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ABSTRACT: 

 

This paper presents a method for multiple object tracking (MOT) in video streams. The method incorporates the prediction of physical 

locations of people into a tracking-by-detection paradigm. We predict the trajectories of people on an estimated ground plane and apply 

a learning-based network to extract the appearance features across frames. The method transforms the detected object locations from 

image space to an estimated ground space to refine the tracking trajectories. This transform space allows the objects detected from 

multi-view images to be associated under one coordinate system. Besides, the occluded pedestrians in image space can be well 

separated in a rectified ground plane where the motion models of the pedestrians are estimated. The effectiveness of this method is 

evaluated on different datasets by extensive comparisons with state-of-the-art techniques. Experimental results show that the proposed 

method improves MOT tasks in terms of the number of identity switches (IDSW) and the fragmentations (Frag). 

 

 

1. INTRODUCTION  

Multiple object tracking (MOT) aims to associate the detected 

objects across frames in a video stream. It is a fundamental 

problem in a wide range of applications, such as security 

management, autonomous driving, and traffic monitoring. 

Tracking-by-detection is a leading paradigm to solve the MOT 

problems (Ross et al., 2008; Avidan, 2007), which consists of two 

main steps, namely 1) detecting the potential locations of 

multiple objects frame-by-frame, and 2) associating the detected 

objects to the estimated position of existing tracks. The first step 

can be addressed with some recent successful learning-based 

detectors (Bochkovskiy et al., 2020; Ren et al., 2016). However, 

data association is still unresolved as it suffers from issues such 

as a large number of false-positive tracks. 

 

Data association requires some clues, among which the most 

important information are the spatial positions and the 

appearance features. We observe that the previous works study 

the spatial positions mostly in image space using pixel-level 

positions (Kim et al., 2021; Dicle et al., 2013; Rezatofighi et al., 

2015; Kim et al.,2015). However, the pixel changes of human 

motion in an image are not proportional to the actual human 

motion in the real world due to perspective projection. This work 

aims to improve the quality of pedestrian tracking by converting 

the detection results from image space to a predicted ground 

plane (i.e. the transform space). The main advantage of this 

strategy is that the motion model in the ground plane is more in 

line with the actual situation and the trajectories with intervals 

could be associated to reduce the fragmentation caused by 

occlusion.  

 

In this work, we use a Kalman filter to predict the motion of 

objects in a transform space and introduce a dynamic appearance 

feature into the tracker. In the transform space, the physical 

ellipse intersection-over-union (IOU) instead of pixel-level 

bounding box IOU is used to generate the association 

measurements. The appearance features model trained with an 

adaptive weighted triplet loss is used for the re-identification of 
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the tracker. Compared with the model with cross-entropy loss, 

the proposed model can better distinguish the pedestrians with 

similar appearances. After computing a matching score, the cost 

matrix is solved by satisfying the one-to-one association 

constraint. Our extensive experiments have revealed that using 

transform space instead of image space can avoid losing tracks of 

true positives with low confidence. Extensive experiments 

demonstrate that using the locations in the transform space can 

avoid losing tracks of true positives with few detections of low 

confidence caused by occlusions and noise. Our implementation 

is publicly available at  

https://github.com/Jeasonlee313/MOT_predict_by_physical.  

 

The main contributions of this paper are the following: 

(1) A tracking filter based on predicted physical location, which 

extends the tracking algorithm to predict the locations of the 

pedestrians in an estimated ground plane; 

(2) Use physical ellipse intersection-over-union (IOU) instead of 

pixel-level bounding box IOU to generate the association 

measurements; 

(3) A cosine metric learning model trained with the triplet loss, 

which further improves the robustness of MOT. Compared with 

the model trained using cross-entropy loss, the new model can 

better distinguish the pedestrians with similar appearances.   

 

2. RELATED WORK 

Using spatial information. Most online multiple object trackers 

include a Bayesian tracking process, which predicts the state of 

each track using previously assigned observations. In this way, 

the likelihood between the track and the observation is calculated 

to form a cost matrix for data association. During tracking, the 

targets are captured by matching the data distribution in the 

incoming frame. In the SORT method (Bewley et al., 2016), the 

Kalman filter estimates the current states of the trajectories from 

detections and their previous states, which can significantly 

improve the association efficiency. Yoon et al. (2021) extracted 

the motion context of multiple objects in the assignment 

problems. Milan et al. (2017) present a novel recurrent neural 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-4-2022-137-2022 | © Author(s) 2022. CC BY 4.0 License.

 
137

https://github.com/Jeasonlee313/MOT_predict_by_physical


 

network-based (RNN) multi-target tracker using bounding-box 

features to define the cost matrix. The trackers using only the 

motion models have short-term memories, so they are sensitive 

to occlusion.  

 

Using appearance features. Previous works have revealed that 

using appearance features can improve the performance of a 

tracker (Kim et al., 2015; Yoon et al., 2021; Milan et al., 2017). 

Wojke et al. (2017) integrate appearance information to improve 

SORT performance, which can track objects through longer 

periods of occlusions, effectively reducing the number of identity 

switches (IDSW). Kim et al. (2018) extract appearance features 

through the Siamese network and associate those features using 

a deep long short-term memory (LSTM). Then, among all the 

features, the most probable one is used for tracking objects. 

Ristani et al. (2018) used the residual network with an adaptive 

weighted triplet loss for appearance modeling. Bae et al. (2018) 

use the Siamese network with a triplet loss for appearance 

modeling and adaptive training of the network during tracking. 

In addition to pedestrian tracking, appearance features are also 

used in vehicle tracking and re-identification. Lin et al. (2019) 

propose a joint representation of these pyramidal features used 

for learning discriminative features for vehicle Re-ID. Yang et al. 

(2021) proposed to train the deep feature network in an end-to-

end manner. Bergmann et al. (2019) exploited the bounding box 

regression to predict the position of an object as a straightforward 

re-identification. The deep learning-based methods have 

significantly improved traditional tracking performance (Mutiple 

Object Tracking Benchmark, 2020) and have become an 

indispensable part of the tracking pipeline.  

 

Besides, the different variations of the Hungarian algorithm 

(Kuhn, 1955) have been used in some trackers for data 

association, showing competitive performances. The Hungarian 

algorithm treats the assignment problem as a special case of the 

transportation problem. The assignment problem is solved by 

finding the min-cost flow, so it can be operated with the cost 

matrix (Bewley et al., 2016; Bae et al., 2018; Sadeghian et al., 

2017). We adopt the Hungarian algorithm because of its 

simplicity and competitive performance. 

 

Multi-view object tracking. Object detected in multi-view 

images can use cross validation to reduce the error correlation of 

trajectories. The key for multi-view object tracking is to find 

cross-view correspondences. Jiang et al. (2007) used integer 

programming for data association. Some networks are developed 

for multi-view images, such as network flow (Wu et al., 2009) 

and multi-commodity network (Shitrit et al., 2014). In this paper, 

we propose an association strategy, which is suitable not only for 

single camera video, but also for multi-view videos. By 

incorporating the motion models in the ground space and deep 

appearance attributes, the algorithm has a competing 

performance. 

 

3. METHODOLOGY 

Figure 1 shows the pipeline of the proposed tracking-by-

detection MOT method. The first is to detect the pedestrians in 

the image space and convert the positions of the objects to the 

estimated ground plane. Meanwhile, the trackers predict the 

locations of the previous trajectories using the motion models. 

The association matrix is calculated by combining the two kinds 

of costs based on physical locations and the deep features. Based 

on the association matrix, the Hungarian algorithm associates the 

detections with the trackers. Finally, the routine updates every 

tracker for the next frame. 

 
Figure 1. The proposed MOT diagram. 

 

3.1 Tracking problem statement 

Given a set of detected objects 𝐎 = {𝒐1, … , 𝒐𝑛} in a frame, each 

object is calculated with a structure 𝐨𝑖 = (𝑡𝑖 , 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 , ℎ𝑖 ,
𝑐𝑙𝑎𝑠𝑠𝑖 , 𝑐𝑜𝑛𝑓𝑖), where 𝑡𝑖 denotes the timestamp; (𝑢𝑖 , 𝑣𝑖) denotes 

the left-top image coordinates of the object’s bounding box and 

(𝑤𝑖 , ℎ𝑖) is its width and height; 𝑐𝑙𝑎𝑠𝑠𝑖 represents the class of the 

detection; and 𝑐𝑜𝑛𝑓𝑖  indicates the likelihood of the detection. 

 

The goal of MOT is to obtain a set of trajectories {𝐓1, 𝐓2, … , 𝐓𝑚} 

that best explains the motion observations, where 𝐓𝑖 =

{𝐨𝑖
1, … , 𝐨𝑖

𝑘} is a single trajectory composed of a set of frame-

ordered detections for object 𝒐𝑖; 𝑘 denotes the frame index. The 

data association task is modeled by calculating a cost matrix 𝐂 =

{𝑐𝑖𝑗 |𝐨𝑖
𝑡, 𝐨𝑗

𝑡−1 ∈ 𝐎} , where 𝑐𝑖𝑗  denotes the association cost 

between the 𝑖-th object 𝐨𝑖
𝑡 in the 𝑡-th frame and the 𝑗-th object 

𝐨𝑗
𝑡−1 in the (t − 1)-th frame.  

 

3.2 Prediction of physical locations in transform space 

We need a homography matrix 𝐇 to convert the detected objects 

from the image space to an estimated ground space. The physical 

coordinates of objects are calculated as follows:  

[
𝑥
𝑦
1

] = 𝐇 [
𝑢
𝑣
1

] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑢
𝑣
1

], 

(1) 

where 𝐇  can be calculated if the camera matrix has been 

calibrated under a world coordinate framework. In case the 

camera is not calibrated, 𝐇 can be calculated by applying the 

direct linear transform algorithm based on a set of extracted 

corresponding points on the image plane and the ground plane. 

In our study, we extract vertices of some rectangles on the ground 

(tiles and lane lines), and these vertices and their image 

coordinates are used to calculate 𝐇 . In practical applications, 

engineers can easily calibrate the camera when they install the 

devices. Therefore, the homography matrix relationship between 

the images and the ground can be obtained at the beginning. 

 

On the rectified ground space, we define a linear motion model 

to approximate the inter-frame displacement of each object. It is 

assumed that the movement of each object is independent of 

others. The state space of moving objects is modeled as: 
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 𝐬 = [𝑥, 𝑦, �̇�, �̇�]⊤, (2) 

where (𝑥, 𝑦)  represents an object’s location state in transform 

space, and (�̇�, �̇�) denotes the corresponding velocity state of the 

object. We assume that the walking speed of a person is 

approximately constant, so the step size can be estimated using 

two interval frames. An object position [𝑢, 𝑣]⊤ in image space 

can be directly observed after detection, then its position on the 

ground is calculated using equation (1). 

 

After the homography transformation, we obtain the physical 

location of each object in a rectified ground space. Figure 2 

shows such an example, in which the ground plane can be seen 

as a rectified map of the scene in a top view. 

 

 
Figure 2. Predicted locations of people in the image space (left) 

and the transform space (right). 

 

When a detection is associated with a tracking object, it updates 

the velocities of the object state via a Kalman filter. If an object 

is lost in a frame, its state will maintain the linear velocity model.  

 

3.3 Deep appearance Feature 

When an object is occluded for a period of time, subsequent 

Kalman filter might fail to associate the object location. We add 

the appearance features into the data associate model for the task 

of Re-Identification (Re-ID). To get the appearance feature of the 

detected object, we trained a CNN model offline for the deep 

metric learning. Specifically, the feature network for Re-ID is 

trained on two public datasets, namely Market-1501 (Zheng et al., 

2015) and Duke MTMC-reID (Ristani et al., 2016).  

 

The CNN for deep feature extraction uses a ResNet50 (He et al., 

2016) and follows its pool5 layer by a dense layer with 1024 units, 

batch normalization, and ReLU. The dense layer with 

normalization yields a 512-dimensional appearance descriptor. 

The initial weights of this model are pre-trained on the ImageNet 

(Deng et al., 2009). To improve generalization ability, we use the 

triple loss function for iterative convergence. Given an anchor 

sample 𝑥𝑎 , positive samples 𝑥𝑝 ∈ 𝐏(𝑎), and negative samples 

𝑥𝑛 ∈ 𝐍(𝑎), the triplet loss is written as: 

𝐿triple = [𝑚 + ∑ 𝑤𝑝𝑑(𝑥𝑎 , 𝑥𝑝)
𝑥𝑝∈𝐏(𝑎)

−

∑ 𝑤𝑛𝑑(𝑥𝑎, 𝑥𝑛)
𝑥𝑛∈𝐍(𝑎)

]+, 

(3) 

where 𝑚 is the inter-person separation margin; 𝑑(⋅,⋅) denotes the 

cosine distance of appearance, and [⋅]+ = 𝑚𝑎𝑥(0,⋅). The main 

architecture is shown in Table 1. 

Name Patch Size/Stride Output Size 

Conv 1 3*3/1 32*128*64 

Conv 2 3*3/1 32*128*64 

Max Pooling 3 3*3/2 32*64*32 

Residual 4 3*3/1 32*64*32 

Residual 5 3*3/1 32*64*32 

Residual 6 3*3/2 64*32*16 

Residual 7 3*3/1 64*32*16 

Residual 8 3*3/2 128*16*8 

Name Patch Size/Stride Output Size 

Dense 9  1024 

Batch and 𝑙2 

normalization 

 1024 

Dense 10 and 𝑙2 

normalization 
 512 

Table 1. Overview of the CNN network architecture 

 

To construct the deep feature model, we use the idea of 𝑃𝐾 

batches introduced by Hermans et al. (2017), in which 𝐾 sample 

images for each of 𝑃 identities are used in each batch. During a 

training epoch, each identity is selected in its batch in turn, and 

the remaining 𝑃 -1 batch identities are sampled randomly. 𝐾 

samples are also selected randomly. 

 

For the training, we set 𝑃 = 16, 𝐾 = 4, and 𝑚 = 1. The learning 

rate is set to 10−4 for the first 25000 iterations, and it decays to 

10−5  at iteration 35000. The weights 𝑤𝑝  and 𝑤𝑛  are 

reformulated as: 

𝑤𝑝 = 1
𝑁𝑝

⁄ , 𝑤𝑛 = 1
𝑁𝑛

⁄ , (4) 

where 𝑁𝑝  and 𝑁𝑛  is the total number of positive and negative 

samples. 

 

3.4 Data association 

The association matrix 𝑪 aims to associate the detected objects  

{𝐨𝑖}  with the existing trackers {𝐓𝑗} . The association cost is 

defined as: 

 𝑐𝑖,𝑗 = 𝜆𝑑𝑝(𝑖, 𝑗) + (1 − 𝜆)𝑑𝑎(𝑖, 𝑗), (5) 

where 𝑑𝑝(𝑖, 𝑗)  denotes the location distance in the transform 

space and 𝑑𝑎(𝑖, 𝑗) denotes the appearance feature distance. The 

parameter lambda is used to balance the impact of the location 

term and the appearance term. A simple setting for the parameter 

lambda is 0.5. If we have a more accurate location information, 

we can set lambda larger than 0.5, and the upper limit of lambda 

is 1, and vice versa. 

 

𝑑𝑝(𝑖, 𝑗) is computed as the physical ellipse IOU distance between 

the current detected objects and all predicted locations from 

existing trajectories. To incorporate motion information, we use 

the Euclidean distance between the predicted Kalman states and 

the newly arrived measurements: 

 𝑑𝑝(𝑖, 𝑗) = ‖[𝑥, 𝑦]𝐨𝑖
− [𝑥, 𝑦]𝐓𝑗

‖
2
 , (6) 

where [𝑥, 𝑦]𝐨𝑖
 and [𝑥, 𝑦]𝐓𝑗

 represent the physical location of the 

current detection 𝐨𝑖  and the last physical location of the 

confirmed trajectory 𝐓𝑗  respectively. 

 

Meanwhile, for each detected object we compute an deep feature 

descriptor 𝒇𝑖  subject to ||𝒇𝑖||2 = 1 , using the trained CNN 

model. The trajectory 𝐓𝑗  holds a feature gallery 𝐑𝑗 = {𝒇𝑗
(𝑘)

}𝑘=1
100 ,  

each of which is an associated feature from previous 100 

detections. The distance 𝑑𝑎(𝑖, 𝑗)  is calculated between every 

appearance feature in the gallery and that of the detected object:  

𝑑𝑎(𝑖, 𝑗) = min {1 − 𝒇𝑖
⊤𝒇𝑗

(𝑘)
 | 𝒇𝑗

(𝑘)
∈ 𝐑𝑗} . (7) 

where 𝒇𝑖 denotes the appearance descriptor of detection 𝐨𝑖, and 

𝒇𝑗
(𝑘)

 denotes the 𝑘 -th appearance vector in the  gallery of a 

confirmed tracked object 𝐨𝑗 . By sorting the appearance distances 

of all detection and object pairs, the most similar detection and 

object pair can be selected as the one with the smallest 

appearance distance. Using appearance features is particularly 

useful to recover the blocked objects after long-term occlusions. 
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By plugging the motion distance defined in Equation (6) and the 

appearance distance defined in Equation (7) into Equation (5), we 

obtain the combined association cost matrix.  

 

So far, we obtain the association cost matrix 𝑪 , where each 

element is calculated by Equation (5). To remove unreasonable 

pairs, once the location distance is larger than the threshold 

𝑔𝑎𝑡𝑒𝑝 or the feature distance is larger than 0.2, the element 𝑐𝑖,𝑗 

will be set to infinite. 𝑔𝑎𝑡𝑒𝑝 is empirically set to the 3 times step 

size. Finally, the Hungarian algorithm is used to find the 

minimum loss assignment between the potential tracks and the 

current objects. The matching steps are given in Algorithm 1. 

 

Algorithm 1. Cascading matching 

Input: Trajectories 𝐓 = {𝐓1, 𝐓2, … , 𝐓𝑛}  and detections 𝐎 =
{𝐎1, 𝐎2, … , 𝐎𝑚} 

1: Compute the cost matrix of physical location 𝐃𝑝 =

[𝑑𝑝(𝑖, 𝑗)] using Equation (6)  

2: Compute the cost matrix of appearance feature 𝐃𝑎 =
[𝑑𝑎(𝑖, 𝑗)] using Equation (7) 

3: Initialize the set of matches 𝐌 = ∅ 

4: Initialize the set of unmatched detections ℧ = 𝐎 

5: for 𝑑𝑝(𝑖, 𝑗), 𝑑𝑎(𝑖, 𝑗) in 𝐃𝑝, 𝐃𝑎: 

6:     if 𝑑𝑝(𝑖, 𝑗) > 𝑔𝑎𝑡𝑒𝑝 || 𝑑𝑎(𝑖, 𝑗) > 0.2: 

7:         𝑑𝑎(𝑖, 𝑗) = ∞ 

8:     end if 

9:  end for 

10: 𝐌 = {(𝐓𝑖 , 𝐨𝑗)} ← Hungarian_assignment(𝐓, ℧, 𝐃𝑎)  

11: ℧ = ℧ \ {𝐨𝑗|𝐨𝑗 in 𝐌 } 

12: 𝐓 = 𝐓 ∪  ℧  

13: return: 𝐌 and new 𝐓 

 

4. EXPERIMENTS 

4.1 Dataset 

The method has been tested on MOTChallenge benchmarks, 

including MOT15, MOT16, and MOT17 (Leal-Taixé et al., 2015; 

Milan et al., 2016). The dataset consists of several challenging 

pedestrian tracking sequences, with frequent occlusions, varying 

perspectives, crowded scenes, and camera movements. The 

homography matrix of each dataset is calculated by manually 

selecting the image points of rectangle patterns on the ground. 

These benchmarks provide the ground truth of trajectories. The 

datasets contain image sequences with varying viewing angles, 

sizes, numbers of objects, and frame rates. 

 

We also carried out a tracking evaluation on the EPFL dataset 

(Xu et al., 2017), which contains two multi-view videos and the 

homography matrices between the cameras and the grounds.  

 

4.2 Results 

We exploited the trained YOLOv5 model to provide pedestrian 

detection results for tracking, and some other detectors are also 

applicable. With an Nvidia GeForce GTX 1660 Ti GPU, one 

forward pass of 16 bounding box region detection takes 

approximately 25 ms, which makes it suitable for online tracking. 

The networks are then trained with the Market-1501 and the 

DukeMTMC-reID datasets. Statistics of the performances are 

given in Table 2. 

 

Dataset Rank-1 Rank-5 Rank-10 mAP 

Market-1501 0.8625 0.9426 0.9608 0.7026 

DukeMTMC-

reID 

0.7639 0.8712 0.9062 0.5937 

Table 2. The accuracy of the network re-ID 

 

In Figure 3, we show an example frame from the EPFL dataset. 

The images are acquired in a laboratory with fixed cameras. The 

people in the images block each other frequently. We can easily 

distinguish different people taking advantage of the transform 

ground space. In the top view, every position in state space is 

presented by the circle centre. The different radii denote the 

covariance of the states. 

 

 
Figure 3. MOT results using the transform space in a 

laboratory. 

 

Figure 4 shows two open street scenes with more people than that 

in the indoor scenes. The proposed method produced stable 

identities. After the pedestrians appeared to block each other, the 

proposed method preserved the identity after the people separated 

in most cases. It is worth noting that there are fewer identity 

switches in the outdoor scene than in the indoor scenes, which is 

because the appearance CNN model is trained with outdoor 

images. 

 

In street scenes, the identities of far pedestrians switch more 

frequently. It can also be observed that when the pitch angle of 

the camera is small, the closer the person is to the camera, the 

more accurate the predicted position is. Our method has relatively 

stable tracking results for pedestrians whose physical locations 
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can be accurately estimated through the homography 

transformation. In all these tests, our method demonstrated 

promising performance for the images taken from a looking-

down view. 

  

Figure 4. The tracking results on street video sequences 

 

In MOTChallenge videos, there are cases where the cameras are 

moving and their view directions are kept approximately parallel 

to the ground. There are two street views captured by moving 

cameras in Figure 5. In these cases, the space transformation 

process could enlarge the estimation errors of object locations, 

hence it lowers the performance of the proposed method. This is 

a limitation of the proposed algorithm.  

 

The proposed method prefers an overhead camera angle, which 

will provide a more accurate transformation space. Although our 

method may not be applicable in such scenarios of moving 

cameras, fortunately, video based security and traffic monitoring 

in most cities can meet the conditions of overhead camera angles. 

 
Figure 5. Two street scenes with moving cameras 

 

4.3 Comparison 

The comparison is conducted with some most relevant trackers, 

i.e. the state-of-the-art methods, namely SORT (Bewley et al., 

2016), mfi_tst (Yang et al., 2021), SLA_Track (Bergmann et al., 

2019), and Tracker++ (Mutiple Object Tracking Benchmark, 

2020) on the MOT16 and MOT17 datasets. The performance of 

our tracker and the comparison with other state-of-the-art 

trackers are shown in Table 3.  

 

Data Name MOTA↑ IDF1↑ HOTA↑ MT↑ ML↓ IDSW↓ Frag↓ 

MOT15 

Ours 47.9 52.3 54.9 264 63 244 738 

SORT (Bewley et al., 2016) 33.4 40.4 21.1 84 223 1001 1764 

mfi_tst (Yang et al., 2021) 49.2 58.7 41.5 210 176 912 1397 

SLA_Track (Bergmann et al., 2019) 47.0 57.9 43.0 163 196 558 1580 

Tracker++ (Mutiple Object Tracking 

Benchmark, 2020) 
46.6 47.6 37.6 131 201 1290 1702 

MOT16 

Ours 57.7 42.9 46.3 167 222 321 1095 

mfi_tst (Yang et al., 2021) 59.9 58.7 46.9 183 234 616 1050 

SLA_Track (Bergmann et al., 2019) 60.6 59.5 46.8 184 221 643 1171 

Tracker++ (Mutiple Object Tracking 

Benchmark, 2020) 
56.2 54.9 44.6 157 272 617 1069 

MOT17 

Ours 57.8 42.7 46.8 543 726 933 3198 

SORT (Bewley et al., 2016) 43.1 39.8 34.0 295 997 4852 7127 

mfi_tst (Yang et al., 2021) 60.1 58.8 47.2 612 699 2065 3829 

SLA_Track (Bergmann et al., 2019) 59.7 63.4 49.1 566 732 1647 3819 

Tracker++ (Mutiple Object Tracking 

Benchmark, 2020) 
56.3 55.1 44.8 498 831 1987 3763 

Table 3. Comparison of our experiment results with other method results on MOTChallenge benchmarks 
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The evaluation metrics include the multi-object tracking 

accuracy (MOTA), the ratio of correctly identified detection over 

the average number of ground-truth and computed detection 

(IDF1), higher order tracking accuracy (HOTA), the ratio of 

mostly tracked targets (MT), the ratio of mostly lost targets (ML), 

the number of ID switches (IDSW) and the number of fragments 

(Frag). The upper arrow ↑ means that larger value of this metric 

shows better performance. The down arrow ↓ means that smaller 

value of this metric shows better performance. We explain these 

metrics in the APPENDIX at the end of the paper. 

 

As we can see in Table 3 that the proposed method decreases the 

value of IDSW in most cases. It demonstrated that our method 

has an advantage in trajectory preservation. The proposed 

method can recover occluded trajectories of targets with varying 

scales, as it uses a physical ellipse IOU distance instead of pixel 

bounding box IOU distance. Specifically, when the target is 

occluded in the image, the position in the ground space remains 

within a reasonable range. This allows recovery of the target after 

occlusion. 

 

We observe that the proposed method also reduces the number of 

trajectory fragments (Frag). It revealed that physical locations are 

more suitable for tracking objects when they are partially 

occluded. Considering all factors on the MOTA score, using a 

larger confidence threshold to the detections can potentially 

increase MOTA values. A larger number of false positives can 

decrease tracking accuracy. In sum, the proposed method is a 

strong competitor to other online tracking frameworks in the 

aspect of the other metrics.  

 

5. CONCLUSION 

In this paper, we introduce an idea to predict object trajectories 

in a transform physical space for multi-object tracking tasks. The 

proposed algorithm has two core techniques: (1) a Kalman filter 

for predicting locations of pedestrians by transforming their 

positions from the image space to the ground space, which 

provides a reference plane for object association in multi-view 

tracking; and (2) an appearance feature deep network for re-

identification of blocked pedestrians. The proposed method is 

able better distinguish people in the crowd and track through 

longer periods of occlusion. Extensive experiments have shown 

that the predicted locations are effective for multi-object tracking, 

in particular in reducing metrics of the number of identity 

switches and the fragments. As a future work, we plan to 

integrate the proposed method into an embedded hardware 

system and apply it to solve the problem of traffic monitoring. 
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APPENDIX 

The performance of our tracker and the comparison with other 

state-of-the-art trackers are shown in Table 3. In the following, 

we explain the metrics used in our experiments. 

 

 MOTA is used to statistic the error accumulation in tracking. 

It is combined with false-negative detections, false-positive 

detections, and identity switch. Given the number of false-

negative detection FN𝑡 in the frame 𝑡, the number of false-

positive detection FP𝑡, and the number of identity switch 

IDSW𝑡, the mathematical form is written as: 

MOTA = 1 −
∑ (FN𝑡 + FP𝑡 + IDSW𝑡)𝑡

∑ 𝑔𝑡𝑡
, 

where 𝑔𝑡  is the number of ground truth detection in the 

frame 𝑡. 

 

 IDF1 is the ratio of the number of correct identities to the 

average number of detection in each frame. The form of 

IDF1 is: 

IDF1 = 2
IDP ∙ IDR

IDP + IDR
. 

IDP is the precision of the object identities, and IDR is the 

recall of the object identities. The IDP is formulated as: 

IDP =
IDTP

IDTP + IDFP
, 

where IDTP is the number of the correct identities and IDFP 

is the number of the wrong identities: 

IDR =
IDTP

IDTP + IDFN
, 

where IDFN is the number of the identities which are not 

detected and identified. 

 

 HOTA is the average of detection accuracy and association 

accuracy. It can be formulated as: 

HOTA = ∫ HOTA𝛼 𝑑𝛼
1

0

≈
1

19
∑ HOTA𝛼

0.95

𝛼=0.05
𝛼+=0.05

=
1

19
∑ √DetA𝛼 ∙ AssA𝛼

0.95

𝛼=0.05
𝛼+=0.05

, 

where DetA is the detection accuracy, and AssA is the 

association accuracy. The form of DetA is written as: 

DetA =
TP

TP + FN + FP
 , 

where TP is the number of correct detection, FP is the 

number of wrong detection and FN is the number of objects 

which are not detected. 

 

 The mathematical form of AssA is written as: 

AssA =
1

𝐶
∑

TPA

TPA + FNA + FPA
𝐶

 , 

where TPA is the number of correct associations in a 

trajectory; FPA is the number of wrong associations; FNA 

is the number of fail detection in one trajectory; and 𝐶 is 

the total number of trajectories. In the HOTA, there is an 

angle mark 𝛼, which is used as a threshold to determine if 

one detection is a TP or FP (TPA or FPA). Given a detection 

bounding-box D and a ground-truth bounding-box G, the 𝛼 

is formulated as: 

𝛼 =
D ∩ G

D + G − D ∩ G
 . 

In DetA, if the 𝛼 is large than the threshold, the detection 

is a TP. In AssA, calculated with the object of the previous 

frame in the same trajectory, if the 𝛼  is large than the 

threshold, the association is a TPA. The reverse held as well. 

 

 MT represents the number of the trajectories which overlap 

more than 80% compared with ground-truth; ML represents 

the number of the trajectories which overlap less than 20% 

compared with ground-truth.  

 

 IDSW is the summary of the number of transitions from 

one identity to another on a trajectory in the tracking result. 

 

 Frag is the summary of the number of fragments in one 

trajectory in the tracking result. 
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