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Handling Geological and Economic
Uncertainties in Balancing Short-Term
and Long-Term Objectives in
Waterflooding Optimization

M. Mohsin Siraj and Paul M. J. Van den Hof, Eindhoven University of Technology, and
Jan-Dirk Jansen, Delft University of Technology

Summary

Model-based economic optimization of oil production has a sig-
nificant scope to increase financial life-cycle performance. The
net-present-value (NPV) objective in this optimization, because
of its nature, focuses on long-term gains, whereas short-term pro-
duction is not explicitly addressed. At the same time, the achieva-
ble NPV is highly uncertain because of strongly varying
economic conditions and limited knowledge of the reservoir-
model parameters. The prime focus of this work is to develop
optimization strategies that balance both long-term and short-term
economic objectives and also offer robustness to the long-term
NPV. An earlier robust hierarchical optimization method honor-
ing geological uncertainty with robust long-term and short-term
NPV objectives serves as a starting base of this work. We address
the issue of extending this approach to include economic uncer-
tainty and aim to analyze how the optimal solution reduces the
uncertainty in the achieved average NPV. An ensemble of varying
oil prices is used to model economic uncertainty with average
NPVs as robust objectives in the hierarchical approach. A
weighted-sum approach is used with the same objectives to quan-
tify the effect of uncertainty. To reduce uncertainty, a mean-var-
iance-optimization (MVO) objective is then considered to
maximize the mean and also minimize the variance. A reduced
effect of uncertainty on the long-term NPV is obtained compared
with the uncertainty in the mean-optimization (MO) objectives.
Last, it is investigated whether, because of the better handling of
uncertainty in MVO, a balance between short-term and long-term
gains can be naturally obtained by solving a single-objective
MVO. Simulation examples show that a faster NPV buildup is
naturally achieved by choosing appropriate weighting of the var-
iance term in the MVO objective.

Introduction

Dynamic optimization of waterflooding has shown significant
scope for improvement of the economic life-cycle performance of
oil fields compared with a conventional reactive strategy (Brouwer
and Jansen 2004; Sarma et al. 2005; Jansen et al. 2008; Chen and
Oliver 2010; Chen et al. 2010; Foss 2012; Van den Hof et al.
2012). In these studies, the financial measure NPV is maximized.
NPV is defined as the cumulative discounted cash flow
(CDCEF) over the production life cycle of the reservoir. Here, we
only consider contributions to the NPV originating from the injec-
tion and production of fluids, whereas other contributions, such as
capital expenditures, do not play a role in the optimization formu-
lation. The optimization problem considered in the publications
mentioned previously focuses on long-term gains, whereas short-
term production is generally neglected. This typically results in
low short-term gains compared with those resulting from a reac-
tive strategy. Furthermore, because of the high levels of uncer-
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tainty in this model-based economic optimization, the resulting
optimal strategy is highly uncertain. This uncertainty mainly
arises from strongly varying economic conditions and from geo-
logical uncertainties in the modeling process of waterflooding.

As a result, the potential advantages of such optimization are
not fully realized and the risk of not reaching the predicted NPV
becomes very high. High short-term gains are often important to
maximize cash flow or meet short-term goals such as production
contracts. An (ad hoc) way to increase the momentary rate of oil
production, and hence the short-term gains while maintaining a
long-term objective, has been proposed in van Essen et al. (2011),
who used a lexicographic or hierarchical multiobjective-optimiza-
tion approach. NPV with a high discount factor has been maxi-
mized as a secondary objective to improve short-term gains under
the condition that the primary objective (i.e., an undiscounted
NPV) stays close to its optimal value. Chen et al. (2012) added
robustness while balancing both objectives through solving a ro-
bust optimization problem under geological uncertainty. An aver-
age short-term NPV over an ensemble of reservoir models has
been maximized while explicitly enforcing, by use of an aug-
mented Langrangian method, the optimality condition of the aver-
age long-term NPV as a constraint. The average objectives have
been inspired by van Essen et al. (2009). In Chen et al. (2012) and
Fonseca et al. (2014), the hierarchical approach of van Essen
etal. (2011) has been extended in a similar fashion but by use of a
different optimization method.

The main focus of this work is to devise optimal solutions to
the life-cycle-optimization problem that balance short-term and
long-term gains, and at the same time provide robustness to the
predicted NPV under both economic and geological uncertainty.
Starting with a base example from the work of van Essen et al.
(2011) and Fonseca et al. (2014), we address this question: Can a
similar robust framework with primary (long-term) and secondary
(short-term) objectives be formulated under economic uncer-
tainty? And, more importantly, do these robust multiobjective-
optimization (MOO) formulations provide better uncertainty han-
dling? An ensemble of varying oil prices is considered to model
economic uncertainty, and an average of long-term and short-term
NPV over the ensemble is optimized by use of the hierarchical
approach. A redundant degrees-of-freedom (DOFs) analysis for
the robust long-term NPV solution is explicitly performed and it
is shown that the solution is nonunique, allowing a short-term
objective to be optimized, as in Siraj et al. (2015b).

To answer the question of uncertainty handling of MOO, a
more-generic weighted-sum MOO approach with the same objec-
tives is used to characterize and quantify the effect of the uncer-
tainty on the objective functions. With varying weights, it leads to
a so-called robust Pareto curve, which quantitatively gives the
bounds of the effect of uncertainty on the primary- and second-
ary-objective functions. The definition or selection of the robust
objectives in MOO 1is an important consideration because it
defines how the uncertainty is treated in an optimization problem.
These average or MO objectives are classified as risk-neutral
approaches (Rockafellar 2007). MO includes uncertainty in the
optimization framework, but the optimized solution does not lead
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to a reduced uncertainty in the achieved NPV. For better uncer-
tainty handling of these MOOs, we are inspired by the seminal
work of “risk-return” portfolio management (Markowitz 1952),
which has been applied to robust waterflooding optimization under
geological uncertainty by Capolei et al. (2015b), to consider a risk-
averse MVO objective. In MVO, the risk is quantified by the var-
iance of the NPV distribution. MVO with maximization of the av-
erage NPV minimizes the variance of the NPV distribution. The
robust weighted-sum approach is then used with long-term and
short-term MVO objectives. The proposed approach provides a
more-robust solution for the long-term NPV compared with the
MO approach. Note that these robust MOO approaches can easily
be extended to consider other risk-averse objectives, such as mean-
conditional value at risk and mean-worst case (Rockafellar 2007;
Capolei et al. 2015a; Liu and Reynolds 2015a; Siraj et al. 2015c).

By changing the NPV objective, these optimization methods
provide an indirect or ad hoc way of balancing the short-term and
the long-term economic objectives. In Capolei et al. (2015b), a
bicriterion MVO function has been optimized and key economic
indicators have been given. We consider a single-objective MVO
to investigate whether, by explicit handling of uncertainty in
model-based economic optimization, the balance between short-
term and long-term gains can be naturally obtained. This essen-
tially means moving from MOO to a single-objective MVO to
study the relationship between uncertainty handling and obtaining
a natural balance between short-term and long-term gains. MVO
is implemented and also extended to explicitly consider economic
uncertainty. Similar MVO approaches have been described in
Siraj et al. (2015a), and for a well-placement problem in Yeten
et al. (2003).

Robust Optimization in Waterflooding
Waterflooding. In waterflooding, water is injected to maintain
reservoir pressure and displace oil toward the producing wells.
The dynamics of the waterflooding process can be described by
conservation-of-mass and-momentum equations (Darcy’s law)
(Aziz and Settari 1979; Jansen et al. 2008). A state/space form
results after discretization of the governing equations in both
space and time:

gk(ukaxkvxk—ho):()v k:17

Vi = hy (g, xp),

where subscripts refer to discrete instants & of time; K is the total
number of timesteps; and g and h are nonlinear vector-valued
functions. In reservoir simulation of waterflooding, the state varia-
bles, which form the elements of vector x; € N C R", are typi-
cally pressures and water saturations in each grid cell with initial
conditions Xg = X(. Note that x; is a shortcut notation to represent
x; = X(); i.e., the value of x at time 7 =1#;. The control vector
w; € M C R™ can represent a combination of prescribed well-
flow rates, wellbore pressures, or valve settings. The parameter
vector @ € ® C R typically contains porosities and permeabil-
ities in each grid cell, and other uncertain parameters such as
fault-transmissibility multipliers and initial fluid contacts. Meas-
ured output variables are denoted by y,.

For a given well configuration, the injection-flow rates and/or
production-valve settings can be dynamically operated over the
production life cycle, and therefore serve as control inputs for
optimization. The objective is to maximize a financial measure,
NPV, over a fixed time horizon, which can be represented in the
usual fashion as

To qok —Tw 4wk — T'inj * qinjk Ar
. k>

J= 1
1 (1+D)

K
k=

where r,, 1, and ry,; are the oil price, the water-production cost,
and the water-injection cost in USD/m?, respectively, and Ar; is
the time interval of timestep & in days. The term b is the discount
rate for a certain reference time t,. The terms g, ¢y, and Ginjx
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represent the total flow rate of produced oil, produced water, and
injected water at timestep k in m*/d.

In this work, a gradient-based optimization approach is used in
which the gradients are obtained by solving a system of adjoint
equations (Sarma et al. 2005; Jansen 2011).

Robust Hierarchical Optimization. In Haimes and Li (1988), a
hierarchical or lexicographic method has been described allowing
prioritization of multiple objectives. In van Essen et al. (2011),
this hierarchical approach has been used to balance long-term and
short-term gains by distinguishing the long-term NPV (/) and a
secondary (short-term) objective with highly discounted NPV
(J2). The optimization of the secondary objective is constrained
by the condition that the primary (long-term) objective should
remain close to its optimal value J7. It can be formulated as

max J,
upg

C(u/nyk) = 07 d(ukvyk) < 07
JT*JI SS,

where c¢(ug,y,) and d(ug,y,) are equality and inequality con-
straints, respectively, and where the notation 1 : K indicates the
set of timesteps k = 1,2, ..., K, which spans the entire production
life cycle. In van Essen et al. (2011), it has been shown that this
procedure can lead to substantially higher revenues in the short
term, with only very-minor compromises for the long-term gains.
This potential to increase the short-term gains originates from the
fact that the original long-term optimization problem (Eq. 4) has
redundant DOFs.

In Fonseca et al. (2014), this hierarchical approach has been
extended to a robust setting, taking account of geological-model
uncertainty according to the robust optimization formulation of
van Essen et al. (2009). In van Essen et al. (2009), an ensemble of
possible geological realizations is used to determine an average
NPV over that set, leading to the MO approach, determined by
the objective function:

1 Neeo

N, geo

Juo =
i1

where Ny, is the number of realizations. This same principle can
now be used in the hierarchical setting by considering the long-
term mean revenue Jyo; and the short-term mean revenue Jyo 2,
defined in accordance with Eq. 5.

Base-Case Example

The simulation example that we consider as a base case is the
same as the one presented in van Essen et al. (2009) (in the nomi-
nal case) and Fonseca et al. (2014). We have used an ensemble of
100 geological realizations of the standard egg model, which is
publicly available (Jansen et al. 2014). Each model is a 3D real-
ization of a channelized reservoir produced under waterflooding
conditions with eight water injectors and four producers. The pro-
duction life cycle of each reservoir model is 3,600 days. The abso-
lute permeability field of the first realization in the set is shown in
Fig. 1. For all other reservoir and fluid parameters, we refer to
Jansen et al. (2014). All the simulation experiments in this work
are performed by use of the Matlab Reservoir Simulation Toolbox
(Lie et al. 2012). All economic parameters are considered as fixed.
For the primary objective, an undiscounted NPV is used. Other
economic parameters, such as oil price r,, water injection rjj, and
production cost r,,, are chosen as USD 126, USD 6, and USD 19/
m’, respectively. We note that the oil price is much lower than the
typical present-day value. However, we have chosen to use the
same value as applied by van Essen et al. (2009) to allow for a
comparison of results.

The control input u; involves injection-flow-rate trajectories
for each of the eight injection wells. The minimum and the maxi-
mum rate for each injection well are set as 0.2 and 79.5 m3/d,
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Fig. 1—Permeability field of Realization 1 of a set of 100
realizations.

respectively. The production wells operate at a constant bottom-
hole pressure of 395 bar. The set of control inputs u; g is repara-
meterized in control-time intervals with input parameter vector ¢.
For each of the eight injection wells, the control inputs u;.x are
reparameterized into 10 time periods of #, of 360 days, during
which the injection rate is held constant at value ¢;. Thus, the
input parameter vector ¢ consists of N, = 8 x 10 = 80 elements.

As an optimization procedure to solve for the robust version of
the problem (Eq. 4), a switching method is applied, as presented
in van Essen et al. (2011), whereas ¢ is chosen at a level of 0.3%
from the optimal value of the primary objective function Jy ;.
The obtained optimal inputs are applied to each member of the
ensemble and the corresponding distribution of the resulting
NPVs is shown in Fig. 2a, indicated as “robust hierarchical.” This
distribution is compared with the distribution resulting from
applying the optimal inputs resulting from MO of /0 ; only, and
with a reactive-control (RC) strategy applied to each ensemble
member. It can be observed that because of the availability of
redundant DOFs, the primary long-term objective is almost the
same as with the robust hierarchical optimization.

The time evolutions of the NPV for all three strategies are
compared in Fig. 2b. We note that NPV is often defined as the
CDCEF over the entire project life. Here we have chosen to use the
term NPV also for intermediate values of the CDCF. The maxi-
mum and minimum values of the time evolutions of NPV form a
band. The width of the band shows the variability of a strategy
over the ensemble of the model realizations. Because the second-

= RC :
Robust hierarchical
)
5
a {
i
i
r
i
&
!
kE
{
/
1 e ' b
o ™ 1 Mo I
2.5 3 3.5 4 4.5 5 5.5
Long-Term NPV (USD) %10

(a) PDF (long-term NPV) by applying optimal inputs
from MO, robust hierarchical, and RC to each
ensemble member

NPV (USD)

ary objective is aimed at maximizing the oil-production rate, the
short-term gains are heavily weighted, which can be observed in
Fig. 2. These improved short-term gains are achieved with
approximately no compromise to the long-term NPV. Hence, for
this example, the robust hierarchical approach provides a good
balance between long-term and short-term objectives. The reac-
tive strategy leads to high short-term gains but at the cost of com-
promising long-term revenues.

For comparison with the nonhierarchical approach, the results
are compared with a nominal and robust optimization of the long-
term gains Jyp 1 only. In nominal optimization (NO), a single
realization of the standard egg model is used for optimization.
The optimization is repeated for each ensemble member, resulting
in 100 NO strategies. A different number of control timesteps
(20) is used because the optimization runs into numerical prob-
lems with 10 control steps. Thus, in this case, the input parameter
vector ¢ consists of N, = 8 x 20 = 160 elements. The results are
displayed in Fig. 3. Fig. 3a, which is similar to the one shown in
van Essen et al. (2009), shows the probability-density function
(PDF) of NPV resulting from 100 NOs, robust MO, and RC strat-
egies (optimal inputs applied to all 100 ensemble members). It
shows that MO, on average, performs better than all NO strat-
egies, but the key point to note is that it does not aim to minimize
the effect of uncertainty, such as by reducing the variance of NPV
distribution. The effect of uncertainty on the time evolutions of
NPV is shown in Fig. 3b. Each NO strategy is applied to the re-
spective model that is used for optimization, whereas optimal
inputs from MO and RC are applied to all ensemble members. It
can also be observed that the short-term gains of the MO approach
are very low compared with those of the RC approach.

The advantages of the hierarchical approach, also in its robust
form, suggest that the corresponding robust optimization problem
has redundant DOFs. This is illustrated by evaluating the singu-
lar-value decomposition of the (approximate) Hessian. Unfortu-
nately, no reservoir simulator is currently equipped to compute
second-order derivatives. However, there are different approxima-
tion methods available in the literature to approximate the Hessian
matrix (Nocedal and Wright 2006). A forward-difference scheme
to the approximate Hessian matrix, H, is used with the primary
objective Jyo 1. Its elements H;; can be expressed as

~ Pvoa _ Vumoi(u + hie)) — Viyoi(uy)

H; = ~
Y 814,'(91,{/' Zhj
n Vi yo,j(uk + hie;) — Vo1 (ug)
. T, (6)
%107

45 :

4t
3.5

N AR .
2.5 1

P S S S8 BT oS B S g i
1.5 bl gl ovs g s s fvssunsonaigossmessenipuves i

1T I Robust hierarchical i
ALY 7 A AN SN T o i

i I i i I i I
00 500 1,000 1,500 2,000 2,500 3,000 3,500

Time (days)

(b) Maximum and minimum (band) for time evolutions of NPV by

applying optimal inputs from MO, robust hierarchical, and
RC to each ensemble member

Fig. 2—Results comparison in terms of long-term and time evolutions of NPV for MO and robust hierarchical optimization under

geological uncertainty with RC.
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(a) PDF (long-term NPV) by applying optimal inputs from
NO, RC, and MO to each ensemble member
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0 500

(b) Maximum and minimum (band) for time evolutions of NPV by
applying optimal inputs from MO and RC to each ensemble
member while NO is applied to respective
model used for optimization

Fig. 3—Results comparison in terms of long-term and time evolutions of NPV for MO under geological uncertainty with NO and RC.

where VJy1; is the ith element of the gradient VJyo =

(ano,l

Ou
element i and zero elsewhere), and /; is the perturbation-step size.
In total, N, + 1 simulations (function evaluations) are required to
obtain the approximate Hessian at a particular optimal solution
u*, where N, is the number of input elements. If the Hessian is
negative semidefinite, it does not have full rank. The zero singular
values ¢; = 0 in a singular value decomposition of H are given as

v
) , €; is a canonical-unit vector (i.e., a vector with unity at

which determines the nonuniqueness of the solution. U and V are
matrices with orthogonal columns (Strang 2011). The resulting
singular values of this Hessian for the robust optimization objec-
tive Jyo.1 are shown in Fig. 4. By use of a threshold level through
which singular values o¢; are considered to be zero when
g;/o1 < 0.02, where g is the first and largest singular value, it
appears that in the optimized input 121 DOFs are redundant. This
freedom is used in the hierarchical approach to improve the short-

. x10'® Singular Values of Hessian Matrix
T T T T T T T

80
Number of Input Elements N,

Fig. 4—Singular values of Hessian with primary objective Jyqg 1
under geological uncertainty.
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term revenues without heavily compromising the optimality of
the considered robust primary objective.

Robust Hierarchical Optimization Under
Economic Uncertainty

The NPV objective function contains economic variables such as
interest rate and oil price that fluctuate with time and cannot
be precisely predicted. The unknown time variation of these
variables becomes another major source of uncertainty. Among
other uncertain economic variables in NPV, varying oil prices
have the most dominant effect. Hence, the unknown time
variation of the oil price is considered as the prime source of eco-
nomic uncertainty.

Reservoir Models and Economic Data for NPV. Because the
purpose of this simulation example is to show the effect of eco-
nomic uncertainty on the optimal strategy, a single model realiza-
tion of the standard egg model, as shown in Fig. 1, is used.

As the primary objective, an undiscounted NPV is used. Other
economic parameters—such as water-injection cost 7j,; and pro-
duction cost r,—are kept fixed at USD 23 and USD 71/m3,
respectively. There are various ways to predict the future values
of changing oil prices. Different models, such as the Prospective
Outlook on Long-Term Energy Systems (POLES) used by the EU
and the French government and the National Energy Modeling
System (NEMS) of US energy markets created at the US Depart-
ment of Energy and the Energy Information Administration, are
used for energy-price prediction (Criqui 2001; Lapillonne et al.
2007; Bhattacharyya and Timilsina 2010; Birol 2010). However,
for this example, a simplified auto-regressive-moving-average
model (Ljung 1999) is used to generate an oil-price time series.
The auto-regressive-moving-average model is given by

6
Yo, = Ao + E ailo,_;s
i=1

where a; are randomly selected coefficients. A total of 10 scenar-
ios (i.e., Neeo = 10) with a base oil price of USD 47 1/m® are gen-
erated as shown in Fig. 5.

Control Input and Control Strategies. The control input and
the bounds on these inputs are the same as used in the previous
examples, but for this case, the control input u; g is reparameter-
ized into 10 time periods of 7, =360 days, during which the
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Fig. 5—O0il price according to scenarios for economic-uncer-
tainty characterization.

injection rate is held constant at a value of ¢;. Thus, the input pa-
rameter vector ¢ consists of N, =8 x 10 = 80 elements. The
MO and the RC strategies are also considered.

Results for the Primary Objective. The Jy, for the case of
economic uncertainty is optimized by use of a gradient-based
line-search-optimization procedure. The MO objective Jy0o is as
defined in Eq. 5 except that in this case of economic uncertainty,
the average is taken over the oil-price scenarios for a single reser-
voir model. Therefore, only one uncertainty is considered at a
time. The optimal strategy is applied to the reservoir model with
all oil-price realizations. RC is also used. The time evolutions of
NPV for both strategies are compared in Fig. 6. The maximum
and the minimum values of the time evolutions of NPV will form
a band. The first observation is the large width of these bands,
which reflects a dominant effect of economic uncertainty on the
strategies. MO provides a higher long-term average NPV com-
pared with RC and performs better than RC. Intuitively, optimiza-
tion should lead to increased oil production when the oil prices
are higher, and vice versa. Because the mean oil price, as shown
in Fig. 5, tends to increase over time, MO delays the production
until the end phase of the life cycle. The NPV distributions are
not shown in this case, but it is still clear that MO does not lead to
a reduced uncertainty in the achieved long-term NPV gains and
offers poor uncertainty handling.

14 Singular Values of Hessian Matrix
5 T T T T T T T

Singular Values
N
(6]

Number of Input Elements N,

Fig. 7—Singular values of Hessian with primary objective Jyqg 1
under economic uncertainty.
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Fig. 6—Time evolutions of NPV by applying optimal inputs from
MO (Jyo.1) under economic uncertainty and RC to each ensem-
ble member.

Redundant DOFs. As in the previous example, the condition to
check the redundant DOFs is set to g;/a; < 0.02. 52 input redun-
dant DOFs are found, as shown in Fig. 7.

Results for the Switching Method. As an optimization proce-
dure to solve for the robust version of Eq. 4, under economic
uncertainty, a switching method is applied, as presented in van
Essen et al. (2011). The optimal solution of the primary-objective
optimization uj . serves as an initial input guess for the switching
hierarchical optimization. The values of the primary and the sec-
ondary objectives are given in Fig. 8. Because we consider a
MOQO problem with contradictory objectives, for most of the itera-
tions, the value of the primary objective decreases as the value of
the secondary objective increases, and vice versa. In this example,
the maximum decrease, as determined by the chosen value of ¢, is
equal to 0.3%. The optimization routine seems to converge after
34 iterations.

The time evolutions of NPV for all three strategies—MO, RC,
and robust hierarchical optimization—are compared in Fig. 9.
Because the secondary objective is a highly discounted NPV, we
expect to see an increase in short-term gains compared with MO.
With the chosen ensemble, we do not observe a plausible
improvement in the short-term gains. A very small increase can
be observed with hardly any decrease in the long-term gain. These
results are highly dependent on the chosen ensemble of varying

1.06X10° i 735 x108: k

955 ‘T 1.73

1.95 , 1725

945} 1.72

1.94 1715l AN LD
1.935— P1io" 5630 45 50 17955530 sio 20 50

Fig. 8—Primary Juo 1 and secondary Jyo» objectives with opti-
mization-iteration numbers by use of the switching method for
robust hierarchical optimization.
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Fig. 9—Time evolutions of NPV by applying optimal inputs from
MO, robust hierarchical optimization under economic uncer-
tainty, and RC to each ensemble member.

oil prices. A different ensemble may result in a larger improve-
ment in short-term gains.

Quantifying Effect of Uncertainty:
A Robust Weighted-Sum Approach

The robust hierarchical approach provides a balance between
short-term and long-term objectives. The switching method for a
particular ¢ can be viewed as giving one point in the 2D objec-
tive-functions space determined by J; and J,. From the uncer-
tainty-handling viewpoint, it can explain how uncertainty affects
both objectives for a chosen value of &. To completely character-
ize and quantify the effect of uncertainty on the objective-function
space while balancing both objectives, the classical weighted-sum
approach is used, as will be discussed next.

Robust Weighted-Sum Approach. The weighted-sum approach
can easily be extended to a robust scheme by considering the ro-
bust primary and secondary objectives, as defined previously. It
takes the following form:

max wiJmo, + (1 —wi)lmoy,
st 0<w; < 1.

80 ; : ")
E : & u2
u4

Optimal Input Rates (msld)

; i ; ; i
1,500 2,000 2,500 3,000 3,500
Time (days)

—
0 500 1,000

(a) Optimal injection rates

Remember that in the MO case, with geological uncertainty,
Jumo.1 and Jy0 are given as

Neco Neeo

1 ; 1 .
JMO‘I :[\772'71’ -]MO.Q :]\TZ‘]T .......... (10)

800 j—] ge0 ;1

The total number of N, values of J' ’1 and Jé can be calculated
with the optimal solutions obtained by solving Eq. 9 for different
choices of wj;. An empirical covariance matrix P of j =
Vi Ji ", i =1,2,--,Ngeo, is estimated for each w;. Confidence
ellipses are drawn with the help of these covariance matrices to
quantify the effect of the uncertainty. Confidence ellipses can be
represented as

where J is the mean of j, 1 is a 2 x 1 vector of ones, and 22 is the
chi-square distribution with o DOFs, where we have dropped the
superscript i for clarity of notation. In the simulation examples,
only geological uncertainty is considered for the robust weighted-
sum approach. The given approach can easily be extended to con-
sider economic uncertainties as well.

Simulation Results. The robust weighted-sum approach is
implemented for different weights; ie., w; € {0,0.3,0.5,0.7,
0.9, 1}. The resulting solutions are applied to the ensemble of 100
models, and in each case the Ji and J) objectives for i=
1,2,3,...,100 are evaluated. This results in 100 points for Jyo
and Jyo, each. A 95% confidence ellipse is then used on these
NPV data points to quantify the effect of uncertainty on the objec-
tive-function space for chosen values of w;. This confidence
ellipse defines the region that contains 95% of all samples that
can be drawn from the preassumed Gaussian distribution of NPV
points. The optimal inputs obtained from the robust weighted-sum
approach and the confidence ellipse for w; = 0.7 with the 100
data points from both objectives are shown in Figs. 10a and 10b,
respectively.

In the classical MOO framework, a Pareto-optimal curve
results if none of the objective functions can be improved in value
without degrading some of the other objective values. In this ro-
bust weighted-sum approach, these ellipses for different values of
w; will form a so-called robust Pareto curve, as shown in Fig. 11.
Because of the nonconvexity and the high complexity of the prob-
lem, it is difficult to construct a complete robust Pareto curve as in
a nominal case, and it can be observed that some of the mean
points are dominated by others. This robust Pareto curve is used to
show the uncertainty-quantification bounds on the 2D objective-
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(b) The 95% confidence ellipse with 100 data points

Fig. 10—The optimal injection rates and the 95% confidence ellipse obtained from robust weighted-sum approach with Jyo 1 and

JMO,Z for wy=0.7.
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Fig. 11—The robust Pareto curve formed by the confidence
ellipses for the robust weighted-sum approach by use of MO
objectives for different values of w;.

functions space, as shown in Fig. 11, and not to characterize a
complete robust Pareto curve. In Liu and Reynolds (2015b), alter-
native algorithms—i.e., a constrained weighted-sum method and a
constrained normal-boundary-intersection method by use of an
augmented-Lagrange algorithm—have been proposed to develop a
Pareto curve, but they have not been implemented in this work.

Fig. 12 gives the NPV time-evolution bands and the NPV dis-
tributions. As expected, the short-term gains increase with
increasing weight on the secondary term; that is, with decreasing
wy. The NPV distributions show a slight compromise on long-
term gains with increasing short-term values. Hence, the robust
weighted-sum approach also provides a balance between short-
term and long-term objectives. With different weights, the desired
level of balance can be achieved.

These robust MO schemes (i.e., the robust hierarchical and ro-
bust weighted-sum approaches), with the averaging objectives,
incorporate uncertainty in the optimization framework. However,
they do not aim at reducing the effect of uncertainty in the resulting
NPV, such as by reducing the width (variance) of the NPV distribu-
tion. MO is a so-called risk-neutral objective. A larger uncertainty

W‘ =
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(a) PDF (long-term NPV) by applying optimal inputs from
robust weighted-sum using MO objectives for different w,
and RC to each ensemble member

NPV (USD)

will result in a bigger spread (or variance) of the NPV distribution,
and vice versa. From an economic perspective, this seriously limits
the performance of MO to handle uncertainty, as well as the per-
formance of the proposed robust MOO approaches. In the next sec-
tion, a risk-averse mean-variance objective is presented.

The MVO Approach
Introduction. Markowitz (1952) has introduced a risk-return
portfolio-selection approach, where a “return” is maximized while
minimizing the “risk” associated with it. It has introduced a quan-
titative characterization of risk in terms of the variance of the
returns. On the basis of the investor’s attitude toward risk, a risk-
return profile is selected. Various ways have been introduced to
characterize risk, such as percentile-based risk measures like
value at risk and conditional value at risk (Rockafellar 2007,
Yasari et al. 2013, Capolei et al. 2015a; Siraj et al. 2015¢). In this
work, the return is considered as the average NPV, whereas the
risk is characterized with the spread or the variance of the NPV
distribution. MVO enables a reduction of the variance of the NPV
distribution, which results in a reduction of the sensitivity of the
optimal solution to uncertainties; that is, it minimizes the negative
effect of uncertainty. The mean-variance objective function Jy;v0
for an ensemble of Ny, models can be defined as

JMVO = JMO - ‘ij, ........................
where J,0 and Jy, are the mean NPV and the variance of NPV,
respectively, and y is the weighting on the variance term. Because
mean and variance have different dimensions, y plays a dual role
as scaling factor. Jy,o is the same as given in Eq. 5 whereas the
variance of the NPV is given as

Neco

> Ui = Juo)’.

i=1

1

Jy =
" Ngeo — 1

This approach can be extended to consider economic uncer-
tainty by replacing averaging over the ensemble of Ny, model
realizations to the ensemble of N, oil-price scenarios.

The MO objective in the robust weighted-sum approach is
replaced by the MVO objective for better uncertainty handling.
The details of this scheme are given later in this paper. The results
for both MO and MVO objectives in the robust-weighted-sum
approach are also compared.

1,500 2,000 2,500 3,000 3,500

i

1,000

0 i
0 500

Time (days)

(b) Maximum and minimum (band) for time evolutions of NPV by

applying optimal inputs from robust weighted-sum using
MO objectives for different wy and RC to each ensemble
member

Fig. 12—Results comparison in terms of long-term and time evolutions of NPV for the robust weighted-sum approach by use of

MO objectives for different w; and RC.
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(b) The 95% confidence ellipse with 100 data points

Fig. 13—The optimal injection rates and the 95% confidence ellipse obtained from the robust weighted-sum approach with Jyyo 1

and Jyyo 2 for w;=0.7.

Robust Weighted-Sum Approach With MVO Under Geo-
logical Uncertainty. By replacing the objectives in Eq. 9 by the
MVOs for the geological uncertainty, the robust weighted-sum
approach can be written as

max widuvo + (1 = wi)luvoz,
S0<w <1, e
where Jyyo is the MVO, as defined in Eq. 12. Jyyo,1 represents
the undiscounted primary (long-term) MVO and Jyyo, is the
highly discounted secondary (short-term) MVO.

Results of the Robust Weighted-Sum Approach With MVO.
The proposed approach is implemented for a fixed value of y; i.e.,
7 =2 x 107% The weights are chosen as w; € {0,0.3,0.5,0.7,
0.9, 1}. The resulting solutions are applied to the ensemble of 100
models, and in each case both Ji and J) objectives for i =
1,2,3,...,100 are evaluated. This results in 100 points for Jyvo.1
and Jyyo each. A 95% confidence ellipse is then used on these
data points to quantify the effect of uncertainty on the objectives.
The optimal inputs obtained from the robust weighted-sum
approach and the confidence ellipse for w; = 0.7 with the data
points for both objectives are shown in Figs. 13a and 10b,
respectively.
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Fig. 14—The robust Pareto curve formed by the confidence
ellipses from the robust weighted-sum approach by use of the
MVO objectives for different values of w;.

1320

Similar to the previous case, the confidence ellipses for each
wy in Eq. 14 form a robust Pareto curve, as shown in Fig. 14, with
the mean value of each ellipse indicated by diamonds.

For the sake of comparison with MO, the Fig. 14 axes scales
are chosen to be the same. It can easily be seen that because of the
reduction of variance, these ellipses are small compared with
those for the MO objective, as shown in Fig. 11. Hence, in this
example, the robust weighted-sum approach with MVO reduces
the negative effect of uncertainty and provides better uncertainty
handling. Fig. 15 gives the NPV time-evolution bands and the
NPV distributions. As expected, the short-term gains increase
with increasing weight on the secondary objective; that is, with
decreasing wy. The NPV distributions show a very-slight compro-
mise on long-term gains with increasing short-term values.

A comparison between the two approaches is made by com-
paring the areas of all ellipses resulting from each w;. The area
can be calculated as

A =5991nab,

where a and b are the major and the minor axis of the ellipse, and
the factor 5.991 corresponds to a 95% confidence interval. It can
be seen in Fig. 16 that because of the better handling of uncer-
tainty by MVO, the ellipses corresponding to MVO have a
smaller area compared with those corresponding to MO.

The results of the robust weighted-sum approach show the bet-
ter uncertainty handling of the MVO approach. In the next sec-
tion, a single-objective MVO is formulated. It is investigated
whether by explicit handling of uncertainty in model-based eco-
nomic optimization, the balance between short-term and long-
term gains can be naturally obtained. Economic uncertainty is ex-
plicitly considered together with geological uncertainty.

MVO as a Single Objective

The single-objective MVO approach, as discussed previously, is
implemented with the same ensemble of model realizations, eco-
nomic data, and control inputs (with 20 control time intervals).
First, we focus on the geological uncertainty. An undiscounted
NPV is used. Different values of y—y € [1 x 107%,3 x 107%,7 x
10’6]—are used. The obtained MVO optimal strategies are
applied to each member of the geological ensemble, resulting in
100 NPV values for each y. The corresponding PDFs of these
NPV values and the PDFs obtained from the MO and the RC
approaches are shown in Fig. 17a. Nominal strategies are not
compared for the sake of clarity. The first observation is that the
variance is reduced with increasing 7, the higher the value of 7,
the lower the variance. The lower variance is achieved at the cost
of compromising the average NPV. Because the effect of

August 2017 SPE Journal
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Fig. 15—Results comparison in terms of long-term and time evolutions of NPV for the robust weighted-sum approach with MVO

objectives.

uncertainty is visible by the spread of the NPV distribution, the
reduction of the variance reflects the reduction in sensitivity of
the strategy to uncertainty. Hence, MVO aims to mitigate the neg-
ative effect of the uncertainty on the NPV distribution.

The time evolutions of NPV for all three strategies, MVO,
MO, and RC, are compared in Fig. 17b. It can be observed that,
compared with the MO strategy, all MVO strategies provide a
faster buildup of NPV over time (high short-term gains) at the
cost of slightly compromising the long-term gains. It can also be
observed that the value of y affects the rate of NPV buildup with
a respective reduction of the average long-term gain. In port-
folio optimization, the selection of y provides a way to choose a
risk-return profile as per the investors’ interest. But in this exam-
ple, it also plays a role of an explicit parameter to balance short-
term and long-term economic objectives according to the invest-
ors’ choice.

The results show that the single-objective MVO naturally pro-
vides higher short-term gains without (artificially) changing the
economic criteria; i.e., NPV with high discount factor, as in the
robust MOO schemes. For clarity in representing results, the aver-

Scaled Area

N

Fig. 16—Comparison of robust weighted-sum approaches by
use of MO and MVO objectives in terms of area of ellipses for
each wj.
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age values for the time evolutions of NPV bands for all three strat-
egies are compared in Fig. 18.

The numerical results of the behavior of average NPV are
summarized in Table 1. Table 1 shows the average NPV obtained
for all the control strategies at 720 days of oil production and the
average NPV obtained at the end of the simulation period, which
was 3,600 days. An increase of the average NPV at Day 720 and a
decrease at the end of the simulation period compared with the
MO are shown. The first observation is that the MO has the lowest
average NPV at Day 720, whereas it results in the maximum aver-
age NPV at the end of the simulation period compared with other
strategies. RC has a maximum increase in the short-term gains but
with a decrease of 6.31% compared with the MO. For the MVO
strategies, as discussed previously, y provides an explicit way of
balancing the short-term and the long-term objectives and hence
becomes a tuning parameter for balancing both objectives. A
higher value of y will result in a faster buildup of NPV at the cost
of compromising the final NPV.

As the simulation with robust hierarchical optimization with
geological uncertainty runs into numerical problems with 20 con-
trol steps, a different step size of 10 is used. The results are
slightly different for MO and RC with 10 control steps and com-
pared with the robust hierarchical optimization in Table 2. The
robust hierarchical approach outperforms all MVO strategies
because of higher short-term gains of 119%, with almost no
decrease from MO at the end of the life cycle. One of the major
advantages of the robust hierarchical optimization approach is the
ability to allow a predetermined maximal decrease, indicated by
¢, on the primary objective to improve the secondary objective.

Results for MVO With Economic Uncertainty. In this case, we
only consider economic uncertainty and a single realization of the
standard egg model is used. The MVO with economic uncertainty
is implemented with 10 different oil-price scenarios, as shown in
Fig. 5. Different values of y—ie., y €[l x 1077, 2 x 1077,
3 % 10’7]—are used. The MO and RC strategies are applied to
the single-model realization with each oil-price realization result-
ing in 10 different NPVs. The time evolutions of NPV for these
strategies are compared in Fig. 19b. The widths of the
bands clearly show that the economic uncertainty (i.e., varying oil
prices) have a very profound effect on the obtained NPV. The
large uncertainty in the oil-price scenarios is mapped to a
large spread of the NPV bands. All three MVO strategies,
7€ [1x1077, 2x 1077, 3x1077], are also applied to the
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Fig. 17—Results comparison in terms of long-term NPV and time evolution of NPV for single-objective MVO, MO under geological
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Fig. 18—Average values for the time evolutions (bands) of NPV

by applying optimal inputs from MO and MVO under geological
uncertainty and RC to each ensemble member.

single-model realizations with 10 different oil-price realizations.
It results in three different bands for each MVO strategy, but for
the sake of clarity, only one time-evolutions band of NPV for y =
1 x 1077 is shown in Fig. 19b.

Fig. 19a shows the average NPV values of the bands. The
results for the MVO strategies for three different values of y are
also shown in Fig. 19a. With MVO approaches, an improvement
in the short-term gains compared with the MO case can be
observed. Similar to the case of geological uncertainty, y becomes
an explicit parameter to balance short-term and long-term gains.

The numerical results are summarized in Table 3. Similar to
Table 1, Table 3 shows the average NPV obtained for all the con-
trol strategies at 720 days of oil production and the average NPV
obtained at the end of the simulation period of the reservoir model
(3,600 days), with percentage increase and decrease compared
with the MO. As with the geological uncertainty, the MO has a
lowest average NPV at Day 720 with a maximum average NPV at
the end of the simulation period compared with the other strat-
egies. RC has a maximum increase in the short-term gains, but
with a decrease of 17.6% compared with the MO; RC reaches its
maximum NPV, 161.2 million USD, after approximately 2 years
of production. Economic uncertainty has a profound effect on
NPV optimization compared with the geological uncertainty; with
the MVO strategy with y = 3 x 107%, an increase of 318.5% on

Average NPV at Increase From

Average NPV at

Decrease From

Control Strategies Day 720 MO (%) Day 3,600 MO (%)

MO 9.2 million USD - 45.5 million USD -
y=1x10"° 10.8 million USD 18.4% 44.7 million USD 1.71%
y=3x10"° 13.9 million USD 51.9% 44 .4 million USD 2.42%
y=7x10"° 16.9 million USD 84.4% 43.7 million USD 3.78%
RC 41.3 million USD 350% 42.8 million USD 6.31%

Table 1—Results for geological uncertainty (single-objective MVO).

Average NPV at Increase From

Average NPV at

Decrease From

Control Strategies Day 720 MO (%) Day 3,600 MO (%)
MO 9.9 million USD - 45.3 million USD -

Robust hierarchical 21.7 million USD 119% 45.3 million USD 0%
RC 36.1 million USD 264% 38.6 million USD 14.7%

Table 2—Results for geological uncertainty (robust hierarchical optimization).
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Fig. 19—Results comparison for single-objective MVO, MO under economic uncertainty, and RC.

short-term gains can be achieved at the cost of a 7.1% decrease on
final NPV, compared with an RC strategy with an increase of
467.6% on the short-term and with a significant drop of 17.6% on
long-term gains. Here again, y provides an explicit way of balanc-
ing short-term and long-term objectives and hence provides deci-
sion makers a tuning parameter for balancing both objectives. The
robust hierarchical multiobjective approach provides an improve-
ment in short-term gains by 30.85% at the cost of reducing long-
term gains with 0.3%.

Conclusions

Model-based NPV optimization suffers from high levels of uncer-
tainty and also typically results in low short-term gains. It is desir-
able to explicitly include uncertainty, and hence add robustness to
the predicted long-term NPV, while also offering a good balance
between the short-term and long-term gains. From this work, the
following conclusions can be drawn.

1. The question of how to obtain a robust solution that also pro-
vides a good balance of short- and long-term objectives is
addressed by use of MOO approaches. It has been shown by
simulation examples that because of the availability of redun-
dant DOFs in robust optimization, the short-term gains can be
greatly improved without compromising long-term gains. In
the situation of geological uncertainty, a plausible increase is
observed, whereas for the case of economic uncertainty, the
improvement is less than expected. These results may vary
with different characterizations of uncertainty (with different
ensembles).

2. The classic weighted-sum approach is extended to a robust set-
ting by including robust MO objectives. It has been shown that
MO does not reduce the effect of uncertainty on the achieved
NPV and thus provides poor uncertainty handling. Therefore, a
risk-return strategy with an MVO is considered. The weighted-

sum approach is implemented with the MVO objectives, and a
reduced effect of uncertainty compared with MO is obtained.

3. It has been shown that a robust MVO approach, although not
specifically focused on short-term gains, has a natural effect of
increasing the short-term gains. This effect has been shown to
be more dominant in the situation of economic uncertainty
than in the case of geological uncertainty.

Nomenclature

A = area of confidence ellipses
b = discount factor
g = nonlinear reservoir-model dynamics
h = perturbation-step size
h = nonlinear reservoir-output function
H = Hessian matrix
J = NPV objective
Juo,1 = undiscounted primary (long-term) MO
Jymo» = highly discounted secondary (short-term) MO
Juvo = MVO objective
Juvo,1 = undiscounted primary (long-term) MVO
Juvo = highly discounted secondary (short-term) MVO
Jy = variance of NPV objective
k = discrete instants of time
K = total number of timesteps
Neco = number of oil-price realizations in an ensemble
sco = Number of model realizations in an ensemble
N,, = number of input elements
P = empirical covariance matrix
Ginjx = total flow rate of injected water
qo = total flow rate of produced oil
qwx = total flow rate of produced water
Tinj = Water-injection cost

Average NPV at

Increase From

Average NPV at

Decrease From

Control Strategies Day 720 MO (%) Day 3,600 MO (%)
MO 26.9 million USD - 196 million USD -
y=1x10"° 67.6 million USD 151% 190 million USD 3.0%
y=2x10"° 96.2 million USD 257% 185 million USD 5.1%
y=23x10"° 112 million USD 318% 181 million USD 7.1%
Robust hierarchical 35.2 million USD 30.8% 195 million USD 0.3%
RC 152 million USD 467% 161 million USD 17.6%

August 2017 SPE Journal

Table 3—Results for economic uncertainty.
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r, = oil price

r,, = water-production cost

u = control vector

w; = weighting scalars in robust weighted-sum approach

X = state variables

y = measured output variables

y = weighting on the variance term in MVO objective
At = time interval of timestep k

0 = parameter vector

1, = reference time for discount factor b

%2 = chi-square distribution with o DOFs
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