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Abstract

The concept of centrality is one of the essential tools for analyzing complex systems.
Over the years, a large number of centrality indices have been proposed that account
for different aspects of a network. Unfortunately, most real networks are substantially
incomplete, which affects the results of the centrality measures. This article aims to eval-
uate the sensitivity of 16 centrality measures to the presence of errors or incomplete
information about the structure of a complex network. Our experiments are performed
across 113 empirical networks. As a result, we identify centrality indices that are highly
vulnerable to incomplete data.

Author summary

The robustness of centrality measures is a fundamental problem for the correct identifi-
cation of important nodes in many real networks, which are partially observed in most
cases. Existing studies do not fully address this issue because they are usually limited to
a small number of both centrality measures and graphs, while the graph perturbations
are performed at random. Our work investigates the robustness of 16 centrality measures
by analyzing the variation in the relative ranking of nodes under a set of appropriately
defined network perturbations. To draw meaningful and robust conclusions about the
average sensitivity of a specific centrality measure, we perform our experiments on a
large set of networks. Our findings demonstrate that certain centrality measures may
be misinterpreted or misapplied when used on specific classes of networks, while the
results of these measures require a cautious interpretation in the presence of missing or
incorrect data.

Introduction

Many complex systems, including social, infrastructural, biological and economic systems,
can be described as networks with nodes representing the entities and links representing
interactions between them. A fundamental challenge in studying these networks is to under-
stand the impact (or importance) of each node. The notion of importance can be defined in
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different ways depending on the nature of a network or features that a researcher wants to
consider while ranking nodes. Therefore, many centrality measures have been introduced in
the literature. The total number of proposed indices over the graph history is overwhelming
[1], ranging from classical centralities [2] to measures that take into account specific features
of a network [3-5]. These measures have shown great value in understanding many complex
networks such as citation networks, computer networks and biological networks. In general,
the choice of the most appropriate centrality measure depends on the type of network and the
interpretation of important elements.

Unfortunately, most real networks are substantially incomplete or inaccurate due to the
high cost of network measurements, data collection errors, the highly dynamic nature of net-
works, or data privacy issues. For instance, Ficara et al. [6] examine criminal networks that
suffer from data incompleteness (due to the nature of the network), data incorrectness (unin-
tentional data collection errors and intentional deception by criminals) and data inconsis-
tency (misleading information from different sources). Aleskerov et al. [7] analyze the bank-
ing foreign claims network, which covers about 94% of total foreign claims as some countries
do not report their statistics. Meshcheryakova [8] investigates the asymmetry in trade net-
works as many countries report their own versions of a trade flow between them due to differ-
ent commodity classification systems, different costs calculations (including/excluding trans-
portation and insurance costs) or a time delay. Hence, some centrality measures, which are
very sensitive to small changes in the graph structure, can be misused and lead to the wrong
interpretation of important within these networks.

The effects of missing or incorrect data on centrality measures have been extensively
studied in the literature. Most studies examine the sensitivity of centrality in artificial net-
works such as Erdés-Rényi (ER) random graphs, Barabdsi—Albert (scale-free) graphs, Watts—
Strogatz (small-world) graphs and other classical graph structures [9-15]. These studies are
mainly limited to the sensitivity analysis of only 4-6 classical centrality measures to a small
number of structural changes (link/node removal or addition) in a graph. Furthermore, all
the perturbations in the structure of a network are performed at random, which might be
meaningless for real-world networks.

Some studies examine the robustness of centrality measures in real-world networks. Bol-
land [16] examines the performance of 4 classical centrality measures under conditions
of random variations in Chillicothe data. Herland et al. [17] consider 3 classical central-
ity measures and their robustness to random changes in 4 real networks. Niu et al. [18]
evaluate the stability of 5 centrality measures on 9 real datasets towards random link addi-
tion/removal/rewiring and have evaluated the Spearman correlation between centrality rank-
ings. Segarra and Ribeiro [11] investigate the effect of random changes on the air traffic net-
work and the network of interactions between sectors of the US economy. Meshcheryakova
and Shvydun [19] examine 13 centrality measures in criminal and food trade networks.
Costenbader and Valente [20] determine how random sampling from 59 empirical directed
networks affects the stability of 11 centrality measures. While previous studies have made sig-
nificant contributions to the analysis of centrality measures, several limitations remain. First,
many of these studies consider only a limited number of empirical networks and, thus, do not
allow to generalize the results and draw meaningful conclusions about the class of centrality
measures that are most sensitive to incomplete data. Second, most studies explore only classi-
cal centrality measures (e.g., degree, betweenness, closeness, and eigenvector centralities) and,
consequently, do not provide a comparative analysis with other existing measures. Further-
more, the sensitivity of centrality measures is often assessed under the assumption that data
are missing at random, which is not true for many empirical networks.
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This article aims to evaluate the robustness of centrality measures on a large set of different
benchmark network topologies. Fig 1 illustrates the methodology of our research. We con-
sider 113 networks of varying sizes and domains. For each network, we sequentially perform
multiple changes in the structure of the graph by removing existing or adding new links, thus,
simulating the most common effects of incomplete or incorrect data. Next, we evaluate the
ranking of nodes in initial and modified graphs using a particular centrality measure. Finally,
we compare the rankings across different networks and evaluate the robustness of 16 central-
ity measures. We would like to emphasize that we focus on the problem of incomplete data.
Hence, we do not investigate the targeted addition or deletion of links intended to affect the
network’s robustness and resilience [21,22].

Materials and methods
Preliminaries

We consider a graph G = (N, £), where N = {1, ..., N} is a set of nodes, || = N, and

LCN XN isasetof links, |£| = L. The graph G is described by an N X N adjacency matrix A
whose elements a;; are either one or zero depending on whether there is a link between

nodes i and j or not and a;; = 0 for Vi € N The graph is called undirected if A is symmetric
(a;; = aj; for Vi,j € N) and directed, otherwise. Additionally, the graph G can be described

by an N'X N non-negative weight matrix W, where each element w;; represents the intensity

of a link between nodes i and j. Given a graph G, a centrality measure c(-) associates a real
number ¢(i) with each node i € N, which is usually interpreted as follows: the larger ¢(i) is,
the more central node i should be. We focus on undirected graphs and examine centrality
measures that are applicable to these structures.

Centrality measures

In this subsection, we describe the centrality measures that we study in the paper.

1. Degree centrality [23]. For undirected graphs, the degree of node i is equivalent to the
total number of adjacent links. For weighted graphs, the intensity of a link is considered.
High values of the degree centrality indicate nodes with the most connections to other
nodes, making it easier for them to access and influence other nodes locally.
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Fig 1. Perturbation analysis of centrality measures.
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2. k-shell centrality [24]. The centrality of node i assigns the highest order of a core that
contains this node. A k-core is a maximal subgraph of G in which each node has at least
degree k. Nodes with high k-shell levels tend to be located at the center of the network,
giving them greater spreading capability.

3. Collective Influence (CollInf) [25]. The centrality of node i depends on its degree k;
and the degrees of its neighbours at a particular distance [ [25], i.e.,

c(i)=(ki-1) D} (ki-1). (1)

j:dj,vsl

Nodes with high collective influence have strong connections to their neighbors and
are located within dense, well-connected network structures at radius L.

4. Eigenvector centrality [2,26]. The eigenvector centrality assigns the relative importance
of node i by giving greater weight to more important neighbors, thereby contributing
more to the centrality of node i than less important neighbors. The eigenvector central-
ity is defined by the principal eigenvector ¢ of the adjacency matrix A with the leading
eigenvalue A4y, i.€.,

A-E=Apax - G (2)

5. Subgraph centrality [27]. It computes the number of closed walks (walks where the
first and the last nodes are the same) of different lengths in G, i.e.,

(i)=Y (4 (3)

Nodes with high subgraph centrality scores are involved in many connected sub-
graphs and, consequently, contribute significantly to the overall connectivity and func-
tionality of the network.

6. PageRank [28]. The importance of a node depends on the probability to be visited by a
random walker, i.e.,

N .
c(i):aZaji-i]L+l_J, (4)
s

k=1 %k

where a = 0.85 is the probability to continue the walk. Nodes with high PageRank scores
have the highest probability of being visited by the random walker and, consequently,
play an important role in the network.

7. Laplacian centrality [29]. The Laplacian centrality of a node measures the network’s
ability to respond to the deactivation of that node. It measures the drop in the Laplacian
energy after deleting a node from the graph, i.e.,

_E(G) - EL(G))

(i) 5G) (5)

where G; is the graph obtained by deleting node i from G and E;(G) = ij:l A%, Ay are
the eigenvalues of G’s Laplacian matrix.
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8.

10.

11.

12.

13.

14.

Betweenness centrality [30]. It measures how often a node lies on the shortest paths
between other nodes, i.e.,

oy (i)
O'jk

; (6)

M=

c(i)=2;

N
J=1

=~
Il
—_

where o is the number of the shortest paths from node j to node k and g (i) is the
number of the shortest paths from node j to node k that pass through i. Nodes with
high betweenness centrality play a vital role in facilitating the flow of information and
resources throughout the network.

. Stress [31]. A variant of the betweenness centrality where the centrality c(i) of node i

counts all of the shortest paths which pass through node i, i.e.,

c(i) = D apli). ?)

jEk#i

where o (i) is the number of the shortest paths from j to k that pass through i.
Current-flow betweenness [32]. The extension of the betweenness centrality where all
paths between nodes are considered. Nodes with high current-flow betweenness play
a vital role in facilitating the flow of information that does not necessarily follow the
shortest paths.

Egocentric betweenness [33]. The betweenness centrality of node i within its egocen-
tric network (subgraph of G with node i and its 1-hop neighbors). Nodes with high ego-
centric betweenness play a vital role in facilitating the flow of information among their
neighbors.

Closeness centrality [23]. It evaluates how close each node is to other nodes in the
network, i.e.,

N-1

c(i) = Tﬁi 3

(8)

where dj; is the length of the shortest path from node i to node j. Nodes with high close-
ness centrality are key players in quickly transmitting information along the shortest
paths in the network.

Harmonic centrality [34]. A variant of the closeness centrality where the centrality of
node i is computed as the sum of inverse distances to other nodes, i.e.,

(W)=Y ©
i dij

Decay [35]. Decay centrality reflects the importance of nodes by accounting for the
diminishing effects of distance. It is a variant of closeness centrality in which the dis-
tance d;; between nodes i and j is subject to a decay parameter § = 0.5

c(i):z5d"f. (10)

J#Ei
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15. Current-flow Closeness [32]. A variant of the closeness centrality, which utilizes the
idea of electrical current in a network

N-1

=5 @0’

(11)

where p;;(i) is the absolute electrical potential of node i based on the electrical cur-
rent supply from node i to node j. Nodes with high closeness centrality are key players
in rapidly transmitting information that does not necessarily follow the shortest paths
across the network.

16. LRIC [3]. LRIC is based on the concept that nodes are not homogeneous, with each
node i having an individual threshold of influence g;, while its neighbors may form
groups to influence node i. Nodes with high LRIC scores have the greatest direct and
indirect group influence on other nodes in the network.

For weighted networks, we consider only weighted degree, eigenvector, PageRank, Lapla-
cian and LRIC centralities, because other betweenness-based and closeness-based measures
require the definition of the shortest paths, which may differ across the datasets.

Datasets

The robustness of centrality measures is evaluated on 113 undirected networks. Table 1 pro-
vides a short description of the networks. We examine 113 research-quality networks of vary-
ing sizes and domains from the Index of Complex Networks (ICON) [36] and our previous
study [19]. These networks describe various types of interactions, including social interac-
tions between members of the US Congress (congress-Twitter [37]), members of a university
karate club (karate [38]), university employees (CS-Aarhus [39]), movie characters [40], ter-
rorists (the 9/11 terrorist network [41], Madrid2004-terrorists [42], Mali terrorist network
[43], Noordin [44], RHODESBOMBING [45]), gangs (Italian gangs [46], London gang [47],
Montreal street gangs [48]), criminals (e.g., Siren and Togo operations [49], cocaine smug-
gling [50], Sicilian Mafia [51]), households (Ugandan village networks [52]) and animals
(dolphins [53] and zebras [54]). Additionally, we include one biological network (Fullerene
C60 [55]), one economic network (Medieval Russian Trade [56]), 24 technological networks
(Agis, Bbnplanet, Bics, Biznet, Cesnet, Chinanet, CrINetworkServices, DeutscheTelekom,
Dfn, Evolink, Forthnet, GtsCzechRepublic, GtsPoland, HurricaneElectric, Integra, Janetback-
bone, Litnet, Niif, Psinet, Renater2010, Rnp, Sanet, Xeex, Xspedius [57]), two transporta-
tion networks (Amsterdam metro [58], PATH rail system [59]), and one word adjacency net-
work (word-adj [60]). Most of the networks suffer from incompleteness. Therefore, the sen-
sitivity analysis of centrality measures toward graph modifications is reasonable for these
networks.

There are some limitations in our study related to the choice of datasets. Due to the high
computational complexity of some classical centrality measures, we focus on networks with
a relatively small number of nodes (most networks containing fewer than 100 nodes). Hence,
the results of the study may not be generalizable to large networks.

Second, approximately 44% of the networks in our study are fictional, as they represent
relationships between movie characters. Movie networks are the one-mode projections of
bipartite networks, where character co-appearance in the same scene serves as a proxy for
connectedness [40]. When # characters appear together in a scene, they form a fully con-
nected clique of size n in the movie network. This results in an overlapping clique structure
(a union of densely connected subgroups), which is often unnatural for real-world networks
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Table 1. List of networks.

# | Dataset N L # |Dataset N L # |Dataset N L
Unweighted networks

1 congress-Twitter 475 10222 |2 dolphins 62 159 3 karate 34 78
4 mafia (calls) 100 124 5 mafia (meetings) 101 256 6 movie-11 66 211
7 movie-129 61 144 movie-146 63 260 9 movie-158 67 310
10 movie-178 109 326 11 movie-180 82 162 12 movie-209 69 135
13 movie-261 95 567 14 movie-271 76 185 15 movie-273 77 246
16 movie-274 60 246 17 movie-281 60 152 18 movie-298 68 214
19 movie-308 62 186 20 movie-316 94 271 21 movie-320 68 158
22 movie-337 76 200 23 movie-339 70 266 24 movie-34 95 378
25 movie-346 74 251 26 movie-356 78 219 27 movie-36 75 249
28 movie-370 64 251 29 movie-412 66 182 30 movie-426 66 209
31 movie-438 61 291 32 movie-442 70 339 33 movie-452 61 228
34 movie-456 101 293 35 movie-523 82 239 36 movie-526 76 174
37 movie-530 67 186 38 movie-541 77 318 39 movie-544 62 331
40 movie-573 61 331 41 movie-591 76 629 42 movie-632 65 258
43 movie-655 61 239 44 movie-659 99 317 45 movie-764 76 274
46 movie-803 71 264 47 movie-828 70 299 48 movie-832 75 217
49 movie-837 68 131 50 movie-840 63 591 51 movie-869 60 269
52 movie-877 76 201 53 movie-92 71 154 54 movie-93 62 284
55 terrorist-pairs 62 152 56 word-adj 112 425 57 9-11 terrorist network 60 126
58 Agis 25 30 59 Amsterdam metro 39 40 60 Bbnplanet 27 28
61 Bics 33 48 62 Biznet 29 33 63 CS-Aarhus (Facebook) 32 124
64 CS-Aarhus (coauthor) 20 21 65 CS-Aarhus (leisure) 47 88 66 CS-Aarhus (lunch) 60 193
67 CS-Aarhus (work) 60 194 68 Cesnet 44 51 69 Chinanet 42 66
70 CrlNetworkServices 33 38 71 DeutscheTelekom 30 55 72 Dfn 50 78
73 Evolink 35 43 74 Forthnet 62 62 75 Fullerene C60 60 90
76 GtsCzechRepublic 32 33 77 GtsPoland 33 37 78 HurricaneElectric 24 37
79 Integra 27 36 80 Italian gangs 65 113 81 Janetbackbone 29 45
82 Litnet 43 43 83 London gang 54 315 84 Madrid2004-terrorists 64 243
85 Mali terrorist network 36 67 86 Medieval Russian Trade |39 52 87 Montreal Street Gangs 29 75
88 Niif 36 41 89 Noordin: classmates 37 174 90 Noordin: communications |74 200
91 Noordin: friendship 59 90 92 Noordin: meetings 26 63 93 Noordin: operations 39 267
94 Noordin: training 28 130 95 PATH rail system 13 14 96 Psinet 24 25
97 RHODESBOMBING 22 66 98 Renater2010 43 56 99 Rnp 31 34
100 Sanet 43 45 101 Siren operation 44 103 102 Smuggling (ACERO) 25 37
103 Smuggling (JAKE) 38 50 104 Smuggling (JUANES) 51 93 105 Smuggling (MAMBO) 31 58
106 Togo operation 33 47 107 Ugandan village 17 65 257 108 Xeex 24 34
109 Xspedius 34 49 110 Zerbras 27 111

Weighted networks

1 congress-Twitter 475 10222 |2 karate 34 78 3 les-miserables 77 254
4 mafia-calls 100 124 5 mafia-meetings 101 256

https://doi.org/10.1371/journal.pcsy.0000042.t1001

and can notably impact certain centrality measures. For instance, this overlapping clique

structure leads to shorter average path lengths, resulting in high closeness centrality for many
nodes. It also causes reduced betweenness scores for nodes within cliques, while nodes acting
as bridges between cliques tend to have disproportionately high betweenness scores. A sim-
ilar issue of overlapping clique structures occurs in certain terrorist and criminal networks,

which are also one-mode projections derived from bipartite individual-event, individual-
membership or individual-location networks [42-44,46].
Next, many movie networks are highly centralized, as primary actors tend to appear in

most scenes. Fig 2 illustrates that only 16% of movie networks have low degree centralization
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Fig 2. Degree assortativity and centralization across different datasets.

https://doi.org/10.1371/journal.pcsy.0000042.9002

[61] values (<0.4), while 59% exhibit degree centralization scores above 0.6. While movie net-
works serve as a valuable example of incomplete data—where many actor connections remain
unobserved, similar to social network studies centered on specific individuals [62] —they may
not fully capture the complexity of real-world social interactions.

Finally, our datasets primarily consist of movie (44%), social (27%) and technological
(22%) networks, with other types accounting for approximately 7% of the total number of net-
works. Fig 2 also illustrates that approximately 91% of the networks exhibit negative degree
assortativity values [63]. Therefore, our findings on the average sensitivity of classical cen-
trality measures may not be generalizable to networks from other domains (financial, brain,
biological, etc.) or to different network structures, such as those with positive degree assorta-
tivity.

The correlation between centrality measures across empirical datasets is discussed in S1
Appendix. For each of the networks, we apply various data imputation strategies and evaluate
the sensitivity of centrality measures.
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Data imputation

The effect of missing data on the results of centrality measures is hard to estimate as there are
various causes of data incompleteness. For instance, trade networks suffer from data incom-
pleteness because some countries do not report their trade flows (missing links), use distinct
commodity classifications or evaluate bilateral trade costs differently (data inaccuracy). Pro-
tein networks have missing links as there are many undiscovered or unobserved interactions
between proteins. Hence, there is no single best strategy how to modify the structure of a
network and address all the issues of incomplete data. In other words, perturbation analysis
should be performed with respect to the nature of a network of interest and the type of errors
in the data.

Since nodes are often easier to observe in many empirical networks (e.g., social or inter-
national trade networks), we do not examine node removal or addition and instead focus
solely on the relationships between nodes. Table 2 illustrates the actions that we apply to
modify the structure of the networks. These actions take into account the two most common
types of errors in the data: measurement errors and incomplete information about links. For
unweighted networks, the RR scenario examines the robustness of centrality measures if some
of the links have been identified incorrectly. For weighted networks, the RC scenario studies
the effect of errors in the flow data. Other graph modifications examine the problem of miss-
ing links. The main difference between adding links strategies is the probability of choosing
unobserved links between nodes. In RA, there is an equal probability of choosing the missing
link. However, since missing links are not uniformly distributed in most empirical networks,
we consider the DA, PA, and AA scenarios, which assume that the probability of missing
links depends on the network’s structure. In DA, the probability of choosing links between
nodes is proportional to the product of their degrees. PA is driven by the idea of similarity
between nodes, which can be estimated by the geodesic distance between them. Finally, the
AA scenario is based on the Adamic-Adar index, which is often used to predict links in social
networks [64]. The Adamic-Adar index AA(i,) between nodes i and j is

1

AA(4,j) = —_—, (12
(1 ]) kej\;v\[j lOg(lNkl) )

where A; denotes the set of neighbors of node i. The difference between RR, RA, DA, PA and
AA scenarios is discussed in S2 Appendix.

For each network G and graph perturbation strategy, we generate 1,000 perturbed graphs
G and then compare the similarity between centrality measures in G and G. The parameter k

Table 2. List of modifications in the structure of a network.

Network type

# Name |Description Unweighted |Weighted
1 RR Random removal of k% links + -
2 RC Random change of link weights in the range of [-k%, k%| +
3 RA Random addition of k% new links + +
4 DA Addition of k% new links with a probability that is proportional to |+ +

the product of nodes degrees
5 PA Addition of k% links with a probability that is inversely + -

proportional to the shortest path distance between nodes
6 AA Addition of k% links with a probability that is proportional to the |+ -

Adamic-Adar index between nodes

https://doi.org/10.1371/journal.pcsy.0000042.t002
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varies from 1% to 30% of the total links in the initial graph G. For weighted graphs, k is based
on the total weight w = Zil Z]I\il w;j of links in G.

The list of graph changes, which is presented in Table 2, is not exhaustive. The choice of the
appropriate imputation method depends on the nature of the missing data as well as the type
of a network. A discussion of various data sampling and imputation techniques and the effect
of missing data on network measurement are provided in [19,65-74].

Performance evaluation

In this subsection, we describe various metrics that are employed in the paper to assess the
stability of the centrality measures. As illustrated in Fig 1, we first define the centrality of

the nodes in the initial graph G and its modified version G. For each centrality measure and
graph modification, we rank all the nodes according to their centrality and then compare the
rankings as well as the set of the most central elements. The higher the similarity between the
rankings of the nodes in G and G is, the less sensitive the centrality is to a certain modification
of the graph. The list of performance metrics is presented below.

1. Correlation: the Kendall rank correlation coeflicient [75], which measures the similar-
ity between two rankings of nodes as
N. - N,
r=_——< 1 (13)
N(N-1)/2
where N, and Ny are the numbers of concordant and discordant pairs.

2. TOP1I: the Jaccard index, which measures the similarity between two sets of the most
important nodes in G and G as

_lcn|
lcuC|’

J(C,C) (14)

where C and C denote sets of the most important nodes in G and G. The most impor-
tant nodes are the nodes with the highest centrality score.

3. TOP3: the Jaccard index between TOP-3 nodes in G and G.

4. TOP5: the Jaccard index between TOP-5 nodes in G and G.

5. TOP10: the Jaccard index between TOP-10 nodes in G and G.

Fig 3 illustrates an example of the performed experiment for the betweenness centrality.
Starting with the initial graph G, we construct a new network (one possible realization of
G) by randomly adding three links: (2,3), (5,7) and (6,8). We then evaluate and compare the
betweenness centrality in graphs G and G. The Kendall rank correlation coefficient between
nodes rankings in G and G is 0.72, as node 2 in G has a higher betweenness score than node
7, node 5 ranks higher than node 1, and node 3 surpasses nodes 1 and 8. The Jaccard index
for the TOP3 nodes is 1, indicating that nodes 6, 7, and 2 remain the most important in both
graphs G and G.

Since the robustness of centrality measures is evaluated in 1,000 realizations of graph G,
derived from the corresponding graph G, it is important to aggregate the result of our exper-
iments across all the networks. We employ two methods: the average score and the Copeland
score. For instance, the average correlation score of a centrality is the average correlation
between graphs G and G. The Copeland score is a social choice rule that measures the differ-
ence between the cardinality of dominating and dominated sets [76,77]. The dominating set of
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Fig 3. Perturbation analysis for the betweenness centrality: an example.

https://doi.org/10.1371/journal.pcsy.0000042.g003

centrality x includes centrality measures, which are more sensitive than x to the graph modifi-
cation in most experiments. Similarly, the dominated set of x contains centralities that are less

sensitive than x in most experiments. Therefore, the Copeland score performs a pairwise com-
parison of the centralities and identifies the measures that are less sensitive to perturbations in
most of the experiments.

Fig 4 shows an example where 3 centrality measures are compared in 5 experiments by
some performance metric X. Centralities A and B have the same average correlation coef-
ficient, although A outperforms B in 80% of experiments. By contrast, A has the highest
Copeland score as it is better than both B and C in most cases. Since our experiments explore
possible realizations of the initial partially-observed network, the Copeland score provides
additional insights into the ranking of centrality measures.

Results

In this subsection, we discuss the robustness of the centrality measures with respect to each
graph modification. We present the results for the correlation coefficient as well as for the

Centrality e

measure
A 0.8
B 0.8
Centrality Experiments c 0.7
measure 1 2 3 4 5
A 09 09 09 09 04
E g: gs 82 Oosi 0;? PalrW|seCompar|son Tanicley Gnrdnne

measure score
ﬁ A 2
B 0
C 2

Fig 4. The difference between the average value and the Copeland score.

https://doi.org/10.1371/journal.pcsy.0000042.9004
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Fig 5. The average Kendal rank correlation and its Copeland score for RR.

https://doi.org/10.1371/journal.pcsy.0000042.9005
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Fig 6. The average Jaccard index for TOP-5 nodes and its Copeland score for RR.

https://doi.org/10.1371/journal.pcsy.0000042.9006

TOP-5 most important nodes. The confidence intervals associated with the reported esti-
mates are provided in S3 Appendix. Through our empirical analysis of 1,000 modified graphs,
we observe that the robustness of centrality measures remains consistent across the sampled

datasets. We also observe that the 95% confidence intervals are quite narrow, indicating a high
level of precision in our estimates. The results for the TOP-1, TOP-3 and TOP-10 nodes agree
with the results of this subsection and therefore are provided in S3-S4 Appendices.
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Robustness of centrality measures in unweighted graphs

Random removal of links (RR) Fig 5 illustrates the robustness of the centrality measures
with respect to the Kendal rank correlation if k% links are removed from the initial graph
G. The degree centrality, which is the local measure, is the most robust measure that has a
very strong correlation coefficient (>0.78) with the observed graph G even if 30% of links
are removed from the graph. By contrast, the majority of betweenness-based centralities are
the most sensitive measures. The removal of links from G has a large impact on the short-
est paths between the nodes, therefore, the ranking of nodes may change dramatically. At
the same time, closeness, decay and harmonic centralities are more robust than the between-
ness centrality because the removal of links has a higher impact on the shortest paths rather
than on their lengths. Interestingly, some measures may outperform other centralities with
the increase of k. For instance, the egocentric betweenness, which measures a local between-
ness of nodes, becomes more robust than the closeness-based centralities for k > 25%. There

Add links (random) Add links (distance)

° o
3 ©

°
9
Average correlation score

Average correlation score

o
=

% of links, k % of links, k

Add links (degree) Add links (Adamic-Adar)

Average correlation score
Average correlation score

05 05
0 5 10 15 20 25 30 0 5 10 15 20 25 30
% of links, k % of links, k
- Betweenness Current-flow Closeness Degree Harmonic PageRank Subgraph
Closeness Current-flow betweenness Egocentric betweenness = = LRIC Stress k-shell
CollInf Decay Eigenvector Laplacian

Fig 7. The average Kendal rank correlation of centrality measures for RA, DA, PA, and AA.
https://doi.org/10.1371/journal.pcsy.0000042.9007
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Fig 8. The comparison of TOP-5 nodes for RA, DA, PA and AA.
https://doi.org/10.1371/journal.pcsy.0000042.g008

are also centralities (LRIC and current-flow betweenness) that provide relatively more robust
results for large k.

Next, we compare the sets of TOP-5 nodes with Jaccard index in Fig 6. Again, most
betweenness-based centralities demonstrate the largest difference in the set of TOP-5 nodes.
However, the k-shell centrality, which provides, on average, high Kendal rank correlation
coeflicient (see Fig 5), has a low Jaccard index for TOP-5 nodes. This observation may be
caused by the fact that in many cases the set C of the most important nodes may be very large
while the removal of links from G decreases the set C significantly. We can also conclude that
the degree, the current-flow betweenness, PageRank, the egocentric betweenness and LRIC
provide stable sets of the most important nodes.

Finally, we observe that degree, PageRank, LRIC and current-flow betweenness centrali-
ties are the least sensitive measures to the presence of k% random incorrect links in the initial
undirected unweighted graph G. The current-flow betweenness centrality provides a robust
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Fig 9. The mean and the variance of the Kendal rank correlation for degree and k-shell centralities across datasets.

https://doi.org/10.1371/journal.pcsy.0000042.9009

set of TOP-5 nodes for any observed k% while its correlation coefficient (see Fig 5) is more
stable than most other measures only for k > 10%.

Addition of new links (RA, DA, PA and AA) Assume now that k% links are not present
in a given graph G. Fig 7 illustrates the sensitivity of the centrality measures with respect to
the average correlation coefficient and the link addition strategy.

First, we notice that the addition of k% links has almost the same impact on the robustness
of centrality measures as the removal of k% links. However, the ranking of centrality measures
is different for link addition and link removal strategies. The addition of links has the largest
effect on all betweenness-based measures (stress, betweenness, egocentric betweenness and
current-flow betweenness centralities) and the LRIC index. The k-shell and the degree cen-
trality are the most robust measures for any link addition strategy. The ranking of the remain-
ing centralities depends on the link addition strategy. Overall, we observe that the ranking of
centrality measures does not differ significantly between RA, DA, PA, and AA scenarios.

Second, we compare the average Jaccard index between sets of TOP-5 nodes. Fig 8 shows
that the stress centrality is the most sensitive index for all link addition scenarios. In contrast
to the removal of links, the k-shell centrality provides the most robust results with respect to
both the correlation score and the TOP-5 nodes for the link addition. We observe that the set
of the most central nodes is relatively large and does not change significantly with the addi-
tion of new links. Among the other measures, we also observe a high Jaccard index (> 0.82)
for the degree and the PageRank centralities. The Copeland score of the centrality measures
is provided in S3 Appendix.

Next, we compare different link addition strategies. Fig 7 shows that the addition of ran-
dom links (RA) to the graph G has the largest effect on the average correlation coefficient. The
addition of links with a probability that is inversely proportional to the shortest path distance
between nodes (PA) is similar to RA, which may be caused by the small diameter of real net-
works and, consequently, the fact that almost any link between nodes has almost the same
probability. By contrast, degree-based (DA) and Adamic-Adar-based (AA) strategies have the
lowest impact on the average correlation coeflicient for most centralities. AA also provides the
lowest sensitivity of centrality measures in terms of the TOP-5 nodes.
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Fig 10. The average Kendal rank correlation and the average Jaccard index of centrality measures for RC.

https://doi.org/10.1371/journal.pcsy.0000042.9010

Finally, we emphasize that the presented results demonstrate the average sensitivity of
centrality measures across 110 unweighted networks from Table 1. In principle, the robust-
ness of centrality measures depends on the network and the graph perturbation strategy. For
instance, Fig 9 illustrates how the mean and the variance of the Kendal rank correlation vary
across datasets for DA (k = 15%). We consider degree (left) and k-shell (right) centralities,
which are the most robust measures according to Fig 7. Each point corresponds to a particu-
lar dataset. Fig 9 proves that the robustness of the centrality measures depends on the dataset.
For instance, the robustness of the k-shell centrality in some transportation and technological
networks varies significantly, which can be attributed to their smaller size and lower density,
where changes in the network structure have a greater impact on centrality values, depending
on where links are added.
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Fig 11. The average Kendal rank correlation and the average Jaccard index of centrality measures for RA and DA.
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Robustness of centrality measures in weighted graphs

Random change of link weights (RC) Fig 10 illustrates the robustness of centrality mea-
sures if the graph G contains errors in link weights. The confidence intervals associated with

the reported estimates are provided in S4 Appendix.

Laplacian and eigenvector centralities demonstrate the highest robustness of nodes rank-
ings. However, the sensitivity of centrality measures in terms of r most central elements varies
with respect to r. Both LRIC and weighted degree provide quite robust sets of r = 3 most
central nodes (TOP-3) but for r = 10 the most stable results are given by the Laplacian and
eigenvector centralities. In other words, for LRIC and weighted degree, the perturbation of
G has the largest effect on the ranking of TOP-10 nodes, which are not in TOP-3 and TOP-
5. By contrast, for Laplacian and eigenvector centralities, the graph perturbation changes the
ordering of TOP-10 nodes but not the list of these nodes. Overall, we observe that all cen-
trality measures have a very strong average correlation coeflicient (>0.89) between rankings
of nodes in graphs G and G even if there is up to 30% inaccuracy in the weights of the links.
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Moreover, random changes in link weights (RC) do not significantly influence the centrality
of nodes in the network.

Addition of new links (RA and DA) The effect of the link addition to weighted graphs
is shown in Fig 11. The average Kendal rank correlation is higher in DA (degree-based link
addition) than in RA (random addition of new links) for all centrality measures. LRIC and
PageRank are the most sensitive to missing links in terms of the average correlation coeffi-
cient and the set of TOP-5 nodes under RA strategy. Other centrality measures are quite sta-
ble: the average Jaccard similarity between TOP5 nodes in graphs G and G is greater than 0.9
while the average Kendall rank correlation of nodes rankings is strong (> 0.8).

For DA strategy, weighted degree centrality provides the most stable results as DA favors
high-degree nodes. On the contrary, the eigenvector centrality, which is among the most
robust measures in RA, becomes more vulnerable in DA compared to other centrality
measures. We also conclude that the LRIC index is the most sensitive measure for both
RA and DA.

Discussion

The problem of data inaccuracy and incompleteness is a serious challenge for the analysis
of complex systems. Since most real networks are partially observed, some centrality mea-
sures can be misused and lead to wrong interpretation. In this regard, the choice of the most
appropriate centrality measure requires a careful examination.

We discussed the sensitivity of 16 centrality measures to different data imputation tech-
niques. To draw meaningful and robust conclusions about the average sensitivity of different
centrality measures, we have performed experiments on a large set of different benchmark
network topologies.

Our main observation for unweighted networks is that the addition or the removal of new
links has the largest impact on the betweenness-based centralities. Degree and PageRank cen-
tralities are among the least sensitive measures to link addition/removal. We have also identi-
fied some measures that are more robust to the link removal than to the link addition and vice
versa. In general, there is also no evidence of considerable changes in the relative ranking of
centrality measures in all the link addition strategies discussed.

For weighted networks, k < 30% inaccuracy in link weights does not significantly affect the
centralities of the nodes (except LRIC). The existence of missing links has a greater influence
on the robustness of the centrality measures than the presence of errors in the weights of the
links. PageRank and Laplacian centrality are the most robust measures with respect to ran-
dom link addition (RA) and degree-based link addition (DA) scenarios. Finally, we observe
that the perturbations in weighted networks have a lower impact on node centrality than the
perturbations in unweighted networks.

The results of our experiments provide an overall picture of the robustness of centrality
measures. More precisely, we demonstrate how the centrality measures behave on average (in
most experiments on real networks) to a specific type of graph modification. Our experiments
do not aim to demonstrate that there exists the most robust measure for all networks because,
in general, the perturbation analysis should be conducted with respect to the nature of errors
in the network of interest. However, our study emphasizes the problem of the sensitivity of
centrality measures in the presence of incomplete data.

As a limitation, our analysis is performed on small empirical networks due to the high
computational complexity of some centrality measures. Hence, our findings from small net-
works may not fully generalize to larger networks, which typically exhibit more complex
structures. Our experiments are conducted on a large set of networks, primarily consisting
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of social, technological, and movie networks. Many of these networks are fictional or repre-
sent one-mode projections derived from bipartite co-appearance, co-event, or co-location
networks, and this structure affects certain centrality measures. As a result, the findings from
the sensitivity analysis may not necessarily generalize to networks from other domains. Com-
paring centrality measures across larger networks, as well as networks from a wider variety of
empirical domains, is an important next step in our future research.

Finally, our work is not intended to demonstrate the deficiency of some centrality indices,
but rather to show that some centralities require a cautious interpretation in the presence of
missing or incorrect links in the networks.
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