for LLM Agents: A Social Psychology View’, 2023, arXiv. doi: 

10.48550/ARXIV.2310.02124. 

[66] S. Hong et al., ‘MetaGPT: Meta Programming for A Multi-Agent Collaborative 

Framework’, 2023, arXiv. doi: 10.48550/ARXIV.2308.00352. 

[67] Q. Wu et al., ‘AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent 

Conversation’, 2023, arXiv. doi: 10.48550/ARXIV.2308.08155. 

[68] L. Y. Jiang et al., ‘Health system-scale language models are all-purpose prediction 

engines’, Nature, vol. 619, no. 7969, pp. 357–362, Jul. 2023, doi: 10.1038/s41586-023-

06160-y. 

[69] V. Sanh et al., ‘Multitask Prompted Training Enables Zero-Shot Task Generalization’, 

2021, arXiv. doi: 10.48550/ARXIV.2110.08207. 

[70] L. Wang et al., ‘A survey on large language model based autonomous agents’, Front. 

Comput. Sci., vol. 18, no. 6, p. 186345, Dec. 2024, doi: 10.1007/s11704-024-40231-1. 

[71] Z. Xi et al., ‘The Rise and Potential of Large Language Model Based Agents: A Survey’, 

2023, arXiv. doi: 10.48550/ARXIV.2309.07864. 

[72] G. Serapio-García et al., ‘Personality Traits in Large Language Models’, 2023, arXiv. doi: 

10.48550/ARXIV.2307.00184. 

[73] Z. Huang, S. Gutierrez, H. Kamana, and S. MacNeil, ‘Memory Sandbox: Transparent and 

Interactive Memory Management for Conversational Agents’, 2023, arXiv. doi: 

10.48550/ARXIV.2308.01542. 

[74] K. Ahuja et al., ‘MEGA: Multilingual Evaluation of Generative AI’, 2023, arXiv. doi: 

10.48550/ARXIV.2303.12528. 

 



36 

 

Chapter 3 Methodology 
This chapter introduces the research methods used to answer the three sub-research 

questions outlined earlier. These questions build upon each other progressively and each of 

them is associated with a particular analytical phase. Each phase includes specific data 

sources and analytical methods. This creates a mixed-methods approach that combines 

literature review, data analysis and LLM technology. The goal is to examine household solar 

panel adoption decisions from multiple perspectives. 

3.1 Research Design 

3.1.1 Phase One 

In the preparatory phase, we conduct a literature review to answer the first research 

question by identifying key factors that influence urban residents' adoption of residential 

solar PV systems. We use Scopus as the primary search database, combining solar 

technology terms (e.g. Solar, PV, photovoltaic) with household-related terms (e.g. house, 

home, residential, dwelling) to examine relevant studies published between 2015 and 2023. 

We also employ multiple supplementary strategies to ensure more comprehensive literature 

coverage. These include expanding relevant literature through citation tracking, filling gaps 

by referencing existing review studies (such as [1]), and examining recent work by key 

researchers in this area. 

Based on the research objectives, the inclusion criteria for the literature are defined by four 

key dimensions: 

1) Technical focus: The study must involve rooftop solar or residential PV systems. 

2) Behavioral perspective: The study must be related to adoption behavior, decision-

making, or diffusion mechanisms. 

3) Target subjects: The unit of analysis must be households, residential users, or 

neighborhoods. 

4) Spatial scope: The study must be set in an urban context. 

Additionally, we exclude certain types of studies: 1) research that treated specific factors (like 

peer influence or policy interventions) as the main dependent variable instead of 

explanatory factors; 2) studies that only examined specific local policy effects; 3) research 

focused on rural or remote areas; 4) purely technical or engineering studies. 
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After screening and verification, we finally include 65 empirical research articles. To ensure 

data consistency and comparability, we only retain explanatory variables that showed 

statistically significant effects in the studies. We organize these variables according to their 

directional relationship with adoption outcomes (positive, negative, or mixed). The factors 

are further classified using the four-dimensional theoretical framework proposed in Chapter 

2. Detailed analysis and summary are presented in Chapter 4. 

3.1.2 Phase Two 

To answer the second research question, we focus on the development of an LLM-based 

agent model to simulate household solar adoption decisions in phase two. This phase 

includes the following key components: 

1) Constructing basic attributes of individual agents: Based on real-world survey data, each 

household sample contains multiple structured information elements (such as income, 

housing type, energy bills). These factors are converted into natural language format as 

inputs for subsequent reasoning.  

2) Building external environment information: We also collect relevant policy documents 

and programs about household solar adoption in Amsterdam. This provides context for 

specific case analysis and a more comprehensive understanding of external social 

conditions. 

3) Neighborhood structure and temporal dynamics modeling: Beyond static adoption 

simulation, we add neighborhood network and yearly evolution mechanisms. This 

contributes to a multi-round simulation that shows how solar adoption spreads through 

neighborhoods. 

4) Prompt template design and LLM integration: Using key factors from behavioral theory 

and research, we create well-structured prompt templates and configure optimal LLM 

parameters (such as temperature) to balance output diversity and consistency. The 

prompt guides the LLM to play as a household and make adoption decisions. 

5) Validation and iterative optimization: Two external researchers are invited to manually 

review the model's decisions and reasoning to check if they logically make sense and 

show realistic variety. We further compare model outputs with real adoption data at the 

aggregate level to verify their reasonableness at the macro level. 

Our method combines theoretical factors, real data, and LLM reasoning abilities to simulate 

complex social behaviors without supervised training. We develop the model in two steps: 

first building basic modules and prompts on static datasets, then expanding to multi-year, 

multi-agent models with neighborhood networks after validation. Chapter 5 will present the 

detailed implementation processes and validation results.  
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We implement the system using Python programming. For the LLM component, we select 

the "gpt-4o-mini" model to balance cost and performance considerations. Data security 

remains a priority throughout this process. To protect privacy, we remove identifying 

information from all data before using LLM APIs. 

3.1.3 Phase Three 

In this phase, we analyze the results from our LLM-based agent model over multiple years. 

This includes both adoption decisions and the reasoning behind them. We identify adoption 

trends as well as key barriers and motives to answer the third sub-research question.  

We conduct the analysis in two parts. First, we analyze households' “yes (adopt)” or “no (not 

adopt)” decisions using adoption rates as indicators of group patterns. We examine adoption 

rates and growth trends across different years, while conducting comparative analysis based 

on various socioeconomic attributes, neighborhoods, and adopter versus non-adopter 

groups. 

Second, we analyze the "reasoning" text that the model generates for each household each 

year. We use open coding and thematic analysis to identify the main decision factors behind 

adoption and rejection. These factors are further organized using the framework from Phase 

One. We calculate absolute and relative frequencies for each factor mentioned in the 

reasoning. The latter one is particularly important when different analysis groups contain 

varying sample sizes. We combine spatial, temporal, and household characteristics (such as 

income and housing type) to understand how different groups show different adoption 

patterns and trends over time. 

Through these methods, this phase uses model agent behavior as the analysis object. This 

approach explores how individual decision-making connects with broader adoption trends. It 

provides theoretical support for identifying key adoption barriers and policy intervention 

potential. 

3.2 Data 

This study involves data from the following sources: 

Table 3-1 Data category and source 

Category Year Data type Detail level Source 

Synthetic 

population of 

households in 

Amsterdam 

2021 Synthetic data Household-level Derkenbaeva, Erkinai, 2023, 

"Synthetic population of 

households in 

Amsterdam", https://doi.org/10.1

https://doi.org/10.17026/SS/LUV9KW
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7026/SS/LUV9KW, DANS Data 

Station Social Sciences and 

Humanities, V1 

WoON Dutch 

(Woononderzoe

k Nederland) 

2021 Survey data Household-level Ministerie van Binnenlandse Zaken 

en Koninkrijksrelaties (BZK) and 

Centraal Bureau voor de Statistiek 

(CBS), ‘Woononderzoek 

Nederland 2021 - 

woningmarktmodule- release 1.0’. 

DANS Data Station Social Sciences 

and Humanities, 2022. doi: 

10.17026/dans-xaa-mrra. 

Census 

information 

(Basisbestand 

Gebieden 

Amsterdam 

(BBGA) ) 

2021,

2024 

Statistical data Neighborhood-

level 

Gemeente Amsterdam, 

“Basisbestand Gebieden 

Amsterdam (BBGA),” Onderzoek, 

Informatie en Statistiek (OIS), 

Accessed: Jun. 23, 2025. [Online]. 

Available: 

https://onderzoek.amsterdam.nl/d

ataset/basisbestand-gebieden-

amsterdam-bbga 

Basisregistratie 

Adressen en 

Gebouwen 

(BAG) data 

2024 Spatial data - Kadaster, “Basisregistratie 

Adressen en Gebouwen (BAG),” 

Accessed: Jul. 17, 2023. [Online]. 

Available: 

https://bag.basisregistraties.overh

eid.nl/ 

Rooftop solar 

PV installation 

(Zonnepanelen 

- toename van 

aantal en 

vermogen) 

2021,

2024 

Spatial data - Gemeente Amsterdam, 

“Zonnepanelenkaart Amsterdam,” 

Accessed: Jun. 23, 2025. [Online]. 

Available: 

https://maps.amsterdam.nl/zonne

panelen/ 

 

To overcome the limitations of small-sample household-level data, this study uses spatial 

microsimulation techniques [2] to generate a synthetic household population at the 

neighborhood (wijk) level. We follow a similar approach to [3], who applied Iterative 

Proportional Fitting (IPF) to generate synthetic data at the district level. In this study, we 

implement this method at a more detailed geographical level (wijk level) which enables a 

more thorough analysis of household data throughout Amsterdam. 

The synthetic population is constructed by merging microdata from the WoON 2021 survey 

https://doi.org/10.17026/SS/LUV9KW
https://onderzoek.amsterdam.nl/dataset/basisbestand-gebieden-amsterdam-bbga
https://onderzoek.amsterdam.nl/dataset/basisbestand-gebieden-amsterdam-bbga
https://onderzoek.amsterdam.nl/dataset/basisbestand-gebieden-amsterdam-bbga
https://bag.basisregistraties.overheid.nl/
https://bag.basisregistraties.overheid.nl/
https://maps.amsterdam.nl/zonnepanelen/
https://maps.amsterdam.nl/zonnepanelen/
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with marginal distributions from the Dutch Census and the BAG database. Both databases 

are publicly available. The main constraints include household composition, income level, 

area of dwelling livable space, and home ownership. The IPF approach repeatedly adjusts the 

starting sample weights to meet the constraints in each neighborhood. After IPF adjustment, 

we convert the continuous weights to integers to create a realistic, discrete synthetic 

population. 

We validate our results by comparing the synthetic population distributions to the original 

constraints. We use Pearson's correlation coefficient and relative error (RE) as validation 

metrics. Results show that the synthetic population is appropriate for geographic analysis 

and highly consistent across all neighborhood areas. 

Table 3-2 Summary of validation metrics for synthetic population across all zones 

Constraint Type Mean Pearson's r Mean Pearson's p * Mean RE 

Household 

composition 

0.999 2.61E-06 2.1% 

House area 0.999 4.48E-06 1.2% 

Income 0.998 2.09E-05 0.7% 

Ownership 1.000 1.00E+00 0.4% 

* All p-values are highly significant (< 0.001) 

We use data in two phases during model development. The first phase focuses on static 

analysis and basic model setup, so we directly use WoON 2021 survey data to establish 

household characteristics and test initial decision simulations. The second phase uses the 

synthetic household dataset created through spatial microsimulation to support dynamic and 

network simulations at the neighborhood level. This dataset keeps the original population 

patterns while being scalable, allowing our model to run consistent simulations across 

different areas. 

Additionally, we also include multiple macro-level background information to support 

external environment modeling in dynamic simulations. These include solar installation 

costs, electricity price, and national and local incentive policies (such as subsidy programs 

and regulatory adjustments). These data sources primarily include Statistics Netherlands 

(CBS), Milieucentraal.nl, and policy documents published by the Amsterdam municipal 

government. Detailed data information is provided in Appendix A. 

3.3 Acknowledgement of AI Use  

Generative AI is an essential part of the technique and the research itself since this study 

focuses on investigating and deploying LLM-based agents for decision simulation in solar 
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adoption research. Additionally, generative AI will be only used for spell-checking, grammar 

correction, and code review. All AI applications in this study adhere to Wageningen 

University's guidelines on the Use of Generative Artificial Intelligence. The detailed 

statement with examples can be found in Appendix E. 
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Chapter 4 Factors influencing 

household solar PV adoption 
 

As Li [1] pointed out, research on distributed PV system has become increasingly active since 

2015, with technical-economic analysis and application decision analysis being the most 

prominent research areas. Although numerous studies and review articles have focused on 

factors influencing household-level decision-making, existing surveys have limitations. Most 

surveys concentrate on specific dimensions or limit their attention to other factors by 

starting from particular theoretical frameworks. 

For example, Alipour et al. [2] review over 170 studies focusing on residential solar adoption 

behavior and identified more than 330 predictor variables. These variables are categorized 

into three dimensions: personal (attitudes), social, and informational (knowledge). This 

comprises 20 categories as shown in Figure 4-1 below. However, these variables only focus 

on internal factors related to personal attitudes and conditions while neglecting the impacts 

of external environmental changes.  

Similarly, other studies have focused on narrow aspects. Ghosh and Satya Prasad [3] 

primarily focused on the influence of environmental awareness and knowledge; Konzen et al. 

[4] summarized the relationship between PV adoption and income/wealth; and Ashraf Fauzi 

et al. [5] mainly reviewed factors related to solar system performance based on Rogers' 

Diffusion of Innovations Theory. 

This lack of systematic understanding of influencing factors presents the first challenge we 

face in building an LLM-based agent. Therefore, we conducted a review analysis of factors 

affecting household photovoltaic adoption decisions. This chapter presents the results of this 

analysis. It answers our first research question: What (internal and external) factors influence 

household decisions to adopt solar PV systems? 
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Figure 4-1 Alipour et al.'s predictors of rooftop solar PV adoption behavior by household, which only focus on internal factors. (source: [2]) 
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4.1 Overview 

This analysis includes 65 empirical papers published between 2015 and 2023 (see Appendix 

B). These papers examine various factors impacting residential rooftop solar system adoption 

decisions in urban areas. The selection process can be found in Chapter 3. 

The included literature primarily focuses on developed countries such as the United States 

and Europe, with a smaller portion covering developing countries including China, India, and 

Pakistan. These studies span analysis at national, regional, and specific city levels, with 

analytical units generally classified into four categories: Individual/Household level, 

Neighborhood/Postcode level, Census tract level, and County level. Despite differences in 

specific categorization among nations, they can typically be grouped using this hierarchical 

structure in Figure 4-2. 

We conduct an analysis of the factors influencing household rooftop solar PV adoption 

mentioned in the literature above. We include only statistically significant factors, 

categorizing them according to their relationship with solar adoption as positively correlated, 

negatively correlated, or having mixed relationships (such as U-shaped relationships). 

Initial synthesis reveals that despite differences in geographical scope, data sources, and 

research methodologies across studies, certain influencing factors demonstrate consistent 

statistical significance in most research. For example, financial variables related to installing 

household solar systems (such as initial installation costs [6], [7], [8], [9], [10], [11], [12], [13], 

[14], [15], [16], [17], [18], [19] show strong effects. External contexts represented by policy 

incentives [6], [8], [9], [20], [21], [22], [23] and peer effects [9], [10], [20], [21], [24], [25], 

[26], [27] also demonstrate significant influence. Additionally, household and individual 

economic conditions [9], [11], [16], [17], [18], [22], [23] have been frequently confirmed in 

National

Regional

City

County level

Census tract 
level

Neighborhood / 
Postcode level

Individual / 
Household level

Scope Analytical units 

Figure 4-2 Research scope and analytical units 
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multiple studies to have significant impacts on solar adoption behavior.  

Meanwhile, we also observe that studies at different analytical units show certain differences 

in variable selection and significance. Individual-level studies [9], [19], [28] more commonly 

focus on beliefs, attitudes, and income among other micro-characteristics, while regional-

level studies [24], [29], [30] tend to emphasize the importance of external variables such as 

solar radiation resources and policy environments. 

To further clarify the manifestation paths and interrelationships of these factors across 

different studies, we have categorized the variables influencing household solar system 

adoption into four dimensions based on the conceptual framework proposed in Chapter 2. 

The four dimensions are: Technology Attributes (characteristics of the technology itself, such 

as installation costs and efficiency), Household/Individual Characteristics (objective features 

at the individual level, such as household income, education level, and home ownership), 

Personal Beliefs and Intentions (individual attitudes toward the technology, values, and 

behavioral motivations), and External Context (external institutional and social conditions 

including physical environment, policy environment, and social networks). The following 

sections will systematically review each category of factors according to this classification 

framework. We will incorporate the tallying results of variables across different analytical 

levels. 

4.2 Key Factors per dimension 

4.2.1 Technology Attributes 

According to existing literature, the technological attributes influencing household rooftop 

solar system adoption can be broadly categorized into four aspects. These are cost, benefits, 

technical functionality and performance, and user experience and perception, as shown in 

Table 4-1 below.



46 

 

Table 4-1 Technology Attributes Factors 

Category Factors Descriptive variables Positive relationship Negative relationship Mixed relationship 

Cost Cost Initial cost/Investment/Price  [6], [7], [8], [9], [10], [11], 

[12], [13], [14], [15], [16], 

[17], [18], [19], [31], [32] 

 

Affordability Affordability [9], [23], [26]   

Payback period Expected payback period/pay-back time  [9], [16], [22], [33]  

Offer Received an offer too good to refuse [34]   

Benefits Economic benefits Expected financial returns / Return on the 

investment 

[12], [26], [35], [36]   

Environmental 

benefits 

Environmental benefits [13], [22], [35]   

General benefits Relative advantage / expected benefits / 

perceived personal benefits 

[8], [37], [38]   

Functionality and 

Performance 

Efficiency Efficiency [11]   

Installation Ease of installation/Installation quality [39]   

Maintenance Maintenance / Concerns about operations and 

maintenance 

 [12], [32], [40]  

Difficulty of using Difficulty of using all applications at the same 

time/Difficulty of using 

 [13]  

Visual influence Visual representation - [11]  

User Experience 

and Perception 

Trialability Trialability [16], [37]   

Efforts Efforts - [10]  

Risks Risks - [10]  
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Cost is one of the most critical factors influencing household PV system adoption behavior. 

Related variables frequently appear in the literature as “initial cost,” “investment,” 

“installation price,” “affordability.” Some studies use “expected payback period” or “payback 

time” as indirect measurements of cost. These variables collectively reflect the economic 

burden faced by users during the installation phase. Almost all studies involving these 

variables have found a significant negative correlation between cost and PV adoption. This 

means that higher costs and longer payback periods reduce users’ willingness to adopt. On 

the other hand, Bondio et al. ’s result [34] shows that an “irresistible price offer” had the 

strongest positive influence on people’s adoption decisions. 

In contrast to cost, studies investigating users’ subjective expectations of potential economic 

returns from PV systems generally found positive correlations. Some literature also uses 

“perceived personal benefits” or “relative advantage” as a more comprehensive description. 

A few studies further incorporate environmental benefits into the scope of returns. Although 

their impact is less important compared to financial returns, they still act as a positive push 

in samples with stronger environmental awareness. 

The third group of factors focuses on the technical performance of the PV system during use. 

High efficiency is typically considered to provide faster payback, thus positively correlating 

with adoption. System maintenance and operational burden are also important influencing 

factors. Concerns about these issues and repair needs negatively impact adoption [12]. 

Furthermore, some studies have examined installation and usage difficulties [13]. If users 

perceive system installation as challenging or difficult to coordinate with existing facilities, 

their willingness to adopt may decrease.  

Users' perception of PV system’s attributes also impacts their desire to adopt. One key aspect 

is trialability, which allows users to assess system performance before installation. This 

reduces users’ uncertainty and thereby favorably influencing adoption behavior [16], [37]. 

This aligns with relevant propositions in Diffusion of Innovations Theory [41]. 

4.2.2 Individual and Household Characteristics 

Characteristics at the individual and household levels have been widely employed as 

variables in previous studies. These are significant factors that impact adoption decisions. 

These are further divided into several categories, as indicated in Table 4-2 below. 
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Table 4-2 Individual and Household Characteristics Factors 

Category Factors Descriptive variables Positive relationship Negative relationship Mixed relationship 

Demographic 

Characteristics 

Age Age 

[11], [22], [32], [34], [42], [43], [44], [45] [9], [10], [17], [18], 

[28], [29], [37], [46], 

[47], [48], [49] 

[16], [50] 

Gender Gender (male) [18], [32], [37], [42], [49], [51], [52], [53] [28], [50]  

Marital status Marital status   [50]  

Education 
Education 

[11], [16], [17], [22], [25], [27], [28], [30], [35], [36], [38], 

[44], [45], [48], [50], [51], [53], [54], [55], [56], [57] 

[31], [32], [43]  

Literate [49]   

Ethnicity 

Ethnicity/ Race / Immigration 

(foreigner/black/non-

white/minorities) 

 

[31], [42], [49], [56], 

[57], [58] 

 

Language 

Linguistic isolation  [55]  

Language proficiency [56]   

Native language [59]   

Household structure 
Household size [27], [28], [42], [43], [45], [50], [58], [60], [61] [11], [25]  

Number of children [18], [51] [61]  

Economic & 

Financial Status 
Income & Wealth 

Income 

[9], [11], [16], [17], [18], [22], [23], [24], [25], [27], [30], 

[31], [36], [38], [42], [46], [48], [49], [55], [56], [57], [60], 

[62], [63] 

[34], [35], [45], [50]  

Savings [7], [9], [52]   

Wealth [29], [42], [44], [51], [52], [61]   

Private pensions  [61]   

Poverty [57] [55]  
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Economic comfort [53]   

Credit and Burden 

Housing burden  [55]  

Mortgages [61]   

Financial stability [21]   

Number of credit cards [61]   

Employment 

Percentage of population 

receiving income 

[60]   

Number of employed persons  [61]  

Unemployment  [36], [64]  

Retirement [34], [54]   

Employment type (public 

sector) 
[42] 

  

Housing 

Characteristics 

Ownership 
Home ownership 

[9], [11], [24], [25], [28], [31], [42], [43], [46], [50], [53], 

[57], [58], [59], [60], [61] 

  

Renter rate  [64]  

Type 

Housing type (detached 

house/single-family units) 
[11], [25], [31], [50], [57], [58], [60] 

  

Housing type 

(apartment/high-rise) 
 

[9], [18], [42], [43], 

[59], [61], [63] 

 

Housing storey [54]   

Size 

Housing area [23], [27], [32], [42], [43], [53], [54]   

Total building footprint [45]   

Number of bathrooms [34], [49]   

Number of bedrooms [61]   

Number of housing units  [28], [49]  
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Rooftop 

Roof quality [42]   

Roof space [46], [49]   

Rooftop potential [56]   

Value 

Home value [23], [29], [42], [56], [57], [58], [59], [62], [65]   

Land value  [33]  

Property value [60]   

Age 

House age [56] 
[32], [42], [53], [58], 

[60] 

 

Years of living in current 

house 
 

[61]  

Quality 

Housing quality [54]   

Energy efficiency status of the 

house (double glazing) 

[42]   

Energy efficiency status of the 

house (roof insulation) 
 

[42]  

Energy 

consumption 

Pattern 

Energy consumption 

Electricity consumption [30], [61], [62] [60]  

Household energy 

consumption 

[38]   

Future plan 
Expected living time Expected living time [27]   

Retirement planning Retirement planning [12], [27]   
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Demographic characteristics are frequently used as critical control variables in research. 

Among these, age and education are the most commonly discussed variables. 

While several studies reveal statistically significant connections between age and solar 

energy adoption, there is little agreement on the direction of this relationship. Positive and 

negative correlations are found in nearly equal measures. Additionally, some studies [16], 

[50] have identified U-shaped or inverted U-shaped relationships between age and adoption 

probability, implying that middle-aged people are more or less likely to adopt than any other 

group. As a result, it is difficult to conclude a solid link between age and adoption 

preferences, especially when other characteristics are taken into account. 

In contrast, most studies have found a positive influence of education level on adoption 

decisions. Only a few studies indicate a negative relationship. One possible explanation for 

these negative findings is that neighborhoods with a higher percentage of university or 

higher-educated populations frequently have more institutional buildings and apartments 

[62]. They are primarily occupied by students or temporary researchers who are unlikely to 

adopt solar energy systems. 

Household structure and size are also seen to be crucial components in decision-making. 

Bigger family sizes often indicate a higher possibility of adoption, potentially due to higher 

power use. Furthermore, multiple studies have identified correlations between male gender 

and adoption tendencies [37], [42], [51], as well as the disadvantaged position of racial 

minority groups in solar energy adoption [42], [49], [56]. 

Economic and Financial Status is another widely studied cluster of variables. The majority of 

studies show substantial positive relationships between income and adoption rates. 

However, a few studies [61] show that wealth explains a household's economic capability 

better than income. These findings are relevant to the comparatively high investment costs 

associated with residential solar PV installations [23]. 

Ownership is seen as the most influential housing characteristic, as tenants often lack 

decision-making capacity [29]. Furthermore, housing type has a significant impact on 

adoption. Single-family or detached homes often having suitable roof conditions for solar 

installation, as opposed to multi-story residences and flats [60]. Other noteworthy 

contributing factors are housing value and housing age, both of which may be explained in 

terms of homeowners' willingness to invest [42]. Some studies [59] also use house value as 

an indicator of household economic status. 

Considerations such as energy consumption and future residential or retirement plans have 

also been shown to influence the decision-making process for residential solar PV 

installations. 
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4.2.3 Personal Beliefs and Intentions 

Beyond household characteristics and settings, human attitudes and motivations have a 

significant effect on solar adoption decisions. This is evidenced by theories like Theory of 

Planned Behavior (TPB) [66] and the Value-Belief-Norm Theory (VBN) [67]. These factors are 

shown in Table 4-3. 

An individual's knowledge influences their decision-making. This includes an understanding 

of solar PV panels, awareness of environmental changes, and familiarity with related 

legislation, subsidies, and costs. According to research [15], [26], [47], [68] higher levels of 

knowledge are associated with an increased chance of adoption. 

Environmental awareness is considered an important facilitating factor, particularly among 

early adopters when PV systems were more expensive [39]. Additionally, attitudes toward 

technology and political beliefs impact adoption: individuals and households who are more 

accepting of new technologies, lean politically left, and support government and solar energy 

organizations are more likely to use residential solar PV technology [45], [52], [69]. 

Motivation is a significant facilitator. Economic benefits, incentives, and reaching energy self-

sufficiency being the most important drivers for many users [9], [10], [12], [39]. Other 

motivators include intentions to improve housing systems [68], investment reasons [32], and 

pressure from societal standards [11]. Notably, the time and habits of the decision-making 

process both impact choice results [11]. 
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Table 4-3 Personal Beliefs and Intentions Factors 

Category Factors Descriptive variables Positive relationship Negative relationship Mixed relationship 

Knowledge Objective 

Knowledge 

Environmental knowledge / Knowledge of technology / 

Knowledge and information about green energy / Knowledge of 

renewable energies and its outcome / Knowledge of grants and 

costs / Knowledge about PV policy / Factual knowledge / Expert 

[15], [17], [26], [28], [39], 

[40], [48], [68], [70] 

[32], [47]  

Perceived 

Knowledge 

Aware of the possibility / Knowledgeable or confident with solar 

/ Subjective knowledge 

[19], [47]   

Uncertainty of the suitability  [19]  

Environmental 

Values 

Environmental 

Concern and 

Awareness 

Climate change concerns / Ecological attitude / Environmental 

awareness / Environmental responsibility / Environmental 

attitude / Pro-environmental attitudes / Sustainable minded 

[11], [16], [19], [21], [24], 

[28], [29], [32], [36], [40], 

[42], [48], [70] 

  

Pro-

Environmental 

Behavior 

Sustainable activity / Green activities (recycling regularly) / 

Ecological lifestyle 

[29], [48], [69]   

Technology 

Attitudes 

Openness to 

Innovation 

Interest in technology / Interest in testing / Novelty seeking / 

Innovativeness / Motivations to use a green technology 

[16], [19], [28], [32], [35], 

[69], [71] 

  

Attitudes Toward 

Solar PV 

Technology 

Attitude toward rooftop PV installation / Opinion on visual appeal 

of solar panels /  

[52], [69]   

Concerns about the technology / Concerns about the long-term 

risk / System is ugly 

 [19], [32], [71]  

Political & 

Institutional 

Attitudes 

Political Identity Democratic party votes / Groen Links voters [27], [29], [45]   

Conservative /  [47]  

Policy Support Pro-government sentiment / Support PV market [19], [46]   

Institutional Trust Trust in institutions / Trust in PV Industry / Trust in local [15], [37], [44], [72]   
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contractors/ Trust on solar panel providers 

Financial 

Considerations 

Economic Benefit 

Motivation 

Financial considerations / Saving on electricity bill / Reducing 

electricity tariffs / Getting reasonable energy price / Saving on 

energy cost 

[9], [10], [11], [13], [16], 

[19], [22], [26], [27], [35], 

[39], [71] 

  

Cost Sensitivity Perceived affordability /  [26]   

Concerns about costs / Price is important  [32], [37]  

Financial Support 

Access 

Access to subsidies [35]   

Energy 

Independence 

 

Energy Need Demand for electricity [25]   

Self-Reliance Autarky / Self-reliance / Decreased dependence / Go off-grid / 

Independence from electricity retailer / Energy reliability /Energy 

independence 

[9], [10], [12], [16], [19], 

[39], [40] 

  

Home 

Improvement 

motivation 

System Upgrades Energy efficiency upgrade / Co-adoption (other energy product) [12], [32], [68]   

Satisfied with the current system  [19]  

Property Value 

Investment 

Increase resale value / Impacts on home value [27], [32]   

Social Aspects Normative 

Expectations 

Traditional norms / Necessity of rules / Personal norms / Pro-

environmental norms / Personal norms about environmental 

issues 

[11], [53], [71]   

Social Motivation Social curiosity / Symbolic (Set an example for others) / 

Psychological warm glow benefit / Social status benefit 

expectation 

[10], [16], [37], [69]   

Decision-Making 

Dynamics 

Independence of taking decisions / Engagement / Independent 

judgment making 

[11], [47], [71]   

Time for making decisions  [11]  
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4.2.4 External Context 

Research shows that external circumstances beyond the household and individuals have an 

influence on whether families install solar PV systems (see Table 4-4).  

Policy support and subsidies provide a favorable context for promoting residential solar PV 

systems [6], [8], [20]. They help households overcome high initial investment costs and make 

adoption decisions easier. Conversely, some studies mention that regulatory inadequacies 

and bureaucratic complexities discourage adoption [10], [16]. 

Available information is also important. This includes details about solar products, market 

circumstances, and policy situations [6], [9], [12]. Additionally, sources of awareness, such as 

media publicity and manufacturer marketing, have been proven to positively affect public 

knowledge and acceptability [55]. 

Neighborhood effects and peer support are among the most significant influencing factors 

mentioned in most articles. According to research [40], the appearance of technology is not 

especially important. Peer impacts usually occur through verbal communication, but if the 

source is recognized, both visual and verbal aspects might influence adoption likelihood. 

Electricity market circumstances affect people's decisions as well. When electricity prices are 

high or increase significantly over a short period, people are more likely to adopt solar 

systems [12], [32], [34]. This relates to the financial motivations and desire for energy self-

sufficiency mentioned previously [12]. 

Finally, physical environments limit solar potential and installation conditions. On one hand, 

geographic conditions, especially available solar radiation, form the foundation for 

determining PV system’s generation efficiency and payback periods [49], [50], [56], [59]. On 

the other hand, research finds that urbanization levels and population density tend to 

negatively impact PV adoption [36], [45], [50], [57]. This is because higher-density areas 

typically feature multi-story and high-rise residences, where fewer residents have access to 

rooftop space. 
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Table 4-4 External Context Factors 

Category Factors Descriptive variables Positive relationship Negative relationship Mixed relationship 

Policy & Government Support Incentive Government subsidy / Policy incentives 

/ Financial incentives / Governmental 

support 

[6], [8], [9], [14], [15], [16], [17], [20], 

[21], [22], [23], [29], [30], [35], [36], 

[39], [40], [42], [63], [69], [73] 

  

Regulation Administrative process / Administrative 

procedures / Lack of regulations /  

 [10], [16]  

Understandable Net-billing [39]   

Information & Communication 

Context  

Information 

Availability 

Information Availability / Information 

context / Objective information / 

Available information and knowledge 

of solar PV system in the market / 

Certainty around FiT 

[6], [9], [12], [16], [17], [38], [40], [44]   

Communication 

Channels 

Communication network / Media / 

Marketing / Sources of awareness 

[9], [12], [22], [27], [38], [44]   

Social & Community Factors Neighborhood 

Effects 

Neighborhood effects / Peer effects / 

Social influence / Social support / 

Number of installers 

[9], [10], [12], [15], [16], [20], [21], 

[23], [24], [25], [26], [27], [29], [31], 

[32], [33], [36], [37], [44], [47], [48], 

[52], [62], [64], [70], [72], [73], [74] 

  

Local Actors Local entrepreneur / Local 

organizations promoting PV 

[21], [74]   

Installer & Technical 

Support 

Installers / PV company / Reliable 

technicians / Qualification of installer 

[12], [13], [16], [30]   

Market & Economic Context Electricity Prices Electricity retail price / Recent increase 

in electricity rates / Electricity prices 

[12], [15], [21], [27], [29], [32], [34], 

[44], [61] 

[31]  
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increase / Residential electricity price 

Economic Context GPA / Market maturity / Dispersion of 

income 

[30], [39], [42]   

Gini  [57]  

Environmental Factors Geographical 

Potential 

Solar radiation / Insolation / Solar 

resource / Solar resource potential / 

Rooftop solar PV potential / PV 

Potential (radiation, slope, orientation) 

/  

[22], [24], [25], [29], [33], [36], [49], 

[50], [56], [59], [62], [65] 

  

Tree-cover ratio  [65]  

Environmental 

problem 

Pollution levels / Environmental 

problems / Environmental and 

pollution burden indicators 

 [25], [55]  

Urbanization Urbanization / Address density / 

Population density / House density / 

Household density / Population density 

/ density / Amount of households / 

Number of housing units / Ratio of new 

residential building units / Construction 

of new buildings  

[30], [47], [60] [25], [29], [36], [42], 

[45], [50], [57], [64] 

[49] 
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4.3 Summary and discussion 

Figure 4-3 shows the most important and most frequently mentioned factors in each 

dimension. 

It is worth noting that although most influencing factors have relatively clear directionality, 

there may be strong collinearity between different factors. Statistical correlations cannot 

truly reflect the complexity of reality. This makes it difficult to simply explain households' 

comprehensive decision considerations through regression. A typical case is where Gao & 

Zhou [31] found a negative correlation between education level and solar energy adoption. 

This phenomenon may partly stem from objective limitations that prevent students and 

temporary researchers from adopting solar equipment. More critically, education has a 

positive correlation with income. Therefore, when income variables are controlled in 

regression models, the impact of educational factors on solar adoption turns negative. This 

demonstrates the complex interactions between variables. 

This complexity of influence is further demonstrated across different spatial conditions and 

combined scenarios. Using machine learning techniques, Lan et al. [75] have shown that 

several factors limit the explanatory power of income for solar adoption. For example, in 

areas with both high population density and high income, many apartments and residential 

units are unable to install PV systems due to limited roof space. Furthermore, in areas with 

moderate population density, the situation becomes more complex. Various socioeconomic 

factors interact and constrain one another, collectively influencing PV technology adoption 

outcomes. 

Additionally, the relative importance of the different decision-making criteria varies greatly 

depending on the stage of technology adoption. According to Rai et al. [12], higher income 
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Figure 4-3 The most frequently mentioned factors in each dimension 
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and education levels are more significant in the early stages of residential PV adoption. This 

may be related to the higher costs of acquiring information and making investment. Similarly, 

Walters et al. [39] discovered that the initial wave of adopters generally acquired solar panels 

for environmental concerns, whereas the second generation prioritized financial 

considerations. This indicates that the importance of influencing factors dynamically changes 

with technology diffusion stages. 

This complexity highlights the need for reinterpretations of these dynamics. Traditional 

models frequently fail to adequately capture the dynamic character and intricate 

interconnections of household decision-making. Therefore, more innovative approaches are 

required. The information acquired in this chapter will be used in the following chapter to 

develop an LLM-based agent model that simulates household decisions about solar energy 

adoption.  
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Chapter 5 Model Development 
This chapter details the development process of an LLM-based agent model designed to 

simulate a household’s decision-making regarding solar PV adoption. It aims to answer the 

second research question: To what extent can LLM-based agents effectively simulate 

household decision-making processes for solar PV adoption? 

5.1 Overview 

As discussed in Chapter 2, LLM-based agents typically comprise several key modules: profile, 

memory, reasoning and action module. Input is generally presented by natural language 

prompts, enabling LLMs to simulate decision-making by synthesizing multidimensional 

information. In the previous chapter, we also identified four key dimensions of factors 

influencing household solar PV adoption based on the literature: household/individual 

characteristics, personal beliefs, external context, and technical attributes. These dimensions 

provide the basis for our LLM-based agent model design. 

 

Specifically, individual and household characteristics serve as key variables in the profile 

module, providing the household's basic information. External context and technical 

attributes are added to prompts as supplemental information, enhancing the model's 

contextual comprehension. Due to the absence of structured indicators that explicitly reflect 

personal beliefs in the dataset, such beliefs are not introduced as distinct variables. Instead, 

Technology Attributes External ContextPersonal Beliefs and IntentionsIndividual (household) Characteristics

Cost

Payback period

Economic benefits

Age

Gender

Education

Ethnicity

Household size

Income

Wealth

Home ownership

Housing type

Housing size

Home value

House age

Electricity consumption

Policy Incentive

Information

NeighborhoodEffects

Electricity Prices

Geographical Potential

Urbanization

Context info

Profile

Prompt

Context info

Knowledge

Environmental awareness

Technology Attitudes

Benefit Motivation

Energy Independence Motivation

Figure 5-1 From factors to variables (Based on the conclusion of Chapter 4) 
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they are implicitly addressed through prompt instructions that encourage the LLM to 

account for value heterogeneity in its reasoning process. It is worth noting that real-world 

situations involve complexities such as decision-making authority issues for tenants and 

diverse collective decision-making processes in housing associations. Given these 

complexities and time constraints, this research focuses exclusively on the most basic case of 

homeowners. 

To systematically develop and validate the applicability of the LLM-based agent (hereafter 

referred to as PVAgent), model development in our research has two phases as shown in 

Figure 5-2. The first phase focuses on modeling individual adoption decisions based on static 

variables in a single round. During this phase, the LLMs help the household agent to 

determine whether they would adopt solar PV technology in a specific year. This decision is 

based on households’ characteristics (such as age, income, and housing conditions) and the 

relevant static social and policy environment (including electricity prices and adoption rates). 

This phase aims to validate the LLM's capability for simulating individual decisions and create 

an initial prompt architecture. The second phase expands on the first by including temporal 

dynamics and neighborhood structures, progressing to a multi-agent system. This phase 

involves creating community networks, modifying external environments on a yearly basis, 

and modeling agent interaction and diffusion processes. These steps enable long-term 

dynamic simulation of solar PV adoption behaviors. This simulation allows us to investigate 

decision patterns of various household types under the influence of neighborhood effects 

and contextual change.  

 

Phase 1
Single-year simulation  single-agent system

LLM Agent 

Reasoning

Input  one single year
- Household characteristics

- External context

Output
- Single-year adoption decision

- Reasons for decision

Phase 2
Multi-year simulation  multi-agent system

LLM Agent 

Reasoning

Input  updated per year
- Household characteristics

- External context

Output
- Single-year adoption decision

- Reasons for decision

Multi-year Output

Neighborhood network

Update

Update

             

                

             

Profile Module

Reasoning Module

Memory Module

Action Module

Figure 5-2 Two-phase development of PVAgent 
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5.2 Phase 1: Static Decision Modeling with LLM 

Agents 

The purpose of this phase is to verify whether an LLM can accurately simulate the decision-

making for solar PV adoption based on household characteristics and the external 

environment in a specific year. We employ a fundamental static scenario, excluding temporal 

dynamics and neighborhood interactions and focusing solely on the individual agent's 

judgment process under given conditions. Consequently, the memory module is temporarily 

excluded from the model at this stage. Due to data availability, we use 2021 as the contextual 

year for this phase, based on the WoON dataset [1]. 

5.2.1 Input Data 

As mentioned, the input primarily includes basic household characteristics and external 

information. Considering the important factors summarized in Chapter 4 and data 

availability, we extract basic household characteristics data from our prepared dataset to 

build the profile. These variables include age, education level, income, wealth, household 

size, housing type, building livable area, construction year, and energy consumption. It 

should be noted that despite their possible relevance, gender and race are not included 

because the data is not available. Additionally, the level of neighborhood connection is 

incorporated as a feature reflecting the intensity of peer effects. Table 5-1 provides a 

complete overview of variables used in profile construction, including their categories and 

whether they are static or dynamic in the modeling process.  

Table 5-1 Overview of variables used in household profile (Data source: [1]) 

Variable Description Categories/Range Phase 1 

Role 

Phase 2 

Role 

Age Age of household 

head 

17-24/25-34/35-44/45-

54/55-64/65-74/75 and 

older 

Static Dynamic 

Education Level Highest education 

level 

Low/Medium/High Static Static 

Income Annual household 

income 

Continuous (€) Static Dynamic 

Wealth Household wealth Continuous (€) Static Dynamic 

Household Size Number of 

household 

members 

1 person/2 people/3 and 

more  

Static Static 

Housing Type Type of dwelling Non-apartment/Apartment Static Static 
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Variable Description Categories/Range Phase 1 

Role 

Phase 2 

Role 

Building Livable 

Area 

Floor area of the 

dwelling 

Continuous (m²) Static Static 

Construction Year Year house was 

built 

Continuous (year) Static Dynamic 

Energy 

Consumption 

Annual energy 

consumption 

Continuous (kWh) Static Dynamic 

Neighborhood 

Connection 

Agreement with "I 

have a lot of 

contact with 

neighborhood 

residents" 

Totally 

disagree/Disagree/neither 

agree nor 

disagree/agree/totally agree 

Static Static 

 

 

The data extraction and profile generation process are fully automated through a Python-

based pipeline. The system reads each household record from the dataset and automatically 

converts numerical and categorical values into natural language descriptions to construct 

individualized agent profiles. The following paragraph shows an example of a profile 

(detailed code implementation can be found in Appendix C): 

“You are aged 45-54 with a high level of education and you own a apartment built approximately 

20 years ago with 85 square meters of usable area You live with a household of 3 people and the 

composition is '2 adults and 1 child' Your annual household income is €43000 and your reported 

wealth is €150000 You consume about 3500 kWh of electricity per year and also use gas (1040 m³ 

per year) You report 'high' levels of contact with your neighbors.” 

 

Furthermore, the input incorporates uniformly defined external background information that 

applies to all household agents. This external information includes two categories: technical 

attributes (such as annual installation costs of rooftop solar PV and average payback period) 

and contextual variables (including electricity prices, policy frameworks and subsidies, and 

the citywide PV adoption rate for the corresponding year). For instance: 

{ 

"Adoption context": 

"Only around 7% of households in Amsterdam had installed rooftop solar or heat pump systems in 

2021. This means adoption was still relatively rare." 

"Financial factors": 

"Expect to pay roughly €4,000 to €5,000 for 10 solar panels, excluding btw." 

"Annual savings could reach €497, and the estimated payback period was 4 to 9 years, depending 
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on usage." 

"Energy prices": 

"Electricity price is €0.136 per kWh (for households using 2,500–5,000 kWh/year)." 

"Installation access": 

"Apartments often require coordination with neighbors or housing associations to adopt solar PV, 

but it is still possible." 

"Policy and legal environment": 

"Some incentives are available, like Salderingsregeling (netting scheme)." 

"However, state-protected historic buildings (often older homes) require special permits for rooftop 

installations." 

} 

All input information including household profile and contextual background will be 

integrated into a complete prompt and communicated to the LLM via natural language. 

 

5.2.2 Prompt design 

While there is no universally accepted standard for prompt design in academic research, this 

study follows established good practices from LLM developers. According to OpenAI's 

prompt engineering guidelines [2], effective prompts usually include identity, instructions, 

examples, and context components arranged in a structured manner. They also suggest a 

function-argument paradigm with both system messages and user messages. To be specific, 

system messages provide basic rules and logic, while user messages supply specific inputs 

and configuration. Similarly, according to Amatriain's framework [3], prompts usually 

combine instructions, questions, input data, and examples, while only the first two 

components are mandatory for every application. It should be noted that while available 

guidelines provide a methodological framework, the specific implementation represents a 

researcher's decision tailored to this particular research context and objectives. 

Following the recommendations, we adopt a structure that combines identity, input data and 

instructions in prompt design for PVAgent. First, we establish the model's identity as an 

Amsterdam resident and set the background year to 2021. This ensures historical consistency 

in responses. Second, we provide clear instructions for the decision-making task. Specifically, 

the model is asked to make a judgment on "whether to adopt solar energy." Third, we supply 

relevant input data for reasoning. This includes household profiles and external background 

information (see section 5.2.1). Finally, we instruct the model to output only in JSON format 

to ensure structured material for further analysis. While examples are often recommended 

in prompt design, we deliberately exclude them to avoid biasing the model toward specific 

decision patterns. 
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To make the reasoning process more consistent with actual decision-making, we provide 

natural language instructions in prompts to suggest that the agent should comprehensively 

consider multiple dimensions. The prompt also emphasizes hesitation, complexity, and 

irrational behaviors that are common in reality. This approach aims to avoid responses based 

on the "rational person" assumption. Below is an example of the user prompt: 

"You are a household living in Amsterdam in the year 2021.\n" 

"Based on your household's situation and the policy environment at the time, think carefully about 

whether you have already installed rooftop solar panels—or whether you are genuinely and 

actively considering doing so.\n" 

"Consider your financial capacity, energy usage, social context, and environmental motivation and 

so on to see if there are strong reasons.\n" 

"Also consider the complexities and frictions involved, such as your household size and energy 

demanding, social context, and the potential difficulties in coordinating installation.\n" 

"Even if solar panels seem financially beneficial in theory, many households delay or reject 

adoption due to hesitation, uncertainties, or competing priorities.\n" 

"Many families also have concerns about the process being complicated, time-consuming, or 

uncertain. While some may have strong environmental motivation or financial incentives, the real-

world barriers to adoption can often outweigh these motivations.\n\n" 

f"Here is the contextual information as of 2021:\n{EXTERNAL_INFO_2021}\n\n" 

f"Here is your household profile:\n{profile}\n\n" 

"Do not assume a yes or no decision based solely on your dwelling type." 

"Please respond in the following JSON format:\n" 

"{\n" 

'  "decision": "yes" or "no",\n' 

'  "reasoning": "A detailed explanation about your decision (2-3 sentences)..."\n' 

"}" 

 

This study also sets up a system message for the LLM in addition to the user prompt. The 

following points are emphasized in this message to further standardize the LLM's function 

and decision logic: 

1) Reminding the model to balance economic and non-economic motivations when 

making decisions;  

2) Avoiding the direct inference of behavioral outcomes based only on housing type; and  

3) Stressing the importance of behavioral barriers and psychological friction in energy 

adoption decisions. 

By implementing these measures, we can enhance PVAgent's stability and realistic fit to 

some certain extent. This was necessary because early tests revealed that the LLM tended to 

automatically reject the possibility of adoption for all apartment residents based solely on 

housing type, and to make decisions simply based on financial factors. 
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5.2.3 Model Application and Output 

In this study, we implement the agents with OpenAI's GPT-4o-mini (gpt-4o-mini-2024-07-18). 

The temperature parameter is set to 0 to ensure consistent outputs while reducing random 

fluctuations. Additionally, we enforce JSON as the response format to enable direct parsing 

of returned content into dictionary format. 

For each household's input data, the model returns a JSON structure containing two key 

fields: One is "Decision", a binary outcome ("yes" or "no") indicating the adoption choice. 

The other is "Reasons", including a concise explanation of the decision rationale in 2-3 

sentences. 

Below is an example of the output: 

Decision: “yes” 

Reasons: “Given our high income and wealth, we have the financial capacity to invest in solar 

panels despite the initial costs. Our strong connection with neighbors and the relatively modern 

age of our apartment make coordination for installation feasible. Additionally, our environmental 

motivation aligns with the growing trend towards sustainability, and the potential savings on 

energy bills further incentivize us to proceed with the installation.” 

 

Decision: “no” 

Reasons: “Despite having a decent income and a moderate energy consumption, the complexities 

of coordinating with neighbors in my apartment building and the uncertainty surrounding the 

installation process make me hesitant. Additionally, my low level of contact with neighbors means I 

lack the social support that could facilitate this decision, and the upfront costs, even with potential 

savings, feel daunting given my current priorities.” 

5.2.4 Validation 

Based on the design described above, we conduct simulations on the existing household-

level dataset in this phase. We generate simulation results for 574 household samples. To 

investigate the effectiveness and rationality of PVAgent in simulating solar energy adoption 

choices, we perform validation with the following two steps: 

First, we validate the model outputs through human evaluation to ensure structural 

compliance and logical consistency. Two external researchers with expertise in energy 

transition and urban data studies conduct independent assessments to enhance objectivity. 

The evaluation framework examines three key aspects: structural adherence to 

predetermined formats, consistency between reasoning and input information, and the 

presence of behavioral heterogeneity with realistic logic. Results indicate that in most 

samples, the model is able to make reasonably differentiated inferences based on individual 
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characteristics and contextual environments. It also explains adoption or rejection 

motivations in relatively authentic human tones, demonstrating strong language 

comprehension and decision expression capabilities. However, while the current validation 

approach provides initial evidence of the model's effectiveness, we acknowledge that direct 

interviews with actual adopters and non-adopters would provide stronger validation, which 

is a significant recommendation for future research. 

Second, we conduct a preliminary validation of the model's rationality by examining overall 

adoption trends. We compare the simulated adoption results with the actual adoption status 

recorded in the WoON dataset [1]. It is important to note that although this field exists in the 

original dataset, it is not used as a supervisory signal during the model's reasoning process, 

thus serving as a relatively independent external reference benchmark.  

We first compare the overall adoption rate generated by the simulation with the actual 

adoption rate in the real data. Results show close alignment at the aggregate level. This 

indicates that the model, without relying on real labels, is already capable of capturing 

macroscopic decision tendencies to a certain extent. 

Building on this, we conduct further aggregated analyses around several key variables. We 

compare the model output results with group trends in actual adoption data. The analysis 

reveals that the model effectively reproduces the directional patterns observed in reality 

across most feature dimensions. For example, high-income households and non-apartment 

housing types show significantly higher adoption rates than other groups. However, we also 

notice that the model exaggerates positive effects of higher education and higher income as 

well as negative effects of apartment type of housing. Nevertheless, the model's adoption 

rate distributions align with actual data trends across multiple important variable 

dimensions, demonstrating its preliminary capability to extrapolate realistic adoption 

patterns at the group level. 

  

   

                

     

  

   

                

     

Figure 5-3 Comparison of adoption rate: real-world survey data vs. simulation results 
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Overall, the validation in this phase demonstrates that the PVAgent, under unsupervised 

conditions, can generate logically coherent and trend-wise explainable household adoption 

decision simulation results. Based on this, the next section will further introduce temporal 

dynamics and neighborhood network to construct a multi-agent simulation framework. 

 

5.3 Phase 2: Dynamic Agent-Based Simulation 

In the first phase, we tested the feasibility of using PVAgent to generate household adoption 

decisions in a static environment. However, real-world solar PV adoption depends on more 

than individual characteristics and single-year conditions. It also shows patterns over time 

and is influenced by neighborhood effects [4], [5]. To better capture how households make 

decisions within social networks, we further incorporate a multi-agent system with temporal 

dynamics in the model during the second phase. 

In this phase, we introduce a neighborhood network where multiple household agents 

interact and influence each other. Each simulation round represents one year. During each 

round, agents consider their own characteristics and the surrounding environment while also 

consulting their neighbors' previous adoption patterns to update their views and decisions. 

This approach allows us to better understand how solar technology spreads across social 

networks and track the effects of incentives and social norms by time. 

5.3.1 Neighborhood Network Construction 

To model the impact of neighborhood impacts, we create a "neighborhood network" that 

represents social interactions among households. Each household agent is allocated a certain 

number of neighbors or peers who represent information sources that might impact their 

energy decisions. According to McPherson's homophily theory [6], people tend to establish 

and maintain social connections with similar individuals. This phenomenon shapes social 

network structures and influences information flow and social interaction patterns. On the 
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Figure 5-4 Comparison of adoption rate across variables: real-world survey data vs. simulation 

results 



75 

 

other hand, Rogers mentioned in the Diffusion of Innovations Theory [7] that non-structural 

contacts are equally important. This means that the diffusion process relies not only on 

imitation within close groups but also on information breakthroughs brought by “outsiders” 

or heterogeneous contacts. Therefore, we design a hybrid neighborhood structure that 

considers both stable structural connections and a certain proportion of dynamic random 

contacts, see Figure 5-5. 

To be specific, fixed neighbors are chosen based on similar socioeconomic traits like income, 

age, and education. We use the K-nearest neighbors (KNN) algorithm to find the most similar 

households for each agent. This approach simulates the social relationships produced by 

“homophily” in real life. Dynamic peers are randomly assigned to each agent in each 

simulation year, reflecting short-term interaction possibilities such as changes in social circles 

and temporary information sources. Random seeds are set to ensure reproducibility of 

results. 

We combine both neighbor types for each agent, with 40% being dynamic neighbors and the 

rest being fixed neighbors in this study. We then calculate how many of these neighbors have 

adopted solar panels. To avoid issues like randomness with small sample sizes, we convert 

these adoption rates into descriptive natural language phrases like "very few," "a couple of," 

"some," or "a significant portion of your neighbors" (see table 5-2). During the simulation, 

agents who report stronger neighborhood connections are more likely to adjust their views 

 uild  xed neigh ors  :

Extract features:  income, age, usable_area 

Standardize features using StandardScaler

Apply KNN algorithm to find k most similar households

Return: permanent neighbor relationships

FI ED NEIGHBORS

 uild dynamic peers   :

Set random seed based on year

For each household:

Randomly select k neighbors from all other households

Return: yearly randomized neighbor relationships

DYNAMIC PEERS 

 uild mixed neigh ors   :

Combine fixed_neighbors (60%)   dynamic_peers (40%)

Avoid duplicates between fixed and dynamic selections

Return: hybrid neighbor relationships for current year

MI ED NEIGHBOR NETWORK

F   each year:

Generate mixed_neighbors using current year seed

Calculate neighbor_adoption_rate for each household

Use neighbor in uence in LLM decision prompts

USAGE IN SIMULATION

Fixed neigh ors - homophily

 ynamic peers - heterogeneous

Figure 5-5 Pseudocode of neighborhood network (the detailed code is available in Appendix C) 
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and decisions based on what their neighbors have done in previous years. 

Table 5-2 Neighborhood adoption rate and corresponding description 

Neighbor adoption rate  description 

0 None of your close neighbors have installed solar panels yet. 

<= 0.1 Very few of your close neighbors have installed solar panels yet. 

<= 0.2 A couple of your close neighbors have installed solar panels yet. 

<= 0.3 Some of your close neighbors have installed solar panels yet. 

<= 0.5 A significant portion of your close neighbors have installed solar panels yet. 

<= 0.7 Many of your close neighbors have installed solar panels yet. 

> 0.7 Most of your close neighbors have installed solar panels yet. 

 

Additionally, the model also includes the previous year's overall neighborhood adoption rate 

as background information. This means agents are influenced by both their immediate 

neighbors and the broader community trends. This approach gives agents the opportunity to 

learn about adoption patterns from different social groups in their neighborhood while 

maintaining their social characteristics and primarily interact with similar households. 

5.3.2 Temporal Dynamic Modeling 

To simulate the year-by-year development of solar energy adoption behavior within 

neighborhoods, we create a multi-year simulation framework running from 2021 to 2024. 

Every year, the model updates agent status, assesses neighborhood influence, and applies 

the LLM to make adoption decisions. 

The annual evolution process includes the following key updates: 

1. Individual Attribute: Each year, individual characteristics are updated, such as income 

growth and changes in energy use, to reflect yearly demographic and economic 

dynamics.  

2. External Environment: This component incorporates key yearly context variables, 

including political developments, electricity prices, market conditions, and other context-

specific factors that reflect the broader reasoning background. 

3. Neighborhood Network: While fixed neighbors remain the same, dynamic peers are 

refreshed to represent changing social connections. Additionally, we also include the 
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previous year's community-wide adoption rate to provide broader context. 

4. Memory of Past Decisions: Once a household answer “yes” and adopts solar panels, it 

keeps this status in following years. 

The detail code is available in Appendix C. This approach allows us to track how individual 

decisions evolve over time as they respond to social influence and external changes. 

5.3.3 Prompt Design 

This stage continues the basic structure of "context + profile + JSON format output" from 

Section 5.2 in prompt design (see 5.2.2 for details). However, to simulate the dynamic 

evolution process, two key extensions were made to the prompt content: 

Time Awareness: In each simulation round, agents are set to "live in a specific year (such as 

2023)," and their decisions must be based on the policy background and social context of 

that year. This information is clearly given in the prompt, allowing the model to make 

decisions with temporal consistency. 

Neighborhood Influence: During each year's simulation, each agent is notified about their 

neighborhood adoption rate. This information is embedded in the profile section of the 

prompt, enabling the LLM to respond to the peer effect from the agent’s social network. 

5.3.4 Validation 

Based on the above design, we conducted multiple rounds of behavior simulation using the 

LLM-based agent model with time evolution and neighborhood networks in this phase. 

Taking Oude Pijp (n=2165) as an example, we generated four-year (2021-2024) sequence of 

household adoption decision dynamics. To verify effectiveness and reasonability, we 

evaluated it through the following two steps: 

We began by manually reviewing the yearly decision results generated by the simulation, 

focusing on whether individual behaviors remain consistent over time and whether they 

reflect social influence and personal differences. A set of household decision paths was 

randomly selected, each including yearly decisions and the associated reasoning. Two 

external researchers with expertise in urban energy transition and urban data science from 

TU Delft were invited to conduct independent evaluations. The assessment criteria included 

rational behavioral progression, impact of neighborhood adoption, and reflection of 

common real-world patterns like "hesitation - influence - change" or prolonged indecision. 

The results demonstrated that in the majority of cases, the model offered logical and 

credible decision-making processes. Some households demonstrated evident adjustments as 

a result of surrounding adoption patterns or changes in energy costs, but others remained 
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non-adopters due to financial restrictions or a lack of motivation. Overall, the PVAgent 

captured a believable track of behavioral change over time. Figure 5-5 shows two examples 

of the outputs. 

Second, we tested whether the model could capture group-level behavioral patterns by 

comparing the simulated adoption rates in Oude Pijp to real-world solar adoption data from 

BBGA [8]. Even without actual data as a training input, the model's yearly adoption rates 

closely matched actual patterns, as seen in Table 5-3. We also examined how key variables 

were related to adoption decisions and found that the model effectively reproduced the 

nonlinear impact of social influence. Differences in adoption rates across income levels and 

housing types reflected the same structural patterns observed in real data. 

 

Year: 2 21

Decision:  no 

Reasons:  Despite having a 
high income and a 
supportive social context 
with good neighborly 
contact, the complexities of 
coordinating installation in 
an apartment setting create 
hesitation. The upfront cost, 
along with uncertainties 
about the installation 
process and potential 
complications with the 
housing association, lead to 
a decision to postpone the 
installation of solar panels 
for now. 

Year: 2 22

Decision:  no 

Reasons:  Despite having a 
high income and a supportive 
social context with some 
neighbors adopting solar 
panels, the increased 
installation costs due to 
supply chain issues and 
inflation create financial 
hesitation. Additionally, the 
complexities of coordinating 
with my housing association 
and the uncertainty 
surrounding the installation 
process contribute to my 
decision to postpone the 
adoption of rooftop solar 
panels for now. 

Year: 2 23

Decision:  yes 

Reasons:  Given our financial 
capacity and the recent removal 
of VAT on solar panel purchases, 
the investment seems more 
feasible. Additionally, with a 
supportive social context and a 
couple of neighbors already 
adopting solar, we feel 
encouraged to proceed. 
However, we are aware of the 
complexities involved in 
coordinating installation with 
our housing association, but our 
strong environmental 
motivation and the rising energy 
prices make it a compelling 
choice. 

Year: 2 24

Decision:  yes 

Reasons:  Already adopted in a 
previous year. 

Year: 2 21

Decision:  no 

Reasons:  While I have a 
stable income and a decent 
level of education, the 
complexities of coordinating 
installation with my 
neighbors in an apartment 
setting create significant 
hesitation. Additionally, 
despite the potential 
financial benefits, the 
upfront cost of installation 
and the uncertainty 
surrounding the process 
make it difficult to prioritize 
solar panels over other 
immediate needs and 
concerns.

Year: 2 22

Decision:  no 

Reasons:  Despite having a 
stable income and a 
moderate energy 
consumption, the increased 
installation costs due to 
supply chain issues and 
inflation make the financial 
aspect less appealing. 
Additionally, the need for 
coordination with neighbors 
in my apartment complex, 
where none have adopted 
solar panels yet, adds 
complexity and uncertainty to 
the installation process. 
While I have environmental 
motivations, the hesitation 
stemming from potential 
complications and the rarity 
of adoption in my community 
leads me to postpone the 
decision.

Year: 2 23

Decision:  no 

Reasons:  While I have a stable 
income and the financial 
incentives from the removal of 
VAT and the Salderingsregeling
are appealing, the complexities 
of coordinating installation with 
my neighbors in an apartment 
setting create significant 
hesitation. Additionally, with 
only 3% of local households 
having adopted solar panels, 
there is a lack of social proof 
and support, making the 
decision feel more daunting. 
The uncertainty about the 
installation process and 
potential disruptions also 
contribute to my decision to 
postpone.

Year: 2 24

Decision:  no 

Reasons:  Despite having the 
financial capacity and a 
moderate environmental 
motivation, the complexities of 
coordinating installation with 
neighbors in my apartment 
building, coupled with the fact 
that none of my close neighbors 
have adopted solar panels, 
create hesitation. Additionally, 
the uncertainty about the 
installation process and 
potential complications, along 
with competing priorities in my 
life, lead me to postpone the 
decision for now.

Figure 5-5 Examples of household decision trajectories: "hesitation → influence → change" and 

prolonged indecision patterns 
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Table 5-3 Comparison of adoption rates: real-world data vs. simulation results 

Year Real-world data Simulation result 

2 23 4% 4% 

2 21 4% 3% 

In conclusion, while the PVAgent may still simplify individual-level behavior to some extent, 

the second-stage simulation captures reasonable decisions change at the individual level and 

meaningful dynamics at the aggregate level across multiple dimensions, demonstrating its 

potential for analyzing household energy decisions. 

5.4 Summary 

This chapter focuses on the development of PVAgent, the LLM-based household agent. It 

includes a detailed introduction of the model's design modules per phase and the 

assessment of its effectiveness in modeling household solar adoption decisions. This 

addresses the study's second research question. 

The model development proceeds in two phases. The first phase uses a static population 

sample and individual agent system, focusing on how individual characteristics and external 

factors influence decision-making. Relevant factors are converted into natural language 

inputs that the LLM-based agent could comprehend. The second stage builds on this 

foundation by incorporating neighborhood networks and temporal dynamics, allowing for 

cross-year multi-agent modeling. 

Model validation is carried out using both manual logic examination and comparisons to 

real-world data patterns. The results show that the agent can develop appropriate decision 

logic and reasoning at the individual level, as well as reflecting group-level structural 

differences and diffusion patterns seen in reality. These findings indicate that the model has 

preliminary explanatory power and generalization potential. 

However, there are some limitations. The agent's reasoning is entirely dependent on the 

information presented in prompts, with no systematic memory mechanism or long-term 

preference modeling. Neighborhood structures are now a combination of static design and 

random disturbance, which does not fully capture the diversity of real-world social networks. 

Furthermore, the absence of a reliable feedback mechanism limits the model's ability to 

learn from real-world outcomes and iteratively improves its predictions through closed-loop 

validation.  

Beyond these technical limitations, the model development and validation are exclusively 

focused on Amsterdam as a case study. Therefore, we encourage future research to explore 
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how different contexts shape model outputs by testing the framework in diverse settings. 

This would provide further insights into the model's generalizability. 

In conclusion, this chapter demonstrates the LLM-based agent’s capability to simulate 

decisions at both individual and aggregate levels with reasonable coherence. The following 

chapter will examine the insights gained from the simulation results in greater detail. 

Furthermore, the model's applicability bounds and potential areas for future development 

will be discussed in Chapter 7. 
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Chapter 6 Insights from LLM-based 

Agent Model Simulations 
In the previous chapter, we developed and validated the capability of LLM-based agent 

model (PVAgent) in simulating household solar energy adoption decisions. This chapter 

focuses on the simulation results to analyze how solar PV adoption behaviors evolve 

dynamically across different neighborhoods. We aim to understand the motives and barriers 

that influence adoption decisions, explore behavioral differences across various social groups 

and temporal dimensions, and provide targeted insights for future policy making. Due to 

space constraints, we select three neighborhoods with significant socioeconomic differences, 

which are Oude Pijp, Slotervaart-Noord, and Omval/Overamstel. These neighborhoods serve 

as case studies to demonstrate our simulation and analytical results. Their locations, 

socioeconomic characteristics, and sample sizes are shown in Figure 6-1 and Table 6-1.  

Slotervaart-Noord

Oude Pijp

Omval/Overamstel

Figure 6-1 Location of three selected neighborhoods 

         
      
        
          
    

         
          
    

        
          
              
         

              
           

      
         
           

    
           
         
      

            

216594941 540 622 848300         

118837362 352931 842200                 

48634001 30 814 360500                

Table 6-1 Socioeconomic characteristics of selected neighborhood (data source: BBGA [1]) 
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The main simulation outputs, including the overall adoption rate and temporal diffusion 

process are shown in section 6.1. Section 6.2 analyzes the motivations and obstacles that 

affect adoption decisions. Section 6.3 examines the policy and implementation implications 

of these results. Building on this framework, this chapter contributes to addressing the third 

research question of this study: How can simulation results from LLM-based agents inform 

policy recommendations for solar PV adoption? 

 

6.1 Simulation results of adoption decision 

This section shows the simulation outcomes generated from the PVAgent model and the 

disparities in solar PV adoption among various neighborhoods and socioeconomic groups. 

The simulation covers the period from 2021 to 2024, spanning four time steps. 

6.1.1 General Trends 

Figure 6-2 shows the changes in PV system adoption rates across three representative 

neighborhoods in different years: 

From a spatial perspective, Oude Pijp consistently shows PV adoption rates below the 

Amsterdam average (7% in 2021 and 9% in 2023), reflecting potential structural resistance 

including housing type constraints and neighborhood attitudes. Slotervaart-Noord 

demonstrates steady growth patterns, with adoption rates roughly aligned with the city 

average.  In contrast, the adoption rate in Omval/Overamstel is significantly higher than the 

average, even exceeding 25% in 2021, indicating substantial diffusion potential and favorable 

Figure 6-2 Simulated adoption rate in three neighborhoods from 2021 to 2024 
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adoption conditions. 

Table 6-2 further shows the annual growth rates (%) for the three neighborhoods during 

2022–2024. Overall, residential solar PV diffusion accelerates year by year. In 2022, growth in 

all three neighborhoods is rather mild, which may be attributed to global supply chain 

tensions that led to cost increases. Since 2023, the adoption rate has increased dramatically, 

possibly due to the combined effects of declining costs, policy incentives and peer influences. 

Notably, Omval/Overamstel's growth rate appears to be decreasing in 2024, which aligns 

with the S-curve pattern where technology diffusion slows as adoption rates reach higher 

levels [2], [3]. 

 

6.1.2 Household Characteristics and Adoption Behavior 

This section further examines how different household characteristics influence solar PV 

adoption patterns in our simulation. Generally speaking, households living in non-apartment 

dwellings with higher income, higher education levels, larger livable areas and household 

sizes, and higher power consumption demands are more likely to adopt solar PV. This 

conclusion is consistent with the previous research findings identified in our literature review 

(Chapter 4). However, the model also reveals certain noteworthy outliers and non-linear 

patterns. 

First, regarding income, the simulation results show a strong positive relationship between 

solar PV adoption and income level. The highest income group demonstrates adoption rates 

substantially higher than other groups throughout the simulation period. In 2024, this group 

reached 25.43% adoption, significantly higher than the fourth quintile's 8.57%. This indicates 

that financial capacity remains the primary condition affecting residential solar PV adoption. 

However, despite having less financial capability, the second quintile consistently shows 

slightly higher adoption rates than the third quintile. For example, in Omval/Overamstel, the 

2nd quintile adoption rate in 2024 was 4.55%, higher than the 3rd quintile's 3.17%. This 

trend might be due to the influence of other non-economic factors, such as neighborhood 

effects, housing type differences, or household energy consumption patterns. 

                                                

15 3610 660        

43 5131 130                 

21 8737 7912 25                

Table 6-2 Simulated growth rates for each neighborhood (%) 
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* the definition of income quintile is based on BBGA’s [1] category. (1st quintile: 0-23.475, 2nd 

quintile: 23.476 - 34.144, 3rd quintile: 34.144 - 48.551; 4th quintile: 48.551 - 68.311, 5th quintile: 

68.311 and more) 

Second, there is generally a positive relationship between education level and adoption rates 

(Table 6-4). The highly educated group achieved an average adoption rate of 16.16% in 2024, 

significantly higher than those with medium education (8.25%) and low education (4.51%). 

However, in Omval/Overamstel, a high-adoption area, the medium education group's 

adoption rate (45%) is higher than that of the highly educated group (25.38%), as shown in 

Table 6-5. This phenomenon suggests that the relationship between education level and 

adoption behavior varies across regions and may be influenced by local environmental 

factors and other neighborhood characteristics. 

 

                              

0000   

5 333 872 662 66   

3 131 6310 88   

8 576 554 764 76   

25 4320 6516 315 32   

Table 6-3 Simulated adoption rate per income quintile* (%) 

                              

16 1612 79 639 03    

8 256 986 096 09      

4 512 461 641 64   

Table 6-4 Simulated adoption rate per education level group (%) 

                                                       

25 3810 684 37    

452 930 92      

1600   

Table 6-5 Simulated adoption rate in 2021 per education level in each neighborhood (%) 
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Furthermore, dwelling type significantly influences PV adoption behavior, as shown in Table 

6-6. In 2024, households living in dwellings other than apartments achieve an adoption rate 

of 30.48%, which is much higher than 8.83% for apartment residences. This aligns with 

expected limitations regarding installation physical conditions, rooftop ownership, and 

collective decision making [4], [5]. However, in terms of diffusion speed, households living in 

apartments have shown higher adoption growth rates than non-apartment residents (Table 

6-7). This trend may indicate that, on one hand, non-apartment residential adoption is 

gradually approaching saturation. On the other hand, adoption barriers in apartment 

buildings are being progressively overcome through policy guidance, neighborhood 

collaboration, and collective action interventions such as shared rooftops, with consensus 

among neighbors gradually emerging. 

Additionally, research on age variables has not yet reached the conclusion in existing 

literature [6], [7]. Our simulation results support the view that the mid-age groups (especially 

35–44 and 55–64) are more inclined to adopt rooftop PV systems (Table 6-8). Across the 

                            

8 836 3543 59         

30 4826 123 1722 61             

Table 6-6 Simulated adoption rate per dwelling type (%) 

                                                

39 0658 7511 42         

16 7812 652 48             

Table 6-7 Simulated growth rates for each dwelling type (%) 

                   

9 09000     

6 635 463 252 73     

21 6216 9713 7413 5     

11 338 677 116 87     

16 1613 6310 7810 46     

1612 69 89     

8 655 543 112 08           

Table 6-8 Simulated adoption rate per age group (%) 
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three neighborhoods, adopters in Omval/Overamstel are generally older than those in the 

other two, potentially related to higher overall wealth, larger household size, and relatively 

stable residence duration. 

 

In summary, individual and household characteristics have significant influence on residential 

solar PV adoption decisions. Complex interactions exist among variables such as income, 

education, and dwelling type, with their effects varying according to regional contexts, policy 

backgrounds, or neighborhood characteristics. In most respects, the simulation results are 

consistent with previous study findings (e.g., [8]). More across group analysis broken down 

by year and zone can be found in the Appendix D. 

Importantly, the simulation reveals non-linear patterns, indicating that factors influencing PV 

adoption do not operate independently or exhibit simple linear relationships. Instead, they 

result from interactions among multiple social, economic, and spatial mechanisms. 

Therefore, the next section will further analyze the motives and barriers exhibited by these 

simulated households during their decision-making processes, to gain deeper understanding 

of the underlying behavioral mechanisms.  

6.2 Motives and Barriers 

As described in Chapter 5, PVAgent not only records whether households adopt solar PV 

systems but also generates their decision-making reasoning processes. Based on these 

reasoning outputs, this section systematically extracts the motives and barriers manifested 

by agents in their adoption decisions, categorizes and analyzes them according to the factor 

classification framework proposed in Chapter 4. 

                                            

00     

12 042 780 62     

30 719 926 08     

19 87 663 52     

53 753 294 73     

41 076 064 3     

13 891 020           

Table 6-9 Simulated adoption rate in 2021 per age group in each neighborhood (%) 
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6.2.1 General Patterns Across All Households 

To understand the motivations and barriers associated with solar PV adoption at the 

aggregate level, we first analyzed the reasoning outputs of all households (n=3898) across 

neighborhoods in the initial simulation year (2021). Figure 6-3 and 6-4 presents frequency 

statistics of different types of motives and barriers mentioned in the reasoning texts. It 

should be noted that agents often cite multiple factors simultaneously in their reasoning, 

which means these motives are not mutually exclusive. 

 

Among all motives, financial capacity is mentioned most frequently, indicating that under 

scenarios with high initial investment costs, having sufficient economic resources is a key 

prerequisite for household decisions on technology adoption. Economic benefits are ranked 

third as a high-frequency consideration, which are related to possible energy bill savings and 

an acceptable payback period. At the same time, energy consumption is also a high-

frequency motivator, indicating that high-consumption households are more inclined to 

explore alternative energy options to reduce energy costs. 

Environmental awareness is also widely mentioned in the argument, although its influence 

appears secondary compared to financial factors. This suggests that while environmental 

motivation may not be the primary driver, it does have a significant influence on certain 

Figure 6-3 Frequency of motives mentioned in reasoning across all households 
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households. Education level, being the fifth most common component, demonstrates its 

indirect influence on adoption behavior. Highly educated households tend to have superior 

knowledge acquisition and technological acceptance capacities, as well as higher 

environmental consciousness, making them more psychologically and cognitively open to 

residential solar PV installation [9]. 

As shown in Figure 6-4, the most frequently reported barrier is the concerns around the 

installation process. This includes the complexity and uncertainty of the installation process, 

and difficulty in coordinating with other stakeholders such as neighbors, housing 

organizations, and suppliers. Dwelling type ranks second, particularly multi-story apartments, 

whose structural limitations and installation complexity constitute important factors 

constraining system adoption. Neighborhood effects are also frequently mentioned in the 

reasoning. It suggests that households in areas with lower PV adoption rates often face 

higher uncertainty and tend to adopt a wait-and-see attitude. This finding aligns with [10] 

who found that Dutch households strongly rely on their surroundings when making decisions 

to reduce uncertainty. 

The cost burden as a barrier factor contrasts with financial capacity and economic benefits as 

motivators. When initial investment costs are high and expected returns are unclear, many 

households will postpone or deny adoption decisions. Related to this, the energy 

consumption level is also frequently mentioned. For households with low electricity usage, 

installing PV systems is considered to have an unfavorable payback period. 

Figure 6-4 Frequency of barriers mentioned in reasoning across all households 
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Finally, policy regulations and building age are another significant set of barrier factors. Many 

households living in historical buildings may face dual challenges: structural unsuitability for 

PV installations and stricter policy approval requirements in heritage protection areas. The 

combination of policy and physical conditions undermines the feasibility of PV systems in 

such dwelling types. 

6.2.2 Comparative Analysis Between Adopters and Non-

adopters 

To further understand decision-making differences, we combine households' final decision 

outcomes with their reasoning processes to compare how adopters and non-adopters 

mention motivational and barrier factors. Overall, the findings are consistent with general 

patterns: financial capacity and expected economic benefits remain the core motivations for 

adopters, while non-adopters primarily cite installation process complexity, dwelling type 

limitations, and upfront costs as their main deterrents (see Figure 6-5 and 6-6). 

Figure 6-5 Motives and barriers mentioned by household making "yes" decision 

Figure 6-6 Motives and barriers mentioned by household making "no" decision 
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A noteworthy phenomenon is that the installation process exhibits influence in dual 

directions. Among the adopter group, it is both frequently mentioned as a concern and as a 

facilitating factor. Specifically, some adopters believe that clear guidance, controllable 

scheduling, and effective coordination mechanisms during installation actually enhance their 

confidence and promote adoption. However, a considerable portion of adopters also express 

concerns about the uncertainty and complexity during installation, showing that 

communication coordination and technical implementation uncertainties still have significant 

influence in the decision-making process. This supports [10], who highlighted how 

transactions with external parties create additional indirect cost barriers. 

Additionally, neighborhood influence affects adopters and non-adopters differently. The 

primary reason may be that adopters are more likely to have peers who adopted solar 

systems [11]. Neighborhood effects are stated as positive motivation among adopters, with 

their frequency even exceeding that of environmental awareness. This demonstrates that 

visible adoption, experience sharing, and peer influence create positive spillover effects that 

motivate collective action [12]. Conversely, in non-adopters' reasoning, neighborhood effects 

appear more often as barriers. This might be due to a lack of PV installation precedents in 

the local region, or a conservative attitude toward adoption of new technology, which 

amplifies individual doubt and reinforces wait-and-see behavior. 

6.2.3 Comparative Analysis Across Different Neighborhoods 

To further examine how spatial and social structures influence PV adoption behavior, we 

compare the motivational and barrier factors across the three simulated neighborhoods. 

Given the different total number of households in each neighborhood, the analysis uses 

relative frequency of each factor to ensure comparability. 

In terms of motives, the top three most commonly reported motivating variables across all 

three areas are consistent with overall patterns, but different neighborhoods also exhibit 

several representative differences (see Figure 6-7). In Overamstel, neighborhood effects 
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Figure 6-7 Relative frequency of motives in each neighborhood (%) 
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demonstrate stronger positive effects, correlating with its significantly higher adoption rate 

compared to the other two neighborhoods. This suggests that the high density of existing 

adopters increases demonstration spillover effects in the neighborhood. In Slotervaart-

Noord, households consume more energy, making the potential savings from PV systems 

more appealing, and thus serving as a primary driving factor in this area. The positive impact 

of education level on adoption behavior is more pronounced in Oude Pijp, likely due to the 

neighborhood's larger share of highly educated residents. Such households are more likely to 

have better knowledge acquisition skills and environmental awareness [13]. 

Regarding barriers, the three neighborhoods show high consistency in their top-ranked 

obstacle factors. Installation complexity, dwelling type limitations, and negative effects of low 

neighborhood adoption rates are all widely mentioned as common structural barriers, as 

shown in Figure 6-8. However, different neighborhoods show varying degrees of concern for 

other factors. Households in Oude Pijp and Slotervaart-Noord demonstrate higher sensitivity 

to cost issues, possibly reflecting that these households face more competing expenditures 

or have different spending priorities. As a result, even with decent payment capacity, they 

tend toward more conservative decision-making. In Overamstel, despite its higher overall 

adoption rate, building age becomes a significant barrier. This reflects the constraints that 

aging housing stock places on further expanding adoption rates. 

In conclusion, household decisions to adopt solar PV or not are impacted by a variety of 

common variables the same as the overall findings. However, different neighborhoods 

prioritize different specific factors, demonstrating that adoption behavior is highly contextual 

and varies by location. This suggests that promotion efforts need to comprehensively 

consider specific characteristics and neighborhood structures, promoting more targeted 

support strategies. 
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Figure 6-8 Relative frequency of barriers in each neighborhood (%) 
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6.2.4 Comparative Analysis Across Different Socioeconomic 

Groups 

We further explore the differences in motivations and barriers faced by different 

socioeconomic groups. Due to space constraints, this section focuses on comparisons 

between different income groups. The following figures (6-9 and 6-10) show the motivational 

and barrier factors mentioned by households in different income levels. 

As shown in Figure 6-9, financial capability and environmental awareness are the most 

frequently mentioned motivators across all income levels. However, there are some 

differences between groups. Highest-income households report these factors at rates of 

98.77% and 70.40% respectively, compared to 83.06% and 58.47% among lowest-income 

households. This trend indicates that advantageous financial conditions enable households 

to more easily respond to environmental motives and translate them into concrete adoption 

decisions. 

Education is frequently mentioned among households in the first to third quintiles but 

Figure 6-9 Relative frequency of motives per income quintile (%) 
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decreases significantly to 10.17% in the fifth quintile. This pattern indicates that lower- and 

middle-income households depend more on acquiring knowledge about policies, 

technologies, and sustainability to drive their adoption decisions, whereas affluent 

households rely primarily on their financial resources and environmental values. 

Additionally, expected economic benefits matter across all income levels but gain 

prominence among middle-to-high income households, who typically tend to approach PV 

systems as financial investments. Energy consumption considerations follow a similar upward 

trend with income, likely because wealthier households consume more electricity and 

therefore see clearer savings potential [14]. Cost variables, on the other hand, occur more 

frequently in low-income households' reasoning, reflecting stronger cost sensitivity and wait-

and-see attitudes when evaluating the economic benefits of PV systems. 

Furthermore, high-income households mention neighborhood influences the most (17.22%). 

Factors such as electricity prices and policy incentives also have greater positive influence on 

high-income households than other groups, indicating that these households are more 

responsive to positive signals in the external environment. Interestingly, high-income groups 

are also more likely to identify installation process coordination as a motivator, which might 

be due to their advantages in resource mobilization, time scheduling, and decision-making 

autonomy [15].  

Among barrier factors, concerns regarding installation process are the most often reported 

barriers across all groups, accounting for nearly 100% of responses. Dwelling type limitations 

are also significant barriers with relatively small differences between income groups, 

reflecting that structural constraints such as roof configuration, building conditions, collective 

decision-making requirements are universally present obstacles. Another common barrier is 

neighborhood effects, but their influence is relatively lower among high-income groups 

(37.75% in the fifth quintile vs. 62.3% in the first quintile, see Figure 6-10). 

Unsurprisingly, the negative effects of cost and financial capacity decrease rapidly with rising 

income. Among the lowest income group (first quintile), cost barriers are mentioned at 

50.27% and financial capacity limitations at 36.07%, while these figures drop to 17.71% and 

1.53% respectively in the fifth quintile. This clearly highlights the critical role of economic 

resources among low-income households. Moreover, low-income groups are more likely to 

cite constraints such as small household size, inadequate energy consumption levels, and 

payback uncertainty as barriers. This indicates that residential solar PV has limited economic 

appeal when households have lower energy demands. Meanwhile, building age and policy 

restrictions are becoming more common among high-income groups (21.69% in the fifth 

quintile), possibly reflecting the fact that these households are more likely to live in 



94 

 

historically protected buildings and, despite having renovation intentions and resources, are 

constrained by policies or installation feasibility. 

Overall, high-income households tend to adopt PV systems driven by stronger financial 

capacity, higher energy demands, and environmental consciousness. They are also more 

easily influenced by positive external context but still struggle to overcome practical barriers 

such as dwelling type and building age. This finding aligns with [5]'s conclusions. Low-income 

groups' adoption decisions rely more heavily on cost considerations while being more 

constrained by economic burden, lower energy consumption, and insufficient neighborhood 

support. 

6.2.5 Temporal Evolution Trends 

In this subsection, we conduct a comparative analysis of motives and barriers mentioned in 

different simulation years. By observing the relative frequency changes of key factors at 

different time points, we aim to identify important temporal dynamic characteristics 

influencing household decision-making, as well as transformation patterns that may be 

1st 2nd 3rd 4th 5th

age 9.29 12.11 7.76 5 0.86

cost 50.27 42.62 35.29 27.38 17.71

education 0.55 6.3 2.5 2.26 0.8

electricity prices 0 0 0 0 0.06

energy consumption 26.78 33.66 31.66 14.17 8.21

environmental motivation 1.09 0.24 1.13 0.6 1.53

economic benefits 24.04 27.85 26.78 11.55 6.37

financial capacity 36.07 10.17 2.88 2.02 1.53

house age 15.3 16.22 18.52 10.36 19.55

household composition 21.86 25.91 12.52 4.76 1.96

housing type 74.86 66.59 71.34 73.33 71.2

installation process 100 98.55 99.75 97.62 96.88

livable area 1.64 2.42 2.63 7.38 4.9

neighborhood effects 62.3 54.96 56.2 57.38 37.75

others 22.4 19.37 17.65 23.57 21.14

policy incentive 0.55 0.48 2.13 0 0.37

policy regulation 10.38 16.95 16.02 15.83 21.69

technical attitude 0 0 0 0 0.06

Figure 6-10 Relative frequency of barriers per income quintile (%) 
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related to policy changes, market environment, or diffusion processes in neighborhood 

network. 

Figure 6-11 reveals clear structural evolution in adoption motivations over time. Financial 

capacity remains the most important motivating factor throughout the period, but its 

relative importance gradually declines year by year. Economic benefits are frequently 

mentioned in the early period (2021), but gradually lose their dominant position in 

subsequent years. This pattern reflects that while economic thresholds continue to decrease, 

the weight of other factors gradually increases. On the other hand, the importance of policy 

incentives rises significantly, especially with the VAT exemption policy introduced in 2023. 

This makes it become one of the major driving forces, indicating that institutional support 

plays an important promoting role in later adoption. Cost reasons are often cited as driving 

influences in 2022, likely linked to rising solar prices due to global supply chain disruptions 

and the energy crisis [16], leading some financially equipped families to accelerate their 

decision-making processes. 

2021 2022 2023 2024

age 20 5 16 13

cost 131 1586 11 789

economic benefits 1038 775 387 371

education 666 5 9 57

electricity prices 77 358 313 252

energy consumption 748 1275 1645 1736

environmental motivation 2430 84 152 310

financial capacity 3739 3491 3210 2849

house age 112 73 81 62

household composition 63 40 29 33

housing type 329 543 472 321

installation process 461 154 389 278

livable area 39 10 16 8

neighborhood effects 480 282 275 237

others 18 2 2 1

policy incentive 114 2 1380 1290

policy regulation 16 1 27 31

technical attitude 5 0 4 0

Figure 6-11 Frequency of motives mentioned in each year 
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Environmental motivation remains high throughout the four years, with a slight recovery in 

2024, indicating that green consciousness has established substantial stability and long-term 

effect in household decision-making. In the meantime, the frequency of education factors 

steadily declines, likely reflecting that as solar PV information becomes more widely 

available, education plays a less important role as an adoption motivator due to lower 

information acquisition costs [17]. 

Regarding barriers, installation process, dwelling types, and neighborhood influences 

consistently constitute the most critical obstacles (Figure 6-12). This reveals persistent 

challenges in physical conditions and installation coordination, where policy and market 

interventions have not yet achieved obvious improvements. Particularly, the frequency of 

neighborhood effects mentioned as barriers has increased significantly since 2022. This may 

be because coordination and consensus issues among households in multi-story apartments 

became ever more apparent as non-apartment residential properties approached saturation, 

highlighting the social complexity of the technology implementation process. 

Cost barriers, on the other hand, are most noticeable in 2021 and 2022. They are particularly 

2021 2022 2023 2024

age 185 86 96 83

cost 1069 1919 44 66

economic benefits 574 68 50 65

education 79 10 3 1

electricity prices 1 251 425 484

energy consumption 694 7 18 17

environmental motivation 42 59 73 260

financial capacity 173 215 97 108

house age 649 486 491 719

household composition 319 163 296 325

housing type 2760 2575 2374 2503

installation process 3788 3534 3484 3406

livable area 176 11 35 17

neighborhood effects 1888 2866 2527 2627

others 805 587 671 667

policy incentive 26 1 36 40

policy regulation 704 401 354 598

technical attitude 1 0 0 0

Figure 6-12 Frequency of barriers mentioned in each year 
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highlighted in 2022 due to supply chain instabilities, and then quickly decrease thereafter.  

In parallel, the constraining effect of financial barriers declines. This reflects the combined 

impact of market maturation, declining installation costs, and enhanced policy incentives, 

which collectively lower the economic threshold for adoption and improve the perceived 

value proposition of solar PV systems [18]. 

In conclusion, while solar PV adoption motivations and barriers show certain stability over 

time, their relative importance gradually shifts. From the initial motivation dominated by 

financial capacity and economic benefits, it has gradually shifted toward a more diversified 

model that emphasizes policy incentives and environmental motivation more strongly. At the 

same time, the influence of cost as core barriers has significantly weakened, while structural 

constraints (such as installation procedures, dwelling types, and neighborhood coordination) 

continue to be key obstacles across time periods, reflecting the persistence of physical and 

social coordination problems. This evolution suggests that it is necessary to expand the focus 

of policy intervention from purely economic incentives to more systematic strategy 

combinations. 

6.3 Insights and Implications 

This section summarizes the key findings and their practical implications, building on the 

previous analysis of solar PV adoption patterns, motives, and barriers.  

6.3.1 Key Insights 

Transformation of adoption motives: The research finds that the driving factors for solar 

adoption are undergoing a transformation from economic rationality to multi-dimensional 

value. Although financial capacity and economic benefits are significant, their relative 

importance is progressively diminishing as environmental values and policy incentives have 

consistent or increasing impact. This change reflects the evolution of adopter composition 

during the technology diffusion process, namely the transition from early economically-

oriented adopters to value-oriented adopters [3], [19], [20]. This finding indicates the need 

to shift from economic incentives toward comprehensive incentive systems. 

Persistence of Structural Barriers: The study reveals that structural obstacles remain 

universally prevalent across different time periods and demographic groups. Barriers 

including installation process complexity, dwelling type limitations, and collective decision-

making challenges in multi-unit housing consistently appear with high frequency. These 

hurdles are more likely to be caused by shortcomings in institutional mechanisms than by 

technological feasibility or economic affordability. For example, in multi-story housing, as 

pointed out by Kraaijvanger et al.[5], the collective decision-making complexity faced by 
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homeowners' associations (VvE) constitutes the main institutional barrier to adoption. This 

finding underscores the crucial importance of institutional innovation in facilitating 

technology diffusion. 

Disaggregated Effects of Socio-Demographic Heterogeneity: The research further shows 

that solar adoption decisions exhibit significant group heterogeneity, with residents of 

different income levels and dwelling types experiencing distinct motivational drivers and 

constraints. High-income households typically possess stronger financial capacity and 

decision-making autonomy, responding more positively to external signals such as policy 

incentives and social influences. Conversely, middle- and low-income groups living in multi-

unit housing are more likely to be limited by concerns such as financial constraints, low 

neighborhood adoption rates, and lack of negotiation mechanisms, making it difficult for 

adoption intentions to successfully translate into actual behavior. This insight indicates that 

promoting solar adoption requires designing differentiated tools for different group 

characteristics, as uniform policy models cannot effectively cover the needs of 

heterogeneous groups. 

6.3.2 Policy Implications 

Based on the above insights, this study proposes the three primary principles for future 

residential solar PV promotion: comprehensive strategic framework, institutional innovation 

for structural barriers and differentiated strategies to address group heterogeneity. To be 

specific, the following are some practical recommendations: 

1) Transition from economic to comprehensive incentives: With the transformation of 

adoption motivation structure, policy focus should shift from purely economic incentives 

to comprehensive incentive frameworks addressing environmental values, process 

facilitation, and social influences. For example, this could include community education 

programs highlighting solar energy's environmental benefits [21]. 

2) Balance social equity with energy transition: Solar policy design should prioritize energy 

justice, ensuring that the energy transition does not worsen existing social inequalities. 

This requires incorporating distributional effect analysis in policy evaluation and 

implementing targeted support to guarantee participation opportunities for vulnerable 

groups. 

3) Collective adoption support system: To address collective decision-making dilemmas in 

apartment housing, establishing specialized institutional arrangements to reduce 

coordination costs is essential. Drawing on suggestions from Kraaijvanger et al. [5], 

specific measures include: establishing simplified approval processes and one-stop 

service platforms for solar projects for homeowners' associations; providing public 
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funding for preliminary feasibility studies, technical consulting, and legal support; and 

offering innovative frameworks for benefit distribution and property rights allocation, 

including rooftop space sharing mechanisms and insurance arrangements. 

4) Process standardization and optimization: To overcome the universal barrier of 

complexity and uncertainty in installation process, communication costs can be 

minimized if the process becomes more apparent through institutional innovation. This 

involves developing unified solar installation application platforms that include permit 

approval, technical evaluation, and construction management. The standardized 

installation and approval processes can also assist in reducing technical uncertainty and 

quality issues. 

5) Differentiated financial tools: Based on findings of group heterogeneity, distinct financial 

incentive policies are worth implementing. For example, a solution is to provide low-

interest loans and installation subsidies for middle- and low-income households, while 

offering tax benefits and expedited depreciation for higher-income groups. This solution 

attempts to enhance social inclusion in the solar energy transition while avoiding 

increasing existing social inequalities [22]. 

6) Spatially targeted policy design: It is important to implement differentiated policies 

based on regional characteristics [23], which means policymakers should identify 

different types of neighborhoods and develop appropriate plans. In neighborhoods with 

high owner-occupancy rates but low installation rates, authorities can investigate the 

underlying causes and provide targeted financial and institutional support. For densely 

populated areas with multi-unit housing, addressing cooperative decision-making and 

coordination costs through institutional innovation proves beneficial. 

7) Neighborhood-level intervention strategies: Based on neighborhood effect 

considerations, it is recommended to apply community-level intervention measures. 

Drawing on findings regarding spatial interaction effects [8], specific measures could 

include establishing solar demonstration blocks to increase technology visibility, assisting 

in the formation of localized solar cooperative organizations to promote knowledge 

dissemination and experience exchange, and establishing community energy advisor 

systems to provide ongoing technical support. 

In conclusion, this study's analysis of solar adoption behavior and the potential policy 

recommendations provide important insights for understanding household behavior in urban 

energy transition, providing an empirical foundation and specific implementation pathways 

for solar policy optimization in Amsterdam and similar cities. The effective implementation of 

these recommendations requires multi-departmental coordination and long-term 

commitment, aimed at addressing key bottlenecks in current solar promotion and drive cities 

toward more equitable and sustainable energy system transitions. 



100 

 

Reference 
[1] Gemeente Amsterdam, “Basisbestand Gebieden Amsterdam (BBGA),” Onderzoek, 

Informatie en Statistiek (OIS), Accessed: Jun. 23, 2025. [Online]. Available: 

https://onderzoek.amsterdam.nl/dataset/basisbestand-gebieden-amsterdam-bbga. 

[2] A. Grübler, N. Nakićenović, and D. G. Victor, ‘Dynamics of energy technologies and 

global change’, Energy Policy, vol. 27, no. 5, pp. 247–280, May 1999, doi: 

10.1016/S0301-4215(98)00067-6. 

[3] E. M. Rogers, Diffusion of innovations, 3rd ed. New York: Free press, 1983. 

[4] V. Vasseur and R. Kemp, ‘The adoption of PV in the Netherlands: A statistical analysis of 

adoption factors’, Renewable and Sustainable Energy Reviews, vol. 41, pp. 483–494, Jan. 

2015, doi: 10.1016/j.rser.2014.08.020. 

[5] C. W. Kraaijvanger, T. Verma, N. Doorn, and J. E. Goncalves, ‘Does the sun shine for all? 

Revealing socio-spatial inequalities in the transition to solar energy in The Hague, The 

Netherlands’, Energy Research & Social Science, vol. 104, p. 103245, Oct. 2023, doi: 

10.1016/j.erss.2023.103245. 

[6] J. Palmer, G. Sorda, and R. Madlener, ‘Modeling the diffusion of residential photovoltaic 

systems in Italy: An agent-based simulation’, Technological Forecasting and Social 

Change, vol. 99, pp. 106–131, Oct. 2015, doi: 10.1016/j.techfore.2015.06.011. 

[7] L. Korcaj, U. J. J. Hahnel, and H. Spada, ‘Intentions to adopt photovoltaic systems 

depend on homeowners’ expected personal gains and behavior of peers’, Renewable 

Energy, vol. 75, pp. 407–415, Mar. 2015, doi: 10.1016/j.renene.2014.10.007. 

[8] J. Zhang, D. Ballas, and X. Liu, ‘Neighbourhood-level spatial determinants of residential 

solar photovoltaic adoption in the Netherlands’, Renewable Energy, vol. 206, pp. 1239–

1248, Apr. 2023, doi: 10.1016/j.renene.2023.02.118. 

[9] N. Balta-Ozkan, J. Yildirim, and P. M. Connor, ‘Regional distribution of photovoltaic 

deployment in the UK and its determinants: A spatial econometric approach’, Energy 

Economics, vol. 51, pp. 417–429, Sep. 2015, doi: 10.1016/j.eneco.2015.08.003. 

[10] S. Ebrahimigharehbaghi, Q. K. Qian, F. M. Meijer, and H. J. Visscher, ‘Unravelling Dutch 

homeowners’ behaviour towards energy efficiency renovations: What drives and 

hinders their decision-making?’, Energy Policy, vol. 129, pp. 546–561, Jun. 2019, doi: 

10.1016/j.enpol.2019.02.046. 

[11] B. Petrovich, S. L. Hille, and R. Wüstenhagen, ‘Beauty and the budget: A segmentation of 

residential solar adopters’, Ecological Economics, vol. 164, p. 106353, Oct. 2019, doi: 

10.1016/j.ecolecon.2019.106353. 

[12] C. Parsad, S. Mittal, and R. Krishnankutty, ‘A study on the factors affecting household 

solar adoption in Kerala, India’, IJPPM, vol. 69, no. 8, pp. 1695–1720, Jul. 2020, doi: 

10.1108/IJPPM-11-2019-0544. 

[13] L. Niamir, O. Ivanova, T. Filatova, A. Voinov, and H. Bressers, ‘Demand-side solutions for 

climate mitigation: Bottom-up drivers of household energy behavior change in the 



101 

 

Netherlands and Spain’, Energy Research & Social Science, vol. 62, p. 101356, Apr. 2020, 

doi: 10.1016/j.erss.2019.101356. 

[14] D. Agdas and P. Barooah, ‘On the economics of rooftop solar PV adoption’, Energy Policy, 

vol. 178, p. 113611, Jul. 2023, doi: 10.1016/j.enpol.2023.113611. 

[15] F. Scheller, I. Doser, E. Schulte, S. Johanning, R. McKenna, and T. Bruckner, ‘Stakeholder 

dynamics in residential solar energy adoption: findings from focus group discussions in 

Germany’, Energy Research & Social Science, vol. 76, p. 102065, Jun. 2021, doi: 

10.1016/j.erss.2021.102065. 

[16] IEA, ‘Solar PV Global Supply Chains’, IEA, Paris, 2022. [Online]. Available: 

https://www.iea.org/reports/solar-pv-global-supply-chains 

[17] V. Rai, D. C. Reeves, and R. Margolis, ‘Overcoming barriers and uncertainties in the 

adoption of residential solar PV’, Renewable Energy, vol. 89, pp. 498–505, Apr. 2016, 

doi: 10.1016/j.renene.2015.11.080. 

[18] V. Rai and S. A. Robinson, ‘Agent-based modeling of energy technology adoption: 

Empirical integration of social, behavioral, economic, and environmental factors’, 

Environmental Modelling & Software, vol. 70, pp. 163–177, Aug. 2015, doi: 

10.1016/j.envsoft.2015.04.014. 

[19] E. Ruokamo, M. Laukkanen, S. Karhinen, M. Kopsakangas-Savolainen, and R. Svento, 

‘Innovators, followers and laggards in home solar PV: Factors driving diffusion in 

Finland’, Energy Research & Social Science, vol. 102, p. 103183, Aug. 2023, doi: 

10.1016/j.erss.2023.103183. 

[20] J. Palm, ‘Household installation of solar panels – Motives and barriers in a 10-year 

perspective’, Energy Policy, vol. 113, pp. 1–8, Feb. 2018, doi: 

10.1016/j.enpol.2017.10.047. 

[21] M. Briguglio and G. Formosa, ‘When households go solar: Determinants of uptake of a 

Photovoltaic Scheme and policy insights’, Energy Policy, vol. 108, pp. 154–162, Sep. 

2017, doi: 10.1016/j.enpol.2017.05.039. 

[22] X. Xu, C. Sims, C. Chen, J. S. Holladay, G. Jones, and T. Roberson, ‘Looking High and Low: 

Incentive Policies and Residential Solar Adoption in High- and Low-Income U.S. 

Communities’, Energies, vol. 17, no. 18, p. 4538, Sep. 2024, doi: 10.3390/en17184538. 

[23] E. Derkenbaeva, G. J. Hofstede, E. Van Leeuwen, and S. Halleck Vega, ‘Simulating 

households’ energy transition in Amsterdam: An agent-based modeling approach’, 

Energy Conversion and Management, vol. 294, p. 117566, Oct. 2023, doi: 

10.1016/j.enconman.2023.117566. 

 



102 

 

Chapter 7 Discussion 
In the previous chapters, we developed PVAgent, an LLM-based agent model, to simulate 

household decision-making about residential PV adoption and analyzed the insights gained 

from its outputs. This chapter will critically discuss the advantages and limitations of this 

approach, while exploring the potential for further research and practical application. 

 

7.1 Strengths of the LLM-based Agent Model 

Approach 

In this study, the LLM-based agent model demonstrated several advantages in simulating 

households’ solar adoption, which have been discussed in the theoretical literature (see 

Chapter 2) and are also reflected in the specific application of this project. 

First is its advanced reasoning and decision-making capability. Traditional agent-based 

modeling relies primarily on predefined rules, which presents significant limitations when 

simulating complex, ambiguous, and uncertain scenarios in the real world [1], [2]. In this 

study, LLM agents can automatically understand complex information about households' 

living conditions and social relationships through natural language prompts, then generate 

decisions with reasonable explanations. This flexible reasoning process not only improves 

the agents' human-likeness but also avoids subjective biases introduced by manually setting 

rules. 

Second, LLM agents have remarkable knowledge integration and transfer capability. Through 

pre-training on large-scale datasets, LLMs possess extensive social and technological 

knowledge [3], [4]. In this study, without any specialized training, the model could 

automatically simulate household decisions based on simple input information and identify 

relevant barriers or motive factors. Its simulation results indicate the zero-shot generalization 

ability, which effectively helps address challenges posed by missing data or modeling 

complexity. 

Additionally, the interpretability of generative output represents another significant 

advantage. Unlike traditional statistical and machine learning methods that produce only 

structured behaviors (such as "adopt/not adopt"), LLM agents can generate decision 

rationales in natural language form [5]. This interpretability greatly enhances the analytical 
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dimensions of the simulation. In this study, these textual data were not only used as 

behavioral judgments but also served as material for further thematic analysis and policy 

insights. For example, by analyzing the generated reasoning text, we can extract main 

barriers and motivation as well as their distribution characteristics. This is helpful for 

understanding the complex considerations during decision-making processes. 

Meanwhile, scalability and reusability also provide convenience for broader application 

scenarios [4], [6]. The LLM-based agent model features a simple structure and flexible 

prompts, it easily extensible to other simulation contexts. Simulations about different 

regional or policy settings require only updating input information and prompts, without 

reconstructing the model mechanism. This gives this approach good adaptability for further 

application. For example, in the future, the impact of subsidy policies or promotional 

measures on behavioral changes can be quickly simulated through prompt modifications. 

In conclusion, the LLM-based agent model shows advanced capacity in this research. It 

provides a new tool for understanding complex adoption behaviors. However, it must be 

realized that this approach is still in its early stages, and its application comes with several 

limitations and challenges. The next section will further explore these limitations and their 

potential impact on research results. 

7.2 Limitations of the LLM-Based Agent Model 

Although the LLM-based agent modeling approach performs well in this study, it still has a 

couple of limitations. These issues result from the characteristics of current LLM technology 

itself and from specific challenges encountered in the actual simulation process. 

First of all, the challenges commonly faced by AI and LLMs also apply here. One is the 

limitation of computational efficiency and resources. Although LLM-based agents have 

somewhat lowered the threshold for rule design compared to traditional ABM, it requires 

higher computational resources, especially when incorporating external knowledge retrieval, 

multi-round reasoning, or multi-agent system extensions. In this study, considering resource 

constraints, we controlled the number of agents and their interaction complexity. This 

compromise to some extent limited the model's scalability to larger scenarios. Second, 

safety, ethics, and human-machine boundary issues cannot be ignored [7]. Throughout the 

research design process, we consistently adhered to ethical and safety boundaries, but it 

cannot be overlooked that LLM models may always face issues such as privacy leaks, prompt 

manipulation, and training data bias in practice [1]. Especially when simulating sensitive just 

topics, the social impact and potential misleading risks of the results cannot be ignored. This 

also suggests that future applications of LLM-based agents need to be built on more 

transparent and controllable architectures, and require the establishment of more 
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reasonable human-machine collaboration[2]. 

Second is the uncertainty and sensitivity of output. Although LLMs have powerful language 

understanding and generation ability, their generation process involves a certain degree of 

uncertainty [8], and outputs heavily depend on input information and prompt design. In this 

study, even though we set temperature to 0 for maximum reproducibility, the model's 

outputs at the individual level still showed slight fluctuations. While results at the macro 

level (such as regional overall adoption rates) showed certain stability, at the micro-individual 

level, inconsistent behavioral choices might still occur between different experiments, 

causing interference for fine-grained analysis. In addition, during the modeling process, we 

observed that the similar semantic content could lead to different model responses simply 

due to minor changes in prompt wording. This prompt sensitivity has been widely discussed 

in existing literature [9], [10]. It not only increases subjectivity in the modeling process but 

also poses challenges to model reproducibility in simulation. A standardized way of 

documenting the model development and implementation like the ODD protocol in ABM 

may help to enhance methodological transparency across LLM-based simulation studies [11]. 

Third, LLMs are susceptible to hallucination and may generate incorrect or misleading 

information [7], [12]. During the modeling process in this study, we noticed that LLM agents 

sometimes generate seemingly reasonable but factually unsupported information without 

clear basis. For example, some agents would mention reasons like "lengthy installation 

process" or "neighborhood opposition" when talking about their motivations and barriers. 

However, this kind of content was not explicitly provided in the prompts nor set as variables 

in the simulation environment. Such generation might reflect LLM's analogy to real-world 

experiences, but it could also be a typical hallucination phenomenon, generating statements 

inconsistent with factual data and input information [13]. For example, when several agents 

present similar but non-predetermined barrier reasons, researchers may misinterpret them 

for common barriers influenced by general circumstances or social dynamics, reducing the 

usefulness of the study's findings. Therefore, the results should be interpreted with caution 

and need to be always validated and calibrated. 

The depth of cognitive and social behavior simulation is currently limited. Although current 

LLMs can simulate human language expression, they still lack genuine human consciousness 

structures and psychological mechanisms [7]. Without self-awareness and true situational 

perception, they struggle to authentically reproduce individual decisions under uncertain, 

ambiguous, or conflicting situations. In this study, despite guiding agents through prompt 

design to consider non-rational factors such as emotions, uncertainty, and risk preference, 

their decision-making process remains based on language pattern fitting and probabilistic 

generation. For example, behaviors like hesitation or conformity shown by individuals in 
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simulations may not appear consistently across repeated experiments, suggesting these 

behaviors are immediate responses to input contexts rather than being driven by internal 

psychological variables. Therefore, while LLM agents demonstrate certain decision simulation 

capabilities, they still have obvious limitations in simulating complex human psychological 

mechanisms and long-term behavioral evolution. 

Additionally, knowledge boundaries also pose challenges. LLM's knowledge foundation 

comes from existing training datasets, meaning it responds slowly to recent social changes, 

policy adjustments, or technological updates [14]. This makes it difficult to dynamically adapt 

to rapidly changing external environments. Meanwhile, LLM's knowledge retrieval mainly 

depends on the activation capability of input information [2]. If prompts fail to precisely 

guide the retrieval of relevant knowledge, the model's output may remain overly 

generalized. In this study, we found that some agent judgments could not adequately reflect 

details of recent solar energy promotion policies in the Netherlands or Amsterdam region, 

even though we provided hints in the input. All these factors indicate that while LLM agents 

show broad potential, they still require fine-designed external knowledge systems, stronger 

validation mechanisms, and ongoing awareness of their inherent uncertainties. 

7.3 Reflection and Future Recommendation 

Although this study successfully implemented simulation of household’s solar energy 

adoption with an LLM-based agent model and obtained certain valuable insights, some 

limitations should be acknowledged. First, the factor framework derived from literature 

spanning 2015-2023 may inevitably overlook influential factors that have emerged more 

recently. Second, limited by the quantity and quality of available household-level micro data, 

this study used synthetic population as inputs. That may affect the comprehensiveness and 

accuracy of simulation results. Also, when inputting policy and program information, we may 

not have exhaustively covered all relevant policies, and the granularity of information 

provided to the agent was potentially limited. Additionally, translating Dutch policy 

documents and contextual information into English may have introduced interpretation 

biases that affect simulation accuracy. 

Moreover, several methodological limitations affected the study's rigor. Despite multiple 

rounds of prompt design and adjustment, the prompt development process may still carry 

strong subjectivity, and it is difficult to determine whether the adopted prompts were 

optimal. Furthermore, the lack of systematic sensitivity analysis limited deep understanding 

of model stability and parameter influences. Finally, due to time and resource constraints, 

this study could not conduct in-depth comparisons between model reasoning results and 

actual household decision-making processes through methods such as interviews, which to 
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some extent limited the credibility and real-world alignment of the model's reasoning 

outputs. 

Therefore, future studies should improve data collection and model development process. 

This includes automated or semi-automated prompt optimization techniques to reduce 

subjective design bias [15]. Additionally, comprehensive sensitivity and robustness analyses 

should be conducted to ensure the model stability. Comparative validation between model 

reasoning results and real-world behaviors should be strengthened by collecting actual 

household decision-making logic and motivations through interviews, surveys, or workshops, 

in order to enhance the model's real-world alignment and explanatory power.  

To further improve the model’s capabilities, future work could consider introducing Retrieval-

Augmented Generation (RAG) technology [15] or combining hybrid approaches with 

structured knowledge bases and symbolic logic. That may help to address the limitations of 

pure language input. For example, in solar PV adoption simulation, incorporating structured 

information such as policy documents and technical manuals may improve the model's 

understanding of specific technical and policy details to reduce hallucination. 

The practical application scenarios of this method can be further investigated as well. LLM-

based agent model could assist public participation and collaborative decision-making in 

energy policy formulation with its advanced capacity in multi-agent interaction [8]. By 

simulating the perspectives and dynamics of different stakeholders, they can support the 

design of more inclusive intervention. For instance, it can be used to simulate the interaction 

within housing associations to further understand the mechanism of collective decision-

making for households living in apartments. 

Finally, for future similar research, strengthening the transparency and ethical standards of 

simulation studies and establishing standardized reproducible reporting processes are 

fundamental to ensuring scientific rigor and social responsibility. In this case, making prompt 

designs, model parameters, and data sources publicly available is necessary to facilitate peer 

verification and accelerate methodological progress. Also, interdisciplinary collaboration 

between experts from social sciences, computer science, and energy fields, will be essential 

for developing more comprehensive and accurate social behavior simulations that inform 

innovative policy-making and practical applications. 
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Chapter 8 Conclusion 
Residential solar photovoltaic (PV) systems play an important role in energy transition as well 

as in addressing climate change and energy security issues. Particularly in urban areas, solar 

energy adoption not only brings environmental benefits but also creates economic value for 

residents. However, the adoption of solar PV exhibits pronounced social disparities, with 

some socioeconomically disadvantaged households facing greater barriers to adoption, 

raising widespread concerns about energy equity. Understanding the decision-making 

process of household solar adoption enables a deeper understanding of the barriers faced by 

different groups and identification of deficiencies in existing policies, which is crucial for 

promoting equitable adoption and achieving better environmental outcomes. 

Although there has been extensive research exploring the motivating factors and barriers 

affecting solar adoption, understanding of how these factors dynamically operate within 

household decision and behavior remains limited. One of the reasons is existing methods 

struggle to simulate complex decision-making mechanisms. Large Language Models (LLMs), 

with their powerful natural language processing and generation capabilities, demonstrate 

human-like environmental perception and reasoning characteristics. That makes LLM-based 

agents possess the potential to integrate multi-source information and conduct complex 

reasoning without explicit rules, as well as support linguistic interactions between agents. 

This provides new opportunities for simulating and understanding households’ energy 

decision-making behavior. 

Therefore, this study aims to explore the feasibility and development of LLM-based agent 

models in solar adoption decision-making modeling. We expect to provide insights for 

achieving a more equitable energy transition. We developed an LLM-based agent framework 

named PVAgent that integrates socioeconomic characteristics, neighborhood connection and 

policy variables. This framework is used to simulate households' reasoning processes when 

deciding whether to adopt solar PV systems. 

In the first phase, we reviewed 65 relevant papers to identify the multidimensional factors 

influencing household solar PV system adoption. Based on this review and relevant decision-

making theories, we developed a conceptual framework. This framework divides influencing 

factors into four categories: technical attributes (such as installation costs and system 

efficiency), household and individual characteristics (such as income level, educational 

background, and homeownership), personal beliefs and intentions (including attitudes 

toward solar energy, environmental values, and adoption intentions), and external contexts 
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(such as the physical environment, policy incentives, and social networks). We not only 

summarized the important features within each category, but also highlighted possible 

complicated connections between them. We also found that the importance and influence of 

factors may change across different stages of technology adoption. This serves as a 

theoretical foundation and input structure reference for future modeling. 

In the second phase, we focused on constructing and developing the LLM-based agent model 

(PVAgent). We transformed the key influencing factors and typical household decision-

making scenarios summarized in the first stage into structured inputs. Combined with the 

general framework and conversational capabilities of LLM-based agents, we designed an 

agent system capable of simulating the solar adoption decision-making process. Model 

development involved two steps. The first step was based on static population samples and 

primarily simulated the influence of individual-level characteristics (such as income, 

environmental attitudes, and policy exposure) and external variables on solar adoption 

behavior. By encoding these variables as natural language prompts, the model could 

generate explanatory human language outputs. These outputs reflected the judgment logic 

behind household adoption decisions and their underlying motivations. Building on this 

foundation, the model further introduced neighborhood structures and temporal dynamics. 

We therefore constructed a multi-agent system with multi-year evolution capabilities. This 

system simulates how social influence gradually spreads in neighborhood relationships and 

affects household behavioral changes. This mechanism allows the model to move beyond 

static judgment toward behavioral evolution and trend formation. Through manual review 

and trend comparison with real-world data, results showed that the model could generate 

reasonable behavioral logic and motivation at the individual level. At the group level, it also 

demonstrated structural characteristics and diffusion dynamics consistent with reality. 

In the third phase, we conducted simulation analysis of household solar adoption decision in 

three representative neighborhoods in Amsterdam: Oude Pijp, Slotervaart-Noord, and 

Omval/Overamstel. We used the completed LLM agent model and focused on exploring 

behavioral evolution and driving factors across different social groups and spatial 

dimensions. We discovered a transition from economic rationality to multi-dimensional 

values by examining the agents' adoption decisions and reasons. We also identified 

important stratification mechanisms that impact equitable adoption and highlighted the 

institutional foundations of structural barriers. These insights reveal the structural challenges 

faced in promoting equitable energy transition and provide a foundation for designing 

targeted policy interventions. Based on these findings, the study further recommends that 

future policies should shift from single economic incentives to comprehensive intervention 

strategies. Policies should encourage institutional innovation and provide unique solutions 
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for distinct populations. In order to accomplish a more sustainable and equitable energy 

transition, they should also consider dynamic methods at the neighborhood level. 

This study integrates LLMs into energy transition decision-making models with the three-

stage research approach mentioned above. We constructed and validated a household agent 

model with contextual reasoning capabilities. The model simulates household adoption 

decisions for solar PV in urban neighborhoods. This approach provides new tools for agent-

based modeling and understanding complex social decision-making behavior. 

However, this study has several limitations. First, the available data has limited coverage and 

lacks sufficient detail. This constrains the model's input precision and its ability to fully 

capture real-world heterogeneity and dynamic changes. Second, the prompt design process 

involves some subjectivity. Model outputs' repeatability is impacted by their sensitivity to 

verbal suggestions. Third, the lack of systematic sensitivity analysis and field validation limits 

comprehensive assessment of model stability and authenticity. Future research could 

combine user interviews and behavioral surveys to enhance comparison between the model 

and real decision-making mechanisms. 

In future, the LLM-based agent modeling approach will have potential at both theoretical 

and practical levels. Methodologically, this approach can be further enhanced by integrating 

Retrieval-Augmented Generation (RAG) technology or structured knowledge bases. By doing 

this, the model would be better equipped to handle factual and time-sensitive data, which 

would enable it to be used in more complicated situations. In practice, LLM agents can 

support energy policymaking, public participation simulation, and intervention design. They 

provide contextual awareness and interactive tools for urban energy transition. In the 

meantime, appropriate use of this approach requires advanced ethical frameworks, 

reporting requirements, and research transparency. In order to further the theoretical 

development and application of this approach, interdisciplinary collaboration will be 

essential. 

In conclusion, this research provides a new perspective for understanding household 

decision making in solar PV adoption processes by introducing LLM-based agent modeling 

approach. It also provides theoretical foundations and methods for future research and 

policy interventions to achieve just energy transition. 

. 
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Appendix A Context Information 
 

Table A-1 The price of solar panels per year.  

Source: Milieu Centraal, “Kosten en opbrengst zonnepanelen,” MilieuCentraal.nl, juli 2024 [Online]. 

Available: https://www.milieucentraal.nl/energie-besparen/zonnepanelen/kosten-en-opbrengst-

zonnepanelen/ (accessed May. 11, 2025) 

Year Price per Watt peak 

2 2  1.26 euros 

2 21 1.20 euros 

2 22 1.83 euros 

2 23 1.24 euros 

2 24 0.90 euros 

 

Table A-2 Solar PV payback period and savings 

Source: Hoek’s T Installaties, “Kosten en opbrengst zonnepanelen–Terugverdientijd,” 

hoekstrainstallaties.nl, 2021. [Online]. Available: https://www.hoekstrainstallaties.nl/zonnepanelen-

amsterdam/#terugverdientijd (accessed May. 11, 2025). 

“On average, people earn back the cost of solar panels within eight to nine years. They 

have the right number of panels installed to make their savings as optimal as possible. For 

example, the average household of one person has eight solar panels installed. This costs 

about €4     and yields €497 per year. Then you will have earned back the solar panels 

within nine years.” 

 

Table A-3 Electricity price for household in the Netherlands 

Source: Centraal Bureau voor de Statistiek (CBS), “Eindverbruikersprijzen aardgas en elektriciteit,” 

StatLine, gewijzigd op 28 maart 2025. [Online]. Available: 

https://opendata.cbs.nl/statline/?dl=97843#/CBS/nl/dataset/85666NED/table (accessed op May. 

11, 2025) 

Year Electricity price (household consumption classes: 2.5 to 5 

MWh) 

2 2  0.142 euros per KWh 

2 21 0.136 euros per KWh 

2 22 0.105 euros per KWh 

2 23 0.317 euros per KWh 

2 24 0.243 euros per KWh 
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Table A-4 National and local regulation and incentives 

Catalog Level Source 

Subsidy for solar panels 

 

National Rijksoverheid, “Krijg ik subsidie voor zonnepanelen?”, 

Rijksoverheid.nl, bijgewerkt 2025. [Online]. Available: 

https://www.rijksoverheid.nl/onderwerpen/energie-

thuis/vraag-en-antwoord/krijg-ik-subsidie-voor-

zonnepanelen (accessed May. 11, 2025) 

No VAT on solar panels 

since 2 23 

National Milieu Centraal, “Btw en zonnepanelen,” 

MilieuCentraal.nl, vanaf 1 jan. 2023 is het btw-tarief 

0 %. [Online]. Available: 

https://www.milieucentraal.nl/energie-

besparen/zonnepanelen/btw-en-zonnepanelen/ 

(accessed May. 19, 2025) 

Salderingsregeling 

(net metering scheme) 

 

National F. Verheij, M. Menkveld, and O. Usmani, “Effect afbouw 

salderingsregeling op de terugverdientijd van 

investeringen in zonnepanelen,” TNO-rapport P11928, 

Ministerie van Economische Zaken en Klimaat, Mar. 25, 

2020. [Online]. Available: 

https://www.rijksoverheid.nl/documenten/rapporten/2

020/03/25/bijlage-effect-afbouw-salderingsregeling-op-

de-terugverdientijd-van-investeringen-in-zonnepanelen 

(accessed May. 19, 2025). 

Solar panels: conditions 

for permit-free 

installation 

National Informatiepunt Leefomgeving (IPLO), “Zonnepanelen: 

voorwaarden vergunningvrij plaatsen,” IPLO.nl, [Online]. 
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Appendix B 
 

Table B-1 Full list of the reviewed papers for factor analysis in Chapter 4 

No Author(s) Year Title Location Source 

1 Solangi et al. 2015 Social acceptance of solar energy in Malaysia: users’ perspective Malaysia Clean Technologies and 

Environmental Policy 

2 Agarwal et al. 2015 A model for residential adoption of photovoltaic systems US 2015 IEEE Power & Energy 

Society General Meeting 

3 Bauner & Crago 2015 Adoption of residential solar power under uncertainty: Implications 

for renewable energy incentives 

US Energy Policy 

4 Vasseur & Kemp 2015 A segmentation analysis: the case of photovoltaic in the Netherlands Netherlands Energy Efficiency 

5 Schaffer & Brun 2015 Beyond the sun—Socioeconomic drivers of the adoption of small-scale 

photovoltaic installations in Germany 

Germany Energy Research & Social 

Science 

6 Balta-Ozkan et al. 2015 Regional distribution of photovoltaic deployment in the UK and its 

determinants: A spatial econometric approach 

UK Energy Economics 

7 Rai & Beck 2015 Public perceptions and information gaps in solar energy in Texas US Environmental Research 

Letters 

8 Yamamoto 2015 Opinion leadership and willingness to pay for residential photovoltaic 

systems 

Japan Energy Policy 

9 Karakaya et al. 2015 Motivators for adoption of photovoltaic systems at grid parity: A case 

study from Southern Germany 

Germany Renewable and Sustainable 

Energy Reviews 
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No Author(s) Year Title Location Source 

10 Palmer et al. 2015 Modeling the diffusion of residential photovoltaic systems in Italy: An 

agent-based simulation 

Italy Technological Forecasting 

and Social Change 

11 Korcaj et al. 2015 Intentions to adopt photovoltaic systems depend on homeowners' 

expected personal gains and behavior of peers 

Germany Renewable Energy 

12 Sigrin et al. 2015 Diffusion into new markets: evolving customer segments in the solar 

photovoltaics market 

US Environmental Research 

Letters 

13 Robinson & Rai 2015 Determinants of spatio-temporal patterns of energy technology 

adoption: An agent-based modeling approach 

US Applied Energy 

14 Vasseur & Kemp 2015 The adoption of PV in the Netherlands: A statistical analysis of 

adoption factors 

Netherlands Renewable and Sustainable 

Energy Reviews 

15 Yun & Lee 2015 Advancing societal readiness toward renewable energy system 

adoption with a socio-technical perspective 

US Technological Forecasting 

and Social Change 

16 Rai & Robinson 2015 Agent-based modeling of energy technology adoption: Empirical 

integration of social, behavioral, economic, and environmental factors 

US Environmental Modelling & 

Software 

17 Graziano & 

Gillingham 

2015 Spatial patterns of solar photovoltaic system adoption: The influence 

of neighbors and the built environment 

US Journal of Economic 

Geography 

18 Palm 2016 Local factors driving the diffusion of solar photovoltaics in Sweden: A 

case study of five municipalities in an early market 

Sweden Energy Research & Social 

Science 

19 Rai et al. 2016 Overcoming barriers and uncertainties in the adoption of residential 

solar PV 

US Renewable Energy 

20 De Groote et al. 2016 Heterogeneity in the adoption of photovoltaic systems in Flanders Belgium Energy Economics 

21 Khalil et al. 2017 Solar PV adoption for homes (A case of Peshawar, Pakistan) Pakistan 2017 International 

Symposium on Recent 

Advances in Electrical 

Engineering (RAEE) 
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No Author(s) Year Title Location Source 

22 Briguglio & 

Formosa 

2017 When households go solar: Determinants of uptake of a Photovoltaic 

Scheme and policy insights 

Malta Energy Policy 

23 Simpson & Clifton 2017 Testing Diffusion of Innovations Theory with data: Financial incentives, 

early adopters, and distributed solar energy in Australia 

Australia Energy Research & Social 

Science 

24 Kausika et al. 2017 Assessment of policy based residential solar PV potential using GIS-

based multicriteria decision analysis: A case study of Apeldoorn, The 

Netherlands 

NL Energy Procedia 

25 Sommerfeld et al. 2017 Influence of demographic variables on uptake of domestic solar 

photovoltaic technology 

Australia Renewable and Sustainable 

Energy Reviews 

26 Dharshing 2017 Household dynamics of technology adoption: A spatial econometric 

analysis of residential solar photovoltaic (PV) systems in Germany 

Germany Energy Research & Social 

Science 

27 Wolske et al. 2017 Explaining interest in adopting residential solar photovoltaic systems 

in the United States: Toward an integration of behavioral theories 

US Energy Research & Social 

Science 

28 Reeves et al. 2017 Evolution of consumer information preferences with market maturity 

in solar PV adoption 

US Environmental Research 

Letters 

29 Crago & 

Chernyakhovskiy 

2017 Are policy incentives for solar power effective? Evidence from 

residential installations in the Northeast 

US Journal of Environmental 

Economics and Management 

30 Abdullah et al. 2017 Acceptance and willingness to pay for solar home system: Survey 

evidence from northern area of Pakistan 

Pakistan Energy Reports 

31 Dos Santos et al. 2018 Projection of the diffusion of photovoltaic systems in residential low 

voltage consumers 

Brazil Renewable Energy 

32 Lin et al. 2018 The Influence of Local Environmental, Economic and Social Variables 

on the Spatial Distribution of Photovoltaic Applications across China’s 

Urban Areas 

China Energies 
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No Author(s) Year Title Location Source 

33 Parkins et al. 2018 Predicting intention to adopt solar technology in Canada: The role of 

knowledge, public engagement, and visibility 

Canada Energy Policy 

34 Kesari et al. 2018 Consumer Purchasing Behaviour towards Eco-Environment Residential 

Photovoltaic Solar Lighting Systems 

India Global Business Review 

35 Rahut et al. 2018 The use and determinants of solar energy by Sub-Saharan African 

households 

Sub-Saharan 

African 

International Journal of 

Sustainable Energy 

36 Bondio et al. 2018 The technology of the middle class: Understanding the fulfilment of 

adoption intentions in Queensland's rapid uptake residential solar 

photovoltaics market 

Australia Renewable and Sustainable 

Energy Reviews 

37 Walters et al. 2018 A Systems Analysis of Factors Influencing Household Solar PV 

Adoption in Santiago, Chile 

Chile Sustainability 

38 Jayaweera et al. 2018 Local factors affecting the spatial diffusion of residential photovoltaic 

adoption in Sri Lanka 

Sri Lanka Energy Policy 

39 Palm 2018 Household installation of solar panels – Motives and barriers in a 10-

year perspective 

Sweden Energy Policy 

40 Kowalska-

Pyzalska 

2018 An Empirical Analysis of Green Electricity Adoption Among Residential 

Consumers in Poland 

Poland Sustainability 

41 Van Der Kam et 

al. 

2018 Diffusion of solar photovoltaic systems and electric vehicles among 

Dutch consumers: Implications for the energy transition 

Netherlands Energy Research & Social 

Science 

42 Bashiri & Alizadeh 2018 The analysis of demographics, environmental and knowledge factors 

affecting prospective residential PV system adoption: A study in 

Tehran 

Iran Renewable and Sustainable 

Energy Reviews 

43 Zander et al. 2019 Preferences for and potential impacts of financial incentives to install 

residential rooftop solar photovoltaic systems in Australia 

Australia Journal of Cleaner Production 
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No Author(s) Year Title Location Source 

44 Best et al. 2019 Understanding the determinants of rooftop solar installation: 

evidence from household surveys in Australia 

Australia Australian Journal of 

Agricultural and Resource 

Economics 

45 Petrovich et al. 2019 Beauty and the budget: A segmentation of residential solar adopters Swiss Ecological Economics 

46 Jacksohn et al. 2019 Drivers of renewable technology adoption in the household sector Germany Energy Economics 

47 Lukanov & 

Krieger 

2019 Distributed solar and environmental justice: Exploring the 

demographic and socio-economic trends of residential PV adoption in 

California 

US Energy Policy 

48 Poruschi & 

Ambrey 

2019 Energy justice, the built environment, and solar photovoltaic (PV) 

energy transitions in urban Australia: A dynamic panel data analysis 

Australia Energy Research & Social 

Science 

49 Lee & Hong 2019 Hybrid agent-based modeling of rooftop solar photovoltaic adoption 

by integrating the geographic information system and data mining 

technique 

Korea Energy Conversion and 

Management 

50 Sun et al. 2020 Consumer attitude and purchase intention toward rooftop 

photovoltaic installation: The roles of personal trait, psychological 

benefit, and government incentives 

China Energy & Environment 

51 Cherry & Sæ le 2020 Residential Photovoltaic Systems in Norway: Household Knowledge, 

Preferences and Willingness to Pay 

Norway Challenges in Sustainability 

52 Jan et al. 2020 Social acceptability of solar photovoltaic system in Pakistan: Key 

determinants and policy implications 

Pakistan Journal of Cleaner Production 

53 Parsad et al. 2020 A study on the factors affecting household solar adoption in Kerala, 

India 

India International Journal of 

Productivity and Performance 

Management 

54 Wolske 2020 More alike than different: Profiles of high-income and low-income 

rooftop solar adopters in the United States 

US Energy Research & Social 

Science 
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No Author(s) Year Title Location Source 

55 Niamir et al. 2020 Demand-side solutions for climate mitigation: Bottom-up drivers of 

household energy behavior change in the Netherlands and Spain 

Netherlands, 

Spain 

Energy Research & Social 

Science 

56 Reames 2020 Distributional disparities in residential rooftop solar potential and 

penetration in four cities in the United States 

US Energy Research & Social 

Science 

57 Mundaca & 

Samahita 

2020 What drives home solar PV uptake? Subsidies, peer effects and 

visibility in Sweden 

Sweden Energy Research & Social 

Science 

58 De Freitas 2022 What's driving solar energy adoption in Brazil? Exploring settlement 

patterns of place and space 

Brazil Energy Research & Social 

Science 

59 Best 2022 Energy inequity variation across contexts US Applied Energy 

60 Gao & Zhou 2022 Solar adoption inequality in the U.S.: Trend, magnitude, and solar 

justice policies 

US Energy Policy 

61 Ruokamo et al. 2023 Innovators, followers and laggards in home solar PV: Factors driving 

diffusion in Finland 

Finland Energy Research & Social 

Science 

62 Zhang et al. 2023 Neighbourhood-level spatial determinants of residential solar 

photovoltaic adoption in the Netherlands 

Netherlands Renewable Energy 

63 Min et al. 2023 Clean energy justice: Different adoption characteristics of 

underserved communities in rooftop solar and electric vehicle 

chargers in Seattle 

US Energy Research & Social 

Science 

64 Kraaijvanger et al. 2023 Does the sun shine for all? Revealing socio-spatial inequalities in the 

transition to solar energy in The Hague, The Netherlands 

Netherlands Energy Research & Social 

Science 

65 Zhang et al. 2023 Regional disparity of residential solar panel diffusion in Australia: The 

roles of socio-economic factors 

Australia Renewable Energy 
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Appendix C 

C-1 Code for Phase 1 
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C-2 Code for Phase 2 

                       
       

                     
                                                                 

                                    
                                                

  
                      

                                                             
               
                                                                   

                                      
  
                  

                                                                 
                 

  
                        

                                                                  
                                        

  



124 

 

 

       
                     

                                                                 
                                    

  
                      

                                                                    
                                   
                                                                  

      
  
                  

                                                                   
                                             

  
                        

                                                                  
                                        

  



125 

 

 



126 

 

 

 

                                                               

                                                                          
                                  

        
              

                         
                                         

                               
                                                           

                               
                                                    
                                                                 

              
                                              

                               
                                                                    

                                 
                                                                    

      
                             

                                                                   
                             

                                                         
                            

                                                                     
                            

                                                                 
                                

                                                               
                      

                                                    
                                                                   

                                   
                                                                    

                
                                                                       

                 
                            

                                                               
            

                                
                                                             

        
                                

                                                             
        

                                
                                                                 

                                
                                                         

                        
                                

                                                                 
     

                                                                 

                             



127 

 

 

                                         
       

                 
            

                                                               
                                  
                                                               
                                                                 

                                
                                                                 

                                                                    
                                   



128 

 

 

 

 



129 

 

 

 

                                                             

                                   

                     

                             
                    

                                   
    

                                     
                      

                              
            

                 
            

     
    

                
                              

            
                                                         

                                
                          

                  
            

    
                   

                              
            

                                                                  

                                     
                      

                
            

    
                 

                              
            

                            
                                              

                                                                
                       
                                              
                                                     

                                      
                                                    
                       
                                   

                                             
                                                                        

                         
                          



130 

 

 
                                                                              

                                                                             

                                                 
                 
                                              

                                     
                                  

                                                     
                        

                                        

                         
                                       
                                            

                                                        
     

                            

                    



131 

 

 

                                                                             

                       
                                                  
                                      
                                       
                                                     

                        
                                               



132 

 

Appendix D Additional Simulation 

Results Analysis 

 

 

 

Table D-1 Simulated adoption rate and growth rate per household composition type (%) 

                       
             

                                                    

31 5243 66 847 976 064 223 95        

22 3338 778 4413 5311 067 977 35        

29 3413 662 3226 5820 5518 0817 67         

Table D-2 Simulated adoption rate and growth rate per household size group (%) 

Table D-3 Simulated adoption rate and growth rate per livable area category (%) 



133 

 

 

 

Figure D-1 Relative frequency of motives and barriers per dwelling type (%) 

Figure D-2 Relative frequency of motives and barriers per education level group (%) 
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Figure D-3 Relative frequency of motives and barriers per household composition category (%) 
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Figure D-4 Relative frequency of motives and barriers per livable area category (%) 
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Appendix E Usage of Generative AI 
As mentioned in Chapter 3, apart from the LLM-based agent at the core of this research 

which inevitably requires OpenAI's large language model API, the use of generative AI in this 

study is limited to text polishing (non-content) and coding assistance for logic 

implementation, and debugging. Claude Sonnet 4 is primarily used in this case. The following 

are respective examples: 

 

Figure E-1 Example of AI used in language improvement 

As a non-native speaker, my English writing skills is limited, thus I utilize AI to assist optimize 

my wording while avoiding improper word choices. The image above is a true example (the 
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paragraph is from Section 4.3). My document featured excessively long sentences, therefore 

I followed AI advice and cut down the huge statement beginning with "For example..." into 

several shorter ones. Furthermore, while the AI did not say it, I saw a comparable and 

developing link between the two situations, so I added "Furthermore" myself. Also, I felt that 

"cannot" was too harsh in this example, therefore I did not modify the word as AI suggested. 

The revised segment is as follows: 

“This complexity of in uence is further demonstrated across different spatial conditions and 

combined scenarios. Using machine learning techniques, Lan et al.  75  have shown that 

several factors limit the explanatory power of income for solar adoption. For example, in 

areas with both high population density and high income, many apartments and residential 

units are unable to install PV systems due to limited roof space. Furthermore, in areas with 

moderate population density, the situation becomes more complex. Various socioeconomic 

factors interact and constrain one another, collectively in uencing PV technology adoption 

outcomes.” 

The usage of AI in the coding process is mainly via GitHub Copilot in VSCode based on the 

Claude Sonnet 4 model. There was a situation where I encountered output errors in the early 

stages of model development. I couldn't identify where the code was wrong, so I used 

Copilot to help me check the cause. It suggested that the issue might be due to the output 

format not being strict JSON, and provided some modification suggestions. However, its 

modification didn't work effectively. Therefore, I went to check OpenAI's official 

documentation by myself and found a simple method to make the output format JSON, as 

shown in Figure E-3.

Figure E-2 Example of AI used in coding 
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Figure E-3 Instructions on OpenAI document (source: 

https://platform.openai.com/docs/guides/structured-outputs?api-mode=chat) 

 

Overall, I believe generative AI has provided me with significant help in improving my 

language and has also enhanced my programming efficiency. However, it is not always 

correct, and during usage, there have been instances where it altered specialized 

terminology in my thesis or split sentences in ways that made the logic incoherent. 

Therefore, it needs to be approached with caution. This process itself is a good exercise

https://platform.openai.com/docs/guides/structured-outputs?api-mode=chat
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