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Abstract

Theory-of-Mind (ToM), the ability to infer the mental states, goals,
and preferences of others — is a core component of human social
intelligence. In this work, we investigate whether Large Language
Models (LLMs) exhibit ToM capabilities in the context of strate-
gic interaction. We frame opponent modeling in negotiation as a
grounded and interpretable ToM task, where a model must infer
an agent’s preferences by observing offer exchanges during the
negotiation. We guide LLMs to interpret offer histories and infer
latent utility representations, including issue and value weights.
We conduct a comprehensive evaluation of state-of-the-art LLMs
across multiple negotiation domains. Our results show that LLMs
can successfully recover opponents unknown preferences and in
some cases even outperform classical opponent modeling base-
lines, even without task-specific training. These findings offer new
evidence of LLMs’ emerging capacity for social reasoning and posi-
tion opponent modeling as a practical benchmark for evaluating
Theory-of-Mind in foundation models.
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1 Introduction

Theory-of-Mind (ToM), the ability to infer the beliefs, desires, and
preferences of others is a core component of human social intelli-
gence [35, 43]. As Large Language Models (LLMs) become increas-
ingly deployed in interactive settings, the question of whether they
possess ToM-like reasoning has become central to understanding
their capabilities and limitations. While recent studies have ex-
plored ToM in LLMs through tasks like belief attribution or psycho-
logical question answering, these approaches often rely on static,
synthetic tests that fail to capture the complexities of dynamic
interaction [3, 16, 46]. On this end, this study examines the ToM
ability of LLMs in the task of opponent preference modeling (i.e., the
task of inferring an agent’s preferences from observed behavior
in negotiation) by elaborately evaluating their performance in a
grounded benchmark.

In multi-issue negotiations, an agent’s preferences are typically
represented by a utility function defined over a set of issues (e.g.,
delivery time), where each issue is assigned a weight indicating its
relative importance, and each value (e.g., one day delivery) of an
issue is assigned a score reflecting the agent’s desirability for that
value. During a negotiation, stakeholders exchange offers without
knowing each other’s preferences to come up with an agreement on
a particular matter (e.g., price, delivery time and guarantee condi-
tions in e-commerce ) [6, 13]. Opponent modeling unfolds through
these back-and-forths in negotiation, where agents interprets the
opponent’s offers to get insights into the underlying preferences of
their opponents.

An agent with ToM capabilities should be able to observe these
patterns and infer what the other party values most. This kind
of inference reflects one of the most fundamental challenges of
Theory-of-Mind: reasoning about unknown preferences based on
partially observable behavior. It is important to emphasize that
this inference is not just a matter of pattern recognition, as offers
unfold over time, early bids tend to expose an opponent’s true
ideals, whereas later bids reveal what they are willing to concede
under time pressure. Correctly interpreting this temporal interplay
(i.e., knowing when a change reflects a genuine shift in preference
versus a tactical concession) demands reasoning about unknown
preferences and trade-off strategies. Such mental-state attribution
cannot be achieved by simple pattern recognition alone but requires
higher-level reasoning about the underlying nature of negotiation
strategies.
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In the case of demonstrating a reasonable performance, it is
envisioned that these LLMs can be utilized in human-agent negoti-
ations. Therefore, this study mainly focuses on negotiations where
the number of exchanged offers are limited as it is usual in human-
human negotiations. Recall that human negotiators do not have any
tendency to exchange more than 10 offers on an average [8, 17, 28].
That is also challenging to learn opponent’s preferences in such a
few interactions.

Accordingly, we propose a structured prompting framework in
which an LLM predicts these hidden issue and value weights us-
ing only the opponent’s offer history. The model is not fine-tuned
on negotiation data and relies solely on schema constraints and
natural language instructions to guide its reasoning. Our results
show that state-of-the-art LLMs can recover these preferences with
great accuracy, outperforming classical opponent modeling strate-
gies in some domains. These findings offer new evidence for the
emergent Theory-of-Mind capabilities of LLMs and demonstrate
that negotiation-based opponent modeling provides a practical and
cognitively meaningful benchmark for evaluating social reasoning
in foundation models.

To summarize, our contributions are as follows: (i) proposing a
framework for opponent preference modeling in negotiation, pro-
viding a benchmark for evaluating Theory-of-Mind in LLMs; (ii)
systematically evaluating a range of state-of-the-art LLMs with a
rich set of metrics in our proposed human-centric benchmark (i.e.,
under limited observation settings), and (iii) demonstrating that
LLMs can reliably infer opponent preferences and outperform clas-
sical opponent modeling baselines without task-specific training
or optimization.

The remainder of this paper is organized as follows. In Section 2,
we provide the necessary background on negotiation, with a partic-
ular focus on opponent preference modeling. Section 3 introduces
the related work in this area, including prior studies on LLM rea-
soning and negotiation. Section 4 presents our proposed framework
for evaluating opponent modeling as a Theory-of-Mind task. Sec-
tion 5 details our evaluation setup, metrics, and results across a
range of negotiation domains and model types. Finally, Section 6
summarizes our findings and discusses future directions for using
opponent modeling as a benchmark for social reasoning in LLMs.

2 Background

Automated negotiation systems provide a framework in which
two parties (e.g., humans, intelligent agents, or robots) interact to
reach a mutual agreement. Each party keeps its preferences private
and decides whether to propose, accept, or reject an offer under
uncertainty until a specified negotiation deadline. The goal is to
maximize individual utility while reaching a consensus. To ensure
a structured process, a negotiation protocol governs the interaction.
The most commonly used protocol is the Stacked Alternating Offers
Protocol [5, 7], where one party initiates the negotiation by propos-
ing an offer, and the other party responds by either accepting the
offer or making a counter-offer. This process continues iteratively
until the parties reach an agreement or the deadline is met.

In multi-issue negotiation domains, preferences are typically rep-
resented using an additive utility function, as shown in Equation 1.
Each issue in the negotiation has an associated weight (W;), with
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the total weight summing to 1.0. For each issue, multiple value
options are defined in the domain, and each value is assigned a
utility score (V; € [0.0,1.0]). This formulation enables agents to
evaluate and compare offers based on their overall utility.

Ul0) = ) Wi x Vi(o) M

A negotiating agent must determine both what to offer and
when to accept an offer. For this purpose, agents typically include
components such as a bidding strategy, an acceptance strategy, and
an opponent model [10]. The bidding strategy generates offers by
targeting a utility score based on factors such as elapsed time or
observed opponent behavior [4, 12, 19, 25, 30, 36, 37, 41]. The ac-
ceptance strategy determines whether an incoming offer should
be accepted [11]. The opponent model analyzes the opponent’s
past behavior and offers to extract useful insights that can guide
decision-making process. A sophisticated agent should adapt its
strategy by modeling the opponent’s preferences and behavioral
patterns to reach high-quality agreements efficiently. Moreover,
estimating opponent’s preference is essential for understanding its
negotiation behavior [23]. Therefore, this study focuses specifically
on the development of opponent models that predict opponent
preferences.

Opponent models generally rely on the history of received offers
to estimate hidden preferences. The most widely adopted opponent
models are frequency-based approaches [37, 39, 42]. These models
are typically based on two assumptions: (i) the parties make offers
they are willing to accept, and (ii) they tend to concede over time due
to deadline pressure. Based on these assumptions, most models infer
that opponents begin with highly preferred offers and gradually
concede. The fundamental study of frequency-based approach is
introduced by van Krimpen et al. [42]. They propose a frequency-
based heuristic that increases the estimated weight of an issue if its
value remains unchanged across consecutive offers. This reflects
the assumption that parties have a tendency to concede over their
preferred issues due to the deadline pressure. As a result, the amount
of increase decreases over time, modeled as n = 1 — t, where t
denotes normalized negotiation time. The update rule for the issue
score S; is given in Equation 2, and the estimated issue weight Wi
is obtained by normalizing the scores, as shown in Equation 3.

R S
Si=Si+n @) W = TI‘SI 3)

Similarly, value utilities are estimated based on their frequency
of occurrence. Each time a specific value appears, its score S{ is

incremented, as defined in Equation 4. The estimated utility Vl.] of
a value is then computed relative to the most frequently observed
value, as shown in Equation 5.
o L s/
s/ =5/ +1 ) V)= —— (5)
maxg S;

While simple and effective in some scenarios, the classical fre-
quentist heuristic is highly sensitive to the number of observed
offers and the consistency of concessions. To reduce this sensitivity
to noise, Tunali et al. propose a windowed frequentist model, called
Scientist, that compares non-overlapping windows of offers instead
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of individual offer pairs [39]. This approach introduces two control
parameters, o and f to adjust the amount of update, and increases
the issue score (S;) only when an issue remains unchanged across
two consecutive windows and a concession is detected. The update
rule is given in Equation 6. The calculation of issue weights and
value scores largely follows the classical approach. However, to
reduce the impact of noise when the number of observations is low,
a smoothing factor y is introduced during value score (S{ ) calcu-
lation, as shown in Equation 7. This method improves robustness
and accuracy in agent-agent negotiations, where a large number of
offers are typically exchanged.

> s/
Si=Sivax(1-tf (6) Vi=(——=)" O
maxy S;

These two frequency-based approaches are well-suited for agent-
agent negotiation settings and often demonstrate strong perfor-
mance in such scenarios. Although they typically require a large
number of observations to yield reliable results, they have also
shown promising outcomes in human-centric negotiations, where
only a limited number of offers are available [17, 28]. Therefore,
this study employs the Frequentist [42] (i.e., classical frequentist)
and Scientist [39] (i.e., windowed frequentist) opponent models as
benchmark methods for comparison.

3 Related Work

This section reviews related work on the Theory-of-Mind (ToM)
abilities of large language models (LLMs), with a particular focus
on studies that use negotiation as a testbed for evaluating ToM, as
well as opponent modeling more in general, as it is our selected
task to assess ToM in this study.

3.1 Theory-of-Mind in LLMs

ToM has emerged as a critical axis along which the social capa-
bilities of LLMs are evaluated. Gandhi et al. introduce BigToM, a
benchmark that probes different types of belief reasoning (e.g., for-
ward and backward belief) using structured causal tasks [21] . Their
findings show that models like GPT-4 perform near human-level
on static inference tasks, suggesting that advanced LLMs exhibit
proto-Theory-of-Mind behaviors. Zhou et al. argue that ToM evalu-
ations must extend beyond inference to include action [45]. They
propose Thinking-for-Doing (T4D), a framework where LLMs must
act based on inferred mental states. Despite strong performance on
traditional ToM tasks, models struggled to convert these inferences
into successful decisions, especially in interactive contexts. Our
work is complementary with these insights by embedding ToM
evaluation in an interactive, decision-driven environment: negotia-
tion. Rather than testing inference in isolation, we examine whether
LLMs can reason about hidden preferences through ongoing inter-
action and apply these inferences strategically through structured
opponent modeling.

Negotiation has emerged as a natural setting to assess the in-
teractive reasoning, adaptability, and Theory-of-Mind (ToM) capa-
bilities of LLMs. Foundational work by Gandhi et al. shows that
prompted LLMs can simulate belief tracking and value estimation
in matrix-game scenarios, revealing their potential for strategic rea-
soning [22]. Bakhtin et al. extend this idea to a more complex setting,

IVA 25, September 16-19, 2025, Berlin, Germany

demonstrating that hybrid LLM agents can achieve human-level
performance in the Diplomacy game by combining dialogue-based
belief inference with long-term strategic planning [14].

Building on these insights, recent studies have proposed com-
prehensive frameworks to evaluate a wide range of negotiation
abilities in LLMs. Abdelnabi et al. design negotiation games to test
adaptive behavior in both cooperative and adversarial settings [1].
Bianchi et al. present the Negotiation Arena, where LLMs engage in
structured scenarios and apply tactics like simulated desperation
and anchoring to improve performance [15]. Vaccaro et al. conduct
alarge-scale negotiation tournament involving over 120,000 rounds,
revealing that warmth-oriented strategies increase deal rates and
satisfaction, while manipulative behaviors expose vulnerabilities
in LLM behavior [40].

Kwon et al. present a broad benchmark of 35 negotiation tasks
including partner modeling, showing that while LLMs like GPT-4
perform well in objective partner modeling, they struggle with
subjective inference (e.g., estimating satisfaction or trust) [32]. In-
stead of learning the opponent complete ordinal preferences, they
aim to investigate whether the model correctly identifies the top-
ranked issue. This simplifies the inherently ordinal nature of utility
structures and does not capture the full distribution of preferences
across all issues and values. In contrast, our work treats opponent
modeling as a structured prediction task, requiring the model to
generate complete utility functions in the form of normalized is-
sue and value weights. This enables a richer and more cognitively
complex evaluation of Theory-of-Mind capabilities, as it demands
that LLMs recover fine-grained preference representations from
observed negotiation behavior.

Complementing these structural frameworks, a parallel line of
work focuses on the emotional and expressive aspects of negotiation.
Yongsatianchot et al. show that combining verbal and non-verbal
cues—such as facial expressions—leads to more socially effective
negotiators [44]. Lin et al. measure the ability of large language
models in identifying the content of the dialogue given in natural
language (Whether the received dialogue is an offer or a preference
statement) [33].

Together, these studies highlight the utility of negotiation for
studying social reasoning. However, most focus on either dialogue
generation for negotiation or general strategic behavior. Our work
complements these by analyzing the offer exchanges to extract
the opponents preferences in the form of additive utility functions
commonly referred to as opponent preference modeling, a cogni-
tively grounded sub-skill that reflects the core ToM challenge of
inferring what the other party values based on offer dynamics, a
crucial aspect that needs to be better understood and incorporated
into LLM-based negotiation strategies.

3.2 Opponent Modeling in Negotiation

Accurately estimating an opponent’s preferences is essential in
negotiation settings, as each party typically has access only to
its own preferences. Such estimation is critical for understanding
the opponent’s strategy, expectations, and behavior throughout
the negotiation process. Several existing opponent models [24, 39,
42] demonstrate promising performance when a large number of
observations are available. However, human-agent negotiations
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are generally shorter, resulting in fewer observations and reduced
model accuracy [8, 17].

To address this challenge, Keskin et al. introduce a conflict-based
model [28], which extends the assumptions of frequency-based ap-
proaches by positing that human negotiators tend to concede more
regularly and systematically. This model assumes that observed
offers follow a discernible concession pattern and employs a major-
ity voting mechanism to infer the most likely preference ordering.
While effective under regular behavior, the model may struggle
with noisy concession patterns, particularly when negotiating with
agentic or inconsistent opponents.

In human-agent negotiations, participants may also exchange
explicit arguments to express their preferences. Nazari et al. com-
bine the classical frequentist approach with sentiment analysis to
develop an argument-based opponent model [34]. They propose
three heuristic strategies tailored to human negotiation behavior:
(i) the issue-ratio heuristic, which uses the sequence of offers to
estimate preferences; (ii) the issue-sentiment heuristic, which lever-
ages explicit preference assertions detected in dialogue; and (iii)
the offer/sentiment heuristic, which integrates both sources by av-
eraging their outputs. This approach estimates only issue weights,
assuming ordinal and known value utilities. As a result, it cannot
be directly applied to more complex domains where prediction of
value utility must also be taken into account.

Similarly, Dogru et al. propose an argument-based opponent
modeling framework by extending the windowed frequentist model
[17]. In their approach, argument types are extracted from human-
agent negotiation dialogues and used to incrementally refine pref-
erence estimates. Hence, this integration of argument information
enhances estimation performance. Although the method achieves
promising accuracy in natural language negotiations, it depends
on a predefined taxonomy of argument categories and classifiers
trained on domain-specific data, which limits its scalability across
diverse negotiation domains.

While these studies enhance both the quantity and quality of
information used for preference estimation, they continue to rely on
heuristic assumptions rooted in traditional models. Consequently,
effectively modeling human-centric negotiations calls for new para-
digms that move beyond classical, agent-oriented, and heuristic-
driven approaches.

4 Proposed Approach

Understanding others’ preferences based on limited interaction
is a hallmark of social intelligence and a defining challenge for
Theory-of-Mind (ToM). Negotiation systems provide a rich testbed
for this ability. As agents exchange offers over time, they implicitly
reveal their priorities through the structure and evolution of their
offers. These behavioral cues convey a dynamic and interpretable
signal for inferring underlying preferences, making negotiation a
practical and cognitively meaningful context for evaluating ToM in
language models.

To formalize this idea, we design a structured prompting frame-
work in which a Large Language Model (LLM) observes the offer
history from one side of a negotiation and infers the hidden utility
function of that party. This task, commonly referred to as opponent
modeling, requires reasoning about unobserved mental states from
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observable behavior and aligns closely with core ToM principles.
Our framework casts opponent modeling as a structured predic-
tion problem. The LLM receives a sequence of offers, along with
metadata such as time constraints, and outputs a structured repre-
sentation of preferences consisting of the following components:

o Issue Weights: A normalized distribution over issues, indi-
cating their relative importance to the opponent.

e Value Utilities: A distribution over values within each issue,
reflecting the opponent’s desirability for those values.

Modern LLMs are powerful but prone hallucinate when asked
for complex such structured outputs. In tasks like opponent mod-
eling, where the model must return a complete nested JSON of
issue weights and value utilities, any missing key or malformed
field can break downstream parsing and evaluation. To prevent that,
we utilize Python’s Pydantic! library. Pydantic is a framework for
defining data models with Python classes and type hints. Whenever
you parse JSON through a Pydantic model, it automatically checks
that every field is present, has the correct type, and meets any
additional constraints—raising an error if something is missing or
malformed. At runtime, we dynamically generate a Pydantic model
that mirrors the current negotiation domain’s issues and their al-
lowable values. We insert its JSON schema into the LLM prompt
and, once the model emits JSON, we parse it back through that same
Pydantic model. Any validation failure (e.g. a missing/hallucinated
issue or value) is caught immediately, which forces the LLM to
produce only fully correctly formatted outputs; greatly improving
the reliability of our opponent-modeling results. An example gen-
erated domain schema can be seen in Figure 1. After generating
the domain schema, we embed it and a corresponding offer history
into the prompt template below, before submitting it to the LLM.

"IssueWeights": {

"Accommodation": "number",
"Destination": "number"
3,
"required": ["Accommodation", "Destination"],

"ValueUtilities": {

"Accommodation": {

"Caravan": "number",
"Hostel": "number",
"Hotel": "number",
"required": ["Caravan", "Hostel", "Hotel"]
3}
"Destination": {
"Berlin": "number",
"Paris": "number",
"London": "number",
"required": ["Berlin", "Paris", "London"]
3}
3
"required": ["Accommodation", "Destination"],
"required": ["IssueWeights", "ValueUtilities"]

3

Figure 1: Example Pydantic Schema

!https://pypi.org/project/pydantic/
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Prompt Template

You are an expert negotiator analyzing an opponent’s preferences based
on their offer history.

Your task is to identify patterns to determine their true preferences.
Given:

- A history of received offers

- Remaining time left when each offer was made

- The domain schema

Determine:

1. Issue weights of the opponent

2. Value weights per issue

Notes:

- Early offers reflect true ideals; later ones show concessions

- Frequent changes mean lower issue importance

- Infrequent changes mean higher importance

- Timing of changes reveals their strategy

Constraints:

- Sum of all issue weights must be 1.0

- For all issues, each value utility must be between [0,1]

Respond strictly in the given domain schema.

5 Evaluation

The performance of the proposed LLM-based opponent models is
evaluated using the NegoLog platform [18], an open-source, Python-
based automated negotiation framework designed for standard-
ized agent evaluation and preference estimation. NegoLog provides
structured logging of negotiation transcripts between autonomous
agents across a wide range of pre-defined domains and enables the
independent evaluation of opponent models by supplying negotia-
tion histories, decoupled from specific agent strategies. In this study,
the NegoLog framework is employed to incorporate LLM-based
opponent models equipped with the proposed dynamic prompting
mechanism. This integration enables structured preference infer-
ence directly from negotiation behavior. The platform simulates
diverse negotiation interactions and generates offer histories, which
serve as input to the LLM-based opponent modeling pipeline.

5.1 Experiment Setting

Since our focus is on Theory-of-Mind in human-centric settings,
we select five multi-issue domains that have been extensively used
in human-agent negotiation studies. Specifically, two from the Au-
tomated Negotiating Agents Competition (ANAC) [26] (Car [20],
Energy [6]) and three from prior human-agent experiments (Holi-
day (17], Fruit, Island [29]).

Table 1: Negotiation Domain Characteristics

Domain #Offers  Issues  Opposition Balance Score
Car 240 [44,53] 0.22 -0.04
Holiday 256 [4,4,4,4] 0.28 0.00
Island 256 [2x8] 0.56 0.00
Energy 625 [5.5,5,5] 0.31 -0.02
Fruit 625 [5,5,5,5] 0.28 0.00
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We chose these domains to cover a range of outcome-space sizes,
issue complexities, and preference dynamics. These domains with
their respective characteristics are described in detail in Table 1.

o #Offers: total number of possible agreements (reflects over-
all complexity).

o Issues: number of negotiable attributes per domain.

e Opposition: average conflict level, computed as the mean
absolute difference between agents’ utility functions over
all outcomes. Higher values indicate more adversarial pref-
erences, which stress test an opponent model’s ability to
discriminate.

e Balance Score: measures utility symmetry, defined as the
mean utility difference normalized by outcome range. Values
near zero denote balanced domains (equal potential gain),
while larger magnitudes indicate inherent bias, challenging
models to handle asymmetric trade-offs.

Similarly, the negotiation traces used in the evaluation are gen-
erated through simulations between agents employing human-like
concession strategies. In particular, we employ four different ne-
gotiating agents, each of which reflects behavioral patterns com-
monly observed in human negotiators. ConcederAgent [41] is a
time-dependent negotiator that begins with its most preferred offer
and gradually concedes over time, mimicking typical human con-
cession behavior. ParsCatAgent [6] also follows a time-dependent
strategy but switches between several predefined concession tac-
tics as time progresses, while introducing mild randomness in the
offer selection process. ParsAgent [31] utilizes a frequency-based
opponent model to investigate mutually acceptable offers, while fol-
lowing a time-dependent strategy and introducing mild randomness
in the offer generation process. Finally, HybridAgent [30], which
is specifically designed for human-agent negotiation, integrates
time-based and behavior-based strategies within a unified decision
framework.

In our evaluation, each agent negotiates with every other agent
on each profile within the selected domains, with no repetitions,
resulting in 60 negotiation sessions ((g) -5 = 60), where 4 and 5
denotes the number of agents and domains respectively. The dead-
line for each session is 20 rounds, which is generally sufficient for
human negotiators [8, 17, 28]. For each offer in these negotiation
sessions, every opponent-modeling strategy takes the opponent’s
bid history up to that round and outputs updated issue weights
and value utilities. We apply this procedure twice per negotiation
session, first using agent B’s offer history to model agent B’s pref-
erences from agent A’s perspective, and vice versa, yielding 120
inference tasks in total. Figure 2 illustrates this opponent modeling
process from the perspective of an agent, performed independently
of the agent’s own internal strategy. In our simulations, 23 of the
60 negotiation sessions could not reach an agreement within the
given deadline (20 rounds per session). When the agent were able
to come to an agreement the negotiation sessions lasted on average
10.4 rounds. Providing a rich test-bed for the opponent modeling
strategies through various negotiation scenarios.

Finally, we assess eight state-of-the-art LLMs: GPT-40, O4 Mini,
DeepSeek R1, Grok 3, LLaMA 4 Maverick, Claude 3.7 Sonnet, Gem-
ini 2.0 Flash, and Gemini 2.5 Pro, selected for their strong reasoning
performance and support for chain-of-thought prompting. Their
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results are compared against two most commonly used opponent
modelling baselines, Frequentist [42] and Scientist [39].

5.2 Evaluation Metrics

To evaluate the performance of an opponent model, the estimated
preferences must be compared to the actual preferences. For this
purpose, each offer in the negotiation domain is assigned a utility
score based on both the estimated and actual preferences. The dis-
crepancy between these two utility scores across all offers can be
quantified using the root mean squared error (RMSE), a common
metric in regression tasks [2], as shown in Equation 8. RMSE mea-
sures the prediction error in utility estimation, where lower values
indicate better performance.

N
RVSE = | 7 (U (@) - 0o’ ®

In practice, accurately predicting the exact utility values of of-
fers can be difficult due to the limited observations. However, for
decision-making purposes, correctly identifying the relative pref-
erence between offers is often sufficient [12, 17, 23, 28]. Therefore,
the ranking performance of the estimated preferences can be eval-
uated using rank correlation metrics [9]. Specifically, offers are
sorted by both their estimated and actual utilities, and the corre-
lation between these rankings is measured using Spearman’s rank
correlation [38] and Kendall’s Tau-b coefficient [27].
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To estimate correlation, potential outcomes are organized based
on the learned opponent model, and this ranking is then compared
with the actual ordering. As a result, the rank correlation (e.g., Spear-
man or Kendall’s Tau) is computed between the actual outcome
ranking and the estimated ranking. A high correlation indicates
that both orderings are closely aligned. The correlation coefficient,
denoted as r, ranges from -1 to 1, where the sign of the coefficient
indicates the direction of the relationship, while its magnitude re-
flects the strength of the relationship. In other words, these metrics
assess the consistency of the estimated ordering with the ground
truth, where higher values indicate stronger agreement.

5.3 Results

Table 2 shows the average correlation results at the end of each
negotiation session for each opponent modeling strategy. From
these results we can observe that, Large Language Models (LLMs)
generally outperform traditional baselines (e.g., Frequentist and
Scientist) in most negotiation domains, particularly those with that
are balanced or small-sized domains with moderate opposition,
such as Car and Holiday. However, traditional models still show
superior performance in more rigid high opposition domains such
as Island.

Our results suggest that LLMs excel in domains where preference
estimation depends on subtle patterns of consistency, concession,
and trade-offs—hallmarks of strategic reasoning that reflect human
negotiation. Domains like Car and Holiday feature evenly weighted
issue spaces and moderate opposition, allowing LLMs to leverage
their general reasoning abilities and schema-based prompt under-
standing. In contrast, traditional methods appear better suited for
domains such as Island, where utility is often concentrated in a few
high-priority issues, and opponent’s behavior is more formulaic.
In such settings, we observe that frequency-based heuristics can
outperform general-purpose reasoning of LLMs by directly cap-
turing dominant value signals through offer repetition. Overall,
these results reveal that while LLMs are adept at capturing nu-
anced, context-dependent patterns, they still struggle in very large,
or skewed domains where strong preferences dominate and clear
statistical regularities can be exploited more effectively.

Table 2: Spearman and Kendall’s Tau Correlations Across Domains and Models

Spearman Kendall’s Tau

Domain Car Fruit Energy Holiday Island ‘ Car Fruit Energy Holiday Island

Gemini 2.0 Flash 0.76 £ 0.07 0.83 +£0.07 0.68 £ 0.24 0.78 + 0.08 0.70 + 0.16 0.58 £ 0.07 0.65+0.08 0.53 +£0.17 0.61 £ 0.09 0.54 + 0.13
GPT-40 0.71 + 0.06 0.81 + 0.05 0.67 £0.17 0.80 £0.04 0.60 £ 0.29 0.52 + 0.06 0.61 £ 0.04 0.51+0.13 0.62+0.04 0.45+0.22
Deepseek R1 0.71 £ 0.10 0.71 £ 0.13 0.56 + 0.17 0.72 + 0.05 0.65 + 0.31 0.53 + 0.08 0.54 + 0.12 0.42 +0.13 0.53 + 0.05 0.51 + 0.25
Claude 3.7 Sonnet | 0.73 +0.14 0.81 + 0.08 0.67 + 0.16 0.73 £ 0.10 0.68 + 0.12 0.56 + 0.12 0.63 £ 0.09 0.51 + 0.15 0.55 + 0.10 0.51 £ 0.11
Frequentist 0.71 + 0.06 0.77 £ 0.03 0.74 + 0.05 0.76 £ 0.04 0.90 £ 0.05 | 0.52 £ 0.06 0.58 + 0.03 0.56 + 0.05 0.57 £ 0.04 0.74 =+ 0.07
Grok 3 0.76 + 0.05 0.77 + 0.06 0.65 + 0.18 0.74 + 0.06 0.85 + 0.08 0.58 + 0.05 0.58 + 0.07 0.50 £ 0.14 0.55 + 0.06 0.67 + 0.08
Llama 4 Maverick | 0.77 £ 0.07 0.70 + 0.08 0.69 + 0.10 0.72 + 0.06 0.58 + 0.36 0.58 + 0.07 0.52 + 0.06 0.51 £ 0.09 0.54 + 0.06 0.47 £ 0.29
Scientist 0.52 + 0.13 0.83+0.03 0.76 £ 0.07 0.63 £ 0.07 0.89 + 0.06 0.37 £ 0.10 0.64 + 0.04 0.58 + 0.06 0.46 + 0.06 0.73 £ 0.07
04 Mini 0.80 £ 0.06 0.82+0.05 0.76+0.14 0.70 £0.12 0.70 £ 0.30 | 0.61+0.06 0.64+£0.05 0.60+0.12 0.53+0.11 0.57 £ 0.24
Gemini 2.5 Pro 0.77 + 0.08 0.75 + 0.08 0.71 £ 0.12 0.75 + 0.07 0.77 £ 0.25 0.58 + 0.08 0.57 £ 0.07 0.54 + 0.11 0.57 £ 0.08 0.63 £ 0.20
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Domain Size <= 432.5
samples = 20
value = 0.707

is_llm == 0.5
samples = 10

is_llm == 0.5
samples = 10
value = 0.689

value = 0.724

Balance Score <= -0.01
samples = 50
value = 0.732
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i5_llm <= 0.5
samples = 30
value = 0.748

Max Issues == 3.0
samples = 24
value = 0.736

Max Issues <= 3.0
samples = 6
value = 0.797

samples = 8

samples = 2
value = 0.673

value = 0.616

samples = 8 samples = 2
value = 0.751 value = 0.755

]

samples = 8 ] Isamples = 16]

samples = 2 samples = 4
value = 0.692 value = 0.758

value = 0.897 value = 0.747

Figure 3: Decision Tree for Spearman Correlation

This pattern is further supported by the decision tree regres-
sor constructed from our negotiation results as seen in Figure 3.
Each instance in the collected negotiation dataset corresponds to a
specific model evaluated within a given negotiation domain and is
described by domain-level features such as domain size, number
of issues, opposition, and balance score. We also include a binary
feature, isjj,,, which indicates whether the model is a LLM (isj;,
= 1) or a traditional method such as Scientist or Frequentist (isy,,
= 0). The tree is trained to predict the performance score of each
model in its respective domain, enabling an interpretable analysis
of how domain characteristics and model type affect performance.
The decision tree reveals that LLMs outperform traditional meth-
ods in balanced domains. Furthermore, LLMs can also outperform
traditional models in unbalanced domains when the domain size is
small.

Furthermore, Table 3 presents the corresponding RMSE val-
ues across domains, offering a complementary perspective to the
ranking-based metrics. While some domain related patterns persist
(such as LLMs excelling in balanced or nuanced settings) the RMSE
results reveal a critical distinction. Frequentist and Scientist models,
despite their competitive ranking performance, consistently exhibit
higher RMSE across most domains. This suggests that while tra-
ditional methods can approximate relative preferences effectively,
they struggle to capture the precise magnitudes of utility, which
may be useful for fine-grained decision-making. In contrast, LLMs
like Claude 3.7 Sonnet and Gemini 2.0 Flash demonstrate stronger
alignment between estimated and actual utilities.

Interestingly, the Spearman and RMSE results reveal comple-
mentary strengths across models (see Tables 2 and 3). Models like
O4 Mini achieve top-tier Spearman’s p (0.80 in Car) but exhibit
only moderate RMSE (0.23 in Car), indicating they are excellent at
ordering offers by preference yet less precise in estimating exact
utility values. In contrast, models like Claude 3.7 Sonnet attain
some of the lowest RMSE scores (0.13 in Car) but rank significantly
lower on Spearman’s p, suggesting they capture magnitude more

Table 3: RMSE Across Domains and Models

\ RMSE

Domain ‘ Car Fruit Energy Holiday Island

Gemini 2.0 Flash 0.17+£0.04 0.13+0.02 0.22+0.03 0.15+0.04 0.23 +0.04
GPT-40 0.24 + 0.06 0.15 £ 0.03 0.25 £ 0.05 0.21 +£ 0.04 0.19 + 0.05
Deepseek R1 0.30 + 0.06 0.29 + 0.06 0.39 +0.12 0.34 + 0.07 0.15 + 0.06
Claude 3.7 Sonnet | 0.13 +£0.02 0.13 +0.02 0.21 +0.03 0.16 +£ 0.03 0.22 + 0.05
Frequantist 0.24 +0.04 021+0.04 031£0.06 0.26%003 0.17 +0.04
Grok 3 0.21 +0.02 0.15 + 0.03 0.21 +0.04 0.22 + 0.03 0.15 + 0.02
Llama 4 Maverick | 0.25 +0.04 0.22 + 0.04 0.34 £ 0.09 0.29 + 0.04 0.20 + 0.07
Scientist 0.21 + 0.02 0.18+0.03 0.13+0.03 0.18 £ 0.03 0.30 + 0.08
04 Mini 0.23 + 0.06 0.16 + 0.04 0.26 + 0.06 0.26 + 0.07 0.15 + 0.05
Gemini 2.5 Pro 0.26 +0.03  0.22+0.04 032+0.09 030+0.05 0.12 +0.04

faithfully at the expense of perfect ranking consistency. This con-
trast underscores how different LLM architectures exhibit distinct
Theory-of-Mind reasoning patterns, and highlights the need to
choose a model whose strengths best match the specific require-
ments of the task at hand.

6 Conclusion

This study investigates the Theory-of-Mind (ToM) capacities of
Large Language Models (LLMs) through the task of opponent pref-
erence modeling in negotiation. By requiring models to infer hidden
preferences from limited offer histories, our benchmark targets a
fundamental challenge in social reasoning: understanding hidden
intentions based solely on behavioral traces. Our results show that
state-of-the-art LLMs can accurately recover opponent preferences
and often outperform classical heuristics in balanced, moderately
complex domains, highlighting their emerging ToM-like abilities.
However, LLMs do not dominate across all settings. In domains
with high opposition, or strong statistical regularities, traditional
frequency-based models still perform competitively or even outper-
form LLMs. These findings reinforce the need for our benchmark: it
does not merely serve as a showcase for LLM strength, but also re-
veals the boundaries of their current reasoning capabilities. As such,
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it offers a principled lens for understanding when and why ToM-like
inference emerges—or fails to emerge—in foundation models.

In future work, we propose extending this framework beyond
preference estimation toward end-to-end negotiation. Specifically,
enabling LLMs to leverage opponent models dynamically within
their negotiation strategy would bridge ToM reasoning and interac-
tive behavior. Our benchmark thus provides not only an evaluation
suite for social inference, but a foundation for developing agents
capable of strategic adaptation, collaboration, and negotiation in
human-aligned settings.
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