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and Tomislav Dragičević , Senior Member, IEEE

Abstract—The implementation of finite-control-set model pre-
dictive control (FCS-MPC) in voltage source inverters (VSIs) can
make the system suffer from poor current harmonics performance,
which may complicate the design of the required AC filter. To
overcome this shortcoming, a carrier-based modulated model pre-
dictive control (CB-MMPC) strategy is proposed in this paper.
This method enables the utilization of existing PWM modulation
techniques with FCS-MPC, where a modulation waveform with
zero-sequence signal injection is generated and compared to a trian-
gular carrier wave, while optimizing the selection of the switching
states. As it is shown, the studied CB-MMPC strategy not only
considerably improves the current total harmonic distortion (THD)
but also attains the performance of fast current dynamic response
and robustness as the traditional FCS-MPC. Herein, the detailed
implementation of the CB-MMPC control strategy is given, while
considering its application to the current feedback control loop of a
three-phase three-wire two-level VSI modulated at constant switch-
ing frequency. Finally, PLECS circuit simulation and a 3-kW VSI
prototype are used to verify the superiority and the effectiveness
of the presented CB-MMPC strategy. This is also benchmarked to
the FCS-MPC and dead-beat based controllers.

Index Terms—Finite-control-set model predictive control (FCS-
MPC), carrier-based modulated MPC (CB-MMPC), pulse width
modulation (PWM), voltage source inverters (VSIs).

I. INTRODUCTION

THREE-PHASE two-level voltage source inverters (VSIs)
have been widely used in many industrial applications such

as traction of electric vehicles, grid-tied photovoltaic systems,
and other renewable energy generations [1], [2]. In recent years,
with the development of high performance microprocessors [3],
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the finite-control-set model predictive control (FCS-MPC) has
gained attention. FCS-MPC utilizes the analytical model of the
system to predict its future behavior over a time horizon. This
control technique applied to the current control of a VSI provides
exciting features such as easy implementation and fast dynamic
response without the necessity of designing the controlling
parameters of an alternative linear control logic such as the ones
used in a proportional-integral (PI) or proportional-resonator
(PR)-controllers [4]. However, since FCS-MPC utilizes only
one switching state for the whole sampling interval, the con-
troller will generate an output waveform with a variable switch-
ing frequency, which can negatively affect the voltage/current
waveform harmonic spectrum generated by the VSI, making
the design of harmonic filters more challenging [5]. Moreover,
though a shorter sampling period will improve the waveform
quality, it is still a challenge for the commercially available
micro-controller unit (MCU) to achieve an ultra-high sampling
frequency by compressing the total required computation to an
extremely short time [6].

Several advanced strategies have been proposed to address the
main drawbacks of the conventional FCS-MPC and to improve
the output current quality of two-level VSIs [7]–[10]. In [7],
the prediction horizon of the FCS-MPC is increased to improve
the control performance, however, due to the higher numbers
of possible converter states required to be calculated, a larger
computational time can not be avoided in the MCUs. Discrete
space vector modulation (DSVM) integrated FCS-MPC
is proposed in [8], [9]. This strategy can achieve a high
performance of the VSI output current waveform in both static
and dynamic operations, but it needs to calculate a large number
of virtual voltage vectors which reduces its effectiveness due
to data processing limitation of today’s commercial MCUs.The
modulated MPC (MMPC) studied in [10] applies multiple
vectors, and it can achieve improved performance at a constant
switching frequency, thereby addressing the major issue of the
FCS-MPC, i.e. it mitigates the drawbacks associated to the
variable frequency operation. Such a method, which combines
MPC and the principle of PWM modulation strategies while
retaining all the advantages of the FCS-MPC, is being a current
focus of interest in MPC studies [5], [10]–[16].

Conventional MMPC adopting the space-vector modulation
scheme was initially presented for a cascaded H-bridge back-
to-back converter in [11], and then extended to a three-phase
active rectifier in [10] and a shunt active filter in [12]. Based
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on these MMPC studies, a finite-set MPC strategy with fixed
switching frequency is developed in the grid-tied application [5]
while the balance of the partial DC capacitor voltages is realized
by utilizing the available redundant voltage vectors. According
to the arm-voltage-regulating algorithm, a novel MMPC strat-
egy especially suited for modular multilevel converters (MMC)
is proposed in [13] with the aim to enhance the steady-state
performance of the system under unbalanced grid conditions.
In [14], the error between the measured currents and the current
references is used to calculate the times of the three vectors to
be used within a switching period, i.e. two active vectors and a
zero vector, resulting in a zero tracking error. Considering the
over-modulation region of the two-level VSI, a new MMPC with
optimized over-modulation is proposed in [15] that guarantees a
spectrum switching frequency in the linear modulation range and
extends its optimized response to the over-modulation region.
A modified MMPC technique is presented in [16] to improve
the steady-state and transient performance of the conventional
MMPC scheme, which determines the optimal vectors to be
applied by evaluating the cost function values of all admissible
voltage vectors.

Most of the aforementioned MMPC strategies are based on the
space-vector modulation scheme, which needs to calculate the
time lengths of the inverter switching states and then to program
the voltage pulses directly after obtaining the operation time of
the selected vectors. Another modulation technique for VSIs is
named carrier-based implementation [17], where a modulation
wave is compared with a triangular carrier wave and the intersec-
tions define the switching instants for the associated VSI bridge
leg switches. The carrier- and space-vector based pulse width
modulation (PWM) methods have equivalent performances [18].
Furthermore, the implementation of carrier-based modulations
is simpler than the space-vector modulation approach as the
involved computation burden is generally reduced. It is noted
that so far very limited publications exist using the carrier-based
PWM approach to realize the MMPC strategy.

To fill this gap, a new carrier-based MMPC (CB-MMPC)
strategy for the three-phase three-wire two-level VSI is pro-
posed. Different from the traditional MMPC in [5], [10], the
error between the reference duty cycle and the duty cycle to
be executed in the next period is applied in the cost function,
and the modulation waveform is derived directly based on the
pairs of switching states which minimizes the optimization loop
of the cost function. Unlike the recently published carrier-based
PWM methods for motor drives and grid-connected applications
in [19]–[21], the main current control scheme used in this paper
is based on the concept of MPC, not on the PI-controller, and
thus it is not necessary to design the controlling parameters.
It is noted that PI-controller is well suited for achieving zero
steady-state error but often at the cost of degraded transient per-
formances [22], [23]. Compared with the model-based dead-beat
controllers (DBC) [24], [25], the proposed strategy will select
the optimal vector pairs based on the cost function minimization,
which will be more robust if there is a large mismatching in
the circuit model parameters and in the control loop. Presented
through carrier-based PWM approach [17], the CB-MMPC
method can be of simple implementation with a digital signal

Fig. 1. Three-phase three-wire two-level VSI.

processor (DSP); meanwhile, instead of continuous PWM meth-
ods, e.g., SVPWM and SPWM, different discontinuous PWM
(DPWM) methods with zero-sequence signals injection can be
realized with the concept of the CB-MMPC without compro-
mising the performance of fast current dynamic response and
robustness.The contributions of this paper are listed as follows:

1) The idea of carrier-based PWM implementation is com-
bined with the concept of model predictive control to
realize the MMPC method.

2) Both the carrier-based continuous and discontinuous
PWM methods are implemented.

3) The cost function based on the duty cycle is derived, where
the error of the zero vector and zero-sequence signals
injection can be introduced.

4) Benchmarking of classic FCS-MPC, DBC based PWM
methods, and studied CB-MMPC methods are presented
in experiments.

The rest of the paper is divided as follows. In Section II, the
analytical model of the three-phase three-wire two-level VSI
is derived. In Section III, the detailed implementations of the
carrier-based PWM approach, the classic FCS-MPC, and the
DBC based PWM method are given. In Section IV, the principle
of the CB-MMPC method is illustrated in detail, where the
CB-MMPC SVPWM and CB-MMPC DPWM1 are selected as
examples. Finally, in Section IV, a PLECS simulation and a
3-kW VSI prototype are used to verify the superiority and the ef-
fectiveness of the presented CB-MMPC strategy in comparison
with the traditional FCS-MPC and DBC PWM based methods.

II. MODELING OF TWO-LEVEL VSIS

A three-phase three-wire two-level VSI circuit is shown in
Fig. 1. The basic converter is composed of 6 active switches, two
series-connected DC capacitors C1 and C2, and a Y-connected
three-phaseR− L load. Note that in Fig. 1, ia, ib and ic represent
the output currents of the inverter, while va, vb and vc are the
converter phase voltages; L refers to the value of the inductor
and Rp is the equivalent parasitic resistance of the inductor; and
RL is the value of the series resistor modeling the active power of
the load. The switching states and the corresponding converter
terminal voltages are summarized in Table I. Assuming that
each capacitor voltage is equal to half of the DC-link voltage,
then these three switching states (x = a, b, c) generate an out-
put terminal voltage of vxo ∈ {−Vdc/2, Vdc/2}, i.e. voltage of
terminal x = a, b, c with respect to the terminal o as shown in
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TABLE I
SWITCHING STATES (x = a, b, c)

Fig. 1. According to the current flow direction in Fig. 1, the
current dynamics can be represented in the α-β coordinates as:{

Ldiα
dt = vα −Rpiα −RLiα = vα −Rpiα − vαL

L
diβ
dt = vβ −Rpiβ −RLiβ = vβ −Rpiβ − vβL.

(1)

where vαL= RLiα and vβL= RLiβ represent the α-β coordi-
nates of the voltage across the load, and in a grid-connected
application, e.g. in a photovoltaic inverter, it could represent the
grid voltage or the voltage measured across the capacitor of a
multi-order harmonic filter, i.e. LCL filter. In the reminder of
this paper a resistive load will be considered for simplification
purpose so vαL and vβL are calculated directly from the modeled
load RL and iα and iβ , however all the analysis can be extended
to grid-connected application by using the vαL and vβL as
measured quantities in the control loop computations.

In order to be implemented in a digital controller, the model
of the inverter must be defined in a discrete-time domain [4].
The derivative of the AC line currents in the continuous-time
model can be approximated based on the forward Euler for the
approximation sampling period of Ts as:{

diα
dt ≈ iα(k+1)−iα(k)

Ts
diβ
dt ≈ iβ(k+1)−iβ(k)

Ts
.

(2)

Accordingly, the expression (1) can be re-written as:{
iα(k + 1) =

L−RpTs

L iα(k) +
Ts

L (vα(k)− vαL(k))

iβ(k + 1) =
L−RpTs

L iβ(k) +
Ts

L (vβ(k)− vβL(k)).
(3)

III. STATE OF THE ART

A. Carrier-Based PWM Approach

For the three-wire VSI depicted in Fig. 1 the carrier-based
PWM approach provides the freedom in the choice of the
zero-sequence signal [17]. Firstly, the zero-sequence signals are
obtained based on the original modulation signals v∗a, v∗b , v∗c .
Secondly, the carrier waves of the different phases are used to
generate the PWM pulse. The generalized block diagram of the
carrier-based PWM approach with zero-sequence signal injec-
tion principle is illustrated in Fig. 2. The modulation waveforms
of SVPWM and the DPWM1 are shown in Fig. 3. The zero-
sequence signal of the SVPWM is generated by (4), where the
reference signal with the lowest magnitude is defined as v∗i . For
example, if |v∗a| ≤ |v∗b | ≤ |v∗c|, then v0 = 0.5v∗a. For DPWM1,
the zero-sequence signal is given in (5), where the phase signal
which has the largest in magnitude is defined as v∗j . For example,
if |v∗a| ≥ |v∗b | ≥ |v∗c|, then v0 = sign(v∗a)Vdc/2− v∗a. More de-
tails regarding the zero sequence component of the modulation

Fig. 2. Block diagram of the carrier-based PWM modulator.

Fig. 3. Modulation waveforms of (a) SVPWM, (b) DPWM1.

Fig. 4. Block diagram of the conventional FCS-MPC.

waveforms can be found in [26].

v0 = 0.5v∗i i ∈ {a, b, c} (4)

v0 = sign(v∗j) · Vdc/2− v∗j j ∈ {a, b, c} (5)

B. Finite-Control-Set Model Predictive Control or FCS-MPC

The feedback current control based on the FCS-MPC tech-
nique is known for utilizing only a finite number of possible
switching states that can be generated by the power converter
during the optimization routines. This method can predict well
the behavior of the modeled system variables and specific per-
formance indexes for each analyzed switching state [3]. Herein,
each current iα,β prediction is evaluated with respect to its
references i∗α,β in a cost function, and the switching stateSa, Sb,
and Sc, that generates the minimum deviation value is selected
to be applied in the next sampling period.

The block diagram of this control strategy for the three-
phase three-wire two-level VSI is shown in Fig. 4. The main
control objective is the regulation of the AC line currents in
the α-β coordinates, i.e. iα,β . The FCS-MPC method uses the
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Fig. 5. Block diagram of the conventional DBC.

discrete-models of the system developed in Section II, i.e. the AC
currents analytical models, and all the 8 possible switching states
to predict the future behavior of the controlled variables. The
defined cost function G objective is to minimize the quadratic
error between the predicted load currents iαβ(k + 1) and their
references i∗αβ(k + 1), as represented:

G = |i∗α(k + 1)− iα(k + 1)|2 + |i∗β(k + 1)− iβ(k + 1)|2
(6)

In practice, two steps of prediction are used as the delay com-
pensation for the conventional MPC. While computing the new
values of iα,β , The values of the switching states calculated
during the previous sampling interval are utilized and then
applied to the converter. The new calculated values of iα,β are
used in the cost function minimization [3], [4].

C. Dead-Beat Controller or DBC

DBC utilizes the system model in (3) to select the best voltage
vector that improves the reference tracking of the control logic
in the next sampling period [24], [25]. The output of the DBC
is a continuous value, and it is chosen by attempting to attain
a current response at the next sampling instant which is equal
to the desired reference value. After that, the voltage vector in
the next sampling period is determined, and the carrier-based
PWM modulator with any practicable zero-sequence injections
can be realized. The block diagram of this control strategy for
the three-phase three-wire two-level VSI is shown in Fig. 5.

IV. CARRIER-BASED MMPC

A. Voltage Based FCS-MPC

Considering that the current feedback control operates appro-
priately by applying the optimized voltage vectors, it is possible
to assume that the load dynamic in (3) can be expressed by the
inverse analytical model as [27], [28]:{

v∗α(k) =
L
Ts
i∗α(k + 1) +

RpTs−L
Ts

iα(k) + vαL(k)

v∗β(k) =
L
Ts
i∗β(k + 1) +

RpTs−L
Ts

iβ(k) + vβL(k).
(7)

The space distribution of the reference vector v∗(k) along
with the eight synthesizable voltage vectors are shown in Fig. 6.

Fig. 6. Voltage space vectors of the three-phase two-level VSI.

Above all, the voltage based FCS-MPC works towards identify-
ing the voltage vector to be applied by the VSI which best suits
the minimization of the following quadratic cost function:

G = |vα∗(k)− vα(k)|2 + |vβ∗(k)− vβ(k)|2 (8)

Based on the inverse analytical model in (3) and (7), the expres-
sion (8) can be evolved as:

G = | LTs
i∗α(k + 1) +

RpTs−L
Ts

iα(k) + vαL(k)− vα(k)|2

+ | LTs
i∗β(k + 1) +

RpTs−L
Ts

iβ(k) + vβL(k)− vβ(k)|2

= ( L
Ts
)2|i∗α(k+1)+

RpTs−L
L iα(k)+

Ts

L (vαL(k)−vα(k))|2

+ ( L
Ts
)2|i∗β(k+1)+

RpTs−L
L iβ(k)+

Ts

L (vβL(k)−vβ(k))|2

= ( L
Ts
)2|i∗α(k + 1)− iα(k + 1)|2

+ ( L
Ts
)2|i∗β(k + 1)− iβ(k + 1)|2 (9)

It is clearly seen that due to the absolute value the cost function
shown in (8) is equivalent to the cost function described in (6)
of the conventional MPC. This proves that using voltage vector
FCS-MPC is essentially the same as prior MPC methods in terms
of cost function [29].

B. Delay Time Compensation

In order to eliminate the control delay due to the digital
implementation, the voltage vectors need to be determined at
the (k+1)th instant. By time shifting (7) one step forward and
assuming vαL(k + 1) ≈ vαL(k), vβL(k + 1) ≈ vβL(k) in such
a short sampling interval [30], [31], the predictive voltage model
can be obtained as:

{
v∗α(k + 1) = L

Ts
i∗α(k + 2) +

RpTs−L
Ts

iα(k + 1) + vαL(k)

v∗β(k + 1) = L
Ts
i∗β(k + 2) +

RpTs−L
Ts

iβ(k + 1) + vβL(k).

(10)
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Combining (3) and (10), the following derivation arises:

v∗α(k + 1) = L
Ts
i∗α(k + 2)− (L−RpTs)

2

LTs
iα(k)

+(
RpTs

L − 1)vα(k) + (2− RpTs

L )vαL(k)

v∗β(k + 1) = L
Ts
i∗β(k + 2)− (L−RpTs)

2

LTs
iβ(k)

+(
RpTs

L − 1)vβ(k) + (2− RpTs

L )vβL(k).
(11)

where i∗α(k + 2) and i∗β(k + 2) are the two step future current
reference in αβ frame, and vα(k) and vβ(k) are the selected
voltage vectors at the previous computational routine. According
to the Lagrange extrapolation in [4], the one-step future current
reference can be calculated by using the present and the two past
reference values as:{

i∗α(k + 1) = 3i∗α(k)− 3i∗α(k − 1) + i∗α(k − 2)

i∗β(k + 1) = 3i∗β(k)− 3i∗β(k − 1) + i∗β(k − 2).
(12)

Similarly, the two-step future current reference required in (11)
can be obtained by shifting one-step forward of the future current
reference in (12) as:{

i∗α(k + 2) = 3i∗α(k + 1)− 3i∗α(k) + i∗α(k − 1)

i∗β(k + 2) = 3i∗β(k + 1)− 3i∗β(k) + i∗β(k − 1).
(13)

C. Reference Duty Cycle Calculations

The original sinusoidal modulation signals (v∗a, v∗b , and v∗c)
can be calculated from the reference voltage vector in (11):⎧⎪⎨

⎪⎩
v∗a(k + 1) = v∗α(k + 1)

v∗b(k + 1) = − 1
2v

∗
α(k + 1) +

√
3
2 v∗β(k + 1)

v∗c(k + 1) = − 1
2v

∗
α(k + 1)−

√
3
2 v∗β(k + 1).

(14)

As shown in Fig. 2, the modulation waveforms v∗∗a , v∗∗b , and
v∗∗c of the carrier-based PWM method are given as:⎧⎪⎨

⎪⎩
v∗∗a (k + 1) = v∗a(k + 1) + v0(k + 1)

v∗∗b (k + 1) = v∗b(k + 1) + v0(k + 1)

v∗∗c (k + 1) = v∗c(k + 1) + v0(k + 1)

(15)

where v0 is the zero-sequence voltage derived as shown in Fig. 2.
Taking the condition that the reference voltage vector v∗ is

located in the first sectorS1 as an example, the two active voltage
vectors to synthesize v∗ will be v1 (100), and v2 (110), as shown
in Fig. 7. The three-phase duty cycles (da, db, and dc) can be
calculated from their modulation signals as [26]:⎧⎪⎨

⎪⎩
d∗a(k + 1) = 0.5[v∗∗a (k + 1)/(Vdc/2) + 1]

d∗b(k + 1) = 0.5[v∗∗b (k + 1)/(Vdc/2) + 1]

d∗c(k + 1) = 0.5[v∗∗c (k + 1)/(Vdc/2) + 1].

(16)

The variables da, db, and dc can also be expressed as:

⎡
⎣d∗ad∗b
d∗c

⎤
⎦ =

⎡
⎣1 1 1 0
1 1 0 0
1 0 0 0

⎤
⎦
⎡
⎢⎢⎣
T7/Ts

T2/Ts

T1/Ts

T0/Ts

⎤
⎥⎥⎦

=

⎡
⎣1 1 1
1 1 0
1 0 0

⎤
⎦
⎡
⎣d∗7d∗2
d∗1

⎤
⎦ (17)

Fig. 7. Voltage space vectors of the three-phase two-level VSI in Sector I.

where, T7, T2, T1, and T0 are the duration time of v7, v2, v1,
and v0, respectively. For each one of the two active vectors vi
and vj [(i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}] the
three-phase duty cycles can be determined as given in Appendix-
A. Accordingly, the generalized expression of the three-phase
duty cycles with any pair of active vectors vi(S

i
a, S

i
b, S

i
c) and

vj(S
j
a, S

j
b , S

j
c ) can be summarized as:⎧⎪⎨

⎪⎩
d∗a = d∗iS

i
a + d∗jS

j
a + d∗7S

7
a

d∗b = d∗iS
i
b + d∗jS

j
b + d∗7S

7
b

d∗c = d∗iS
i
c + d∗jS

j
c + d∗7S

7
c

(18)

Thereafter, by solving the three-dimensional cubic equations
in (18), it is possible to calculate the duty cycles for each pair of
active vectors and v7 as:
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(19)

D. Optimal Vectors and Modulation Waveforms Generation

The reference voltage calculation and the time interval calcu-
lations are executed in parallel, and for each pair of vectors, a
cost function future voltage reference is calculated as follows:⎧⎪⎨

⎪⎩
Gi = (v∗∗a − via)

2 + (v∗∗b − vib)
2 + (v∗∗c − vic)

2

Gj = (v∗∗a − vja)
2 + (v∗∗b − vjb)

2 + (v∗∗c − vjc)
2

Gz = (v∗∗a − vza)
2 + (v∗∗b − vzb )

2 + (v∗∗c − vzc )
2

(20)

where v
(i,j)
x ∈ {±Vdc/3,±2Vdc/3}, x ∈ {a, b, c}, and vzx = 0.

The valid eight switching states and the corresponding VSI
voltage states are listed in Table II. Thereafter, based on the
Lagrange optimization theory [5], the duty cycles is simplified
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Fig. 8. Overall block diagram of the carrier-based MMPC.

TABLE II
VALID SWITCHING STATES AND CORRESPONDING PHASE VOLTAGE

as: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

di =
1
Gi

1
Gi +

1
Gj + 1

Gz

dj =
1
Gj

1
Gi +

1
Gj + 1

Gz

dz =
1
Gz

1
Gi +

1
Gj + 1

Gz

(21)

Where dz = d0 + d7 is the duty cycle for the zero vectors. d7
can be defined as d7 = kdz , where k = 0.5 for SVPWM, and
k = (sign(v0) + 1)/2 for DPWM1. The cost function for each
region is calculated as:

G = |di − d∗i |2 + |dj − d∗j |2 + |d7 − d∗7|2 (22)

The optimal pair of vectors with the minimum value ofG, named
(Si

a, S
i
b, S

i
c) and (Sj

a, S
j
b , S

j
c ) is selected to be applied to the

associated duty cycles da_set, db_set, and dc_set.⎧⎪⎨
⎪⎩
da_set = diS

i
a + djS

j
a + d7

db_set = diS
i
b + djS

j
b + d7

dc_set = diS
i
c + djS

j
c + d7

(23)

Then, the modulation waveforms va_set, vb_set, and vc_set that
are set to be compared to the triangular carrier are obtained.⎧⎪⎨

⎪⎩
va_set = 2da_set − 1

vb_set = 2db_set − 1

vc_set = 2dc_set − 1

(24)

Fig. 9. Experimental setup.

The overall block diagram of the studied carrier-based MMPC
method is shown in Fig. 8.

V. SIMULATION AND EXPERIMENTAL VERIFICATION

To validate the effectiveness of the studied MMPC method,
simulations and experimental tests are conducted. Firstly, a
PLECS based simulation is carried out. Then, the control meth-
ods are implemented and run on the experimental setup of a
three-wire two-level 3-kW VSI controlled with the Texas In-
struments TMS320F28379D as shown in Fig. 9. Compared with
the commonly-used DSP TMS320F28335 in power electronic
converters, the TMS320F28379D has an improved calculation
speed with a comparable cost ($11.836/1 ku) [32]. The SiC
MOSFET from Wolfspeed C3M0120090 J is selected for the
VSI switches. The simulation and experiment parameters are
shown in Table III. The value ofRp will be intentionally changed
in the tests during the benchmarking of control methods. The
current references i∗α and i∗β in both simulation and experiment
are set artificially. The sampling and switching frequency of
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TABLE III
SIMULATION AND EXPERIMENTAL PARAMETERS

Fig. 10. Measured code execution times for (a) FCS-MPC, (b) CB-MMPC
methods, and (c) DBC PWM methods.

the CB-MMPC and DBC based methods are set to be 20 kHz.
In order to have a reasonable comparison between the studied
control methods, a higher sampling rate of fs = 40 kHz is
considered for the classical FCS-MPC, which is the double of the
modulated methods, i.e. CB-MMPC and DBC PWM methods,
and it is commonly adopted by the literature [5], [10], [13], [15].
It is noted that in the experimental tests, due to the lack of AC
voltage measurements, vαL= RLiα and vβL= RLiβ are used
in the system model (1).

A. MCU Computational Time and Switching Signal
Frequency Spectra

Fig. 10 shows the execution time achieved in the MCU of
the prototype for the implemented FCS-MPC, the CB-MMPC
and DBC PWM methods. It can be seen that the traditional
FCS-MPC program needs a total of 21.4 μs to be executed
in the control interrupt loop, of which 4.1 μs is required to
perform the calculations of the MPC algorithm. Meanwhile, the
total execution time of the CB-MMPC is 31.2 μs in the control
interrupt loop, where 13.8 μs is used to process the CB-MMPC
algorithm. For the DBC PWM method, the execution time of the
control interrupt loop is 19.6μs in total, where only 2.6μs is used
for the DBC algorithm. As shown in Fig. 10, all methods can
finish the algorithm within one sampling period. The DBC PWM

Fig. 11. Experimental switching signal frequency spectrum for: (a) conven-
tional FCS-MPC, (b) CB-MMPC SVPWM, and (c) CB-MMPC DPWM1.

method requires the least computation time, because it does not
need to calculate the value of the cost function repeatedly to find
the minimum value. Although the implementation of the studied
CB-MMPC methods has a higher computational burden, it is
still able to accomplish the calculations within about 60% of the
available time.

The frequency spectrum of the experimental switching signal
for FCS-MPC and CB-MMPC methods is given in Fig. 11
with the current magnitude set as 12 A. It can be seen that the
dominant high-frequency components of all methods are around
the integer frequencies of 20 kHz. Therefore, a fair comparison
with FCS-MPC and the proposed CB-MMPC method can be
conducted.

B. Steady-State Response

The steady-state waveforms for the three-phase output cur-
rents (ia, ib, ic), the switching signal (S+

a ), the modulation
waveform (v∗∗a ), the phase voltage (van), and the line-to-line
voltage (vab) obtained with the conventional FCS-MPC, DBC,
and the CB-MMPC methods are shown in Fig. 12, where the
magnitude of the reference current is set as 12 A. By analyz-
ing the results one can observe that the shape of the output
current of the FCS-MPC can be considerably improved by the
CB-MMPC strategies, which is similar to the results obtained
with the DBC PWM methods. The modulation waveform (v∗∗a )
of the DBC PWM methods are smoother than the ones for the
CB-MMPC methods which leads to a better current THD in
Table IV, because it does not need to determine the voltage
vectors via cost function optimization. Additionally, the current
ripple for the CB-MMPC SVPWM is found slightly lower than
for the CB-MMPC DPWM1. As expected this occurs because
the DPWM1 modulation strategy has each phase of the VSI
stopping switching during one third of the fundamental time.
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Fig. 12. Steady-state simulation waveforms for the three-phase output currents
(ia, ib, ic), the switching signal (S+

a ), the modulation waveform (v∗∗a ), the
phase voltage (van), and the line-to-line voltage (vab), for: (a) conventional
FCS-MPC, (b) DBC SVPWM, (c) DBC DPWM1, (d) CB-MMPC SVPWM,
and (e) CB-MMPC DPWM1.

TABLE IV
CURRENT THD WITH A VARIATION IN L AND Rp

Fig. 13 presents the main experimental waveforms obtained
during the steady state operation for the implemented FCS-
MPC, DBC and the CB-MMPC PWM methods. As it can be
noted that the experimental results have good correspondence
with the PLECS simulation results depicted in Fig. 12. The
output currents obtained by the CB-MMPC methods are similar
as the results from the DBC PWM methods, and above all are
better than the conventional FCS-MPC even though the sampling
frequency is lower. Based on these results one can verify the
effectiveness of the tested CB-MMPC methods.

C. Dynamic Response

To demonstrate the performance of the studied MPC tech-
niques in terms of dynamic response, a transient test is carried
out. Fig. 14(a) and Fig. 14(b) show the experimental waveforms
for the output current (ia), the switching signals (S+

a ), the
modulation reference (v∗∗a ), and the converter voltage (van) when
the magnitude of the reference currents is increased from 6 A to
12 A. The experimental results of the reference current with a
step change in the frequency command from 50 Hz to 25 Hz are
presented in Fig. 14(c) and Fig. 14(d). Since van is the switching
waveform which is the potential difference from the phase leg,
a, to the load star point, n, due to the resistive load used, the step
change of output voltage represents a modulation index change
and this can be observed via v∗∗a and ia. It can be found that
the phase currents and phase voltage controlled by the proposed
method follow the reference change with fast dynamics under
both step changes.

The fast dynamic performance of the CB-MMPC can be
clearly seen in Fig. 15. Both CB-MMPC SVPWM and CB-
MMPC DPWM1 have similar results to the FCS-MPC and
DBC PWM methods during the transient time, meanwhile the
FCS-MPC is found to be slightly faster than the modulated
strategies, because its sampling frequency is higher. Further-
more, the experimental result in Fig. 16 shows that the transient
time for both CB-MMPC SVPWM and CB-MMPC DPWM1 is
about 740 μs, which is almost the same as the time obtained by
the DBC PMW methods and nearly twice that of the FCS-MPC.
Therefore, it is proved that the CB-MMPC strategy can improve
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Fig. 13. Steady-state experimental waveforms for the output current (ia), the
switching signals (S+

a ), the modulation reference v∗∗a , and the converter voltage
van for: (a) conventional FCS-MPC, (b) DBC SVPWM, (c) DBC DPWM1,
(d) CB-MMPC SVPWM, and (e) CB-MMPC DPWM1.

current distortion without compromising the performance of fast
dynamic response.

Simulations results of the three-phase output currents (ia,
ib, ic), the switching signal (S+

a ), the modulation waveform
(v∗∗a ), the phase voltage (van), and the line-to-line voltage (vab)
obtained with the CB-MMPC methods when load a resistance
step change from 10Ω to 5Ω happens are shown in Fig. 17,
where the magnitude of the reference current is set as 12 A.
Both methods can adapt the step-change in load well. Since the
prototype does not implement AC voltage measurements, it is
not possible to use the system with an AC voltage source, and
carry out the experiments of a load step change with the fixed
modulation index.

D. Control System Performance Considering Various
Modulation Indexes and Output Frequency

In practice, a wider range of modulation index (mi) is ex-
pected. Therefore, in this section, simulation results considering
a ramp change of AC current magnitude and frequency is im-
plemented and the corresponding results are shown in Fig. 18.

Fig. 14. Dynamic-state experimental waveforms for the output current (ia),
the switching signals (S+

a ), the modulation reference v∗∗a , and the converter
voltage van: (a) current reference step change with the CB-MMPC SVPWM,
(b) current reference step with the CB-MMPC DPWM1, (c) frequency step
change with the CB-MMPC SVPWM, and (d) frequency step change with the
CB-MMPC DPWM1.

Fig. 15. Dynamic-state simulation waveforms comparison between the con-
ventional FCS-MPC, the DBC methods, and the CB-MMPC methods. (a)
FCS-MPC with DBC SVPWM and CB-MMPC SVPWM, (b) FCS-MPC with
DBC DPWM1 and CB-MMPC DPWM1.

In Fig. 18(a), when the current reference is varying from 0 A to
16 A at the fixed fundamental frequency, i.e. fo set to 50 Hz,
the three-phase output currents controlled by the CB-MMPC
can effectively follow the reference change. At Iref = 16, mi

is 1.125 (mi = Iref
√

(Rp +RL)2 + ω2 L2/(Vdc/2)), it can be
found in Fig. 18(a), there is no significant current distortion
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Fig. 16. Dynamic-state experimental waveforms comparison: (a) conventional
FCS-MPC, (b) DBC SVPWM, (c) DBC DPWM1, (d) CB-MMPC SVPWM, and
(e) CB-MMPC DPWM1.

in the high mi range. The tracking error, i.e., the difference
between the reference current and the measured current of the
proposed method is compared with other methods when the
current reference is increasing from 0 A to 16 A at 50 Hz
fundamental frequency in Fig. 19. It can be seen the tracking
error of the proposed CB-MMPC methods does not worsen much
with the increase ofmi. It is higher than the DBC based methods
but it is still better than the traditional FCS-MPC.

In Fig. 18(b), when fo is set to change from 20 Hz to 100 Hz
at the fixed current reference set of 12 A, the three-phase output
currents controlled by the CB-MMPC can also efficiently follow
the change in frequency. Accordingly, the CB-MMPC can adapt
well to the change in both current reference magnitude and
output frequency.

E. Parameter Sensitivity

In this section the effects of variations in the control param-
eters of the CB-MMPC method is analyzed and compared to
the parameter sensitivity of the conventional FCS-MPC and
the DBC PWM methods, where the magnitude of the current

Fig. 17. Dynamic-state simulation waveforms for the three-phase output
currents (ia, ib, ic), the switching signal (S+

a ), the modulation waveform (v∗∗a ),
the phase voltage (van), and the line-to-line voltage (vab) with load resistance
step change from 10Ω to 5Ω, for: (a) CB-MMPC SVPWM, (b) CB-MMPC
DPWM1.

Fig. 18. Simulation waveforms for the CB-MMPC methods with current
magnitudes and output frequency variations, (a) current reference varying from
0 A to 16 A at fo = 50Hz, (b) fo varying from 20 Hz to 100 Hz at Iref = 12A.
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Fig. 19. Comparison of tracking error with different methods when current
reference increases from 0 A to 16 A at fo = 50Hz and the zoomed results in
one fundamental period.

Fig. 20. Experimental results of output current with a variation in L and Rp,
(a) variation in L, (b) variation in Rp.

reference is set as 12 A. The current THD for different variations
of L and Rp are shown in Table IV, where L′ and R′

p are the
control parameters programmed in the code of the algorithm.
The corresponding experimental waveforms of the output cur-
rent obtained by the FCS-MPC, the DBC PWM methods, and
the CB-MMPC methods are presented in Fig. 20.

It can be concluded that the effects of the variations of Rp in
the controller do not have a substantial impact on the stability,
tracking error and current THD for all methods. Conversely, a
significant effect in the control performance is produced when
the inductance L is misidentified by the control system. As
expected, the worst performance is obtained with the conven-
tional FCS-MPC when there is a ±50% variation in L. On the
other hand, for the CB-MMPC and DBC methods, the change

Fig. 21. Experimental frequency spectrum of the output current for: (a)
conventional FCS-MPC, (b) DBC SVPWM, (c) DBC DPWM1, (d) CB-MMPC
SVPWM, and (e) CB-MMPC DPWM1.

in current THD is much lower than that obtained by the conven-
tional FCS-MPC. However, with further increment of L′, the
output current achieved by the DBC based controller becomes
unstable at L′ = 2L; meanwhile, the results with FCS-MPC
and the CB-MMPC methods can still keep the system stable,
even though the quality of the current waveform deteriorates.
Consequently, the CB-MMPC methods not only have a better
performance than the FCS-MPC when L is misidentified by the
control system but also are more robust performance than the
DBC PWM methods.

F. Output Current Frequency Spectra

The output current frequency spectrum for the FCS-MPC, the
DBC PWM and CB-MMPC methods obtained in the experimen-
tal setup are shown in Fig. 21, respectively, for the steady-state
operation (current reference is set to 12 A and fo = 50 Hz).
From the current spectrum analysis, one can observe that the
DBC PWM and the CB-MMPC methods produce a current with
clustered harmonics multiplied by the fundamental switching
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Fig. 22. Current THD and VSI power efficiency comparison at fo = 50 Hz
with different current reference, Iref .

frequency of 20 kHz, while the FCS-MPC control has a variable
switching frequency, which is mostly lower than 20 kHz. It
can also be seen that the studied CB-MMPC methods contain
more low frequency harmonic components than the DBC PWM
methods, because the presented CB-MMPC methods will select
the optimal vector pairs based on the cost function minimization,
which will cause some distortions in the modulation waveforms
as seen in Fig. 12 and Fig. 13, especially at the moment of sector
change.

G. Current THD and Power Efficiency Comparison

The comparison results of the current THD and VSI power
efficiency tested by a power analyzer YOKOGAWA WT500 for
the FCS-MPC, the implemented DBC PWM and the CB-MMPC
methods with different current reference and different output
frequency are presented in Fig. 22 and Fig. 23. As expected, the
current THD performance for the studied DBC and CB-MMPC
methods are superior to that of the FCS-MPC. The performance
of the CB-MMPC methods are similar to the DBC PWM meth-
ods. Moreover, CB-MMPC SVPWM generates lower current
THD than the CB-MMPC DPWM1. Since the harmonic compo-
nent within the low frequency can be significantly suppressed by
using the CB-MMPC, it brings convenience in grid-connected
applications compared to the FCS-MPC because it simplifies the
selection of the typically used LCL filter and further reduce the
current THD [33]. Fig. 22(b) shows the VSI power efficiency
comparison between the CB-MMPC methods and the other
studied methods. With DPWM methods, the power efficiency
of the VSI is higher than the SVPWM methods. The power
efficiency of FCS-MPC is lower than that of the DPWM methods
when the current command is low, but it is slightly higher than
that of the DPWM methods at the high current range, because
the switching frequency of the FCS-MPC is not always fixed
at 20 kHz, and one switching state can be the optimal selection

Fig. 23. Current THD and VSI power efficiency comparison at Iref = 12 A
with different output frequency, fo.

for two or more sampling periods [3]. As shown in Fig. 23,
with different output frequency, the current THD for different
methods are similar, because the current references are the same
and the modulation index does not change much; meanwhile,
there is a slight decrease in the power efficiency for different
methods, because the losses on the filter inductors increases with
higher output frequency.

All in all, the presented simulation and experimental cases
have shown that a remarkable improvement on current THD
can be achieved with the CB-MMPC methods compared to the
conventional FCS-MPC. The proposed CB-MMPC methods can
adapt well to the change in wide modulation index and output fre-
quency range. Additionally, the presented CB-MMPC method
is more robust than the DBC PWM methods when there is a
large mismatching in the converter’s model parameters. These
not only confirm the effectiveness of the studied method, but
also show its comprehensive features when compared to other
traditional strategies. Therefore, the validity and advantages of
the CB-MMPC method are verified.

VI. CONCLUSION

This paper has proposed a carrier-based modulated model
predictive control or CB-MMPC for the three-phase three-wire
two-level VSI. This method, which has been illustrated through
carrier-based PWM, is simple to implement in a commercial
available DSP. Based on the different modulation waveforms,
two different CB-MMPC methods have been studied in the
paper, named CB-MMPC SVPWM and CB-MMPC DPWM1.
Compared with the classic FCS-MPC and dead-beat control or
DBC PWM methods, the implemented CB-MMPC solve the
problem of wide spectrum of voltage/current harmonic content
of the FCS-MPC without degrading the control performance
in terms of fast dynamic response, and improve the robustness
of the system to circuit model parametric mismatching when
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Fig. 24. Switching sequence in different Sectors. (a) Sector I, (a) Sector I, (b) Sector II, (c) Sector III, (d) Sector IV, (e) Sector V, and (f) Sector VI.

TABLE V
EXPRESSION OF da, db, AND dc IN DIFFERENT SECTORS

compared to the DBC PWM methods. PLECS based simulations
and a 3-kW VSI prototype have verified the effectiveness and
superiority of the presented CB-MMPC method.

APPENDIX A DERIVATION OF THE THREE-PHASE DUTY

CYCLES WITH ANY PAIR OF ACTIVE VECTORS

The switching sequence in every sector are presented in
Fig. 24, and the duty cycles of each phase (dna , dnb , and dnc )
in sector n (n ∈ {1, 2, 3 . . . 6}) are listed in Table V.

Therefore, for each one of the two active vectors vi and vj ,
the generalized expression of the three-phase duty cycles is
summarized in (18).
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