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Abstract

This project develops a channel estimation technique for millimeter wave
(mmWave) communication systems. Our method exploits the sparse structure
in mmWave channels for low training overhead and accounts for the phase errors
in the channel measurements due to phase noise at the oscillator. Specifically, in
IEEE 802.11ad/ay-based mmWave systems, the phase errors within a beam refine-
ment protocol packet are almost the same, while the errors across different packets
are substantially different.

We show that standard compressed sensing algorithms that treat phase noise as a
constant fail when channel measurements are acquired over multiple beam refine-
ment protocol packets. Most of the methods that have addressed this problem treat
phase noise as purely random, missing the inherent structure within the measure-
ment packets. We present a novel algorithm called partially coherent matching
pursuit for sparse channel estimation under practical phase noise perturbations.
The proposed approach leverages this partially coherent structure in the phase
errors across multiple packets. Our algorithm iteratively detects the support of
sparse signal and employs alternating minimization to jointly estimate the signal
and the phase errors.

We numerically show that our algorithm can reconstruct the channel accurately
at a lower complexity than the benchmarks, and derive a preliminary support
detection bound as a performance guarantee.
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Introduction 1
1.1 Background

Nowadays, millimeter wave (mmWave) finds extensive applications in diverse fields
owing to its enhanced wireless link capacity and smaller size of antennas. Benefit-
ing from the high carrier frequency, the mmWave systems are capable of achieving
Gbps data rates by effective beamforming over wide bandwidths, leading to IEEE
802.11ad multiple gigabit wireless system at 60 GHz and 5G cellular telecommuni-
cations from 24 GHz to 39 GHz. Besides high data rates, the dense deployment of
base stations in 5G is ideal for autonomous vehicle communications. The 60 GHz
band is widely accessible for unlicensed use in numerous regions globally, prompt-
ing the exploration and development of various technologies centered around this
frequency.

Compared to 2.4 and 5 GHz bands, signal propagation at 60 GHz faces chal-
lenges such as severe path loss and high attenuation due to human blockage and
atmospheric absorption. To compensate for these losses, using phased antenna ar-
rays with precomputed antenna weights becomes a viable option to amplify signal
power [3]. The shorter wavelength at 60 GHz allows for the integration of more an-
tenna elements within a single antenna, enhancing spatial resolution and enabling
the generation of narrower beams [4].

In a narrow beam wireless system, beam alignment is necessary when the trans-
mitter and receiver need to establish a reliable communication link. It is crucial
in scenarios where the spatial orientation of the devices, or the directionality of
the antennas, is not fixed or may change over time. When devices are mobile, or
when there are environmental factors causing signal blockages or reflections, beam
alignment becomes essential for maintaining a stable connection. Beam misalign-
ment can lead to higher path loss and signal attenuation due to a longer indirect
path, potentially causing issues with data quality and link budget. To effectively
direct the beams at the transmitter (TX), the beam pattern should align with
the channel state information (CSI) to maximize the received signal power. In a
typical system, the TX transmits a series of training data selected from a known
codebook, enabling the receiver (RX) to estimate the current CSI and relay it back
to the transmitter. Subsequently, the TX adjusts its beamforming based on this
feedback. Our focus lies in the estimation of CSI for beamforming purposes.
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1.2 Beam Alignment Strategies

Achieving precise beam alignment is critical for reliable, high-speed data transmis-
sion. Here, we introduce four common strategies employed to align the transmission
and reception beams in order to maximize the signal strength at the RX, optimizing
signal strength, minimizing interference, and ensuring stable connectivity.

1.2.1 Exhaustive Search Beam

Exhaustive search beam stands as a widely adopted technique in wireless commu-
nications for precise beam alignment. As illustrated in Figure 1.1, in exhaustive
search beam training, the TX meticulously scans narrow beams across all pos-
sible beamforming directions. The RX determines the power of signals received
from each direction, and the TX identifies the direction with the strongest signal,
indicating optimal beam alignment [3]. In the context of exhaustive search, the
phase errors in the measurements become insignificant since only the amplitude of
measurements is acquired. Concentrating transmission power in a single direction
makes exhaustive search robust in intricate propagation environments with high
path loss. By thoroughly exploring all potential paths, it ensures reliable commu-
nication even in challenging conditions. However, the overhead of this approach
increases linearly as the number of beams in the codebook increases. For instance,
the number of elements in the DFT codebook is N when the TX has N antennas.
In this case, the TX needs to sweep the total N directions, which results in a
substantial overhead for a large N .

Figure 1.1: An example of exhaustive search with a DFT-based beam codebook. The TX se-
quentially tries N different beams and the RX determines the transmit beam that results in the
highest received power.

1.2.2 Hierarchical Beam Training

Another beam alignment strategy is hierarchical beam training. Unlike exhaustive
search, hierarchical beam training employs a tiered approach to explore different
beamformers and maximize the beamforming gain. In hierarchical beam training
shown in Figure 1.2, the transmitter (TX) initiates by scanning broad sectors,
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identifying general directions with potential for optimal alignment. Based on the
feedback received from these sectors, the TX refines its focus, narrowing down the
beamforming angles to subsectors within the promising directions. This iterative
refinement continues until a narrow directional beam results in a high received
power [5]. However, as feedback is required for each subsection decision, the over-
head will increase when multiple users exist. Another drawback is that at an early
training stage before forming the narrow beam, the low SNR environment with
noise and interference may lead to misestimation of the section, resulting in a
wrong path decision [6].

Figure 1.2: An example of hierarchical beam training refining from 180◦ to 45◦. The TX starts
sweeping sections from the wide beam, each time the RX evaluates the highest received power
and sends the feedback. The TX then refines the beams according to the feedback, until forming
a directional narrow beam.

1.2.3 Standard Channel Estimation-based Beam Training

Channel estimation methods rely on detailed knowledge of the CSI, encompass-
ing factors such as path losses, reflections, and interference within the wireless
channel. Unlike exhaustive search and hierarchical training, channel estimation
techniques focus on understanding the unique characteristics of the channel and
aligning beams based on this specific knowledge. Standard channel estimation
algorithms, such as least squares (LS) and linear minimum mean squared error
(LMMSE) methods [7], necessitate an equal or greater number of measurements
than the number of antennas. However, these methods are only suitable for slowly
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time-varying channels due to the substantial measurement requirement and high
computation overhead [8]. Moreover, the phase corruption has an impact on the
estimation results. A general training process for standard channel estimation is
shown in Figure 1.3.

Figure 1.3: An example of standard channel estimation-based beam training. The TX forms
different beam patterns, and the RX acquires at least N measurements to estimate the channel,
where N is the number of antennas.

• Compressive Channel Estimation-based Beam Training

Researchers, in search of training protocols to control overhead and enhance per-
formance, have explored the sparse nature of mmWave channels, leading to the
proposal of compressive channel estimation-based beam training techniques [9].
Due to the high scattering properties of mmWave channels, signal power is only
along specific arrival directions [10]. Consequently, the wireless channel between
the TX and RX exhibits approximate sparsity in the angular domain. In com-
pressive beam training, the TX usually applies random beam patterns from a
codebook, and the RX collects measurements for several beam patterns and then
employs compressed sensing (CS) algorithms for channel estimation. Compared to
standard channel estimation methods, this approach demands fewer measurements
as illustrated in Figure 1.4, thereby curtailing training overhead [11].

Figure 1.4: An example of compressive channel estimation-based beam training. The TX forms
random beam patterns from the codebook, and then the RX acquires M (M < N) measurements
and estimates the channel using CS-technique.

We will evaluate the necessity of phase information for each strategy and compare
them based on both overhead and robustness to additive noise in the measurements.
A concise comparison of these strategies is outlined in Table 1.1. For the table, we
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denote TFB as the feedback time of the hierarchical approach, and abbreviate the
robustness to additive noise as robustness.

Training Strategy Phase Information Overhead Robustness

Exhaustive Search Not required O(N) Very high

Hierarchical Approach Not required O(TFB · log(N)) Low

Standard Channel Estimation Required O(N) Very low

Compressive Approach Required O(log(N)) Very low

Table 1.1: Comparison of the typical beam training strategies from phase information require-
ment, execution overhead, and robustness to the noise. In this table, we assume that the number
of sparse components in the channel is O(1)

In summary, both exhaustive search and the hierarchical approach operate by
detecting the direction with the strongest receiving power, creating a directional
beam pattern without relying on phase information. However, exhaustive search
introduces substantial overhead, while the hierarchical approach is susceptible to
additive noise in the measurements. Although conventional channel estimation
methods come with high overhead, the compressive approach, capitalizing on the
channel’s sparse nature, achieves low overhead during the training process. How-
ever, the robustness of channel estimation-based training is often lower compared
to exhaustive search due to the reliance on accurate CSI. Channel estimation-
based methods heavily depend on the ability to accurately estimate the channel
characteristics, and any noise or inaccuracies in the estimation process can lead to
significant performance degradation. Moreover, standard CS algorithms are sensi-
tive to phase noise in the measurements. In this research, we solve this challenge
by exploring the feature of phase noise and jointly estimating the phase noise and
the CSI from compressive measurements.

1.3 IEEE 11.ad Beam Refinement Protocol

As the focus of this work is on sparsity-aware channel estimation under phase
noise, we first study the protocol employed by commercial IEEE 802.11ad devices
to acquire channel measurements during beam training. Additionally, the structure
of a training unit and the impact of phase noise on the acquired data are discussed
in our model outlined in Chapter 3. Consequently, we will delve into a detailed
introduction to this data unit structure and the procedure of beamforming defined
in IEEE 11.ad.
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1.3.1 Protocol Data Unit Structure

IEEE 802.11ad has formulated a local area network specification that operates
within the 60 GHz mmWave band, enabling multigigabit data transmission. This
standard introduces a multi-stage beamforming framework specifically crafted to
establish dependable connections between pairs of stations (STAs) for subsequent
communication. The protocol data unit (PPDU) structure, tailored for beam re-
finement protocol (BRP), is illustrated in Figure 1.5.

Figure 1.5: Structure of protocol data unit in IEEE 802.11ad for beam refinement protocol. [1]

In a PPDU, the first frame is the short training field (STF) followed by the channel
estimation (CE) frame. These two frames enable the receiver to synchronize with
the transmitted signal and compensate for channel effects. The Header consists
of several fields that define the details of the PPDU to be transmitted, including
the identity of the BRP PPDU and the length of the training (TRN) field. The
Data field carries the meaningful payload of the communication and must meet the
minimum length requirements. The automatic gain control (AGC) field ensures
that the received signal’s strength is optimized for demodulation. Simultaneously,
the TRN field provides training sequences crucial for channel estimation and beam
refinement, thereby enhancing the receiver’s accuracy in decoding the transmitted
data. Two kinds of TRN subfields exist, with TRN-R designated for RX beam-
forming and TRN-T for TX beamforming. Notably, except for the TRN field, the
antenna setting for other fields should remain constant.

1.3.2 Beamforming Procedure

The training process primarily consists of two steps: sector-level sweep (SLS) and
beam refinement. The purpose of SLS is to establish a communication link between
the initiating station (STA1) and the responding station (STA2). During the SLS
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stage, both the initiator and the responder perform sector sweeps. SLS is deemed
successful for the initiator if feedback is received from the sweeping sector, and
similarly, it is successful for the responder if an ACK signal is received from the
sweeping sector. Following the SLS stage, BRP is implemented to further optimize
antennas.

In this project, our focus is specifically on this BRP stage. Pilot signals for BRP
are encapsulated within each TRN subfield. Due to the planned switching of
antennas for compressive antenna training, the time interval between transmitting
two subfields is defined as the long beamforming interframe space (LBIFS). This
interval ensures efficient handling of antenna switches so that there is enough time
for the switches to settle. An example of the beamforming training procedure is
illustrated in Figure 1.6.

Figure 1.6: An example of beamforming procedure defined in IEEE 802.11.ad between two sta-
tions. [1]

1.4 Motivation

In practical scenarios, the deployment of large-scale antennas necessitates a sub-
stantial amount of cost-effective and power-efficient baseband hardware. However,
due to inherent hardware limitations, several impairments, including residual car-
rier frequency offset (CFO) and random phase noise at the oscillator [12], introduce
perturbations in the phase of compressed channel measurements acquired with
typical IEEE 802.11ad/ay hardware. These perturbations create phase ambiguity.
Consequently, accurately estimating the channel becomes significantly challenging,
especially in fast-changing environments.
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It’s worth noting that CFO and phase noise are particularly pronounced at
mmWave frequencies compared to lower carrier frequencies. This heightened im-
pact results from the rapid increase in phase variance associated with higher fre-
quencies [2]. Considering these perturbations adds complexity to the task of esti-
mating the sparse channel.

We model the phase noise as a Wiener process, i.e. ϕm|ϕm−1 ∼ N (ϕm−1, τ
2), where

τ is 2πfc
√

c(Tm − Tm−1) [2]. Here, fc is the carrier frequency, Tm is the time stamp
associated with the mth measurement, and c is an oscillator-dependent constant.
Some of the practical values of c and associated τ are listed in Table 1.2. From
the distribution, we noticed that the variance of phase noise can be accumulated
over time, as shown in Figure 1.7.

Oscillator parameter

c ((rad ·Hz)−1)
9.4× 10−19 4.7× 10−18 2.35× 10−17 4.7× 10−17

Standard deviation
τ (rad)

0.1303 0.2924 0.6513 0.9210

Table 1.2: The typical oscillator parameters and the corresponding standard variance of phase
noise for 802.11a. [2]

Figure 1.7: The standard deviation and variance of phase noise over 3µs with carrier frequency
fc = 60GHz, Tm − Tm−1 = 128 ns.

The phase errors induced by phase noise result in a model mismatch between
the standard CS model and the observed measurement model. Unfortunately,
this mismatch causes conventional CS-based channel estimation methods [13–
15], which are unaware of such phase errors, to fail, as illustrated in Figure 1.8.
Therefore, we are motivated to estimate the sparse mmWave channel, leveraging
its sparse structure while addressing the challenges posed by phase errors in the
measurements.
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(a) (b) (c)

Figure 1.8: CS-based channel estimation method (e.g. Orthogonal Matching Pursuit) breaks down
(a) Original sparse channel vector. (b) Sparse vector recovered without phase perturbations. (c)
Sparse vector recovered with phase perturbations.

We aim to develop a fast algorithm that jointly estimates phase noise and sparse
signals by capitalizing on the unique characteristics of phase errors within practi-
cal transmission protocols. Several compelling reasons drive this objective. Firstly,
a swift training process is essential for real-time applications that demand rapid
beamforming adaptation. This speed is pivotal for ensuring stable connectivity
and seamless communication in dynamic wireless channels. Additionally, a fast al-
gorithm with low complexity requires fewer computational resources. The reduced
overhead provides more time for actual data transmission, enhancing overall system
efficiency.

1.5 Outline

The arrangement of this report is as follows.

In Chapter 2, we will show how prior works estimate the sparse channel from a CS
perspective, and discuss their advantages and drawbacks. Furthermore, our main
contributions are also presented in this chapter.

In Chapter 3, the sparse representation of the channel and the system model will
be given. We will further introduce the frame structure of transmitted pilots and
the partially coherent model for our algorithm.

In Chapter 4, we will introduce three typical algorithms as well as our benchmarks
for comparison, and analyze their computation complexity.

In Chapter 5, we will give details of our proposed partially coherent matching
pursuit (PC-MP) method, and give a weak bound for performance guarantee.
Additionally, the computation complexity of PC-MP will be analyzed step by step.
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In Chapter 6, the simulation settings and metrics for comparison will be explained.
With the settings and the metrics, we will show and analyze the simulation results.

In Chapter 7, we will summarize the whole project, draw conclusions based on the
simulation results, and further leave some suggestions for future work.
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Prior Work Addressing Phase
Noise 2
In this chapter, we will review existing sparse mmWave channel estimation methods
that are robust to phase errors. We will then discuss our contributions in contrast
to prior work on phase error robust channel estimation.

2.1 Prior Works

Before reviewing prior works, we first define the mathematical terms for illustra-
tion. A more detailed description of how we derive this model will be deduced in
Chapter 3.

A sparse signal refers to a signal in which the majority of its elements are zero, and
only a small subset of elements has non-zero values. Mathematically, the sparse
level of a vector x can be represented as

∥x∥0 = Number of non-zero elements in x (2.1)

Consider the sparse representation of the channel vector as x ∈ CN , phase-noise
free CS measurements can be denoted as

ȳ = Ax+w (2.2)

where w is Gaussian white noise. A ∈ CM×N is the CS-matrix with M ≪ N ,
which means the number of measurements is much less than the cardinality of the
beam codebook. The measurements are disturbed by phase noise p ∈ CM . The
disturbed measurements y ∈ CM are given by

y = diag(p)Ax+w, (2.3)

where

p =
[
ejϕ1 , ejϕ2 , . . . , ejϕM

]T
.

y and A are known while p and x are unknown and need to be estimated.
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2.1.1 Standard Sparse Channel Estimation

Standard sparse channel estimations assume a long-term phase coherence condi-
tion, that is the phase offset is almost invariant and can be approximated as a
constant complex number. Thus consider the model as

y = ejϕAx+w, (2.4)

where ejϕ is a constant phase offset. Since for beamforming, we do not really care
about the phase offset, channel estimation only needs to achieve a global phase
stage, thus we can consider the standard CS model (2.2). As vector x is sparse,
with only some of the support non-zero, the estimation of x can be formed as a
non-convex optimization as

x̂ = argmin
x

∥x∥0

s.t. ∥y −Ax∥22 ⩽ ε.
(2.5)

ℓ0 norm minimization in (2.5) is a non-convex NP-hard problem. Greedy pursuit is
a choice that iteratively selects the most promising elements of x and delivers the
currently optimal value based on the available measurements, gradually converging
towards an accurate sparse representation. For instance, the orthogonal matching
pursuit (OMP) first identifies the component with the most contribution to y,
estimates it then subtracts it from y. After repeating the above process, x can be
successfully recovered. We can also transform (2.5) as

x̂ = argmin
x

∥x∥1

s.t. ∥y −Ax∥22 ⩽ ε.
(2.6)

to relax ℓ0 norm minimization to a convex ℓ1 norm minimization. ℓ1 norm can
partly exploit the sparse feature of x and lead to a sparse solution for the dual
problem with high probability. It is noticeable that the global solution of (2.6)
might be a local minimal of (2.5). On the other hand, to reach a sparse solution,
there is an extra constraint for the selection of matrix A. Another approximation

x̂ = argmin
x

∥x∥p (0 < p < 1)

s.t. ∥y −Ax∥22 ⩽ ε.
(2.7)

has been proved with better performance compared to ℓ1 norm relaxation [16].
The minimization of ∥x∥p ((0 < p < 1)) can be solved by computing the proximity
operator, e.g. a Newton’s method-based algorithm proposed in [17].

In practice, the assumption of long-term coherent phase offset is quite challenging
with existing hardware due to the high frequency of mmWave. As discussed in
Chapter 1, the existence of phase noise leads to a breakdown in the performance
of the above CS approaches.
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2.1.2 Prior Works on Solving Phase Noise

Considering that CFO and random phase errors can corrupt the phase of mea-
surements over time, a series of research assuming non-coherence measurements
assigns independent phase errors in vector p. Consider the mth measurement,

y[m] = ejϕmA(m, :)x+ w[m].

When ϕm is fully random, e.g. ϕm ∼ U(0, 2π), the phase information of A(m, :)x
is completely lost. In such a case, it suffices to consider just the magnitude of y to
estimate x, i.e.

|y| = |Ax+w|. (2.8)

Several studies have delved into the model (2.8), where independent random phase
offsets are assigned to each training slot, creating a joint phase retrieval and sparse
recovery problem. An early study, exemplified by [18], combined a CS-based al-
gorithm with a Kalman filter to track phase noise in a narrowband channel. Ini-
tially, it utilized matching pursuit to estimate the sparse signal using model (2.2),
followed by tracing the phase noise with (2.3). However, the accumulation of
phase noise variance posed a significant challenge for accurate prediction, espe-
cially when dealing with a long series of training data. Another approach employed
hard-thresholding gradient descent for (2.5) to estimate the sparse vector, with an
initialized support set. However, the phase retrieval step, required anchor mea-
surements with known phase errors [19]. Obtaining specific known phase errors
in practical scenarios proved to be challenging. In a different vein, [20] proposed
a method that jointly estimated phase errors and the channel by constructing
high-dimensional sparse tensors composed of signal and phase error components.
This approach transformed the original problem into a standard sparse recovery
scheme. However, the introduction of this complex structure led to high computa-
tional complexity. To mitigate this complexity, a sparse bipartite graph code-based
phaseless decoding scheme was introduced in [21]. The channel estimation process
was formulated as a binary hypothesis test problem based on its coding scheme.
In this scheme, the sensing matrix exhibited a specific structure according to the
bipartite graph, simplifying the computational demands of the channel estimation
process.

The algorithms mentioned above, as presented in [19–21], do not fully exploit the
structure in the phase errors. However, due to the short packet signaling utilized for
beam training in IEEE 802.11ad/ay standards, a specific structure of phase errors
can be effectively utilized. To handle this structure, [22] extended the compressive
phase retrieval (CPR) framework to the partially coherent estimation model. Here,
partially coherent indicates that the phase errors fluctuate slightly during a short
time slot, yet remain relatively independent across packets. Within this model, [22]
defined alternating descent steps for both signal and phase estimation, employing
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a hard-thresholding scheme. Similarly, [23] developed a message-passing-based
algorithm for partially coherent sparse recovery, adopting a statistical perspective
and utilizing the Expectation-Maximization (EM) algorithm.

2.1.3 Literature Gaps

The prior works on sparse channel estimation from a compressive beam training
perspective have all exploited the sparse characteristic of mmWave channel, and
then designed algorithms based on different model assumptions. We can conclude
that the long-term coherence of the phase is unrealistic, while the non-coherent
model did not utilize the information from the phase corruptions. According to
the existing protocol, the partial coherence assumption relaxes the phase error
structure to a more tractable one. In later chapters, we will show the feasibility of
this approximation as well. Therefore, we adopt the partially coherent measure-
ment model in our research and then design the algorithm based on it.

In the context of device mobility and changing propagation environments, the swift
establishment of new connections requires a low-complexity algorithm to estimate
the current channel state. Previous methods, such as the one introduced in [20],
involve the estimation of a low-rank higher-order sparse matrix. However, this
approach significantly increases the sparsity level and the size of the sparse vector
and sensing matrix, leading to heightened computational and storage complexity.
Additionally, the method in [20] fails to deal with complex phase error, which will
be analyzed in Chapter 6. Other algorithms, including those in [19] and [22], utilize
gradient descent with fixed step sizes, which often require numerous iterations to
achieve convergence. In Chapter 6 we will analyze the computation complexity and
operation time of the method proposed in [22]. Considering that ℓp optimization
with 0 < p ≤ 1 can yield highly accurate recovery but is time-consuming compared
to greedy methods, we have developed a novel algorithm based on greedy schemes,
specifically matching pursuit, to address these challenges efficiently.

2.2 Our Contributions

We develop a compressive greedy algorithm for joint sparse channel and phase noise
estimation with a partially coherent measurement model. The proposed method
is with improved accuracy, low complexity, and no additional prior knowledge.
The partially coherent measurement model is motivated by the signaling structure
used in IEEE 802.11ad/ay standards, wherein a spatial channel measurement is
acquired using the TRN subfield within a beam refinement protocol packet [24].
With a typical phase noise process, phase coherence is preserved within a packet,
but lost across different packets.
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Our main contribution is the application of a joint support detection rule across
packets, combining alternating minimization and matching pursuit techniques to
estimate both the channel and phase noise for channel estimation. To assess the
algorithm’s performance, we also derive guarantees on partial support recovery. By
assuming that the phase noise remains constant within a BRP packet but varies
over packets, we substantially reduced the number of parameters to be estimated.
Also, matching pursuit in our method results in a lower computational complexity
than other benchmarks. Finally, we show by simulations that our algorithm out-
performs orthogonal matching pursuit (OMP) and Sparse-Lift [20] in the presence
of phase noise.
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Partially Coherent Channel
Measurement Model 3
In this chapter, we aim to derive the model for partially coherent measurements.
We begin by introducing the narrowband assumption applicable to multi-path
wireless channels. Based on this assumption, we establish a sparse representation
of the wireless channel, forming the foundation for our system model. Subsequently,
we introduce our assumption regarding phase noise and proceed to derive the model
for partially coherent measurements.

3.1 Narrowband Assumption

The narrowband assumption in the context of wireless communication systems is
derived based on the relative magnitudes of the signal bandwidth and the delay
spread of the channel. The delay spread is a measure of the spread of time delays
of multipath components in a channel.

To derive the narrowband assumption from a passband signal, let us consider
a wireless communication system with single-carrier modulation. The baseband
signal z(t) can be modulated before transmission as a passband signal

s(t) = R
{
z(t)ej2πfct

}
. (3.1)

Thinking of a multi-path channel between an antenna at TX and an antenna at
RX as shown in Figure 3.1, the TX transmits the passband s(t), the received signal
from the kth path delayed by τk is

sτk(t) = s(t− τk) = R
{
z(t− τk)e

−j2πfcτkej2πfct
}
, (3.2)

where fc is the carrier frequency.

The root mean square (RMS) delay spread is a measure of the spread of delay
values in a wireless communication channel and can be derived from the power
delay profile of the channel. It is calculated as the square root of the second
central moment of the power delay profile. Mathematically, it is expressed as

∆τ =

√∑K
k=1 Pk (τk − τ̄)2∑K

k=1 Pk

, (3.3)
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where Pk is the power of the kth path, and τ̄ is the mean delay defined as

τ̄ =

∑K
k=1 Pkτk∑K
k=1 Pk

. (3.4)

The narrowband assumption is valid when the transmission bandwidth 1/Ts is
much smaller than the reciprocal of the delay spread, i.e.

1

Ts

≪ 1

∆τ
.

This condition ensures that the channel variations over the signal bandwidth are
negligible, allowing us to treat the channel as effectively constant over that band-
width.

Figure 3.1: An illustration of the delay spread of the multi-path channel for a pair of antennas.

3.2 Channel Model

We consider a narrowband system and model the multiple input single output
(MISO) channel between the TX and the RX as a vector h ∈ CN with multiple
paths. Considering TX as a uniform linear array as shown in Figure 3.2, let ∆T

denote the antenna spacing, θk the direction of departure (DoD), and cw the wave
speed, then the delay between adjacent antennas is

∆T sin θk
cw

. (3.5)

Further denote carrier wavelength

λc = cw/fc ,
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Figure 3.2: An illustration of the MISO system.

then (3.5) is equivalent to

1

fc
· ∆T sin θk

λc

. (3.6)

Denote the attenuation of the kth path as h̄k and the number of antennas at TX
as N , the continuous-time impulse response h̄(t) is given by

h̄(t) =
K∑
k=1

h̄k



δ
(
t− dk

cw

)
δ
(
t− dk+∆T sin θk

cw

)
δ
(
t− dk+2∆T sin θk

cw

)
...

δ
(
t− dk+(N−1)∆T sin θk

cw

)
,


(3.7)

where dk is the distance of the kth path. In a narrowband channel and a linear
time-invariant system, where the wireless channel exhibits certain characteristics,
we can draw a connection between time and spatial domains akin to a Fourier
transform pair, i.e.

h = F(h̄(t)),

where F denotes the Fourier transform operation. Therefore, the spatial response
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can be represented as

h =
K∑
k=1

h̄ke

(
−j2πfc

dk
cw

)


1

e

(
−j2πfc

∆T sin θk
cw

)
e

(
−j2πfc

2∆T sin θk
cw

)
...

e

(
−j2πfc

(N−1)∆T sin θk
cw

)
.


(3.8)

Let

hk = h̄ke

(
−j2πfc

dk
cw

)
(3.9)

as the complex path gain, again denote carrier wavelength λc = cw/fc and take a
half-wavelength spacing ∆T = λc/2, then the channel can be written as

h =
K∑
k=1

hka(θk). (3.10)

Here, a(θk) is the transmit array response vector given by

a(θk) =
[
1, e−jπ sin θk , · · · , e−jπ(N−1) sin θk

]⊤
. (3.11)

the complex gain is assumed to follow circularly symmetrix complex Gaussian
distribution, i.e. hk ∼ CN (0, 1). θ is assumed to be uniformly distributed in
(−π, π).

Due to the high scattering observed at mmWave frequencies, only a small number
of the directions of arrival (DoA) are effective. This characteristic implicit that in
the angle domain, the channel vector is sparse. To acquire the sparse expression,
we use the discrete Fourier transform dictionary to sample and obtain the angle-
domain representation of the channel,

x = UNh, (3.12)

where UN is the N ×N unitary discrete Fourier transform matrix denoting as

UN =
1√
N


1 1 1 1

1 e−j 2π
N · · · e−j 2π

N
(N−1)

:
... :

...

1 e−j 2π(N−1)
N · · · e−j 2π(N−1)

N
(N−1)

 .

Due to high scattering at mmWave carrier frequencies, the vector x in (3.12) is
approximately sparse with high probability. Spectrum leakage occurs due to the
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period mismatch of the on-grid spatial sampling. For simplicity, we assume a
perfectly sparse channel vector in this project. This assumption is valid when

π sin(θk) = Q · 2π
N

, (3.13)

where k ∈ {1, 2, . . . , K}, Q ∈ N+.

Examples of the approximately sparse channel and the perfectly sparse channel
are given in Figure 3.3.

(a) (b)

Figure 3.3: Sparse representation of the channel with Number of Effective DoA = 4. (a) is a
mmWave channel that is approximately sparse due to leakage effects with the DFT; (b) is the
perfectly sparse channel when the DoAs match the angular period defined in (3.13).

3.3 System Model

Before introducing the system model, we first describe the frame structure used
to obtain measurements for channel estimation. To this end, we consider the
IEEE 802.11ad frame structure shown in Figure 3.4. The TX applies a distinct
beamformer for the RX to acquire a measurement. The RX acquires channel
measurements within the channel coherence time over P different packets. We
define M as the number of beamformers applied in each packet. With IEEE
802.11ad, M can be at most 128 [1]; however, it can often be smaller (e.g. 16) to
acquire redundant measurements and enhance the spreading gain. In that case,
numerous beam refinement protocol (BRP) packets can be used to acquire enough
spatial measurements for channel estimation.

We consider a mmWave system with an analog antenna array comprising N an-
tennas at the transmitter (TX) and a single antenna receiver (RX) as shown in
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Figure 3.4: Partially coherent measurement model where the phase errors in the channel mea-
surements are assumed to be constant within each packet.

Figure 3.5. The focus of this project is on transmit beam alignment through
channel estimation. Although we assume a single antenna at the RX for ease
of exposition, our approach can be extended to multi-antenna receivers using an
appropriate array response vector.

Figure 3.5: An mmWave MISO system with an analog antenna array at the TX and a single
antenna at the RX.

Let fm ∈ CN denote the mth beam training weights, at the TX and s[m] denote
the single mth pilot symbol for beam training, then the codeword applied to the
TX array is

fm · s[m],

thus the ideal measurement of the signals received at RX is

f∗mhs[m]
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Note that f∗m is the conjugate transpose of fm. This measurement is perturbed by
phase noise ϕm and additive white Gaussian noise w[m] of variance σ2. Let y[m]
denote the mth received channel measurement,

y[m] = ejϕmf∗mhs[m] + w[m] (3.14)

Here, the phase noise ϕm can be modeled as a Wiener process

ϕm|ϕm−1 ∼ N (ϕm−1, τ
2),

where
τ = 2πfc

√
c(Tm − Tm−1).

Here, c is an oscillator-dependent constant, and Tm is the time stamp associated
with the mth measurement. In the training packets, s[m] is a known pilot symbol,
here we set s[m] = 1. Using (3.12), (3.14) can be further written as

y[m] = ejϕmf∗mU
∗
Nx+ w[m], (3.15)

Under these modeling assumptions, we aim to estimate the sparse channel x using
the measurements from (3.15) with the knowledge of fm, for m = 1, 2, . . . ,M .

3.4 Partially Coherent CS model

To formulate the CS model, we notice that the time difference between succes-
sive measurements in a BRP packet, i.e. Tm − Tm−1, is 128 ns in IEEE 802.11ad.
In contrast, the difference between the successive packets can range from 3µs to
44µs [25]. Therefore, a high variance phase offset is introduced in the measure-
ments when switching to a new packet. Figure 3.6 shows a realization of ϕm when
M = 16 measurements are acquired in each of the P = 4 packets.

To develop a tractable algorithm, we ignore the phase variations within each packet
and only consider phase offsets across different packets. The robustness of our
algorithm to phase variations within the packets is studied in Chapter 6.

Under the above approximation assumption, the measurements can be expressed
as a partially coherent CS model [22]. We define eϕp as the phase error in the
measurements acquired within the pth packet. The vector of MP channel mea-
surements, acquired over P packets, can be expressed in terms of the CS matrix
A ∈ CMP×N and the phase errors {eϕ1 , eϕ2 , . . . eϕP }. Based on (3.14), we define the
mth row of the CS matrix as

A(m, :) = f∗mU
∗
N , (3.16)
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Figure 3.6: A realization of the phase noise process with the measurement index. Our model
assumes that the phase error within each packet is the same.

and a diagonal matrix containing the phase errors as

Φ =


ejϕ1IM

ejϕ2IM
. . .

ejϕP IM


MP×MP

(3.17)

where IM is an identity matrix of size M ×M . The vector version of (3.14) is then

y = ΦAx+w, (3.18)

where Φ and x are unknown. We observe from (3.18) that x can only be estimated
up to a global phase. This is because (Φ1e

−jδ,x1e
jδ) is a solution to (3.18) whenever

(Φ1,x1) is a solution. Hence, the goal of partially coherent CS is to estimate x, up
to a global phase, from the measurements in (3.18).

We can split the measurement model in (3.18) on a packet-by-packet basis. The
measurements from the pth packet correspond to rows (p − 1)M + 1 to pM of
(3.18). We define the measurements acquired in the pth packet as yp, and the CS
measurement matrix associated with the pth packet as Ap. Specifically,

A =


A1

A2
...

AP


MP×N
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and
yp = ejϕpApx+wp, (3.19)

where wp is additive noise. Now our channel estimation problem is equivalent to
estimating x from the phase perturbed measurements {yp}Pp=1 acquired using CS

matrices {Ap}Pp=1. For beam training weights fm, we initialize it as a unit vector,
keeping the codebook as a Fourier matrix.

In summary, we establish the MISO system model and illustrate the sparse rep-
resentation of the channel vector under the narrowband assumption. Analyzing
the transmission protocol, we explore the structural characteristics of phase noise
in transmission packets, leading to the construction of partially coherent measure-
ments. The upcoming chapter will delve into three methods for channel vector
estimation under the influence of phase noise.
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Existing Methods for Sparse
Channel Estimation Under
Phase Noise 4
Here we will introduce the idea and implementations of OMP [26], Sparse-Lift [20]
and PC-CPR [22] with different assumptions on phase noise. These CS-based
algorithms are the benchmarks in our simulations.

4.1 Orthogonal Matching Pursuit (OMP)

4.1.1 Algorithm flow

For OMP, we consider the long-term coherent model (2.2) and ℓ0 optimization (2.5).
Although this approach does not account for phase errors, we still discuss standard
OMP as it will aid the explanation of our proposed PC-MP algorithm later. There
are two fundamental steps for this simple and fast method: support detection
and signal estimation. For support detection, it first identifies the component
with the most contribution to y and records its index. Then, it solves an LS-
minimization problem to estimate the signal contributed by that index. After
that, this contribution is subtracted from y. After repeating the above process, x
can be successfully recovered.

More specifically, the OMP first initializes the residual r(0) = y and support set
λ(0) = ∅. Until iterating K times, where K is the sparsity of x, or matching the
stop criteria, e.g. the error between y and the reconstructed measurements is less
than a small constant, i.e.

∥y −Ax∥22 ⩽ ε

at the tth loop the support set updates by adding the column index k of the sensing
matrix A that maximizes the projection on the residual vector, i.e.

k(t) = argmax
k

∣∣A(:, k)Tr(t−1)
∣∣

λ(t) = λ(t−1) ∩ k(t).

Then the signal is estimated by solving a least square (LS) problem

x̂ = argmin
x̂

∥y −Aλ(t)x̂∥2
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as
x̂(t) = A†

λ(t)y.

The current residual is updated by subtracting the contribution of the current
estimation as

r(t) = y −Aλ(t)x̂(t).

4.1.2 Computation Complexity

Iterating K times where K is the sparsity level takes
∑

K O(T (k)) FLOPS, where
T (k) is the computation complexity of kth iteration.

1. Product of A(:, k)∗rp,t−1 takes O(MPN) FLOPS. Selecting the maximum
over N scalars takes O(N log(N)) FLOPS.

2. Pseudo inverse operation takes O((MP )2k) + O((MP )3) FLOPS.

3. Update of residual takes O(MP ) +O(MPk2) FLOPS.

4.2 Sparse-Lift

4.2.1 Algorithm Flow

In this section, we discuss how the Sparse-Lift algorithm in [20] can be applied
to solve for the sparse vector in the partially coherent sparse recovery problem.
Sparse-Lift can be extended to match a partially coherent model. This algorithm
considers a non-coherent model with a random phase error vector. The idea in [20]
is to jointly estimate the calibration errors and the sparse vector by solving for a
high-dimensional lifted matrix, which is an outer product of the error vector and the
sparse vector. After this sparse matrix is estimated, singular value decomposition
(SVD) is employed to separate these two components. To apply Sparse-Lift, we
first define the calibration error vector as

p = (ejϕ1 , ejϕ2 , · · · , ejϕP ),

so we can rewrite the phase matrix (3.17) as

Φ = diag(Bp),

where
B = IP ⊗ 1T

M

=

 1M

. . .
1M


MP×P

.
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In this way, the measurement vector y in (3.18) is then

y = diag(Bp)Ax+w, (4.1)

and the mth entry of y is given by

y[m] = b̃T
mpx

Tãm + w[m], (4.2)

where b̃T
m is the mth row of B and ãm is the transpose of the mth row of A. We

define
X = pxT

as the lifted matrix, which is sparse as x is sparse. Using the identity bTXa =
(aT ⊗ b)vec(X), we can rewrite (4.2) as

y[m] = (ãT
m ⊗ b̃T

m)vec(X) + w[m], (4.3)

which is a linear measurement of the lifted vector vec(X). Then the collection of
all the measurements can be represented as

y =

 ãT
1 ⊗ b̃T

1
...

ãT
MP ⊗ b̃T

MP

 vec(X) +w. (4.4)

With Sparse-Lift, MP measurements of this form are used to solve for the sparse
matrix X = pxT. Then, the singular value decomposition of the estimate X̂ =
UΓV∗ is computed. The estimate of the sparse channel, up to a global scaling, is
then x̂ = v1, where v1 is the conjugate of the singular vector corresponding to the
largest singular value.

4.2.2 Computation Complexity

We use OMP to address the standard sparse recovery of vec(X). The sparsity level
of vec(X) is PK. Sparse recovery of vec(X) takes

∑
PK O(T (k)) FLOPS, where

T (k) is the computation complexity of kth iteration.

1. The first iteration step, similar to OMP, takes O(MNP 2) FLOPS.

2. Selecting the maximum over PN scalars takes O(PN log(PN)) FLOPS.

3. Pseudo inverse operation takes O((MP )2k) + O((MP )3) FLOPS.

4. Update of residual takes O(MP ) +O(MPk2) FLOPS.
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After sparse recovery, the SVD takes O(P 2N) FLOPS.

As we know the sparsity of vec(X) ∈ CPN×1 is PK, where K is the sparsity of x.
Compared to OMP which recovers a K-sparse vector, the sparse recovery of this
higher dimension tensor definitely owns higher computation complexity. From the
aspect of accuracy, we expect the recovered matrix X̂ is strictly rank-1, which is
hard to achieve by standard CS algorithm, leading to degradation of the principle
singular value during SVD step. This fact has impacts on the performance of
Sparse-Lift.

4.3 Partially Coherent Compressive Phase Retrieval (PC-
CPR)

The partially coherent CS model in [22] assumes that the coherent measurements
are acquired using different radio frequency chains. Although we consider a single
radio frequency chain, our mathematical model is identical to the one in [22]. The
algorithm in [22] is a two-stage method. In the first stage, the support set of the
sparse vector is found by taking indices corresponding to the K largest values of
z, where z[k] =

∑P
p=1 |Ap(:, k)

∗yp|2/M . Then, the sparse estimate x̂ is initialized

using the eigen-decomposition-based method in [27]. In the second stage, the
algorithm iteratively estimates the phase errors and the sparse signal. A hard
thresholding algorithm is used to estimate the sparse signal. In tth iteration, the
compensation of pth packet can be written as

y(t)
p = y(t−1)

p e−jϕ̂
(t)
p , (4.5)

where the phase noise ϕ̂p is estimated by taking

ϕ̂(
pt) = argmin

ϕ̂p

∥y(t−1)
p − ejϕ̂pAp,Λx̂

(t−1)∥22. (4.6)

Stack all the packets in y(t), and the sparse channel estimation can be formed as
a standard CS recovery:

x̂(t) = argmin
x̂

∥∥y(t) −Ax̂(t−1)
∥∥2 s. t. ∥x̂∥0 ≤ K. (4.7)

Then [22] solved it by a hard thresholding method.

The above steps iterate until the stop criteria is met. In [22], the stop criteria is
defined as ∥∥y(t) −Ax̂(t)

∥∥ < ϵ,

where ϵ is the termination threshold.
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4.3.1 Computation Complexity

1. Initialization of x̂ takes O(2MPN +N log(N) + 2(MP )2 +K2(MP )2 + k3 +
MPK+MP+K) FLOPS. The complexity mainly comes from multiplication
of 3 matrices as O(K2(MP )2).

2. Iterative refinement takes O(log(1/ϵ) · T (t)) FLOPS, where ϵ is the stopping
criteria, and T (t) the complexity of each refinement.

3. Each refinement, including calibration of y and a thresholding step, takes
O(P · (M2N2 +MN2) +MN +KN).

In conclusion, the complexity of PC-CPR is about O(PM2N2 log(1/ϵ)), mainly
from step 2 and 3.

In this chapter, we presented the implementation details of OMP, Sparse-Lift, and
PC-CPR, encompassing their algorithmic flow and computational complexities.
Additionally, we conducted a preliminary analysis of their limitations. The follow-
ing chapter will introduce our proposed algorithm. To facilitate a comprehensive
comparison with these methods, we will showcase simulation results in Chapter 6.
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Proposed Partially Coherent
Matching Pursuit 5
5.1 Partially coherent matching pursuit (PC-MP)

Our PC-MP algorithm is a greedy approach that adds one element to the estimated
support set in each iteration. Then, the algorithm estimates the phase errors and
the sparse signal over the estimated support through alternating minimization.
This procedure is carried out until the stopping criterion is met. In this project,
we use the assumption in [22] that the number of non-zero coefficients in x is
known. There are several methods for sparsity-level exploiting.

We first discuss our support detection rule in PC-MP. Our algorithm is initialized
by setting Λ0 to an empty set and x̂0 to a zero vector. Here, we use Λt to denote
the estimated support set of the sparse vector, x̂t as the estimate of x, and ϕ̂p,t as
the phase error estimated for packet p, after t iterations. The vector of estimated
phase errors is denoted by ϕ̂t. For the p

th packet, we denote rp,t as the residue error
between the observed measurements, and initialize rp,0 = yp. For the prediction in
the tth iteration, we subtract the components contributed by current x̂t as

rp,t = yp − ejϕ̂p,tApx̂t. (5.1)

In the tth iteration, matching pursuit algorithms in standard CS identify the column

of Ap that results in the largest |Ap(:, k)
∗r

(t−1)
p |, i.e., the absolute value of the

correlation with the residue. In our problem, however, we have P different residues
derived from P packets. As the measurements across the P packets are non-
coherent, our algorithm sums up the absolute values of the correlations and selects
the index that maximizes the summation. The new element added to the support
set is

k̂t = argmax
k∈[N ]\Λt−1

P∑
p=1

|Ap(:, k)
∗rp,t−1|, (5.2)

and the augmented support set is Λt = Λt−1∪ k̂t. For the special case when P = 1,
we observe that the objective in (5.2) becomes identical to that used in matching
pursuit algorithms for standard CS. In the tth iteration, our approach explicitly
excludes support elements in Λt−1 while the OMP inherently avoids selecting such
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elements. This is because the residue in our approach may not be orthogonal to
the selected columns of the CS matrix, unlike the OMP.

After the support estimation step, we use an alternating minimization approach to
estimate the non-zero entries of x over the identified support, and the phase errors.
Due to the different support detection schemes from the methods in [19,22], we do
not need to initialize the phase error and signal vectors in a specific way, because
the signal vector converges to the accurate one as support set updates.

As we acquired different measurement vectors for the same signal vector, it is
crucial to recover one x over all the packets. The joint estimation of the signal and
the phase error vector ϕ = [ejϕ1 , ..., ejϕP ] can be formed as an optimization problem
by minimizing the summation of LS errors between exact yp and the reconstructed
measurements, i.e.

x̂Λt , ϕ̂t = argmin
zΛt ,δ

P∑
p=1

∥∥yp − ejδpAp,ΛtzΛt

∥∥2 , (5.3)

where Ap,Λt is a submatrix of Ap obtained by retaining only those columns with
indices in Λt. We observe that (5.3) is a non-convex problem. It is, however,
a standard least squares problem in zΛt for a fixed δ. Furthermore, a closed
form solution for δ can be obtained for a fixed zΛt . Our alternating minimization
procedure leverages both of these properties.

We now provide closed-form expressions for phase recovery and signal estimation in

the ℓth iteration of alternating minimization in (5.3). For a fixed z
(ℓ−1)
Λt

in (5.3), we

observe that the minimization problem is separable in {δp}Pp=1. The phase recovery

problem for the pth packet is then

ϕ̂
(ℓ)
p,t = argmin

δp

∥yp − ejδpAp,Λtz
(ℓ−1)
Λt

∥2

= argmax
δp

R{ejδpy∗
pAp,Λtz

(ℓ−1)
Λt

}

= −phase
(
y∗
pAp,Λtz

(ℓ−1)
Λt

)
. (5.4)

After estimating ϕ̂
(ℓ)
p,t for each p, the signal in (5.3) is estimated by solving a convex

least squares problem. Let the gradient of the objective

2
∑P

p=1

(
A∗

p,Λt
Ap,Λtx̂

(ℓ)
Λt

− e−jϕ̂
(ℓ)
p,tA∗

p,Λt
yp

)
= 2

(∑P
p=1A

∗
p,Λt

Ap,Λt

)
x̂
(ℓ)
Λt

− 2
(∑P

p=1 e
−jϕ̂

(ℓ)
p,tA∗

p,Λt
yp

)
= 0

,

34



the solution then is given by

x̂
(ℓ)
Λt

=

(
P∑

p=1

A∗
p,Λt

Ap,Λt

)†( P∑
p=1

e−jϕ̂
(ℓ)
p,tA∗

p,Λt
yp

)
. (5.5)

After the alternating minimization procedure converges in L iterations, our method

sets x̂Λt = x̂
(L)
Λt

and ϕ̂t = ϕ̂
(L)
p,t . The subsequent PC-MP step updates the residue

according to (5.1) and then identifies the next element of the support. A summary
of our PC-MP technique is provided in Algorithm 1.

Algorithm 1 Proposed PC-MP algorithm for sparse recovery

Input: Partially coherent measurements {yp}Pp=1, CS matrices {Ap}Pp=1, sparsity
level K
Initilize: rp,0 = yp, x̂0 = 0,Λ0 = ∅

1: for t = 1, 2, . . . ,K do
#Support detection:

2: k̂t = argmax
k∈[N ]\Λt−1

∑P
p=1 |Ap(:, k)

∗rp,t−1|

3: Λt = Λt−1 ∪ k̂t
4: #Signal estimation:

5: while
∣∣∣x̂(l)

Λt
− x̂

(l−1)
Λt

∣∣∣ > ϵ or ℓ < L do

6: ϕ̂
(l)
p,t = −phase

(
yH
p Ap,Λx̂

(l−1)
Λt

)
∀p

7: x̂
(l)
Λt

=
[∑P

p=1A
∗
p,Λt

Ap,Λt

]†[∑P
p=1e

−jϕ
(l)
p,tA∗

p,Λt
yp

]
8: end while
9: rp,t = yp − ejϕ̂

(l)
p,tAp,Λt x̂Λt ∀p

10: end for
11: Output: x̂

5.2 Performance Guarantees

5.2.1 Definition of Mutual Coherence

In compressive sensing, the concept of mutual coherence quantifies the quality of
sparse sampling and plays a crucial role in the success of sparse signal recovery
algorithms. Mutual coherence measures how correlated the columns of the mea-
surement matrix (here denoted as A) are in terms of inner products. To achive a
good recovery, we expect that for different sparse vectors x, there would be distinct
product results of Ax. For a given measurement matrix

A = [a1, a2, . . . , aN ]
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with normalized columns
∥ai∥2 = 1

for each column ai, the mutual coherence is defined as the maximum absolute inner
product between any two distinct columns of A, i.e.

µ(A) = max
i ̸=j

|aT
i aj|.

A lower mutual coherence value indicates that the columns of the matrix A are less
correlated, making it easier to distinguish between the sparse signals during the
reconstruction process. In other words, a measurement matrix with lower mutual
coherence provides a higher-quality sparse sampling, allowing for more accurate
recovery of sparse signals [28].

5.2.2 Mutual Coherence-Based Support Detection Guarantees

Now, we derive a mutual coherence-based guarantee to successfully identify one
element of the true support set of x with PC-MP for real-valued CS matrices.

Proposition 1. Consider the channel estimation problem in (3.19) using measure-
ments from P packets. Assume that the columns in real-value CS matrix Ap are
normalized as ∥Ap(:, i)∥2 = 1. Given a constant β > 0, the support entry identified
in the first iteration is correct with probability exceeding

1− 1

NβP β
√
π(1 + β) log(NP )

. (5.6)

under the condition

|xmax|

(
1− (2K − 1)

P

P∑
p=1

µp

)
> 2σ

√
2(1 + β) log(NP ) , (5.7)

where |xmax| = max
i∈Λ

{|xi|, xi ∈ x}, µp is the mutual coherence of Ap, σ is the

standard deviation of Gaussian additive noise wp, and K is the sparsity level of x.

Proof. We extend the support identification guarantee in [28] to the partially co-
herent case. Let Λ be the true support of the sparse vector x. Our proof verifies
that when (5.7) holds,

max
i∈Λ

P∑
p=1

∣∣Ap(:, i)
Typ

∣∣ > max
i/∈Λ

P∑
p=1

∣∣Ap(:, i)
Typ

∣∣ , (5.8)
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which matches our detection rule to successfully identify one element of the sup-
port. To this end, we show that (5.8) holds under D, where

D =

{
max
1≤i≤N

max
1≤p≤P

|Ap(:, i)
Twp| < ζ

}
, (5.9)

where
ζ = σ

√
2(1 + β) logN

controls the success probability of event D. As
{
Ap(:, i)

Twp

}
i,p

is jointly Gaussian,

with [29, theorem 1] we simplify

Pr {D}= Pr

{
max
i,p

|Ap(:, i)
Twp| < ζ

}
= Pr

{
max

p
|Ap(:, 1)

Twp| < ζ, ...,max
p

|Ap(:, N)Twp| < ζ

}
≥

N∏
i=1

Pr

{
max

p
|Ap(:, i)

Twp|<ζ

}

≥
N∏
i=1

P∏
p=1

Pr
{
|Ap(:, i)

Twp|<ζ
}

=

[
1−2Q

(
ζ

σ

)]NP

,

where

Q(x) = (
1√
2π

)

∫ ∞

x

e−z2/2dz

is the Gaussian tail probability.

Theorem 1. [29] Collect a set of random variables X = (X1, X2, . . . , Xk) with
normal distribution with zero means and arbitrary variances. For any positive
numbers (c1, c2, . . . , ck),

Pr {|X1| ≤ c1, |X2| ≤ c2, . . . , |Xk| ≤ ck}
≥ Pr {|X1| ≤ c1} · Pr {|X2| ≤ c2, . . . , |Xk| ≤ ck}

≥
k∏

i=1

Pr {|Xi| ≥ ci} .

Further, since the Gaussian tail probability is bounded by

Q(x) ≤ 1

x
√
2π

e−x2/2,
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we obtain

Pr {D} ≥

(
1−

√
2

π

σ

ζ
e

−ζ2

2σ2

)NP

≥ 1−NP

√
2

π

σ

ζ
e

−ζ2

2σ2 .

The second step is according to Taylor expansion. Substituting

ζ = σ
√

2(1 + β) log(NP )

in the above relation shows that the event D occurs with probability exceeding
(5.6).

Once the event D holds for p = 1, 2, . . . , P , we can express the left-hand side of
(5.8) as

max
i/∈Λ

P∑
p=1

∣∣Ap(:, i)
Typ

∣∣
= max

i/∈Λ

P∑
p=1

∣∣∣∣∣Ap(:, i)
T

(∑
k∈Λ

ejϕpAp(:, k)xk +wp

)∣∣∣∣∣
= max

i/∈Λ

P∑
p=1

∣∣∣∣∣Ap(:, i)
Twp +

∑
k∈Λ

ejϕpAp(:, i)
TAp(:, k)xk

∣∣∣∣∣
≤ max

i/∈Λ

P∑
p=1

∣∣Ap(:, i)
Twp

∣∣+max
i/∈Λ

P∑
p=1

∑
k∈Λ

∣∣ejϕpAp(:, i)
TAp(:, k)xk

∣∣
≤ Pζ +K

P∑
p=1

µp |xmax| , (5.10)

where the last step follows from (5.9) and the definition of |xmax| is

|xmax| = max
i∈Λ

{|xi|, xi ∈ x, } .

For a sparsity level K ≥ 1, using (3.19) and column normalization assumption on
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Ap, we can bound the right-hand side of (5.8) as

max
i∈Λ

P∑
p=1

∣∣Ap(:, i)
Typ

∣∣
= max

i∈Λ

P∑
p=1

∣∣∣∣∣Ap(:, i)
T

(∑
k∈Λ

ejϕpAp(:, k)xk +wp

)∣∣∣∣∣
= max

i∈Λ

P∑
p=1

∣∣∣∣∣∣xie
jϕp +

∑
k∈Λ\{i}

ejϕpAp(:, i)
TAp(:, k)xk +Ap(:, i)

Twp

∣∣∣∣∣∣
≥ max

i∈Λ

P∑
p=1

|xi| −
P∑

p=1

∣∣∣∣∣∣
∑

k∈Λ\{i}

ejϕpAp(:, i)
TAp(:, k)xk +Ap(:, i)

Twp

∣∣∣∣∣∣ . (5.11)

Here, from the definition of xmax and µp, we get

max
i∈Λ

P∑
p=1

∣∣Ap(:, i)
Typ

∣∣≥P |xmax| −
P∑

p=1

∑
k∈Λ/i

µp|xmax|+ ζ


≥P |xmax|−Pζ−(K−1)

P∑
p=1

µp|xmax|. (5.12)

In the first iteration of PC-MP, support identification is successful when (5.8) holds.
We observe that the condition in (5.8) holds if the lower bound in (5.12) exceeds
the upper bound in (5.10), which is equivalent to

P |xmax| − 2Pζ − (2K − 1)
P∑

p=1

µp |xmax| > 0, (5.13)

which is the condition stated in (5.7).

Our guarantees are limited to identifying only one element from the support set,
not the entire support. This limitation arises due to inaccuracies in phase error
estimation during each iteration, leading to residual errors. These errors might not
be orthogonal to the previously selected columns, making it challenging to apply
an induction-based argument. Intuitively, the result shows that support detection
can only be successful under the assumption that the maximum absolute entry
of x is “larger” than the additive noise level as described by (5.7). Furthermore,
it establishes that a sufficient condition for the faithful identification of the first
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element of the support is given by the inequality:

1

P

P∑
p=1

µp < 1/(2K − 1).

Additionally, it is evident that a decrease in mutual coherence makes it easier to
meet the condition (5.7). Therefore, selecting compressive sensing matrices for PC-

MP with the lowest average mutual coherence, i.e.
∑P

p=1 µp/P , proves to be a wise
choice. Knowing the complexity helps in allocating computational resources ef-
fectively. For instance, in real-time systems or resource-constrained environments,
choosing algorithms with lower complexity can ensure optimal performance.

5.3 Computation Complexity

In this section, we are going to discuss the complexity of PC-MP in each step.
Iterating K times where K is the sparsity level takes

∑
K O(T (k)) FLOPS, where

T (k) is the computation complexity of kth iteration.

1. Product of Ap(:, k)
∗rp,t−1 takes O(MN) FLOPS, Summing P scalars takes

O(P ) FLOPS. Selecting the maximum over N scalars takes O(N log(N))
FLOPS.

2. The state takes O(1) FLOPS.

3. Product of yH
p Ap,Λx̂

(l−1)
Λt

takes O(Mk) FLOPS.

4. Product of A∗
p,Λt

Ap,Λt takes O(M2k) FLOPS, the summation of vectors over

P packets takes O(Pk2) FLOPS, and the inverse takes O(M3) FLOPS.

5. Product of e−jϕ
(l)
p,tA∗

p,Λt
yp takes O(Mk) FLOPS, summing of vectors over P

packets takes O(Pk) FLOPS.

In the worst case, step 2∼5 takes
∑

L O(T (ℓ)) FLOPS, where T (ℓ) is the com-
putation complexity of the ℓth alternating minimization step. The main complex-
ity comes from the matrix inverse operation, thus the complexity of PC-MP is
O(KLM3). From the analysis result, we can conclude that a small size of the
training packet can decrease the computation complexity.

In this chapter, we systematically derived the PC-MP algorithm, examined the
conditions guaranteeing successful detection of the first support, and analyzed the
computational complexity of the algorithm. The subsequent chapter will present
simulation results, comparing PC-MP with benchmark algorithms.
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Simulations & Results 6
In this chapter, we compare the performance of our proposed method with OMP,
self-calibration-based CS called Sparse-Lift [20], and partially coherent CS (PC-
CPR) [22], considering the system model described in section Chapter 3.

6.1 System Parameters

We first generate the measurements of the multi-path channel according to (3.18)
assuming partially coherent measurements, then generate data according to (3.15)
with practical phase noise. The parameters are set as:

• Set a uniform linear array of size N = 256 and the same number of on-grid
paths in the channel.

• The number of acquired spatial channel measurements in each packet is M =
16.

• The DoA are assumed to be uniformly distributed in [−π, π).

• The complex gain is assumed to follow circularly symmetrix complex Gaus-
sian distribution, i.e. hk ∼ CN (0, 1).

• The standard deviation of phase noise is given as τ = 2πfc
√
cTs [2], with

fc = 60 GHz as the carrier frequency, c = 4.7 × 10−18 dependent on the
oscillator, and Ts = 128 ns as the duration time of a single pilot signal.

In our simulation, we treat the channel vector x as exactly sparse, by randomly
activating some of the paths and normalizing the complex path gains.
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6.2 Metrics Used to Evaluate Algorithms

For the performance evaluation, we use the achievable rate and normalized mean
square error (NMSE) as metrics and analyze how they vary with the signal-to-noise
ratio (SNR), the number of measurements, and the channel sparsity. We define
the SNR as 10 log10 (1/σ

2).

• Normalized Mean Squared Error

As the measurements in the partially coherent model are perturbed in phase, the
algorithms can estimate the channel only upto a global phase. We define the
normalized mean squared error as

NMSE =
∥ejδhest − h∥22]

E[∥h∥22]
,

where
δ = argmin

δ
∥ejδhest − h∥22.

• Achievable Rate

The achievable rate for the channel is defined as

R = log2
(
1 + |f∗esth|2/σ2

)
.

fest is set to satisfy
fest = argmax

f
|f∗h|2

s.t. ∥fest∥2 = 1,

which is a unit-norm conjugate beamformer, i.e.

fest = hest/∥hest∥2.

6.3 Results and Discussion

To evaluate our algorithm, we initially simulate and discuss algorithms operating
on the partially coherent model, assuming that the phase noise is constant within
a packet. However, as discussed in Section 1.4 and Section 3.4, practical phase
noise also fluctuates within a packet. In this section, we further simulate these
algorithms under a practical phase noise setting to test the robustness of the pro-
posed approach to variations in phase noise within each packet. Subsequently,
we conduct simulations in scenarios where the channel vector x is approximately
sparse.
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6.3.1 Simulations when phase noise is constant within each packet

(a) (b)

Figure 6.1: Simulation results with perfect structured phase noise that compare PC-MP against
the benchmarks for N = 256 antennas at the TX, K = 4 sparse channels, and the total number
of measurements MP = 128. (a) Achievable rate with SNR. (b) NMSE in the channel estimate
with SNR. The number of iterations used for PC-CPR is as same as that used for PC-MP, while
×10 PC-CPR uses 10× more iterations than PC-MP.

(a) (b)

Figure 6.2: Simulation results with perfect structured phase noise that compare PC-MP against
the benchmarks for N = 256 antennas at the TX, K = 4 sparse channels, and SNR = 15 dB.
(a) Achievable rate with numbers of measurements. (b) NMSE in the channel estimate with
numbers of measurements.

In this subsection, simulations are done with a perfectly structured phase noise
matrix as (3.17). We compare the average achievable rate and NMSE versus SNR
in Figure 6.1 for SNR range from −10dB to 15dB, and versus the total number
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(a) (b)

Figure 6.3: Simulation results with perfect structured phase noise that compare PC-MP against
the benchmarks for N = 256 antennas at the TX, with SNR = 15 dB, and the total number of
measurements MP = 128. (a) Achievable rate with channel sparsity. (b) NMSE in the channel
estimate with channel sparsity.

of measurements in Figure 6.2 for the number of measurements range from 16
to 144, which is equivalent to 1 to 9 packets. The plots in these two figures
demonstrate that improved performance is observed with increasing SNR and the
number of acquired measurements across all approaches. Conversely, as depicted
in Figure 6.3, when the sparsity level of the channel increases, estimating channel
state information under phase noise becomes more challenging.

Specifically, our observations reveal that standard OMP performs well when pro-
vided with known phase errors (genie phase), but fails in the absence of phase in-
formation. With the same number of iterations, the proposed PC-MP consistently
outperforms PC-CPR. When over ×10 internal iterations can PC-CPR achieve
performances comparable to OMP with genie phase. Moreover, Sparse-Lift has
comparable performance to PC-MP and ×10 PC-CPR in Figure 6.1(a) and Fig-
ure 6.2(a). However, the impact of increasing sparsity on Sparse-Lift is much more
significant compared to other methods. This implies that under complex phase
noise conditions, the sparse recovery of high-dimensional tensors is not strictly
rank-1. Consequently, exploiting the original sparse vector for the principle vector
becomes more challenging.

However, in practice, the phase noise does not strictly adhere to the structure
defined in (3.17). The phase noise fluctuates within a packet. Therefore, we will
present simulation results considering realistic phase noise conditions.

44



6.3.2 Simulations when phase noise varies within each pachet

(a) (b)

Figure 6.4: Simulation results with practical phase noise that compare PC-MP against the bench-
marks for N = 256 antennas at the TX, K = 4 sparse channels, and the total number of mea-
surements MP = 128. (a) Achievable rate with SNR. (b) NMSE in the channel estimate with
SNR. The number of iterations used for PC-CPR is as same as that used for PC-MP, while ×10
PC-CPR uses 10× more iterations than PC-MP.

(a) (b)

Figure 6.5: Simulation results with practical phase noise that compare PC-MP against the bench-
marks for N = 256 antennas at the TX, K = 4 sparse channels, and SNR = 15 dB. (a) Achievable
rate with numbers of measurements. (b) NMSE in the channel estimate with numbers of mea-
surements.

In this subsection, simulations are conducted with practical phase noise, and the
comparison among the approaches is made using the same metrics outlined in Sec-
tion 6.3.1. Figure 6.4, Figure 6.5, and Figure 6.6 demonstrate trends similar to
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(a) (b)

Figure 6.6: Simulation results with practical phase noise that compare PC-MP against the bench-
marks forN = 256 antennas at the TX, with SNR = 15 dB, and the total number of measurements
MP = 128. (a) Achievable rate with channel sparsity. (b) NMSE in the channel estimate with
channel sparsity.

those observed in Section 6.3.1. The fluctuating nature of phase noise significantly
impacts the performance of sparse recovery algorithms. PC-MP and PC-CPR ex-
hibit greater robustness to phase noise compared to Sparse-Lift, which proves to
be highly sensitive to these fluctuations. Notably, Sparse-Lift displays poor per-
formance in this scenario, while the PC-MP algorithm consistently outperforms
Sparse-Lift in terms of NMSE and achievable rate. This improvement can be at-
tributed to our algorithm’s ability to exploit the constant magnitude structure in
the calibration vector, a feature not utilized by Sparse-Lift. Moreover, the intro-
duction of fluctuating phase noise disrupts the recovery of the rank-1 structure of
the joint sparse matrix in Sparse-Lift, rendering SVD-based separation ineffective.

Furthermore, we observe that the proposed PC-MP algorithm outperforms PC-
CPR for the same K iterations. This is likely due to the nature of the algorithms,
i.e. PC-CPR is based on hard thresholding while our approach is based on matching
pursuit. Both these algorithms assume a known sparsity level of K. We would like
to mention that the performance of PC-CPR for a large number of iterations (×10
PC-CPR) is close to our PC-MP method for K iterations.

6.3.3 Simulations when the channel vector is approximately sparse

The four algorithms simulated in this project are designed under the assumption
of an on-grid channel model. In practice, however, the channel is not on-grid due
to the fact that the angles of departure may not exactly align with those in (3.13).
The resulting mismatch introduces energy leakage, causing the channel vector x to
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be not strictly sparse. Previous simulations were conducted assuming a perfectly
sparse x. Here, we further compare PC-MP against other methods when x is
approximately sparse.

(a) (b)

Figure 6.7: Simulation results that compare PC-MP against the benchmarks with approximated
sparse channel and practical phase noise for N = 256 antennas at the TX, K = 4 sparse channels,
and the total number of measurements MP = 128. (a) Achievable rate with SNR. (b) NMSE in
the channel estimate with SNR. The number of iterations used for PC-CPR is as same as that
used for PC-MP, while ×10 PC-CPR uses 10× more iterations than PC-MP.

(a) (b)

Figure 6.8: Simulation results that compare PC-MP against the benchmarks with approximated
sparse channel and practical phase noise for N = 256 antennas at the TX, K = 4 sparse channels,
and SNR = 15 dB. (a) Achievable rate with numbers of measurements. (b) NMSE in the channel
estimate with numbers of measurements.

Figure 6.7, Figure 6.8 and Figure 6.9 show a wider gap between OMP with genie
phase and other algorithms compared to previous simulations. Notably, Sparse-
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(a) (b)

Figure 6.9: Simulation results that compare PC-MP against the benchmarks with approximated
sparse channel and practical phase noise for N = 256 antennas at the TX, with SNR = 15 dB,
and the total number of measurements MP = 128. (a) Achievable rate with channel sparsity.
(b) NMSE in the channel estimate with channel sparsity.

Lift performs even worse than OMP with phase noise in this scenario. This perfor-
mance degradation might be attributed to the increased challenge for Sparse-Lift
in maintaining the approximated rank-1 structure during the recovery of the ap-
proximately sparse matrix. Meanwhile, the trends for other algorithms remain
consistent with those observed in previous results.

6.3.4 Execution Time

Table 6.1 shows the execution time of OMP, Sparse-Lift, PC-MP, ×10 PC-CPR
over 5000 averaging.

Methods OMP Sparse-Lift PC-MP ×10 PC-CPR

Averaging operation
time (ms)

0.18 8.55 5.79 23.96

Table 6.1: The execution time of PC-MP and the benchmarks for N = 256 antennas at the
TX, with SNR = 15 dB, K = 4, and the total number of measurements MP = 128. Timing in
MATLAB on a desktop computer with CPU i7-11800H @ 2.30GHz.

OMP stands out as a rapid algorithm with minimal execution time. Building
upon the principles of matching pursuit, our proposed PC-MP method boasts
lower complexity in comparison to PC-CPR. One contributing factor to this ef-
ficiency is evident in the alternating estimation step, where PC-MP consistently
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reaches an analytical solution, while PC-CPR relies on a reweighted gradient de-
scent approach, requiring more iterations for convergence. Notably, our obser-
vations indicate that Sparse-Lift demands significantly more computational time
than our approach. This disparity arises from Sparse-Lift’s need to solve for a
high-dimensional lifted vector with NP variables, whereas our method focuses
on solving for N + P variables. In summary, PC-MP achieves accurate channel
estimates with reduced computational complexity when compared to benchmark
methods.
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Conclusions & Future Works 7
7.1 Conclusions

In this project, we introduced a greedy algorithm called PC-MP for mmWave
channel estimation in the presence of phase noise. Our approach makes use of
the partially coherent structure in the phase perturbed measurements to perform
sparse recovery and phase error estimation. PC-MP performs support detection
by considering measurements from different packets and iteratively estimates the
sparse vector through alternating minimization.

As discussed in Chapter 1, mmWave systems offer high data rate transmission
capabilities due to their wide frequency bands. The high scattering at mmWave
frequency leads to a sparse representation of the multi-path channel, making com-
pressive channel estimation a viable approach for beam training. However, at high
carrier frequencies, inherent hardware impairments such as CFO and phase noise
become more significant. These impairments perturb the measurements of the
wireless channel, posing challenges in beam training.

We have shown that standard CS algorithms fail to identify and estimate the sparse
channel when practical phase noise is present. Previous works treated phase noise
as a completely random process and focused on estimating the channel and the
phase noise by formulating a CS-phase retrieval problem with phaseless measure-
ments. However, considering the statistical distribution and the beam training
protocol, a partially coherent model of measurements emerged.

Addressing the need for low complexity in fast-changing communication environ-
ments, our algorithm is built upon matching pursuit, a fast iterative process com-
prising two fundamental stages: support detection and signal estimation. In the
support detection step, we utilize packets from different acquisitions to jointly de-
tect one of the supports. In the signal estimation step, alternating optimization is
employed to estimate the sparse channel and the phase noise. Furthermore, we de-
rived a preliminary bound that ensures the successful identification of one element
from the support set.

Through a series of simulations, comparisons among OMP, Sparse-Lift, and the
proposed PC-MP have demonstrated that PC-MP outperforms the others in
mmWave channel estimation. It achieves higher achievable rates and lower NMSE.
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For the same number of iterations, PC-MP surpasses PC-CPR. Additionally, PC-
MP exhibits lower computational complexity compared to Sparse-Lift and PC-
CPR, highlighting the efficiency of this proposed algorithm.

7.2 Future Work

In our project, our focus has been on the on-grid channel model, although in real-
world scenarios, the model is off-grid. Our future work will involve extending our
algorithm to accommodate off-grid effects. Additionally, because of the global
phase estimation, extending the guarantee for the first support detection to the
entire support set is not straightforward. We still need to conduct a detailed
analysis to determine how effectively PC-MP can identify the complete support of
the sparse vector.
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