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A B S T R A C T

The rapid growth of remotely sensed earth observation data presents clear opportunities for monitoring complex
ecosystem change and answering fundamental ecological questions. However, large-scale automated monitoring
of ecosystems faces challenges. Data-driven models require extensive datasets and often lack generalizability
when training data are unrepresentative, while process-driven models, such as radiative transfer models (RTMs),
can be imprecise due to gaps in knowledge, or simplified representation of physical processes. To enhance the
prediction of plant functional traits and simultaneously discover where process-driven models can be improved,
we explore the potential of Physics-Informed Neural Networks (PINNs) as a hybrid approach that combines the
strengths of both methodologies at the leaf scale. In contrast to data augmentation approaches, our imple-
mentation directly integrates the widely-used PROSPECT5B model into the architecture of an autoencoder
framework. Our results show that our PINNs approach is able to outperform data-driven techniques even when
trained on very limited training data (i.e. 17 % training vs 83 % validation). We also identified weak points in the
PROSPECT5B model by progressively replacing individual components of PROSPECT5B with convolutional
neural networks. Our case study indicates that especially Prospect’s generalized “plate model” could be refined to
improve predictive ability. Hence, our framework provides a self-diagnostic capability and identifies areas for
improvement in process-driven models and their components. Thus, we conclude that PINNs 1) improve data-
driven predictive accuracy while maintaining physical consistency with minimal training data while 2) being
able to identify limitations in process-driven models. Hence, we believe our framework could serve as a new
standard for evolving and improving radiative transfer models.

1. Introduction

The rapid expansion of Earth observation data, combined with ad-
vances in machine learning and computational power, has enabled new
opportunities for large-scale ecological monitoring and analysis
(Borowiec et al., 2022; Christin et al., 2019; Cord et al., 2017; Miralles
et al., 2023; Persello et al., 2022). However, linking reflected radiation
to ecosystem functional traits remains challenging, as this relationship is
shaped by complex and scale-dependent processes, including vegetation
dynamics that vary across time and space (Fensholt et al., 2015). As
Timmermans and Daniel Kissling (2023) note, there is a pressing need
for tailored satellite remote sensing products that bridge the gap

between detailed physical process understanding and practical data-
driven insight.

Data-science techniques such as machine learning provide an ideal
approach for analyzing these datasets, given their computational effi-
ciency and ability to handle complex situations (Pérez-Cutillas et al.,
2023). However, despite the substantial volumes of Earth observation
data, the availability of representative ground-based validation datasets
is often limited, which may be reflected in the variability and incon-
sistency in upscaled trait maps (Meyer and Pebesma, 2022; Todman
et al., 2023; Dechant et al., 2024). Moreover, machine learning models,
including deep, convolutional, and recurrent neural networks, tend to
struggle to provide accurate predictions when the training data do not
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encompass the full spectrum of scenarios (Coveney et al., 2016; Todman
et al., 2023). Consequently, current data-driven methods face criticism
for their extensive data and representation requirements, lack of
generalizability to out-of-sample scenarios, or physically inconsistent
results (Meyer and Pebesma, 2022; Verrelst et al., 2015; Willard et al.,
2022).

In contrast, traditional mechanistic models, such as radiative transfer
models (RTMs) offer some advantages due to their inherent generaliz-
ability. RTMs simulate physical and biological interactions to help un-
derstand how vegetation reflects and transmits radiation (Medvigy
et al., 2009; Yang et al., 2020), and as they are based on underlying
physical laws, they ensuring at least a basic consistency with real-world
phenomena. However, these models also have limitations, such as a lack
of precision or computational feasibility at desired resolutions, mostly
due to simplification, incomplete knowledge of certain processes or the
difficulty in capturing site-specific parameters for model parameteriza-
tion (Gastellu-Etchegorry et al., 2012; Gumiere et al., 2020; Hatfield
et al., 2021; Martínez-Ferrer et al., 2022). These limitations arise partly
from their reliance on prior knowledge, such as assumptions needed to
address unidentifiable parameters, and partly from an incomplete un-
derstanding of the system’s complex behaviour.

Given that neither purely mechanistic nor purely data-driven ap-
proaches suffice for predicting complex phenomena, especially with
limited data, researchers are increasingly exploring hybrid models that
integrates scientific knowledge and machine learning (ML). Such hybrid
modelling is gainingmomentum in various fields (Cavanagh et al., 2021;
Das and Tesfamariam, 2022; Lam et al., 2023; Raissi et al., 2019;
Reichstein et al., 2019), including remote sensing (Rao et al., 2020).
Hybrid models attempt to leverage the strengths of both approaches to
address the challenges posed by purely mechanistic or data-driven
methods.

A notable form of these models is Physics-Informed Neural Networks
(PINNs), which integrate machine learning with physical laws (Raissi
et al., 2019) and can be a powerful tool for solving problems that require
adherence to physical laws. PINNs offer several advantages: they are 1)
computationally efficient, 2) have greater predictive accuracy than
purely mechanistic models, 3) generally require less data for good out-
of-sample performance compared to the typical data-driven, and 4)
offer improved interpretability over neural networks. Despite their po-
tential, PINNs are still in their infancy within remote sensing, and it
remains unclear whether they can help overcome the limitations
currently faced by radiative transfer models and machine learning
retrieval algorithms.

While physics-informed approaches are gaining traction in remote
sensing, the full integration of physical models into neural network ar-
chitectures remains extremely rare. García-Soria et al. (2024) make an
important contribution by improving uncertainty estimation for hybrid
models aimed at retrieving canopy nitrogen content from imaging
spectroscopy data. Their work reflects a growing trend in hybrid
retrieval frameworks, though it does not structurally embed physical
equations to constrain the models. Dehghan-Shoar et al., 2024 present
an innovative physics-guided approach, fitting surrogate models derived
from radiative transfer model outputs to constrain predictions. While
this offers a flexible way to incorporate physical knowledge, it treats
physics externally. In contrast, PINNs embed the governing equations
directly into the learning process, enabling the model to enforce physical
consistency throughout. Zérah et al. (2024) take a further step by
embedding radiative transfer equations into a variational autoencoder
for large-scale PROSAIL inversion from Sentinel-2 imagery. While their
results show strong predictive performance, they also exhibit saturation
effects for several key leaf traits—suggesting that a bottleneck may lie in
the underlying leaf-scale modelling and upscaling rather than in the
machine learning approach itself. Together, these studies underscore the
need to improve the physical modelling of vegetation at the leaf level, in
parallel with the development of scalable hybrid architectures.

Addressing this gap, we developed a PINN that directly embeds the

biophysical equations of the PROSPECT5B leaf reflectance model into a
neural network. This allows high-fidelity leaf-scale trait retrieval under
data-limited conditions, while also enabling diagnostic insights into
where and how current process-based models may require refinement.
We focus on the remote sensing of leaf biochemical traits due to their
broad relevance and the availability of well-characterized spectral da-
tabases for training and validation. PROSPECT5B (Féret et al., 2008),
one of the most widely used radiative transfer models for leaf reflec-
tance, provides a strong foundation for this integration. We evaluate
whether PINNs can (1) improve the accuracy of leaf trait prediction from
hyperspectral data in limited-data settings, (2) outperform mechanistic
models in computational efficiency, and (3) enhance model interpret-
ability by identifying components of the physical model that may benefit
from further development. These advantages present a promising path
forward—not only for trait prediction, but also for improving the
physical understanding underlying radiative transfer modelling in
ecological remote sensing.

2. Data and methods

2.1. Overview

To assess the potential of hybrid modelling (McGreivy and Hakim,
2024) for ecological remote sensing in trait prediction from leaf optical
data, we assembled eight datasets comprising field-measured leaf
reflectance spectra and corresponding functional traits, collected using
spectroradiometers, for model training and validation. These datasets
encompass a large environmental gradient, including various conti-
nents, climates, vegetation types and land cover (Table 1). Our approach
involves training a PINN model on the two original calibration datasets
used for PROSPECT5B. We then tested the model’s predictive capability
on the six remaining datasets (see Table 1). The performance of the PINN
was compared to the widely used Partial Least Squares Regression
(PLSR) method in remote sensing. Additionally, we evaluated the PINN
against RTMmodel inversion usingMarkov Chain Monte Carlo (MCMC).
Finally, we built three replacement PINNs where components of
PROSPECT5B were replaced with artificial neural nets. These re-
placements allowed identifying which components of the RTM model
benefit most from integration with neural networks, emphasizing areas
where the mechanistic RTMs can be substantially improved.

2.2. RTMs, design and training of the PINNs

2.2.1. Data
We compiled data from eight sources featuring full-range leaf spectra

(400–2400 in 1 nm steps) along with corresponding traits: Cw (EWT,
Equivalent Water Thickness), Cm (Carbon mass per Area, or LMA, Leaf
Mass per Area), Cab (Chlorophyll a + b content), Car (Carotenoid con-
tent) and the number of cell-air interfaces (N) (Ely et al., 2019; Féret
et al., 2008; Helsen et al., 2021; Serbin et al., 2019). The data were
sourced from various global sites, although most datasets originate from
Europe and the United States, they do represent diverse environmental
conditions (Fig. 1, Table 1). An additional “unlabelled” dataset (Meireles
et al., 2020) on leaf spectra without corresponding leaf traits (Schweiger
et al., 2018) was included to enhance the model’s robustness (see 2.1.4).
All leaf reflectance spectra were acquired using spectroradiometers
equipped with a leaf clip attached to a plant probe. Detailed information
on these datasets is provided in Table 1. These datasets are publicly
available through the Ecological Spectral Information System (ECOSIS,
https://ecosis.org/) and figshare, with individual data sources listed in
Table S.1.

2.2.2. Radiative transfer theory
To integrate physical process information into the PINNs, we used

the PROSPECT5B family of leaf RTMs, originally introduced by Jac-
quemoud and Baret (1990). Specifically, we focused on the
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PROSPECT5B model (Féret et al., 2008), which effectively reconstructs
leaf directional–hemispherical reflectance and transmittance across the
400–2500 nm wavelength range using six leaf optical parameters
(hereafter traits): Chlorophyll a+ b (Cab; μg/cm2), Carotenoids (Car, μg/
cm2), Brown pigments (Cbr, Arbitrary units), Equivalent Water Thick-
ness (Cw, g/cm2), Leaf Mass per Area (Cm, g/cm2) and the number of
cell-air interfaces (N). The PROSPECT5Bmodel comprises three physical
modules:

1. Leaf boundary transmissivity function (Tav(α,n1(λ),n2(λ))): This
function, based on Fresnel’s equations and effective diffractive
indices (n1(λ),n2(λ)), calculates the average transmissivity at air-leaf
interfaces by integrating over all incident angles up to the maximum
angle α.

2. Plate element transmission function (τ(λ)): This function determines
light transmission through individual leaf plates by applying a
hemispherical integration of the Beer-Lambert law to calculate ab-
sorption by leaf biochemical traits.

Table 1
The region, country, sample number, coordinates, Ecosystem Type and climate conditions in each leaf scaled data source.

Data
Name

Country traits Samples Equipment Lat (◦) Long (◦) Ecosystem Type Climate Condition
(Köppen
Classification)

Training sets

1 lopex Italy

N, Cab,
Car, Cw
& Cm 320

lambda-19
spectrophotometer 45.8179 8.6078

Leaf samples from over 50 species of
trees, crops, and plants, including
conifers and broadleaf species

Temperate humid
climate

2 anger France

N, Cab,
Car, Cw
& Cm 276

ASD FieldSpec III (ASD, Inc.
Boulder, CO, USA) 47.4712 0.5518

Leaf samples from over 40 plant
species, including trees and crops

Temperate oceanic
climate

Unlabelled datasets

3 Meireles None 16,765 Multiple, see original source
Leaf samples from over 40 plant
species, including trees and crops

Temperate oceanic
climate

Validation sets

4 nasa_fft
the United
States

N, Cab,
Car, Cw
& Cm 682

ASD FieldSpec III (ASD, Inc.
Boulder, CO, USA) Multiple

Various tree species from northern
temperate and boreal forests

Humid continental
climate

5 bel_nal
Belgium
and Japan Cw & Cm 994

ASD FieldSpec III (ASD, Inc.
Boulder, CO, USA) Multiple

Rosa rugosa (wrinkled rose) in
Hokkaido and 4 plant species from
Belgian dune grasslands

Subarctic humid
climate

6 ifgg Germany Cw & Cm 739
ASD FieldSpec III (ASD, Inc.
Boulder, CO, USA) 51.4783 − 0.298

Over 40 grassland species,
including herbaceous plants and
grasses

Temperate oceanic
climate

7 bel Belgium Cw & Cm 256
(SVC HR-1024TM/i, Spectra
Vista Corporation, NY, USA) 50.5039 4.4699

36 species growing in Rosa rugosa-
invaded coastal grassland
communities

Temperate oceanic
climate

8 bnl
the United
States Cw & Cm 184

(SVC HR-1024TM/i, Spectra
Vista Corporation, NY, USA) 40.8643 − 72.8752

8 crop species, including structural
and biochemical leaf trait data

Temperate humid
climate

Fig. 1. The distribution of leaf biochemical trait values across sites (top panels) and locations of seven data sources used in this study (bottom panel). Cab =

chlorophyll a + b content, Car = carotenoid content, Cw = canopy water content (equivalent water thickness), and Cm = carbon mass per area. Note: dataset 3
contains unlabelled spectra and thus does not have a single geo-location (see original source).
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3. Generalized plate model (pm(α,n1,n2,k)): This model simulates leaf
reflectance and transmission using N stacked plates, following
principles established by Stokes (1862) and Allen et al. (1969).

We next briefly introduce these elements to foster a clear under-
standing of the model. For comprehensive details, please refer to the
original papers (Féret et al., 2008; Jacquemoud and Baret, 1990) and
textbooks (Jacquemoud and Ustin, 2019):

The PROSPECT5B models adapts Allen et al. (1969)’s generalized
plate model to include leaf microtopography at the epidermal cell scale.
Although incident light is generally considered perpendicular to the leaf
blade, the model accounts for the leaf’s micro-morphology by simulating
incident radiation striking a flat plane at angles ranging from 0 to α, with
α typically set to ~40◦ for most leaves (Féret et al., 2008). After the first
plate, light is assumed to be isotropic and diffuse, incident from 0 to 90◦.
The reflection of a single elementary plate is given by:

R(n(λ) , k(λ) ,α) = r12 +
Tav(α, 1,n(λ) )Tav(90,n(λ) , 1)r21τ(k(λ) )2

1 − r221τ(k(λ) )2
(1)

Similarly, transmittance is given by:

T(n(λ) , k(λ) ,α) = Tav(α,1,n(λ) )Tav(90,n(λ) , 1)τ(k(λ) )
1 − r221τ(k(λ) )2

(2)

Here, Tav(α, 1,n(λ) ) represents the average transmissivity at the air-
to-leaf interface, integrated from 0 to angle α. Tav(90,n(λ) ,1) denotes
the average transmissivity of the leaf-to-air interface, integrated hemi-
spherically, assuming light passing through a plate is diffuse. The
effective refractive index of the plate is given by n(λ) while the reflec-
tivity of an interface is given by r12 = 1 − Tav(α,1,n(λ) ) and r21 = 1 −
Tav(90,n(λ) ,1), assuming no discernible absorption at the interface.
The function τ(k(λ) ) predicts transmission through a leaf plate while
considering the absorption by various leaf biochemicals traits. It is
defined as:

τ(k(λ) ) = (1 − k(λ) )e− k(λ) + k(λ)2E1(k(λ) ) (3)

This function represents the hemispherical integration of the Beer-
Lambert law, with E1() being the exponential integral. Here, k(λ) is an
empirically derived absorption coefficient for a single plate of unit
depth. It is computed as the linear combination of five individual leaf
biochemical constituents, distributed across each of the N plates:

k(λ) =
1
N

∑5

i=1
Ci × ki(λ) (4)

Here, Ci represents the mass content per unit area of the ith
biochemical constituent, and ki(λ) is its specific absorption coefficient
(SAC). Values of ki(λ) have been empirically calibrated using measure-
ments of Ci. This calibration was done by inverting the PROSPECT5B
model and minimizing the summed squared error between the modelled
and measured leaf reflectance and transmission, using datasets 1 & 2 in
Table 1 (Féret et al., 2008).

Finally, the total reflectance of a stack comprising N plates can be
calculated, considering N-1 plates positioned beneath the first, with the
first plate incorporating micro topographical leaf structure:

R(N, n(λ) , k(λ) ,α) =
Rα

(
abN− 1 − a− 1b1− N

)
+ (TαT90 − RαR90)

(
bN− 1 − b1− N

)

abN− 1 − a− 1b1− N − R90
(
bN− 1 − b1− N

)

(5)

With transmittance given by:

T(N, n(λ) , k(λ) ,α) = Ta(a − a− 1)
abN− 1 − a− 1b1− N − R90

(
bN− 1 − b1− N

) (6)

Here, Ta, T90,Rα and R90 are calculations from eqs. 1 and 2, with
integration angles α and 90o, respectively. The symbols a and b are
composite algebraic functions of transmittance (T90,Ta) and reflectance

(Rα, R90) given in previous studies and textbooks e.g. (Jacquemoud and
Ustin, 2019).

2.2.3. PINN: Integrating neural networks within leaf radiative transfer
models

PINNs are characterized by integrating physical laws into their ar-
chitecture and training processes. This can be achieved either through
inclusion of differential equations within the network or by using a loss
function that penalizes deviations from physical laws, typically
measured as residuals between the network’s predictions and the
physical equations (Cuomo et al., 2022; Willard et al., 2022). We
implemented a PINN that uses an Encoder-decoder architecture
(autoencoder) similar to Zérah et al. (2024).

This design condenses input data into an efficient lower-dimensional
form (encoder) and then reconstructs it back to the original format
(decoder). This generally allows the autoencoder to capture the most
salient features of the data (Meng et al., 2017). Leaf RTMs, such as
PROSPECT5B, naturally fit within this framework, as they essentially
take encoded information (leaf trait parameters) and decode these into
leaf spectra. We capitalized on this natural fit and constructed an
encoder that acts as an RTM-emulator, extracting traits from spectral
data, to feed to the decoder. The decoder then incorporates (elements of)
PROSPECT5B, and uses the traits predicted by the encoder to recreate
the spectra in a physically constrained way (Fig. 2).

We selected PROSPECT5B as a base model to enable a focused ex-
amination of structural components that have remained unchanged
across PROSPECT versions. Later models, including PROSPECT-D and
PROSPECT-PRO (Féret et al., 2021), introduce altered or additional
biochemical inputs with recalibrated spectral absorption coefficients
(SACs; Eq.4). While these extensions improve ecological interpretability,
their gains in predictive accuracy appear modest across global datasets
(Féret et al., 2021; Visser et al., 2025). PROSPECT5 thus remains a
relatively simple yet competitive version, allowing us to isolate the
impact of structural modifications to the radiative transfer formulation
without the added complexities of empirical SAC recalibration.

2.2.3.1. Autoencoder design. We constructed four basic PINN formula-
tions (Fig. 2). Each starts with an encoder (E(R)), which takes a set leaf
reflectance spectra R (n x k matrix with n samples over k wavelengths)
and reduces it to a set of n x 5 traits (hereafter the trait-encoding).
Predicted traits are then fed to the decoder (D(T)), which attempts to
recreate the original spectra. We built four different versions of the
decoder; an RTM-only version using PROSPECT5B as the decoder
Drtm(T), and three alternative decoders where components of PROS-
PECT5B were replaced with artificial neural nets (see 2.1.3). These al-
ternatives include a Convolutional Neural Network (CNN) replacement
for the leaf transmission (Dτ(T)), a generalized plate model function
Dpm(T), and a combination of both transmission and plate models
Dτpm(T). Replacing individual decoder sub-modules reveals which parts
of PROSPECT5B leave the most room for improvement, highlighting
discrepancies and guiding future refinement. Note that the CNN decoder
replacements here are not viewed as ideal physically grounded modules,
but rather as diagnostic tools: a flexible functional approximator to
assess the impact of replacing radiative transfer components.

2.2.3.2. Encoder design. Our encoder consists of two linear layers with
sigmoid activation functions. Unlike traditional neural networks that
treat all input data uniformly during training, we incorporated simpli-
fied attentionmechanisms, as described by Ghaffarian et al. (2021), with
small differences in our implementation: we use the Hadamard product
between the input data and its transformed version, rather than the
normalized dot product. These mechanisms enable the encoder to
discern and prioritize the most informative elements relevant to each
trait prediction, enhancing the efficiency of the encoding process,
allowing identification and concentration on the most pertinent parts of

P. Sun et al.
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the input data.

2.2.3.3. Decoder design. Our decoder architecture adheres to the gen-
eral structure of the PROSPECT5B model. The simplest implementation
of our decoder directly employs the PROSPECT5B model as a “default”
RTM-decoder. For this, we refactored the original Fortran-based
PROSPECT5B code into CUDA-enabled GPU code that interfaces with
Torch. This integration allows us to embed radiative transfer theory
directly into the architecture and training of an autoencoder model.

2.2.4. Training and loss functions
The PINN autoencoder is trained using a semi-supervised approach,

incorporating multiple loss functions that utilize Mean Square Error
(MSE) as the optimization objective, leveraging both labelled and
unlabelled data, facilitating improved model robustness and accuracy in
predicting leaf traits from spectral data:

Ltotal = LReconstruction +Ltraits reconstruction + Lcycle consistency (7)

where,

LReconstruction = Lencoder reconstruction +Ldecoder reconstruction +Lmodule replacement

+ Lunlabeled spectra reconstruction
(8)

We adopted a simple loss weighting scheme to prioritize compara-
bility across (RTM-replacement) module variants: all loss terms are
weighted equally (1.0), except for the cycle-consistency loss, which is
down-weighted to 0.1.

2.2.5. Reconstruction losses
These losses assess the accuracy in predicting leaf spectra and have

three components: Lencoder reconstruction = MSE(R, D(E(R) )) evaluates how
well the decoder reconstructs the predicted R from the encoded traits
E(R). This loss ensures the basic functionality of the encoder-decoder
pipeline for spectral reconstruction. Ldecoder reconstruction = MSE(R, D(T))
evaluates how well the decoder reconstructs the spectra from the orig-
inal paired traits T. It is informative in concert with Lmodule replacement =

MSE(R,Di(T)) and is used when evaluating replacement modules in the
RTM. Their fit assesses the robustness of the CNN by evaluating the
decoder’s reconstruction performance when applied to an alternative
representation of the decoder (see section 2.3: Model component

Fig. 2. Overview of the model architecture, module replacement strategy (top panels), and comparison frameworks (bottom panel). We illustrate four decoder
variants: the original radiative transfer model (PROSPECT5B) and three hybrid versions where specific components—transmission (τ), plate model (pm), or
both—are replaced by neural networks. These decoders are interchangeable within the full PINN framework. K denotes the absorption coefficient matrix; τ, the
transmission function; pm, the plate model. Latent refers to the compressed feature representation learned by the encoder. In PLSR, Components are PCA-derived; in
PINN, ANN denotes the encoder network.
Top-left panel: The encoder applies six parallel attention-like heads. Each head consists of a linear layer with sigmoid activation generating soft gates, followed by
element-wise multiplication with the input, and a second linear-sigmoid layer reducing each gated signal to a scalar. The outputs are concatenated and passed
through a final linear-sigmoid layer that reweights the combined features via element-wise multiplication. Unlike standard attention mechanisms, this design omits
query-key-value projections, normalization, residuals, and positional encodings.
Top-right panel: The replacement decoder module substitutes RTM components with a learnable upsampling architecture. It starts with replication padding to
maintain boundary conditions, followed by two transpose convolution layers (from 8/1 to 12 channels with kernel size 3/stride 2; then to 16 channels with kernel
size 5/stride 3). Feature dimensions are reduced via two 1D convolutions (16 → 8 → 1). All intermediate layers use ReLU activations; the output uses a sigmoid.
Slanted numbers indicate channel depth; vertical numbers indicate feature width.

P. Sun et al.
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replacement evaluation). Lunlablelled spectra reconstruction = MSE(R− , D(E(R− )))
measures the reconstruction quality of the decoder when applied to the
encoded unlabelled data E(R− ). This loss highlights the model’s ability
to generalize to unlabeled data for spectral reconstruction, and further
prevents overfitting to the training data.

2.2.6. Traits reconstruction loss
Ltraits reconstruction = MSE(T, E(R)) quantifies the accuracy of the

encoder by measuring the loss between the predicted traits and observed
traits T, and can be seen as conceptually equivalent to a prior in Bayesian
inference (Shiklomanov et al., 2016). It serves as a critical evaluation of
the encoder’s predictive capabilities to represent the data.

2.2.7. Cycle consistency loss
Lcycle consistency = MSE(E(R− ),E(D(E(R− )))) evaluates the consistency

of the encoder-decoder cycle by assessing how well the model preserves
information through a round-trip transformation. This loss compares the
encoder’s output on the reconstructed spectra E(D(E(R− ))) to its original
input E(R− ). This is a typical loss function in any autoencoder frame-
work, which ensures the encoder-decoder system retains a reasonable
data integrity level when transforming back and forth.

Neural-network optimisation was performed using AdamW (β₁= 0.9,
β₂ = 0.999, weight decay= 0.01). The encoder uses a fixed learning rate
of 1 × 10− 4, while the decoder uses 1 × 10− 5 for the ‘PINN-default’,
‘PINN-both’, and ‘PINN-plate’ configurations and 1 × 10− 4 for ‘PINN-
tran’. Training proceeds over 20,000 iterations, using mini-batches of
size 420 sampled from 20 labelled and 400 unlabelled spectra.
Convergence is assessed via stabilisation of the total training loss. Across
replicates, training was stable and consistent. Representative loss curves
are shown in Fig. S8.

2.3. Assessing accuracy of PINN by cross comparison

To evaluate the performance of the PINNs in trait inversion from
observed spectral data, we compared our trained PINNs to two bench-
mark methods: PLSR (Gerlach et al., 1979) and a Bayesian RTM inver-
sion via MCMC (Shiklomanov et al., 2016), using the independent
validation datasets (Fig. 2). The PINNs and PLSRmodels were trained on
only 596 of 3451 spectra (~17.3 %), specifically from the LOPEX and
ANGERS datasets—the same empirical datasets used to originally cali-
brate PROSPECT5B (Féret et al., 2008)—ensuring that all methods
(RTMs, PLSRs, and PINNs) were trained with an equal amount of
labelled data. All remaining datasets were withheld for testing, enabling
evaluation of out-of-distribution generalization.

2.3.1. Partial least squares regression
The PLSR model was trained and validated on the same datasets as

the PINN. We applied Repeated Double Cross-Validation (RdCV), which
is a method designed to provide a robust assessment, reducing the risk of
overfitting, as a standard cross-validation method (Dechant et al., 2017;
Liu et al., 2023; Yan et al., 2021). RdCV involves repeatedly splitting a
dataset into training and testing sets in a two-tier ‘double’ cross-
validation approach, as described by (Filzmoser et al., 2009). In the
first tier, we divided the data 100 times (ratio 25:75 for validation vs
training) to optimize model complexity. Within each of these splits, a
second inner 2-fold cross-validation was applied to evaluate model
error. This process resulted in 100 distinct models, each optimized for its
specific validation samples. The final ensemble output was derived by
averaging these 100 models. RdCV allows for a more comprehensive
evaluation of model reliability. Notably, all the validation samples for
our RdCV were sampled in the training set.

2.3.2. Bayesian model inversion
We employed a Bayesian framework for spectral inverse modelling

(Shiklomanov et al., 2016), which identifies the posterior distribution of

a parameter set that minimizes the discrepancy between the reflectance
predicted by the PROSPECT5B model and measured reflectance on all
validation datasets. The joint posterior distributions of all parameters
were sampled using Monte-Carlo Markov Chain (MCMC) methods with
an Affine Invariant MCMC Ensemble sampler implemented in the
EMCEE packages (Goodman and Weare, 2010). This algorithm, with
adaptive scaling, automatically adjusts step sizes for improved explo-
ration in various parameter directions, particularly in high-dimensional
parameter spaces, enabling better consideration of complex parameter
relationships. We assumed a Gaussian likelihood function with an
additional variance parameter σ2. Each inversion was initialized with
random parameter values from predefined prior distributions and
executed in parallel for 20 independent chains. As recommended by the
developers of EMCEE (Foreman-Mackey et al., 2013), we assessed
“convergence” (the production of independent samples from the poste-
rior) through the integrated autocorrelation time (τ) for each parameter.
We ensured that the sampler was run for more than 50 × τ steps and
discarded the first 5 × τ as burn-in, retaining effectively independent
samples by thinning by τ.

2.3.3. Validation by cross comparison
We used the independent validation leaf reflectance spectra to pre-

dict leaf optical traits using each method (Fig. 2). For the PINN and PLSR
models, which were trained on the same datasets, this meant that traits
were predicted by the models on the independent validation datasets
(Table 1). For the Bayesian RTM inversion, this meant that PROS-
PECT5B was directly inverted on the validation datasets. We evaluated
the accuracy of each method’s predictions by calculating the Root Mean
Squared Error (RMSE). Note that during training, the PINN model
additionally used unlabelled spectral data, leveraging it for semi-
supervised learning to enhance its performance.

To facilitate an intuitive comparison of prediction performance
across different traits, we normalized the traits data, capping the
maximum value at three times the size of the observed traits in the Lopex
dataset.

To evaluate model uncertainty, we used five different random seeds
for the PINN model. The PLSR model produced 100 parallel prediction
results which we used to quantify uncertainty, while for the MCMC
method we calculated the mean and standard deviation (SD) of the
posterior distribution for each parameter to quantify uncertainty.

Considering that inference speed is crucial for real-world applica-
tions, especially in big data scenarios, we assessed its computation time
on the validation set and compared the performance with the above
benchmark methods. Speed benchmarks were done on computational
hardware consisting of an NVIDIA RTX 3090 GPU and an Intel(R) Core
(TM) i7-10700KF CPU @ 3.80GHz.

2.4. Model component replacement evaluation

Following the PINN default, we developed three variations of leaf
RTM decoders, which we refer to as “module replacements”. These
modifications were intentionally designed to be minimal, ensuring they
seamlessly interact and align with the overarching sequence of algo-
rithms and biophysical mathematical principles inherent in the PROS-
PECT5B model. Specifically, we substituted the transmission and
generalized plate model components, as well as their combinations
(transmission + plate) with CNNs, assessing them against sequences of
their inputs (see Eq. (3) & (5)). The rationale behind using CNNs is their
ability to share weights across wavelengths through convolutional ker-
nels (i.e. filters): the same filter, with consistent weights and biases, is
uniformly applied throughout the input field. In essence, CNNs execute a
uniform mathematical operation across all wavelengths, which is anal-
ogous to physical equations, which also apply a consistent mathematical
operation across all wavelengths. This facilitates a direct comparison
and physical interpretation alongside the original physical models. If our
CNN-based replacements enhance the model’s performance, it suggests
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an opportunity to refine and possibly advance the foundational princi-
ples of these existing models.

To reflect the reduction or increase of physical constraints, we
introduced a dynamic parameter that adjusts the contribution of phys-
ical laws in the model. This allows the model to either strictly adhere to
the physical constraints or to relax them in favour of more flexible, data-
driven predictions. Specifically, the final output of the module as a
weighted sum of two components: one derived from the physical
equations and the other from a CNN. This weight is determined by a
learnable hyperparameter (physical ratio, w), which ranges from 0 to 1
for the physical component, with the CNN component weighted as 1 -
physical ratio. This design effectively merges physics-based approaches
with machine learning techniques, providing a quantitative measure of
how much the model deviates from physical laws to improve predicted
power. When w= 0 it indicates that the physical unit is entirely replaced
by the CNN, while w= 1 signifies the full physical model. Recall that the
loss functions Ldecoder reconstruction and Lmodule replacement are informative
here.

2.5. Assessing deviations between physical models in PROSPECT5B and
CNN replacements

We examined the impact of replacing and adjusting modules within
the PINN’s decoder to understand how these changes influenced its
predictive performance compared to the original PROSPECT5B decoder.
When these modifications led to improved performance, we visualized
these changes to elucidate how the CNN-based replacements affected
the calibration and physical predictions of the modules. This approach
allowed us to identify areas where predictions diverged. For each sce-
nario, we conducted a visual comparison of the response curves various
inputs, highlighting discrepancies between the predictions of the PINN
and the original model components. These visual comparisons serve as
an initial step toward targeted refinements of the PROSPECT5B model.

3. Results

3.1. Assessing the accuracy of PINN

The PINN default, which employs an autoencoder with PROSPECT5B
as the decoder (Drtm), demonstrated superior predictive accuracy
compared to the PLSR model and the Bayesian RTM model inversion.
This predictive improvement is particularly visible in the reduction of
error across all validation datasets (Fig. 3). The Observed-Predicted
plots in Fig. 3 illustrate the lower error in trait predictions achieved
by PINNs. When analyzing specific leaf traits, PINNs outperformed both
PLSR (RMSE = 0.034 vs 0.038, reduced by 12 %) and MCMC in nearly
all cases (RMSE = 0.034 vs 0.045, reduced by 24 %). Only for Cw, PINNs
and PLSR exhibited comparable performance, both of which surpassed
the performance of the MCMC model inversion. Especially for Cm, the
MCMC model inversion showed extreme predicted values (RMSE =

0.042), which means that the inversion capabilities of pure RTMs are
limited for some sites. PLSR predicts some values below 0, showing that
data-driven approaches may predict physical impossibilities (Fig. 4).
Some methods also consistently over or underestimated trait values (i.e.
regression lines consistently off the 1 to 1 line in Fig. 4). This is best
reflected in the MAE scores in Fig. 4, which are a more direct measure of
bias than RMSE. The PINN Default showed the lowest MAE over all traits
(compare e.g. the MAE in Fig. 4 c & d to g & h or k & l).

Across the different validation datasets, PINNs consistently out-
performed MCMC-based RTM inversion methods, and outperformed
PLSR for Cab, Car, and Cm at nearly all datasets. The main exception was
Cw, where PINNs outperformed PLSR in only 2 of the 5 validation
datasets. To maintain clarity, we present summary results in the main
text; full site-specific performance metrics across all traits, datasets, and
methods are provided in Fig. S5.

3.2. Model component replacement evaluation

Substituting the leaf transmission, the generalized plate model, or
both with CNNs (Dτ(T), Dpm(T) and Dτpm(T), respectively) did not
consistently enhance predictions for specific traits. Instead, these sub-
stitutions produced varied outcomes of overall RMSE reduction (see
Fig. S.1 and Fig. S.2 for spectra reconstruction and Fig. S.3 for pairwise
relationships of PINNs predictions). The PINN Plate with Dpm(T) gave
the overall best improvement (for Cab, Car, Cw and Cm). Generally,
replacing only the generalized plate model with a CNN resulted in a
noticeable performance boost (decrease of RMSE, Fig. 5 & Table S.2).
However, no single substitution led to uniform improvements across all
metrics—the observed RMSE range across different decoder versions
encompassed the RMSE of the default decoder (PROSPECT5B). In gen-
eral, all of the substitution PINNs and especially Dpm(T) showed notable
improvements in predicting leaf chlorophyll a + b (Cab) and carotenoid
(Car). Enhancements from Dτ(T) and the Dτpm(T) came at the expense of
reduced predictive accuracy for leaf water content (Cw), as the Dτ(T)
showed a 2.1 % increase in RMSE, while Dτpm(T) showed a 6.2 % in-
crease compared to Dτ(T) with the Dτpm(T) demonstrating more signif-
icant improvements in leaf dry-mass (Cm; (0.053, equalling a 2.2 %
reduction in RMSE relative to Dτ(T)). Specifically, Dpm(T) gave pre-
dictions of Cw more concentrated along the 1:1 line, whereas for the
prediction of Dτ(T), there was a noticeable deviation in the Cm pre-
dictions for certain plots (Fig. 6).

3.3. Assessing deviations between physical models in PROSPECT5B and
CNN replacements

We assessed the differences in predictions between the simplified
physical models in PROSPECT5B and their CNN replacements. Our goal
was to derive insights from the CNN predictions that could help deter-
mine components for potential improvement for PROSPECT5B. Upon
integrating CNNs into the decoder, we observed that the PINN pre-
dominantly favoured the physical models, assigning them over 61 % of
the weight (0.620 for Dpm(T) and 0.617 for Dτpm(T), except for the
transmission module replacement (Dτ(T)), which received a 25.6 %

Fig. 3. Root Mean Square Error (RMSE) in leaf trait predictions across five
validation datasets for PINN, PLSR, and MCMC approaches. All models were
trained on 596 of 3451 spectra (~17.3 %) and validated on the remaining 2855
spectra (~82.7 %). “PINN Default” uses Prospect5B as the decoder (denoted
Drtm). “PLSR” refers to Partial Least Squares Regression, and “MCMC” to a
Bayesian inversion of Prospect5B. Note that while the MCMC inversion does not
require training, Prospect5B was originally calibrated using the same dataset
applied in training PINNs and PLSR (Féret et al., 2008). PINNs consistently
outperform the benchmark methods across trait.
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weighting.
By replacing the transmission model (Eq. (3)) in the PROSPECT5B

physics-based decoder with a CNN (Dτ(T)), we observed the most sig-
nificant deviation from the PROSPECT5B baseline. This substitution
indicated a slower decrease in electromagnetic transmission for an
equivalent total transmission coefficient (k, as defined by Eq. (4))
(Fig. 7).

Replacing the plate model (Eq. (5)) in the PROSPECT5B physics-
based decoder with a CNN (Dpm(T)) also showed a notable shift from
the PROSPECT5B standard. This alteration produced more distinct
predictions, showing a stronger response to shifts in the number of leaf
cell-air interfaces (N) or leaf diffractive index. The observed deviation
suggests differences in the representation of light scattering or internal
leaf structure, although the analytical complexity of Eq. (5) precludes
straightforward analysis of potential effects.

3.4. Computational performance of PINN default design

PINNs demonstrated a substantial speed advantage over traditional
model inversion techniques. Once trained by the encoder, they could
predict traits across all 2855 validation spectra in 447 microseconds.
This is more than 4.8 million times faster than the MCMC inversion,
which takes 25 days to complete (2,160,000 s /0.000447 s). This
remarkable speed makes PINNs computationally comparable to the
PLSR model with 100 ensembles, which takes 3.85 s, and makes PINNs
8.6 thousand times faster in inference (3.85 s / 0.000447 s). Note that
this speed up is enabled by refactoring the RTM code for CUDA

Fig. 4. Observed (normalized) trait values against predicted values for training (grey dots) and validation datasets (coloured dots) for PINN vs benchmark models of
PLSR and MCMC. Here, r2 represents the coefficient of determination, and MAE represents the Mean Absolute Error.

Fig. 5. Change in RMSE for trait predictions when replacing modules of
Prospect5B with CNN-based surrogates, relative to the PINN Default. Traits
include chlorophyll (Cab), carotenoids (Car), equivalent water thickness (Cw),
and carbon mass per area (Cm). Replacing the transmission function (PINN
Tran) yielded no improvement, while substituting the plate model (PINN Plate)
led to the largest gains—particularly for Car. Replacing both components (PINN
Both) did not improve performance overall.
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compatibility, a step that was needed for the integration of deep learning
models (such as CNNs) and RTMs (Luebke, 2008), which enables par-
allel processing across thousands of GPU cores.

4. Discussion

In this study, we trained Physics-Informed Neural Networks (PINNs)
to predict leaf traits from spectral data. PINNs yielded higher predictive
accuracy than Radiative Transfer Model (RTM) inversion and Partial
Least Squares Regression (PLSR), particularly in reducing bias (MAE),
even when trained on a limited dataset (~17 %). They also enabled
prediction at speeds comparable to PLSR while vastly outpacing MCMC
inversion. We further tested how replacing specific PROSPECT5B
modules with CNNs affected performance and found that substituting
the generalized plate model (Dpm(T)) provided the largest gain. Not all
replacements improved performance equally, underscoring that trait-
and module-specific factors shape potential benefits. In the following
discussion, we will delve deeper into the reasons behind PINNs’ per-
formance, compare across different PINN configurations and classical
methods, evaluate computational efficiency, and explore how PINNs
may help inform the future evolution ofRTMs.

4.1. Explaining accuracy improvements of PINNs

Our experiments revealed that the PINN default, utilizing an
autoencoder with PROSPECT5B as the decoder (Drtm), provided better

Fig. 6. Observed (normalized) trait values against predicted values for training (grey dots) and validation datasets (coloured dots) for different configurations of
PINN. Here, r2 represents the coefficient of determination, and MAE represents the mean absolute error.

Fig. 7. Total leaf transmittance versus the total absorption, accounting for the
density of all leaf biochemical traits. The graph displays predicted trans-
mittance lines for different models: Prospect5B (blue), and the final PINN model
used in the decoder (Dτ(T); red). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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accuracies than both the PLSR model and the physical model inversion
using MCMC methods, significantly reducing bias in all leaf trait pre-
dictions (PLSR and MCMC showed 12.4 % and 33.7 % higher RMSE
values in mean trait estimates compared to the PINN default; Figs. 3& 4,
Table S2). This section highlights the major differences and similarities
between the PINNs, PLSR, and physical model inversion methods,
emphasizing the distinct flexibility and robustness of PINNs.

The semi-supervised autoencoder architecture of PINNs is concep-
tually similar to PLSR as both methods handle numerous, highly
correlated predictor variables with relatively few independent samples
by constructing new lower-dimensional predictor variables. However,
PLSR’s dimensionality reduction is linear via Principal Component
Analysis (PCA), while our NN encoder uses non-linear activation func-
tions, stacked convolutional and pooling layers in the encoding. This
means that the encoder’s dimensionality reduction can be seen as a hi-
erarchical non-linear extension of PLSR’s PCA dimension reduction
(Goodfellow et al., 2016). Hence, the first clear benefit of our PINN
approach is that while PLSR constructs these components as linear
combinations of the original variables, the autoencoder used here may
construct non-linear combinations, offering greater flexibility but
increasing the risk of overfitting (Goodfellow et al., 2016).

In PINNs, the risk of overfitting is offset by the forced integration of
the RTM modules in the decoder. This is the second demonstrated
benefit of the PINN approach. Typically, effective cross-validation to
assess and mitigate overfitting requires large ground truth observational
datasets. Classically, the availability of such large ground truth datasets
is limited (Todman et al., 2023), which typically leads to sacrificing
most data to training of the model. This risk comes at a cost of reduced
generality, especially for global studies with vastly larger scales of
prediction or extrapolation compared to training. In contrast, a physical
model as decoder forces adherence to physical rules, which by itself
helps prevent retainment of irrelevant information in the encodings.
This allowed us to train the PINN on only 17 % of the (ground truth)
data, thus offering a promising solution to criticisms on overfitting and
extrapolation issues in remote sensing (Meyer et al., 2018).

In contrast to data-driven approaches, RTM inversion methods often
simplify complex phenomena, leading to “ill-posedness” where multiple
parameter combinations can produce similar spectral characteristics,
reducing predictive precision (Atzberger, 2004; Darvishzadeh et al.,
2008). Our modular PINN framework enables selective replacement of
specific components or equations (e.g. the plate model). This allows us
to retain physical constraints where appropriate while improving flexi-
bility and model capacity - offering one pathway to mitigate problems
caused by ill-posedness, incomplete mechanistic assumptions, and
limited calibration datasets. Nevertheless, our implementation - like all
standard PINNs - inherits both the strengths and limitations of the
embedded physical model. For instance, physical models like PROS-
PECT5B rely on in situ observed and lab-measured data for calibrating
empirical constants such as specific absorption coefficients (SAC, Eq. 4)
(Féret et al., 2008; Jacquemoud and Baret, 1990). When calibrated on
limited datasets, these models may retain site or region specificity,
making extrapolation difficult (Alberts and Bilionis, 2023; Martin and
Schaub, 2022; Willard et al., 2022). Hence, radiative transfer models
like PROSPECT5B are also not immune to “overfitting” problems, and
may still retain some site or region specificity, which may complicate
extrapolation (Alberts and Bilionis, 2023; Martin and Schaub, 2022;
Willard et al., 2022).

In our specific application, we believe that the default PINNs’ ability
to overcome the above limitations is for a large part enable by their use
of unlabelled data in a self-reflective learning process typical of
autoencoders. Unlabeled spectral data—as leaf spectra without corre-
sponding trait measurements—capture broader environmental varia-
tion, including rare or underrepresented conditions. This helps the
encoder generalize beyond the potential site-specific calibration domain
of the RTM by refining trait predictions based on how well the recon-
structed spectra match the inputs. In doing so, the model not only learns

to respect the constraints of the RTM but also becomes more robust to
site- or context-specific biases in the physical model. Hence, the
autoencoder framework offers a practical compromise coming in PINNs:
combining a rigid physical structure with data-driven flexibility of using
unlabeled spectra.

We note that an important future direction is to explicitly incorpo-
rate measurement uncertainty into the PINN framework. Zérah et al.
(2024) recently addressed this by combining PINNs with a variational
autoencoder, but their approach should be extended by integrating
physically grounded noise models (Huang et al., 2013). Spectral
reflectance measurements are inherently noisy, with variance arising
from both signal-dependent and signal-independent sources. Incorpo-
rating sensor-informed noise characterizations and explicitly modelling
uncertainty within the PINN architecture has benefits as it allows dis-
tinguishing true trait variability frommeasurement artefacts. We believe
that this would enhance robustness, particularly under low signal-to-
noise conditions or across heterogeneous sensor platforms.

4.2. Advancing radiative transfer modelling using PINNs

In addition to evaluating predictive performance, we used sub-
module replacement as a diagnostic tool to identify which components
of PROSPECT5B most constrain model accuracy. These replacements
help pinpoint where simplified assumptions in the RTM may be limiting
performance and suggest pathways for physical model refinement. In
addition, the outputs of the CNN replacements remain physically
interpretable: Fig. 7 shows how predicted transmission varies with ab-
sorption by biochemical leaf traits (Eq. 3), revealing a clear departure
from the simplified hemispherical integration in Beer’s law. While re-
visions to the original equations are beyond the scope of this study, this
divergence suggests concrete directions that – if proven robust -could
inspire improvements in RTM structure, which we discuss further below.

We show that especially the replacement of the plate module (Dτ(T))
improved overall predictive accuracy across all four traits. For instance,
the CNN replacement predicted lower asymptotic reflectance values as
refractive index increased (Fig. 8, Fig. S.4), indicating a more gradual
sensitivity to changes in internal leaf structure – essentially predicting
that increasing leaf thickness - as approximated by the number of air-cell
interfaces (N) - doesn’t always increase reflectance. This suggests that
the original plate model—based on the Fresnel equations and perhaps
the assumptions of layer homogeneity—may oversimplify the hetero-
geneous optical properties of real leaves and how these change with leaf
thickness. Empirical studies on cross-sections of leaves, such as those by
(Hughes et al., 2007), show that primary and secondary (helper)
photosynthetic pigments have a varied spatial distribution, with some
pigment types concentrated on the abaxial side and others on the adaxial
side. Moreover, the internal structure of the leaf, and hence its hetero-
geneity, varies strongly across species (Onoda et al., 2011). A distinct
heterogeneous nature of leaves, with pigments concentrated in outer
layers, is one possible explanation for a stronger saturating effect with
increasing air-cell interfaces (Fig. 8. c).

Finally, our PINNs rely on empirically calibrated specific absorption
coefficient (SAC) in PROSPECT5B from previous studies. This reliance
poses a challenge for extrapolation by the PINN, especially given the
variability of SAC across different types of vegetation and conditions (e.
g. differences in leaf structure or chemical composition of dry matter). It
is possible that the original calibration of these coefficients in earlier
studies may have resulted in overfitting, limiting their applicability in
broader contexts. Recalibrating the SAC was beyond the scope of this
study, which focused on exploring alternative, often overlooked
methods for improving PROSPECT5B. We believe that our focus here
was relevant as recalibration efforts for Prospect have been conducted
multiple times in the past (Féret et al., 2021; Féret et al., 2017; Féret
et al., 2008; Jacquemoud and Baret, 1990). In addition, keeping the
SACs constant allows us to isolate the impact of structural modifications
to the radiative transfer formulation without the added complexities of
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empirical SAC recalibration. Nevertheless, a follow-up study with a
more flexible PINN that allows reasonably varying absorption co-
efficients should be possible. We expect that this will further enhance
the capabilities of the PINN models introduced here, as well as the
relevance and predictive ability of the replacement modules.

4.3. The evolution of RTM inspired by CNN integration

Building on the diagnostic results of Section 4.2, we propose that
physics-informed neural architectures such as PINNs offer a promising
framework for evolving radiative transfer models (RTMs). Rather than
viewing RTMs as static pipelines, a modular approach enables selective
refinement of specific components based on empirical evidence—pre-
serving physical interpretability while adapting where traditional for-
mulations fall short. Many RTM sub-models were originally designed for

analytical tractability, using fixed coefficients or simplified equations to
approximate complex biophysical processes. While effective in
controlled settings, these simplifications often limit generalizability
across vegetation types and conditions. Our results suggest that targeted
neural replacements can relax such constraints and highlight which
assumptions may require revision.

This modular strategy allows for progressive hybridization. Rather
than abandoning physical insight, neural replacements should be
introduced only where they improve performance or reveal limi-
tations—making them useful both for prediction and model develop-
ment. This is especially valuable in complex or poorly understood
domains, such as chlorophyll fluorescence, where standard formulations
(e.g. Fluspect) use fixed parameters that may not generalize across
environmental conditions (Campbell et al., 2008; Vilfan et al., 2016).
CNN-based modules could flexibly capture such dynamics, either as

Fig. 8. Transmission vs. reflectance response curves for the generalized plate model and CNN replacements in the decoder (pure CNN, and the Prospect5B plate
model Dpm(T)), using the designed transmission and fixed default values for incident angle as input. Panels and lines show response curves for a range of air-cell
interfaces in the leaf (N), at a fixed defractive index n = 1.46 (a & b), and at a range of defractive indices (n) at a single air-cell interface (N = 1, c & d). Finally, panels
e and f show the predicted leaf reflectance as a function of n, at different values of N. In general, the CNN plate model shows a more complex non-linear behaviour
compared to PROSPECT, showing a stronger interaction N and transmission (a vs b), being more responsive to changes in n over transmission (c vs d) and a stronger
saturating effect (in response N) for reflectance over n (e vs f). We used the standard α values as in PROSPECT5 to calculate all inputs of the plate model.
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direct replacements or as learnable corrections. Our results suggest that
the first venue to start such advance is by replacing the plate model.

Beyond leaf-level modelling, this approach generalizes to more
complex models like PROSAIL, where canopy scattering, hotspot effects,
and viewing geometry introduce additional layers of simplification
(Dehghan-Shoar et al., 2024; Zérah et al., 2024). CNN replacements
could be selectively introduced at this level to bridge gaps between
canopy- and leaf-scale processes. Even atmospheric radiative transfer
components could benefit from learnable corrections based on satellite
or tower-based data, allowing a more realistic representation of layer-
specific interactions.

We do note that as more RTM components are replaced, interactions
between themmay introduce complex emergent behaviours that require
coordinated training strategies. Future work should develop structured
frameworks for multi-component learning, along with hyperparameter
optimization strategies tailored to PINNs. While hyperparameter tuning
is critical in all neural networks, PINNs introduce additional challenges
by requiring a balance between data fitting and physical consistency.
This makes them particularly sensitive to architectural choices, loss
weighting, and training dynamic. Automated tools for adaptive hyper-
parameter tuning – particularly those designed for physics-informed
settings - could yield substantial performance gains (Jin et al., 2023;
Wang et al., 2021).

5. Conclusion

Recent work highlights several major challenges in remote sensing,
particularly focusing on the uncritical use of purely data-driven models
(Dechant et al., 2017; Meyer and Pebesma, 2022; Todman et al., 2023).
These challenges include the difficulty of working with limited datasets,
the risk of models lacking generalizability to out-of-sample scenarios,
and the potential for producing physically inconsistent results due to the
unrepresentativeness of training data. Our study demonstrates that
PINNs can help address these issues by embedding mechanistic models
within neural networks, supporting consistency with known physical
processes while improving predictive accuracy. They also offer a means
to test and improve mechanistic models by identifying structural limi-
tations. This integration provides a practical path toward more reliable
trait retrieval and a stronger foundation for theory-informed remote
sensing science.
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Martínez-Ferrer, L., Moreno-Martínez, Á., Campos-Taberner, M., García-Haro, F.J.,
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González, H., Joseph, H., More, H., Morchedi, S., Kumar Panda, A., Zaccaria Di
Fraia, M., Wischert, D., Stepanova, D., 2023. A critical review on the state-of-the-art
and future prospects of machine learning for earth observation operations. Adv. Sp.
Res. 71, 4959–4986. https://doi.org/10.1016/j.asr.2023.02.025.

Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C.,
Díaz, S., Dominy, N.J., Elgart, A., Enrico, L., Fine, P.V.A., Howard, J.J., Jalili, A.,
Kitajima, K., Kurokawa, H., McArthur, C., Lucas, P.W., Markesteijn, L., Pérez-
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