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Abstract
Previously, we have proposed Erasmus-iCycle, an algorithm for fully 
automated IMRT plan generation based on prioritised (lexicographic) multi-
objective optimisation with the 2-phase ε-constraint (2pεc) method. For 
each patient, the output of Erasmus-iCycle is a clinically favourable, Pareto 
optimal plan. The 2pεc method uses a list of objective functions that are 
consecutively optimised, following a strict, user-defined prioritisation. The 
novel lexicographic reference point method (LRPM) is capable of solving 
multi-objective problems in a single optimisation, using a fuzzy prioritisation 
of the objectives. Trade-offs are made globally, aiming for large favourable 
gains for lower prioritised objectives at the cost of only slight degradations for 
higher prioritised objectives, or vice versa.

In this study, the LRPM is validated for 15 head and neck cancer patients 
receiving bilateral neck irradiation. The generated plans using the LRPM are 
compared with the plans resulting from the 2pεc method.

Both methods were capable of automatically generating clinically relevant 
treatment plans for all patients. For some patients, the LRPM allowed 
large favourable gains in some treatment plan objectives at the cost of only 
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small degradations for the others. Moreover, because of the applied single 
optimisation instead of multiple optimisations, the LRPM reduced the average 
computation time from 209.2 to 9.5 min, a speed-up factor of 22 relative to the 
2pεc method.

Keywords: automated radiotherapy treatment planning, prioritised multi-
objective optimisation, multi-criteria, lexicographic reference point method, 
Erasmus-iCycle, head and neck cancer, IMRT

(Some figures may appear in colour only in the online journal)

1. Introduction

The overall aim of radiotherapy treatment planning is to sufficiently irradiate the planning 
target volume (PTV) while reducing doses to the surrounding organs-at-risk (OARs) as much 
as possible, using a clinically desired prioritisation.

To encourage fast plan computation and to guarantee optimality, the selected treatment 
objectives should preferentially be convex and twice continuously differentiable, e.g. the gen-
eralised equivalent uniform dose (gEUD), logarithmic tumour control probability (LTCP), 
see Niemierko (1997) and Alber and Reemtsen (2007), respectively. Also, constrained optim-
isation is preferred since this allows to control the domains for the objectives, e.g. the dose 
delivered to the PTV should be within 95% and 105% of the prescribed dose. Fast and accurate 
algorithms (Mehrotra 1992, Forsgren et al 2002, Boyd and Vandenberghe 2004, Nocedal and 
Wright 2006, Breedveld et al 2017) can then be applied to solve the corresponding constrained 
convex optimisation problems. Since the structure and properties of such optimisation prob-
lems tend to be quite specific in each application, we have developed an interior-point method 
tuned for radiotherapy treatment plan optimisation (Breedveld et al 2017).

Several techniques may be used to approach the prioritised (lexicographic) multi-objective 
(multi-criteria) radiotherapy treatment plan optimisation problem, such as Pareto navigation 
tools (Craft et al 2006, Miettinen et al 2008) or interactive methods (Korhonen and Wallenius 
1988, Granat and Makowski 2000, Ogryczak and Kozłowski 2011, Long et al 2012). These 
techniques feature (partial) exploration of the Pareto front to compare the possible trade-offs 
between the treatment objectives, but require interference of a physician to steer towards the 
final plan. This may be time consuming and the result is operator-dependent.

In our institution, we investigate an alternative approach: automated multi-objective treat-
ment planning (Breedveld et al 2007, 2009, Breedveld et al 2012, Jee et al 2007, Wilkens 
et al 2007, Haveren et al 2017), in which the decision-making is formalised and processed 
algorithmically, yielding a single clinically favourable, Pareto optimal plan for each patient. 
This approach eliminates hands-on time and results are operator-independent.

We have developed Erasmus-iCycle (Breedveld et al 2012), an algorithm for fully auto-
mated treatment plan generation, based on the 2-phase ε-constraint (2pεc) method for priori-
tised multi-objective optimisation (Breedveld et al 2007, 2009). The system has been tested 
for several treatment sites and is now in full clinical use for treatment of prostate cancer (Voet 
et al 2013b, 2014), cervical cancer (Sharfo et al 2015) (adaptive approach, (Heijkoop et al 
2014)), head and neck (HN) cancer (Voet et al 2013a), liver cancer (Leinders et al 2013), 
and advanced lung cancer (Della Gala et al 2016). Apart from optimisation of beam intensity 
profiles, Erasmus-iCycle can also optimise beam orientations, e.g. for Cyberknife (Rossi et al 
2012, 2015), and intensity modulated proton therapy (IMPT) plans (Water et al 2013).

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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The 2pεc method optimises the beam intensity profiles for fixed beam directions, i.e. flu-
ence map optimisation (FMO). Each plan generation is based on a so-called wish-list, con-
taining planning constraints, that must be obeyed, and treatment objectives with assigned 
priorities that have to be attained as well as possible (in order of their priority). For each 
treatment site, a fixed wish-list is used to represent a uniform decision-making structure 
for all patients with the same tumour type. In the 2pεc method, treatment objectives are 
sequentially optimised according to their priorities in the wish-list. After each objective 
optimisation, an appropriate constraint for the current treatment objective is added to the 
problem, and used in subsequent optimisations. For Pareto optimal plan generation, the 
number of performed optimisations scales linearly with the number of treatment objectives 
to be optimised.

Recently, we introduced the lexicographic reference point method (LRPM) for fully auto-
mated FMO (Haveren et al 2017), as an alternative to the 2pεc method. Similar to the 2pεc 
method, input parameters are uniform for all patients with the same tumour type. In contrast 
to the 2pεc method, the LRPM has a fuzzy objective prioritisation and only requires a sin-
gle optimisation to generate a Pareto optimal treatment plan. The fuzzy lexicographic sca-
larisation technique is an extension to the original reference point method (Wierzbicki 1982, 
1986), including a prioritised structure for the objectives. In contrast to other scalarisation 
techniques, e.g. a weighted-sum scalarisation (Miettinen 1999), the LRPM considers both the 
objective values and the global trade-offs made between the objectives.

The challenge in using the same decision-making structure for different patients with the 
same type of cancer is that each patient has its own specific shape and location of the Pareto 
front due to the uniqueness of each patient’s anatomy. Next to well-selected aims for objective 
values, sane trade-offs are required to arrive at clinically favourable plans. It is undesirable 
to fix trade-offs to a certain level, as some Pareto fronts are steep while others are gradual. 
Secondly, trade-offs should be made global rather than for only two (subsequent) objectives 
(contrary to the approaches in Breedveld et al (2009) and Long et al (2012)). The LRPM is 
capable of solving a prioritised multi-objective problem featuring global trade-offs, i.e. large 
gains in lower prioritised objectives can be favoured if the degradation in higher prioritised 
objectives is small, or vice versa. As a result, the strict lexicographic ordering of the objectives 
(as applied in the 2pεc method) becomes fuzzy.

HN cancer is one of the most complex tumour sites regarding multi-objective optimisation, 
requiring many constraints (10–20) and objectives (20–30) to optimally distribute unavoid-
able dose delivery between the various OARs. The aim of this study is to demonstrate the 
feasibility of the LRPM for generating high-quality plans for HN cancer patients. The plans 
resulting from the LRPM and 2pεc method will be compared both regarding quality and com-
putation time.

In section 2, descriptions of both the 2pεc method and LRPM are provided with their con-
figurations for HN cancer patients. In section 3, we analyse automatically generated plans for 
15 HN cancer patients. Sections 4 and 5 discuss our findings, and conclude the paper.

2. Methods and materials

In prioritised multi-objective optimisation problems, achieving a goal for higher prioritised 
objectives is more important than for lower prioritised objectives. For these problems, we 
assume that the prioritised objectives fi(x) for { }∈ …i n1, 2, ,  need to be minimised while 
obeying the imposed constraints.

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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The 2pεc method and LRPM, both in-house developed for automated prioritised optim-
isation of radiotherapy treatment plans are discussed in sections  2.1 and 2.2, respectively. 
Details on the study of generated HN plans are discussed in section 2.3.

2.1. 2-phase ε-constraint method

For this study, the automated treatment plan generation with the 2pεc method is performed 
with the wish-list in table 1. This wish-list (Voet et al 2013a) is the result of an iterative process 
in which physicians, dosimetrists and physicists collaborated. In each iteration, plans were 
generated and evaluated for a small fixed group of patients, and the wish-list was adjusted 
according to this evaluation.

The applied wish-list in table 1 shows that the first priority is to decrease the LTCP (Alber 
and Reemtsen 2007),

∑α α= −
=

d D
M

D dLTCP ; ,
1

exp .p

j

M
p

j
1

( ) [ ( )] (1)

to a value of 0.4 to ensure a sufficient coverage for the PTV. Here, M denotes the number of 
voxels in the PTV and parameters α and Dp are the cell sensitivity (set to 0.82) and the pre-
scribed dose (46 Gy), respectively. Moreover, an LTCP-value of 0.4 is also sufficient: no effort 
is put into achieving lower LTCP-values than 0.4 (dose escalation), while there is no penalty 
involved if a high dose in the PTV is required for better OAR sparing (Petit et al 2013). The 
LTCP is used instead of the tumour control probability (TCP) since the former is convex and 
the latter not.

After achieving a sufficient coverage for the PTV, the focus is on the OARs. First, the 
focus is to decrease the mean dose delivered to the salivary glands to 39 Gy (priorities 2 and 
3), representing an NTCP-value of about 50% (Murdoch-Kinch et  al 2008, Dijkema et  al 
2010). Before lowering these doses even further (priorities 5, 7, 16 and 17), the maximum 
dose/gEUD for the PTV shells is lowered (priorities 4, 6 and 8). The PTV shells are artificial 
structures at 0.5, 1.5, 3 and 4 cm distance from the PTV and serve to increase dose conformal-
ity, i.e. accomplish a steep dose fall-off outside the PTV. Hereafter, we aim to decrease the 
mean dose of the oral cavity (priority 9) and the maximum doses in spinal cord, brainstem 
and external ring (priorities 10 and 11). The external ring is an artificial structure of a 2 cm 
ring following the inside of the body contour and serves to control the entrance dose. Next, we 
decrease the mean doses in the larynx, swallowing muscles and oesophagus (priorities 12, 13 
and 14) and the maximum dose in the cochleas (priority 15). The focus is then returned to the 
salivary glands (priorities 16 and 17), but now we aim for an even lower goal of 10 Gy. The 
second phase of the 2pεc method then consecutively minimised all objectives again in order 
of priority, but now to their fullest ensuring a Pareto optimal plan. Finally, the lowest priority 
18 serves to lower the overall dose inside the patient and has no goal value, meaning that this 
objective is only minimised at the very end of the algorithm (this final optimisation thus does 
not influence the attained values for the other objectives).

The wish-list has a multi-level structure (indication complex decision-making, see 
Breedveld et al 2012), meaning that some OARs (with the same type) appear multiple times 
to gradually lower the dose. For example, the mean dose of the SMGs can be found twice (pri-
orities 3 and 17), but with another goal. The goal given to the high priority 3 have a relatively 
low demand compared to the goal for priority 17. A multi-level wish-list serves to prevent that 
for instance, the SMGs receive a low dose at the expense of an unacceptably high dose in the 
oral cavity.

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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We refer the reader to Breedveld et al (2009) for a more in-depth description of the 2pεc 
method for prioritised multi-objective optimisation.

2.2. Lexicographic reference point method

2.2.1. Algorithm description. As described above, for all patients with a specific tumour type, 
a uniform configuration (i.e. the same wish-list) is applied for automated multi-objective treat-
ment plan optimisation with the 2pεc method. Also for the LRPM, all plans for a specific 

Table 1. Wish-list used for all HN patients. The prescribed dose for the PTV is 46 Gy.

Constraints

Volume Type Limit

PTV Dmax 48.3 Gy ( 105%=  of D p)
Parotid glands/SMGs Dmax 48.3 Gy ( 105%=  of D p)
Oral Cavity/Larynx Dmax 48.3 Gy ( 105%=  of D p)
Unspecified Tissue Dmax 48.3 Gy ( 105%=  of D p)
PTV Shell 0 cm Dmax 46 Gy (=D p)
Spinal Cord/Brainstem Dmax 38 Gy
Cochleas Dmax 30 Gy

Objectives

Priority Volume Type Goal Sufficient Parameters

1 PTV LTCP↓ 0.4 0.4 Dp  =  46 Gy,
0.82α =

2 Parotid glands Dmean↓ 39 Gy
3 SMGs Dmean↓ 39 Gy
4 PTV shell 0.5 cm Dmax↓ 43.7 Gy 43.7 Gy
5 Parotid glands Dmean↓ 30 Gy
6 PTV shell 1.5 cm Dmax↓ 36.8 Gy
7 Parotid glands Dmean↓ 20 Gy
8 PTV shell 3 cm gEUD↓ 20.93 Gy a  =  15

PTV shell 4 cm gEUD↓ 16.1 Gy a  =  15
9 Oral cavity Dmean↓ 39 Gy
10 Spinal cord Dmax↓ 30 Gy

Brainstem Dmax↓ 30 Gy
11 External ring Dmax↓ 41.4 Gy
12 Larynx Dmean↓ 34.5 Gy
13 Swallowing 

muscles
Dmean↓ 34.5 Gy

14 Oesophagus Dmean↓ 34.5 Gy
15 Cochleas Dmax↓ 23 Gy
16 Parotid glands Dmean↓ 10 Gy
17 SMGs Dmean↓ 10 Gy
18 Unspecified tissue Dmean↓ —

Abbreviations: PTV  =  planning target volume; SMG  =  submandibular gland; LTCP  =  logarith-
mic tumour control probability (1); gEUD  =  generalised equivalent uniform dose.

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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tumour type are generated with a uniform configuration, consisting of a reference path and 
trade-off parameters (explained below). In contrast to the 2pεc method, the LRPM is designed 
to consider all treatment objectives in a single optimisation using a fuzzy objective prioritisa-
tion. In this section, we illustrate the principles of plan optimisation with the LRPM for two 
objectives.

The basic idea of the LRPM is to represent the lexicographic ordering of the objectives 
by multiple reference points. A reference point assigns goal values to the objectives that are 
equally important to attain, e.g. the reference point ( ) ( )=f f, 30, 401 2  in figure 1(a) means that 
attaining the goal value of 30 for f1 is as important as attaining 40 for f2. The lexicographic 
ordering is implemented by using multiple reference points, so that aimed improvements are 
allowed to vary. This principle is shown in figure 1(a), e.g. for subsequent reference points 
r1  =  (50, 50) and r2  =  (30, 40), the aimed improvements are 20 for f1 and 10 for f2 (i.e. more 
focus on improving f1) while for subsequent reference points r2  =  (30, 40) and r3  =  (20, 10), 
the aimed improvements are 10 for f1 and 30 for f2 (i.e. more focus on improving f2). The 
general rule is that the goal values for each objective may only improve for each pair of sub-
sequent reference points.

After multiple reference points are selected in the configuration process (details in Haveren 
et al (2017)), a strictly monotonic reference path through these reference points is made, see 
figure 1(a). This path may be nonlinear in general, but we consider the piecewise linear case 
as in figure 1(a). The principle of the LRPM is as follows: the first priority is to meet the 
goal values in the first reference point r1. If r1 is feasible (i.e. no constraints are violated), the 
LRPM will steer the solution to the second reference point r2 (second priority), following the 
reference path. This process continues until no further improvement is possible for any of the 
objectives (without violating at least one constraint), at which point the Pareto optimal plan is 
found. In other words, the LRPM is designed to follow the reference path downwards while 
remaining feasible so that the generated plan is the intersection of the reference path and the 
Pareto front.

Technically, the LRPM minimises a single overall function depending on all objective val-
ues, subject to the constraints imposed. This procedure is visualised with indifference curves. 
An indifference curve is a set of points where the overall function takes on a certain constant 
value. In figure 1(b), several indifference curves are depicted (partially, to improve visibility), 
where the corresponding constant values decrease when moving down the reference path. The 
optimal solution corresponds with the lowest value for the indifference curve while satisfying 
the constraints. For the final Pareto optimal plan, the intersection of the area under the indiffer-
ence curves and above the Pareto front is exactly a single point, e.g. the square in figure 1(b) 
corresponds to the generated solution.

However, following the reference path as explained above does generally not lead to 
clinically relevant plans, see figure 1(c), where it is intuitively clear that the square does 
not represent a well-balanced plan, as a large favourable gain for objective f2 can be real-
ised for only a small degradation of objective f1. The problem is that the indifference 
curves generate the plan solely based on the objective values on the reference path while 
completely ignoring the trade-offs made between objectives, i.e. these indifference curves 
are non-fuzzy since they strictly obey the imposed lexicographic ordering of the objec-
tives. To address this issue so that global trade-offs between objectives are also considered, 
bends are introduced to the indifference curves to create fuzzy indifference curves as in 
figure 1(d). These bends are configured by specifying trade-off parameters (one for each 
objective) integrated in the LRPM. To demonstrate the effect, compare the plans gener-
ated in figure 1(d): the square is the result of using the non-fuzzy indifference curves (no 

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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trade-off parameters) and the diamond results from using fuzzy indifference curves. In 
some cases, e.g. for patient 1 in figure 1(e), the fuzzy and non-fuzzy indifference curves 
generate the same plan since the intersection of the reference path and the Pareto front hap-
pens to represent a well-balanced plan.

With fuzzy indifference curves, the LRPM can be uniformly configured to generate clini-
cally relevant plans for a group of patients (figure 1(e) sketches the situation). The fuzziness 
is required to account for the variation in shape and location of the Pareto fronts, caused by 
differences in anatomy.

With constraints summarised in the vector ( )xg , for which we assume without loss of 
generality that each entry should be less or equal to zero, the mathematical model for the 
LRPM is

Figure 1. Principle LRPM for two objectives. (a) Reference points/path for 
lexicographic ordering, (b)–(c) plan selection with non-fuzzy indifference curves, 
(d) effect fuzzy indifference curve on plan selection, (e) plan selection for a group of 
patients using a uniformly configured LRPM.

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318
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⩽
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n
j

1  are the p reference points, and parameters vj, wi
j and α α,1 2 concern the 

parametrisation of the piecewise linear reference path, see figure 1(a). The ρi are the trade-off 
parameters used to bend the indifference curves, see figure 1(d). The z and ai are additional 
unbounded decision variables required for a convex and twice differentiable formulation of 
the optimisation problem. A more in-depth description of the LRPM for prioritised multi-
objective plan generation can be found in Haveren et al (2017).

2.2.2. Technical issues. There are two practical issues with applying the LRPM: the suf-
ficient parameter values in the wish-list (table 1) and numerical issues for the LTCP (1) as 
objective and/or constraint.

In the LRPM, objectives are always encouraged to improve. However, for an objective with 
a sufficient value, it is undesired to improve an objective beyond this value since this would 
deteriorate other objectives too severely. To address this issue, we have to replace each objec-
tive with a sufficient value. For example, if objective f1 has a sufficient value of 0.4, we replace 
the objective function f1 by the convex function

( ) [ ( ) ]=h x f x: max , 0.4 .1 1

To implement this into the optimisation problem derived in Haveren et al (2017), the entries 
f1(x) are replaced by the newly introduced decision variable h1 and the following constraints 
are added

⩾ ( )
⩾

h f x

h

,

0.4.
1 1

1

In this way, the optimisation problem remains both smooth and convex. These constraints still 
allow f1 to be below 0.4 (in case dose escalation is required (Petit et al 2013)), but this is not 
encouraged when optimising h1.

The other issue we encountered was that the LTCP can cause numerical problems. The 
problem is poorly scaled since the exponential terms in the LTCP can lead to large values 
compared to the mean, maximum/minimum and gEUD. To solve this issue, we introduced the 
logarithmic LTCP (LLTCP), i.e. ( )=LLTCP ln LTCP : an equivalent convex objective which 
has a one-to-one correspondence with the (L)TCP.

2.3. Study setup

In this study, we consider 15 HN cancer patients receiving bilateral neck irradiation, all with 
a prescribed dose of 46 Gy (no boost techniques were applied). The data is available as part 
of the TROTS (The Radiotherapy Optimisation Test Set) dataset (Breedveld and Heijmen 
2017). For each patient, we use both the LRPM and the 2pεc method to automatically generate 
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a treatment plan. All plans were generated using a 23 equi-angular coplanar beam setup to 
ensure achievable volumetric modulated arc therapy (VMAT) dose distributions (Voet et al 
2013a, Sharfo et al 2015). To objectively compare the performance of both multi-objective 
methods, we did not apply VMAT segmentation to avoid a bias in the plan comparisons.

All optimisation problems were solved using the in-house developed primal-dual interior-
point method (Breedveld et al 2017), specifically tuned for the radiotherapy plan optim isation 
setting, with 2x 2.90 GHz Intel Xeon E5-2690 CPUs (total of 16 cores) and 128 GiB of 
memory running on Linux.

3. Results

All generated plans showed the same value of 0.4 for the LTCP, resulting in a PTV coverage of 
at least 99% for 95% of the prescribed dose for each plan. On average, the LRPM plans even 
showed slightly increased PTV coverage of ±0.02% 0.04%-point (range [   ]−0.06 0.08 ). The 
differences in plan parameters for the most relevant objectives and evaluation criteria for the 
individual patients are visualised in figure 2. As all plan values for the PTV Shell 0.5 cm are 
equal for each patient (43.7 Gy), this plan objective is not shown in the figure.

In figure 2, the differences in the plan trade-offs can be seen for each patient. For example, 
the trade-offs in both plans for patient 10 are similar, whereas the trade-offs for patients 4 and 
8 lead to noticeable plan differences. For patient 4, the LRPM plan significantly reduces the 
NTCP of the right SMG at the cost of a slight degradation of the NTCP for the left parotid 
gland and the mean doses in the larynx, swallowing muscles and oesophagus. A different 
trade-off is seen for patient 8: the LRPM plan significantly reduces the mean doses to the 
MCP and oesophagus, and also slightly reduced the NTCP for the right SMG at the cost of 
a slight degradation of the conformality (3 and 4 cm PTV shells). The LRPM aims for more 
balanced trade-offs (large favourable gains at the cost of small degradations), i.e. the strict 
lexicographic ordering of the objectives becomes fuzzy. The particular OARs that allow large 
favourable gains (without large degradations for other OARs) differ per patient (see figure 2) 
i.e. the LRPM is not configured to improve certain OARs but to find a sane and balanced 
global trade-off. Differences in conformality (measured by the maximum dose/gEUD for the 
PTV shells) were minimal.

In figure 3, the distributions of differences in selected plan parameters are sketched using 
boxplots. Most medians are positive, and thus in favour of the LRPM. For the differences in 
maximum doses of the spinal cord and brainstem, the medians are even well above zero. The 
negative medians (in favour of the 2pεc method) are only slightly below zero. From the 13 
observed outliers in figure 3, there were 10 in favour of the LRPM. The boxplots show that 
the global trade-offs are generally better balanced for the plans generated with the LRPM in 
comparison with the plans generated with the 2pεc method, i.e. relatively large favourable 
gains were possible for relatively small degradations.

Whereas the LRPM only needs a single optimisation for each patient, the 2pεc method 
requires multiple optimisations which scales linearly with the number of treatment objec-
tives. Consequently, we observed a mean computation time for treatment plan generation of 
±9.5 3.7 min (range [   ]0.5 14.5 ) for the LRPM and ±209.2 91.0 min (range [   ]9.5 362.0 ) for 

the 2pεc method, an observed speed-up factor of the mean computation times of 22 for the 
LRPM relative to the 2pεc method. This time gain allows a more effective and efficient clini-
cal workflow (e.g. after the physician finished delineation of the target, the final plan approval 
can be done within minutes by the same physician) and is an important step towards the highly 
desired application in online adaptive radiotherapy.
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4. Discussion

The purpose of this study was to demonstrate that a uniformly configured LRPM is capable 
of fully automated generation of plans for HN cancer patients with at least similar clini-
cal plan quality as the plans that were automatically generated with the clinically applied 
2pεc method, thereby significantly reducing the required plan computation time. Generally, it 
was observed that the LRPM is capable of better balancing the global trade-offs between the  
different OARs, resulting in more favourable plans. In a previous prospective clinical study 

Figure 2. Plan differences (2pεc-LRPM) per patient for the most relevant treatment 
objectives and evaluation criteria. Positive values are in favour of the LRPM, whereas 
negative values indicate that the 2pεc method performed better. All generated plans are 
Pareto optimal. SMG  =  submandibular gland, MCS  =  musculus constrictor superior,  
MCM  =  musculus constrictor medius, MCI  =  musculus constrictor inferior, MCP  =   
musculus constrictor cricopharyngeus.

R van Haveren et alPhys. Med. Biol. 62 (2017) 4318



4328

(Voet et  al 2013a), we demonstrated for HN cancer fully automated plans with the 2pεc 
method had significantly higher quality than the manually generated plans in clinical rou-
tine (in 97% of cases, the treating physician selected the automatically generated plan for 
treatment because of superior quality). Therefore, the plans generated with the 2pεc method 
can assumed to be clinically relevant, and a proper benchmark for quality comparisons with 
LRPM plan generation as performed in this study.

For the LRPM optimisation problems, LTCP functions (1) were replaced by equivalent 
LLTCP functions (section 2.2.2) to avoid numerical issues caused by the exponential terms in 
the LTCP. An LTCP function with goal value b  >  0 can thus be replaced by an LLTCP func-
tion with goal value ( )bln  without changing the result of the FMO and maintaining convexity. 
As the use of the LLTCP tends to reduce the number of iterations needed by the solver and 
thereby reducing the computation time, we also used the LLTCP (instead of the LTCP) in the 
2pεc method for a fair comparison.

The dense convex nonlinear optimisation problems (solved with the in-house developed 
algorithm described in Breedveld et al (2017)) are of large-scale: the number of beamlets is 
in the order of O(104) and the number of total voxels considered is in the order of O(105). 
For the LRPM, a single optimisation problem needs to be solved which led to an observed 
average computation time of 8.6 min. The 2pεc method needs to solve a sequence of optim-
isation problems to determine a clinically relevant Pareto optimal plan. On average, the 2pεc 
method required solving 28 (range [   ]23 32 ) optimisation problems to generate a plan. The 
2pεc method contains heuristics to reduce the overall runtime of the algorithm, resulting 
in the varying number of optimisation problems to be solved for different patients. Firstly, 
the 2pεc method checks whether or not an objective should be optimised. If the solution of 
the previous optimisation implies a lower objective value for the current objective than the 
specified goal in the wish-list (table 1), no optimisation is performed but the objective is 
simply constrained to the specified goal. Also, if the objective was previously optimised but 
unable to attain its specified goal, it is evident that a lower goal cannot be reached either, so 
the optimisation is skipped. This mostly depends on the patient’s anatomy, e.g. if a parotid 
gland has a large overlap with the PTV, the higher goal cannot be reached, and the scheduled 
optimisations for the lower goals will be skipped. The second heuristic is that the solver does 
not always solve to optimality, but stops if the solution becomes feasible and lower than the 
specified goal for the current objective. Another property of the 2pεc method is that due to 
the sequential addition of objectives, the first few optimisations are solved faster than the last 
optimisations. On the other hand, the LRPM solves a single optimisation problem, roughly of 
the same size as the last optimisation in the 2pεc method, and is always solved to optimality 
(no early termination).

The input parameters for the LRPM consist of reference points and trade-off parameters. 
While the former are automatically converted from the wish-list (Haveren et al 2017), the 
latter were determined in an iterative manner, where differences with the 2pεc method were 
analysed for a training set in each iteration. After the results were satisfying enough, the corre-
sponding parameters of the LRPM were applied for all 15 HN cancer patients. This procedure 
of determining suitable trade-off parameters can be time consuming, especially with many 
(20–30) objectives. We plan to address this issue in the near future by developing knowledge-
based algorithms to automatically configure the LRPM.

For all HN cancer patients considered in this study, no boost techniques were applied. 
From a technical point of view, the LRPM has no limitations on the number of boost volumes. 
Computational difficulties may arise due to the scaling of the LTCP function, however this 
limitation is rectified with the technique proposed in section 2.2.2. We have investigated this 
for generation of single boost prostate plans (Haveren et al 2017), and no difficulties were 
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detected. Further investigation is required to determine if this also holds for more complex 
configurations with multiple boost volumes.

The comparison between the two automated planning approaches shows that the LRPM 
results in clinically more favourable trade-offs (compared to the 2pεc method) for some 
patients. Both multi-objective methods have different unrelated mechanisms for the trade-
offs. The 2pεc method statically relaxes the minimum of an objective by 3% (in case the 
desired goal value was infeasible) to create some room for lower prioritised objectives. While 
this approach generally results into clinically satisfying trade-offs, it may sometimes cause a 
jump from one steep part of the Pareto front to another. Consequently, it is also not possible 

Figure 3. Boxplots of the plan differences (2pεc-LRPM) for treatment objectives and 
evaluation criteria. The bottom and top edges of the boxes are the first and third quartiles 
respectively, the horizontal solid lines represent the medians, the whiskers are at 1.5 
times the interquartile range and the pluses represent outliers. SMG  =  submandibular 
gland, MCS  =  musculus constrictor superior, MCM  =  musculus constrictor medius, 
MCI  =  musculus constrictor inferior, MCP  =  musculus constrictor cricopharyngeus.
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to define an acceptable dynamic relaxation in a sequential optimisation approach (Long et al 
2012), as it is impossible to predict the effect of the relaxation mechanism on lower prioritised 
objectives. This issue can be overcome by defining global trade-offs where all objectives are 
weighted simultaneously, which is the case for the LRPM.

For the results (section 3), a clear distinction should be made between the plan comparison 
for individual cases (figure 2) and the distributions of plan differences for all patients (figure 
3), since there are quite a few outliers while most medians are around zero. For example, the 
outlier of 12.9%-point improvement of NTCP for the right SMG is clinically significant, but 
the median of this plan parameter is close to zero. Also, although the medians for the differ-
ences in maximum doses of the spinal cord and brainstem are well above zero, there is little 
clinical significance (although a lower dose is always preferred), i.e. the differences do not 
have a significant impact on the quality of life of the patients. However, for re-irradiation of 
recurrent HN cancer, the additional sparing of the spinal cord and brainstem may lead to a 
better possible re-treatment.

Recently, we demonstrated the feasibility of the LRPM for generation of high-quality 
VMAT plans for prostate cancer (Haveren et al 2017). In this study, 30 randomly selected 
prostate cancer patients were considered. For each patient, treatment plans generated with 
the 2pεc method were compared with the plans resulting from the LRPM. In a previous study 
(Voet et al 2014), it was demonstrated that the plans generated with the 2pεc method were 
of high clinical quality. For these prostate cancer patients, both the 2pεc method and LRPM 
achieved almost identical results. This is because the trade-offs for the prostate site are much 
more straightforward compared to the HN site. Still, the average computation time for the 
LRPM was reduced from 12.4 to 1.2 min, a speed-up factor for the average computation time 
of 10 relative to the 2pεc method.

5. Conclusions

In this paper, we investigated the use of the novel LRPM for automated multi-objective treat-
ment plan generation with fuzzy objective prioritisation for HN cancer patients receiving 
bilateral neck irradiation. For the majority of treatment plans generated with the LRPM, qual-
ity was at least as good as the quality of the corresponding plan generated with the clinically 
applied non-fuzzy 2pεc method (in Erasmus-iCycle) for automated plan generation. For indi-
vidual cases, the fuzziness of the LRPM led to significant reductions of dose in certain OARs 
at the cost of small increments of dose for other OARs while maintaining a similar PTV 
coverage. For some cases, this resulted in a clearly favourable plan for the LRPM. Average 
computation times were reduced with the LRPM from 209.2 to 9.5 min, a speed-up factor of 
22 relative to the 2pεc method. This time gain improves the effectiveness and efficiency of the 
clinical workflow, and is an important step towards online adaptive radiotherapy while avoid-
ing deteriorations in plan quality. The LRPM is suited for fast and high-quality automated plan 
generation for HN cancer patients.
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