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SUMMARY

This thesis describes methods and first analyses to study the shape and motion of a large
school of approximately 2000 Harengula clupeola (false herring) in three-dimensional
space. This school of fish was present at the large-scale and publicly accessible ocean
aquarium of the Rotterdam zoo, in the Netherlands known as Diergaarde Blijdorp, from
spring 2017 to summer 2020.

Nature presents a broad range of length scales in which collective behavior emerges
in living systems, ranging from the bio-active convection of bacteria within the thick-
ness of a hair to the large-scale aerial display of starlings flying in a gigantic flock. Chap-
ter 1 introduces an overall motivation to study the collective behavior of schooling fish
in three dimensions from a fluid-mechanics background, at the interface between biol-
ogy, physics, and engineering. We review seminal experimental and modeling work on
fish schools and the current state-of-the-art in the camera tracking of animals in three
dimensions. Finally, the fully climate-controlled semi-natural habitat at the large-scale
ocean aquarium of the Rotterdam zoo is described, which includes a multitude of co-
habitant species such as sharks and sea turtles.

Obtaining accurate fish tracking data from the large-scale ocean aquarium requires
a camera calibration that is accurate and consistent over multiple views. Chapter 2 de-
scribes a flexible calibration technique that combines tools developed in computer vi-
sion with non-linear camera mappings used in experimental fluid mechanics. We suc-
cessfully calibrate a four-camera setup over a large measurement volume of ∼ 10×25×
6 m3 while using a much smaller calibration target that is randomly positioned at differ-
ent orientations with a team of divers. Imaging from air to water, the camera calibration
supports linear ray-tracing and applies projective geometry in the presence of significant
distortions across the optical refractive interface. The accuracy and robustness of the de-
veloped methods are demonstrated, and a measurement error within one centimeter is
achieved covering several tens of meters.

Imaging a school of false herrings inside a complex underwater environment faces
several challenges. Chapter 3 presents the image processing and tracking algorithms to
follow fish in three dimensions over a large distance. Necessary steps to remove artifacts
in the image background are explained and a series of image convolution filters identify
elliptical projections of fish over multiple scales. Subsequently, the framework of pro-
jective geometry fully integrates the ellipse identification with the linear ray-tracing to
robustly match corresponding fish between multiple views. An integer assignment is
used to find the matched correspondences that best fit the individual camera views in
the presence of large occlusions. This integer assignment is extended to make recursive
adjustments in fish trajectories and integrates recent advances from experimental fluid
mechanics to perform time-resolved tracking. The performance and implementation of
the tracking algorithms are quantified. High tracking reliability is achieved, which pro-
vides extraction of relatively long tracking sequences.

xi



xii SUMMARY

Over the course of four years, a total of six measurement weeks were performed to
obtain the full three-dimensional tracking data of the large school of fish. Chapter 4
starts with a qualitative overview of the behavior of the schooling fish that freely swim
in the relatively unconstrained semi-natural habitat. Subsequently, we perform quan-
titative analyses of the school shape and internal distribution of fish. Time series for
the evolution of the local fish density, the school volume and aspect ratio(s), and the
moments of the radial fish distribution are presented. The variation in the local fish
density does not simply scale with the school volume, instead, a constant lower bound
is reached at higher volumes. Moreover, the internal distribution of fish in the school
reveals a bimodality where the fish either cluster in a cohesive group or redistribute to-
wards the boundary, suggesting a predator attack. Next, we investigate the kinematics of
the school. Time series for the local polarization, the velocity of the center of gravity, an-
gular momentum, and volumetric dilation are discussed, including their shortcomings.
From the kinematic decomposition, three kinematic parameters are derived for milling
(rotation), foraging (translation), and dilation (radial motion), which together partition
the kinetic energy. We find that for an increase in milling the motion of the school be-
comes increasingly cylindrical and that the dilation approaches a pure expansion when
evading the predator. Finally, we discuss several interconnections between the school
shape, kinematics, and local state variables. Together these suggest a dependency be-
tween the fish velocity, the local density, and polarization.

Chapter 5 summarizes the main conclusions of the current work and makes several
recommendations for future research. Unlocking the third dimension to analyze the
shape and kinematics of swimming schools of fish contributes to future research beyond
the laboratory environment and in the field.



SAMENVATTING

Dit proefschrift beschrijft methodiek en eerste analysen om vorm en beweging van een
grote school van ongeveer 2000 Harengula clupeola (valse haring) te bestuderen in de
driedimensionale ruimte. Deze school vissen was aanwezig in het grootschalige en open-
bare zee aquarium van de Rotterdamse dierentuin, in Nederland bekend als Diergaarde
Blijdorp, vanaf voorjaar 2017 tot zomer 2020.

In de natuur bestaat een breed scala aan lengteschalen waarin collectief gedrag zich
voordoet in levende systemen, variërend van bioactieve convectie van bacteriën in de
dikte van een haar tot grootschalige zwermen spreeuwen in een spectaculaire luchtshow.
Hoofdstuk 1 introduceert een algehele motivatie om het collectieve gedrag van vissen en
het zwemmen in scholen te bestuderen vanuit de invalshoek van de stromingsleer, op
het snijvlak van biologie, natuurkunde en techniek. We beschouwen zowel voorgaand
experimenteel onderzoek als het modelleren voor scholende vissen en huidig onderzoek
in het optisch volgen van dieren in drie dimensies. Tot slot wordt het volledig geklimati-
seerde semi-natuurlijke habitat van het grootschalige zee aquarium in de dierentuin van
Rotterdam beschreven, waarin een veelvoud aan diersoorten zoals haaien en zeeschild-
padden rondzwemt.

Het verkrijgen van nauwkeurige meetdata voor het volgen van vissen in het groot-
schalige zee aquarium vereist een camera kalibratie die nauwkeurig en consistent is over
meerdere aanzichten. Hoofdstuk 2 beschrijft een flexibele camera kalibratie techniek
welke methoden uit de digitale optica combineert met niet-lineaire camera modellen
uit de experimentele stromingsleer. We bereiken een succesvolle kalibratie voor een vier-
camera systeem over een groot meetvolume van∼ 10×25×6 m3 terwijl er een veel kleiner
kalibratie object wordt gebruikt dat gepositioneerd wordt onder verschillende oriënta-
ties met een groep duikers. Voor het filmen van lucht naar water wordt lijnmeetkunde en
projectieve geometrie toegepast in bijzijn van vervormingen langs het optisch brekende
grensvlak. De nauwkeurigheid en robuustheid van de ontwikkelde methoden wordt ge-
demonstreerd en er wordt een meetfout binnen één centimeter bereikt over een afstand
van enkele tientallen meters.

Het filmen van een school valse haringen in een complexe onderwater omgeving
staat voor een aantal uitdagingen. Hoofdstuk 3 presenteert de beeld verwerking me-
thoden en tracking-algoritmen voor het volgen van vissen in drie dimensies over grote
afstand. Benodigde stappen om achtergrond artefacten te verwijderen worden uitge-
legd en een reeks beeldconvolutiefilters identificeert ovaal vormige projecties van vissen
over verschillende groottes. Vervolgens integreert het raamwerk van de projectieve ge-
ometrie de vis detectie volledig met de lijnmeetkunde om overeenkomende aanzichten
van vissen op robuuste wijze met elkaar te verbinden. Een geheel getal toewijzing wordt
gebruikt om de overeenkomsten te vinden die het best in verhouding staan tot de indivi-
duele camerabeelden in aanwezigheid van grote occlusies. Deze geheel getal toewijzing
wordt uitgebreid op grond van recursieve aanpassingen van vis trajecten en integreert
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recente vorderingen uit de experimentele stromingsleer om de tijd opgeloste tracking
uit te voeren. De prestaties en implementatie van de tracking-algoritmen worden ge-
kwantificeerd. Er wordt een hoge volgbetrouwbaarheid bereikt, waardoor relatief lange
vis trajecten kunnen worden geëxtraheerd.

Over het verloop van vier jaar zijn zes meetweken uitgevoerd om de volledig driedi-
mensionale data van de grote school vissen te verkrijgen. Hoofdstuk 4 begint met een
kwalitatief overzicht voor het gedrag van de scholende vissen die vrijuit zwemmen in
het relatief onbegrensde semi-natuurlijke habitat. Vervolgens voeren we kwantitatieve
analyses uit aan de vorm van de school en de interne verdeling van vissen. Tijdsreeksen
voor de ontwikkeling van de lokale visdichtheid, het volume van de school, aspectver-
houding(en), en de momenten van de radiale visverdeling worden gepresenteerd. De
variatie in lokale visdichtheid schaalt niet simpelweg met het volume van de school, in
plaats daarvan wordt er een constante ondergrens bereikt bij hogere volumes. Boven-
dien onthult de interne verdeling van de vissen een bimodaliteit, waar de vissen clus-
teren in een samenhangende groep of zich herverdelen naar de grens van de school,
hetgeen een aanval van een roofdier suggereert. Daarna bestuderen we de kinematica
van de school. Tijdsreeksen voor de lokale polarisatie, de snelheid van het zwaartepunt,
impulsmoment en de volumetrische dilatatie worden besproken, inclusief hun tekort-
komingen. Vanuit de kinematische ontleding worden drie kinematische parameters af-
geleid voor het malen (draaien), foerageren (transleren), en dilatatie (radiale beweging),
die samen de kinetische energie verdelen. Voor een toename in malen vinden we dat de
beweging van de school cilindrischer wordt, en dat de dilatatie een pure verwijding be-
nadert wanneer de school een roofdier ontvlucht. Tenslotte bespreken we verschillende
onderlinge verbanden tussen de school vorm, kinematica en lokale toestandsvariabelen.
Samen suggereren deze een afhankelijkheid tussen de vissnelheid, de lokale visdichtheid
en polarisatie.

Hoofdstuk 5 vat de belangrijkste conclusies van het huidige werk samen en geeft ver-
schillende aanbevelingen voor toekomstig onderzoek. De ontsluiting van de derde di-
mensie om de vorm en beweging van zwemmende scholen vis te analyseren draagt bij
aan toekomstig onderzoek buiten de laboratoriumomgeving en in het veld.



1
INTRODUCTION

... “In the case of all things which have several parts and in which the totality is not, as it
were, a mere heap, but the whole is something beside the parts, there is a cause; for even

in bodies contact is the cause of unity in some cases, and in others
viscosity or some other such quality.” ...

— Aristotle, Metaphysics VIII-p6, 350 B.C.E

The sudden expansion and wave propagation through a gigantic school of oceanic
fish escaping a predator is a startling display of collective animal behavior. Such mas-
sive, impressive, mesmerizing, and rapidly shape-shifting fish schooling aggregations
are abundant. Sardines, herring, and anchovies may school in vast numbers that can
extend over several square kilometers [1, 2] from coastal waters [3] deep into the open
waters of the pelagic ocean [4, 5]. Likewise, jellyfish gather in enormous oceanic blooms
[6], antarctic krill swarm in colossal assembles [7], and oceanic eels aggregate in large
groups down to abyssal depths [8]. Formations of such animal collectives continue to
captivate scientists in many disciplines including biologists, mathematicians, physicists,
and fluid-dynamicists in particular.

The emergence of rapid information transfer as commonly observed in schools of
fish [9] and flocks of birds [10, 11] is possibly the most astounding view of animals mov-
ing in a group. With propagation speeds far exceeding that of the individuals, early con-
jectures have hypothesized that birds in a flock must possess some form of telepathic
ability [12]. Such propositions are nowadays refuted [11]. Nonetheless, animal groups
may behave like a ‘collective mind’ [13] or ‘super-organism’, where the sensory input of
many eyes facilitates the alarmed collective response and decision-making or ‘wisdom
of the crowd’ for animal taxes [9–11, 14]. Studying the bewildering complexity of moving
animal groups is central to understanding the underlying collective animal behavior —
and the collective locomotion of schooling fish for the current thesis.

1
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2 1. INTRODUCTION

1.1. COLLECTIVE ANIMAL LOCOMOTION
From the bio-active convection of a suspension of micro-organisms within the thickness
of a hair [15–18] up to the large aerial display of a flock of starlings spanning several
hundreds of meters [19–21], collective behavior is a ubiquitous phenomenon in nature
[22–28]. How can it be that fish in a school, birds in a flock, insects in a swarm, or sheep
in a herd can maneuver through complex environments and coordinate in unison, but
rarely collide with one another? As is illustrated in Figure 1.1 such examples cover many
length scales [29], which the emerging collective locomotion may yield surprising results
from a fluid-mechanics background.

For example, at the small scale (left Figure 1.1), whether it be a mixture of micro-
tubules in a nematic ordered phase [17] or a dense suspension of bacteria [16], the emerg-
ing bio-convection likely originates from the physical hydrodynamic force dominated by
viscosity [30]. In contrast with flows at the micro-scale, the coherent motion in bacterial
suspensions [31–34] may resemble large-scale three-dimensional turbulent flows, even
when the suspension is confined in two dimensions. At the large scale, on the other hand
(right Figure 1.1), whether it be midges in a swarm [35, 36], fish in school [27], starlings
in a flock [19, 20], sheep in a herd [37], or humans in a crowd [38–40], the collective lo-
comotion likely originates from decisions by individuals engaged in social interaction.
At increasing social cohesion, such groups may display a strongly correlated system and
act like a fluid dominated by apparent viscous (and elastic) forces, again in contrast to
what one may expect from the fluid inertia at large-scale convection.

From a ‘microscopic’ perspective the local social interactions among animals in a
group offer a mechanism to transfer the motion or ‘momentum’ from one individual to
another, similar to an isolated system of interacting particles. Unlike physical forces, so-
cial forces between individuals do not require the action of one individual on the other
to be balanced by an equal and opposite reaction. Moreover, the self-propelled nature of
the group constituents presents a highly dissipative system far away from equilibrium.
Even the simplest such systems organize from disorder to order [41] manifesting differ-
ent phase transitions [42–44] and have provided the foundation for continuüm theory
[45, 46] and hydrodynamics of flocking [47]. Here the non-conservative forces and inter-
actions among members may violate concepts central to mechanics [48].

From a ‘macroscopic’ perspective one can investigate the group dynamics of the an-
imal collective. In physics, the linear and angular momenta for a collection of interact-
ing particles are conserved. Although subject to Newtonian mechanics, moving animal
groups do not need to follow such conservation laws which are clearly breached on net
collective locomotion (translation, rotation, etc.). On the other hand, in analogy to fluid
dynamics [49], the conservation of mass is at the foundation of transport equations in
modeling traffic flow [50]. Here the nonlinear hyperbolic and dispersed wave propaga-
tion [51] may underlie traffic jam formation and contrast expectations from Bernoulli in
a simple pipe flow. Such phenomena of emergent flows are intriguing, with new, hidden
conservation laws on discovery in the case of moving animal groups [52].

What exactly determines the internal structure of a moving animal group? What un-
derlies the almost ‘solid’ group cohesion in contrast with the ‘fluid’ collective coordi-
nation? How does collective behavior emerge from the underlying social and physical
interactions? Learning from fish schools has great potential to contribute to the bio-
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mimicry for robotic schooling [53], including the design of mechanical model systems
without cognition [54, 55]. New insight may contribute to crowd-control [40] such as the
modeling of pedestrians’ walkways and corridors [56, 57] and to understanding mosh-
pits and crowd dynamics in concert halls [38, 39] as well as cycling in pelotons [58, 59].
Such research into the spontaneous emergence and physics of living fluids [16] may per-
haps one day bring us engineering of ‘functional- and/or smart’ fluid-dynamics of active
suspensions and (human) crowds [60, 61].

1.2. THE DYNAMIC SCHOOLING OF FISH
From a biological perspective, the collective schooling of fish is thought to be an effective
survival strategy. For example, the selfish herd hypothesis [62] assumes that individuals
seek shelter inside available space of the animal aggregation to minimize the risk of pre-
dation and is an active area of research [37, 63, 64]. Another hypothesis is that schooling
is used to create a confusion effect [65, 66]. Here the collective animal locomotion con-
fuses the predator in identifying and targeting a single prey. For example, a school of fish
may disorient a predator on a collective turn, acting like a ‘mechanical mirror’.

1.2.1. SCHOOLING BEHAVIOR OF FISH
Schooling fish may be roughly divided into two types of social behavior: obligate school-
ers and facultative schoolers [67]. Obligate schoolers live permanently in large aggrega-
tions. Such schools may form oceanic ‘bait-balls’ such as circular and torus-like mo-
tion which is often referred to as milling and is a well-documented natural behavior
[24, 27, 68, 69]. Facultative schoolers may school on and off, from time to time. For
example, the collaborative hunting in groups of jack and sailfish [70–72].

Pitcher and Wyche [73] qualitatively described the behavior of a school of 250 sand-
eels in presence of mackerel fish and classified predator evasion strategies [65, 74]. These
included: ‘avoid’, ‘herd’, ‘vacuole’, ‘hourglass’, ‘split’, ‘join’, and ‘flash expansion’, next to
other behaviors such as ‘cruising’, see Figure 1.2a. Influential work by Magurran and
Pitcher [75] similarly studied a small group of 10–50 sweat water minnows interacting
with a pike. Here further evasion strategies included: ‘compact’, ‘approach’, ‘skittering’,
‘fountain’, ‘group jump’, ‘confusion’, and ‘hide’.

A strict taxonomy in the schooling behavior is not always possible [76]. This is per-
haps best illustrated in the Venn diagram of Figure 1.2b by the intersection of ‘shoaling’
and ‘schooling’. Together with qualitative descriptions of different fish schools [73, 75,
77], these works first studied the variability in the associated schooling behavior, and as
well routed their interconnection [75, 78], see Figure 1.2c.

1.2.2. FLUID MECHANICS OF SCHOOLING FISH
Most fish that display a schooling behavior swim by undulating their body [79, 80]. This
swimming stroke leads to the shedding of vortices from the caudal fin and creates for-

Picture references Figure 1.1. Above the scale bar: Microtubule, Yeomans [17]; Bacterium (E. coli), cdc.gov;
Green algae (C. reinhardtii), physicsworld.com; Mosquito, whitehorse.vic.gov.au; Fish (H. clupeola), bio-
geodb.stri.si.edu; Bird (S. vulgaris), eastsideaudubon.org; Sheep, animals.fandom.com; Human, freepik.com.
Below the scale bar: a) Gompper et al. [18], b) Wensink et al. [32], c) insights.workwave.com d) newsweek.com
e) champ-magazine.com f) studiodrift.com g) madlyodd.com h) theparisreview.org i) i.imgur.com

https://www.cdc.gov/ecoli/general/index.html
https://physicsworld.com/a/algae-breaststroke-is-synchronized-from-within/
https://www.whitehorse.vic.gov.au/waste-environment/trees-and-gardens/wildlife-guests-and-pests/pests/mosquitoes
https://biogeodb.stri.si.edu/sftep/en/thefishes/taxon/533
https://biogeodb.stri.si.edu/sftep/en/thefishes/taxon/533
https://www.eastsideaudubon.org/corvid-crier/2019/8/28/european-starling
https://animals.fandom.com/wiki/Domestic_Sheep
https://www.freepik.com/free-vector/adult-people-silhouettes-background_4130484.htm##query=silhouettes&position=4&from_view=keyword&track=sph
https://insights.workwave.com/industry/pest-control/helping-your-customers-by-eliminating-mosquito-swarms-this-summer/
https://www.newsweek.com/nasa-competition-algal-bloom-space-satellite-images-1775388
https://champ-magazine.com/art/the-wonder-of-starling-murmurations/
https://studiodrift.com/work/franchise-freedom/
https://madlyodd.com/drones-capture-incredible-footage-of-mesmerizing-sheep-herd/
https://www.theparisreview.org/blog/2017/05/09/the-politics-of-the-mosh-pit-and-other-news/
https://i.imgur.com/VlUyZmM.jpg
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ward propulsion by an inverted von Karman wake, or jet stream. Therefore, in addition
to behavioral aspects, the surrounding fluid at interaction with the fish biomechanics
may play a decisive role.

For example, it has been shown that a blind fish can coordinate with others [81], in
which the sensory input from the lateral line is considered to be crucial [82, 83]. Weihs
[84] first pointed out that fish in a school may configure in crystalline structures to make
optimal energetic usage of each other’s vortex wake. Early conjectures in favor of vortex
flow-induced energy savings trace back to Breder [85] for milling fish schools. However,
experimental evidence pointed against and could not confirm such mechanisms directly
from experimental observation [86].

Simulations on the fluid dynamics of infinite fish schools have provided novel ev-
idence of such energy-saving configurations [87]. Such reductions in energy expendi-
ture have as well been verified experimentally regardless of the internal schooling con-
figuration [88], see also [89, 90] and references therein. Moreover, recent studies inte-
grating machine learning methods with computational fluid dynamics have shown that
different internal configurations reduce the cost of swimming through elaborate vortex-
catching strategies [91, 92]. Such strategies have also been demonstrated experimentally
using bio-mimetic experiments with robotic fish [93] showing an increased swimming
efficiency upon synchronized tail-beat [94].

Perhaps the non-trivial nature of the hydrodynamics is best demonstrated by the
‘swimming’ of a dead fish trapped in the vortex wake of an object [95]. In the natural en-
vironment, such interactions with the surrounding fluid may include the wake drafting
of dolphins in a group [96–98]. Thereby the dynamics of the fluid can have a dramatic
impact on the dynamics of animal aggregations. For example, recent simulations on
schooling fish have shown that the inclusion of hydrodynamic aspects [99] influences
the schooling dynamics and adds to behavioral noise inside the school. More dramati-
cally, for birds inside a flock, it has been shown that a reduction of the lift-force at bank-
angle [100] induces a collective down draft [101–103] which significantly contributes to
the flocking dynamics.

1.2.3. DEVELOPMENT OF AGENT-BASED SCHOOLING MODELS

Breder [104] first proposed that social interactions among fish could be captured in ‘force-
like’ rules reminiscent of electrostatics. These interactions included a phenomenolog-
ical attraction and repulsion among the group members. In application to computer
graphics Reynolds [105] popularized such a distributed behavioral model and simulated
a large number of ‘Boids’ displaying a plethora of flocking motions. Modeling such an
effective interaction force is central to the development of realistic models that explain
different school shapes and structures [65, 74, 77]. Today such interactions are known as
‘social forces’ and provide the backbone for agent-based modeling of fish schools [22, 27]
and birds in a giant flock [103] as well as animal groups in general [23, 24, 26].

Huth and Wissel [106] first validated a behavioral schooling model in three spatial
dimensions [107] with seminal experimental work [108–110]. In the absence of a des-
ignated leader, their model presented three phenomenological rules: (1) a long-range
attraction, (2) a near-field repulsion, and (3) parallel orientation (alignment) at an inter-
mediate range, together with a ‘dead-angle’ zone behind the fish, see also [111, 112]. In a
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following study, Couzin et al. [113] quantified the global translation and rotational order
by the total angular momentum and polarization for such a model. Their work revealed
four behavioral states: (1) ‘swarming’, (2) ‘torus’, (3) a dynamic ‘parallel’, and (4) highly
‘parallel’ motion while exploring the model parameters.

The design of social forces offers a framework to study various behavioral traits as ob-
served in natural schooling behavior [27, 73, 75]. For example, the size and form of the
body of the fish [114] influences the internal density and spatial sorting [115]. Moreover,
modifications to such local interaction rules have provided an explanation for frontal
density in real fish schools [116] and the resulting oblong school shape observed in em-
pirical data [117]. Further efforts in model development include decision trees [118], the
application of Newtonian mechanics [119], the effect of informed individuals in a school
[120], alignment and neutral zones [121], sensory perception [122], pursuit and escape
[123, 124], variable speed [125], and an abundance of models not reviewed here.

Whether or not (instantaneous) social forces accurately capture social interactions
may be debated. Social forces may, for example, poorly capture the latency between
group members while the actual decision-making engaged in social interaction may
be drawn differently over time. Moreover, schooling models are yet to bring a com-
prehensive explanation for the milling dynamics observed in the natural environment
[24, 27, 68, 69]. Recent progress has been made augmenting a few simple behavioral
rules to a minimal ‘Vicsek-like’ milling model [126], including the effect of uninformed
individuals [127] and latency among group members [128]. Such new models based on
different schooling mechanisms [129] motivate the need for real-world empirical data to
validate against.

1.2.4. EXTRACTION OF SOCIAL FORCES AND EXPERIMENTAL WORK

Hunter [130] performed the first empirical work on the sensory-motor response of a sin-
gle jack mackerel against external perturbations. Constructing models from [131], and
validating models with observation data [107] is not at all a trivial exercise. Therefore,
identifying the decision rules [132] by comparison with experimental data has gathered
high levels of interest for the past decades.

Experimental work by Katz et al. [133] spatially mapped the effective ‘social force’ for
2 and 3 golden shiners. These social forces were deduced from the measured instanta-
neous acceleration in two dimensions up to 30 fish. A simultaneous study by Herbert-
Read et al. [134] extracted social rules between small groups of 8 to 10 mosquito fish
using neural networks and nonlinear function estimation on the relative position, veloc-
ity, and acceleration. These studies found similar force maps characterized by repulsive,
attractive, and turning forces in front, behind, and to the side of a focal fish, see also pre-
ceding work on surf scoters [135]. Facing a rapidly growing body of work on extracting
social rules we limit the current review, see for example [136–138] and many (valuable)
related studies, with evolutionary evidence even drawn from the fossil record [139].

The interest in experimental data on schooling fish goes beyond the estimation of
social forces. For example, by estimating the visual field [140] and performing a network
analysis [141] previous studies have investigated the transfer of information, or ‘Trafal-
gar effect’ [142], and have applied recent progress in statistical concepts such as transfer
entropy [143]. Another interest is the ability of a school to navigate complex environ-
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ments. Here it has been shown that fish can collectively sense a gradient in variable
lighting conditions [144, 145]. Furthermore, to investigate the response of a predator to
virtual prey [146] recent laboratory experiments have even extended the application of
virtual reality [147].

In addition to the local interactions between individuals [148], studies of schooling
fish have also focused on identifying the global fish schooling dynamics and variability.
Tunstrøm et al. [149] performed quantitative laboratory experiments on the variability
of the dynamics of schooling fish and identified three distinct states: (1) rotation, (2)
polarized school, and (3) swarming. Such analyses are relevant in characterizing differ-
ent schooling mechanisms [99, 113, 150, 151]. However, most experimental laboratory
work, including recent advances [152], has focused on two dimensions. Despite a few
early studies [117, 153], the availability of three-dimensional tracking data has only re-
cently shown an increase in the lab [154, 155] and the field [156].

1.3. PREVIOUS WORK ON ANIMAL TRACKING
Tracking animals in three dimensions is central to the study of collective animal loco-
motion. Such data are of the greatest value to the development of accurate and real-
istic schooling models, but gathering such experimental data represents an enormous
challenge. In particular, non-intrusive and three-dimensional imaging techniques have
gained much popularity in numerous applications in recent years. Such data are not
only of interest to biologists but also to statistical physicists [19, 21, 157], among others.

1.3.1. SWARMING DYNAMICS IN THE LAB AND THE FIELD

Insects, for example, provide a perfect model system to study swarming dynamics in
the laboratory and acquire velocity and acceleration statistics [35, 158, 159]. Controlled
lab experiments have demonstrated the emergence of visco-elastic properties by apply-
ing mechanical spectroscopy [160, 161]. In addition, recent laboratory work on midges
suggests that interactions between insects and the internal cohesion of the swarm may
originate from acoustics signals [162]. Such novel insights have as well contributed to a
perspective of a ‘thermodynamics’ of swarming midges [163] presenting an ‘equation of
state’ for the swarm properties.

In addition, the swarming of midges is a model system for fieldwork as well. Here,
experiments have shown that interactions between midges are of metric range [36], pro-
viding a distinct feature for the disorganized swarming dynamics. Such field data have
shown that the cohesion of wild swarms, despite their chaotic dynamics, are fully cor-
related and poised critical [164]; with recent insight into the dynamic scaling of insect
swarms [165].

1.3.2. A PARADIGM SHIFT FOR BIRDS FLOCKING IN THE FIELD

The development of tracking methods in the field [166–168] and the reliable tracking
of several thousands of birds in a giant flock [169] have opened the door to collecting
unprecedented empirical flocking data [170, 171]. Such data have proven their contri-
bution. For example, Ballerini et al. [172] found that starlings in a flock continuously
interact with seven of their closest neighbors, hence supporting evidence that the inter-
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(a)

(b) (c)

Figure 1.2: Classification and interconnection for fish schooling dynamics. a) Behavioral aspects of fish school-
ing, adopted from Pitcher and Wyche [73]. b) Venn diagram summarizing the different types of behavior for
fish schools, adopted from Pitcher [76]. c) Interconnections between different schooling behaviors, adopted
from Magurran and Pitcher [75].

action range is topological rather than metric. In addition, Cavagna et al. [173] revealed
that fluctuations through a large flock of starlings are scale-free as the correlation length
scales with the flock size, hence the flock appears to truly act as a whole.

Moreover, the availability of such tracking data from the field have revealed novel
conservation laws governing the collective behavior [52]. This has been pivotal in the
understanding of long-range signal propagation [157, 174], spontaneous changes in the
travel direction of a flock [175], the criticality of the flock [176, 177], as well as the rel-
ative diffusion of birds [178], among many other results. The availability of such aerial
observation data has also provided new insight into wave propagation in flocks during
predator strike [10, 11]. Moreover, the abundance of the data collected helped classify
the flow of different flocking events [179] in similarity to seminal work on fish [78].

Such methods have also been applied to investigate the roosting behavior of chimney
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swifts [180]. Moreover, recent developments on portable field equipment have looked at
the relation between wing beat and collective flight in jackdaw flocks [181], investigated
the collective turns [182], revealed a ‘behavior plasticity’ for mobbing and transit flight of
jackdaws [183], and shown the formation of long-term pairs or ‘social bonds’ [184]. Most
recently these authors obtained in-plane social forces from three-dimensions tracking
data as well [185].

1.3.3. THE LACK OF LARGE SCALE THREE-DIMENSIONAL TRACKING DATA

Beyond the lab environment, Nøttestad and Axelsen [186] first deployed a multi-beam
sonar technique to study an Atlantic herring school escaping from a killer whale and
distinguished a collective diving mode. Other such contributions include the three-
dimensional structure and morphology of giant oceanic schools [4, 5], the propagation
of large waves through anchovy schools [9, 187], planar fish velocimetry from acous-
tic video of predator escapes [188], killer whale tail slaps to stun prey [189], and the
compacting of a school on predation [190]. Only most recent field experiments have
observed 60000 wild-caught oceanic herring in a 12×12×12 m3 arena with simulated
predator attacks [191] including planar ultrasound velocimetry [192].

Despite early work by Cullen et al. [193], Pitcher [194], and Van Long et al. [195], only
a few studies have proceeded to track schooling fish in three dimensions in a labora-
tory setting [117, 153, 155, 196–198] with limited results due to constraints on the scale
and the number of fish. In addition to laboratory scale experiments [199, 200] few ex-
perimental works are present at large-scale in a relatively unconstrained environment
[201]. All-in-all, to our best knowledge, no studies exist to date that performed the time-
resolved three-dimensional tracking of realistically sized schools of fish consisting of a
few thousand individuals in an unconstrained habitat. This will be the central theme
and contribution of the current thesis — a first result for a realistically sized school as is
shown in the middle of Figure 1.1i.

1.4. EXPERIMENTS AT THE ROTTERDAM ZOO
This thesis is an experimental study. The goal of this thesis is to extract quantitative
tracking data of a large school of±2000 Harengula clupeola (false herring, Clupeidae fam-
ily) in three dimensions at the large public ocean aquarium of the Rotterdam zoo. This
large ocean aquarium is a unique facility that spans 20×20×6 m3 in length, width, and
depth (height), and by its size is relatively unconstrained to the fish. To date, only a
few studies have attempted quantitative measurement of schooling fish at such large
length scales [192, 201]. The number of fish is substantially more than previous exper-
imental and laboratory work in two [133, 134, 141, 149, 199, 200] and three dimensions
[117, 153, 155, 196–198] which have been limited to a few 10–100 of individuals.

1.4.1. THE DIERGAARDE BLIJDORP OCEANIUM

The ‘Diergaarde Blijdorp Oceanium’ of the Rotterdam zoo is a large-scale ocean aquar-
ium (oceanarium) that reproduces a semi-natural habitat off the coast of Florida. The
tank includes multiple cohabiting fish species and is optically accessible via a large win-
dow, see Figure 1.3. The climate in the tank is fully controlled; the lighting conditions
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Tunnel

School

Shark

Tuna

Figure 1.3: The Oceanium aquarium at the Rotterdam zoo. Left, a large school of harengula (obligate school-
ers) at varying (optical) densities surrounded by predator fish, all in a relatively unconstrained environment.
Middle, a trespassing shark (solitary predator) and a group of hunting tuna fish (facultative schoolers). Right,
the publicly accessible underwater tunnel.

simulate the day- and nighttime cycle as well as long-term effects for the yearly seasons.
These include changes in the summer and winter water temperatures, oxygen satura-
tion, and salinity, which affect the water quality and turbidity levels.

The water flow in the tank is clockwise when viewed from the top. Interestingly, the
harengula swim counter-clockwise and thereby against the flow in the tank. This is con-
sistently reported by the curators for the current and past fish schools that have been
present at the Rotterdam zoo. A blower that simulates a minor wind shear produces wa-
ter waves on the surface. This is used to obscure the ceiling for the visitor experience
during opening hours, which otherwise is visible from the publicly accessible underwa-
ter tunnel (Figure 1.3).

As the Oceanium aquarium simulates the day- and nighttime cycle by its lighting
conditions, the activity of the fish changes during the day. In particular, in line with ob-
servations from the curators, we find little predation in the morning and an increasing
number of attacks towards the evening as the fish become increasingly agitated. Further-
more, control over long-term seasonal effects may be used to stimulate breeding condi-
tions. This may as well affect the fish activity and predation pressure. It is noteworthy
that all fish present in the tank seem undisturbed by visitors during opening hours and
show little response to camera flashes coming from the underwater tunnel.

1.4.2. HARENGULA, PREDATOR AND COHABITANT SPECIES

The large school of harengula in Figure 1.3 forms a milling-type configuration in the
absence of predation. This is a well-documented behavior found in the natural environ-
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ment [24, 27, 68, 69] where the fish are also observed to be swimming in a cylindrical
motion. When interacting with predators and cohabiting species the school in the Rot-
terdam zoo displays many different schooling behaviors such as ‘flash expansion’, ‘split’,
‘herd’, ‘vacuole’, and ‘cruise’, and many more of those reported in [73, 75, 77, 186].

In total, we have imaged two consecutive schools of ±2000 harengula which were
collected and flown in off the coast of Florida in February 2017 and 2018 and released
into the fish tank after a ±4 month quarantine. The harengula are of typical dimension
∼ 15 cm and with a swimming speed of ∼ 30 cm/s at a characteristic tail-beat of ∼ 10 H z.
The harengula are obligate schoolers and are thought to navigate primarily on vision.
However, the school also remains cohesive in the dark presumably because of the lateral
line [82, 83]. Furthermore, from visual observation, the fish occasionally release excre-
ment when stressed which may act as an olfaction agent [202]. Such behavioral aspects
we will not further consider in this thesis.

There are multiple species of fish that actively engage with the harengula school, pos-
ing a constant threat. First of all, there are several species of predatory shark (7–12) in the
tank, including blacknose sharks (Carcharhinus acronotu), sandbar sharks (Carcharhi-
nus plumbeus), blacktip sharks (Carcharhinus limbatus), ranging between 1–2.5 m in
length. Next, there are facultative schoolers that may hunt in small groups including
8–11 horse-eye jack (Caranx latus), 5–10 yellowfin tuna-fish (Thunnus albacares), 3 bar-
racudas (Sphyraena barracuda), 5 tarpon fish (Megalops atlanticus), and greater amber-
jack (Seriola dumerili); for the most important selection see Figure 1.4.

The predator fish are fed three times a week. The harengula, on the other hand, are
continuously fed with a feeding machine that allows us to control their preferred posi-
tion in the tank. In total we imaged about 1500–2500 fish as ±500 fish are lost a year
by the fish life expectancy. The predators typically attack at the front or back of the
school relative to the observation behind the large window (not the overall swimming
direction), swimming either with or against the flow and tracing the boundaries of the
semi-natural habitat.

In addition, there are cohabitant species in the tank. The most important ones in-
clude 3 Atlantic nurse sharks (Ginglymostoma cirratum), a black-chin guitarfish (Rhi-
nobatos cemiculus), a southern stingray (Hypanus americanus), a black- and Nassau
grouper (Mycteroperca bonaci; Epinephelus striatus), a hawksbill (Eretmochelys imbri-
cata) and 2 green sea turtles (Chelonia mydas). These may also interact with the haren-
gula fish. For example, the school strongly responds to the flipper of the turtle’s swim-
ming stroke. Finally, there are multiple subtropical fish that reside in the coral structures
at the walls of the ocean aquarium. These do not actively engage with the school.

1.5. OUTLINE OF THIS THESIS
In the first part of this thesis, we introduce methods to perform quantitative measure-
ments of the position and velocity of the fish. Starting with Chapter 2, we present the
measurement technique to perform three-dimensional imaging over a large distance in-
side the ocean aquarium. Following, in Chapter 3, we explain different challenges to
image processing in a complex underwater environment, we present the application of
automated tracking algorithms to track and triangulate fish, and we characterize the per-
formance of the implementation. In the second part of this thesis, we unfold different
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Figure 1.4: Predator fish and cohabitant species. a) Blacktip shark (Carcharhinus limbatus). b) Yellowfin tuna-
fish (Thunnus albacares). c) Horse-eye jack (Caranx latus). d) Black grouper (Mycteroperca bonaci). e) Bar-
racuda (Sphyraena barracuda). f ) Tarpon (Megalops atlanticus). g) Green sea turtle (Chelonia mydas). h)
Atlantic nurse shark (Ginglymostoma cirratum). i) Southern stingray (Hypanus americanus). j) A picture taken
from the publicly accessible underwater tunnel at the bottom of the Oceanium aquarium. The pictures (a)–(i)
are adopted from https://en.wikipedia.org.

quantitative analyses from the obtained tracking data. In Chapter 4, we first present
the tracking data obtained for different observed schooling behaviors. Subsequently, we
present descriptive statistics to analyze the geometry and kinematics of the school and
lay the foundation for further analysis of the three-dimensional tracking data. In Chap-
ter 5, we summarize the main conclusions of this thesis and provide several recommen-
dations for future work. All detail can be found in the appendices.
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2
MEASUREMENT TECHNIQUE AND

CAMERA CALIBRATION

Obtaining accurate experimental data from Lagrangian tracking and tomographic ve-
locimetry requires an accurate camera calibration consistent over multiple views. Estab-
lished calibration procedures are often challenging to implement when the length scale
of the measurement volume exceeds that of a typical laboratory experiment. Here, we
combine tools developed in computer vision and non-linear camera mappings used in ex-
perimental fluid mechanics, to successfully calibrate a four-camera setup that is imaging
inside a large tank of dimensions ∼ 10×25×6 m3. The calibration procedure uses a pla-
nar checkerboard that is arbitrarily positioned at unknown locations and orientations.
The method can be applied to any number of cameras. The parameters of the calibra-
tion yield direct estimates of the positions and orientations of the four cameras as well as
the focal-lengths of the lenses. These parameters are used to assess the quality of the cali-
bration. The calibration allows us to perform accurate and consistent linear ray-tracing,
which we use to triangulate and track fish inside the large tank.

2.1. FLEXIBLE CAMERA CALIBRATION TECHNIQUES
New studies in biophysics and fluid mechanics require the quantitative imaging of large-
scale field experiments. Such studies include the large-scale Lagrangian tracking of bats
and bird flocks [3, 4], super-large-scale particle image velocimetry measurements using
natural snowfall [5] and recent advancements in tomographic-PIV [6].

Obtaining reliable two- and three-dimensional imaging data in these large field ex-
periments is challenging and requires a camera calibration that is accurate down to the
smallest physical length-scale of interest. Non-linear polynomial camera mappings [7–
10] are often used in laboratory experiments [11], but their application at length-scales

Parts of this chapter have been published in Muller et al. [1] and is freely available through Tam and Muller [2]
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beyond that of the laboratory is, in practice, limited. First, the size of the calibration tar-
get is limited, such that it only covers a small portion of the measurement. Second, the
absence of conventional laboratory equipment, providing access to the measurement
volume, does not support the accurate spatial positioning of the target, required in con-
ventional calibration procedures.

In the present work, we combine the pinhole camera model [12] with non-linear
polynomial camera mappings used in experimental fluid mechanics [7] to perform a
multiple camera calibration over a large-scale measurement volume inside the tank of
the aquarium located in the Rotterdam zoo. Our method integrates the use of the pin-
hole camera model with a non-linear camera mapping to correct for optical distortion
across refractive interfaces [13]. Our approach uses the framework of projective geome-
try in computer vision [14] and applies advanced self-calibration techniques [15, 16].

Here we apply the planar checkerboard calibration technique by Zhang [17], see also:
[18–22]. This approach eliminates the need to accurately position the calibration target,
as required in conventional calibration procedures. Instead, the checkerboard calibra-
tion target is moved to arbitrary and unknown positions and orientations, here with the
help of a team of divers. Second, by sequentially acquiring multiple calibration images
while freely moving the calibration target, we achieve a camera calibration that spans
over length scales much larger than the calibration target itself. This approach yields an
accurate calibration over the measurement volume with a characteristic length scale on
the order of several tens of meters.

We process the camera calibration in steps [23]. First, we correct for optical distor-
tions [24] by rectifying the curved lines of the checkerboard images [25, 26]. Secondly,
we perform a calibration based on a single view for each camera following Zhang [17].
Finally, we combine the single views and find the positions and orientations of the cam-
eras over multiple views [27] and optimize the calibration for spatial accuracy and con-
sistency between the different views.

The camera calibration yields accurate results. To assess the validity of the camera
calibration, we compare the estimated effective focal-length obtained from it against the
true value of the focal-length of the lenses. We quantify the spatial accuracy of the cam-
era calibration, by computing the skewness of optical rays associated with the multiple
views. Our calibration allows us to use linear ray-tracing [28] to track and triangulate
multiple fish swimming over the entire visual depth of the tank. The method is versatile
and can be implemented in field experiments over large length scales and for measure-
ment volumes that are challenging to access experimentally.

2.2. CAMERA SETUP AND CALIBRATION PROCEDURE
We image inside the large tank of the aquarium in the Rotterdam zoo in a measure-
ment volume of dimensions ∼ 10× 25× 6 m3 (see Figure 2.1). We use a set of four 5.5
megapixel sCMOS cameras (LAVISION, GmbH) with wide-angle lenses of focal-length
flens = 24 mm (NIKKOR AF-24mm) that cause significant variations in magnification over
the large depth-of-field of DOF ≈ 25 m [29].

The camera setup is positioned behind an acrylic window of thickness ∼ 50 cm. Op-
tical distortions in the image plane are due to refraction at the water (nwater = 1.363)
/acrylic (nacryl = 1.51) and the acrylic/air (nair = 1.0003) interfaces [30], where n is the re-
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fractive index. The optical access is limited to the acrylic window, which constrains the
spacing between the cameras to ∆H ≈ 1 m in height and ∆W ≈ 6 m in width, and limits
the relative angles between the cameras from 5 o to 20 o (Figure 2.1).

To calibrate the camera setup we image a planar checkerboard calibration target of
dimensions 1.5× 1.8 m2 with 5× 6 tiles [27] that are of area Atile = 30× 30 cm2. This
calibration target is moved within the aquarium by a team of divers that swim with the
checkerboard under arbitrary and unknown positions and orientations throughout the
aquarium.

2.2.1. IMAGE PROCESSING
The different images of the calibration target are processed to identify the curves and the
nodes corresponding to the gridlines and intersections between the tiles of the checker-
board (Figure 2.2). In our application, using a checkerboard calibration target is advan-
tageous over using a pattern of dots. This is because the image gradient obtained from a
checkerboard determines grid points more accurately and robustly over the large depth-
of-field of our experiment.

The calibration images are converted to the image gradient using a Savintsky-Golay
image differentiation approach [31] to mark locations on the gridlines between the tiles.
For each image, we then fit a set of polynomial curves γi (t ) to the I = 9 gridlines between
the tiles of the checkerboards using the local intensity values from the image gradient.
These fitting curves are written as γi (t ) =∑

k ak
i t k−1, where ak

i are two dimensional vec-
tors. Here the parameter t varies within the interval t ∈ [0,1] over the checkerboard im-
age, such that γi (t = 0) and γi (t = 1) correspond to the beginning and end-points of
the gridline of the checkerboard image, see the lines on Figure 2.2. At last, we find the
J = 20 intersections between all the gridlines as a set of nodes x j in the image plane of
each camera. Here x j = [x j y j ]T with (•)T the vector transpose, where the numbering
j = 1 · · · J is consistent between the different camera views [27], see Figure 2.2.

2.2.2. DISTORTION CORRECTION
Following the path of an optical ray for a single camera in Figure 2.2, the linear path is
refracted across the air/water interface [13]. This causes optical distortions in the image
plane for each camera and therefore we rectify the image plane by dewarping the optical
distortion. The coordinates x = [x y]T in the image plane are mapped to distortion-
corrected image coordinates x̂ = [x̂ ŷ]T by determining a distortion mapping x̂ = m(x).
Given the imaged medium (water) is linear, this mapping ensures that co-linear points
positioned along a line in object space project as co-linear points in the dewarped image
and therefore support linear ray-tracing. For moderate optical distortions, a polynomial
distortion map [7] is sufficient. In this study, we write the distortion map as:

x̂ = x+∑
k

ckφ
k (x) = x+c1x2 +c2x y +c3 y2

+c4x3 +c4x2 y +c5x y2 +c6 y3
(2.1)

The distortion map is determined by rectifying the curved gridlines in the N original
calibration images. We follow Devernay and Faugeras [26] and minimize the percent-
age of deflection along the gridlines. We consider the nodes xn

j along a particular grid-
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Figure 2.2: Image processing and the geometry of the optical path. a) Processed calibration image with the
identified gridlines fitted as second-order polynomial curves (green lines) and the nodes at the gridline inter-
sections (red squares). The gridlines are numbered from i = 1 to 9 and the nodes from j = 1 to 20. b) The
dewarped calibration image corresponding to (a) in which the gridlines are rectified for minor optical dis-
tortion using the mapping of Equation 2.1. Supplementary-Figure A.1 provides an example of dewarping for
severe optical distortion. c) The geometry of the optical path where the optical rays are refracted across the
air-water interface (neglecting the acrylic window for simplicity) and the positioning of the (virtual-)camera
coordinate system [x̃ ỹ k]T with camera center Xc with respect to the world coordinates [X Y Z ]T . d) The local
coordinate system X o & Y o and the indexing i for the gridlines and j for the locations of the nodes.

line γn
i (t ) and their images x̂n

j and γ̂n
i (t ) in the dewarped image-plane through the map

m(x). We fit a straight line ˆ̀n
i through the nodes x̂n

j and compute the point-line distance

d(x̂n
j , ˆ̀n

i ). The parameters ck defining the distortion map are then determined by solving

a minimization problem over all gridlines in all calibration images:

min
ck

∑
i ,n

∑
nodes j
along γ̂i

d(x̂n
j , ˆ̀n

i )2∥∥γ̂n
i (1)− γ̂n

i (0)
∥∥2 . (2.2)

This minimization problem can be solved efficiently using a steepest descent algorithm
and numeric integration techniques described in Boyd and Vanderberghe [32]. This ap-
proach directly extends to larger optical distortions requiring more elaborate distortion
models (see Appendix A.1 for the air/water interface and Supplementary-Figure A.1). An
example of a dewarped image can be found in Figure 2.2.
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2.2.3. CAMERA CALIBRATION AND PROJECTIVE GEOMETRY

We consider a physical point in the object domain X of coordinates X = [X Y Z ]T in
a world coordinate system and its projected image x̂ = [x̂ ŷ]T in the dewarped image-
plane of a single camera. The calibration is defined by the mapping function F , such that
x̂ = F (X). Our method uses the framework of projective geometry to express the mapping
function F and implicitly assumes a pinhole camera model. In the following, we outline
the main notations used in projective geometry; a more complete introduction can be
found in Hartley and Zisserman [14].

We make use of augmented vectors to represent points in both the image plane and
the object domain. The coordinates in the dewarped image-plane x̂ are augmented to
the ray-tracing vector x̃ such that x̃ = [kx̂ k ŷ k]T , where k is a scaling parameter in direc-
tion of the principle optical axis. The associated inverse function that projects x̃ back to
x̂ is defined as the projection p(x̃) = [x̃ ỹ]T /k = x̂. Similarly, the world coordinates X are
augmented to a homogeneous vector as X̃ = [X Y Z 1]T [14]. Using augmented vectors a
geometric transformation, consisting of a rotation and a translation, is simply written as
a matrix multiplication [R t]X̃, where R is a rotation matrix and t is a translation vector.

With these notations, the mapping function can be written in the following form that
is widely used in projective geometry [14]:

x̂ = F (X) = p(K [R t]X̃). (2.3)

Here K is the 3×3 camera calibration matrix and [R t] is a 3×4 matrix, with R the 3×3
rotation matrix, and t the 3×1 translation vector. The matrix K in Equation 2.3 has the
following form:

K =
αx s px

0 αy py

0 0 1

 , (2.4)

where αx = f rx and αy = f ry are scale factors, with f the focal-length of the lens in mil-
limeters (mm) and rx and ry the pixel pitch of the sCMOS sensor in pixel-per-millimeter
(px/mm). s is the pixel skew, characterizing the angle between the x and the y pixel
axes, and [px py ]T are the coordinates of the principal point at the intersection between
the optical axis and the dewarped image-plane [14]. The elements of K are often referred
to as the intrinsic camera parameters, representing the characteristic properties of the
camera itself [14], while [R t] are referred to as the extrinsic parameters representing the
position of the camera with respect to the world coordinate system (Figure 2.2).

Together, K , R, and t define the mapping function F of Equation 2.3 and have to be
determined for each of the cameras separately. In the following, we use the superscript
c = 1 · · ·4 and the notations K c , Rc , and tc , when we distinguish explicitly between the
different cameras. We omit the superscript for clarity when no distinction between the
cameras is needed; the details of the algorithms can be found in Appendix A.

2.2.4. SINGLE CAMERA CALIBRATION
First, the camera matrix K is determined for each of the four separate cameras by cali-
brating a single camera using the method developed by Zhang [17]. We consider a local
coordinate system Xo = [X o Y o Z o]T attached to the planar checkerboard in the object
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domain, where Z o = 0 corresponds to the plane of the checkerboard. In this coordinate
system, the J nodes at the intersections between the gridlines have known coordinates
Xo

j = [X o
j Y o

j 0]T . The nodes Xo
j are mapped to their images x̂n

j following the formalism

used in Equation 2.3. This transformation can be written as p(K [Rn tn]X̃)o
j , where the ro-

tation matrix Rn and translation vector tn characterize the position of the checkerboard
in the object domain. Geometrically, this corresponds to a rotation and translation of
the checkerboard plane in the object domain, followed by a projection on the image
plane. The camera calibration matrix K and the positioning of the checkerboard by Rn

and tn are determined following Zhang [17] and are refined by minimizing the following
functional:

min
K ,Rn ,tn

∑
j ,n

∥∥∥x̂n
j −p(K [Rn tn]X̃o

j )
∥∥∥2

. (2.5)

2.2.5. MULTIPLE CAMERA CALIBRATION
To complete the calibration over the multiple cameras, we determine the rotation Rc and
the translation tc representing the position of each of the cameras in the world coordi-
nate system. Rc and tc correspond to the extrinsic camera parameters described in Sec-
tion 2.2.3 and a first estimate is deduced directly from the calibration of single cameras
performed in the previous step. Selecting two different calibrated cameras, we use the
Kabsch algorithm [33] to estimate the relative positions of the two cameras by compar-
ing the positions of the checkerboards by Rn,c and tn,c for these two views. Considering
all camera pairs, we determine the relative positions between all the views and deduce a
first estimate for Rc and tc ; see Appendix A.2 for detail. Next, for each of the N calibra-
tion images, we estimate position Rn and tn of the checkerboard in the world coordinate
system. We do this by averaging the position estimates Rn,c and tn,c obtained from the
four separate single-camera calibrations.

In the last step, we compute the final values for K c , Rc , and tc by minimizing the re-
projection errors from all cameras and calibration images, and using as initial conditions
the camera matrices K c obtained from Section 2.2.4, the positions Rc and tc obtained
from the Kabsch algorithm and the estimates of the checkerboard positions Rn and tn .
We define the reprojection error εn,c

j for each of the N calibration images and in each
camera view as:

εn,c
j = 1√

Â n,c
j

∥∥∥∥x̂n,c
j −p

(
K c [Rc tc ]

[
Rn tn

0T 1

]
X̃o

j

)∥∥∥∥ . (2.6)

The reprojection error εn,c
j is normalized by Â n,c

j , which is the area in pixels of a single

tile on the checkerboard projection in the dewarped image-plane (see Appendix A.3).
Hence, εn,c

j provides a measure of the error relative to the size of the checkerboard. This

error is relatively independent of the location of the calibration target within the large
depth of field and the positions of the cameras, and therefore, independent of the ap-
parent size of the checkerboard in the image plane. The final parameters for the cali-
bration function F for each view are obtained from the minimization of the following
summation:

min
K c ,Rc ,tc ,Rn ,tn

∑
c

∑
j ,n

(
εn,c

j

)2
. (2.7)
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The resulting camera calibration is shown in Figure 2.3.

2.3. ASSESSMENT OF THE CALIBRATION METHOD
In the following, we evaluate the performance of the calibration. First, we report the ex-
trinsic and intrinsic camera parameters from Table 2.1 and discuss their physical inter-
pretation. Second, we assess the robustness and convergence of the method as a func-
tion of the number of calibration images used. Third, we study the spatial accuracy of
the calibration and identify the sources of error.

2.3.1. INTRINSIC AND EXTRINSIC CAMERA PARAMETERS
First, we consider the numerical values of the extrinsic camera parameters obtained
from calibration, see Table 2.1. As discussed in Section 2.2.3, these parameters char-
acterize the spatial position and orientation of each camera. The reconstructed posi-
tions of the cameras are in agreement with the experimental setup, with cameras 4 and
1 positioned above cameras 3 and 2, and cameras 4 and 3 positioned on the left-hand
side while cameras 1 and 2 are located on the right-hand side (as shown in Figure 2.1),
see Table 2.1. Furthermore, the relative distances between cameras are also in agree-
ment with the experimental scene as we find the horizontal distance between cameras
∆W ≈ 5.6 m and a vertical distance between cameras ∆H ≈ 1.2 m, as deduced from Ta-
ble 2.1. Likewise, the reconstructed camera orientations are consistent with the cameras
on the right-hand side oriented with a positive angle α, while the cameras on the left-
hand side are oriented with a comparable negative angle α.

In addition to reconstructing the position of the camera, the calibration procedure
reconstructs the intrinsic camera properties, which we compare to the specification of
the instrumentation. The coefficients of the camera calibration matrix K of Equation 2.4
are provided for each camera in Table 2.1. We focus on the values of the focal-length of
the lenses and deduce an effective focal-length feff directly from the coefficients as:

feff =
√
αxαy J̃ ñ2

r 2 , (2.8)

where r is the resolution of the camera sensor (px/mm), which is known from the cam-
era specifications, J̃ represents a correction factor for the image expansion due to optical
distortion (see Appendix A.4) and ñ = nair/nwater corrects for the magnification due to
refraction at the air/water interface. Our calibration yields values for the effective focal-
length of the four cameras of feff = 23.73± 0.82 mm. This reconstruction of the focal-
length lies within 1−2% of the actual focal-length flens = 24 mm of the lenses that were
used. Hence, we find that both the extrinsic and intrinsic camera parameters deduced
from our calibration procedure are in agreement with the dimensions and characteris-
tics of our experimental setup.

2.3.2. CONVERGENCE AND ROBUSTNESS
The camera calibration is obtained by minimizing the sum of the squared reprojection
errors εn,c

j over all four cameras, all N calibration images, and all nodes on the checker-

board, see Equation 2.7. The camera calibration converges to low values for εn,c
j see
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(b)

(2)

(1)(4)

(3)

(a)

Figure 2.3: The resulting camera calibration. a) The calibrated views that include physical scales on a reference
plane at k = 1 m in the depth of field for each view. b) Three-dimensional reconstruction of a random selection
of checkerboards used for the calibration, in yellow the reconstructed (virtual-)cameras in front of the acrylic
window of Figure 2.1.
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Camera 1 2 3 4

J̃ [−] 0.97 0.98 0.93 0.96
αx [px] 5166.3 5245.8 4982.9 5116.0
αy [px] 5056.3 5240.5 4941.3 5050.2
s [px] -48.5 -63.5 -189.4 -249.5
px [px] 1888.8 1655.0 1419.6 1237.0
py [px] 1488.0 980.0 1530.5 1552.8
X c [m] 2.873 2.878 -2.872 -2.87848
Y c [m] 0.617 -0.616 -0.658 0.657
Z c [m] 0.010 -0.010 0.009 -0.009
α [o] 9.02 14.00 -13.04 -11.51
β [o] -5.18 -3.93 2.56 -5.19
γ [o] -2.45 -0.81 -2.29 0.76

feff [mm] 23.91 24.66 22.67 23.68
εn,c

j [%] 1.84 1.85 2.08 1.95

±1.57 ±1.64 ±1.72 ±1.54
(εn,c

j )∗ [px] 1.63 1.72 1.85 1.84

±1.49 ±1.62 ±1.59 ±1.60

N [#] 176 153 197 186

Table 2.1: Numerical values of the calibration parameters. From top to bottom: the expansions factor of the
distortion mapping J̃ , the intrinsic camera properties from the matrix K , the extrinsic camera positions X , Y
and Z and orientations in pitch-yaw-roll angles α, β, and γ, see Figure 2.1 and Figure 2.2. The effective focal-
lengths feff deduced from K with Equation 2.8, the reprojection errors εn,c

j in percentage and equivalent pixel-

dimensions (•)∗, and the total number of calibration images N used for each camera.

Table 2.1. Here, the average normalized reprojection error is on the order of εn,c
j ∼ 2 % of

the size of a checkerboard tile, which corresponds to an error of less than 1 cm.

The camera calibration requires a minimum of two non-coplanar checkerboard im-
ages [17]. Increasing the number of calibration images increases the sampling of the
measurement volume and, therefore, improves the reliability of the calibration. We fur-
ther characterize the performance of the method as a function of the number of calibra-
tion images used, by randomly selecting different subsets of checkerboard images.

We first consider the effective focal-length feff of Equation 2.8 deduced from the ma-
trix K to characterize the quality of the position in space of the checkerboards and the
cameras. In Figure 2.4, we select different subsets of calibration images ranging from
N = 2 to N = 50 images and compute feff from the associated calibration. Figure 2.4a
represents the ratio between feff and flens as a function of N . With a low number of
N = 2 to 10 calibration images, the ratio feff/ flens is far from one and the focal-length is
under- and overestimated by 50 %, indicating an unreliable calibration. Increasing the
number of calibration images to N = 15 shows that the estimated focal-length feff ap-
proaches flens and represents a clear improvement of the calibration. Further increasing
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Figure 2.4: Quality as-
sessment of the camera
calibration procedure for
different subsets of randomly
selected calibration images.
a) The ratio in estimated
focal-length and the true
focal-length of the used
lenses feff/ flens as a function
of the number of calibration
images N . Different symbols
and colors indicate different
selections of images. b) Aver-
aged reprojection errors ε

n,c
j

for each camera as a function
of N . The error bars indicate
the standard deviation of the
error per camera.

N beyond N = 15, the ratio feff/ flens does not significantly converge further (Figure 2.4a).
Secondly we consider the reprojection errors εn,c

j in Figure 2.4b. For a low number

of N = 2 to 10 calibration images, the average reprojection error is as high as εn,c
j ∼ 50 to

60 %. Increasing the number of calibration images from N = 15 to 50 shows an additional
decrease of the normalized reprojection error from εn,c

j ∼ 5 to 2 %, see Figure 2.4b and

inset. This shows that 15 calibration images are sufficient to achieve a valid calibration.
Further increasing the number of calibration images improves the convergence for the
camera calibration while the ratio feff/ flens remains at a value close to 1.

2.3.3. SPATIAL ACCURACY OF THE CAMERA CALIBRATION

By inverting the camera matrix K , one can directly associate an optical ray in the object
domain to a point in the dewarped image-plane. For an ideal calibration, the four optical
rays associated with the images of the same point on each of the four cameras should
intersect at a unique location in the object domain. In practice, the four optical rays
are skew lines and do not intersect at a single point. Here, we characterize the spatial
accuracy of our camera calibration by estimating the skewness among the four optical
rays.

For this, we use the nodes identified at gridline intersections on the N calibration
images. We proceed by evaluating the four optical rays associated with each node of
each calibration image. We then triangulate the location of each node by finding the
point Xn

j in the object domain that minimizes the sum of the squared distances from the

point to the four optical rays. We report for each node the skewness sn
j as the average

distance from the triangulated location Xn
j to the four optical rays (see Appendix A.5 for

more detail).
The calibration images were acquired over the entire depth of the tank and used to

characterize the spatial accuracy, by reporting the skewness as a function of the position
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along the Z -axis of the world coordinate system, see Figure 2.5a. We find the skewness
to be mostly uniform over the large depth of the measurement volume Z = 5 to 25m.
Our calibration yields a high spatial accuracy characterized by an average skewness of
less than 1 cm. Only a slight increase in the skewness can be observed towards the back
of the aquarium, although the average skewness still remains below 1 cm. This small
increase is due to the decrease in spatial resolution and the decrease in angles between
the optical path from the different views.

The variation in skewness over the height and width of the tank is represented in
Figure 2.5b and c. Figure 2.5b is a map of the skewness in a X Y -plane at the front of
the aquarium, while Figure 2.5c provides a similar map at the back of the aquarium.
Both are qualitatively similar and the skewness remains small over the depth of the tank.
For reference, Figure 2.5d and e show the sampling density, which indicates the number
of checkerboard images that were used at a location to compute the calibration. It is
noteworthy that the center of the tank was better sampled than the sides and the bottom.
We find that the skewness, and hence the spatial accuracy, is relatively constant over a
large part of the measurement volume, but increases towards the edges of the tank. This
is likely a result of the lower sampling away from the camera center, as well as unresolved
optical distortions at the edges of the image plane.

2.4. APPLICATION TO FIELD EXPERIMENTS
We demonstrate the effectiveness of the calibration method by three-dimensional mea-
surements in the large aquarium at the Rotterdam Zoo. We begin by focusing on an el-
ement that is easily identifiable on each camera view and shows that we can accurately
triangulate the position. We end our validation by tracking the three-dimensional posi-
tion of fish of various sizes that are freely swimming over the depth of the tank.

Large predatory fish in the aquarium, such as sharks, swim through the entire aquar-
ium. They provide a good target to evaluate the robustness of the camera calibration as
their sharply tipped fins provide easily recognizable and well-defined features. Figure 2.6
shows how accurately such features can be triangulated with our calibration method.
We first identify the vertex of the right-hand side pectoral fin of a shark on each camera
view. Similar to Section 2.3.3, we directly associate the vertices, identified on each of the
four images, with four optical rays in the object domain. We triangulate the position of
the vertex and find a skewness of only 0.35 cm, which demonstrates the accuracy of the
method. This small skewness is illustrated in Figure 2.6 where, for each camera view,
the optical rays associated with the other camera views are projected on the image plane
onto the epipolar lines [14]. The epipolar lines intersect nearly perfectly at the identi-
fied vertex of the shark fin. The inset in Figure 2.6 presents a closeup view from which
one can infer the reprojection error from the slight skew between the optical rays. This
associated reprojection error is of only 1.11 px.

Further, we demonstrate that our calibration supports the tracking of several fish
simultaneously over large distances by tracking a small group of six tuna fish, see Fig-
ure 2.7. By triangulation, we reconstruct the three-dimensional time-resolved position
of the group, see Figure 2.7b. Using an in-house automated tracking code, we track the
group of six individual fish (tuna) swimming away from the cameras over a large dis-
tance of 7 m. Together with the triangulated shark fin, this experiment demonstrates the
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Figure 2.5: Spatial accuracy of the camera calibration. a) The average back-projection error in [cm] over the
depth of the tank Z . b) The back-projection error over the width and height of the measurement volume at the
front of the tank from Z = 4 to Z = 17 m. c) The back-projection error at the back of the tank from Z = 17 to
Z = 24 m. d and e) The sampling density of checkerboards associated with (b) and (c), respectively.
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Figure 2.6: Triangulation of
the vertex of a shark fin. For
each camera view: the point
corresponding to the vertex
of the shark fin is identi-
fied with a marker, while the
three lines correspond to the
epipolar lines associated with
the three markers of the re-
maining three camera views.
The color coding is consistent
across the multiple views, for
example, the vertex on cam-
era 1 is identified with a red
marker and the epipolar lines
associated with this point in
camera 2,3,4 are red. Like-
wise, the vertex on camera
2,3,4 and the corresponding
epipolar lines are respectively
represented in green, blue,
and magenta. The inset on
camera 2 zooms on the ver-
tex of the fin and shows that
the epipolar lines intersect at
pixel accuracy.

(1)

(2)

(3)

(4)

robustness and accuracy of the calibration and its potential use in large-scale field ex-
periments. The calibration supports accurate triangulation over a large distance along
the depth of field. This makes it of interest to further applications for the tracking of par-
ticles [34, 35], birds [4], insects [36], fish and other animals, and the study of fluid motion
using tomographic methods [37] for large scale field experiments.

2.5. CONCLUSION

Here, we have described and characterized a versatile, accurate, and robust calibration
method, which supports the three-dimensional tracking and triangulation of multiple
fish. Our method is of particular interest to large-scale field experiments; when spatial
access to the measurement volume is limited and laboratory equipment to precisely po-
sition the target cannot be installed. The method does not require a large calibration
target to be moved with known displacements. Rather, we use a freely moving checker-
board calibration target, which is much smaller than the measurement volume itself.
The calibration mapping uses the framework of projective geometry, which assumes lin-
ear ray-tracing. It combines a pinhole camera model for linear ray-tracing, with non-
linear camera mappings commonly used in experimental fluid mechanics to correct for
optical distortion. All the algorithms necessary for the implementation of the calibration
method are described here with details provided in Appendix A.

The calibration method has been implemented to obtain an accurate and consis-
tent multiple-view camera calibration in the large-scale aquarium of the Rotterdam Zoo.
Here, the calibration target was positioned arbitrarily by a team of divers. We have char-
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Figure 2.7: Tracking and triangulation of a group of tuna fish inside the measurement volume. a) The group of
tracked tuna fish in the image plane. b) Top view of the tuna fish swimming over a distance of ∼ 7 m within
the depth of the tank. c) The three-dimensional reconstruction of the fish swimming in object space including
the camera position of Figure 2.3. In all visualizations, the color code of the tracks corresponds to the linear
velocity in object space.
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acterized the spatial accuracy of the calibration to be less than 2 % of the size of a checker-
board tile, corresponding to 1 cm over the entire measurement volume that spans sev-
eral tens of meters. When correcting for the difference in the refractive index of air and
seawater, we find that our method reconstructs both the camera position and the intrin-
sic properties of the camera such as the focal-lengths of the lenses. Selecting different
subsets of calibration images in a quality assessment, we show that in our case 15 cal-
ibration images are sufficient to achieve a valid calibration. Increasing the number of
checkerboard images and better sampling the measurement volume further improves
spatial accuracy. The resulting camera calibration allows accurate imaging and three-
dimensional tracking over a large measurement volume, here with application to bio-
logical fluid mechanics and the tracking of fish.
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3
VOLUMETRIC TRACKING OF FISH

IN A LARGE SCHOOL

In this chapter, we introduce the methodology for time-resolved volumetric tracking of
fish in a large school, over a large distance. Our approach combines new developments
from tracking animals in the field with techniques from experimental fluid mechanics to
track passive tracers in a flow. In particular, we include the directional dependent projec-
tion of the fish in the different camera views and present a full integration of projective
geometry starting from the image processing. This makes the three-dimensional tracking
robust against variations in the reprojection error and other errors from the calibration,
here imaging at limited camera angles and baselines. We present all the steps involved to
identify fish images on the different camera views, in a complex underwater environment.
We match fish across different viewing angles and compute a best-fit object triangulation,
taking into account the presence of large occlusions from solitary predators. Subsequently,
we integrate the fish tracking in the different camera views with the tracking in the object
domain to optimize for trajectories that remain in a best-fit correspondence. Finally, we
characterize the reliability of our tracking methods. We investigate the operating condi-
tions in terms of the image density by a ‘fish-image-per-pixel’ and time resolution by a
‘fish-swim-per-frame’. We study the probability of tracking individual fish into the next
frame and extract a tracking efficacy metric that quantifies the percentage of the school
that remains tracked over a number of frames. Our methods are scalable for any num-
ber of views and for tracking large ensembles of objects over large distances. The current
work applies equally to the general tracking of (bio-)active particles such as microorgan-
isms. It contributes to the tracking of elongated objects with directional dependence. All
algorithmic detail is given in the appendices.

Parts of this chapter have contributed to Buchner et al. [1] for the tracking of bio-active micro-algae in a sus-
pension.
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3.1. ANIMAL TRACKING AND VOLUMETRIC IMAGING FLUIDS
The application of automated video tracking to reconstruct the time-resolved, three-
dimensional motion of animal groups has gained much attention in recent years in the
study of collective animal behavior. For example, the three-dimensional tracking of
swarming insects such as fruit flies [2–6] and midges [7, 8], zooplankton and the sur-
rounding fluid [9], the swimming of Antarctic krill in schools [10], the collective flight
of bats [11–13], and in particular, the highly organized maneuvering of birds in a giant
flock [14, 15]. Such studies are of widespread interest in bio- and soft matter physics and
include contributions such as open-source toolbox implementations [16], and online
available data sets [17].

Only a few existing studies have performed the fully three-dimensional tracking of
animal groups in a large-scale field experiment [13, 15, 18]. Such contributions are not
only challenged by the number of animals to track but also the increasing dimensions
of the group, and new methods are continuously developed [19–21]. Interestingly, de-
spite few available works in a limited laboratory setting [22–26], the application of three-
dimensional imaging remains absent for realistically sized fish schools in an underwater
environment within the order of a few thousands of individuals.

Whether it be the tracking of particles in a cell [27, 28] or passive tracers carried with
the turbulent motion of a fluid [29], image-based particle tracking techniques are at the
heart of three-dimensional imaging in experimental fluid mechanics [30, 31]. The past
decades have seen an acceleration in the development of three-dimensional particle
tracking algorithms [32–35] with different algorithmic strategies [36–38], tomographic
particle image velocimetry [39–41], the time-resolved tracking of dense suspensions [42,
43], the extraction of accurate velocimetry data [44, 45], new iterative matching schemes
[46], application of learning methods [47], open-source implementation [48], real-time
tracking [49], and recent improvements [50–52]. Altogether, with the increasingly greater
availability of computational resources and improved camera equipment, such different
implementations have largely extended early photogrammetric work [53–55].

In particular, the accurate tracking of large collections of 10000 to 100000 particles
in a suspension has been much popularized with the introduction of the ‘Shake-the-
Box’ algorithm [42, 43]. This work outlines an elaborate ‘Lagrangian particle tracking’
methodology starting from advances in three-dimensional particle tracking [32–35] and
motion-enhanced tomographic methods [56–58] to remove so-called ‘ghost-particle’ re-
constructions [59] that decorrelate over time. Different from tomographic techniques
[39, 40], which are based on an object intensity value reconstruction [60], the ‘shaking’
approach builds forward on iterative particle triangulation schemes [61] that bypass vox-
elization of empty volumes of space, and ease the fitting of trajectories [34, 35] to include
the time-domain in the object position.

This approach, its extension [51, 62] and related works [46, 48, 52] have particularly
focused accurate tracking of particle images at high image densities ranging from 0.05
up to a reported 0.125 ‘particle-per-pixel’ (ppp). Such image densities are of most im-
portance to sample the smallest length-scale in the fluid and are much greater than
early works [53–55] below ≤ 0.005 ppp, while extending beyond tomographic methods
[39, 40], which are reported reliable up to ∼ 0.05 ppp. However, implementations ex-
tensively rely on subpixel accurate (self-)calibration techniques [63–65], typically below
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0.4 pixels, and the augmentation of an optical transfer function [66] to correct non-
uniformity in focus, and astigmatism of the underlying optics, and their application be-
yond the lab environment remains scarce [67].

On the other hand, existing works in animal tracking have focused on large-scale ap-
plications [13, 15, 18] and resolving occlusions [4, 11, 12] using integer programming.
Resolving occlusions is vital to the extraction of long time series over large distances as
animals are likely to cluster together for long time periods. Disregarding questions of the
resolution, such as pixel-by-pixel particle projections [30] against full animal silhouettes
[14], the tracking of animals in the field [13, 15, 18] may yet be regarded successful at a
considerably lower optical density than in fluid mechanics [43, 51, 52] by visual compar-
ison. Furthermore, algorithmic implementation [4, 11, 12] and architectures [15] are yet
limited in advanced trajectory smoothing and differentiation techniques.

In this work, we combine advances from experimental fluid mechanics [43] with
methodology from the field [15] to track the motion of a large school of ±2000 Haren-
gula clupeola (false herring) in three dimensions. Starting from the image processing,
we fully integrate the framework of projective geometry [68] using dual-space geometry
[69]. This naturally embeds an optical transfer [66] for a pinhole camera and includes the
directional (anisotropic) projection of the fish by their position and orientation, without
the need to fulfill (in-practical) calibration requirements. In this way, we normalize the
resolution of the images in the presence of considerable optical density. We show that
our approach relaxes restrictive constraints on subpixel reprojection errors to a ‘sub-
fish’ correspondence that is free to extend over several pixels and allows the inclusion of
known errors from the calibration.

Imaging underwater inside the large ocean aquarium at the Rotterdam zoo, we ex-
plain all steps to remove and suppress background artifacts. We use smoothing and
differentiation methods common to image-processing [70] to identify and extract the
elliptical fish images over multiple scales [71] using a cascade of simple generic image
filters [72]. Subsequently, we match fish between views and use an integer assignment
[2, 15] to find a best-fit object triangulation in face of missing data from large occlusion
by predator fish. We then simultaneously track fish in the image plane and object space.
We extend our solution strategy to track fish that remain in a best-fit correspondence
and integrate a generic trajectory model [43, 48]. We demonstrate that tracking fish for-
ward, backward, and again forward in time is crucial to the extraction of long trajectories.
Finally, we explain the steps in post-processing the tracking data.

The goal of this chapter is to extract reliable fish tracking data from imaging inside
a large-scale underwater environment. Therefore we end this chapter by characteriz-
ing the performance of our tracking methods. First, we quantify the variation in the re-
projection error and the extraction of long trajectory time series against the main input
parameters from the image processing. Secondly, we compute the probability of track-
ing into the next frame and present boundaries in tracking reliability in terms of ’fish-
image-per-pixel’ and a ’fish-swim-per-frame’. Finally, we extract a single ‘tracking effi-
cacy’ parameter [30] for the percentage of the school that remains tracked and present
an overview of the quality of the fish tracking. The methods described here are as well
applicable to tracking bio-active microorganisms in a suspension [1] and contribute to
tracking ellipsoidal objects in a fluid.
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3.2. IMAGING AN UNDERWATER ENVIRONMENT
Using the fully calibrated setup of sCMOS cameras described in Chapter 2, we image
a large school of ±2000 Harengula clupeola (false herring) inside the large ‘Oceanium’
aquarium at the Rotterdam zoo. The cameras are synchronized through a programmable
timing unit (PTU, LAVISION GmbH) and image at limited camera angles and baselines
(down to ∼ 5 o and ∼ 1 m). Typical images acquired by the different views for a milling
fish school are found in Figure 3.1a and snapshots for a rapid escape in Figure 3.1b.

Multiple artifacts are present in the images. Such include a non-uniform illumina-
tion throughout the measurement volume, a complex image background composed of
a sand floor, rocks and reflections at the water surface, and multiple species of fish with
varying sizes and shapes. We first analyze these artifacts and associated image quality in
greater detail.

3.2.1. DATA ACQUISITION AND IMAGE QUALITY

All data acquisition has been carried out in the dark to minimize reflections on the win-
dow that provides the optical access (Chapter 2). To capture the rich dynamics displayed
by the fish, the image data have different frame rates. The frame rate, in turn, influ-
ences the exposure time and thereby the dynamic range and signal-to-noise ratio for the
recordings. Hence, all recordings do not have optimal and predetermined image con-
trast as is common practice in ‘Particle Image Velocimetry’ [30].

LIGHTING CONDITIONS

The calibration of Chapter 2 corrects the optical distortion across the air/glass/water in-
terfaces and compensates for the lighting on the image sensor (Appendix A.4). However,
several other sources of non-uniformity in the lighting conditions remain present. The
aquarium is illuminated from above and includes multiple sources of LED light that can
be influenced by the net power frequency of 50 H z. Moreover, the refraction of light by
surface waves causes uneven illumination below the water surface. This results in light
rays that are swept through the measurement domain and range in strength by the water
turbidity, see the orange marking in Figure 3.1a.

COMPLEX BACKGROUND

Imaging inside the Ocean aquarium presents challenges compared to a controlled labo-
ratory experiment. In Figure 3.1a we label several complex background artifacts. Firstly,
we mark multiple rocks by the yellow dashes which compose a stationary background
where bright reflections may later result in spurious fish identifications. Secondly, the
sand on the floor of the tank appears bright, while the surrounding walls in the back
of the tank appear dark and drastically affect the image contrast. Finally, water waves
present surface reflections and project bright spots on the sand floor, see the blue mark-
ing in view (3), and as well illuminate part of the patterned ‘sea bed’ in view (4).

3.2.2. FISH IMAGE DATA

The harengula are among the smallest fish inside the aquarium besides other larger fish.
In Figure 3.2 we present an elaborate overview of recorded fish images. Due to the com-
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Figure 3.1: Typical imaging inside the fish tank. a) The four camera views imaging a milling fish school. In yel-
low we mark several objects (rocks and wall silhouettes) in the background (views 1 to 4), in blue we highlight
reflections at the ground and the water surface (views 3 and 4), in orange we indicate the (faint) light-rays com-
ing from illumination above the tank (views 1 and 2). b) Three snapshots for a camera (3) imaging an escape
to a predator attack at t = 0. From left to right we highlight in snapshot (1) a shark attack where the fish rapidly
fan outward (red arrows), (2) the fish rejoining (with a tarpon occluding the top part of the school), and (3) the
school rejoining into a circular mill with a small group of hunting tuna fish.
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plex lighting conditions, the images contain reflections and shadows that are difficult to
deal with.

FISH AS ANISOTROPIC PARTICLE IMAGES

In Figure 3.2a, we present fish images zoomed in from the snapshots of Figure 3.1b. Over-
all the fish appear as bright ‘particle’ image projections from strong specular reflections
on their scales. However, unlike conventional particle images [30], the fish image pro-
jection is elongated with an inherent anisotropy in the direction of swimming.

We find a large variation in the fish image projected area by the fish position and
orientation for the different wide-angle lenses of Chapter 2. See for example the large
(parallel) projection upfront in Figure 3.2a-3, in relation to, the much smaller (aligned)
projection in the back of Figure 3.2a-4. Furthermore, Figure 3.2a-1 and a-7 particularly
underline that there is no uniform contrast inside the tank, and fish may (almost) disap-
pear in the image background (Figure 3.2a-4).

Moreover, there is a large variation in the optical density of the fish projection. We
express a local image source density in ‘fish-image-per-pixel’ (fipp) by the number of
occupied pixels against the image resolution [30]. This ranges from sparse fish groups
≤ 0.01 fipp in Figure 3.2a-1 to dens fish packing ∼ 0.5 fipp in Figure 3.2a-5, and beyond
completely filling the image (see also Figure 1.3 in Chapter 1). This sets a clear challenge
to extracting reliable tracking data in three dimensions.

SPATIAL AND TEMPORAL RESOLUTION

We further investigate the spatial and temporal resolution. In Figure 3.2b-1 and b-2, we
present two close-up views of the directional dependent fish projection. The minimum
pixel resolution covers 3–7 pixels for the fish images in the back of the tank. This results
in a high spatial resolution over the entire fish tank, ranging above a typical 21–49 pixels
in front of the cameras.

Furthermore, to obtain sufficient temporal resolution we sample at a frame rate of
20 to 70 H z to keep the fish displacement within its body-length. Expressing the image
displacement as a ‘fish-swim-per-frame’ (fspf) by the projected fish body we keep its
value in the range of ∼ 1/5 fspf. This results in a high time resolution, examples are
shown in Figure 3.2b-3 to b-5, with a RGB-colored overlay in Figure 3.2b-6.

OTHER FISH SPECIES

In Figure 3.2c we present several examples of sharks, tarpon fish, barracudas, sea tur-
tles, and tuna fish, as introduced in Chapter 1. These fish constantly interact with the
school and challenge the image processing in Section 3.3. They present complex body
reflections that vary with position and pose, for example, a sea turtle flapping its fin in
Figure 3.2c-3. Furthermore, curious barracuda and grouper fish may appear at the audi-
torium window and block a camera in Figure 3.2c-8. Such events lead to the temporary
loss of a camera view during data acquisition.

3.3. IMAGE PROCESSING
Before we perform the time-resolved tracking in three dimensions we identify the fish
in the different camera views. First, we subtract a background image for each recording
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(c-1) (c-2)

(a-1)
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(a-3) (a-5)

(a-2) (a-4) (a-7)

(a-6)

(c-3) (c-4)

(c-5) (c-6) (c-7) (c-8)
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(b-2)

(b-3) (b-4) (b-5) (b-6)

Figure 3.2: Typical fish image data and quality. a) Details of the snapshots (1)–(3) of Figure 3.1b with the haren-
gula swimming: away from the cameras (a-1) at the back of the tank (a-2), upfront and parallel to the cameras
in the foreground (a-3), towards the camera views aligned with the depth of field at the bottom in the back
(a-4), dens optical projection at the top (a-5) and sparse in the middle (a-6), and with low contrast against the
sand floor (a-7). b) Fish image quality of the harengula at high image resolution. Fish image projection swim-
ming parallel (b-1) and towards the camera view (b-2). Three consecutive image frames of a sparse fish group
(b-3) to (b-5) showing the temporal resolution plotted in RGB-color overlay in (b-6); in a continuous fish im-
age overlap. c) Several images of predators and other species as introduced in Chapter 1 leading to substantial
occlusions: close-up of a blacktip shark (c-1), a horse-eye jack (c-2), a sea turtle (c-3), a barracuda looming
at the water surface (c-4), a tarpon (c-5), a group of tuna-fish (c-6), a stingray close to the floor (c-7), and a
grouper fish (c-8) — fully blocking the camera view.
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to remove stationary background artifacts and enhance the image contrast over multiple
length scales. Secondly, we approximate elongated fish images with an ellipse shape and
derive several criteria for classification. Subsequently, we extract robust fish identifica-
tion by maximizing the image contrast over multiple length scales. We end this section
by performing tracking in the camera image.

3.3.1. BACKGROUND REMOVAL
To model the static elements in the fish tank that contribute to the image background,
we perform a background image removal for the different camera views. As the lighting
conditions change during the course of the day (to mimic a natural habitat) and since
the fish are always present in the tank, we cannot capture a still background image prior
to imaging and therefore need to define it from the image data.

We construct a background image Bi j for the pixel indices i and j by recursively av-
eraging the image data I n

i j over the frames n for each camera. To ensure that fish do not

trace a swept projection along their swimming path, we suppress artifacts that move in
the image foreground by segmentation of the successive background updates, see Ap-
pendix B.1. Finally, we fit the patched image background Bi j to the input image I n

i j and

find the best subtraction Sn
i j in the presence of varying illumination from the light above

the tank. The resulting progression is shown in Figure 3.3a–c.

3.3.2. MULTI-RESOLUTION IMAGE CONTRAST
We enhance the image contrast over a range of length scales using two techniques from
image processing. This allows us to take into account the variation in the projected area
by distance and orientation towards the camera for the multiple sizes and shapes of fish
swimming in the measurement volume.

MEXICAN HAT IMAGE FILTER

Firstly, we filter the background subtracted image Sn
i j of Figure 3.3c using a convolution

filter that enhances image contrast for projections of a specific length scale σ in pixel
dimension (px). For this purpose, we keep the image resolution fixed and introduce a
multi-resolution wavelet image convolution kernel hmex that is shaped like a Mexican
hat for the local pixel neighborhood i j∗ centered at the pixel index i j .

We derive the shape of the Mexican hat by taking the Laplacian of a Gaussian (LoG)
convolution kernel of width σ:

hmex =−∇2

[
σ2

2
exp

(
−‖xi j∗‖2

σ2

)]
= exp

(
−‖xi j∗‖2

σ2

)
−2

‖xi j∗‖2

σ2 exp

(
−‖xi j∗‖2

σ2

)
. (3.1)

Here xi j∗ = [x y]T are the local pixel locations1 for the neighborhood i j∗, (•)T is the
vector transpose, ‖•‖ is the vector norm and ∇2(•) the Laplace operator, for an example
see Figure 3.3e.

The first term at the right-hand side of Equation 3.1 integrates the intensity val-
ues and smooths out any detail smaller than the width σ. The second term in Equa-
tion 3.1 integrates contrast for objects larger than ∼ 2σ and penalizes the surrounding

1In the current chapter, all image processing is performed on the corrected image coordinates of Chapter 2,
therefore we drop the redundant notation ˆ(•) for the dewarped image position x̂ = [x̂ ŷ]T .
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area. As the two terms in Equation 3.1 integrate 0 the image convolution suppresses ob-
jects larger than σ. Hence hmex enhances the appearance for objects of width σ, see the
variation in fine detail at the top row in Figure 3.3d.

DOWNGRADING THE IMAGE RESOLUTION

Secondly, we introduce a box filter hbox to integrate the image intensity values and down-
sample the image resolution. The result of this procedure can be seen along the column
space of Figure 3.3d. Together, combining the two approaches by applying different con-
secutive combinations of hbox and hmex presents a flexible method to reveal different
levels of detail Sσi j from the background-subtracted image Sn

i j . For example see (b3,h2)

in Figure 3.3d as we enhance the image contrast for larger predators in the foreground,
as is used to track the group of tuna fish in Chapter 2.

3.3.3. ELLIPSE IMAGE CONVOLUTION
We continue considering the shape and orientation of the fish in the object domain and
the corresponding projection. We approximate the fish in the camera images as elliptical
silhouettes. This provides two advantages. First, in the framework of projective geome-
try (Chapter 2) an ellipsoid in the object domain projects as an ellipse in the image [69],
with a corresponding forward light cone through object space [68]. This naturally em-
beds the optical transfer [66] for a pinhole camera. Second, an ellipse has several useful
parametrizations and can be cast into a sequence of linear image filters.

IMAGE CONIC CONTOUR FUNCTION

We express the ellipse contour function as the conic section in the image as is conven-
tional in projective geometry:

x̃T C x̃ = 0 with C =
 c1 c2/2 c4/2

c2/2 c3 c5/2
c4/2 c5/2 c6

 . (3.2)

Here x̃ = [x y k]T is the augmented image coordinate (k = 1) using the calibration de-
scribed in Chapter 2, and C is the symmetric conic coefficient matrix. The six coeffi-
cients in Equation 3.2 correspond to five independent parameters: the ellipse semi-axes
and orientation, the image position, and a scale that can be normalized [68].

Equation 3.2 can be written as a generic 2nd order polynomial function f (x, y) that is
segmented at 0:

f (x, y) = x̃T C x̃ = c1x2 +c2x y + c3 y2 + c4x + c5 y + c6 = 0. (3.3)

Here the coefficients ck can be stored in a vector c = [c1 c2 c3 c4 c5 c6]T corresponding to
the different terms x2, x y, y2, x, y , and 1.

FITTING OF THE CONTOUR FUNCTION

We can directly obtain the coefficients ck through fitting the polynomial function of
Equation 3.3 to the scale-enhanced image2 Sσi j of Section 3.3.2 on a predefined pixel

2In the case of a Gaussian point spread function I ∼ exp(x̃T C x̃) for the particle image projection [30] one can
fit the log-normalized particle image I∗ = log(I ) ∼ x̃T C x̃. This is further used to suppress strong reflections
from imaging the underwater environment.
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(a) (b) (c)

(d)
)3h,1b()2h,1b()1h,1b(

(b2,h1) (b3,h2) (e)

Figure 3.3: Background removal and multi-resolution image contrast. a) Raw image I n
i j from view (3) in Fig-

ure 3.1a. b) Patched background image Bi j , see also Appendix B.1. c) Best fit background subtracted image
Sn

i j from (a) and (b), note the light rays cast from the water surface. d) Along the column space of the page,

h1–h3 present image convolution with the Mexican-hat image filter (e) at increasing scale σ∼ 2,3,4 px. Along
the row space, b1 and b2 present a downgraded image resolution using a 2×2 box filter; (b3,h2) present a re-
sult for three consecutive image resolutions. e) Mexican hat image filter (top-left inset, red curve) in its parts:
top-middle the convolution kernel for smaller detail in the foreground (black curve), top-right image filter that
penalizes the image background (grey curve).

neighborhood i j∗. This can be achieved through a Savinstky-Golay smoothing and dif-
ferentiation filter [70] that constitutes a separate image convolution kernel hk (higher-
order gradient) to each coefficient ck . The details are provided in Appendix B.2.

Matching the pixel neighborhood i j∗ with the associated scale of interest by 2σ+1
we convolute the images Sσi j with hk and obtain the coefficients ck

i j for each pixel loca-

tion i j . In Figure 3.4a we present results obtained for the multiple image convolutions
for a single scale σ∼ 3 px similar to (b1,h2) in Figure 3.3d. We now classify the resulting
contour function by interpreting the coefficient values.
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CLASSIFICATION OF THE CONTOUR FUNCTION

To identify whether the fitted coefficients ck
i j for the 2nd-order polynomial function of

Equation 3.3 belong to a local image peak, valley, or saddle point, we classify its criti-
cal point. We deduce the location of the critical point by extremizing the value of the
polynomial function f (x, y):

∇ f (x, y) = 0 →
[

2c1 c2

c2 2c3

]
︸ ︷︷ ︸

H

[
x
y

]
︸︷︷︸

x

=−
[

c4

c5

]
︸︷︷︸

g

→ x =−H
∖

g . (3.4)

Here g is the local image gradient and H is the image Hessian.
Based on the trace and determinant of the image Hessian H (left of Figure 3.4a) we

determine in Table 3.1 whether the critical point is a local maximum (peak), minimum
(valley), or saddle point. We restrict the current work to local image maxima as valid fish
positions in the image foreground. This will be of use in Section 3.3.4.

determinant trace result
det(H) > 0 tr(H) > 0 image minimum
det(H) > 0 tr(H) < 0 image maximum
det(H) < 0 - saddle point

Table 3.1: Evaluation criteria for the level-set of Equation 3.3 by the determinant det(H) and trace tr(H) of the
local image Hessian H .

ESTIMATE OF OPTICAL FLOW

We further use the relatively high frame rate of the image data to compute the displace-
ment of the contour function of Equation 3.3 from one frame to the next one. This
presents two additional advantages. First, we improve the fit of the polynomial by in-
tegrating temporal information for our sequence of image filters. Secondly, we estimate
the optical flow from the image sequence which helps initiate the tracking.

We include an optical flow vector u = [u v]T which displacement u∆t over∆t we add
inside the contour function of Equation 3.3:

f (x −u∆t , y − v∆t ,∆t ) =c1(x −u∆t )2 + c2(x −u∆t )(y − v∆t )+ c3(y − v∆t )2

+ c4(x −u∆t )+ c5(y − v∆t )+ c6 + c∗7∆t +c∗8∆t 2,
(3.5)

where the terms ∆t ,∆t 2 are added to include image intensity variation. Expanding each
term in Equation 3.5 and regrouping x2, x y, · · · ,∆t 2, we write another function g (x, y,∆t )
of same order that is fitted to the pixel neighborhood i j n∗ over several frames n:

g (x, y,∆t ) =c1x2 + c2x y + c3 y2 + c4x +c5 y + c6

+ c7x∆t + c8 y∆t + c9∆t + c10∆t 2.
(3.6)

Comparing the terms x∆t and y∆t for Equation 3.5 and Equation 3.6 in Table 3.2 the
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optical flow u is obtained by inverting of a set of linear equations:[
2c1 c2

c2 2c3

]
︸ ︷︷ ︸

H

[
u
v

]
︸︷︷︸

u

=−
[

c7

c8

]
︸︷︷︸
∂t g

→ u =−H
∖
∂t g , (3.7)

with ∂t g defined as the time derivative of the image gradient. Note that further modeling
a rigid body motion for the ellipse allows including the rotation, acceleration etc., and
extend Table 3.2. However, this remains beyond the scope of the current work.

term f (x −u∆t , y − v∆t ,∆t ) g (x, y,∆t )
x2 c1 c1

x y c2 c2

y2 c3 c3

x c4 c4

y c5 c5

1 c6 c6

x∆t −2c1u − c2v c7

y∆t −c2u −2c3v c8

∆t c∗7 +c4u − c5v c9

∆t 2 c∗8 +c1u2 + c2uv + c3v2 c10

Table 3.2: Ellipse image displacement from a term-by-term comparison of the expanded polynomial function
f (x −u∆t , y − v∆t ,∆t ) and its fitted form g (x, y,∆t ).

3.3.4. IMAGE SEGMENTATION AND IDENTIFICATION
At this stage of the image processing we have removed the image background, enhanced
the image contrast at scale σ, and extracted the coefficients ck

i j that give the conic con-

tour function and optical flow. We now use the image classification criteria of the previ-
ous subsection to cluster ellipse shapes corresponding to the fish images.

IMAGE SEGMENTATION

Given a scale σ we identify for each pixel i j if the pixel neighborhood i j n∗ belongs to a
fish. First, we segment the fish in the image foreground by Sσi j > 0. Secondly, we com-

plement the segmentation with the criteria det(Hi j ) > 0 and tr(Hi j ) < 0 for the image
Hessian, see Table 3.1. In addition, we demand that the critical point xi j of Equation 3.4
lies within the pixel neighborhood by ‖xi j∗‖ < σ away from i j . Similarly, we constrain
the optical flow vector ui j of Equation 3.7 within the same range by ‖ui j∗‖ <σ/∆t .

For practical purposes, such as changing lighting conditions, we introduce variable
image segmentation levels εσ, εdet and εtr and define the segmentation mask Mi j :

Mi j = 1 when Sσi j > εσ and det
(
Hi j

)> εdet and tr
(
Hi j

)< εtr

and
∥∥xi j∗

∥∥<σ and
∥∥ui j∗

∥∥<σ/∆t ,

Mi j = 0 otherwise.

(3.8)
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The segmentation levels ε are based on mean and standard deviation statistics and can
be restricted/relaxed depending on the image quality. A result is shown in Figure 3.4c.

VOTING AND ELLIPSE IDENTIFICATION

Having segmented the image in Figure 3.4c, we identify pixels that correspond to the
same ellipse. Inspired by the image Hough transform we define a ‘voting map’ Vi j that
bins the number of critical points xi j that correspond to the same pixel indices i j . The
result of this process is shown in Figure 3.4d and f, where we further pinpoint the location
of distinguishable fish images.

Finally, we extract connected regions from the voting map Vi j and perform a weighted
average to cluster ck

i j for contour functions that approximate the same fish image. In Fig-

ure 3.4e and g, we illustrate a correct segmentation. Each individual fish image is associ-
ated with a single ellipse cp where p = 1 · · ·P lists the number of identifications. Finally,
we recover the shape of the ellipse through Appendix B.3 and provide useful manipula-
tions in Appendix B.4 which we use in the remainder of this chapter.

3.3.5. CONTRAST MAXIMIZATION
In Figure 3.4 we identify 1379 fish over a single scale σ for the school of ±2000 fish. Al-
though not all fish are visible in the image, and many may be in occlusion, we continue
to raise the number of identifications over a range of scales and decide the most repre-
sentative contour function. For this purpose, we evaluate the peak value of the extracted
polynomial function fitted to the enhanced image brightness and maximize the local
image contrast per unit area.

First, in Figure 3.5a, we enhance the image contrast for the smallest scale (b1,h1)
of Figure 3.3d to extract the set of ellipses cp . Secondly, in Figure 3.5b, we process the
next length-scale (b1,h2) of Figure 3.3d and obtain the ellipses cq . The two consecutive
image scales present a high degree of overlap. This is shown in Figure 3.5c-1 and c-3
which we overlay in c-2. We compute the degree of overlap from the ellipse contours
and corresponding midpoints xp and xq (Appendix B.3) by the normalized (point-point)
ellipse distance dpq = d

(
cp ,xq

)
of Appendix B.5.

Computing the degree of overlap back-forth between the image scales from inter-
changing p and q , we construct the rectangular bi-adjacency (indicator) matrix Bpq :{

Bpq = 1 when d
(
cp ,xq

)≤ 1 and d
(
cq ,xp

)≤ 1,

Bpq = 0 otherwise.
(3.9)

This gives a bipartite graph that pairs p with q , when Bpq = 1 the ellipses consistently
overlap, while Bpq = 0 indicates otherwise.

Evaluating the peak value of the polynomial we keep the contour function of maxi-
mum intensity per unit area by the ellipse semi-axis (Appendix B.3). In this way, we dis-
tinguish between two paired ellipses p and q that belong to a single fish and two ellipses
that represent partially overlapping fish images. This process is shown in Figure 3.5c-1
to c-3 with a result in c-7 zoomed in from Figure 3.5d. Subsequently, we update an image
mask (Figure 3.5c-6) and remove fish through inward interpolation (image flood-fill) in
c-8. This image is input to the next scale in Figure 3.5c-5 and we repeat the process (c-9
and c-10) to identify 1729 fish at maximum image contrast in Figure 3.5e.
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Figure 3.4: Fish image ellipse detection. a) The coefficient values ck from the convolution filters hk (inset, top-
left) corresponding to Equation 3.6 (pattern recognition): the second and mixed image derivatives (c1,c2,c3),
the image gradients (c4,c5), the parabolic convolution filter (c6), the image gradient time derivatives (c7,c8),
the image time derivative (c9), and second derivative (c10); the image trace tr(H) and determinant det(H).
b) Input image Sσi j from Figure 3.3d (b1,h2) with scale σ ∼ 3 px. c) Segmented image Mi j from the criteria

of Equation 3.8. d) Voting map Vi j , binning the midpoint from the image ellipse at the input resolution. e)
Resulting ellipse identification cp from the image processing routine (a)–(d). f) Full image (d) for the voting
map Vi j . g) Full image (e) for the resulting ellipse identification cp with 1379 identified fish.
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It is noteworthy that looping over multiple scales reduces the chance of missing a fish
by variable image segmentation levels of Equation 3.8; compare the insets in Figure 3.5a
and b that together make Figure 3.5d. This in principle improves the robustness of the
described fish identification algorithms. Finally, we note that spurious fish identification
(sharks, sand floor, water surface, etc.) will largely lack correspondence and be removed
when matching among views in the next section.

3.3.6. CAMERA TRACKING
We initiate the tracking of fish in the camera views by linking the image identification
between image frames n and n+1. Using the optical flow vectors up and uq we align the
quantities at tn+1/2 by Appendix B.4. We determine the overlap by the normalized ellipse
distance dpq and compute the bi-adjacency matrix Bpq :Bpq = 1 when d

(
cn+1/2

p ,xn+1/2
q

)
≤ 1 and d

(
cn+1/2

q ,xn+1/2
p

)
≤ 1,

Bpq = 0 otherwise.
(3.10)

The result of the camera tracking can be found in Figure 3.6 for 10 consecutive frames
output from Figure 3.5. Ellipses that uniquely connect across multiple frames corre-
spond to a segment of a projected trajectory, while connections with multiplicity are
stored as indexed correspondences that either go into or come out of occlusion, see the
diagrams in Figure 3.6c.

Figure 3.6a and b present a sparse set of fish images on the side of the school revealing
long track segments (red) for the high degree of image overlap. Figure 3.6d and e present
results obtained in the middle of the school. Here a continuous rate of fish images going
into and coming out of occlusion disrupts the image analysis and breaks the fish tracks
into smaller segments. This introduces significant uncertainty in the image.

Fish do not always remain tracked. In particular in the presence of large occlusions,
see Figure 3.1b (snapshot 2), and when the fish lose contrast or disappear in the back-
ground. It is noteworthy that the graph between different frames is not limited to con-
secutive images, but can also be constructed by skipping a few. This will be continued in
Section 3.5 when tracking from different camera views.

3.4. CORRESPONDENCE MATCHING AND TRIANGULATION
We proceed to match the identified fish projections in the different views and triangu-
late their position. First, we link stereoscopic correspondences between different camera
pairs by using the ray-tracing framework of projective geometry introduced in Chapter 2.
Secondly, we associate stereoscopic correspondences that image the same object coor-
dinate by matching the complete cluster graph between multiple views. This essentially
introduces a combinatorial problem with a large number of candidates. We end this sec-
tion by optimizing the object triangulation that uniquely fits the identified ellipses using
a simple strategy to minimize the total reprojection error.

3.4.1. LINKING STEREOSCOPIC CORRESPONDENCES
We start with linking stereoscopic correspondences between different views using ray-
tracing geometry. The ellipse midpoint xp in camera c defines a ray through the object
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(a) (b)

(c-1)

(c-10)
(d) (e)

(c-6)

(c-2) (c-3) (c-4) (c-5)

(c-7) (c-8) (c-9)

Figure 3.5: Ellipse identification over multiple scales. a) Ellipse detection for the image (b1,h1) of Figure 3.3;
identifying small fish images at the edge of the school (inset). b) Ellipse detection for the image (b1,h2) of
Figure 3.3; emphasizing larger fish images, while losing the fish at the edges of the school. c) Contrast maxi-
mization: close-up image (c-1) from (a) and (c-3) from (b), combined overlay (c-2) from (c-1) and (c-3) with
(c-3) to (c-5) analogous for consecutive image scales, original input image with empty mask (c-6), best ellipse
identification (c-7) through maximizing the contrast of (c-2), updated mask (c-8) and fish image removal from
(c-7), the repeated process for (c-9) and (c-10). d) Ellipse identification through contrast maximization of (a)
and (b), inset the combined ellipse identification at the edge of the school. e) Repeated process for (a) and (b)
and the next image scale (b1,h3) of Figure 3.3, inset a close-up at the bottom of the school. In total, we identify
1729 fish images looping over multiple scales. All color coding is consistent.
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(b)

(d)
tracked joining spli�ng

untracked spli�ngjoining

(c)

(a)

(e)

Figure 3.6: Tracking in the camera image. a) Close-up at the side of the school, showing smooth connected
tracks for a sparse group of fish. b) Consecutive fish ellipse image overlap (cyan to green) that defines the track
links. c) The track linking graph using the ellipse image contour and displacement vectors. A ‘tracked’ ellipse
for a unique track segment and an ‘untracked’ ellipse leaving an image point without connectivity. Two ellipses
that are ‘joining’ into one and end their tracks going into occlusion. One ellipse ‘splitting’ into two and defining
two new track segments. d and e) Similar close-up as in (a) and (b), however, with lesser track quality due to
an increasing rate of occlusions.

domain that can be projected on another view c ′ using the fundamental matrix3 F be-
tween the views, and yields the epipolar line l′p on the view c ′:

l′p = F xp , (3.11)

where other way around a point x′q in view c ′ projects an epipolar line by lq = F T x′q on
view c, consistently using the superscript (•)′. This process is illustrated in Figure 3.7a
and b where we cast a red point in view c to a line in c ′ and a cyan point from c ′ to a line
in c, and mark the consistent ray-crossing.

3The fundamental matrix F follows from the projection matrices P c = [Rc tc ] of Chapter 2 by F = [e′]×P c ′P c†

where (•)† is the pseudo inverse and e′ the epipolar line that follows from the null space of P c ′ with [•]× the
matrix cross product; for a full construction see Hartley and Zisserman [68].
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STEREOSCOPIC BI-ADJACENCY AND INCIDENCE MATRICES

From the epipolar lines l′p projected from camera c onto c ′, the ellipse contours c′q in
camera c ′, and the reverse projection of camera c ′ onto c, we find the ellipses cp and
c′q that are in stereoscopic correspondence. We compute the point-line distance dpq =
d

(
cp , lq

)
of Appendix B.5, and the reverse, and define the bi-adjacency Bpq :B cc ′

pq = 1 when d
(
cp , lq

)≤ 2 and d
(
c′q , l′p

)
≤ 2,

B cc ′
pq = 0 otherwise,

(3.12)

segmenting ≤ 2 as the associated object position is expected to project halfway between
the point and line.

From the stereoscopic linking from B cc ′
pq = 1, we list a large number4 of l = 1 · · ·L cor-

respondences for the consistent ray-crossing. We define the (sparse) incidence matrices
J c

pl and J c ′
ql that connect the l stereoscopic correspondences to the image ellipse identi-

fication p and q in views c and c ′. These matrices formally decompose the bi-adjacency
matrix of Equation 3.12 as B cc ′

pq = J c
pl J c ′

l q where we sum over the repeated indices.

INTEGRATION OF THE PROJECTIVE GEOMETRY

At this point, the integration of the ray-tracing geometry and the ellipse identification in
Equation 3.12 has two advantages. First, evaluating the distance on the ellipse contour
we normalize the image resolution for the varying fish image projection (Section 3.2.2).
In fact, Equation 3.12 includes the shape of the forward projected light-cone [68] that
varies with the position and orientation of the fish and includes the optical transfer [66]
from the image to the object domain (Figure 3.8a and c). Secondly, we take into account
the error from the calibration of Chapter 2. This is achieved by including a uniform ex-
pansion (Appendix B.4) for the ellipse contour as shown in Figure 3.7c.

In this way, we allow a physically grounded variation in the pixel reprojection error
and include relevant sources of uncertainty to match correspondences at a ‘subfish’ ac-
curacy; independent of the camera configuration (relative positions and viewing angle).
This presents a robust segmentation to find stereoscopic correspondences between the
views as we image fish of various sizes that are swimming over large distances.

3.4.2. F-FOCAL CORRESPONDENCE MATCHING
There are two fundamental stereoscopic ambiguities that compromise the validity of
many stereoscopic correspondences found in the previous subsection. Both these ar-
tifacts are illustrated in the ray-tracing diagram of Figure 3.8d for the multiple cameras
c, c ′, and c ′′ in a top view.

Firstly, a pair of stereoscopic cameras c and c ′ triangulate so-called ghost-particles
[30], or ‘ghost-fish’ in the current scope, see the green squares. Here, the optical rays
from one camera c may project similar epipolar lines and match two points in view c ′,
and yield a multiplicity of four object triangulation that share the plane from the camera

4The number of points q = 1 · · ·Q in view c ′ that match with a single ray p = 1 · · ·P projected from c scales by
∼ √

Q. Taking P ∼ Q the bi-adjacency matrix of Equation 3.12 is therefore populated by L ∼ O (P 3/2) corre-
spondences versus a total number of O (P 2) elements.
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(c)(a) (b)

Figure 3.7: Linking of stereoscopic correspondences for Figure 3.1a. a) Ellipse identification in view (3), here
taken as c, and in cyan, a selected ray cast from view (4), matching with the red marked ellipse, also see the
inset. b) Ellipse identification view (4), here taken as c ′, with in red the matched ray cast from view (3) consis-
tently matching with the cyan marked ellipse, also see the inset. c) Point-line distance dqp in view c ′ between
the ellipse c′q and the projected line l′p from c consistent in color-code from the inset of (b). The rays traced in
(a) and (b) yield a multiplicity of 121 stereoscopic correspondences (cyan and red ellipses).

centers [68]. Secondly, a set of three views c, c ′, and c ′′, may triangulate the same point
multiple times, see the green triangles in Figure 3.8d. Here, the stereoscopic triangula-
tion for one camera pair c and c ′ will share the view c ′ with the triangulation of another
camera pair c ′ and c ′′. We now cluster these stereoscopic correspondences and suppress
the appearance of ‘ghost-fish’ in the next subsection.

MATCHING STEREOSCOPIC CORRESPONDENCES VIA GRAPH CLUSTERING

We extract l linked stereoscopic correspondences between the views of Figure 3.8a and
proceed to connect their graph in Figure 3.8b. For this purpose, we continue to raise
the number of views to match in a camera pool. We indicate the camera pool by f =
2,3, · · · ,F that we call the camera focality; here up to a quadrifocal camera pool F = 4.
We permute through all possible combinations of cameras F !/( f !(F − f )!) and extract
complete cluster graphs composed of ( f 2 − f )/2 stereoscopic links.

Starting from the first diagram in Figure 3.8b we link the stereoscopic correspon-
dences l between the views c and c ′ with another set of correspondence h between views
c ′ and c ′′ from the incidence matrices J cc ′

pl and J c ′c ′′
pl that share view c ′. Then, for the tri-

focal camera pool ( f = 3) in the second diagram, we find the cyclic graph between views
c, c ′, and c ′′ that represent a trifocal correspondence match (red), while we ignore links
that do not connect consistently (grey).

Following these steps, we repeat this process for the second diagram in Figure 3.8b
and link the matched trifocal correspondences l in views c, c ′ and c ′′ with to the corre-
spondences h between views c ′, c ′′ and c ′′′ in a perfect overlap ( f − 1) in views c ′ and
c ′′. From the graph cycle between different trifocal correspondences, we find the com-
plete cluster graph (red) for stereoscopic links that define a quadrifocal correspondence
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match ( f = 4) in the third diagram, while we do not consider the incomplete graph clique
(grey). Further raising the camera focality f , this procedure generalizes to any number
of views. Further detail is given in Appendix B.6.

CAMERA INCIDENCE MATRIX, OBJECT TRIANGULATION, AND REPROJECTION ERROR

Having matched all possible correspondences l at increasing focality f we define the
camera incidence matrix Jpl with the image identification p running over all camera
views c. The camera incidence matrix naturally encodes the camera overlap for the
matched correspondences and we triangulate (Appendix A.5) the associated object po-
sition Xl = [X Y Z ]T , and the velocity Ul = [U V W ]T from the optical flow.

Finally we compute the average normalized reprojection error εpl = d(cp , [Rc tc ]X̃l )
along the object displacement Xl +Ul∆t over the frame sequence used for the image
processing (Section 3.3). When the reprojection error is violated outside the expanded
and displaced ellipse contours (ε> 1), we refine the camera incidence matrix Jpl :{

Jpl = 1 when εpl ≤ 1,

Jpl = 0 otherwise.
(3.13)

Remark that the argument of Equation 3.13 can be complemented by restricting the
depth of field and other user-specific criteria (e.g. object skew, velocity, acceleration,
coherence, etc.). In Figure B.3 of Appendix B.6 we provide triangulated examples for
a number of consecutive camera pools with 337400 stereoscopic, 213306 trifocal, and
49699 quadrifocal correspondence matches; imaging at narrow camera angles and lim-
ited baseline.

3.4.3. COST-FUNCTION OPTIMIZATION
We optimize the object triangulation that best fits the image identification in the dif-
ferent camera views. This is achieved by writing a constrained integer assignment over
the matched correspondences of the previous subsection. The solution to the integer
assignment greatly reduces the number of correspondences and filters the majority of
spurious matches from the object triangulation presented in Appendix B.6. The results
here will be input to the recursive branching of trajectories in the next section.

CONSTRAINED INTEGER ASSIGNMENT

We define an integer assignment by writing a solution vector λl that is either 1 or 0. This
solution vector selects the object triangulation that best fits the image and runs over all
stereoscopic, trifocal, and quadrifocal camera pools. We score the fit by the average pro-
jection errors εl =

∑
p εpl /

∑
p Jpl ∈ [0 1] and enforce a unique solution by constraining

the incidence matrix Jpl back to the image.
Computing the total error by summation over εl and the solution vector λl for the

repeated index, and imposing the constraint in the same way, we formally write:

min
λl

εlλl

subject to Jplλl ≥ 1.
(3.14)
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(b)

(a) (c) (d)(1)

(2)(3)

(4)

Figure 3.8: Matching of f -focal correspondences. a) A set of zoomed-in trifocal views (2)–(4) extending from
Figure 3.7a and b, with consistent color-coding; in red the extraction of stereoscopic links between the views. b)
Clustering of stereoscopic correspondences into trifocal and quadrifocal complete cluster graphs (red), and ig-
noring the incomplete ones (grey). c) The ray-tracing geometry used for triangulation of the three-dimensional
fish position Xl and velocity Ul in the object space; in cyan the forward projected ellipse contour. d) Illustra-
tion of the trifocal triangulation and the stereoscopic ambiguity, where an increasing number of views can be
used to improve the accuracy and test the validity of triangulated objects. For real examples see Figure B.3.

The inequality constraint Jplλl ≥ 1 picks each image identification p at least once. This
relaxes a strict equality Jplλl = 1 for occluded5 image identifications that may corre-
spond to multiple object points.

Minimizing the total reprojection error, the solution vector λl is forced to pick the
minimum number of object positions that fill the images by the incidence matrix Jpl .
Therefore Equation 3.14 inherently rewards a large camera cover wl = ∑

p Jpl for the
matched correspondence of the previous subsection. We obtain a unique solution since
εl uniquely weights each associated object triangulation, and when including more views
in trade-off with an elevated reprojection error (over-determined).

DIRECT SOLUTION THROUGH COST-FUNCTION SORTATION

In the current work, we solve the integer assignment of Equation 3.14 using a cost-
function sortation that provides a direct solution. We first sort the largest camera cover
wl in descending order (4,3,2) and subsequently sort the minimum reprojection error
εl within the camera cover. We then select the solution λl = 1 for the entries of the in-
dex p that appear first in the sorted incidence matrix Jpl . In the presence of limited

5Augmenting additional upper-bound constraints Jplλl ≤ 1,2,3, · · · in Equation 3.14 can enforce a strict cam-
era incidence or be used for ‘pruning’ of matches [48] and limit the number of allowed occlusions.
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camera angles and baseline, this approach can easily handle large collections of input
correspondence matches such as presented in Appendix B.6.

The cost-function sortation presents a simple solution strategy, where we aim to
achieve a triangulation that best fills the images at a minimum reprojection error and is
based on the greedy algorithm. The direct solution strategy does not guarantee a global
minimum [4, 12, 15] but is robust against (integer-)solver error. More sophisticated solu-
tion strategies may, in principle, represent different triangulation algorithms [43, 48, 61].

RESULT FOR THE OBJECT TRIANGULATION

A result is provided in Figure 3.9 with the quadrifocal object positions in red, the trifo-
cal correspondences in green, and the remaining stereoscopic triangulation in cyan. In
Figure 3.9a and b we plot the sorted cost-function and the resulting error distributions
which slightly elevate when including more views. In Figure 3.9c–f, we plot the obtained
object triangulation and reprojection on the images. We obtain a total of 3511 triangu-
lated object points. This number approaches the school of ±2000 fish and clearly resem-
bles its silhouette within the varying camera overlap, although some noise remains.

The current framework is flexible for missing data among views and does not re-
quire prior knowledge of the camera overlap as is common to tomographic methods
[39, 40, 66]. Furthermore, we greatly reduce the number of triangulated correspon-
dences presented in Figure B.3 of Appendix B.6. Lastly, in practice, there will always
be ‘ghost-fish’ due to spurious ellipse identifications, errors by noise in the image, and
errors from the camera calibration of Chapter 2.

3.5. THREE-DIMENSIONAL TIME-RESOLVED TRACKING
From the camera tracking of Section 3.3.6 and the correspondence matching of Sec-
tion 3.4.3, we integrate the time domain between the object space and different cam-
era views. Thereby, we include the shape of the trajectories from the camera images
[2, 5, 11, 12, 15] in the three-dimensional reconstruction to perform the time-resolved
tracking [34, 35, 43] of the fish in the school. For this purpose, we track the fish simul-
taneously in the camera images and the object domain. We branch multiple feasible
trajectories using a series of steps [43] and extend our integer solution strategy [15] to
find the candidate tracks that remain in a best-fit correspondence.

3.5.1. BRANCHING AND SMOOTHING OF FEASIBLE TRAJECTORIES
Starting from the first frame in the recording in Figure 3.10a, we initiate a new set of
trajectories l that are ‘seeded’ from the triangulated correspondence matching (Sec-
tion 3.4.3) for each frame n = 1 · · ·N . We then ‘branch’ these trajectories l by the camera
tracking (Section 3.3.6) from the current frame n into the next frame n +1 and define a
set of multiple feasible trajectories extensions l∗ = 1 · · ·L∗, and triangulate their position
Xn

l∗ and velocity Un
l∗ .

FITTING OF TRAJECTORIES

In face of significant uncertainty from the image processing and tracking, we simulta-
neously integrate the knowledge of the position and velocity in the camera image and
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(a)

(c) (1)

(4)

(b)

(f)

(d)

(3) (2)
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Figure 3.9: Cost-function optimization. a) Cost-function sortation for the camera cover and the reprojection.
In grey is the available sorted solution vector for the input triangulation of Figure B.3 and overlayed the selected
solution for the quadrifocal (red), trifocal (green), and residual stereoscopic correspondences (cyan). b) The
distribution of the reprojection error for the optimized solution, for the quadrifocal (red), trifocal (green), and
stereoscopic correspondences (cyan). c) Reprojected solution in view (1) of Figure 3.1a, on the right we find
trifocal camera overlap (green) for the part of the school outside of view (2). d–f) A top-, side- and front view
of the resulting object triangulation with a total of 3155 correspondences, clearly marking the position of the
school and camera cover, with consistent color code.



3

70 3. VOLUMETRIC TRACKING OF FISH IN A LARGE SCHOOL

object domain. This is achieved by introducing a trajectory model γ(t ). Here we use a
polynomial basis function expansion:

γ(t ) =∑
k

ck t k = c0 +c1t +c2t 2 +c3t 3 +h.o.t., (3.15)

with unknown vector coefficients ck in two, and three dimensions, for the camera image
and object domain, respectively.

We fit γ(t ) to the tracking data on a predefined stencil n∗ that runs over a span of
neighboring frames6:

min
ck

∑
n∈n∗

∥∥Xn −γ(
t n ;ck

)∥∥2 ∀l or l∗, (3.16)

and substitute the object coordinate Xn with the image position xn
c when fitting in the

camera view c.
Equation 3.16 can be efficiently solved by vectorization for a large set of trajectories

l , or their branched extensions l∗, in the presence of non-uniform data in n∗. For the
current work, we use a linear line fit [48] for Equation 3.15 which integrates the position
and velocity [32, 34, 35] into a smooth signal [42, 43].

PREDICTION, CORRECTION, AND EXTENSION

We first use the trajectory fit in the images to improve and augment image processing
and camera tracking. This is shown for the separate steps [43, 48] in Figure 3.10b:

1. ‘Predict’ new image positions for trajectory l from the fitting, and track the (green)
ellipse for l∗ that may have been outside the full overlap. This complements pos-
sible spurious camera tracking (shown in red).

2. ‘Correct’ a consistent value for the image position and velocity, and average the
ellipse shape to recursively improve (occluded) image identifications for the newly
branched camera tracking l∗ (from green to yellow).

3. ‘Extend’ the image position for an existing trajectory l as we extrapolate the fit in
case no image identification is available in the succeeding frames (cyan to yellow),
here up to the bounds of the stencil n∗.

An example of this process is shown in Figure 3.10c with consistent color coding. The
correction step suppresses noise and smooths the image identification in the presence
of fish going into and coming out of occlusion (Section 3.3.6). Therefore, in the current
work, the correction step is an integral part of the time-resolved tracking [43, 48]. From
the corrected image processing we re-triangulate the object position and velocity and
correct the trajectories in the object domain in the same way.

Marching forward (green) and backward (red) over the frames n within the process-
ing window W of Figure 3.10a the correction step recursively interpolates the predicted
and current measurement, and prevents a growing phase lag. This helps the tracking
converge to smooth trajectories in face of a varying reconstruction uncertainty for the

6We define n∗ = n−N · · ·n when tracking forward from frame n to n+1, and the reverse n∗ = n · · ·n+N when
tracking in backward from n to n −1, where N is the number of neighboring frames.
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added degrees of freedom in object space. Finally, we compute the reprojection errors
εn

pl∗ and camera incidence matrix J n
pl∗ for the feasible trajectories l∗ and account for the

error from the calibration the same as in Section 3.4.1.
It is noteworthy that one is free to include higher order curve fitting for Equation 3.15.

For example, augmenting the acceleration, curvature, torsion, and/or integrating in-
dependent measurements of these signals by the image processing (see remark Sec-
tion 3.3.3). This would require additional modeling and for example extend the imple-
mentation to (non-linear) Kalman-filtering techniques [73], which can also include the
error from the calibration [43, 65]. However, this is beyond the current scope.

3.5.2. SPLITTING AND MERGING OF FEASIBLE TRAJECTORIES
When the reprojection error εn

pl∗ for the newly branched trajectories l∗ is violated, as is

illustrated in Figure 3.10d by the red dot in view (2), we relax the incidence matrix J n
pl∗

for the current correspondence match at frame n and reprocess its complete subgraphs
of focality f − 1, see diagram Figure 3.10e. This breaks the trajectory extension l∗ into
multiple feasible branches. We refer to this process as ‘splitting’.

Subsequently, we find trajectories that meet in complete overlap for the current cor-
respondences at frame n by the associated incidence matrices and find all combinations
of their trajectories from the corresponding graph adjacency. This process we refer to
as ‘merging’. We append to the feasible trajectories l∗ and consistently reprocess the
smoothing in object space.

FEASIBLE TRAJECTORY INCIDENCE

We repeat the splitting and merging process until no reprojection error is violated and
append the multiple branches to the feasible trajectories l∗. Finally, we define the fea-
sible trajectory incidence matrix Fl l∗ between the trajectory l and its ‘branched’, ‘split’,
and ‘merged’ extensions l∗ as:{

Fl l∗ = 1 when l∗ is branched, split, or merged from l ,

Fl l∗ = 0 otherwise.
(3.17)

This incidence matrix formally expresses the relation between existing trajectories l and
new feasible extension l∗. This will be of use in the next part.

Moving forward and backward over the image frames, the splitting and merging make
the tracking robust against error and allow us to find the missing ‘link’ and reward the
matching of track segments [15]. When the reprojection error is continuously violated
for the newly branched trajectories l∗, the splitting eventually terminates the extensions
that decorrelate from the camera images [59]. Thereby, the integration of the time do-
main suppresses the tracking of triangulated ‘ghost-fish’ of Section 3.4.

3.5.3. COST-FUNCTION OPTIMIZATION
From the ‘seeding’, ‘branching’, ‘splitting’, and ‘merging’ of feasible trajectories l∗ we op-
timize the (single) best extension l∗ to l initiated from the triangulated correspondence
matches. For this purpose, we extend the integer assignment of Equation 3.14 and find
the trajectories in the object domain that best fit the simultaneous tracking in the images
from the average projection error along the track [5, 11, 15].
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Figure 3.10: Simultaneous image and object tracking. a) Windowed data processing for the frames n in the
window stepping W . In green, newly appended frames, in red, backward tracked frames, and in magenta, the
second forward tracking step. b) Branching of tracks in the individual camera views. First, we ‘predict’ new
track positions using the tracking (Figure 3.6) and a trajectory fit (yellow), matching new positions (green) and
ignoring the spurious ellipse in red. Second, we ‘correct’ newly appended track positions averaging the ellipses
in the trajectory fit (yellow). Third, we ‘extend’ the trajectory in case of missing image data and test the track
for the reprojection of the object position (yellow star). c) Example of the track branching algorithm, providing
a real case for the prediction, correction, and extension, with consistent color coding. d) Track branching in
the object space, undergoing the same steps as for the camera views of (b). e) Relaxing of a trifocal set into its
stereoscopic subgraph when violating the reprojection error (red dot). f) Diagram for the camera cover along
the frame-set n that defines the weight function w .

AUGMENTED INTEGER ASSIGNMENT

To find the best feasible trajectory extension we extend the integer assignment of Equa-
tion 3.14. First we substitute εl∗ = ∑

pn ε
n
pl∗/

∑
pn J n

pl∗ ∈ [0 1] and write the integer so-

lution vector λl∗ that is either 1 or 0. Secondly, we constrain the integer solution λl∗

back to the image identification p for each frame n by the incidence matrix J n
pl∗ . We

then augment the constraints the feasible trajectory incidence Fl l∗ of Equation 3.17 and
constrain an upper bound for the object trajectories l and their extensions l∗:

min
λl∗

εl∗λl∗

subject to J n
pl∗λl∗ ≥ 1

Fl l∗λl∗ ≤ 1.

(3.18)

The added constraint Fl l∗ ≤ 1 in Equation 3.18 ensures that the trajectories l do not
split into multiple extensions l∗ as we enforce picking a single one. Like before, the total
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summation over λl∗ ensures that we select a minimal number of solutions, where we
now simultaneously maximize the camera cover and trajectory length, while εl∗ rewards
a unique solution at the minimal tracking error.

COST-FUNCTION SORTATION AND ITERATIVE SOLUTION STRATEGY

We now devise a similar cost-function solution strategy as in Section 3.4.3. First, we sort
the starting frame N start

l∗ in l∗, and subsequently, the end frame N end
l∗ ascending. Thereby

we reward long tracking sequences for l∗ in forward tracking mode. Secondly, we define
a weighting function wl∗ =

∑
pn J n

pl∗ that rewards the matched number of image identi-

fication p and frames n. Lastly, we sort for the reprojection error εl∗ .
We obtain a solution by an iterative ‘Divide-and-Conquer’ strategy [15], for further

detail see Appendix B.7. Relaxing the second constraint in Equation 3.18 when l∗ is
solved for l , we remove ‘ghost-fish’ trajectories by solving only the first constraint, with-
out user-defined filtering [43, 51]. We track the fish l within the processing window W of
Figure 3.10a forward (green), backward (red), and again forward (magenta) to connect
to the next window. Evaluating Equation 3.18 for each frame n, we keep the feasible tra-
jectories l∗ bounded within the computer memory, preventing an exponential number
of candidates. This gives a set of trajectories that can be further evaluated.

RESULT FOR THE TIME-RESOLVED TRACKING

The results of this process are shown in Figure 3.11 over a processing window W of 50
frames. Figure 3.11a and b plot the sortation in track-length, the weighting- and cost-
function similar to Figure 3.9a. Figure 3.11c–f color-code 1-second long tracks in the
object domain with the average reprojection error εn

l =∑
p ε

n
pl /

∑
p J n

pl which may extend

over several pixels; we reproject tracks on the image like in Figure 3.6.
Figure 3.11g plots the distribution in track length in forward and backward tracking

mode. First, newly appended frames (green) quickly drop off with 1350 tracks in the long
tail, indicating broken trajectory segments. Secondly, 4266 fish are tracked backward
over the window W , approximately twice the amount of ±2000 fish. Finally, tracking
again forward to connect to the next processing window, a correct amount of 2297 fish
remain; removing the doubly-tracked fish, see also Figure B.4 of Appendix B.7.

In the current implementation forward, backward, and again forward tracking is cru-
cial to obtaining long trajectories. In principle, this process can be further iterated to im-
prove the reconstruction. Applying more sophisticated solution strategies7 may further
achieve a lower cost value with possibly better object tracking.

3.6. OBJECT RECONSTRUCTION AND POST-PROCESSING
Having processed the images in Section 3.3, matched correspondences in Section 3.4,
and tracked the fish simultaneously in the images and object domain in Section 3.5 we
output the three-dimensional reconstruction for analysis. First, we perform a last step
to fully integrate the framework of projective geometry in tracking the fish. Secondly,

7For example, one could sort the frame span N end
l∗ +1−N start

l∗ instead of the start and end frame separately,
or solely rely on the weighting function wl∗ , for example, over the whole recording sequence without the
windowed processing.
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(e) (2) (f)

(g)

(a) (b)

(c) (d)

(4)
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Figure 3.11: Time-resolved tracking. a) Start and end frames prioritized in the cost-function sortation. b)
Weight function wl∗ for the camera cover, with the color-code the reprojection error εl∗ . c, d, and f) The
three-dimensional tracking data for 1-second long tracks. e) Reprojected tracks from object space, similar to
Figure 3.6. g) Track-length distribution for the different steps in the processing window. In green the forward
tracking appending new frames with 1350 tracks in the long tail, in red the backward tracking with 4266 doubly-
track fish, in magenta the forward tracking with 2297 tracks; showing the correct number of ±2000 tracked fish
across the window. For (a) and (b) we mark the plotted trajectories of (c)–(f) for the cost-function solution in
grey shading. All tracks are of greater or equal length than the window of 50 frames.
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we filter the object tracking as partially performed in Figure 3.11, and post-process the
tracking data in the object domain.

3.6.1. QUADRIC RECONSTRUCTION

We compute the object ellipsoid corresponding to the image processing to include the
size of the fish in the object domain. Similar to the conic contour function (Section 3.3.3)
an ellipsoid in the object domain is naturally expressed as a quadric surface [68]:

X̃T QX̃ = 0 with Q =


q1 q2/2 q4/2 q7/2

q2/2 q3 q5/2 q8/2
q4/2 q5/2 q6 q9/2
q7/2 q8/2 q9/2 q10

 . (3.19)

Here X̃ = [X Y Z 1]T is the augmented object coordinate (Chapter 2), and Q is the quadric
coefficient matrix.

We reconstruct the quadric from the dual-space representation [69] in Appendix B.8.
This naturally embeds the optical transfer from the object domain to the image and re-
verses the forward projection in Section 3.4.1 back to the image. This finalizes the inte-
gration of the framework of projective geometry. Note that the quadric reconstruction
can be further used for the recursive branching of trajectories. For example, one can
integrate the image processing across views and/or find the greater displacement of a
fish group using correlation techniques [30, 31]; for further remarks see the end of Ap-
pendix B.8.

3.6.2. CLEANING AND FILTERING OF TRAJECTORIES

All data are processed with a window W of 50 frames, a linear trajectory fit of 5 frames
(within one fish displacement), with minimum focality of f ≥ 3 cameras and a maximum
number of 3 frames to predict when data is missing in the images. To clean the obtained
tracking data we first filter tracking sequences with length Tl = N end

l + 1− N start
l by re-

stricting a minimum number of frames Tl ≥ ∆Tmin and remove shorter tracking. Sec-
ondly, we remove points along trajectories l by limiting the reprojection error εn

l ≤ Emax.
For an illustration of this process see Supplementary-Figure B.6 of Appendix B.

We further add user-defined and dynamic filtering criteria. Firstly, we remove out-
liers in the positions by restricting the measurement volume for the recording sequence
and remove outliers in the velocity data by limiting the physical value. Secondly, we re-
move positions that are outside the span of the fish school that freely relocates within the
bounds of the (restricted) measurement domain. Finally, we restrict high signal deriva-
tives such as the velocity and acceleration magnitude, and their value in the direction of
the depth of field of the cameras.

All data is post-processed using a third-order trajectory (Equation 3.15), and missing
data can be interpolated [34, 74, 75]. A post-processed result is shown in Figure 3.12 for
the rapid escape response of Figure 3.1b. Reprojecting the trajectories on the dewarped
images (Chapter 2), it is clear that we track the fish over a large distance in the differ-
ent parts of the image as discussed in Section 3.2.2. Furthermore, from the inset camera
views of Chapter 2 we track fish at narrow camera viewing angles, and the tracking re-
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mains in the presence of large occlusions, see supplementary figures B.7 and B.8 for large
occlusions and a set of super-wide-angle lenses.

3.7. PERFORMANCE ASSESSMENT
We continue to assess the performance of our tracking algorithms. We compute sev-
eral quality metrics that help understand the reliability of the post-processed tracking
data. First, we identify the main input parameters to the tracking and plot distribution
in reprojection errors and track length. Secondly, we inspect the distribution of the prob-
ability of finding a fish in the next frame and present boundaries and operating condi-
tions for the tracking. Subsequently, we plot a tracking reliability function from the track
length distribution [30] and extract a tracking efficacy parameter. Finally, we relate the
tracking efficacy back to the input parameters and present an overview of the tracked
number of objects against the average track length [15].

3.7.1. PARAMETERS OF MAIN INPUT
We identify the image source density and time resolution of Section 3.2.2 as the main in-
put parameters to the three-dimensional tracking algorithms. We start with estimating
the image density surrounding a focal fish l in the cameras. We compute the average
neighbor distance Dn

pl in the image over 18 nearest8 neighbors l∗ by the normalized el-

lipse distance d(cn
pl ,xn

pl∗ ) of Appendix B.5 back-forth by swapping l and l∗. Likewise,

we estimate the time resolution by the frame-to-frame image overlap On
pl from the aver-

age distances d(cn
pl ,xn−1

pl ) from the previous to the current (n−1,n), and d(cn
pl ,xn+1

pl ) the

current to the next frames (n,n +1), and in reverse (swapping n −1,n,n +1).
When the image distance Dn

pl between two fish and overlap On
pl along a fish track

are below 1 their value corresponds to images that are overlapping more than half their
body length. When the distance functions are of value 2, images are exactly adjacent,
and for values greater than > 2, images are fully separated. Finally, based on a hexagonal
sphere packing with a maximum packing density of π

p
3/6 ' 0.9069 in the plane, we

relate the image distance back to the image source density by 0.9069Dn
pl

−2 expressed in

‘fish-image-per-pixel’ (fipp), while the overlap On
pl between frames is directly read as a

‘fish-swim-per-frame’ (fspf).

REPROJECTION ERROR AND TRACK-LENGTH DISTRIBUTION

We start with quantifying the variation of the normalized reprojection error εn
pl used

to optimize the tracking of Section 3.5. We plot the average value of the reprojection
error ε(O,D) as a function of the image distance D and overlap O. In Figure 3.13a, we
find lowest reprojection errors ε within the range O ≤ 3/4 fspf and D ≥ 2 with a density
less than 0.227 fipp, and optimal values above D ≥ 3, or 0.101 fipp, attaining a minimal
value of ε' 0.25. These bounds locate an overall minimum and thereby isolate the best
tracking for the input parameters.

This is reassured by the track length T n
l . In Figure 3.13b we plot the distribution

8By the ray-tracing geometry of Figure 3.7 that can connect over dpq ≤ 2 neighboring fish in another view, we
select the number of neighbors based on a hexagonal packing with two radial shells (i.e. 6+12).
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(a)

(b)

(c)
(1)

(2)(3)

(4)

Figure 3.12: Render of snapshot (2) of Figure 3.1b. a) ‘Birds-eye’ view for post-processed fish tracking. In green
the ellipsoid (quadric) reconstruction with the trajectories color-coded with the linear velocity for 1-second
long tracks. b) Front view aligned with the camera views, showing the positions of the calibrated cameras
with narrow camera baselines and angles (Chapter 2). c) The four views imaging the fish school, overlayed the
projected object ellipsoids and the fish trajectories with consistent color-code from (a) and (b) for 1/2-second
long tracks to prevent overcrowding the images.
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T (O,D) by the input parameters O and D . We find that a maximum length of ∆T ∼ 160
frames (∼ 4 seconds at 40 fps in Figure 3.12) is obtained for O ≤ 1/2 and D ≥ 4 (or
0.057 fipp). Outside this region, we find that the track length distribution drops where
the reprojection error is elevated in Figure 3.13a. Finally, the tracking methods start to
break down for D ≤ 2 when going into a heavy occlusion number (D → 1) and approach-
ing an ‘optical-limit’ (1 fipp). However, below D ≤ 2 (i.e. > 0.227 fipp), it may be in ques-
tion what is actually tracked, lacking a well-defined image correspondence; resulting in
patched object tracks with a high degree of noise.

3.7.2. COIN TOSS: PROBABILITY TRACKING INTO THE NEXT FRAME
From the track length distribution, we now ask: ‘What is the probability of tracking a fish
from the previous into the next frame?’. For this purpose, we bookkeep a ‘coin toss’ for
the indexed fish tracks l over the frame set n. We either document a ‘heads’ P NF = 1 when
the current tracking index exists in the previous and next frame or a (complimentary)
‘tails’ P NF = 0 when the current index neither occurs in the previous nor next frame.
Bookkeeping this ‘coin toss’ we then compute the average probability from the number
of ‘heads’ and ‘tails’ by the total number of draws over multiple data sets.

RELIABILITY BOUNDARIES AND OPERATING CONDITIONS

Firstly, in Figure 3.13c, we plot the joint probability distribution P N F (O,D) by the image
distance D and overlap O. Reliable tracking P NF → 1 (dark red) is obtained for an upper
bound in the image overlap of O ≤ 1/2 and a lower bound in image density of D ≥ 3.
Outside this region, the tracking reliability rapidly degrades for an image overlap 1/2 ≤
O ≤ 1 to P NF ' 0.6, while for an image density below D < 3, the probability drops to P NF '
0.9 which, in principle, reduces the reliability to a few tens of frames. Furthermore, no
data is obtained below the line D = 2O through the origin. Here the tracking algorithms
fail to extract the tracking data.

Secondly, in Figure 3.13d, we plot the joint probability distribution of P N F (O,ε) by
the image overlap O and (normalized) reprojection error ε. Here we find that for moder-
ate reprojection error up to ε ≤ 0.3 the tracking reliability remains unchanged and that
for 0.3 < ε≤ 0.8 the upper bound for the image overlap gradually restricts the reliability.
At last, only for high reprojection error ε> 0.8 the reliability rapidly degrades.

Having analyzed reliability bounds, our tracking data are not restricted within these
domains. In Figure 3.13e and f, we plot the joint distributions f (O,D) and f (O,ε) by
the input parameters O and D and reprojection error ε. Most of our data are within an
overlap O ≤ 1/2, image distance 2 ≤ D ≤ 8, and reprojection error ε≤ 0.8 which may vary
over a number of pixels. According to Figure 3.13c and d, these numbers are within range
of reliable tracking. Only from Figure 3.13b the image density seems to pose the major
challenge to obtaining longer tracks since the best results are obtained for D > 4.

A local image source density above 0.101 up to 0.227 fipp pushes the implementation
of the current tracking algorithms. Such images densities are common to current works
in experimental fluid-mechanics [43, 46, 48, 51, 52] and expressed in ‘particle-per-pixel’
(ppp) are known to be challenging beyond ∼ 0.05 up to 0.125 ppp (although numbers
may differ from application to application). This confirms the challenges as introduced
in Section 3.2 in obtaining long tracks in three dimensions.
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(a) (c) (e)

(b) )f()d(

Figure 3.13: Tracking performance by input parameters. a) Average reprojection error ε(O,D) by image overlap
O and distance D . b) Average track length T (O,D) by image overlap O and distance D . c) Joint probability
distribution P NF(O,D) by image overlap O and distance D . d) Joint probability distribution P NF(O,ε) by image
overlap O and reprojection error ε. e) Joint distribution function f (O,D) by image overlap O and distance D .
f ) Joint distribution function f (O,ε) by image overlap O and variation in reprojection error ε.

3.7.3. TRACK-LENGTH DISTRIBUTION AND TRACKING EFFICACY
Since the track length ∆T greatly varies with the input image data, we now would like
to know what percentage of the school remains tracked at a certain number of frames.
For this purpose, we consider a tracking reliability function [30] for which we identify a
single tracking efficacy parameter.

We formally express the percentage of the school that remains tracked by the com-
plementary cumulative probability distribution function of finding a track of length T
greater or equal to ∆T :

F NF(T ≥∆T ) = ηNF
∆T . (3.20)

Equation 3.20 is a monotonically decreasing function of the distribution in track length
∆T . Therefore, on the right-hand side, we compare its decay against the tracking efficacy
parameter ηNF that we can extract from the tracking data.

EXTRACTION OF THE TRACKING EFFICACY PARAMETER

Considering the tracking data of Figure 3.12, we first draw distributions in track length
∆T independently for each frame n to correctly sample the occurrence of trajectories
through the image data. In Figure 3.14a, we plot the conditional probability density func-
tion f (F N F (T ≥ ∆T )|∆T ) against the track-length ∆T and obtain the percentage of the
school that remains tracked. Here we find that, after the post-processing steps, the min-
imum track length of 80 frames rapidly drops off on a semi-logarithmic scale along the
x-axis, and compared to the inset sample curves for different reliability of Equation 3.20
we read a tracking efficacy bound between 0.99 < ηNF < 0.999.

To obtain a better picture of the variation in the tracking efficacy we invert Equa-
tion 3.20 by ηNF = F (T ≥∆T )1/∆T and compute the conditional probability density func-
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tion for f (ηNF(∆T )|∆T ) from the distribution in track length ∆T . In Figure 3.14b, we
find that the initial tracking efficacy rapidly drops off from ηNF ' 0.999 and that after this
drop we obtain a more or less stable value of ηNF ' 0.994. We keep the extraction of ηNF

as the reliability estimate, where from Equation 3.20 we can infer the percentage of the
school tracked F (T ≥∆T ) at certain track length ∆T .

INTERRELATING THE TRACKING EFFICACY AND THE PROBABILITY NEXT FRAME

We end this section by interrelating the tracking efficacy ηNF back to the input param-
eters and presenting an overview of the tracking reliability. The probability of tracking
into the next frame was found to go up with the distance in the image D , and down with
increasing reprojection error ε and image overlap O. Therefore, we expect the tracking
efficacy ηNF to go down for increasing ε/D and O/D . This motivates an ad hoc down-
ward scaling for the group εO/D2, multiplying the validity of the calibration (Chapter 2),
the ‘fish-swim-per-frame’, and the number of ‘fish-image-per-pixel’.

In Figure 3.14c, we extract the tracking efficacy ηNF and plot against the group εO/D2

for the multiple data sets underlying Figure 3.13. Indeed, the efficacy ηNF drops off with
these parameters. As is expected the best tracking is obtained for the lower reprojection
error (best calibration), the highest time resolution (lowest ‘fish-swim-per-frame’), and
is rewarded for sparse fish schooling (least ‘fish-image-per-pixel’). Drawing the over-
all correspondence between we find that our tracking algorithm provides high efficacy
numbers ranging well above ηNF > 0.985 for the current data, although operating at rel-
atively high image density (beyond 0.101 fipp).

Finally, we compute the average number of tracked objects Lobj =
∑

n Ln/N , with
Ln the number of trajectories and N the total number of frames, and plot against the
average number of tracked frames Tobj =

∑
nl T n

l /Ln/N . In Figure 3.14d we track ap-
proximately 1500 to 2500 fish with an average track length of 100 to 175 frames where
we color code the tracking efficacy parameter ηNF [15]. We find that a higher tracking
efficacy promotes longer track length, with a slight bias to obtaining a larger number of
objects tracked. Here the school of ±2000 fish may partly be out of view, in heavy oc-
clusion, or in parts of the fish tank that are poorly illuminated. Together, these numbers
now provide reference values for the final part of this thesis.

3.8. CONCLUSIONS
In this chapter, we demonstrated the application of tracking algorithms from experi-
mental fluid mechanics in combination with previous efforts from field measurements
to track and triangulate schooling fish in three dimensions over a large distance. Imag-
ing inside a complex underwater environment, we discussed several elements of and
challenges to tracking fish inside the large ocean aquarium at the Rotterdam zoo. We
presented the necessary steps involved in processing the image data, including back-
ground removal and the extraction of fish images at different length-scale using a series
of convolution filters. In particular, we fully integrated the framework of projective ge-
ometry starting from image identification, and included the directional dependent pro-
jection of fish. This makes the current work robust against variation in the reprojection
error and remaining errors from calibration, here imaging at narrow camera angles over
a large measurement volume. Furthermore, the correspondence matching and triangu-
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(b)

(c) (d)

(a)

Figure 3.14: Tracking efficacy and overview. a) Reliability of tracking into the next frame for the data in Fig-
ure 3.12. b) Extraction of the tracking efficacy ηNF. c) Tracking efficacy against the input parameters O and D ,
and reprojection error ε. d) Overview of the tracking data, number of fish Lobj against the average track-length
Tobj, the error bars indicate the variation and the color-code give the tracking efficacy parameter ηNF.

lation algorithms are scalable for any number of views and deal with missing data in the
presence of large occlusion by solitary predators without the need for prior knowledge
of camera overlap. Finally, we showed that the forward, backward, and (again) forward
tracking of fish is crucial in obtaining the correct number of fish tracked within the cur-
rent optimization strategy.

Subsequently, we assessed the performance of our tracking algorithms. First, we
identified the main parameters of input to the fish tracking and shed light on the dis-
tribution of the reprojection error and track length. We found the lowest reprojection
errors (ε ' 0.25) and longest tracking sequences (±160 frames) up to an image density
of 0.101 ‘fish-image-per-pixel’ (fipp) and an image overlap in consecutive frames below
0.5 ‘fish-swim-per-frame’ (fspf). Secondly, we inspected the probability of tracking a fish
into the next frame. We confirmed an optimal performance in the same region, while our
methods break down above 0.227 fipp local image source density. Since the tracking al-
gorithms do not operate at optimal conditions, we subsequently asked what percentage
of the school remains tracked for a number of frames. For this purpose, we constructed
a reliability function and extracted a tracking efficacy parameter. We reported a tracking
efficacy well above ηNF > 0.985 and presented a rough downward scaling at increasing
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reprojection error, fish-swim-per-frame, and fish-image-per-pixel.
These quality metrics are now available for tracking data in the coming chapter. Our

tracking algorithms are applicable in the broader context of time-resolved tracking of
(bio-)active particles as well as the tracking of organisms, and ellipsoidal objects in three
dimensions.



REFERENCES

3

83

REFERENCES
[1] A.-J. Buchner, K. Muller, J. Mehmood, and D. Tam, Hopping trajectories due to

long-range interactions determine surface accumulation of microalgae, PNAS 118,
1 (2021).

[2] Z. Wu, N. I. Hristov, T. H. Kunz, and M. Betke, Tracking-reconstruction or
reconstruction-tracking? comparison of two multiple hypothesis tracking ap-
proaches to Interpret 3D Object Motion from Several Camera Views, in Workshop on
Motion and Video Computing (WMVC) (IEEE, Snowbird, UT, USA, 2009).

[3] H. S. Wu, Q. Zhao, D. Zou, and Y. Q. Chen, Acquiring 3D motion trajectories of large
numbers of swarming animals, in 2009 IEEE 12th International Conference on Com-
puter Vision Workshops, ICCV Workshops 2009 (IEEE, Kyoto, 2009) pp. 593–600.

[4] D. Zou, Q. Z. Q. Zhao, H. S. W. H. S. Wu, and Y. Q. C. Y. Q. Chen, Reconstructing
3D motion trajectories of particle swarms by global correspondence selection, in 12th
International Conference on Computer Vision, Vol. 1 (IEEE, Kyoto, 2009) pp. 1578–
1585.

[5] H. S. Wu, Q. Zhao, Z. Danping, and C. Yan Qiu, Automated 3D trajectory measuring
of large numbers of moving particles, OPTICS EXPRESS 19, 7646 (2011).

[6] Y. Liu, H. Li, and Y. Q. Chen, Automatic tracking of a large number of moving tar-
gets in 3D, in European Conference on Computer Vision, Vol. 7575 LNCS (Springer,
Berlin, Heidelberg, 2012) pp. 730–742.

[7] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, S. Melillo, L. Parisi, O. Pohl,
B. Rossaro, E. Shen, E. Silvestri, and M. Viale, Collective Behaviour without Collec-
tive Order in Wild Swarms of Midges, PLoS Computational Biology 10, 1 (2014).

[8] K. Van Der Vaart, M. Sinhuber, A. M. Reynolds, and N. T. Ouellette, Mechanical
spectroscopy of insect swarms, Science Advances 5, 1 (2019).

[9] D. Adhikari, B. J. Gemmell, M. P. Hallberg, E. K. Longmire, and E. J. Buskey, Simul-
taneous measurement of 3D zooplankton trajectories and surrounding fluid velocity
field in complex flows, Journal of Experimental Biology 218, 3534 (2015).

[10] D. W. Murphy, D. Olsen, M. Kanagawa, R. King, S. Kawaguchi, J. Osborn, D. R. Web-
ster, and J. Yen, The Three Dimensional Spatial Structure of Antarctic Krill Schools
in the Laboratory, Scientific Reports 9 (2019), 10.1038/s41598-018-37379-9.

[11] Zheng Wu, N. I. Hristov, T. L. Hedrick, T. H. Kunz, and M. Betke, Tracking a large
number of objects from multiple views, in 12th International Conference on Com-
puter Vision, Iccv (IEEE, Kyoto, Japan, 2009) pp. 1546–1553.

[12] Z. Wu, T. H. Kunz, and M. Betke, Efficient track linking methods for track graphs us-
ing network-flow and set-cover techniques, in Computer Society Conference on Com-
puter Vision and Pattern Recognition (IEEE, Colorado Springs, CO, USA, 2011) pp.
1185–1192.

http://dx.doi.org/https://doi.org/10.1073/pnas.2102095118
http://dx.doi.org/https://doi.org/10.1073/pnas.2102095118
http://dx.doi.org/10.1109/WMVC.2009.5399245
http://dx.doi.org/10.1109/WMVC.2009.5399245
http://dx.doi.org/10.1109/ICCVW.2009.5457649
http://dx.doi.org/10.1109/ICCVW.2009.5457649
http://dx.doi.org/10.1109/ICCV.2009.5459358
http://dx.doi.org/10.1109/ICCV.2009.5459358
http://dx.doi.org/10.1364/OE.19.007646
http://dx.doi.org/ 10.1007/978-3-642-33765-9{_}52
http://dx.doi.org/ 10.1371/journal.pcbi.1003697
http://dx.doi.org/10.1126/sciadv.aaw9305
http://dx.doi.org/10.1242/jeb.121707
http://dx.doi.org/10.1038/s41598-018-37379-9
http://dx.doi.org/10.1109/ICCV.2009.5459274
http://dx.doi.org/10.1109/ICCV.2009.5459274
http://dx.doi.org/10.1109/CVPR.2011.5995515
http://dx.doi.org/10.1109/CVPR.2011.5995515


3

84 REFERENCES

[13] D. H. Theriault, N. W. Fuller, B. E. Jackson, E. Bluhm, D. Evangelista, Z. Wu, M. Betke,
and T. L. Hedrick, A protocol and calibration method for accurate multi-camera field
videography, Journal of Experimental Biology 217, 1843 (2014).

[14] A. Cavagna, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and
V. Zdravkovic, The STARFLAG handbook on collective animal behaviour: Part I, em-
pirical methods, Tech. Rep. (2008).

[15] A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, A. Jelić, S. Melillo, L. Parisi, F. Pel-
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4
INNER STRUCTURE AND KINEMAT-

ICS OF THREE-DIMENSIONAL

FISH SCHOOLS

This chapter demonstrates the application of the measurement technique of Chapter 2
and the tracking algorithms of Chapter 3 to extract the full three-dimensional tracking
data of the schooling fish inside the ocean aquarium of the Rotterdam zoo. We start this
chapter by providing an overview of the data sets recorded over different measurement
weeks. We identify a variety of schooling behaviors by visual inspection of the shape and
motion of the school. Subsequently, we extract statistical distributions from the position
and velocity of the fish. We present several quantitative metrics to analyze the variability
of the school in terms of geometry, shape, and internal structure. For this, we consider the
time evolution of the volume and aspect ratio(s) of the school, and the local fish density.
We characterize the radial distribution of the fish in the school by computing the spatial
moments. The radial distribution reveals a bimodality where the fish either cluster to form
a cohesive group or redistribute towards the boundary of the school. This redistribution
towards the boundary of the school is found to be characteristic of a predator attack. Next,
for the school kinematics, we investigate the time series of the distribution of fish veloc-
ity in the school, local polarization of heading, the velocity of the school center of mass,
angular momentum, and volume rate-of-change. We partition the total kinetic energy
in the school and derive a set of dimensionless kinematic parameters. These parameters
describe several elementary motions from which we construct a ternary diagram for the
distribution of kinetic energy in the school. For the different kinematics and geometries of
the school, we compare local state variables for the swimming velocity, local heading po-
larization, and fish density. Our results suggest an underlying relationship between these
local state variables. Their actual interrelations open many future research directions into
the three-dimensional dynamics of fish schooling.
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4.1. TRACKING DATA ACQUIRED AT THE ROTTERDAM ZOO
To begin, we provide an overview of the tracking data acquired at the Rotterdam zoo.
We review the different measurement weeks and discuss the environmental conditions
relevant to the data collection. We present examples representative of the large variety
of schooling behaviors observed in the fish tank. From these examples, we categorize
the schooling behaviors following the work by Pitcher and Wyche [1] for a school of 250
(salt water) sand-eels, and Magurran and Pitcher [2] for a school up to 50 (sweat water)
mullets, for further reading see [3–5]. Categorizing the behavior of the schooling fish, we
introduce the relevant terminology.

4.1.1. MEASUREMENTS AT THE OCEANIUM AQUARIUM
A total of 6 measurement weeks were performed over 4 years to acquire image data of a
large school of ±2000 Harengula clupeola (false herring) located in the Oceanium aquar-
ium at the Rotterdam zoo. The measurement weeks occurred between August 2017 and
January 2020 during off-season visitor summer and winter months with 6-month inter-
vals. The measurement volume is 20×20×6 m3 as introduced in Chapter 1. Only a few
studies have conducted experiments at such length-scale [6, 7] and the number of fish is
substantially more than previous fish tracking work in two [8–16] and three dimensions
[17–24] in a laboratory setting.

The fish swim counter-clockwise in the tank when viewed from the top. The water
circulation is clockwise, hence the fish swim against the flow. The climate control in the
tank simulates a semi-natural habitat with seasonal and daytime effects. These effects
include variations in the water quality (temperature, oxygen concentration, and salinity)
and lighting conditions. This, in turn, affects the fish behavior and activity (day/night,
summer/winter, predation, breeding, etc.), and visibility by the water turbidity and illu-
mination. For further details see Chapter 1.

During each measurement period, we acquired ±150 high-quality multiple-camera
video recordings, amounting to ∼ 40 TB of raw image data. For the first measurement
week, we used a set of wide-angle lenses (NIKKOR AF-24mm), while for the rest, we used
super-wide-angle lenses (VENUS OPTICS LAOWA 7.5mm MFT) with a greater field of
view, see Supplementary-Figure B.8. To position the school within our camera views, the
curators trained the fish to feed within a designated area. This was achieved by placing
the feeding machine above the tank (Chapter 1) at a given position in front of the large
window that provides the optical access (Chapter 2), see top Figure 4.1.

All image data of the fish school were acquired during the daytime. No data were
recorded during nighttime due to a lack of illumination inside the tank. By the day and
nighttime cycle inside the fish tank and variation in ambient light, all data sets have
varying lighting conditions and fish behavior. Therefore, to capture a wide variety of
schooling dynamics inside the tank, we adapted the camera frame rate between 20 and
70 H z with different exposure times between 10 and 40 ms.

DATA SELECTION

The measurement technique described in Chapter 2 and the implementation of the
tracking algorithms described in Chapter 3, allow us to extract the three-dimensional
trajectories of the fish from the images recorded with the 4 synchronized cameras. From
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each measurement week, we processed a subset of approximately ∼ 20–25 data sets. The
selected data sets were chosen uniformly throughout the measurement week(s) and day-
time to be representative of the fish behavior.

We particularly focused on data sets in which the school resides in a milling config-
uration. This behavior is also seen in the natural environment [25–28], and has been
described as a torus and (bait-)ball shape, and is assumed to be a natural state for the
school. To investigate the variability in the schooling behavior, we also selected data to
include avoidance responses such as sudden expansions and splitting behaviors [1, 2]
arising from interaction with other fish species. A full data descriptor is found in Ap-
pendix C.1 for the processed camera calibration, and in Appendix C.2 for the processed
tracking data.

4.1.2. MILLING, PREDATORY ESCAPE, SHOALING, AND FORAGING
In figures 4.1 to 4.3, we plot the results obtained from the three-dimensional tracking. We
provide 1-second long tracks of the fish position in the tank height (Z ), width (X ), and
visual-depth (Y ) coordinate (meters) that is pointing away from the camera setup. Each
track is color-coded with the magnitude of the swimming velocity U . The coordinates
X = 0 and Z = 0 m correspond to positions in front of the camera setup, the water sur-
face is located between Z = 1 and 1.5 m, and the bottom of the tank is located between
Z = −4.5 and −4 m. We find a broad variety of behaviors for the schooling fish. These
include multiple (single, double, triple) fish mills positioned next to each other, cruising
and foraging groups that swim freely through the tank, and an extensive range of escape
behaviors triggered by a predator; all documented in Table C.2 of Appendix C.2.

MILLING

Figure 4.1 presents a set of four differently shaped fish schools where the fish swim in a
milling configuration [25–28] and turn counter-clockwise in a single rotating ‘fish-vortex’
or ‘fish-tornado’ as viewed from above. Here, the continuous rotation naturally fixes the
school’s center of mass while the fish swim at an approximately constant velocity. This
behavior occurs when the fish do not actively engage with a predator.

In Figure 4.1a, we show three examples of a ‘surface mill’ formed below the water sur-
face. Here the shape of the fish mill is flattened at the location of the feeding machine.
From left to right, we find three typical shapes: (1) The school accumulates underneath
the surface, changes its shape, and spreads into a flat ‘pancake’ close to the water’s sur-
face. This shape is observed during the daytime feeding of the fish. (2) The mill is shaped
like a droplet that resides below the water surface in a hemisphere. (3) One part of the
school remains milling under the water surface, while the rest extends deeper into the
fish tank like a ‘droplet’ pinch-off.

In Figure 4.1b, we present examples of fish mills that are freely swimming below the
water surface. Again we identify three shapes: (1) A cylindrical-shaped mill (left). (2)
A large ‘fish ball’ (center). (3) A ball-shaped mill is located towards the bottom of the
fish tank (right). Unlike the hemisphere-shaped surface mill of Figure 4.1a, the milling
school at the bottom of the tank (−4 m) does not form a dome. Instead, the mill remains
spherically shaped, although the school slightly flattens.

Large deformation may develop within fish mills with a cylindrical shape. Figure 4.1c
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presents three increasingly deformed fish mills. In such mills, we observe that the cohe-
sion between the top and bottom parts may get broken. Here, the irregular shape slowly
drifts and splits into multiple mills, which can be next or on top of each other and even-
tually rejoin later (not shown).

Finally, we show several examples of slender tornado-shaped fish mills in Figure 4.1d.
These shapes extend from the top to the bottom of the fish tank and are vertically skewed,
like in Figure 4.1c. Although the fish mills in figures 4.1c and d are strongly skewed in
shape, the fish still swim close to a circular motion on a tilted plane. Note that this plane
may be at a different angle from the vertical direction than its skewed shape.

ESCAPE RESPONSES

In Figure 4.2, we present several escape responses of the harengulas during a predatory
attack. Typically, the predator fish (and cohabitant species) approach the fish school
from the front or back with respect to the overall viewing direction of the camera setup.
This approach direction aligns with our optical setup and is advantageous in experi-
ments tracking the escape response. The broad range of escape maneuvers provides
a large set of extreme events and is a natural framework to study the inner kinematics of
the fish school when not milling.

First, in Figure 4.2a, we show the fish school in response to a predator swimming
in the vicinity of the cylindrical mill. As the predator does not appear to pose a direct
threat we find that the schooling fish avoid the approaching predator or ‘herd’ away
[1, 2]. Depending on the predator’s location, we find that the school either develops a
characteristic sideways dent (left) or dents from below (center). In contrast, on the right
of Figure 4.2a, the ‘dented’ mill avoids the passing predator without losing cohesion.

Secondly, in Figure 4.2b, we present three examples of a trespassing predator while
the fish school does not lose cohesion. When the predator comes closer to the school
in Figure 4.2c, we observe a diverse range of complex dynamics and rapid escape re-
sponses. Following Magurran and Pitcher [2], the predator creates an empty space or
‘vacuole’ when passing through (also see Pitcher and Wyche [1]), here triggering ‘donut’
and ‘star’-like dynamic shapes, including sudden flash expansions as the fish startle and
flee away (on the right). The predator interaction interrupts the mill that eventually
breaks cohesion as the school occasionally splits into parts due to the predator’s near
presence. With increasing intensity of the predator attack, we find that the motion re-
stores to milling after multiple turns, splits, and rejoining with an occasional ‘hourglass’-
like shape [1, 2] (omitted here) when evading the predator’s threat.

Finally, in Figure 4.2d, we show three examples of collective responses as the fish
in the school become increasingly agitated. On the left of the page, we first find a rising
school that is fleeing a predator. Secondly, to the right of the page, we find a mill escaping
a predator. Here the school is forced to the bottom and assumes the shape of an ‘angled
torus’ like motion (center). Finally, we show a ‘collective downdraft’ in which the school
rapidly dives (right); similar diving responses have also been reported in the field [29].

SHOALING AND FORAGING

In Figure 4.3, we present several examples of less frequent collective behavior that oc-
cur when the fish are not under immediate predation. Although these behaviors are
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Figure 4.1: Milling behavior. Along the height of the page, a 3×4 grid of snapshots of differently shaped fish
mills (left, center, right). a) A surface mill that is flattened into a ‘pancake’-like shape (left), grouping in a hemi-
sphere at the water surface of the fish tank (center), and a ‘droplet’ pinch-off (right). b) A cylindrical fish mill
(left), a large fish ball (center), and a ball-shaped mill near the bottom of the fish tank (right). c) A cylindrical
fish mill deforming over the height of the fish tank; on the left, a group of fish joins the school. d) A slender,
‘tornado’-shaped cylindrical fish mill that stretches far down the bottom of the fish tank at an increasing angle
from the vertical direction (towards the right). We indicate the location of the feeding machine on top, the
predator (P), the turtle (T), and joining a fish group (J), and give the data (×,■) marked in Figure 4.5a.
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Figure 4.2: Escape responses. From top to bottom, at increasing agitation, a 3×4 grid of snapshots of different
escape responses and their complex features (left, center, right). a) A dented fish mill that avoids and is herded
by a predator passing sideways. b) An approaching predator that triggers an avoidance response, exciting
the school. c) Escape responses: complex splitting, a ‘donut/star’-shaped escape response, and a rapid flash
expansion (from left to right). d) Other escape responses: a collective uprising towards the surface (left), severe
deformation into an angled torus (center), and a collective downdraft or dive (right). We indicate the location
of the predator (P) and the turtle (T) and give the time series data (M) from Figure 4.4 onward, as also marked
in Figure 4.5a.



4.1. TRACKING DATA ACQUIRED AT THE ROTTERDAM ZOO

4

95

(a)

(b)
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Figure 4.3: Shoaling and foraging. From top to bottom in a 3×2 grid of different snapshots (left, center, right).
a) Fish milling in a slower shoal (left), a swarming-like shoal (middle), and a fish shoal that displays a ‘chaotic-
darting’ type motion for the individual fish (right). b) Several foraging schools that are separated from the large
fish mill and are freely cruising through the fish tank. On the left is a path of a foraging school (red); for its time
series see figures C.8 and C.9 in Appendix C. We indicate the location of the predator (P).

observed less often, they have been consistently identified during each measurement
week, over the course of the 4-year period.

In Figure 4.3a, we show three different examples of fish mills ranging from a swarm-
ing aggregation on the left to a disorganized state on the right. Following Pitcher [3],
we suggest that this behavior may be referred to as ‘shoaling’, which presents a broader
category and relaxes strong requirements on the degree of polarization (alignment) for
schooling. Sorted in decreasing number of fish, we find a slowly evolving fish mill that
includes non-circular deformations (left), a fish school that seems to be in a disorganized
state (center), and on the right, we find a fish shoal that is displaying a ‘chaotic-darting’
type of (swarming) motion for the individual fish in the school.

In Figure 4.3b presents three different examples of fish groups that separated from
the main school. These schools are freely swimming or ‘cruising’ [1, 2] in a uni-directional
motion through the large ocean aquarium, see inset red path (left). We call this behav-
ior ‘foraging’. This behavior occurs when the fish are exploring the semi-natural habitat
searching for food. Here the fish school constantly relocates its position with short inter-
mediate moments of milling (left Figure 4.3b).
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4.2. SCHOOL SHAPE AND DISTRIBUTION OF FISH
We proceed to extract quantitative statistics describing the shape of the school from the
many examples presented in the previous section and reported in Appendix C.2. For the
remainder of this chapter, we aim to extract meaningful and descriptive statistics that
can be used for reference to improve our understanding of schooling behavior.

First, we present examples of the time evolution of the volume and aspect ratios of
the school in the presence of predators as well as other cohabiting species and record
the local fish density in the neighborhood of each fish. These metrics are common to the
study of three-dimensional bird flocks [30, 31], fish schools [17, 18, 23], and schooling
simulations [32–34], and help characterize variations in the school shape.

Secondly, building on previous work [17, 18, 30, 31], we characterize the distribu-
tion of fish in the school. For this, we compute spatial moments of the radial fish dis-
tribution and report temporal variations for the moment mean, standard deviation, and
skewness. We show that these moments capture essential changes in the internal con-
figuration of the school. Finally, we study the variability of the shape parameters and the
spatial moments across multiple data sets and show that the moment skewness reveals
a bimodality during predator interaction.

4.2.1. SCHOOL CENTER OF MASS, SEMI-AXES AND LOCAL FISH DENSITY
We characterize the instantaneous shape of the school by extracting geometric param-
eters from the distribution of fish positions. We write the position of the i th fish in the
school as the vector Xi (t ) = [Xi Yi Zi ]T for i = 1 · · · I with I the total number of fish, and
(•)T the vector transpose. For the remainder of this chapter, we only consider data sets
that contain a single school or a part of it, and exclude cases when the school is split
into multiple groups, see Table C.2 in Appendix C.2. All fish trajectory data are post-
processed with the smoothing and differentiation methods introduced in Chapter 3.

DEFINITION OF THE SCHOOL CENTER OF MASS AND VOLUME, AND LOCAL FISH DENSITY

Assuming unit mass for each fish, we compute the center of mass of the school 〈Xi 〉 =
XM = ∑I

i=1 Xi /I , where bracket notation 〈•〉 is used to average over all fish in the school.
Next, we define a bounding ellipse to represent the school shape and we use it to infer
the volume and geometry. First, we compute the directions of the principal axes of the
school by performing a singular value decomposition that gives an orthonormal vector
basis {e1,e2,e3}. Secondly, along each principal axis, we define the length λ1 > λ2 > λ3

for the semi-major, intermediate, and semi-minor axis, to include most of the fish dis-
tributed within the school as the mean value of absolute fish position plus two standard
deviations. The detail of the definition is provided in Appendix C.3.

The bounding ellipse represents to a good approximation the shape of the fish school
(see diagram and examples in Figure C.1 of Appendix C.3) and the semi-axis provide an
elementary description of the school shape, comparable to previous approaches [18, 30,
31]. We use the semi-axes values to estimate the volume of the school as V = 4π/3λ1λ2λ3.
In addition, the ratios between the semi-axes approximate the aspect ratios of the three-
dimensional fish school. We call η1 =λ1/λ3 the dominant aspect ratio between the semi-
major and semi-minor axis, and η2 = λ2/λ3 the subdominant aspect ratio between the
intermediate and semi-minor axis.
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We also define the local fish density ρi (t ) for each fish i in the school by consid-
ering the J closest neighboring fish [34]. The local fish density is computed as ρi (t ) =
J/(4π/3(〈di j (t )〉 j∈J )3), where 〈di j (t )〉 j∈J is the average distance between the fish i and
its J closest neighbors. Here we choose J = 10. This is more than a single nearest neigh-
bor (J = 1) and provides robustness against noise averaging over a number of tracked
fish positions while remaining to be smaller than a subgroup (J ∼ 100) for the school of
±2000 fish. The local density gives the number of fish (#) per cubic meter (m−3) and
characterizes the compactness in the fish vicinity. We note that different J may give dif-
ferent density estimates [35] and that we include more fish than a supposed interaction
range reported for birds [36]. Finally, we report the average value for the local fish density
〈ρi (t )〉 alongside other time series analyses.

TIME SERIES OF THE VOLUME, DENSITY, ASPECT RATIOS OF THE SCHOOL

Figure 4.4 presents our results for one particular data set corresponding to a school that
is evading a predator (see Figure 4.2c, left M). Figure 4.4 corresponds to the same data set
(C1S21 in Table C.2) as the one presented in Figure 3.1b in Chapter 3. Results for other
data sets are provided in supplementary figures C.4 to C.9 at the end of Appendix C and
include the different schooling behaviors presented in Section 4.1.

In Figure 4.4a, the recording starts with a predator attack (t = 0). The school expands
as it escapes the predator, see snapshot (1) at t = 1.5 s. This expansion leaves an empty
space inside the school, which is referred to as a ‘vacuole’ in the literature [1, 2]. Sub-
sequently, the school rejoins, see snapshot (2) from t = 5 to t ∼ 10 s, and returns to a
cohesive fish mill in snapshot (3) from t = 13 s onward. Figure 4.4b, c, e, and f give the
time evolution of the volume V (t ), the average value for the local fish density 〈ρi (t )〉 and
the dominant and subdominant aspect ratios η1(t ), and η2(t ).

At t = 1.5 s, the volume of the school is large, V ∼ 120 m3, corresponding to a typical
school diameter of 6 m. From t = 5 to t = 13 s, the volume of the school decreases to ∼
40 m3 corresponding to a diameter of ∼ 3 m. For a school of ±2000 fish, these variations
in the volume would correspond to a significant decrease in the average spacing between
fish from ∼ 40 to 27 cm. However, these fish spacing are not observed for the evolution
in average local fish density 〈ρi (t )〉 that we report on a different y-axis with units m−3 in
blue (on the right).

The average local fish density is initially close to 〈ρi 〉 ∼ 80 m−3 at t = 1.5 s and in-
creases to 〈ρi 〉 ∼ 110 m−3 for t = 13 s. These values correspond to distances between fish
ranging from ∼ 27 and 31 cm, which is significantly smaller than the distances inferred
from the volume alone. The difference in respective fish spacing obviously comes from
the large vacuole that is not included in the computation of the local fish density ρi (t ),
despite its variation roughly following the volume evolution V (t ) of the school.

In Figure 4.4c, we plot both the dominant and subdominant aspect ratios [31]. Dur-
ing the escape maneuver at t = 1.5 s, the semi-axes are nearly equal (η1 ' η2 ∼ 1.5),
and the shape of the school is nearly spherical. From t = 5 to t ∼ 10 s, we find that the
dominant and subdominant aspect ratios reach different values of η1 ' 2, and η2 ' 1,
indicating a change in the shape of the school. Eventually, the school takes a nearly
cylindrical shape at t = 13 s, and the aspect ratios remain different with η1 ' 2.5, and
η2 ' 1.5. Finally, we show in Figure 4.4f the change in aspect ratios with the volume of
the school.
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Figure 4.4: Shape, density, and inner fish distribution during a predator attack. a) Three snapshots of the fish
school: (1) rapid escape from a predator leaving a vacuole at t = 1.5 s, (2) the school rejoins after the attack
t = 5 to t ∼ 10 s, (3) the school returns to a cohesive mill from t = 13 s onward. b) Time series of the volume
V (t ) (black) and of the average local fish density 〈ρi (t )〉 (blue dashes), inset the time snapshots of (a). c) Time
series of the dominant aspect ratio η1(t ) (red), and the subdominant aspect ratio η2(t ) (blue). d) Time series
of the moment mean µ(t ) (magenta), standard deviation σ(t ) (orange) and skew s(t ) (green), and the inner
distribution parameter ξ(t ) =µ/2σ (black). e) The relation between the average density 〈ρi (t )〉 and the volume
V (t ) of (b), the black dashed line indicates a uniform density for a school of ±2000 fish. f) The relation between
the aspect ratios η1(t ) (red) and η2(t ) (blue) of (c) and the volume V (t ) of (b). g) The locus drawn by the skew
s(t ) and the inner fish distribution parameter ξ(t ) from (f). We indicate (b) the predator attack at t = 0.
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4.2.2. INNER DISTRIBUTION OF FISH IN THE SCHOOL
The shape of the school and the distribution of fish vary significantly both within one
data set and between different data sets. These variations in shape often overshadow
more fundamental differences in the distributions and schooling behavior. For example,
Figure 4.1 highlights that milling can occur in a school of widely different shapes.

In order to quantify the distribution of fish positions and provide a meaningful com-
parison between schools of different shapes, we rescale the position data and introduce
a new coordinate system for the school. We place the origin at the center of mass XM

and align the coordinate system with the principal axis {e1,e2,e3} defined previously. We
then normalize the coordinates with the values of the semi-axis (λ1,λ2,λ3) such that the
bounding ellipsoid is rescaled to the unit sphere.

The change in the coordinate system involves a linear transformation composed of a
translation, a rotation, and the rescaling of the axes. The rotation matrix from the princi-
pal axis to the global coordinates is simply R = [e1 e2 e3]. We callΛ= diag([λ1 λ2 λ3]) the
scaling matrix, which scales the unit sphere to the computed ellipsoid. We then define
X̃i /M the rescaled position of fish i with respect to the center of mass:

X̃i /M =Λ−1RT (Xi −XM) , (4.1)

where (•)−1 is the matrix inverse, and (•)T the matrix transpose.
The rescaled coordinates facilitate the comparison between the distribution of fish

for schools with different volume and aspect ratios. We now consider the radial distribu-
tion of fish in rescaled coordinates and compute the spatial moments of this distribution.
The spatial moments characterize important features of the internal distribution of fish
in the school and help identify whether fish are distributed uniformly within the school
or, for example, accumulate radially at the edges.

COMPUTATION OF THE SPATIAL MOMENTS

We compute the radial position of the fish ri = ‖X̃i /M‖ and deduce the radial distribution
function f (r ). Examples of distributions are represented in Figure C.2 of Appendix C.4.
The radial distribution is characterized by computing the moments of the distribution.
We compute the 1st, 2nd and 3rd central moment, corresponding to the mean, the stan-
dard deviation, and the skewness of the distribution f (r ):

mean: µ=
∫ ∞

0
r f (r )dr, (4.2)

standard deviation: σ=
√∫ ∞

0
(r −µ)2 f (r )dr , (4.3)

and normalized skewness: s =
(∫ ∞

0

( r −µ
σ

)3
f (r )dr

)1/3

. (4.4)

The moments µ,σ, and s are explicitly computed by summations over the radial fish
positions. We estimate their value over a finite interval that we truncate r ≤ 3/2 for prac-
tical purposes. In this way, we limit the domain and remove positions that are not part of
the school (r À 1) such as solitary fish and/or excessive irregularity in the school shape.
All detail is given in Appendix C.4.



4

100 4. INNER STRUCTURE AND KINEMATICS OF THREE-DIMENSIONAL FISH SCHOOLS

The mean µ and standard deviation σ in equations 4.2 and 4.3 characterize the lo-
cation and width for the peak value of the radial distribution f (r ). For reference, the
uniform distribution ( f (r ) = 1 when 0 ≤ r < 1 and f (r ) = 0 otherwise) has a mean value
of µ= 1/2 and a standard deviation of σ=p

1/12 ' 0.29.

The normalized skewness s in Equation 4.4, on the other hand, quantifies the de-
gree of asymmetry in the radial distribution normalized by σ. When the peak of the
distribution is symmetric the skew is zero (s = 0). When the peak of the distribution is
increasingly biased towards the origin r = 0 (left) the skew is increasingly positive (s > 0),
and when biased in the positive r direction (right) the skew is negative (s < 0).

TIME SERIES FOR THE MOMENT MEAN, STANDARD DEVIATION AND SKEWNESS

In Figure 4.4d we present the time evolution for the mean µ, the standard deviation σ,
and skewness s for the same data set as in Figure 4.4a. These time series are also pre-
sented for different data sets in the appendix, see supplementary figures C.4, C.6, and
C.8 in Appendix C.

We find that the value for the skewness s is initially negative (s < 0) from t = 0 to
t = 8.5 s. This indicates that the fish are mostly distributed at the edge of the school,
far from the center of mass. After the predator has passed and the school rejoins, the
skew changes sign to a positive value s > 0 from t = 8.5 s onward. This indicates that
the fish cluster into a cohesive group. Our results suggest that the skewness of the fish
distribution provides a clear distinction between an escape maneuver from a predator
and the rest state of the school.

We turn to the values for the meanµ and standard deviationσ. From t = 0 to t = 8.5 s,
the mean approaches µ→ 1 with a low standard deviation σ ∼ 0.25. This is consistent
with the value of the skewness s and is characteristic of the fish being distributed in
a narrow peak at the edges of the school (also see Figure C.2d in Appendix C.4). Then,
from t = 8.5 s onward the mean decreases to µ∼ 0.5 while the standard deviation slightly
increased to σ∼ 0.3. Hence, when the school rejoins into a cohesive group following the
attack, the fish distribute more or less uniformly (µ= 1/2 and σ=p

1/12 ' 0.29).

DEGREE OF INTERNAL DISTRIBUTION OF FISH IN THE SCHOOL

We continue to investigate the degree of redistribution of fish towards the edge of the
school when the predator attacks. For this purpose, we define a single — inner distribu-
tion parameter ξ= µ/2σ — that expresses the moment mean µ in units standard devia-
tion σ like the normalized skewness (Equation 4.4). For a uniform distribution (µ= 1/2
and σ = p

1/12) the inner distribution parameter reads ξ = p
3/4 ' 0.87; when ξ ≥ 0.87

the fish redistribute towards the edge, and when ξ≤ 0.87 towards the origin.

In Figure 4.4d, we plot the inner distribution parameter in black. Initially, the value
of the black curve is close to ξ→ 2 when the fish are sharply distributed at the edge of
the school in snapshot (1) up to t = 8.5 s. Thereafter, its value drops down to ξ ∼ 1 and
the school approaches a uniform distribution. Finally, we find in Figure 4.4g that the
inner distribution parameter ξ and skewness s together develop a curious locus in the
sξ-plane; drawing the connection between the skewness and fish distribution.
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4.2.3. VARIABILITY IN SCHOOL SHAPE AND BIMODAL FISH DISTRIBUTION
In the previous subsection, we developed metrics to characterize the geometry of the
school and focused on one particular data set of a predator escape. In this subsection,
we investigate the relevance of these shape parameters for several data sets that capture
different events of schooling behavior as presented in figures 4.1 to 4.3 and in Table C.2
of Appendix C.2. We quantify the variability from statistical distributions of the shape
parameters and radial distribution and examine the relations between them.

DOMINANT, SUBDOMINANT ASPECT RATIO, VOLUME, AND FISH DENSITY

In Figure 4.5a, we plot the (non-dimensional) dominant aspect ratio η1 and the subdom-
inant aspect ratio η2 of the school against the volume V . The different points represent
different data sets and the error bars indicate the variation in the time series (e.g. Fig-
ure 4.4). The dominant aspect ratio varies over a range of 1.5 < η1 < 4 (red), while the
subdominant aspect ratio η2 varies within a smaller range 1 < η2 < 2 (blue).

The differences in the aspect ratios are expected since the dominant aspect ratio is
larger than the subdominant aspect ratio by construction. These numbers now provide
reference values for the dominant features in the shape of the school. For example, we
mark three particular data sets: the slender mill (×) in Figure 4.1d, a circular mill (■) of
Figure 4.1b, and the escape response (M) of Figure 4.2c.

In Figure 4.5b, we plot the joint distribution for the average value of the local fish den-
sity 〈ρi 〉 and the volume V . This distribution is obtained by accumulating the data in-
cluded in figure Figure 4.4e over all data sets. We find that this distribution has a roughly
triangular shape. For comparison, we plot the school density ρ = 2000/V , which is di-
rectly related to the volume, see cyan dashes in Figure 4.5b.

One interpretation is as follows. For small volumes V < 40 m3, we find that the vol-
ume scaling represents a lower bound for the average local density. In contrast, for larger
volumes V > 40 m3, the density is contained above a lower bound ρ > 50 m−3 (yellow
dashes). Therefore the local fish density does not simply scale with the volume of the
school, instead it approaches a constant level away from the intersection point where
the two curves cross (yellow/cyan dashes).

SKEWNESS AND DISTRIBUTION OF FISH IN THE SCHOOL

Since the aspect ratio and volume only capture elementary features of the school geome-
try, we continue to focus on the distribution of fish in a school. Figure 4.5c plots the joint
distribution density of the inner distribution parameter ξ and the normalized skewness
s. Interestingly, the internal distribution of the fish in the school is bimodal with two
distinct peaks: one with a negative skew for s ' −0.5 and ξ ' 0.9, and the other with a
positive skew for s ' 0.5 and ξ' 0.8. These peaks sit just above and below the value for a
uniform distribution ξ=p

3/4 ' 0.87.
The two peaks in Figure 4.5c correspond to two different schooling behavior. First,

for the peak with a negative skew, s ∼−0.5, the fish are more densely distributed towards
the edge of the school. This skewed distribution is a possible signature of an escape
maneuver, see Figure 4.4a, d, and g. The escape response is then further characterized
by the (long) upward tail in the joint distribution f (s,ξ) for s = −0.5 and ξÀ 0.87, and
provides the degree of redistribution. Second, for the peak with a positive skew s ∼ 0.5,
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Figure 4.5: Variability of the shape, density, and inner fish distribution. a) Dominant and subdominant aspect
ratios of the school η1 (red), and η2 (blue) against the volume V for different data sets. The error bars indi-
cate the variation over the time series. We mark the data (×,■,M) in figures 4.1 and 4.2. b) Joint probability
density f (〈ρi 〉,V ) for the mean fish density 〈ρi 〉 and the volume V , in cyan a uniform density for 2000 fish,
and in yellow a lower bound at higher volume. c) Joint probability density f (s,ξ) for the moment skew s and
inner distribution parameter ξ; the white dashes indicate the zero and unit crossing for s and ξ, the uniform
distribution ξ=p

3/4 is in cyan. We indicate extremes for escape and cohesion (white text).

the fish cluster towards the center of the school and form a cohesive group. This peak is
characteristic of the absence of predation.

These results agree with the example time series of Figure 4.4d. In particular, the
change in the sign of s characterizes a transition between the milling rest state and es-
cape maneuvers, while ξ can be used to measure the degree to which the fish cluster into
a cohesive mill or are (re-)distributed towards the boundary.

4.3. KINEMATICS OF FISH SCHOOLING
To this point, we have only considered the fish position from which we have deduced
the fish distribution within the school. We now consider the distribution of fish velocity
and characterize the kinematics of the school for the different schooling behavior in-
troduced in Section 4.1. First, we extract statistics from the distribution of swimming
velocity and the local polarization inside the school, and we compute the motion of the
center of mass [17, 18, 23]. Then, we compute mixed spatial moments of the velocity
distribution at the location of the center of mass and quantify the average angular mo-
mentum and volume rate-of-change of the school. These metrics provide measures for
translation, rotation, and volumetric changes in the school, see previous experimental
[13] and simulation work [37–43].

We also define a kinematic decomposition of the fish velocity in the coordinate sys-
tem introduced in Section 4.2.2 and extend on previous experimental work in two di-
mensions [13]. We partition the kinetic energy of each fish and derive a set of interre-
lated non-dimensional kinematic parameters. With these non-dimensional numbers,
we quantify the degree of ‘foraging’, ‘milling’, and ‘dilation’, in three dimensions. Finally,
we present the variability in the kinematics of fish schools for the numerous data sets
presented in this thesis and define a ternary diagram for the school kinematics.
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4.3.1. VELOCITY, POLARIZATION, ANGULAR MOMENTUM, AND DILATION
We begin by computing the velocity of each fish as the time derivative of the position
vector Ui (t ) = dXi (t )/dt for the i th fish in the school and we write the swimming speed
as Ui (t ) = ‖Ui‖. We compute the velocity vector using the smoothing and differentiation
filters introduced in Chapter 3 to filter noise and outliers.

To monitor changes in the distribution of velocity in the school, we compute the av-

erage swimming speed Ū (t ) = 〈Ui (t )〉 and standard deviationσU (t ) =
√
〈(Ui (t )−Ū (t ))2〉;

for a discussion of the velocity distribution see Appendix C.5. Furthermore, we express
the fish heading vector ĥi = Ui /Ui in direction of swimming and compute the local po-
larization φi (t ) = ‖〈ĥ j 〉 j∈J‖ by averaging j ∈ J in the neighborhood of fish i similar to the
local fish density in Section 4.2.1; for related work see [13, 17, 33, 44].

The polarization φi is a localized state variable representing the alignment of fish in
the school. When φi = 1, neighboring fish j ∈ J swim exactly in the same direction as
the focal fish i , hence the school is in a locally polarized state. On the other hand, when
φ= 0 fish swim in different directions, hence the school is in a locally disorganized state.
We report the average polarization 〈φi (t )〉 alongside other time series analyses.

The school is observed to rotate, translate, and undergo changes in volume and shape.
To characterize these different dynamics, we define mixed spatial moments of the ve-
locity distribution and fish position. We compute the velocity of the center of mass
UM(t ) = dXM(t )/dt = 〈Ui 〉 as well as:

average angular momentum L = 2π〈(Xi −XM)× (Ui −UM)〉 , (4.5)

and total volume rate-of-change VC = 4π〈‖Xi −XM‖ (Xi −XM) · (Ui −UM)〉 . (4.6)

Here the prefactor 2π in Equation 4.5 provides scaling for the angular revolution, and
the prefactor 4π in Equation 4.6 is a scaling constant for the surface area of the sphere;
connecting the volume rate-of-change VC to the evolution of volume V of the equivalent
ellipsoid1 of Section 4.2.1.

The excitation of the fish in the school is captured by the distribution of speed Ui (t )
and the local polarization φi (t ). UM(t ) on the other hand represents the average dis-
placement of the school as a whole, while the average angular momentum L(t ) and the
volume rate-of-change VC(t ) represent the average rotation and change in volume. L(t )
and VC(t ) have units of m2/s, and m3/s respectively.

FISH VELOCITY AND POLARIZATION

In Figure 4.6b, we plot together the time series of the average swimming velocity Ū (t )
(magenta), the standard deviation of the velocity distributionσU (t ) (orange) and the av-
erage local polarization 〈φi (t )〉 (blue) for the same data set used in Figure 4.4a. Initially,
the average swimming velocity increases to Ū (t ) ∼ 0.7 m/s until t = 1.5 s. After the at-
tack, the velocity gradually decreases to Ū → 0.4 m/s as the school rejoins between t = 5
to t ∼ 10 s. Next, the school returns to a cohesive mill at t = 13 s with a short increase
in the swimming speed and similar changes in the standard deviation σU (t ). Although

1Directly differentiating the ellipsoidal volume evolution dV /dt = 4π/3d/dt [λ1λ2λ3] yields a complex expres-
sion by the semi-axes. Taking the geometric mean λ̃= (λ1λ2λ3)1/3 simplifies the notation to 4π/3d/dt [λ̃3] =
4πλ̃2 ˙̃λ, which in Equation 4.6 we subsequently approximate λ̃2 ˙̃λ at the right-hand side.
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the velocity changes over the events this suggests that its distribution is little affected by
a predator engaging in an attack, also see Appendix C.5 and Figure C.3.

Figure 4.6b presents the time series of the average local polarization 〈φi (t )〉, with a
different non-dimensional y-axis in blue (on the right). For this data set, the average
polarization remains large, between 0.7 < 〈φi (t )〉 < 0.8, and does not seem to change
significantly. The polarization provides the local structural alignment in the school. To
investigate whether there is a non-trivial interrelation between fish speed and alignment
we plot in Figure 4.6e the average polarization 〈φi (t )〉 against the average velocity Ū (t ).
However, at this point, we find no definite signature over the escape event.

VELOCITY OF CENTER OF MASS AND ANGULAR MOMENTUM

Figure 4.6c represents the time evolution of the velocity of the center of mass UM(t ) =
‖UM(t )‖ and of the magnitude of the angular momentum L(t ) = ‖L(t )‖. These metrics
provide a global measurement for the degree of translation and rotation of the school.

Until t = 3 s, the center of mass of the school is moving at a speed up to UM ' 0.3 m/s,
during the predator escape maneuver. After the predator has passed at t ∼ 5 s, the school
remains at a fixed position, with UM ≤ 0.1 m/s. When the school returns to a cohesive
mill, t ∼ 13 s, the speed of the center of mass increases again to UM ' 0.2 m/s. The
relative variations in UM(t ) are more pronounced than those in swimming speed Ū (t ).
However, changes in the position of the center of mass do not uniquely characterize
escape maneuvers, since UM is also higher between t = 13 and t = 15 s when the school
reforms into a cohesive fish mill in absence of a direct predator attack.

In Figure 4.6c we plot the average angular momentum L(t ) with a different y-axis
(units m2/s) in blue. During the avoidance maneuver, from t = 1.5 s to t ∼ 10 s, the av-
erage angular momentum elevates to a value of L ' 4 m2/s. Returning to the rotating
milling state, the angular momentum decreases to L ' 1 m2/s. Thus the angular mo-
mentum does not reach a maximum when the school is rotating in a milling motion.

The initial increase in the angular momentum L(t ) is due to the increase in volume
and the change in the inner distribution of fish (see Figure 4.4b and d). After returning to
a cohesive mill, the value of the angular momentum L(t ) decreases because the fish clus-
ter in a cohesive group. Therefore, the value of L(t ) is not directly indicative of milling
as reported in previous laboratory experiments on smaller planar fish schools [13] and
simulation work [37–43].

VOLUME RATE-OF-CHANGE AND INTERRELATIONS

In Figure 4.6d, we plot the volume rate-of-change VC(t ), computed from Equation 4.6.
Initially, the school rapidly enlarges to reach a peak value of VC → 20 m3/s during the
predator attack from t = 0 until t = 1.5 s. Subsequently, the volume gradually decreases,
at a slower rate between −10 < VC <−5 m3/s from t = 5 s until the school is in a cohesive
group, consistent with the volume evolution in Figure 4.4b. Unlike the center of mass
velocity UM(t ) and angular momentum L(t ), these rapid fluctuations in the volume rate-
of-change VC(t ) help differentiate the predatory attack from the milling school.

Finally, in Figure 4.6f and g, we consider the relation between UM(t ), L(t ), and VC(t ).
We find that UM(t ) and L(t ) draw a loop that displays distinct dynamic features present
in the predatory attack. Similarly, we plot the volume rate-of-change VC(t ) against the
velocity of the center of mass UM(t ) drawing a loop with a large variation. Such large
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variations have not been observed in previous laboratory scale experiments [13, 17, 24].
In the current work, only the volume rate-of-change brings a pronounced signature for
the interaction with the predator [45].

4.3.2. KINEMATIC DECOMPOSITION AND PARTITION IN KINETIC ENERGY
We now introduce a different framework to decompose the kinematics while ignoring
the school shape. We express a relative rate of deformation over the finite-sized school by
normalizing the velocity in the rescaled coordinate system of Section 4.2.2. We compute
the kinematic decomposition and partition the kinetic energy to derive three distinct
kinematic schooling parameters. These dimensionless kinematic parameters character-
ize the kinematic state (or ‘phase’) of the school [13]. We further express a global rotation
and total expansion rate within the current framework.

AXES RESCALING AND KINEMATIC DECOMPOSITION

We define a normalized relative velocity Ũi /M for each fish i in the instantaneous frame
centered at XM(t ) and moving at UM(t ). In addition, we rescale the velocity along the
semi-axis (λ1,λ2,λ3) in the same way as previously done in Equation 4.1:

Ũi /M =Λ−1RT (Ui −UM) = Ũi − ŨM. (4.7)

This definition expresses the fish velocity components in terms of the rate-of-change of
the finite-sized school. At the right-hand side of Equation 4.7 Ũi is the rescaled swim-
ming velocity and ŨM is the normalized velocity of the center of mass.

It bears to emphasize that the normalized relative velocity has units 1/s and Ũi /M 6=
dX̃i /M(t )/dt as we assume instantaneity for axes rescaling of Equation 4.1. This rescaling
normalizes the large variation in the aspect ratio of the school (Figure 4.5a) and removes
a straining component for the velocity field in case the mill is rotating and shearing in
an elliptical cross-section. The distribution of the velocity components at the semi-axis
rescaling is further discussed in Appendix C.5.

We use an orthogonal decomposition of the normalized relative velocity Ũi /M, which
we write as the sum of a radial component Ũ⊥

i /M in the radial direction r̂i = X̃i /M/ri and

an orthogonal component Ũ∥
i /M = Ũi /M − Ũ⊥

i /M in the direction tangent to the sphere.
Reordering the terms on the left- and right-hand side in Equation 4.7, we write the kine-
matic decomposition of the rescaled swimming velocity:

Ũi = ŨM + Ũ∥
i /M + Ũ⊥

i /M. (4.8)

This decomposes the fish kinematics into the motion of the center of mass and its paral-
lel, and perpendicular components in the frame moving with the school.

PARTITIONING OF THE INTERNAL KINETIC ENERGY IN THE SCHOOL

We now write the total kinetic energy summing over all fish
∑

i U 2
i and partition its value.

Using the kinematic decomposition of Equation 4.8, the total kinetic energy yields a sim-
ple expression:

I∑
i=1

Ũi
2 =

I∑
i=1

ŨM
2 +

I∑
i=1

Ũ ∥
i /M

2 +
I∑

i=1
Ũ⊥

i /M
2

. (4.9)
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Figure 4.6: Velocity, polarization, angular momentum, and volumetric changes at predator attack. a) The snap-
shots of Figure 4.4: (1) rapid escape leaving a vacuole at t = 1.5 s, (2) the school rejoins after predator inter-
vention t = 5 to t ∼ 10 s, (3) the school returns to a cohesive mill from t = 13 s onward. b) Time series for the
average fish velocity Ū (t ) (magenta) and the standard deviationσU (t ) of the fish velocity distribution (orange)
alongside the local fish polarization 〈φi (t )〉 (blue). c) Time series for the velocity of the center of mass UM(t )
of the school (black) and the angular momentum L(t ) around the center of mass (blue dashes). d) Time series
for the volume rate-of-change VC(t ) away from the center of mass. e) The polarization 〈φi (t )〉 against the av-
erage velocity Ū (t ) from (b). f) The locus drawn by the velocity of the center of mass UM(t ) and the angular
momentum L(t ) of (c). g) The locus by the velocity of the center of mass UM(t ) and the volume rate-of-change
VC(t ) of (d) when evading the predator. We indicate (c) the predator attack at t = 0.
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There are no cross terms in Equation 4.9 in the binomial expansion as Ũ∥
i /M and Ũ⊥

i /M are

orthogonal and the summation
∑

i ŨT
M(Ũ∥

i /M + Ũ⊥
i /M) = ŨT

M

∑
i Ũi /M = 0.

The left-hand side of Equation 4.9 provides the total kinetic energy of the fish school
from the summation over the individual fish i . The right-hand side highlights three con-
tributions to the energy budget. From left to right we have the kinetic energy: (1) of the
center of mass, (2) of the angular velocity of the fish around the center of mass, and (3) of
the radial in/outward motion of the fish (school dilation). Equation 4.9 does not provide
a conservation law but provides a well-defined basis to quantify how the kinetic energy
is distributed between the different components of the fish motion in the school.

FORAGING, MILLING, AND DILATION IN THREE DIMENSIONS

We now use the decomposition of the kinetic energy to characterize the kinematics of the
school using three dimensionless kinematic parameters. We normalize each component
of the kinetic energy inside the school with the average kinetic energy 〈Ũ 2

i 〉 of the fish.
The three terms in the partition of the kinetic energy of Equation 4.9 define three non-
dimensional numbers:

foraging number F = ŨM
2〈

Ũi
2
〉 , (4.10)

milling number M =
〈

Ũ ∥
i /M

2〉〈
Ũi

2
〉 (4.11)

and dilation number D =
〈

Ũ⊥
i /M

2
〉

〈
Ũi

2
〉 . (4.12)

Finally, Equation 4.9 can then be rewritten in terms of F , M , and D , and provides the
total partitioning:

F +M +D = 1. (4.13)

The ‘foraging number’ F measures the relative importance of the normalized velocity
of the center of mass relative to the normalized velocity of the fish. For F = 0, the center
of mass is fixed and the school remains at a fixed position in the fish tank. On the other
hand, when F = 1 the school undergoes a pure translation.

A uni-directional motion, corresponding to F = 1, is not compatible with the steady
rotation of a fish mill. The ‘milling number’ M quantifies the kinetic energy in the rota-
tion motion of the school around the center of mass. When M = 0, no fish swims around
the center of mass, while for M = 1, all fish swim with a perfect rotation.

Finally, the ‘dilation number’ D corresponds to the kinetic energy associated with the
radial motion of fish towards and away from the center of mass. When D = 0 the school
neither expands nor contracts and when D = 1 all fish move radially with respect to the
center of mass.

PURE EXPANSION, ISOCHORIC DEFORMATION, AND PURE ROTATION

The foraging and milling numbers F , and M are closely related to common definitions
for the total polarization, and rotational order parameters (see e.g. [13, 37, 39, 41]). The
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dilation number D , on the other hand, expands on previous experimental work in two
dimensions [13] and completes the decomposition of the kinetic energy. We now subdi-
vide the dilation number D into two parts, namely the:

expansion number E =
〈

Ũ⊥
i /M

∣∣Ũ⊥
i /M

∣∣ 〉〈
Ũi

2
〉 (4.14)

and isochoric number I = D −|E | , (4.15)

where | • | denotes the absolute value.
The ‘expansion number’ E expresses the average signed value of the radial velocity

component Ũ⊥
i . The sign of E keeps track of whether the school is expanding (E > 0) or

contracting (E < 0), similar to the volume rate-of-change of Equation 4.6. The ‘isochoric
number’ I is the difference with the total dilation D . This number represents the amount
of kinetic energy in the radial distribution which does not contribute to any change in
volume because an equal number of fish swim inwards and outwards.

The milling number M does not measure the total rotation about a single rotation
axis. To illustrate how the milling number M is related to the rotational order parameters
in [13, 37, 39, 41], we define a rotation number R. For this, we compute the angular
momentum vector in the rescaled coordinates L̃ = 2π〈X̃i /M × Ũi /M〉, define the rotation
axis ω̂= L̃/‖L̃‖ and deduce the circumferential (or hoop) direction as θ̂i = ω̂×r̂i /‖ω̂×r̂i‖.
We project the velocity Ũi /M on θ̂i and compute the rotation number:

rotation number R =
〈
θ̂i · Ũi /M

∣∣θ̂i · Ũi /M
∣∣〉〈

Ũi
2
〉 , (4.16)

normalizing similarly to equations 4.10 to 4.15. The rotation number gives the total ki-
netic energy in rotation around ω̂ and keeps track of the sign similarly to Equation 4.14.

TIME SERIES FOR THE KINEMATIC PARAMETERS

We consider the same escape response as in figures 4.4 and 4.6 and plot the time evolu-
tion of the kinematic parameters M , F , D , E , I and R. Figure 4.7b represent over time the
milling number M(t ) (red) and the foraging number F (t ) (green). The dilation number
D(t ) is represented in cyan when E > 0 and the school expands, and in blue when E < 0
and the school contracts. The subdivision for the isochoric number I (t ) is in orange
and the rotation number R(t ) is in magenta. For more examples of milling and foraging
schools see supplementary figures C.5, C.7, and C.9 in Appendix C.

The value of the milling number M(t ) ranges between 0.6 < M < 0.75 and remains
more or less unchanged during the predator attack. Compared with the range of the
angular momentum L(t ) in Figure 4.6c, the amplitude of M(t ) is smaller between t = 1 s
and t = 13 s, and the associated kinetic energy is relatively unaffected. Furthermore, the
average degree of dilation D(t ) fluctuates in a narrow range around D ∼ 0.3. Because the
sum of M , F , and D equals one, the increase in one is always balanced by a decrease in
another. Figure 4.7 shows that most of the milling number M(t ) varies complementary
to the foraging number F (t ) between 0 ≤ F < 0.2.



4.3. KINEMATICS OF FISH SCHOOLING

4

109

We further investigate the milling number M(t ) over time and how it relates to the
rotation number R(t ) in Figure 4.7b. The rotation number has a much lower value of
R ∼ 0.4 compared to the milling number 0.6 < M < 0.75, and these values are correlated.
This indicates that little over half of the kinetic energy in milling is distributed in a pure
rotation. Therefore the motion of the school is far from a perfect cylindrical rotation,
even when the school returns to a cohesive mill.

This discrepancy is due to, fish swimming in different planes over the height of the
school, misalignment of the rotation axis, and a percentage of fish swimming against
the dominant direction of rotation. In Figure 4.7e we further show that the degree of
pure rotation R corresponds to an increase with the degree of milling M . Thus, when the
milling number increases, the rotational order in the school is increasingly cylindrical,
as may be expected for the correlated variations.

Next, we consider the time series of the dilation number D(t ). The pure expansion
rate can be deduced from the difference |E | = D − I and it varies between −0.2 < E < 0.2,
during which the isochoric number decreases from I ∼ 0.2 to 0.1. The relation between
the expansion number E(t ) and dilation number D(t ) is summarized in Figure 4.7f. Al-
though the changes in the dilation number are small, the values are in direct correspon-
dence with outward expansion and inward contraction.

The variations of E are consistent with the volume rate-of-change of Equation 4.6. At
t = 1.5 s, the school is in a rapid expansion E ' 0.2. Around t = 3 s, the center of mass
moves leading to an increase of the foraging number to a maximum value of F ' 0.2.
From t = 3 s onward, the school goes into a lasting contraction E ' −0.2. The relation
between the expansion number E and foraging number F are represented in Figure 4.7g,
and together they account for ∼ 20 % of the total kinetic energy in the school when evad-
ing the predator.

Finally, the distribution of the kinetic energy over milling, foraging, and dilation, is
summarized in Figure 4.7c as we draw the locus of M , F , and D on the plane defined by
M+F+D = 1. Here, the plane M+F+D = 1 allows us to visualize the schooling dynamics
in a ternary diagram, plotted in percentages in Figure 4.7d. This graphic representation
provides a comprehensive picture of the kinematics of the fish school, where we color
code the time in seconds.

4.3.3. VARIABILITY AND DISTRIBUTION OF KINETIC ENERGY
To this point, we have considered the kinematic parameters over time for one specific
data set. We now investigate the relevance of these parameters for multiple data-sets
recorded for the measurement weeks described in Appendix C.2. We first plot joint dis-
tributions for milling M , foraging F , and dilation D on the ternary diagram introduced
in Figure 4.7d. This gives insight into the partitioning of the kinetic energy over a range
of schooling behaviors [13]. We then plot the degree of rotation R as a function of the
milling number M , and the dilation D as a function of the expansion number E to fur-
ther elucidate the associated schooling kinematics.

TERNARY DIAGRAM AND KINEMATIC STATE

We construct the ternary diagram for the coupled variables M , F , and D from the kine-
matic decomposition on the plane M +F +D = 1, and report the partitioning of the ki-
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Figure 4.7: Partitioning of the kinematics of the fish school. a) The snapshots of Figure 4.4 and Figure 4.6: (1)
rapid escape at t = 2.5 s, (2) rejoining from t ∼ 5 to 10 s, (3) cohesive mill from t = 13 s onward. b) Time series
milling number M(t ) (red), rotation number R(t ) (magenta), foraging number F (t ) (green), dilation number
D(t ) (cyan for E > 0 and blue for E < 0), isochoric number I (t ) (orange) accompanying the snapshots of (a).
c) Phase portrait of transient schooling dynamics drawn by the milling number M(t ), foraging number F (t ),
and dilation number D(t ), inset the plane M +F +D = 1 that joins through the axes values 1. d) The ternary
diagram that is extracted from the plane M +F +D = 1 from (c), the grey shading indicates time t . e) Rotation
number R(t ) against milling number M(t ), the black line gives the upper bound R = M . f ) Expansion number
E(t ) against the dilation number D(t ), the black line gives the lower and upper bound(s) D = |E |. g) Expansion
number E(t ) against foraging number F (t ). We indicate (b) the predator attack at t = 0.
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netic energy in percentages. In Figure 4.8a, we plot the joint distribution f (M ,F,D) for
the kinematic schooling parameters which include data from all our data sets. The dis-
tribution presents a clear peak, which corresponds to a partition M : F : D / 75 : 5 : 20 %,
and this peak is consistent with a milling state. Therefore, our quantitative characteriza-
tion of kinematic modes agrees with our experimental observation of the prevalence of
milling in the Rotterdam zoo.

An over-representation of milling throughout all data sets may mask subtle features
in the schooling kinematics away from milling. Therefore we normalize the distribution
for each value of M and plot the conditional distribution of F and D knowing the degree
of milling M as f (F,D|M) = f (F,D, M)/ f (M), see Figure 4.8b. While both the degree of
milling and foraging vary over a wide range of values from close to 0 to almost 100 %, the
degree of dilation remains limited to values smaller than 30 %. We find that most of the
fish schooling data clusters around a single trend that determines the relative degree of
milling, foraging, and dilation, with constant ratio D/M ∝ 30/70 in direction of foraging
(yellow trend-line Figure 4.8b).

In addition, we insert the average partition of milling, foraging, and dilation for se-
lected data sets. With this, we demonstrate how the M ,F ,D-partition can be used to
classify the schooling behavior identified in Section 4.1 for the measurement weeks listed
in Appendix C.2. Firstly, data sets that are classified as milling range above ∼ 60 % milling
number M (cyan circles). Secondly, the escape responses of the school in response to
predators (magenta stars) range F between ∼ 10 and 50 % and M between ∼ 40 and
70 %. Finally, we inset two data sets that are solely classified as foraging (green squares).
They indeed have a high foraging number F above ∼ 50 % (see also Supplementary-
Figure C.9).

PURE ROTATION AND PURE EXPANSION

Next, we investigate what happens when the school approaches a pure milling state M →
100 % away from the peak position M : F : D / 75 : 5 : 20 % of Figure 4.8a. For this,
we plot the conditional distribution f (R|M) = f (R, M)/ f (M) in rotation number R for
an increasing degree of milling M in Figure 4.8c, see also Figure 4.7e. We find that for
M > 0.7, the degree of pure rotation R is proportional to the milling number M and the
school approaches a pure rotation state R → 1 for M → 1 (yellow trend-line). Hence for
an increasing degree of milling M , we find that the school is increasingly rotating around
a single axis.

We continue to consider the variation in the dilation by the expansion of the school,
characteristic of a predator escape. We plot the distribution of the dilation number
D conditional to the degree of expansion E by the conditional distribution function
f (D|E) = f (D,E)/ f (E). Figure 4.8d reveals a crescent moon-like shape that is similar
in signature to Figure 4.7f. The dilation number varies between D ' 0.2 when E = 0 up
to D ' 0.4 when |E |→ 0.3. This captures the redistribution of kinetic energy. When E = 0
the isochoric number I = D ' 0.2 and when |E | = 0.3 its value decreases to I = D −|E | =
0.1 and approaches a pure expansion/contraction by the cyan dashes. Offsetting the ab-

solute value D = |E | for E = 0 we inset a few ad hoc reference curves D =
√

E 2 + I 2
0 (white

dashes) with I0 ∼ 0.25 joining the data points in yellow; bridging their connection.
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(a) (b)

(c) (d)

Figure 4.8: Variability of the fish school kinematics. a) Joint probability density f (M ,F,D) at the plane M +
F +D = 1 that defines the ternary diagram for the milling, foraging, and dilation number M , F , and D . b)
Conditional probability density f (F,D|M) for the ternary diagram of (a), mediating between dilation D and
foraging F , conditional to the degree of milling M , the colored markers inset the most dominant behaviors for
some of the data sets. c) The rotation number R conditional to the milling number M , inset several reference
lines for constant R/M (white) with the upper bound R = M in cyan and in yellow the best fit to the data for
M → 1. d) The expansion number E plotted against the dilation number D , inset in cyan the lower and upper
bound(s) D = |E |, several sample curves for D = (E2 + I 2

0 )1/2 (white) and in yellow the curve that best joins the
data. The inset pictograms illustrate the different elementary schooling motions.

4.4. SHAPE, KINEMATICS, AND LOCAL STATE VARIABLES
In the previous two sections, we introduced quantitative parameters to characterize fish
schooling behavior. We focused on the time series and investigated the variability in
the geometry (Section 4.2) and the kinematics of fish schooling (Section 4.3). Contin-
uüm models of group dynamics require the definition of equations of states to establish
the relation between local state variables. One common example, from the modeling of
traffic flow, is the relationship between driving speed and traffic density [46, 47]. Here,
we consider local state variables characteristic of schooling fish namely, the swimming
velocity, the local heading polarization, and fish density [9, 34].

For the current discussion, we restrict our focus to the 2017 measurement week of
Table C.2 in Appendix C.2 which presents the greater variation in schooling behavior
and is recorded at the highest resolution for similar time sequences. First, we plot the
swimming velocity, the averaged local polarization, and fish density against the kine-
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matic schooling parameters [13]. Second, we plot these local state variables against the
obtained geometric parameters. The results here suggest a relationship between swim-
ming velocity, local polarization, and fish density. This opens new directions for future
research on fish schooling dynamics.

4.4.1. KINEMATIC STATE, FISH VELOCITY, POLARIZATION, AND DENSITY
A change in local schooling behavior, here expressed by the swimming velocity, local
polarization of heading, and fish density can imply a global change in the resulting kine-
matic state. Therefore, we compute the average swimming velocity of the fish U , heading
polarization φ, and fish density ρ as a function of the milling M , foraging F , and dilation
D numbers [13], and present our results on the ternary diagram of Figure 4.8.

In Figure 4.9a, we plot the average swimming velocity U as a function of the kine-
matics schooling parameters. The velocity is a distinctive feature of the swimming be-
havior of the fish. One may expect notably different fish swimming activities for the
different kinematics of the school. In our experiments, the swimming velocity does not
provide a well-defined signature for the different schooling modes of milling, foraging,
and dilation. The velocity remains mostly constant, except for a limited increase in the
swimming velocity when the schooling behavior approaches pure milling (M → 100 %)
or foraging (F → 100 %) kinematics, see isocontours in Figure 4.9a.

Figure 4.9b presents the average value for polarization φ as a function of M , F , and
D . Here, we do find a distinct signature for the value of φ. Close to the peak position
M : F : D / 75 : 5 : 20 % (Figure 4.8a) the polarization takes a minimum value of φ ' 0.6
and increases when the school kinematics moves closer to pure milling M → 100 % and
foraging state F → 100 % with φ→ 0.85. Therefore, away from the peak position in the
ternary diagram (Figure 4.8a), the polarization suggests two different extremes for the
school. The school either forms a fully polarized fish mill, or the school emerges to a
pure foraging state and swims uni-directional through the fish tank.

We continue to compute the average value for the local fish density ρ against the
kinematic schooling parameters M , F , and D in Figure 4.9c. The maximum fish density
(ρ ∼ 100 m−3) is reached just above the peak position in Figure 4.8a and the school is
in a cohesive mill. Away from the peak position the school is generally sparser (ρ →
50 m−3) in the direction of pure milling and foraging. Overall, the fish density varies
more gradually and is more broadly distributed compared to the polarization.

4.4.2. SCHOOL GEOMETRY, FISH VELOCITY, POLARIZATION, AND DENSITY
Unique to the large ocean aquarium is that the fish swim in a relatively unconstrained
environment and the school is free to undergo complex changes in shape. In Section 4.1
we presented various schooling behavior including elongated mills and rapidly expand-
ing schools when escaping a predator (figures 4.1 to 4.3). Here, the variety in the shape
of the school and internal distribution of fish is best captured by the dominant aspect
ratio η1 and inner distribution parameter ξ (Section 4.2). Therefore we continue to com-
pare the average swimming velocity U , local polarization φ, and fish density ρ for these
geometric parameters.

Figure 4.9d plots the swimming average velocity U of fish in the school against the
dominant aspect ratio η1 and the inner distribution variable ξ. We see a clear increase
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from U ∼ 0.45 to 0.6 m/s when the fish redistribute towards the edge of the school in the
range of 1 < ξ< 2, corresponding to a negative skewness (s < 0) for ξ> 0.87 (Figure 4.5c).
These values are typical of an escape response, see the time series of figures 4.4 and
4.6, and supplementary figures C.4 to C.9 in Appendix C. In addition, we find that the
swimming velocity decreases from U ∼ 0.45 to 0.3 m/s when the dominant aspect ratio
increases within 1 < η1 < 5. These data points correspond to highly elongated fish mills,
such as those presented in Figure 4.1d. Hence our results suggest that the swimming
velocity decreases with the effective reduction in the diameter of the school.

In Figure 4.9e, we proceed by plotting the local heading polarization against the dom-
inant aspect ratio η1 and the inner fish distribution parameter ξ. The heading polariza-
tionφ follows from the fish velocity U and when the fish redistribute towards the bound-
ary of the school (1 < ξ < 2) its value increases from φ ∼ 0.7 to φ ∼ 0.85 accordingly. On
the other hand, when the fish are distributed towards the center of the school for ξ < 1,
the polarization remains approximately constant belowφ< 0.7 for different values of the
dominant aspect ratio 1 < η1 < 5, and no changes are observed.

In Figure 4.9f, we present the average local density ρ against the dominant aspect ra-
tio η1 and inner fish distribution ξ. Contrary to the velocity and polarization, we find that
the local density decreases when the fish redistribute towards the boundary for larger
ξ→ 2, while its value remains unaffected by η1. Naively, this decrease in density when
the fish redistribute towards the boundary may be interpreted as inevitable, the size of
the school enlarges and thereby the density diminishes due to the expanding geome-
try. However, this interpretation may lack actual physical grounding. The shape of the
school is thought to emerge from the dynamics and interaction among the fish [32–34],
from the bottom-up, and not the other way around, top-down, see also previous experi-
mental work [18].

FISH TRAFFIC: INTERRELATIONS BETWEEN LOCAL STATE VARIABLES

Considering all our observations from Figure 4.9, a general picture emerges. We find
that when the fish density increases, the swimming velocity decreases, and when the
polarization increases the swimming velocity increases, for all resulting kinematics and
features in the shape. Such a relationship between the velocity, the local density, and the
local polarization is central to modeling and predicting group dynamics, see for example
simple equations of state for the continuüm modeling of traffic flow [47–49].

Moreover, an inverse relationship between density and velocity is a primary mecha-
nism responsible for the formation of shock waves, leading to traffic jams in traffic flow
problems. Our findings suggest that such (non-linear) wave propagation mechanisms
may too exist for schooling fish in three dimensions. Such mechanisms have previously
been studied in fish schooling models by a limited perception range [32–34], and have as
well been reported in experiments [9, 17, 18] and field observation [50–52], and underlie
to different mechanisms of information transfer [15, 53, 54].

4.5. SUMMARY AND CONCLUSIONS
In this chapter, we have demonstrated the application of the measurement technique
detailed in Chapter 2 and the tracking algorithms presented in Chapter 3. We presented
how we extract quantitative measures from the full three-dimensional tracking data of
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Local fish density, polarization, and velocity against the kinematic and geometric schooling param-
eters. a–c) The swimming velocity U of the fish, the local heading polarization φ and the average fish density
ρ plotted against the kinematics schooling parameters for milling M , foraging F , and dilation D . d–f) The av-
erage swimming velocity U of the fish, the local heading polarization φ and the average fish density ρ plotted
against the inner distribution parameter ξ, and dominant aspect ratio η1 of the school.

the fish inside the large school at the Rotterdam zoo.
In Section 4.1, we presented an overview of the tracking data. We found that, in ab-

sence of a predator, the school is milling counter-clockwise in the fish tank. This be-
havior was observed consistently for all 6 measurement weeks over 4 years, with a large
variety of school shapes, including surface accumulation, cylindrical, skewed, and elon-
gated fish mills. Furthermore, upon interaction with a predator fish, we found many be-
haviors in qualitative agreement with the work by Pitcher and Wyche [1] and Magurran
and Pitcher [2] including splitting (and joining), vacuole, rapid flash expansion, cruising,
as well as, a collective downdraft, or dive [29], among many.

In Section 4.2, we performed the first quantitative assessment and studied the geo-
metric properties of the school. We selected a specific data set corresponding to a time
series for a rapid escape response. For this data set, we presented the time evolution of
the volume, the density, and the aspect ratios of the school. We also defined the spatial
moments for the internal distribution of fish in the school and presented the evolution
for the moment mean, standard deviation, and skew for the same data set. In particu-
lar, we showed that the skew switches sign when the fish redistribute towards the edges,
where the inner fish distribution parameter quantifies its degree.

Following this analysis, we continued to consider all of the data sets available and
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studied the variability of the school shape and inner distribution parameters, and pre-
sented their statistical distribution. We quantified the large variation in overall shape by
the aspect ratio(s) of the school. At higher school volumes, we found that the local den-
sity of fish does not follow a uniform scaling and approaches a constant level. Moreover,
we found a bimodality for the parameters of skew and inner distribution which the fish
either cluster toward the origin of the school or redistribute at the edges, suggesting a
predator attack.

In Section 4.3, we quantified the kinematics of schooling fish. We first considered the
evolution of the velocity, local polarization, and mixed spatial moments. Here we found
little differences in the velocity distribution when the school is interacting with a preda-
tor or not. Furthermore, we demonstrated that the velocity of the center of mass and
the angular momentum do not provide a comprehensive picture of schooling behavior.
Therefore, we computed the kinematic decomposition on our rescaled set of axes in the
reference frame of the school. Partitioning the kinetic energy, we characterized the mo-
tion of the school with several kinematic parameters quantifying the degree of milling,
foraging, and dilation. We further subdivided the milling number in a pure rotation and
dilation in pure expansion which helped further analyze the school kinematics.

Starting with time series analyses we continued to investigate the variability in the
kinematics of the school. We presented the joint distribution functions at the ternary
diagram for milling, foraging, and dilation, and showed that most of the data sets are in
a milling state at a partition M : F : D / 75 : 5 : 20 %. Presenting the conditional proba-
bility density function against milling we found that away from the milling position, the
school mediates between pure milling and foraging following a single trend line. We also
quantified the distribution of the kinetic energy in the direction of pure milling. Here the
school increasingly rotates around a single axis. Furthermore, we quantified the redistri-
bution of kinetic energy when the school dilates. Here we found the school to approach
a pure expansion in escape.

In Section 4.4, we compared the swimming velocity, the local polarization, and fish
density for the kinematic schooling parameters, shape, and inner fish distribution. Firstly,
we found little variation in fish swimming velocity for the kinematic schooling parame-
ters. Secondly, we observed a well-defined minimum in fish polarization when the fish
are in a cohesive mill and multi-modality towards pure milling and foraging, with a more
gradual variation in fish density. Next, we found a jump in the swimming velocity when
the fish redistribute towards the edges of the school (ξ> 0.87) and a gradual drop when
the school elongates (η1 À 1) into a slender cohesive mill (ξ < 0.87). Moreover, the lo-
cal fish polarization sharply increases when the fish redistribute towards the boundary
while the fish density decreases. The actual dynamic interaction between fish and rela-
tions between these variables open a broad range of future research directions, stretch-
ing beyond the scope of the current thesis.

The parameters and analyses defined in this chapter are now available as reference
values for the shape and kinematics of different schooling data sets and behaviors. Al-
together, we demonstrated their use in the different analyses and provided new insight
into the inner working of three-dimensional fish schools.
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5
CONCLUSIONS AND

RECOMMENDATIONS

This thesis presented results in tracking a large school of±2000 Harengula clupeola (false
herring) swimming in three dimensions in a semi-natural habitat at the large-scale pub-
lic ocean aquarium of the Rotterdam zoo. We summarize the main conclusions of this
thesis and make several recommendations for future research avenues.

Chapter 2 presented our measurement technique to image fish swimming in a large
tank in three dimensions. We first introduced our imaging setup located behind a large
window that allowed us to optically access the underwater environment in the fish tank.
Secondly, we introduced our calibration technique and explained the implementation of
projective geometry and linear ray-tracing in the presence of significant optical distor-
tion imaging from air to water. Combining non-linear camera mappings commonly used
in experimental fluid mechanics with methods from computer vision we alleviated the
requirement of a large calibration target to be moved with known displacements. Rather,
we used a freely moving calibration target that is much smaller than the measurement
domain itself and can be positioned at random positions and orientations over large dis-
tances by a team of divers.

We continued characterizing the performance of our calibration method. We vali-
dated a precision below 2 % of the calibration target dimension (30× 30 cm2 checker-
board tile), corresponding to a triangulation accuracy below 1 cm over the entire mea-
surement volume. Correcting the optical distortion across the refractive interface from
air to water, the calibration method correctly captures the intrinsic camera properties
such as the focal length of the lenses and the extrinsic camera positioning and orien-
tations. An assessment of the robustness and convergence of our camera calibration
method revealed that a minimum of 15 calibration images is required to obtain a valid
camera calibration. Increasing the number of calibration images better samples the
measurement domain and improves spatial accuracy. Finally, tracking a group of tuna
fish over a large distance demonstrated the application of our camera calibration to bio-
logical fluid mechanics and the tracking of fish in three spatial dimensions.
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Chapter 3 introduced algorithms used to perform time-resolved three-dimensional
tracking of fish in a large school. We first explained several challenges in imaging a com-
plex underwater environment and described the directional dependent (anisotropic)
projection of the fish by their position, and orientation. Subsequently, we presented im-
age processing routines to remove the image background and introduced several image
convolution filters to identify the fish over multiple scales by an elliptical contour func-
tion in the individual camera views. From the identified ellipse contour, we presented
a full integration of the framework of projective geometry to make our methods robust
against variations in the reprojection error over large distances. Using linear ray-tracing,
we showed how we match fish in stereoscopic correspondence and construct trifocal
and quadrifocal camera matches. We defined an integer assignment and presented a
direct solution strategy to find matches that best fit the different camera images. We
expanded this integer assignment to include recent advances in particle tracking from
experimental fluid mechanics and fitting of trajectories to perform the time-resolved
tracking of fish. Finally, we showed that forward, backward, and (again) forward track-
ing in time is crucial in obtaining long trajectories in the face of missing data, including
the tracking of fish behind large occlusions from surrounding predators.

We then presented the steps involved in post-processing and cleaning the tracking
data. We first filtered noise from elevated reprojection errors and segmented the data
to select long trajectories. Following the post-processing, we characterized the perfor-
mance of our tracking algorithms. First, we identified the fish image density and frame
displacement as the main parameters of input to the tracking algorithms. Expressing the
image density in ‘fish-image-per-pixel’ (fipp) and the frame displacement as ‘fish-swim-
per-frame’ (fspf), we obtained the lowest reprojection errors (∼ 0.25 fish image) and the
longest tracks (±160 frames) below 0.101 fipp and 0.5 fspf. Secondly, we computed the
probability of tracking into the next frame. We marked sharp boundaries for the im-
age displacement in the same region, while our methods break down after 0.227 fipp
local image source density. Finally, we further investigated the reliability of the track-
ing into the next frame and extracted a single tracking efficacy parameter. We obtained
high tracking reliability above an efficacy of 0.985, which drops off with increasing image
displacement and density, and error from the calibration while tracking at sub-optimal
imaging conditions.

Chapter 4 presented results obtained from the measurement technique and tracking
algorithms introduced in this thesis. From the multiple measurement weeks that were
performed over the course of four years, we first showcased a qualitative overview of
the tracking data. These included different schooling behaviors, with multiple modes of
milling, foraging, and a large variety of school shapes and escape responses including
rapid (flash) expansions.

Subsequently, we proceeded with a quantitative analysis of the school shape and in-
ternal distribution of fish. We started by identifying the center of gravity of the school
and compared the time series for school volume, the local fish density, and the dom-
inant, and subdominant aspect ratios. We then compared the variation of the aspect
ratios of the school for multiple data sets and revealed that the fish density in the school
does not simply scale with the volume but rather reached a constant density at higher
volumes. Subsequently, we continued to analyze time series for spatial moments of the
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radial fish distribution and showed that fish redistribute to the edges, suggesting a preda-
tor attack. Finally, we revealed a bimodality for the distribution of fish in the school as
the fish either distribute uniformly when in a cohesive mill or strongly redistribute to-
wards the boundary when in escape.

Next, we turned our attention to the kinematics of the fish school. We started by
presenting time series for the distribution of fish velocity and local polarization along-
side time series for the velocity of the school center of mass and mixed spatial moments.
Here we showed that the angular momentum of the school about its center of gravity is
inconclusive for the degree of milling while the volumetric rate-of-change is mostly in-
dicative of evading a predator. We then investigated the distribution of the kinetic energy
inside the school. From the kinematic decomposition, we identified three kinematic pa-
rameters that correspond to three types of distinct behavior namely, foraging (uniform
translation), milling (rotation), and dilation (radial in/outward motion). We presented a
ternary diagram for the kinematics of the school and presented a unique signature that
predominantly resides between milling and foraging. Furthermore, for an increasing de-
gree of milling, the school increasingly rotates around a single axis, and for the degree of
dilation, the school approaches a pure expansion when in escape.

The final part of this thesis further discussed our results in relation to local state vari-
ables of fish swimming velocity, local polarization of heading, and fish density. Most
notably, when the fish redistribute toward the edge of the school the swimming velocity
and local polarization increase, while the density decreases. Although this may be in-
evitable from the expanding geometry of the school, a more sophisticated point-of-view
actually hints at a hidden dependency between velocity, fish density, and polarization.
Such a functional dependency is at the heart of transport models in traffic flow mod-
eling. This suggests that similar mechanisms may too exist for schooling fish in three
dimensions; with many directions for future research.

5.1. OUTLOOK TO FUTURE WORK
Having unlocked the third dimension for the shape and kinematics of a realistically sized
fish school, swimming unconstrained in a semi-natural habitat, we have yet scratched
the surface. We hope that the current thesis will provide a foundation for future research,
for which we make several recommendations to improve and build on this thesis.

Firstly, the measurement technique of Chapter 2 and the subsequent tracking algo-
rithms are flexible to include more than four cameras. Although the current work has
been implemented to make optimal use of existing facilities and lighting conditions with
the least intrusion to the fish in the tank, the camera configuration has been greatly lim-
ited to narrow camera angles and baselines down to ∼ 5 o and ∼ 1 m, respectively. Such
limitations obviously restrict the accuracy of the tracking data and may introduce bias
in the velocity and acceleration statistics, although extensively validated. Therefore one
improvement could be made by imaging at a greater variation in camera positions rang-
ing beyond the span of the large window used to optically access the fish tank. This could
for example be achieved by installing camera positions above the tank or possibly using
waterproof camera equipment to image the fish throughout the tank.

Such improvements are not at all a trivial task. They may require a great deal of de-
sign iteration and experimentation. For example, imaging above the water surface down
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into the tank specific care should be taken for disturbances from the water surface. Here
one solution could be to use long focal-length lenses and position the cameras away to
limit the effective distortion in the image. On the other hand, one may decide to in-
stall optical boxes. Such can in turn be (partially) submerged to carry existing camera
equipment. However, viewing from different angles the fish may appear camouflaged or
poorly visible due to a lack of light. Furthermore, such additional hardware may require
special care for animal safety. Potential hazards may include fish jamming into equip-
ment, use of electricity underwater, corrosion, the beak of a curious sea turtle, and may
require the use of durable materials (e.g. from food processing).

Secondly, the application of the tracking algorithms of Chapter 3 can be further im-
proved with current advances in imaging. Here the multi-resolution wavelet and ellipse
identification image filters may be extended to include the increasingly complex and fine
features of the fish image projection. For example, considering high-order shape func-
tions. Furthermore, elaborating sophisticated solution strategies to solve the integer as-
signment for matching and tracking fish in three dimensions still carries the potential
to extract longer trajectories in the object domain. Moreover, advanced Kalman filters
could improve the accuracy of fish trajectories in the presence of significant uncertainty
and noise. For example, one could further integrate dual-space geometry and solve the
greater fish group displacement using object correlation routines. Finally, as not imple-
mented in the current work, one could as well update and correct the camera calibration
which may deflect and vibrate over the course of a measurement week.

Regarding the tracking of fish, perhaps more exciting would be to track the large va-
riety of predator and cohabitant fish, and their complex body pose, and motion. One
could explore novelties in machine learning and neural networks to fully resolve the
shape and motion of swimming sharks, as well as the fast start of a barracuda fish, and
the highly synchronous swimming kinematics of hunting tuna in a group, to name a few.
Such developments in existing and future (high-resolution) image data, could explore
novel questions on the interaction of the school with a shark and its tail-fin motion, as
well as the interaction between the school and the waving flipper of a sea turtle.

Finally, for the analysis presented in Chapter 4 we hope that the geometric and kine-
matics parameters will provide a systematic framework to characterize the behavior of
future schools in three dimensions. With preliminary analysis that remained beyond the
scope of the current work: ‘What is the spatial distribution of velocity around the center
of rotation in a milling fish school, is it a solid-body rotation or an (irrotational) fluid-
like vortex motion, or something in between?’, ‘Is a milling fish school fully correlated
in all three spatial dimensions, or is there a hidden anisotropy in which the school is for
example stratified in planar layers?’, ‘What is the apparent interaction between the fish
swimming velocity, local density, and polarization, and what is the implication for the
school’s cohesion?’, ‘What is the inner structure of the fish neighborhood (nearest neigh-
bors, residence time, mean free path, etc.), do fish lock on to preferential positions in
each other’s wake?’, ‘What is the evolution in distance between identified fish pairs, and
can we extract a meaningful interaction (or social force) from their relative approach
and departure?’. Facing such questions, this thesis contributes frameworks to analyze
the shape and kinematics, which may find future use in, for example, delineating the
predator attack from the milling state of the school.
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5.2. SCIENTIFIC CONTRIBUTION AND IMPACT
Although this thesis extensively focused on harvesting the three-dimensional tracking
data, its novelty is leveraged by its application to a realistic quasi-field setting. In par-
ticular, the unique ocean aquarium facility present at the Rotterdam zoo has allowed
the tracking of fish in a relatively unconstrained and semi-natural habitat. This has not
only presented the tracking of an increased number of fish at a length scale much larger
than previously attempted but as well supported a natural schooling behavior at a scale
that is hardly possible in a laboratory setting. Therefore, the novelty of the current con-
tribution provides a first measurement of a realistically sized fish school, in a realistic
environment. This has a direct impact to further our knowledge and fundamental un-
derstanding of the collective behavior and social self-organization of fish schooling as
well as the associated biomechanics and fluid dynamics.

For example, we have shown that the school of fish in the Rotterdam zoo is not simply
uniformly distributed in space. Actually, the distribution of fish within the school evolves
and progresses when interacting with a predator. This not only provides new insight into
the variety in school shape but also gives new insight into the internal cohesion of the
fish school, which is free to split and distribute throughout the large tank. This result has
been obtained in the unconstrained environment of the large ocean aquarium of the
Rotterdam zoo. It could hardly have been obtained in a laboratory setting because of the
physical constraints represented by the length scale of the school, and the impossibility
of supporting a natural schooling behavior.

In addition, we extensively investigated the three-dimensional kinematics of the fish
school, while ignoring its shape. Up to this point experimental work on variability of
collective states and associated transitional behavior had been limited to two dimen-
sions in a laboratory setting. In our work, we found that conventional metrics to quan-
tify the global order of the school are only partially relevant in an unconstrained three-
dimensional quasi-field setting. Therefore, we extended the previous work to include the
expansion and contraction of the school, which can only be studied in a large enough
fish tank such as the one present in the Rotterdam zoo. Since our framework relies solely
on partitioning the kinetic energy of the animal group, it provides a general framework
to compare with other model systems such as swarming midges, birds flocking in the
field, and other species that display collective behavior.

In a final discussion of this thesis, we focused on the variability in the schooling dy-
namics against our kinematic and shape parameters. Here we found that the schooling
fish display an interaction between local state variables in relation to the global shape
and kinematics state of the school. As the shape and structure of the school are thought
to emerge from the interactions among the fish, this provides new insight into the dy-
namics and social self-organization of a realistically sized fish school. Moreover, a cou-
pling between the local fish interaction and the global structure over the full extent of
the school is not at all a trivial result. Here lie open questions beyond the physical range
of the current experiment, for example, what sets the system size of a finite school?

This thesis work provides a new and unique availability of empirical tracking data
for schooling fish in three dimensions. Such availability has a direct impact on the ex-
traction of the underlying social rules and for example, improves the modeling of social
forces in three dimensions. Moreover, allowing the comparative biology between differ-
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ent model systems of collective behavior, such as insect swarming, bird flocking, and fish
schooling for the current work, helps deepen our understanding of different crowd dy-
namics. This has a direct impact on crowd control, the biomimetics of robotic schooling,
and collective flight, as well as in improving traffic flow, and potentially contributing to
our understanding of active fluids such as those found at the micron-scale. It is our hope
that the availability of the novel three-dimensional tracking data for the complex uncon-
strained dynamics of schooling fish brings a new paradigm where some of the inherent
assumptions in our understanding of planar fish schools may need to be readdressed.
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This appendix belongs primarily to Chapter 2.

A.1. OPTICAL DISTORTION ACROSS AN INTERFACE
Refraction across an interface between two media of different refractive indexes is gov-
erned by Snell’s law:

sin(θ2)

sin(θ1)
= ñ, (A.1)

where ñ = n1/n2 with n the refractive index, θ1 is the incident angle and θ2 is the exit
angle to the normal vector on the interface. For a flat interface, the image plane of a
camera can be warped parallel to the interface by the linear image mapping H :

H =
[

A p
vT 1

]
, (A.2)

where A is a 2 × 2 matrix that describes an affine image transformation that changes
the aspect ratio and skew of the image, p centers the image at the principle ray, and vT

describes a perspective change [1]. With these notations, the distortion mapping can be
written as:

x̂ = Ax+p√
λ‖Ax+p‖2 + (vT x+1)2

, (A.3)

where λ= (1−ñ2)/ f 2 with f the focal-length in pixels dimensions, and can be simplified
to the division model by Taylor expansion of the denominator [2].

A.2. RELATIVE CAMERA POSITIONS FROM CALIBRATED VIEWS
We determine the rigid body motion from a view c to another view c ′, by first finding
the best rotation, using the Kabsch algorithm [3]. We first compute the cross-covariance
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matrix A =∑
n, j Xn,c ′

j (Xn,c
j )T using the paired object coordinates Xn,c

j and Xn,c ′
j from mul-

tiple checkerboards. We then compute the singular value decomposition of the cross-
covariance matrix A =U SV T and extract the best rotation matrix Rc,c ′ as:

Rc,c ′ =U

1 0 0
0 1 0
0 0 det(UV T )

V T . (A.4)

Knowing Rc,c ′ , we use the rigid body motion Xn,c ′
j = Rc,c ′Xn,c

j +tc,c ′ to compute the trans-

lation vector tc,c ′ between the views.
From the relative position between the views we find a unique extrinsic camera posi-

tioning Rc , tc by taking the first view at reference and solving the minimization problem
for the translation tc ,

min
tc

∑
c 6=c ′,c ′

∥∥∥Rc,c ′tc ′ − tc,c ′ − tc
∥∥∥2

subject to t1 = 0

(A.5)

and the rotation Rc ,

min
Rc

∑
c 6=c ′,c ′

∥∥∥Rc,c ′Rc ′ −Rc
∥∥∥2

F

subject to R1 = I ,

(A.6)

where F is the Frobenius norm that sums over all matrix components squared and I
is the identity matrix. These linear least squares problems have a direct solution using
methods described in Boyd and Vanderberghe [4] and generalize to any number of views.

A.3. PROJECTED AREA OF A PLANAR OBJECT

A planar object with area Aplane and local plane coordinates X = [X Y 0]T is mapped to
the dewarped image-plane by x̃ = p(K [R t]X̃). The projected area in the dewarped image
plane Adewarped can be computed by integrating the determinant of the Jacobian of the
projection map:

Adewarped =
∫
Aplane

|∇p(X ,Y )|dXdY. (A.7)

This integral can be evaluated using standard numeric integration techniques.

A.4. MAGNIFICATION OF THE DISTORTION MAP
An image is dewarped according to the distortion map x̂ = m(x). Similar to Appendix A.3
the area deformation of the distortion map can be computed by integrating the determi-
nant of the Jacobian:

Adewarped =
∫
Aimage

|∇m(x)|dxdy. (A.8)

This integral can be used to correct the light intensity per pixel area for the varying mag-
nification of the distortion map. The average area expansion of the map is found by



A.5. POINT TRIANGULATION AND SKEWNESS

A

129

integration over the complete image:

J̃ = 1

Aimage

∫
Aimage

|∇m(x)|dxdy. (A.9)

A.5. POINT TRIANGULATION AND SKEWNESS
A point X in the object domain is triangulated by minimizing the point-line distance to
the optical rays from the different cameras. The optical rays associated with each view
are computed by inverting the camera calibration matrix K c \ x̃c kc where kc scales the
depth of field and x̃ = [x̂ ŷ 1]T . The object location is then triangulated by the linear least
squares problem:

min
X,kc

C∑
c

∥∥K c \ x̃c kc − [Rc tc ]X̃
∥∥2 . (A.10)

We then compute the skewness s as the average point-line distance between the optical
rays and the object location by:

s = 1

C

C∑
c

∥∥K c \ x̃c kc − [Rc tc ]X̃
∥∥ . (A.11)

(b)(a)

Figure A.1: Supplementary Optical distortions for an ultra-wide-angle lens (VENUS OPTICS LAOWA 7.5mm
MFT). a) Processed calibration image with a set of curved gridlines (second-order polynomial curves) and
intersections. b) Calibrated calibration image using the interface model of Appendix A.1.
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This appendix belongs primarily to Chapter 3.

B.1. PATCHING A BACKGROUND IMAGE
We patch a still background image across the image frames n = 1 · · ·N for each cam-
era c separately. We first initiate an empty background image Bi j = 1 for each pixel
position xi j = [x y]T where i and j are the pixel indices along x, and y , with (•)T the
vector transpose. We then recursively update the background image Bi j and suppress
non-stationary artifacts that move in the image foreground by randomly permuting the
frames n and drawing single images without multiplicity by the following steps:

1. We select an available input image I n
i j from the frame-set, see Figure B.1a.

2. We fit the current image background Bi j to the input image I n
i j by rescaling the

intensity values using a polynomial basis function expansion f (xi j ) =∑
k ckφk (xi j )

with terms φk (xi j ) = 1, x, y x2, x y, · · · by a weighted regression:

min
ck

∑
i j

B−2
i j

(
Ii j − f

(
xi j ;ck

)
Bi j

)2 , (B.1)

This is equivalent to fitting f (xi j ) to the image background division I n
i j /Bi j , see

Figure B.1b for a 2nd order polynomial basis function f (xi j ) that resolves the av-
erage variation in image intensity for the first iteration (top row).

3. We subtract the rescaled image background Bi j from the input image I n
i j and com-

pute the residual variation I∗i j = I n
i j − f (xi j )Bi j that we segment within a confi-

dence bound b for the standard deviation σ = ∑
i j (I∗i j )2/I J over image resolution

I J by −bσ≤ I∗i j ≤+bσ, see Figure B.1c.

4. From the rescaled image background f (xi j )Bi j and the segmented residual vari-
ation I∗i j we update the image background by B w+1

i j ← (w f (xi j )B w
i j + I∗i j )/(w +
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(41)
(c)(b)(a) (d)

(534)

(203) (638)

(2)

(1)

Figure B.1: Patching a background image for view (3) of Figure 3.3. Along the column space of the page: a)
Raw input images for randomly selected image frame n = 41, 534 and finally 203 for the first, second and final
iteration (N = 638). b) The fitted polynomial basis function f (xi j ) for rescaling the current image background.
c) Segmentation of the residual variation I∗i j . d) The updated background image Bi j . Along the row space, we

start at frame n = 41 in (a) and define a first iteration for a background image in (d), and repeat this process
randomly permuting through the frame-set (n = 41,534, · · · ,203), and finally separating the foreground from
the image background (iteration 638).

1) where w counts the iteration number and computes the average image back-
ground for the w th frame in the recursion, see Figure B.1d.

Steps (1) to (4) are repeated until we obtain a desirable result, separating the image fore-
ground from the image background, see the bottom row of Figure B.1. In step (3) one
can also define an image mask and use the inward interpolation (image flood-fill) of
Section 3.3.5 to remove fish in the foreground.

B.2. IMAGE SMOOTHING AND DIFFERENTIATION FILTERS
We derive the Savintsky-Golay image smoothing and differentiation kernels [1] as a set of
convolution filters that are used for fitting a generic polynomial basis function expansion
f (xi j∗ ) = ∑

k ckφk (xi j∗ ) to a predefined (arbitrary) pixel neighborhood i j∗ at the pixel
location i j . Similar to Equation B.1 the fitting of the basis function expansion f (xi j∗ ) on
the pixel neighborhood i j∗ can be written as:

min
ck

∑
i j∗

(
Ii j∗ −

∑
k

ckφk
(
xi j∗

))2

∀i j . (B.2)
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We vectorize Equation B.2 and define the coefficient vector c = [c1 · · · ck ]T , the (local)
image vector I = [I1 I2 · · · Ii j∗ ]T , and construct the Vandermonde-matrix M for the basis
functions φ(xi j∗ ),

M =


1 x1 y1 x2

1 x1 y1 . . . φk (x1)
1 x2 y2 x2

2 x2 y2 . . . φk (x2)
...

...
...

...
...

. . .
...

1 xi j∗ yi j∗ x2
i j∗ xi j∗ yi j∗ . . . φk

(
xi j∗

)
 , (B.3)

resulting in:
min

c
‖I−Mc‖2, (B.4)

with ‖•‖ the 2nd-norm over the vector entries. Equation B.4 has a direct solution through
the normal equations [2]:

c = (M T M)
∖

M T I , (B.5)

where (•)T is the matrix transpose.
The solution for the coefficients ck can be written as a set of convolution filters hk

from the row-space of (M T M) \ M T resulting in the image convolution ck
i j = hk ◦ Ii j ,

where ◦ stands for the convolution operator and where the pixel, and coefficient index-
ing, i j , and k, distribute naturally. We remark that the pixel neighborhood i j∗ can in-
clude multiple images over n image frames by i j n∗.

B.3. SHAPE PARAMETERS FROM THE ELLIPSE CONTOUR
Recall the definition of the (conic) contour function from Section 3.3.3 for the augmented
image coordinate x̃ = [x y 1]T :

x̃T C x̃ =
x

y
1

T  c1 c2/2 c4/2
c2/2 c3 c5/2
c4/2 c5/2 c6

x
y
1

= 0 with C =
[ 1

2 H 1
2 g

1
2 gT s

]
, (B.6)

where ck are the coefficients of the symmetric conic matrix C with coefficient vector
c = [c1 c2 c3 c4 c5 c6]T , and where g is the image gradient, H the image Hessian, s the
scale, and we call x =−H\g the midpoint. We now recover the shape parameters in case
Equation B.6 describes an ellipse contour.

Consider an ellipse contour (x/a)2+ (y/b)2 = 1 with semi-axes of size a ≥ b > 0 along
the x and y axes and situated at the origin in the x y-plane. Homogenizing the expression
by (x/a)2 + (y/b)2 −1 = 0 we define the diagonal matrix Λ= diag([a2 b2]T ) and write the
expression in the form of Equation B.6 giving x̃TΛ−1x̃ = 0. Subsequently, we write the
rigid body transformation x′ = Rx+t with rotation matrix R and translation vector t, and
invert x = RT x′−RT t. We substitute the homogeneous coordinates and obtain:

C =
[

RT −RT t
0T 1

]T [
Λ−1 0

0 −1

][
RT −RT t
0T 1

]
=

[
RΛ−1RT −RΛ−1RT t

−tT RΛ−1RT −1+ tT RΛ−1RT t

]
. (B.7)

From Equation B.7 it is clear that we can decompose the shape from the Hessian by
the Schur decomposition H = RΛ−1RT , where the shape can be obtained fromΛ and the
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orientation from the (unitary) rotation matrix R. The translation vector t is consistent
with the midpoint definition of Equation B.6, and 2s =−1+ tT RΛRT t gives the scale.

B.4. MANIPULATIONS TO AN ELLIPSE CONTOUR
In Figure B.2a to c we present three elementary manipulations of the position and shape
of an ellipse contour function. First, we displace and enlarge the ellipse rescaling its size.
This is achieved through a simple linear transformation x̃′ = T x̃ with:

T =
1/a 0 dx

0 1/a dy

0 0 1

 , (B.8)

where a is the scaling factor, and dx , and dy are the components of the displacement
vector d = [dx dy ]T , see Figure B.2a and b. Through substitution of x̃ = T −1x̃′ into the
contour function for the image conic of Equation B.6, we obtain:

C ′ = T −T C T −1, (B.9)

with (•)−1 the matrix inverse. Alternatively, the rescaling is achieved by modifying the
scale s′ = a2s − (1− a2)/2gT x; adjusting the value of the polynomial function instead of
rescaling the Hessian matrix.

Secondly, we perform a uniform expansion ε of the ellipse contour in Figure B.2c.
First, we decompose the conic matrix C in its parts (Equation B.6). We shift its midpoint
x =−H \ g at the origin and subsequently normalize the scale s. We perform the Schur-
decomposition H = RΛ−1RT to extractΛ, and add the uniform expansion ε:

Λ′ = (
Λ−1/2 +ε)−2

, (B.10)

which we transform back through Equation B.7.

B.5. DISTANCE FUNCTIONS ON THE ELLIPSE CONTOUR
Consider an ellipse contour function x̃T Cp x̃ = 0 and its coefficient vector cp . To test
whether an adjacent point xq = [x y]T , or line l̃q = [a b c]T with coefficient a,b,c in
homogeneous coordinates [3], falls within, or passes through, the span of cp , as is illus-
trated in Figure B.2d and e, we present two elementary distance functions dpq .

POINT-POINT DISTANCE

The distance of the point xq to the midpoint xp on the span of the ellipse Cp can be
naturally evaluated on the quadratic polynomial function:

dpq = d
(
cp ,xq

)=
√√√√1−

x̃T
q Cp x̃q

x̃T
p Cp x̃p

. (B.11)

The numerator in Equation B.11 evaluates the value of the polynomial for the coefficient
vector cp at the location of xq while the denominator normalizes the peak value for the
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displace enil-tniopdnapxeegralne point-point(a) (b) (c) (d) (e)

Figure B.2: Diagrams for different ellipse manipulations. a) Displacement d = [dx dy ]T (red) of the ellipse C
(green) to the new location C ′ (blue). b) Enlargement of the ellipse rescaling its semi-axis by the scaling factor
a (green to blue). c) Uniform expansion of the ellipse by the value ε, with consistent color-code to (a) and (b).
d) Ellipse point-to-point distance dpq , in blue the position xq at the interior of the contour function dpq ≤ 1.
e) Ellipse point-line distance dpq , in blue the point yq at the perimeter of the ellipse contour at dpq = 1.

polynomial function at xp . When the location of xq = xp , the fraction inside the square
root is 1 and the distance dpq gives 0. When the location of xq is at the perimeter of the
ellipse, the contour function gives x̃T

q Cp x̃q = 0 and the distance is 1. The square root
rescales the quadratic value to a linear distance dpq ∈ [0,∞) that is positive definite.

POINT-LINE DISTANCE

We evaluate the minimum distance between a line lq and the midpoint xp on the level-
set contour for cp . The closest point yq along lq is found by minimizing the constrained
distance on the polynomial function,

min
yq

(
x̃p − ỹq

)T Cp
(
x̃p − ỹq

)
subject to l̃T

q ỹq = 0.
(B.12)

Introducing a Lagrange multiplier we solve a linear system of equations [2]:

yq =−Hp
∖

gp −Hp
∖

lq
1− lT Hp \gp

lT
q Hp \lq

, (B.13)

and the distance function dpq reads,

dpq = d
(
cp , lq

)=
√√√√√ (

1− lT
q Hp \gp

)2

lT
q Hp \lq

(
gT

p Hp \gp −2sp
) , (B.14)

where lq = [a/c b/c]T is the in-homogeneous line definition. When dpq = 0 the line
l̃q matches the midpoint xp within the ellipse contour (dpq ≤ 1) and when dpq > 1 the
passes outside the ellipse perimeter on the positive definite domain dpq ∈ [0,∞).

B.6. CLUSTERING OF STEREOSCOPIC CORRESPONDENCES

Given the incidence matrices J c
pl and J c ′

ql for the stereoscopic linking of Section 3.4.1 we

perform the f -focal correspondence matching of Section 3.4.2 and extract the complete
cluster graph between views from graph cycles.
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LINKING OF CORRESPONDENCES

Starting with the stereoscopic camera pool of focality f = 2 we concatenate the stereo-
scopic correspondences l to the views c and c ′ into one incidence matrix J cc ′

pl , where the

image index p runs over all cameras. Subsequently, we link the stereoscopic correspon-
dences between three views c, c ′, and c ′′. We select another set of stereoscopic corre-
spondences h in an adjacent camera pair c ′ and c ′′ with incidence matrix J c ′c ′′

ph . We then

compute the bi-adjacency matrix B c ′
lh in the shared view c ′ that links the stereoscopic

correspondences in a perfect connectivity f −1:B c ′
lh = 1 when J cc ′

l p J c ′c ′′
ph = ( f −1),

B c ′
lh = 0 otherwise,

(B.15)

where we sum the repeated indices, and c ′ indicates the overlapping view.
Equation B.15 generalizes to linking correspondences between any number of cam-

eras in a pool of focality f . First, for a trifocal correspondence with f = 3, we define the
incidence matrix J cc ′c ′′

pl . Subsequently, we compute the overlap with an adjacent set h in

a trifocal camera pool c ′,c ′′,c ′′′ where the overlapping indices from J c ′c ′′c ′′′
ph in the shared

view c ′,c ′′ naturally count f −1 = 2 and gives the perfect connectivity for the bi-adjacency
B c ′c ′′

l h . We then raise the camera pool to the next one f +1 and repeat this process to the
pairing quadrifocal correspondences.

CONSTRAINING OF GRAPH CYCLES

Returning to the stereoscopic camera pool f = 2, the linked correspondences l and h
between views c, c ′, and c ′′ that join in view c ′ may further connect by a set of stereo-
scopic correspondences m in views c and c ′′ presenting a cyclic graph. We further limit
the bi-adjacency matrix B c ′

lh of Equation B.15 to a cyclic graph by the associated matrices

B c
l m and B c ′′

hm of the camera pool:{
B c ′

hl = 1 when B c ′
hl = 1 and B c

lmB c ′′
mh = 1,

B c ′
hl = 0 otherwise,

(B.16)

for all l , h and m. Equation B.16 can be updated by the matrix multiplication.
The same process holds for a trifocal camera pool f = 3. Here two trifocal correspon-

dence sets l and h, in views c,c ′,c ′′, and c ′,c ′′,c ′′′ connect in perfect overlap in views c ′,c ′′
via B c ′c ′′

lh . Following, they either form a cyclic graph via m in views c,c ′,c ′′′ or c,c ′′,c ′′′, and
Equation B.16 naturally applies to the associated bi-adjacency matrices. Continuing to
a quadrifocal camera pool f = 4 this process again generalizes.

EXTRACTION OF THE COMPLETE CLUSTER GRAPH

Returning to the stereoscopic camera pool f = 2, we extract the clustered stereoscopic
correspondences from the bi-adjacency matrix B c ′

lh of Equation B.16. As the bi-adjacency

matrix B c ′
lh is part of a graph cycle for the next focality f + 1 = 3, we read the trifocal

match directly from B c ′
l h = 1 and list s = 1 · · ·S trifocal correspondences. Subsequently,
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we decompose the bi-adjacency matrix B c ′
l h = J c ′

l s J c ′
sh and extract the incidence matrices

J c ′
l s , and J c ′

hs from the trifocal correspondence match s to the stereoscopic links l and

h. Finally, we relate these incidence matrices back to the images by J cc ′
ps = J cc ′

pl J c ′
l s and

J c ′c ′′
ps = J c ′c ′′

ph J c ′
hs which we concatenate into the single output incidence matrix J cc ′c ′′

ps .

We repeat this process for the remaining bi-adjacency matrices B c
lm and B c ′′

hm . Within
the segmentation of the stereoscopic correspondence, we generate all possible corre-
spondence matches. Again this process naturally carries over to any number of views,
where quadrifocal matches from the trifocal camera pool f = 3 can be clustered analog.

We finally extract complete cluster graphs from the input stereoscopic correspon-
dences by the diagrams in Figure 3.8b of Section 3.4.2. A result is shown in Figure B.3
starting from 337400 stereoscopic correspondences ( f = 2) and generating 213306 trifo-
cal, and 49699 quadrifocal correspondences at increasing focality f = 3,4.

B.7. ITERATIVE COST-FUNCTION SOLUTION

We devise a ‘Divide and Conquer’ strategy to solve the integer assignment in Section 3.5.3
for the cost-function sortation in l∗. For a data frame n we select λl∗ = 1 for:

1. The feasible extensions l∗ that first appear in the incidence Fl l∗ (‘Divide’).

2. The subset of unique l∗ that uniquely fills the image from J n
pl∗ (‘Conquer’).

We then repeat these two steps until no more entries are available in the constraints, and
every trajectory l is in its best extensions l∗. Secondly, we relax step one and solve step
two solely for the unique trajectories l∗ for J n

pl∗λl∗ ≥ 1. In this way, we automatically

reject ‘ghost-fish’ trajectories since they do not uniquely fill the image.

Seeding new tracks L by the predefined frame rate we march forward, backward, and
forward again over the images in the processing window W . We first apply our opti-
mization strategy to each frame n. In this way, we prevent branching an exponentially
growing number of feasible trajectories (roughly L∗ ∼O (L exp(N ))) and remain bounded
in the computer memory (roughly L∗ ∼O (L)). Secondly, we solve all available frames al-
together and suppress any remaining ghosts.

In Figure B.4 we show the resulting tracking during this process. First, in Figure B.4a,
we track 1350 segments of broken trajectories of the school in forward mode, giving only
a partial solution to the fish tracking. Secondly, in Figure B.4b, we track 4266 fish back-
ward. This is twice the amount of ±2000 fish that can be observed, and we find doubly-
tracked fish that yet uniquely fill the images. Finally, in Figure B.4c, we track 2297 fish
forward again and remove many of the fish doubles.
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)c()b()a(

Figure B.3: Triangulated correspondence matches. a) Stereoscopic triangulation between views (3) and (4) of
Figure 3.1a with a total of 337400 correspondences at narrow viewing angles (degeneracy). b) Trifocal triangu-
lation from views (2), (3), and (4) with a total of 213306 correspondences. c) Quadrifocal triangulation for view
(1)–(4) with a total of 49699 correspondences. On the top row of the page, we plot the distributions of repro-
duction error, in the middle the object triangulation, on the bottom we reproject view (3), inset a close-up. The
(narrow) camera baselines and angles are indicated by the plotted camera position and orientation. Note that
the peak in the error distribution elevates when the triangulation includes more views.
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(a)

(b)

(c)

Figure B.4: Windowed processing of the tracking data. a) Forward tracking appending newly processed image
frames starting from the object triangulation with a total of 1350 tracks. b) Backward tracking of the existing
time series, displaying doubly-tracked fish with a total of 4266 tracks. c) Forward tracking of the existing time
series, removing the majority of the fish doubles resulting in a total of 2297 tracks. All tracks shown here have
a length greater or equal to 50 frames.



B

140 B. APPENDIX

B.8. QUADRIC RECONSTRUCTION BY DUAL-SPACE GEOMETRY
An ellipsoid in object space is naturally expressed as a quadric surface [3] in the aug-
mented object coordinate X̃ = [X Y Z 1]T :

X̃T QX̃ =


X
Y
Z
1


T 

q1 q2/2 q4/2 q7/2
q2/2 q3 q5/2 q8/2
q4/2 q5/2 q6 q9/2
q7/2 q8/2 q9/2 q10




X
Y
Z
1

= 0 with Q =
[ 1

2 H3×3
1
2 G

1
2 GT S

]
. (B.17)

Here the coefficients qk of the 4×4 symmetric quadric matrix Q are stored in the coeffi-
cient vector q = [q1 q2 · · · q10]T , and analog to Equation B.6 we have the gradient vector
G, the Hessian matrix H3×3, the midpoint X =−H3×3\G, and the scale S = q10.

Following Cross and Zisserman [4], the coefficients qk in the quadric matrix Q can
be reconstructed using the dual-space geometry:

min
q∗

k ,λc

∑
c

∥∥∥λcC∗c −P cQ∗ P c T
∥∥∥2

. (B.18)

Here P cQ∗ P c T is the quadric projection in dual-space with C∗ =C−T and Q∗ =Q−T the
(dual) adjoint inverse [3] of the conic and quadric matrix C and Q, and λc is a scaling
factor to each view c.

Due to the number of independent parameters for qk (i.e. 10−1) and λc we need to
solve for (10−1)+C unknowns1, therefore Equation B.18 can be solved for a minimum of
3 independent viewing angles with (6−1)C knowns [4] through direct solution strategies
[2]. An example for 4 synthetic views is given in Figure B.5b to d.

We reconstruct the object quadric Q by first triangulating the midpoint X to align the
forward projection Q fo = P c T C c P c [3] by displacing the conics C c for each view c in
face of finite reprojection errors, see diagram Figure B.5a. To prevent severe elongation
in the depth of field for limited/insufficient (or degenerate [4]) viewing angles, we further
constrain the triangulation vector X for the midpoint of the dual quadric Q∗:

Q∗ =
[

R −X
0T 1

][
Λ3×3 0

0T −1

][
R −X

0T 1

]T

=
[

XXT +Q∗
3×3 X

XT −1

]
, (B.19)

where the diagonal matrix Λ3×3 encodes the shape and R an unknown rotation matrix
resulting in Q∗

3×3, and we solve for a spherical shape2 by,

Q∗
3×3 = q∗I3×3, (B.20)

with a single size q∗, an example is shown in Figure B.5c.
Equations B.19 and B.20 relax requirements on the minimum number of 3 views,

needing only to solve for the coefficients in Q∗
3×3 and reducing the number of unknowns

to 6+C with a minimum of 2 views; other approaches [4] may constrain a marked point

1The number of independent parameters in projective geometry excludes parameters related to the scale, for
further reading see Hartley and Zisserman [3].

2Solely constraining the midpoint makes the quadric solution susceptible to being a ruled hyperboloid.
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(b) (c)

(d)

(a)

(1) (2) (3) (4)1 2

Figure B.5: Quadric reconstruction. a) Diagram for the object quadric Q, the conic projection C∗ = PQ∗P T

to the image plane, and the forward quadric Qfo = P T C P or light-cone (dashed lines) from the projection
matrix P ; exaggerated, the difference between the midpoint triangulation X and quadric reconstruction Q to
elucidate sources of absolute error for the ray-tracing geometry. b) Ellipsoid reconstruction from synthetic
data. c) Spherical reconstruction with a constrained triangulation. d) Four views reprojected on the synthetic
image conics (black), with views (1) and (2) consistent with (a). In green the reprojection quadric contour and
midpoint (green cross), in cyan the reprojected sphere where the constrained midpoint correctly encircles the
conic midpoint in the projection (cyan circle). For (b) and (c) we render 1000 (approximate) equidistant points
on the unit sphere (Fibonacci sequence).

or provide (in-)equality constraints on the trace and determinant of Q∗
3×3. We then reg-

ularize the unconstrained quadric reconstruction Qunc of Equation B.18 by the spherical
shape Qshp of Equation B.20 using an ad hoc weighting function for the polynomial func-
tion in the object domain by Q ′ = (1−1/ f )Qunc + (1/ f )Qsph with f the focality number.

We remark that all operations of appendices B.3 to B.5 for image conic apply to the
quadric surface. For the general purpose of imaging in three dimensions, the quadric
reconstruction integrates the full knowledge of projective geometry and embeds the op-
tical transfer [5] for a pinhole camera. This provides added knowledge of the bounding
shape parameters in object space, here within the accuracy limits of the imaging sys-
tem. By the linearity of Equation B.18 the implementation is easily vectorized, and scales
without effort up to 104–105 positions as is common to particle tracking [6].

Finally, the polynomial function of Equation B.17 can be evaluated as a quadratic
kernel inside a Gaussian to apply correlation techniques in the object domain [7], for ex-
ample, to find the greater displacement of a fish group. Here the analytic representation
avoids voxelizing vast volumes of empty space when spanning a large length scale. How-
ever, due to the high time resolution of our image data, such further integration remains
beyond the need of the current thesis.
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(a)

(c)

(b)

Figure B.6: Supplementary Segmentation of the final tracking data. a) The raw tracking data from the recursive
track branching. b) Segmentation of the track length ∆T ≥ 50. c) Further segmentation of the normalized re-
projection error ε≤ 1/3. For (a)–(c) we present 1-second long tracks (20 frames) and color-code the normalized
reprojection error ε ∈ [0 1].
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(a)

(b)

(c)

( )

( )

( )

Figure B.7: Supplementary Resolving of large occlusions. a) A turtle passing, completely blocking the view. b)
A shark swimming in front of the school. c) A tarpon fish occluding the top of the school. All of the events have
little to no effect on the three-dimensional tracking, see the right column of the page.
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(c)
(2)

(4)(3)

(1)

(b)

(a)

Figure B.8: Supplementary Tracking results for a set of ultra-wide-angle lenses (VENUS OPTICS LAOWA 7.5mm
MFT). a) ‘Birds-eye’ render for post-processed 1-second long fish tracks. b) Front view aligned with the cam-
era views, showing the positions of the calibrated cameras from Chapter 2. c) The four views imaging the fish
school, overlayed the projected object ellipsoids for 1/2-second long tracks to prevent overcrowding the im-
ages; including a close-up view from camera 3 in the middle. Note the shape of the camera calibration in (b)
for the high optical distortion in (c).
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APPENDIX

This appendix belongs primarily to Chapter 4.

C.1. DATA DESCRIPTOR: CAMERA CALIBRATION

Table C.1 contains a simplified overview of the processed camera calibration data using
the methods described in Chapter 2. For the first measurement week (2017) we used a set
of NIKKOR AF-24mm lenses and from 2018 onward we switched to a set of VENUS OPTICS

LAOWA 7.5mm MFT with a greater field of view. All cameras have been calibrated with
the window model of Appendix A.1 substituted into a 3rd-order mapping to introduce
extra correction terms.

C.2. DATA DESCRIPTOR: PROCESSED TRACKING

All tracking data has been processed on different WINDOWS- and LINUX-based computer
clusters (INTEL as well as AMD-Opteron) with a large number of CPUs (between 8–256)
and sufficient internal memory (64–512GB). Each node was set up to process different
data sets in parallel and to have at least the equivalent computing power of an INTEL

CORE 4th Generation i7 laptop with 8–16GB of internal memory, as was partially used for
code development.

Table C.2 contains the results of the processed tracking data. From left to right we
review for each measurement week the fish schooling behavior following [1, 2]. We re-
port the recording settings including the (cropped) image resolution, number of frames,
the camera frame rate, and exposure time. Furthermore, we present the quality rating
of Chapter 3 that includes the tracked number of objects Lobj, the average number of
tracked frames Tobj, the efficacy of tracking into the next frame ηNF, and finally a quality
assessment based on a final visual inspection of the tracking data. Example time series
are presented in supplementary figures C.4 to C.9.
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Data-set Calibration Accuracy
ID Date View Positions Orientation Focal Error Skew No.

ä (C#S#) (y-m-d) [#] X [m] Y [m] Z [m] α [o] β [o] γ [o] feff [mm] ε [%] ε∗ [px] s [cm] [#]

Measurement Week August 2017

X C1S1 2017-08-09 1 2.830 0.058 0.596 10.00 -9.21 -3.45 24.85 2.04 2.22 1.31 333
X C1S2 2017-08-14 2 2.865 -0.058 -0.587 13.89 -3.34 -2.03 25.08 1.79 2.02 1.30 300

3 -2.825 0.051 -0.673 -14.20 0.31 -3.79 24.64 1.56 1.72 1.33 418
4 -2.869 -0.051 0.664 -10.48 -7.91 0.24 24.83 1.67 2.17 1.36 388

Measurement Week January 2018

X C2S1 2018-01-08 1 -2.618 -0.002 0.899 -7.62 -7.35 -2.06 11.32 2.91 1.27 1.24 193
X (C2S2) 2018-01-01 2 2.866 0.002 0.775 9.97 -8.05 2.25 11.26 3.25 1.94 1.43 198

3 -2.439 0.002 -0.821 -10.21 3.27 0.68 11.26 2.67 1.17 1.23 197
4 2.191 -0.002 -0.853 6.39 3.85 2.81 10.77 2.67 1.50 1.33 229

Measurement Week August 2018

X C3S1 2018-08-17 1 -2.668 0.004 0.899 -9.34 -6.60 3.19 10.79 2.99 1.41 1.11 221
2 2.876 -0.005 0.796 6.93 -8.59 2.70 10.68 3.14 1.53 1.14 196
3 -2.395 -0.005 -0.833 -5.63 0.85 -1.36 10.80 3.00 1.45 1.14 214
4 2.188 0.006 -0.862 -0.32 9.57 0.36 10.50 3.09 1.61 1.18 223

Measurement Week January 2019

X C4S1 2019-01-25 1 -2.728 0.016 0.908 -8.22 -12.03 1.36 10.60 2.89 1.52 1.13 405
X C4S2 2019-01-30 2 3.030 -0.017 0.766 14.84 -2.87 0.52 10.89 3.39 1.71 1.05 416

3 -2.636 -0.018 -0.818 -9.09 10.81 3.36 10.18 3.00 1.42 1.18 398
4 2.334 0.019 -0.856 14.92 9.73 4.19 10.28 3.04 1.45 1.07 374

Measurement Week October 2019

X C5S1 2019-10-21 1 -2.602 0.022 0.918 -9.54 -2.93 2.08 10.56 3.26 1.59 1.25 488
X C5S2 2019-10-25 2 2.964 -0.024 0.735 10.76 -3.87 -0.61 10.69 3.07 1.50 1.18 468

3 -2.651 -0.025 -0.808 -10.30 4.62 -0.02 10.62 2.58 1.18 1.19 475
4 2.289 0.027 -0.844 11.72 3.89 -0.83 10.14 2.68 1.28 1.18 497

Measurement Week February 2020

X C6S1 2020-02-24 1 -2.634 0.035 0.901 -18.46 -7.79 -3.18 10.86 4.30 2.02 1.25 419
X C6S2 2020-02-28 2 2.906 -0.037 0.775 13.27 -2.01 3.34 10.59 4.22 2.05 1.34 407

3 -2.500 -0.042 -0.815 -11.81 7.36 -0.06 10.51 3.78 1.89 1.28 439
4 2.227 0.043 -0.860 4.73 2.34 2.12 10.12 4.38 2.05 1.42 431

Table C.1: Data Descriptor Processed calibration data. All included data is indicated by a check mark (X)
and excluded data by a cross mark (X). From left to right we find the data set identifier (ID), the date of the
calibration data, the camera number (1–4), the computed camera positions X , Y , and Z , the (yaw-pitch-roll)
orientation angles α, β, and γ, the effective focal-length feff, and the accuracy assessment of Chapter 2 in-
cluding the: the average reprojection error ε in percentage and ε∗ in pixel dimension, the skew error s in
centimeter, the number of used calibration images (No.). Justification of disregarded data is marked by (· · ·).
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C.3. PRINCIPAL SEMI-AXES AND BOUNDING ELLIPSOID

We find the principal semi-axes for an equivalent ellipsoid in Figure C.1a for the point
cloud Xi with positions i = 1 · · · I in three consecutive steps. First, we shift the origin of
the coordinate system to the center of mass XM:

Xi /M = Xi −XM. (C.1)

Secondly, from the 3×I matrix M = [X1/M ,X2/M , · · · ,XI /M ] we compute the singular value
decomposition M =UΣV T to find the unitary matrix V .

The matrix V gives a linear transformation matrix to align with the principal compo-
nents of the point cloud Xi /M. From V we then define a (proper) rotation matrix R:

R = sgn(det |V |)V , (C.2)

where the sign function sgn(•) for the determinant det | • | constrains det |R| = 1, with
similarity to the Kabsch algorithm [3]. This rotation matrix R = [e1 e2 e3] provides us
with a set of basis vectors in the direction of the principal components.

Subsequently, we invert the rotation matrix and compute the values λ= [λ1 λ2 λ3]T

of the semi-axes from the arithmetic mean, and (twice) the standard deviation:

λ= 〈∣∣RT Xi /M
∣∣〉+2

√〈(∣∣RT Xi /M
∣∣−〈∣∣RT Xi /M

∣∣〉)2
〉

, (C.3)

where | • | is the absolute value, and 〈•〉 =∑I
i=1(•)i /I are the averaging brackets.

Finally, we sort the principal axes {e1 e2 e3} in descending order for the semi-axes
values λ1 > λ2 > λ3. This gives the sequence of linear transformations of an arbitrary
point cloud to the unit sphere.

In Figure C.1b and c, we plot two examples of the equivalent ellipsoid that is con-
structed from the principal semi-axes. In Figure C.1a, we find a good representation of
the aspect ratio of the school for the semi-axes λ1 > λ2 > λ3. In Figure C.1b, we find a
good fit for the enlarged volume of the school that is escaping from a predator for the
example time series of Figure 4.4 onward. In both examples, the bounding ellipsoid en-
closes 71.03±2.72 % and 76.45±2.26 % of the fish in the school respectively, and provides
reference imagery for interpreting the distribution of fish in the school.

C.4. MOMENTS OF THE RADIAL FISH DENSITY DISTRIBUTION

We derive the explicit expressions for the first, second, and third central moment for the
radial probability density function f (r ) of equations 4.2–4.4 of Section 4.2.2 along the
radial coordinate ri = ‖X̃i /M‖ away from the origin, see Figure C.2a. We substitute the
probability f (ri ) = 1/(4π f0r 2

i ) of finding a position i at the spherical shell of radius ri

with f0 = ∑I
i=1 1/(4πr 2

i ) a normalization factor such that
∫ ∞

0 f (r )dr = 1, and change the
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(a) (b) (c)

Figure C.1: Bounding ellipsoid for the fish school. a) Diagram for the bounding ellipsoid from the center of
mass XM with principle axes {e1,e2,e3}. b) A slender mill (C1S19 in Table C.2): the bounding ellipsoid captures
the high aspect ratio, see green dots. c) An escape response (C1S21 in Table C.2 and Figure 4.4): the bounding
ellipsoid captures the enlarged volume and spherical shape of the school, see green dots.

integration to a discrete summation for the:

mean: µ=
∫ ∞

0
r f (r )dr = ∑

i∈I∗

ri

4π f0r 2
i

=
∑

i∈I∗ 1/ri∑
i∈I∗ 1/r 2

i

, (C.4)

variance: σ2 =
∫ ∞

0

(
r −µ)2 f (r )dr = ∑

i∈I∗

(
ri −µ

)2

4π f0r 2
i

=
∑

i∈I∗
(
1−µ/ri

)2∑
i∈I∗ 1/r 2

i

, (C.5)

and skew: s3 =
∫ ∞

0

( r −µ
σ

)3
f (r )dr = ∑

i∈I∗

( ri −µ
σ

)3 1

4π f0r 2
i

=
∑

i∈I∗
( ri−µ

σ

)3
/r 2

i∑
i∈I∗ 1/r 2

i

, (C.6)

For practical purposes, we truncate the integration bounds and compute statistics over
the subset I∗ = {ri |0 ≤ ri ≤ 3/2}, with upper bound ri ≤ µ+2σ for the skew, and correct
f0 accordingly.

In Figure C.2b and c, we plot two reference distributions for f (r ) for the time series of
Figure 4.4 (C1S21 in Table C.2). We inset the mean µ (magenta), the standard deviation
bounds µ±σ (orange) and skew bias µ+ sσ (green) together with the upper integration
bound µ+2σ (cyan), and uniform distribution. In Figure C.2b, we plot the average radial
fish distribution f (r ) for negative skew values (s < 0). Here the are redistributed towards
the edges of the school (ξ=µ/2σ∼ 0.75/(2·0.25) = 1.5 > 0.87). In Figure C.2c, we plot the
average radial fish distribution f (r ) for positive skew values (s > 0) and find a shape that
clusters toward the origin of the school (ξ=µ/2σ∼ 0.5/(2 ·0.35) ' 0.71 < 0.87).

In Figure C.2d, we plot the conditional probability density function f (r |t ) for the ra-
dial fish distribution f (r ) over the time evolution t . The axis normalization correctly
normalizes the shape of the school at great variation in volume. Furthermore, the ma-
jority of the fish are found within the restricted integration bounds µ+2σwhich justifies
its value. Finally, we improve interpretation for the skew s plotting the evolution ‘skew
bias’ from the mean µ and standard deviationσ by µ+sσ ∈ [µ−σ,µ+σ], where the skew
s is either biased positive or negative standard deviation σ.
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(a) (c)(b)

(d)

Figure C.2: The radial distribution function. a) Diagram for the radial position r at the principle axes {e1,e2,e3}.
b) Radial fish distribution f (r ) at positive skew (s > 0). c) Radial fish distribution f (r ) at negative skew (s < 0).
In (b) and (c) are inset: a uniform density distribution (black line), the moment mean µ (magenta), standard
deviation bounds µ±σ (orange), the moment skew bias µ+ sσ (green), and the upper bound for the moment
skew µ+2σ (cyan dashes). d) Conditional probability density function f (r |t ), inset the boundary of the semi-
axes (white dashes), the values for the moments with consistent color code as in (b) and (c) along the time
series t . All color coding is consistent with Figure 4.4.

C.5. DISTRIBUTION OF VELOCITY INSIDE THE SCHOOL

Recall the velocity vector Ui (t ) = [Ui Vi Wi ]T of Section 4.3.1 for the components in X ,
Y , and Z . We plot distributions of the components U , V and W , and the velocity magni-
tude Ui (t ) = ‖Ui (t )‖ by the average (swimming) velocity Ū (t ) = 〈Ui (t )〉, median velocity

Med(Ui (t )), and standard deviation σU (t ) =
√
〈(Ui (t )−Ū (t ))2〉.

In Figure C.3a, we plot the joint distribution function f (U ,V ) of the in-plane velocity
components U and V for the example time series of Figure 4.6 (C1S21 in Table C.2). We
find that U and V are distributed in an overall ring shape for the milling school, within
the accuracy range of the measurement system. In Figure C.3b, we plot the joint distri-
bution f (W,

p
U 2 +V 2). Here we find that the out-of-plane component W together with

the in-plane components
p

U 2 +V 2 construct a torus at the (plane) ring shape.

In Figure C.3c, we plot the evolution of the distribution in velocity magnitude U
against time t by the conditional probability distribution f (U |t ). The majority of the
variation is captured by the average velocity Ū (t ) and standard deviation σU (t ), with lit-
tle changes between the mean Ū (t ) and median swimming velocity Med(Ui (t )). This
suggests that the shape of the velocity distribution inside the school is little affected by
the predator engaging in an attack.
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We further plot the time evolution in the rescaled velocity magnitude Ũi (t ) of Sec-

tion 4.3.2 in Figure C.3d and normalize with the average value ¯̃U (t ) = 〈Ũi (t )〉. We com-
pute similar quantities for the median rescaled velocity Med(Ũi (t )) and rescaled velocity
standard deviation σŨ (t ), like before. We compare results for the normalized standard

deviation bounds 1±σŨ (t )/ ¯̃U (t ) and median value Med(Ũi (t ))/ ¯̃U (t ) with Figure C.3c
and find only little variation in the rescaled velocity. This supports evidence that the
overall shape of velocity distribution on the evolution of the semi-axes of the school is
little affected by external interactions.

Finally, in Figure C.3e, we plot the relative density distribution f (Ũ / ¯̃U )/ fpeak of the

(normalized) rescaled velocity Ũ / ¯̃U , where fpeak normalizes the peak value of the distri-
bution. We proceed to compare its shape against a Chi-distribution for random velocity
fluctuations with zero mean and dimensionality parameter k = 1,2,3, · · · . We modify this
distribution to include a (simplistic) toroidal velocity distribution1:

f (U ;k,ν) ∼U k−1 exp(−U 2)exp(−ν (ν−2U )). (C.7)

The extra parameter ν gives the ratio between the torus cross-section and revolution axis
radii. The distribution can be properly normalized by numerical integration.

For ν = 0 we obtain the Rayleigh distribution when k = 2 and Maxwell-Boltzmann
distribution when k = 3, which are canonical velocity distributions in planar turbulence,
and a non-interacting (ideal) gas in three dimensions. When ν > 0 we set k = 2 and
the extra exponential term exp(−ν(ν−2U )) raises the initial reference scaling U k−1 →
U k for U < 1, as can be shown through a 1st-order Taylor expansion exp(−ν(ν−2U ))

T'
exp(−ν2)+2νexp(−ν2)U , and decays faster for U > 1, by the extra exponential decaying
factor. In Figure C.3e we trace a torus shape with ν= 4/3 and k = 2 as can be seen from
the inset reference lines. This captures the torus shape of Figure C.3a for the distribution
of the kinetic energy over the degrees of freedom at the semi-axes.

1We substitute the Chi-distribution f (U ;k) =p
2/Γ (k/2)U k−1 exp(−U 2) ∼U k−1 exp(−L ) with a polynomial

function L = (U 2 +V 2 +W 2)+ν(ν− 2
√

U 2 +V 2) for a torus in components U , V , and W . For the plane
velocity magnitude U , this results in L ∼U 2 +ν(ν−2U ) and can be substituted with k = 2.
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(a) (b) (e)

(c)

(d)

Figure C.3: Velocity distribution. a) Joint probability density function for the in-plane velocity components
f (U ,V ). b) Joint probability density function for the out-of-plane velocity component f (W, (U 2 +V 2)1/2).
c) Conditional probability density function of the linear velocity f (U |t ) along the time series t , inset are
the mean velocity Ū (t ) (magenta), the median velocity Med(Ui (t )) (red) and the standard deviation bounds

Ū (t )±σU (t ) (green). d) Conditional probability density of the normalized velocity at the semi-axes f (Ũ / ¯̃U |t ),

along the time series t . We inset the mean velocity = 1 (magenta), median velocity Med(Ũi (t ))/ ¯̃U (t ) (red) and

standard deviation bounds 1±σŨ (t )/ ¯̃U (t ) (green). e) The normalized velocity relative density distribution

f (Ũ / ¯̃U )/ fpeak. Inset the normalized statistics from (d) with consistent color-code and several sample curves
for the plane Rayleigh distribution (k = 2, top, light grey), the Maxwell-Boltzmann distribution (k = 3, middle,
dark grey) and the modified Chi-distribution for a Torus (k = 2 and ν= 4/3, bottom, black). The color-coding
follows Figure 4.6.
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1 2 3

(a)

(b) (e)

(c) (f)

(d) (g)

1 2 3

Figure C.4: Supplementary Shape, density, and inner fish distribution for a cylindrical fish mill (C1S8 in Ta-
ble C.2 and Figure 4.1b-left). a) Three snapshots of the fish school: (1) the school is in a compact milling state
t = 5 s, (2) the school slightly dents to avoid the predator t ∼ 5 to 15 s, (3) the school returns to a skewed mill
after the predator passes t = 25 s onward. b) Time series for the volume V (t ) (black) and the average local fish
density 〈ρi (t )〉 (blue dashes), inset the time snapshots of (a). c) Time series of the dominant aspect ratio η1(t )
(red), and the subdominant aspect ratio η2(t ) (blue). d) Time series for the moment mean µ(t ) (magenta),
standard deviation σ(t ) (orange) and skew s(t ) (green), and the inner distribution parameter ξ(t ) =µ/2σ from
the spatial moments (black). e) The average local density 〈ρi (t )〉 plotted against the volume V (t ) of (b), the
reference line (black dashes) indicates a uniform density for a school of 2000 fish. f) Aspect ratios η1(t ) (red)
and η2(t ) (blue) of (c) plotted against the volume V (t ) of (b). g) Locus drawn by the skew s(t ) and the inner fish
distribution parameter ξ(t ) from (f).
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(a) (e)

(b) (f)

(c)
(g)

(d)

(h)

1
2 3

Figure C.5: Supplementary Velocity, polarization, and partitioning of the kinematics for the milling school of
Figure C.4. a) Time series for the average fish velocity Ū (t ) (magenta) and the standard deviation σU (t ) of
the fish velocity distribution (orange) alongside the local fish polarization 〈φi (t )〉 (blue), inset the snapshot
(1)–(3). b) Time variations of the milling number M(t ) (red), the rotation number R(t ) (magenta), foraging
number F (t ) (green), dilation number D(t ) (cyan for E > 0 and blue for E < 0), isochoric number I (t ) (orange).
c) ‘Phase portrait’ drawn by the transient schooling dynamics from the milling number M(t ), foraging number
F (t ), and dilation number D(t ), inset the plane M +F +D = 1 that joins through the axes values 1. d) The
ternary diagram that is extracted from the plane M +F +D = 1 from (c), the grey shading indicates time t . e)
Plotting of the polarization 〈φi (t )〉 against the average velocity Ū (t ) from (a). f) Rotation number R(t ) against
milling number M(t ), the black line gives the upper bound R = M . g) Expansion number E(t ) against the
dilation number D(t ), the black line gives the lower and upper bound(s) D = |E |. h) The expansion number
E(t ) against the foraging number F (t ).
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1 2 3

(a)

(b) (e)

(c) (f)

(d) (g)

1 2
3

Figure C.6: Supplementary Shape, density, and inner fish distribution for an excited fish mill (C1S23 in Ta-
ble C.2 and Figure 4.2b-left). a) Three snapshots of the fish school: (1) the school avoiding a predator t = 3.5 s,
(2) the school denting sideways to avoid another predator t ∼ 9 to 15 s, (3) the school avoiding a passing turtle
t = 14 s onward. b) Time series for the volume V (t ) (black) and the average local fish density 〈ρi (t )〉 (blue
dashes), inset the time snapshots of (a). c) Time series of the dominant aspect ratio η1(t ) (red), and the sub-
dominant aspect ratio η2(t ) (blue). d) Time series for the moment mean µ(t ) (magenta), standard deviation
σ(t ) (orange) and skew s(t ) (green), and the inner distribution parameter ξ(t ) = µ/2σ from the spatial mo-
ments (black). e) The average local density 〈ρi (t )〉 plotted against the volume V (t ) of (b), the reference line
(black dashes) indicates a uniform density for a school of 2000 fish. f) Aspect ratios η1(t ) (red) and η2(t ) (blue)
of (c) plotted against the volume V (t ) of (b). g) Locus drawn by the skew s(t ) and the inner fish distribution
parameter ξ(t ) from (f).
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(a) (e)

(b) (f)

(c)
(g)

(d)

(h)

1
2 3

Figure C.7: Supplementary Velocity, polarization, and partitioning of the kinematics for the excited fish mill
of Figure C.6. a) Time series for the average fish velocity Ū (t ) (magenta) and the standard deviation σU (t ) of
the fish velocity distribution (orange) alongside the local fish polarization 〈φi (t )〉 (blue), inset the snapshot
(1)–(3). b) Time variations of the milling number M(t ) (red), the rotation number R(t ) (magenta), foraging
number F (t ) (green), dilation number D(t ) (cyan for E > 0 and blue for E < 0), isochoric number I (t ) (orange).
c) ‘Phase portrait’ drawn by the transient schooling dynamics from the milling number M(t ), foraging number
F (t ), and dilation number D(t ), inset the plane M +F +D = 1 that joins through the axes values 1. d) The
ternary diagram that is extracted from the plane M +F +D = 1 from (c), the grey shading indicates time t . e)
Plotting of the polarization 〈φi (t )〉 against the average velocity Ū (t ) from (a). f) Rotation number R(t ) against
milling number M(t ), the black line gives the upper bound R = M . g) Expansion number E(t ) against the
dilation number D(t ), the black line gives the lower and upper bound(s) D = |E |. h) The expansion number
E(t ) against the foraging number F (t ).
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(a)

(b) (e)

(c) (f)

(d) (g)

1 2 3

Figure C.8: Supplementary Shape, density, and inner fish distribution for long time-series of a small foraging
school (C2S17 in Table C.2 and Figure 4.3b-left). a) Three snapshots of the fish school foraging through the large
measurement domain at respective times. b) Long time-series for the volume V (t ) (black) and the average local
fish density 〈ρi (t )〉 (blue dashes), inset the time snapshots of (a). c) Long time-series of the dominant aspect
ratio η1(t ) (red), and the subdominant aspect ratio η2(t ) (blue). d) Long time-series for the moment mean
µ(t ) (magenta), standard deviation σ(t ) (orange) and skew s(t ) (green), and the inner distribution parameter
ξ(t ) = µ/2σ from the spatial moments (black). e) The average local density 〈ρi (t )〉 plotted against the volume
V (t ) of (b), the reference line (black dashes) indicates a uniform density for a school of 200 fish. f) Aspect ratios
η1(t ) (red) and η2(t ) (blue) of (c) plotted against the volume V (t ) of (b). g) Locus drawn by the skew s(t ) and
the inner fish distribution parameter ξ(t ) from (f).
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(a) (e)

(b) (f)

(c)
(g)

(d)

(h)

1 2 3

Figure C.9: Supplementary Velocity, polarization, and partitioning of the kinematics for the long time series
foraging school of Figure C.8. a) Time series for the average fish velocity Ū (t ) (magenta) and the standard
deviation σU (t ) of the fish velocity distribution (orange) alongside the local fish polarization 〈φi (t )〉 (blue),
inset the snapshot (1)–(3). b) Time variations of the milling number M(t ) (red), the rotation number R(t )
(magenta), foraging number F (t ) (green), dilation number D(t ) (cyan for E > 0 and blue for E < 0), isochoric
number I (t ) (orange). c) ‘Phase portrait’ drawn by the transient schooling dynamics from the milling number
M(t ), foraging number F (t ), and dilation number D(t ), inset the plane M +F +D = 1 that joins through the
axes values 1. d) The ternary diagram that is extracted from the plane M +F +D = 1 from (c), the grey shading
indicates time t . e) Plotting of the polarization 〈φi (t )〉 against the average velocity Ū (t ) from (a). f) Rotation
number R(t ) against milling number M(t ), the black line gives the upper bound R = M . g) Expansion number
E(t ) against the dilation number D(t ), the black line gives the lower and upper bound(s) D = |E |. h) The
expansion number E(t ) against the foraging number F (t ).
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