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Abstract

Adaptive proton therapy (APT) removes one of the most significant sources of inaccuracy in
treatment delivery, which is using a treatment plan based on an outdated patient anatomy.
Adapting the plan throughout the treatment is crucial for delivering an optimal dose to the
patient, whose anatomy is constantly changing. This is especially true for proton therapy, where
the delivered dose is highly dependent on the range accuracy. Imaging and plan adaptation
must be performed online, immediately before the dose delivery, to take maximum advantage
of the benefits of APT. The main problem with online APT is that adaptation of the treatment
plan takes too long. Therefore, automation of the processes is required to ensure they can be
executed adequately in a short time frame.

Deep learning methods have been successfully applied in two processes required for adaptation,
namely the definition of structure contours on a CT scan and determining an optimal dose distri-
bution for a given anatomy. Since a treatment plan is dependent on the locations of the different
structures, dose prediction methods rely on manually defined contours, which are not available
for daily CT scans in APT due to time limitations. This research aims to develop an approach
that determines an optimal dose distribution for prostate cancer patients without using manual
structure contours.

We use 3D U-Nets for image segmentation and registration as methods for defining the contours
on an image. We use another 3D U-Net to predict an optimal dose distribution, which can
use predicted or manually defined contours as input. In addition to this, we use two multi-
task learning approaches that allow one network to perform both contour definition and dose
prediction, which makes it possible to share information between the tasks. The first approach is
a cross-stitch network that allows two networks to share feature maps if this is beneficial and the
second approach is a w-net that consecutively performs contour definition and dose prediction,
using the predicted contours for the dose prediction.

The manual contour based dose prediction performed well in the area around the structures,
resulting in a test set average 2%/2mm gamma pass rate of 93.4%±3.2% and a Dmean prediction
error of 0.45%± 0.36% in the prostate. The average errors for predicting measures such as D95
and V95% in the targets range from 1% to 3%.

The best method for predicting optimal dose distributions without manual contours is to first
predict the contours on the CT scan and use those contours for the dose prediction. However,
dose predictions based on predicted contours are significantly worse than those based on manual
contours, having a 2%/2mm gamma pass rate of 83.8% ± 6.9% and a Dmean prediction error of
0.92% ± 0.7% in the prostate. Their average errors for predicting measures such as D95 and
V95% range from 7% to 20%, which makes these predicted dose distributions too inaccurate to
be helpful for treatment planning. This shows that dose prediction relies heavily on accurate
knowledge of the structure locations, considering the predicted contours have similar quality as
those from state-of-the-art methods.

Dose predictions have not improved by additionally learning a network the contour definition
task. Using feature maps from other networks via cross-stitch units had no advantageous ef-
fect on the predicted dose distributions, mainly because dose predictions not based on structure
masks were too bad for it to have any effect. The dose predictions from the w-net did not im-
prove after the segmentation and dose prediction networks were trained together, which could
be because the dose prediction loss could not improve the segmentation sufficiently. The main
conclusion is that multi-task learning can only benefit related tasks if they can already be per-
formed independently to a certain extent. It is not a substitute for missing information required
to perform the task.
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1 Introduction

1 Introduction

Radiotherapy is one of the main procedures used to treat cancer patients. Its primary objective is to
deliver a sufficient dose to the tumor while minimizing the dose absorbed by important organs. Different
radiotherapy methods, such as external radiotherapy, brachytherapy or radionuclide therapy, can be used to
deliver this dose to the patient. Proton therapy, a relatively new type of external radiotherapy, is considered
because it has a distinct advantage over other types of external radiotherapy. This advantage is that most
of the dose of proton beams is absorbed at a certain depth called the Bragg peak, while the dose of photon
beams is absorbed more uniformly throughout the body. This property of proton therapy allows it to deposit
the dose locally at the target tissue while minimizing the dose absorbed by surrounding healthy tissue.

A drawback to this precision is that it is highly dependent on the precision of the locations of the Bragg
peaks. A change in density somewhere along a proton beam path has a drastic effect on the dose distribu-
tion of that beam. This means that any anatomical difference between the treated patient and the image
used for treatment planning can have a devastating effect on the resulting dose distribution. Since treat-
ment delivery happens in multiple fractions that take place on different days, inter-fractional variations,
such as tumor shrinkage or bladder filling changes, reduce the effectiveness of the treatment plan. Some
measures, such as adding target margins or incorporating robust optimization, try to ensure the treatment
plan delivers a sufficient dose to the target despite these uncertainties. However, since these measures
also increase the dose to surrounding organs [1], a better method for dealing with these inter-fractional
differences is necessary.

Adaptive Proton Therapy (APT) tries to improve treatment planning by imaging the patient multiple times
throughout the treatment and adapting the plan accordingly. Adaptation requires imaging, contour def-
inition, plan assessment, re-planning and plan verification. Because this process can take hours to days,
adaptation usually happens between treatment fractions (offline) [2]. Although this can account for slower
inter-fractional changes such as tumor shrinkage and weight loss, it fails to account for faster, day-to-day
changes like organ fillings. Therefore, to take maximum advantage of the benefits of APT, imaging and
adaptation must be performed immediately before the fraction (online). Some recent studies have shown
that an online APT workflow is possible [3], but automation of the processes is still required to ensure they
can be executed adequately in a short time frame.

In recent years, deep learning methods have been successfully applied to many processes in the radiother-
apy workflow. Advancements in computational power allow the application of these methods to large 3D
images, something previously not possible. Their ability to identify features from large sets of data and the
speed with which they can apply this knowledge to new images makes deep learning methods very useful.
Convolution neural networks (CNNs), for example, are an accurate and fast method for defining the con-
tours of important structures in a computed tomography (CT) scan [4]. A CNN can define the contours
required for prostate cancer treatment planning in a few seconds, while it takes a skilled oncologist more
than an hour to do this manually [5]. In the APT workflow, this method could be used to quickly determine
the contours of the structures on the daily CT scan that is made just before the treatment delivery.

Predicting optimal dose distributions is another area where CNNs are successfully applied. Given the
patient’s anatomy, the network can determine the dose distribution of an optimal treatment plan. Knowing
this dose distribution can guide a dosimetrist in optimizing the treatment plan, saving time and potentially
ensuring higher-quality plans. Knowing what an optimal dose distribution looks like for a daily anatomy
can have multiple uses in APT treatment planning. For example, it could help determine if re-planning is
necessary, it could speed up the process of re-planning and it could serve as quality assurance for a newly
created treatment plan. The problem with determining the optimal dose distribution for a daily CT scan in
APT is that most dose prediction networks described in literature use the contours of the structures in the
CT scan for the prediction. Since it takes too much time to determine the contours manually for a daily CT
scan, these contours are usually not available.
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1.1 Goals of the Research
This research aims to determine an approach that can predict the dose distribution of an optimal treatment
plan for a daily CT scan in APT. The challenging thing is that this must be done without using manual con-
tours. Therefore, incorporating the knowledge of the structure locations into the dose prediction network
without knowing the exact contours will be vital to answering the first research question of this study.

Research Question 1

In adaptive proton therapy, what is the best approach for predicting an
optimal dose distribution for a daily CT scan?

A potentially interesting way of incorporating the structure information into the network is by letting one
network perform both the contour prediction task and the dose prediction task. This learning of multiple
tasks is called multi-task learning and it could lead to improved competence in both tasks. The idea is that
the network can exploit commonalities and differences across tasks, allowing it to extract more information
from the available data. Recently it has been shown that joining a segmentation and registration network
in a single joint architecture via so-called cross-stitch units results in superior contour prediction compared
to the single-task networks [6]. Similarly, the dose prediction task could be learnt together with the contour
definition task. The second goal of this research is to investigate the use of multi-task learning for combined
dose prediction and contour prediction.

Research Question 2

Is it beneficial to perform the contour prediction and dose prediction
task together in a multi-task network?

1.2 Structure of the Report
In Chapter 2, the theory behind the concepts and methods described in this introduction are discussed in
more detail. First, a detailed explanation is given about the APT treatment planning process, and different
methods for contour definition and optimal dose prediction are discussed. After that, a detailed explanation
of deep learning is given, covering the fundamentals of deep learning, convolutional neural networks
and multi-task learning. Chapter 3 contains details about the CT scans and treatment plans used in this
research. It also gives specific information about the networks developed for contour definition and the
different approaches used for optimal dose prediction. Chapter 4 discusses the quality of the created
treatment plans used for training and testing the dose prediction network. It also shows results for the
predicted contours and discusses their quality. Finally, the predicted dose distributions of the different
approaches are compared, followed by a discussion of these results. To conclude the report, our findings
are summarized in Chapter 5.



3 Theory

2 Theory

This chapter will describe the concepts underlying this research and discuss the literature. Section 2.1
will explain everything from the basics of radiotherapy up to adaptive proton therapy. Section 2.2 and
Section 2.3 give details about two things that can speed up the treatment planning process, namely auto-
matic contour definition and optimal dose prediction. Finally, Section 2.4 and Section 2.5 explain the deep
learning methods and concepts required to understand the methods we propose in this report.

2.1 Adaptive Proton Therapy
2.1.1 Fundamentals of Radiotherapy

Radiotherapy is a cancer treatment that fights a tumor by using radiation to damage cancer cells. It is one of
the main treatment methods for cancer, used in over 50% of all patients, either on itself or in combination
with chemotherapy or surgery [7]. Radiation ionizes the DNA molecules inside the cancer cells, which
means the cells can not divide and the tissue can not grow. Since cancer cells tend to divide quicker
than normal cells, they are usually more sensitive to radiation and die off quicker [8]. This difference
in radiosensitivity is amplified by the fractionation of the dose delivery, which is optimized for damaging
cancer cells and sparing normal cells [9]. Dose, a definition for the amount of absorbed radiation, is
delivered over 35 fractions of 2 Gy, for example, instead of delivering 70 Gy to the patient in one treatment
session. Although this helps to spare normal cells to a certain extent, damaging them and thereby risking
treatment-related complications is unavoidable.

Because of this risk of complications, the main goal of radiotherapy is to control the tumor while sparing
healthy tissue as much as possible. The entire radiotherapy process (Figure 2.1) is designed to achieve
this goal [10]. The radiotherapy process starts with making a 3D CT scan of the patient to characterize
their anatomy. Then in contour definition, several structures, such as the tumor and important organs,
are defined on the CT scan (Section 2.2). Next, a clinician sets the treatment plan objectives, such as the
desired dose in the tumor and the maximum dose allowed in important organs, based on the CT scan and
the locations of the different structures. Given these objectives, a treatment planning system calculates
the optimal treatment plan (Section 2.1.3). Finally, before the treatment is delivered, the quality of the
created plan must be assured. This assurance includes a thorough plan review and a measurement-based
test of the delivered dose.

Figure 2.1: An overview of the different steps of the radiotherapy process.

Delivering the treatment can be done in a variety of ways. The radiation can be delivered from outside
the body (external radiotherapy) or from inside the body (internal radiotherapy). Some examples of in-
ternal radiotherapy methods are brachytherapy, which implants radiation sources near the target area,
and radionuclide therapy, which injects radioactive molecules into the patient’s bloodstream designed to
target the cancer cells in the tumor. While these methods do little damage to surrounding tissue, they are
only applicable in certain cases [11]. External radiotherapy, applied more often, uses a source of radiation
outside the body to irradiate the patient. This radiation can be beams of high-energy photons or beams of
accelerated ionizing particles such as protons or carbon ions. High energy photon beams are created by a
linear accelerator, which is present in many medical centers. Charged particles, however, require a large
cyclotron or synchrotron to be accelerated to the required velocity, which is available in far fewer places.
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2.1.2 Advantages and Disadvantages of Proton Therapy

Proton therapy can potentially be a superior method to conventional radiotherapy because of the unique
depth-dose characteristics of protons. A proton can interact in the body by Coulomb scattering with the
electrons or the nuclei of atoms. The energy loss of protons is inversely proportional to the square of
their velocity [12]. This leads to a local peak of absorbed radiation in the body, because protons deposit
most of their energy right before they come to rest. This local peak is called the Bragg peak (Figure 2.2)
and its location depends on the proton energy. This allows proton therapy to concentrate the dose on the
tumor while minimizing the effect on surrounding tissue. Proton therapy is especially useful for treating
tumors that have not spread and are close to important organs, such as head and neck cancers. Also it is
often applied in the treatment of children, since they are particularly susceptible to late adverse effects of
radiation [13].

Figure 2.2: Depth dose distributions for protons and photons.

Besides these advantages, proton therapy also has some disadvantages. The main problem with proton
therapy is that the position of the Bragg peak is strongly dependent on the density of the material the beam
has traveled through. This dependency means that any change in the anatomy of the patient can have a
devastating effect on the resulting dose distribution, making proton therapy less resilient than photon
therapy. Also, there is still much discussion about the relative biological effectiveness (RBE) of protons.
This is usually assumed to be 1.1 for all tissue, but multiple studies have reported lower or higher values
for different tissues [14]. Besides these physical disadvantages, there are also some economic problems.
Since proton therapy facilities are large and expensive, the cost of treatment is considerably higher than for
photon therapy. This while, for most cases, there is no clear evidence that proton therapy is a significant
improvement over photon therapy. Because of the lack of clinical evidence indicating its superiority over
photon therapy and its vulnerability to uncertainties, more research still needs to be done on proton therapy
[14].

2.1.3 How an Optimal Treatment Plan is Created

Proton therapy treatment planning aims to find the machine parameters, such as beam position and beam
intensity, that result in a treatment that gives the patient the highest chance of recovery without any
complications. To find this optimal treatment plan, we can determine multiple criteria that such a plan
should meet. The planning target volume (PTV), which is the volume we want to irradiate containing the
tumor, should obtain enough dose to ensure the tumor is controlled. Organs at risk (OARs), which are
the organs causing most complications when overdosed, should receive as low a dose as possible. Some
of these criteria are fixed in guidelines, but often a trade-off between opposing criteria has to be made.
Which criteria are given priority is patient-specific, but can also differ between clinicians.

Once the objectives for the treatment plan are decided, they are converted to a numerical optimization
problem as follows [15]. The patient is discretized in voxels, so the dose in the voxels d can be calculated for
a certain beam set-up x . The relation between the beamlets and the voxels is a linear relation: d(x) = Ax ,
where A is the dose influence matrix. The vector of voxel doses that belong to a region i is denoted by
di . The objective is represented by a cost function f (d0) and the constraints are represented by the cost
functions [g1(d1), . . . , gn(dn)]. An objective could be that the mean dose of all voxels belonging to the
rectum must be as low as possible. A constraint could be that the dose in all voxels belonging to the PTV
must be higher than 70 Gy. Equation 2.1 gives an example of an optimization problem.
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minimize
x

f (d0)

subject to g1(d1)≥ 70 Gy,

g2(d2)≤ b2,
...

gn(dn)≤ bn,

x ≥ 0.

(2.1)

Computational methods are used to find the beam set-up x that minimizes f (d0) given the constraints
[g1(d1), . . . , gn(dn)]. The result is a Pareto optimal solution where the objective criterion can not be im-
proved given the constraints on other criteria.

One of the problems in treatment planning is how uncertainties should be taken into account. Especially
proton therapy treatment plans are sensitive to range uncertainties, as discussed in Section 2.1.2. Many
uncertainties must be taken into account, such as set-up uncertainties, changes in patient anatomy, imaging
or delivery uncertainties, and variations in the defined contours. One way to deal with these uncertainties
is to increase the PTV by adding larger safety margins around the tumor. Another way is incorporating
robust treatment planning. By creating a plan that performs well for a range of possible anatomies similar
to the anatomy on which the planning is based, the plan will be less sensitive to changes in the anatomy
[14]. Although both these methods reduce the chance of under-dosing the tumor, they do increase the dose
to surrounding organs [1]. A method that reduces uncertainties without increasing the dose to surround-
ing organs that has shown much potential over the past few years is APT. In APT, the patient is imaged
throughout the treatment and the treatment plan is adapted to the patient’s anatomy.

2.1.4 The Adaptive Proton Therapy Workflow

APT has shown promising results [16, 17, 18] compared to other methods, and an adaptive workflow has
already been implemented successfully [3]. Basing a treatment plan on an outdated patient anatomy is
one of the most significant sources of range inaccuracies, so updating the treatment plan to the current
anatomy should ideally happen as often as possible. This means the patient must be imaged at the start
of the appointment, ideally already in the treatment position to minimize set-up inaccuracies. When plan
adaptation is required, this must happen on the spot. An example of this adaptive workflow is given in
Figure 2.3. The process pre-treatment is the same as in non-adaptive radiotherapy, but the daily treatment
delivery process now also includes adapting the treatment plan.

Figure 2.3: An example of a workflow for the online APT processes. The workflow pre-treatment is the
same for conventional planning and online APT, but in online APT extra steps are performed before the
treatment delivery. These extra steps must happen in a short time frame. Black arrows represent a time
scale of days, while red arrows represent a time scale of minutes. Adapted from [19].

The bottleneck of this daily process is the time it takes to adapt the treatment plan. Adapting the plan
manually is not feasible, since clinicians’ time is costly, but more importantly, the treatment appointment
would take too long. Making a daily image of the patient requires either an in-room CT or can be done using
cone-beam CT. Although the image quality of a cone-beam CT is often not acceptable for dose calculation
in proton therapy [1], the planning CT could then be registered to the daily CT, with the added advantage
that the planning contours can be propagated to the daily scan. An alternative to propagating the planning
contours is defining the contours on the daily CT scan directly using automated methods. However, both
these methods (Section 2.2) still require correction or verification by a clinician [2].



Theory 6

When the daily anatomy is characterized, it must be determined if and how the treatment plan must be
adapted. Some fast dose calculation methods have been developed, which, although being less accurate
than Monte Carlo methods, are able to calculate dose distributions of acceptable accuracy within seconds
[20]. This helps to quickly evaluate a treatment plan’s performance on a given anatomy. When the adap-
tation of the plan is required, there are multiple ways to do this. One can chose to re-optimize the original
treatment plan, to select a plan from a library of predetermined treatment plans [21] or to do a restoration
of the spot positions [22]. The quality of the new treatment plan must be guaranteed, but measurement-
based quality assurance is not practical when the patient is kept in the treatment position. However, since
most errors in the adaptive radiotherapy process are not those caught during measurement-based quality
assurance, an independent dose calculation method may be used instead [23].

2.2 Contour Definition
2.2.1 The Importance of Automated Methods

Correctly defining the contours of the different organs and other structures in the image is an important
aspect of radiotherapy since the locations of these structures are essential for treatment planning. Tra-
ditionally, contours are defined manually by highly trained radiation oncologists, a process that takes a
substantial amount of time. Some of the challenges of contouring correctly are image regions with low
contrast or structures from which the edges are ambiguous. For these reasons, among others, there is some
inter-observer variation in how certain contours are defined [24]. Because of this inter-observer variation
and the long duration of a manual approach, an automated contouring method is necessary. Especially
time reduction of the procedure is essential for contour definition in an online adaptive workflow. Au-
tomated methods have been studied for a long time, but unfortunately, they still require correction by a
clinician in most cases [19]. In recent years, deep learning methods (Section 2.4) for contouring medical
images are getting more and more accurate. These fast methods use previously contoured images to learn
the correlation between CT scans and the different structures. Using this knowledge, they can either define
the contours on an image directly or propagate known contours to the image via registration.

2.2.2 Image Segmentation Using Deep Learning

Image segmentation is a method where all the pixels of an image are classified into predetermined classes
(Figure 2.4). This is used for many applications, including computer vision, object detection, recogni-
tion tasks or medical imaging. In medical image segmentation, often the goal is to identify the set of
voxels that belong to organs or other structures of interest. Performing image segmentation using CNNs
(Section 2.5.1) has become a widely used method in recent years and it has been shown to outperform
conventional methods [4]. In 2015 Ronneberger et al. published their CNN architecture for image segmen-
tation called u-net [25], from which most state-of-the-art segmentation networks used today are derived.
It uses downsampling layers as an encoder and upsampling layers as a decoder, with skip connections be-
tween the downsampling and upsampling layers (Section 2.5.2). The encoder extracts features from an
image, which the decoder uses to link different image regions to different structures. Image segmentation
networks could be helpful in APT since they can be used to identify structures on the daily CT scan that
are necessary for treatment planning. This works especially well for structures that have a lot of contrast
with the background, such as the bladder.

Figure 2.4: An example of image segmentation used in computer vision for self-driving cars.
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2.2.3 Image Registration Using Deep Learning

Image registration is the determination of a geometrical transformation that aligns one image of an ob-
ject (moving image) with another image of that object (fixed image) (Figure 2.5). This is useful when
comparing or combining information from both images. It has multiple medical applications such as im-
age guidance, image reconstruction or contour definition. In APT, for example, it can be used to align
the planning CT scan onto the daily CT scan, thereby allowing information from both images to be used
for treatment planning. Traditional registration algorithms try to find a deformation vector field (DVF)
that maps the moving image to the fixed image by an iterative approach. This means that an objective
function related to the similarity between the moving image and the fixed image is optimized step by step
until the optimal DVF is found. Since these iterations have to be performed for every new image, iterative
methods generally take a lot of time. Models based on deep learning, however, only perform this iterative
optimization in the training phase and afterward can predict a DVF by a single forward computation.

Figure 2.5: Aligning a moving image with a fixed image by determining a DVF using a registration
method.

Similar to segmentation networks, a common choice for registration networks is a CNN that uses a encoder-
decoder architecture (Section 2.5.2). Usually, the moving image and the fixed image are given as input
to the network and the transformation parameters are given as an output. The loss of such a network
includes a part that penalizes dissimilarity between the transformed moving image and the fixed image
and a part that penalizes high gradients in the DVF to ensure a realistic transformation. Although deep
learning models for registration have some problems, e.g., lack of training data, difficulty with predicting
large deformations and high dimensionality of the output, they show comparable accuracy to iterative
registration methods [4].

2.2.4 Contour Propagation Through Image Registration

Many deep learning registration models use supervised training, either by comparing the predicted DVF
with a ground truth DVF from a conventional registration method or by comparing reference labels, such
as organ contours, on both images. Since mimicking a DVF from another method means the network can
not outperform that other method, more commonly, reference labels on both images are used to guide the
network. Multiple studies [26, 27, 28] have shown that using anatomical contours to weakly supervise
registration networks improves their performance. The contours of the structures on the transformed
moving image and the contours of the structures on the fixed image should overlap, so DVFs resulting in
a transformation where there is much overlap are favored. Especially when registration is performed to
propagate the contours from one image to another, this supervision has been shown to be beneficial [28].

Propagation of contours means transforming the contours of structures on one image, so they overlap with
the structures on another image. The transformation parameters obtained by registration of the two images
can be used to transform the previous contours so they can be applied to the new image. This is useful in
computer vision, for example, when new images are made constantly and information from the previous
images could be useful. It could also be applied to adaptive radiotherapy since the contours defined on
the planning CT scan can be propagated to the daily CT scan. A recent study which was the inspiration
for this research [6], showed that registration of the planning CT scan with the daily CT scan could be
used successfully to define contours on the daily CT scan. Instead of only supervising the registration
network via the loss, it also showed that combining a segmentation network and a registration network at
an architectural level improves the performance of both networks (Section 2.5.3).
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2.3 Predicting Optimal Dose Distributions
2.3.1 Knowledge-Based Planning

Optimizing a treatment plan is a time-consuming process that requires manually adjusting objective pa-
rameters to find the optimal treatment plan. Even for a skilled and experienced clinician, it takes a lot
of time and effort to produce high-quality plans. Another problem, besides that optimization takes a long
time, is the variation in treatment plan quality between planners [29]. In an effort to overcome these prob-
lems, knowledge-based planning strategies have been proposed [30]. Knowledge-based planning tries to
incorporate historic treatment plans and anatomical data to predict what kind of dose-volume histograms
(DVHs) and dose distributions are possible. The DVHs and dose distributions can serve as optimization
objectives and provide other guidance in the treatment planning process. The aim is to ensure more con-
sistent, high-quality plans and reduce time spent optimizing a plan by trial-and-error. Another potentially
practical application is using this knowledge to decide the type of treatment best suited for a particular
patient. For example, it could be applied to choose between photon and proton therapy.

Predicting accurate DVHs and dose distributions is useful in APT because the daily optimization of a treat-
ment plan must happen in a short time frame. Knowing the optimal dose distribution for a daily anatomy
can help decide if re-planning is necessary. When re-planning is necessary, it can serve as guidance or qual-
ity assurance for the new treatment plan. Due to the time limitations in an online APT workflow, the dose
distribution must be predicted quickly. Fast deep learning methods that predict the dose distribution based
on the patient’s anatomy are excellent for this. These deep learning methods can determine geometrical
and anatomical features, which they use to predict the resulting dose distribution. Although deep learning
methods have only been used in recent years, they have already surpassed traditional methods that use
anatomical features handcrafted by researchers and clinicians in terms of accuracy [31].

2.3.2 Deep Learning Methods for Optimal Dose Prediction

The immense progress of deep learning in recent years has substantially impacted dose prediction methods.
The development of u-net [25], a deep CNN used for semantic segmentation, was a starting point for much
of the research on deep learning methods for dose prediction (see Section 2.5.2). In 2017, two years after
the publication of the u-net, Nguyen et al. [32] successfully used this 2D u-net architecture for a contour-
based prediction of the optimal dose distribution in prostate cancer patients. It was later found that this
approach could be improved by using dosimetric information as input in addition to the structure contours
[33]. In 2019, a densely connected 3D u-net was used to predict dose distributions for head and neck
cancer patients [34], combining architectures from u-net and DenseNet. This was successful, even though
head and neck cancer treatment plans are very complicated due to multiple prescription dose levels and
many radiation-sensitive structures. A similar study later confirmed the benefits of using 3D inputs over
2D inputs [35]. Three recent studies on predicting dose distributions for prostate cancer have done this
using a 3D u-net. Kontaxis et al. [36] used a 3D u-net with geometrical information about the anatomy
as additional input. Another study investigated a general model that could be applied to predict different
treatment planning styles [37]. The third study tried to predict the multileaf collimator positions that
would lead to an optimal dose distribution in addition to predicting the dose distribution [38]. While most
of these studies involved predicting photon dose distributions, a recent study focused on predicting proton
and photon dose distributions to assess their clinical usage for the treatment of a particular tumor [39].

2.3.3 Dose-Volume Histograms

A common way of analyzing dose distributions is with a DVH. They are a simple method to visualize a
3D dose distribution in a 2D format. A DVH is generally plotted as a cumulative histogram with dose on
the x-axis and relative volume on the y-axis. An example is given in Figure 2.6. The height of a line at a
certain dose represents the volume percentage receiving a dose greater than or equal to that dose. Usually,
a DVH includes multiple important structures, which are represented by different lines. DVHs can be used
to evaluate a plan or compare different plans with each other. In this study, they will be used to compare
a predicted dose distribution with the actual dose distribution. Comparisons can be made by looking at
specific DVH points. For example, Vx defines the volume percentage that receives x dose or more and can
be visualized as the height of a specific line at dose x. Dx is the x th percentile highest dose in a structure
and can be visualized as the dose value of a line at volume percentage x. From this definition follows it
that D0 is the same as the maximum dose in a structure.
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Figure 2.6: Example of a cumulative DVH comparing Rapid Arc (RA) and Tomotherapy (Tomo) treat-
ment plans [40]. The dose is given on the x-axis and the relative volume on the y-axis. Different lines
represent the dose in different structures.

2.4 Concepts in Deep Learning
2.4.1 An Introduction to Deep Learning

Deep learning is a subset of machine learning where multiple layers are used to learn patterns from input
data. The difference between deep learning and other machine learning methods is that deep learning al-
gorithms learn how to represent the data with self-learned features instead of features designed by humans.
These features are then used to classify the data or make predictions based on the data. The advantage
of this is that deep learning algorithms can process large amounts of unstructured data, such as images
or text, without the need for pre-processing. Deep learning concepts have been around since the 1960s,
although many applications have only been realized recently due to advancements in computing power.
The theory behind deep learning is based on the working of the human brain, which is where the name
neural network comes from. The different layers in the network pass information, similar to how layers of
neurons are activated in the brain. An example of how different layers in a neural network convert input
data to output data using fully connected layers is given in Figure 2.7.

Figure 2.7: Example of a fully connected neural network.

Input values, each with a numeric value x i , are given to the neurons on the first hidden layer. Each neuron
has a specific weight wi for each input x i and a specific bias h. A weighted sum is calculated using the
weights, inputs and bias, which are converted by the activation function f to an output of that neuron y
(Equation 2.2). The output of all neurons in the first hidden layer can be calculated in this way. The same
process is repeated to calculate the outputs of the second hidden layer. Finally, these outputs are used to
calculate the output of the network. This progress of propagating the input values through the network to
the output value is called forward propagation.
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y = f

�

n
∑

i=1

wi · x i + h

�

(2.2)

The activation function f must be nonlinear since linear algebra shows that otherwise, any number of
layers can be reduced to a two-layer input-output model. Some popular activation functions include the
sigmoid function and the Rectified Linear Unit (ReLU) function. The weights in the network convert the
different types of input to the desired output. Depending on the task, this input and output can have
multiple forms. For example, if the task is to recognize a cat on an image, then the input values are the
pixel values of the image and the output is a single bit which is one if it is a cat and zero if it is not a cat.
However, suppose the task is to detect animals on an image. In that case, the output can be an array of
percentages, giving the probability that the animal is in the image.

2.4.2 Training of Deep Learning Models

The network is trained to give the correct output for different inputs by adjusting the weights of the net-
work. The weights are adjusted based on how well the predicted output corresponds to the correct output.
The quality of a prediction is determined by the loss function. The loss function will output a high value
if a certain prediction is off. The weights in the network are adapted to optimize the loss function. Some
standard loss functions are the mean squared error function for regression problems or the cross-entropy
loss for classification problems.

The loss calculated by the loss function is propagated through the networks to determine how the weights
should change. This process is called backpropagation. Backpropagation identifies which pathways are
more influential in the final answer and allows us to strengthen or weaken connections to arrive at the de-
sired prediction. The influence of the weights on the final prediction is calculated and weights are changed
based on this influence. Optimization of the loss function is done by gradient descent. This optimization
algorithm minimizes the loss function by iteratively moving in the direction of the steepest descent as de-
fined by the negative of the gradient. How much the weights in the model should be changed depends
on the gradient size. Stochastic gradient descent can be used if the number of training samples is large or
if each training sample contains much data. This means that the network parameters are updated after a
few training examples instead of going through all the training examples before updating the parameters.
Often, this can be a more efficient method of calculating the gradients.

2.4.3 Multi-Task Learning

Multi-task learning is a deep learning model that performs multiple tasks simultaneously while exploit-
ing commonalities and differences across tasks. This can lead to improved competence in the tasks and
higher learning efficiency when compared to training the models separately. The model uses all of the
available data across the different tasks to learn generalized representations of the data that are useful in
multiple contexts. In general, multi-task learning is useful when there are some commonalities between
the tasks. At least there should be some underlying principles or information that can be shared between
the tasks. Multi-task learning is commonly used in natural language processing, computer vision, and
recommendation systems.

Multi-task learning can be either by hard parameter sharing or soft parameter sharing. Hard parameter
sharing means some layers of the network are used by both tasks. Soft parameter sharing means that each
model has its own parameters, but they can share information between the models. Hard sharing is more
useful when parts of the task are very similar. Soft sharing allows some dissimilarity between the tasks but
requires more memory because two networks are trained simultaneously.
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2.5 Different Deep Learning Architectures
2.5.1 Convolutional Neural Networks

A CNN is a neural network that uses convolution operations instead of fully connected layers. A visualiza-
tion of a convolution operation is given in Figure 2.8. They are crucial for many deep learning applications
because they are computationally effective. They require far fewer parameters than a fully connected layer
with the same number of inputs and outputs. This is because parameters are shared across the convolu-
tional layer and the kernel is much smaller than the input. This enables them to be applied to larger input
data, such as images. Also, their ability to only use local information to create feature maps is beneficial for
input data with a grid-like topology. Inputs like a time series (1D grid) or an image (2D grid) are usually
analyzed using CNNs.

Figure 2.8: Visualization of the convolution operation. On the left, a 1D convolution that highlights the
difference in parameters required for a convolution layer or a fully connected layer. On the right a 2D
convolution that shows how only local information is used to create the new feature map.

An image can be represented in multiple ways, for example, how the color of an image is encoded using
three color channels: red, blue and green. A convolution layer creates different image representations,
which are called feature maps. This is done by sliding a kernel over the image that uses surrounding
pixels to determine the pixel value in the feature map (Figure 2.8). A kernel of size 3 can be thought of
as a filter with 3 × 3 weights. Depending on the weights in the kernel, different features, such as edges
or orientations, can be extracted from the image. To ensure the size of the feature map is the same as
the size of the image, the number of places the kernel moves between operations (stride) is usually one
and an extra layer is added to the boundary of the image (padding). This way, each pixel in the image
gets a corresponding pixel in the feature map. Similar, convolutions can be done in 3D, for 3D CT data
for example. A convolution layer can have multiple feature maps as input and multiple feature maps as
output. If the input is 16 feature maps, the output is 16 feature maps and we use a kernel of 3×3, then the
convolution layer has 16× 16 kernels with 9 weights each.

An operation that is often used in conjunction with convolution is a pooling operation. An example of a
pooling operation is given in Figure 2.9. A pooling layer downsamples the input image. This is done so that
different resolution feature maps can be extracted from the image and to decrease the memory required
for the network. The pooling operation can be done in multiple ways, for example, with a filter of size two
and stride two that takes the maximum or average of each set of pixels as pixel value for the new image.



Theory 12

Figure 2.9: An example of how the resolution of an image is decreased by a max pooling operation.

2.5.2 U-Net

U-net is one of the most influential CNN architectures with numerous applications. It was first developed
for biomedical image segmentation by Ronnenberger et al. [25]. Later, multiple adaptions to U-Net have
been proposed to improve it or apply it in a different domain. For example, it was adapted to apply to
3D structures [41] and it was successfully applied for dose prediction [32]. The architecture of the U-Net
consists of an encoder to encode the input image into feature maps and a decoder that tries to project the
feature maps onto the pixel space of the original image. An architecture diagram of the U-Net is given in
Figure 2.10.

In the first half of the network, the image is encoded into different resolution feature maps by convolution
blocks that increase the number of channels and downsampling of the image. Downsampling is usually
done with a pooling operation. In the second half of the network, the feature maps are decoded and
projected onto the original pixel space. This is done by convolution blocks that decrease the number of
feature channels and upsampling of the feature maps. Feature channels of the encoding half of the network
are concatenated to feature channels of the decoding half that are on the same resolution level to preserve
information from higher resolution feature maps. In the final layer, the feature maps that are extracted
from the image are converted to a segmentation map by a 1× 1 convolution.

Figure 2.10: Architecture diagram of the original U-Net. Arrows represent different operations. Rect-
angles represent the different feature maps created throughout the network. The numbers indicate the
image size and the number of channels. Adapted from [25].
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2.5.3 Cross-Stitch Network

A cross-stitch network is a multi-task architecture developed by Misra et al. [42] that allows soft sharing
of parameters between different networks. Each task is performed in its own network using its own pa-
rameters. Only at some locations, cross-stitch units are inserted that linearly combine feature maps from
both networks. Consider that we want to share information between tasks A and B. At some point in the
network, we haveu feature maps XA and XB of the same size. They are connected to a cross-stitch unit
with learnable parameters αAA, αBA, αBB and αBA. The cross-stitch unit linearly combines the feature maps,
so that the shared feature maps become X

′

A = αAA · XA + αBA · XB and X
′

B = αBB · XB + αAB · XA. Since the
parameters that determine how much of the feature maps should be shared are learnable, representations
can be shared flexibly. If it is beneficial to share the feature maps, the network can do this, but if it is better
to use independent feature maps, the network can separate them.

Beljaards et al. used a cross-stitch network to combine a 3D U-Net for image segmentation and registration
[6]. Both networks extract feature maps from the input image, which they use to perform their task
independently. At four points in the U-Net, after the downsampling and upsampling layers, the feature
maps of the two networks are linearly combined by cross-stitch units. Each network can use a combination
of feature maps created by the segmentation and registration network. They found that using the cross-
stitch units significantly increased the performance of the registration and segmentation network compared
to the single-task networks.

Figure 2.11: The feature maps X of the two tasks are linearly combined by the learnable weights α,
creating shared feature maps.
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3 Methods & Materials

This chapter will describe the data and different methods that were used for contour prediction and optimal
dose prediction. Section 3.1 and Section 3.2 give details about the CT scans and the treatment plans used in
this research. Section 3.3 gives general information about the used network architecture and the training of
the networks. Section 3.4 gives more specific information about the segmentation, registration and cross-
stitch networks for contour definition, and Section 3.5 gives specific information regarding the optimal
dose prediction networks. Finally, Section 3.6 describes how the contour definition network and the dose
prediction network are combined.

3.1 Patient Dataset
A dataset from Haukeland Medical Center is used for this study. It contains a planning CT scan and daily
CT scans used for the intensity-modulated radiotherapy treatment of prostate cancer. The dataset includes
18 patients, all having a planning CT scan and 7 to 10 daily CT scans. The CT scans are made with a GE
scanner and consist of 90 to 180 slices with a thickness of 2.0 mm. Each slice contains 512×512 voxels
having a pixel size of approximately 0.9×0.9 mm. Manually defined contours of the prostate, seminal
vesicles, bladder and rectum are available. Since the lymph nodes are not defined for all CT scans in the
dataset, they are disregarded in this study. In total, 161 daily CT scans are available for training, validation
and evaluation of the networks. The 129 daily CT scans from the first 14 patients are used for training.
The 32 daily CT scans from the remaining 4 patients are used for validation and testing.

3.2 Proton Therapy Treatment Plans
3.2.1 Treatment Planning System: MatRad

The open-source treatment planning system matRad [43] was used to generate the proton therapy treat-
ment plans. MatRad is a toolbox built on the MATLAB environment [44] and is meant for educational and
research purposes. The created plans are for intensity-modulated proton therapy (IMPT) and consider two
gantry angles at 90° and 270°, so the proton beams pass laterally through the body. For the RBE, a constant
value of 1.1 is assumed for all tissues, which is considered standard in proton therapy [45]. The dose grid
resolution that was used to optimize the treatment plan is 2 mm and the treatment consists of 37 fractions.

In MatRad, multiple constraints and objectives can be set for the dose distribution. All objectives have a
weight based on the importance of the objective. The cost function to optimize is a weighted sum of these
objective functions. Equation 3.1 is an example of how the list of objectives and constraints in Table 3.1 is
converted to an optimization problem using the method described by Equation 2.1. Some of the constraints
and objectives available in MatRad are as follows. Constraints can be set on the minimum or maximum
dose in a particular structure, which the dose distribution can not exceed. Objectives regarding specific
DVH points (Section 2.3.3) can also be set. For example, dose distributions where the 98th percentile
highest dose exceeds a certain threshold are penalized. These objectives are beneficial when preventing
very high doses from being present in some local regions of a structure. In the same way, the overall dose
in certain volumes can be limited by striving for a low mean dose in those structures.
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Constraint Structure Objective Weight Structure
g1 1 f1 50 1
g2 2 f2 20 3

f3 5 3

Table 3.1: Example of constraints and objectives for treatment planning.

minimize
x

50 f1(d1) + 20 f2(d3) + 5 f3(d3)

subject to g1(d1)≥ b1,

g2(d2)≥ b2,

x ≥ 0.

(3.1)

3.2.2 Objective List Used for Treatment Planning

The objective list used for treatment planning is given in Table 3.2. It is adapted from a wishlist [16] that
was used to generate IMPT treatment plans for the same dataset using a treatment planning system called
ICycle [46]. Adaptation was required since ICycle has a different method of optimization and different
structures have been used for those plans. The target dose for the prostate is 74 Gy and the target dose for
the seminal vesicles is 55 Gy. The dose in the rectum and bladder is held as low as possible. The distribution
of the weights is ordered similarly to the ranking of the priorities in the original wishlist. By trial and error,
the constraints and objectives from Table 3.2 were found to produce the highest quality plans1, ensuring
sufficient dose in the target volumes without overdosing them and as little dose as possible in the organs
at risk.

Table 3.2: The planning constraints and objectives used for the IMPT treatment plans. PTV-high corre-
sponds to the prostate and PTV-low corresponds to the seminal vesicles.

Constraints
Structure Type Limit

g1 PTV-high Minimum 0.97×74 Gy
g2 PTV-low Minimum 0.97×55 Gy

Objectives

Weight Structure Type Limit
f1 400 PTV-high D2 Maximum 1.07×74 Gy
f2 400 PTV-low D2 Maximum 1.07×55 Gy
f3 50 Rectum D2 Maximum 60 Gy
f4 50 Bladder D2 Maximum 60 Gy
f5 20 Rectum Dmean 0 Gy
f6 20 Bladder Dmean 0 Gy
f7 10 Torso Dmean 0 Gy

3.3 Network Architecture and Training Details
3.3.1 Network Architecture

The architecture used for the networks in this research is a 3D deep CNN inspired by the U-Net used by
Fan et al. and Beljaards et al. [47, 6]. An architecture diagram of the network used for single-task contour
definition is given in Figure 3.1. Architectures used for the other networks are similar to this one and
specifics about adjustments can be found in the section regarding that network. The network consists of
an encoder to encode the input image into feature maps and a decoder that tries to project the feature
maps onto the pixels space of the original image. The first half of the network is the encoding path,

1For some underperforming plans, objective functions and weights were slightly adjusted.
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Figure 3.1: An architecture diagram of the 3D deep CNN used in this study. Blocks are image represen-
tations of a given patch size and number of channels. A 3D image of size 100× 100× 100 is converted
to a 3D image of size 60× 60× 60. Arrows describe the different operations done to the image.

where convolution blocks that increase the number of feature channels are combined with downsampling
of the feature maps to extract feature maps of different resolutions from the image. The second half is the
decoding path, where convolution blocks that decrease the number of feature channels are combined with
an upsampling of the feature maps to project the feature maps learned by the encoder onto the pixel space
of the original image. Feature channels of the encoding half of the network are concatenated to feature
channels of the decoding half that are on the same resolution level to preserve information from higher
resolution feature maps. For the input a 100 × 100 × 100 patch is taken from the CT scan. Feature maps
from different resolution levels are converted to three outputs by 1×1×1 convolutions. More information
on the patches that are used as input and the multi-level outputs can be found in Section 3.3.3.

In total, there are ten convolution blocks present in the network. Six in the encoding path, where they
maintain or increase the number of feature channels and four in the decoding path, where they maintain
or reduce the number of feature channels. Each convolution block consists of a 3 × 3 × 3 convolutional
layer, a Leaky ReLU activation function and batch normalization. The 3D convolutional layer gets a certain
amount of feature channels as input and by sliding different 3×3×3 filters over these feature channels, they
produce a certain amount of feature channels as output. Since the input patches are not padded before
convolution, the outer pixel at all sides of the patch is lost and the operation reduces the patch size by 2
pixels. A Leaky ReLU with a slope of 0.02 is used as activation function (Equation 3.2). It has the same
benefits as the ReLU activation function described in Section 2.4, but it has a small, positive gradient when
the unit is not active. This is useful when sparse gradients occur in the network. Batch normalization layers
[48] are applied to normalize the inputs of the layers by re-centering and re-scaling them. This ensures
the network converges faster and it makes the network more stable.

f (x) =

¨

x x > 0

0.02 x x ≤ 0
(3.2)

After two convolution blocks in the encoding path, the feature maps are downsampled to half the number
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of voxels along each dimension. This downsampling is done by trilinear interpolation using a scale factor
of 0.5. To scale the feature maps back up in the decoding path, a trilinear interpolation with a scale factor
of 2 is used to double the number of voxels along each dimension. This trilinear interpolation approximates
the value of a pixel in a down- or upsampled feature map linearly by looking at using the values of the
surrounding pixels. The feature maps from before the downsampling are concatenated to the feature maps
after the upsampling to preserve some of the higher resolution features.

3.3.2 Implementation of the Networks

All the networks are implemented using PyTorch [49]. PyTorch is an open-source machine learning and
deep learning library developed for Python, which is widely used in the machine learning community. It
has easy methods for using GPUs, applying cost or activation functions, performing backpropagation and
many more necessities for deep learning. In addition to PyTorch, NiftyNet [50]modules have been used for
sampling of the data. NiftyNet is a open-source CNN platform for research in medical image analysis. Data
preparation and analysis of the CT scans and contours is done partly using SimpleITK [51]. SimpleITK is
an open-source software library for image analysis. All networks are trained, validated and tested on an
Nvidia Quadro RTX 6000 GPU with 16 GB of memory.

3.3.3 Training Details

Because of the amount of data in a single 3D CT scan, patch-based networks are used in this research. Patch-
based means that a smaller patch from the large 3D image is used as input for the network. The smaller
patch size reduces the amount of memory required by the network and the partly random selection of
the patch locations serves as data augmentation since many different patches can be taken from one 3D
image. For the networks used in this study, windows with a size of 100× 100× 100 pixels are taken from
the images. Each iteration consists of selecting 4 windows from a single CT scan and use those as input
for the network. For contour definition, the centers of these 4 windows are sampled from the 4 structure
volumes that must be defined. For dose prediction, 2 windows are sampled from the 2 target volumes and
the other 2 windows are sampled from the rest of the dose distribution that must be predicted.

In the conventional U-Net, the loss is calculated only in the final layer. This can result in slow convergence,
overfitting and sub-optimal parameters in the first half of the network. To ensure a more direct supervision
of the entire network, a loss function is applied on multiple levels [47]. Besides the final layer where a high-
resolution prediction is made, also a mid-resolution prediction is made on the 2nd level and a low-resolution
prediction on the 3rd level. Because of the downsampling layers and the 3×3×3 convolution layers without
padding, the patch size of these high, mid an low level predictions are 60 × 60 × 60, 32 × 32 × 32 and
18×18×18, respectively. Since the output image is smaller than the input image, information from voxels
surrounding the patch can be used for the prediction. For each level, a combination of isotropic cropping
and downsampling is applied to the image which must be predicted. This ensures that the prediction
corresponds to the correct representation of the image. The losses of the predictions of all levels are added
up evenly to obtain the total loss of the network. Network optimization is done using RAdam [52] with a
learning rate of 5× 10-4. RAdam uses stochastic gradient descent with an adaptive learning rate, which is
an effective and robust method of optimization.

3.3.4 Inference in a Patch-Based Network

Inference is required to make a complete prediction for a previously unseen CT scan using the network.
In regular networks, this is simply done by putting a new image into the network, which immediately
results in a prediction. However, since this is a patch-based network, only part of the output image can
be predicted at a time. The image is divided into blocks of 60× 60× 60 and a prediction is made for each
block by taking a 100 × 100 × 100 patch around this block. Padding of the image is used for blocks near
the boundary. Since the 60× 60× 60 blocks have been made to overlap halfway, around 8 predictions are
made for each voxel 2. The average of the different predictions is used. This method of overlapping blocks
has been found to give slightly better predictions than placing the blocks next to each other, although the
difference was slight.

2fewer predictions are made close to the boundary of the image
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3.4 Contour Prediction Network
3.4.1 Evaluation Metrics for Predicted Contours

The goal of the contour definition networks is to predict the contours on the daily CT scan. The performance
of different networks is evaluated by comparing the predicted daily contours Cpred

d with the ground-truth
daily contours Cd that are manually delineated by radiation oncologists. Three metrics are used to define
the similarity between Cpred

d and Cd [53]:

Mean Surface Distance (MSD): The average absolute distance between Cpred
d and Cd . For

each point on Cpred
d , the shortest distance to Cd is calculated (Figure 3.2) and the average

is taken of all points. This results in an average distance, where a lower MSD means a
better prediction.

Dice Similarity Coefficient (DSC): The overlap ratio between Cpred
d and Cd . The overlap

between the predicted volume and the actual volume is divided by the sum of their
volumes (Equation 3.3). This gives a number between 0 and 1, where 0 means there is
no overlap and 1 means the two volumes are the same.

DSC=
2 |A∩ B |

A+ B
(3.3)

95% Hausdorff Distance (HD): The 95th percentile largest distance between Cpred
d and Cd .

For each point on Cpred
d , the shortest distance to Cd is calculated (Figure 3.2), and the

95th percentile of all points is taken. This is similar to MSD, but more focused on outliers.

Figure 3.2: Absolute distance between two surfaces.

3.4.2 Segmentation Network

The goal of the segmentation network is to define the important structures on the daily CT scan. This is
done by classifying all the voxels into categories that represent the different structures. An overview of the
segmentation network is given in Figure 3.3. The input to the network consists of two channels, one being

Figure 3.3: An overview of the segmentation network. Cp and Id are given as inputs to a U-Net, which

then predicts the contours on the daily CT (C pred
d ). The loss is based on the difference between the

predicted and the ground-truth contours.
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the contour mask of the planning CT (Cp) and the other being the daily CT scan (Id). Cp has different
integer values for the different structures and Id has voxel intensities scaled from -1 to 1. The network is
a U-Net as described in Section 3.3 with three resolution levels, the different levels having 23, 45 and 90
filters, respectively. At the end of the network, a 1× 1× 1 convolution layer converts the output channels
to 5 channels, each belonging to one of the structures. A softmax function is then applied to determine,
for each voxel, the probability that it is part of one of the structures. The DSC between these probabilities
and the actual contours is calculated and the loss is given as 1 - DSC.

3.4.3 Registration Network

The goal of the registration network is to define a transformation from the planning CT scan (Ip) to the
daily CT scan (Id). This transformation is then used to propagate Cp to Id . An overview of the registration
network is given in Figure 3.4. The input to the network consists of two channels, one having the voxel
intensities from Ip and the other having the voxel intensities from Id . The network is a U-Net as described
in Section 3.3 with three resolution levels, the different levels having 23, 45 and 90 filters, respectively.
At the end of the network a 1× 1× 1 convolution layer converts the output channels to 3 channels, each
belonging to a displacement in one dimension.

Figure 3.4: An overview of the registration network. Ip and Id are given as inputs to a U-Net, which
then predicts a DVF that can transform Ip to Id . The loss consists of the NCC loss between both images,
the bending energy of the DVF and the DSC loss between the contours on both images.

The loss of the registration network is a combination of three parts. The first part penalizes dissimilarity
between the transformed planning CT scan and the daily CT scan. The similarity between the two images
is calculated using the normalized cross-correlation (NCC) given in Equation 3.4:

NCC( f , g) =
1
n

∑

i

( f (ki)−µ f )(g(ki)−µg)

σ fσg
(3.4)

where f and g are two images, µ is the average intensity, σ is the standard deviation of the intensity,
n is the number of voxels and ki represents voxel i. The benefits of using the NCC are that there is
compensated for brightness differences between images and that broader image similarities are taken into
account. The second part of the loss penalizes DVFs with high gradients that do not correspond to physical
transformations. The bending energy of the DVF is taken as a loss to guarantee a smooth transformation.
This also helps to regularize the network since it is made harder to overfit to the training data. The third
part of the loss is the DSC loss between the transformed planning and manual contours. This loss is similar
to the loss in the segmentation network, which ensures similar regions in the transformed planning CT
and daily CT overlap. The total loss is the sum of these three losses, where the NCC loss and the DSC loss
have weight 1 and the bending energy has weight 0.5.

3.4.4 Cross-Stitch Network

The segmentation network described in Section 3.4.2 and the registration network described in Sec-
tion 3.4.3 are also combined in a cross-stitch network, as previously done by Beljaards et al. [6]. An
overview of the cross-stitch network is given in Figure 3.5. Both the segmentation and registration path
can be used to define contours on the daily CT scan. The idea is that both networks can share helpful
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information, if this improves their performance. Pairs of feature maps from the segmentation and regis-
tration path are linearly combined using learnable parameters, as explained in Section 2.5.3. Cross-stitch
units are placed after each of the two downsampling layers and each of the two upsampling layers, so at
four places in total. The number of filters at the different resolution levels are 16, 32 and 64, respectively,
instead of the 23, 45 and 90 filters used in the single-task networks. This is

p
2 times less filters, which

ensures that the cross-stitch network has roughly the same number of trainable parameters as the segmen-
tation and registration networks (7.8 · 105). The loss of the network is calculated by adding the loss from
the segmentation network and the registration network.

Figure 3.5: An overview of the cross-stitch network. Both the segmentation path (top) and the registra-
tion path (bottom) can define the daily contours. After each down- and upsampling layer, cross-stitch
units are placed to linearly combine featuremaps from both networks. The loss is a sum of the segmen-
tation and registration loss.

3.5 Dose Prediction Network
3.5.1 Evaluation Metrics for Predicted Dose Distributions

The gamma index (γ) is a metric that compares two dose distributions by combining dose difference and
distance to agreement. For each point in the reference dose distribution, a nearby point in the evaluated
dose distribution is sought with an equal dose. This is an improvement upon metrics only looking at point-
by-point dose differences since these can be inaccurate in regions of high dose gradient. Originally γ was
used in the quality assurance of radiotherapy delivery, where the dose distribution calculated by a treatment
planning system is compared to the measured dose distribution [54]. This study uses it to compare the
predicted 3D dose distribution with the ground-truth dose distribution calculated by the treatment planning
system.

For each point in the reference dose distribution, the minimum distance to the evaluated dose distribution
in the dose-spatial domain must be calculated (Figure 3.6). When the distance ∆r(rR, rE) and the dose
difference∆D(rR, rE) = DR(rR)−DE(rE) between a reference point rR and an evaluated point rE are known,
the gamma between these two points can be calculated using Equation 3.5:

Γ (rR, rE) =

√

√∆r2(rR, rE)
δr2

+
∆D2(rR, rE)
δD2

(3.5)

where δr is the distance to agreement and δD is the dose difference criterion. The lowest possible Γ
between the reference point and the evaluated dose distribution is taken as γ for the reference point
(Equation 3.6).

γ(rR) = min
∀rE

Γ (rR, rE) (3.6)

When a reference point has a low gamma index, the evaluated and the reference dose distribution are
similar at that reference point. In our case, this means the predicted dose is similar to the ground-truth
dose.
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Figure 3.6: Schematic representation of the gamma index in 1D. The reference point is located in the
origin, the dose of a point is given on the y-axis and the distance to the reference point is given on the
x-axis. δr and δD create an ellipse around the reference point inside which evaluated points pass the
gamma test. In the above example: Γ (rR, r1) > 1, Γ (rR, r2) < 1 and Γ (rR, r3) = 1. γ(rR) is the minimum
of all evaluated points and since γ(rR)< 1, the reference point rR passes the gamma test. Adapted from
[55].

.

The two acceptance criteria that determine if the reference and evaluated dose distribution agree are the
maximum allowable deviation in dose δD and the maximum allowable distance that such a point can be
away δr. If γ(rR)≤ 1, there is an evaluated point that meets these two acceptance criteria and the reference
point passes the gamma test. The gamma pass rate (GPR) is the percentage of points from the reference
dose distribution that passes the gamma test. In this research, a predicted dose distribution is evaluated
by the GPR achieved in the different structures. Usually, δD is given in % and δr is given in mm. The
original paper introducing the gamma index [54] recommended 3%/3mm criteria, but recent studies have
shown these criteria are outdated for present-day accuracy requirements [56]. Therefore, in this study,
δD and δr criteria of 2%/2mm are used. Global gamma analysis is done, which means a nominal value of
2% of the maximum dose is chosen for δD. For each reference point, 65 nearby points from the evaluated
dose distribution are examined to find a point that passes the gamma test. To speed up the calculation,
searching is stopped when a point has been found that passes.

A second metric used to evaluate a predicted dose distribution is the comparison of DVH points and average
doses from both dose distributions. The absolute difference between DVH points of two dose distributions
can be calculated in % using Equation 3.7:

∆DVH =
�

�

�

Dtrue - Dpred

Dtrue

�

�

� · 100 % (3.7)

where Dtrue and Dpred are a certain DVH point in both dose distributions. A small ∆DVH means the DVH
points of the two dose distributions are similar. This metric is handy when examining if the network
predicts a dose distribution of similar quality to the ground-truth dose rather than being a replica of the
ground-truth dose. This could indicate what kind of doses are achievable for the different structure

3.5.2 Optimal Dose Prediction Using Daily Contours

The goal of the dose prediction network is to predict what an optimal dose distribution will look like for the
daily CT scan (Id). The network uses the contours of the structures on the daily CT scan to help determine
what the dose distribution will look like. In APT manual contours are generally not available for a new
daily CT scan, so this method will serve as a benchmark for other approaches that try to predict an optimal
dose distribution without knowing the contours. An overview of the dose prediction network is given in
Figure 3.7. Four different kinds of input are given to the network. The first input consists of the contours of
the structures on the daily CT scan (Cd), which are given to the network in four channels, each containing
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Figure 3.7: An overview of the dose prediction network. Cd , Pd , Id and Dp are given as inputs to a
U-Net, which then predicts an optimal dose distribution for the daily CT (Dd). The loss is a weighted
mean square error function between the predicted- and the ground-truth dose distribution.

the mask of one structure. The second input consists of the lateral projections of the two target volumes.
This is given to the network in two different channels, each containing the mask of one target volume
projection. The projection of the target volumes is in the same direction as the proton beams, so this input
helps the network determine the location of the targets in places that lie far away from the structures.
Without this knowledge, the network has no way of determining the height of the proton beam in patches
that do not contain any structure masks. The third input is a channel containing the voxel intensities from
the daily CT scan Id . This information might help the network determine how deep proton beams reach
since, for protons, this depends highly on the density of the material it crosses through. The last input
is a channel containing the normalized dose values of the planning dose distribution Dp. The shape and
intensity of a dose distribution similar to the optimal dose distribution can be helpful for the network.

The network used for dose prediction is similar to the one described in Section 3.3, only it is four levels
deep instead of three. The convolutional layers added to create the extra low-resolution level are zero-
padded to ensure the convolutions do not decrease the patch size. This ensures the patch size does not
get too small and that the patch size in the rest of the network stays the same. The modifications made to
the low-resolution level of the network of depth three shown in Figure 3.1 are depicted in Figure 3.8. At
the three highest resolution levels, the last feature map is converted to one output channel via a 1× 1× 1
convolution layer. These output channels contain the predicted dose for each voxel.

Figure 3.8: A visualization of how the 3rd level of the network depicted in Figure 3.1 is adjusted to
make the network a level deeper. The patch size in the rest of the network stays the same because the
convolutions are zero-padded.

The loss for the dose prediction networks is calculated by a weighted mean squared error (WMSE) function.
This loss is based on the difference between the predicted and the ground-truth dose distribution, with
larger differences penalized harder. Errors in the structures are weighted higher to encourage the network
to make good predictions there, especially when an error comes from under-predicting the dose in the
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target volumes. The WMSE loss function is given in Equation 3.8:

WMSE (dpred
i ) =

1
n

∑n
i=1 wi(d

pred
i - d true

i )2
∑n

i=1 wi
(3.8)

where wi are the weights, dpred
i and d true

i are the predicted and actual dose in voxel i, and n is the number
of voxels in the predicted patch. The weights that are used can be found in Table 3.3.

Table 3.3: Weights for the WMSE loss in different structures. The prostate and seminal vesicle errors
from underprediction have a different weight than those from overprediction.

Prostate Seminal Vesicles Rectum Bladder
Overpred. Underpred. Overpred. Underpred. Both Both

40 20 30 10 5 5

3.5.3 Optimal Dose Prediction Without Manual Contours

Since no manual contours are available for dose prediction in APT, this section explains three different
methods of predicting an optimal dose distribution for a new daily CT scan without using manual contours.

Predicted Contours: The first method uses the network, as explained in Section 3.5.2, which is
trained with manual contours. Only for the inference for CT scans from the test set, we do not use
the manual contours, but we use the predicted contours from our contour prediction network. In
this study, we used the predicted contours from the segmentation path of the cross-stitch network.
One of the disadvantages of training the network on the manual contours that were also used for
the treatment planning is that the network might build a dependency on highly accurate structure
locations. The network could then under-perform when tested using predicted contours.

No Contours: The second method is training a dose prediction network that does not require struc-
ture masks as input. The inputs given to the network are the daily CT scan Id , the planning CT scan
Ip, the planning dose distribution Dp and the contours of the planning CT scan Cp. The same net-
work architecture and WMSE loss function described in Section 3.5.2 are used. The idea is that the
network can use what the optimal dose distribution looks like on the planning CT scan and learns
to transform that to an optimal dose distribution on the daily CT scan. A potential problem with
this method is predicting dose distributions in patches that do not contain any structure masks.

DVF on Planning Dose: The third method uses the deformation vector field determined by the
registration network explained in Section 3.4.3 to transform the planning dose onto the daily CT
scan. This method does not guarantee that the dose distribution is deliverable to the patient. This
method also does not predict an optimal dose distribution since it does not involve a network that is
trained on optimal dose distributions. Nevertheless, it could be interesting to see the result obtained
by simply transforming the planning dose distribution onto the new image. If other approaches do
not outperform this method, it is clear they fail to predict any optimality whatsoever.

3.6 Combining Contour Definition and Optimal Dose Prediction
In Section 3.5, we discussed multiple deep learning methods for predicting an optimal dose distribution.
One of the problems with predicting optimal dose distributions for daily CT scans in APT is that the manual
contours are not available for the prediction. This means either a prediction must be made without the con-
tours or the contours must be defined first using another deep learning method. In this section we describe
two multi-task models that can perform contour prediction and optimal dose prediction simultaneously.
The idea is that the dose prediction task could benefit from the information obtained by performing the
contour definition task.

3.6.1 Cross-Stitch Network for Contour Prediction and Dose Prediction

The first multi-task model that we use to combine contour definition and optimal dose prediction is
the cross-stitch network that was already described for combining segmentation and registration in Sec-
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tion 3.4.4. Two different cross-stitch networks are proposed: one combining dose prediction with segmen-
tation and one combining dose prediction with registration. Since the dose prediction network is one level
deeper than the contour definition networks, it is not possible to share any feature maps of the lowest level
of the dose prediction network. Since the patch sizes and number of channels of the feature maps in the
upper part of the networks are the same, they can be linearly combined just as in the cross-stitch network
depicted in Figure 3.5. Cross-stitch units are placed after the first two downsampling layers and last the
two upsampling layers, so at four places in total.

For the dose prediction network, the same inputs are used as for the dose prediction network that did
not use contours as input. So, the daily CT scan Id , the planning dose distribution Dp and the contours
of the planning CT scan Cp. For the segmentation and registration network, the same inputs are used
as described in Section 3.4. For the segmentation and registration network, the number of filters at the
different resolution levels are 23, 45 and 90, respectively. For the dose prediction network, the number of
filters at the different resolution levels are 23, 45, 90 and 180, respectively. The loss from both single-task
networks is added to obtain the loss of the cross-stitch network. The WMSE loss is multiplied by 200 to
ensure both losses are roughly of the same order. Both networks are trained for 400 epochs after which
the validation loss did not decrease anymore.

3.6.2 W-Net: Predicting Contours and Optimal Dose Consecutively

Where the cross-stitch network tries to perform both tasks simultaneously, the w-net tries to perform the
two tasks consecutively. An overview of w-net is given in Figure 3.9. In the first half of the network, a
segmentation network predicts an image segmentation for the daily CT scan. Then, in the second half of
the network, that segmentation is given as input to a dose prediction network. The architecture of the
segmentation network is similar to the one described in Section 3.4.2. The architecture used for the dose
prediction network is the same as the manual contour-based dose prediction described in Section 3.5.2.
The only difference for the dose prediction network is the inputs. The used contours are now predicted
instead of defined manually and the lateral projections of the target volumes are not used. The name w-net
comes from the shape created when two U-Nets are placed after each other.

The w-net is trained in three stages. In the first stage, only the segmentation part of the network is trained.
The daily CT scan Id and the planning contours Cp are only put through the first network, after which
the predicted daily contours are compared against the manual daily contours using the DSC loss. The
input patches are sampled from the four different structures that must be predicted, just as in the contour
definition networks. The second stage involves freezing the weights of the first half of the network and
only training the second half of the network. A segmentation of the daily CT scan Cd is predicted in the
first half of the network, which is given as input to the dose prediction network alongside the daily CT scan
Id and the planning dose Dp. The second half of the network is now trained using the WMSE loss. The
patches are now sampled from the dose distribution, as is the case for all other dose prediction networks.
After the second stage of training, w-net is already able to predict a dose distribution for a daily CT scan.
Now in the third stage of training, the first half of the network is unfrozen, which allows the segmentation
and dose prediction network to train together. Training the network to perform both tasks simultaneously
may result in more dose-conforming contours and thus in better dose predictions. The loss of the network
when training together is a sum of the DSC loss and the WMSE loss, where the WMSE loss is multiplied
by 600, so the two losses are approximately the same size. This ensures the WMSE loss is roughly four
times larger than the DSC loss. Since the goal is an accurate dose prediction, this should be valued higher.
Training the segmentation network with both the DSC loss and the WMSE loss encourages it to predict
contours that lead to good dose predictions. The networks are first trained separately for 400 epochs and
then trained together for 200 epochs, since the validation loss did not improve anymore.
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Figure 3.9: Overview of the w-net. The segmentation network (left) predicts contours for the daily
CT scan. These contours are used as input for the dose prediction (right). The networks are trained
separately before they are trained together.
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4 Results & Discussion

This chapter will discuss the results obtained for the contour prediction and the dose prediction. First,
Section 4.1 will cover the quality of the created IMPT treatment plans used for training and testing of the
dose prediction network. Then, Section 4.2 gives results for the accuracy of the predicted contours and
discusses these. Finally, in Section 4.3, the predicted dose distributions of the different approaches are
compared, and these results are discussed in Section 4.4.

4.1 Quality of the Treatment Plans
The treatment plans aim to deliver 74 Gy to the prostate and 55 Gy to the seminal vesicles, while keeping the
dose in the rectum and bladder as low as possible. For clinical plans, the criterion to prevent underdosing
is that at least 98% of the target volumes should receive at least 95% of the prescribed dose (V95% ≥ 98%).
The criterion to prevent overdosing is that no more than 2% of the target volumes should receive more
than 107% of the prescribed dose (V107% ≤ 2%) [57]. In Figure 4.1 (a, b), histograms of the achieved V95%
and V107% are given for the created treatment plans. For both the prostate and the seminal vesicles, V95% <
98% and V107% > 2% for many treatment plans. This means that too much of the target volume receives
insufficient dose, while also too much of the target volume is overdosed. In Table 4.1, the average target
volume percentages that receive at least 95%, 107% and 110% of the prescribed dose are given. This table
shows that also, on average, the plans do not meet the criteria described earlier. So, we can conclude
from this data that most of these treatment plans are not clinically acceptable, given the criteria described
earlier.

Figure 4.1: Histograms indicating the performance of each created treatment plan in terms of target
coverage and OAR dose. Each plot shows a histogram of a specific DVH point, such as (a) V95% for the
target volumes, (b) V107% for the target volumes, (c) D2% for the OARs and (d) Dmean for the OARs.

Since MatRad is not meant for clinical purposes, this result might be expected. Even when the only con-
straint on the dose distribution was to not underdose the prostate, sometimes V95% was still below 98%.
This could be due to the CT scan having a smaller resolution than the dose grid used for optimization or the
optimizer not converging properly1. By changing the minimum and maximum doses allowed in the target
volumes, the plans would either overdose the targets, underdose the targets or not converge. By tweaking

1Admittedly this could also caused due to inexperience with MatRad.
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Table 4.1: Mean (µ) and standard deviation (σ) for volume percentages of the target volumes receiving
a certain percent of the prescribed dose and for DVH points indicating the dose in the OARs.

V95% (%) V107% (%) V110% (%)

Target µ±σ µ±σ µ±σ

Prostate 97.6 ± 0.9 4.4 ± 4.1 0.8 ± 0.6

Seminal Vesicles 97.2 ± 1.7 5.8 ± 3.5 3.1 ± 2.5

V60 Gy (%) V45Gy (%) Dmean (Gy) D2 (Gy)

OAR µ±σ µ±σ µ±σ µ±σ

Rectum 0.6 ± 0.5 2.8 ± 2.3 4.9 ± 2.5 45.2 ± 8.8

Bladder 1.2 ± 1.0 3.1 ± 2.3 4.6 ± 2.8 48.4 ± 11.2

the objectives and constraints for each individual scan, an optimal trade-off between these options could
be found, but since there are 179 CT scans in total, it was not feasible to do this for every plan. All the
plans for which the prostate V95% < 95% were re-planned to guarantee a minimum tumor coverage.

For the rectum and bladder dose, the histograms in Figure 4.1 (c, d) show the D2% and Dmean achieved for
the created treatment plans. For the bladder, D2% > 60 Gy in quite a few cases, often when the bladder
and prostate were close. This could not be prevented without seriously underdosing the prostate. A few
DVH points indicating the dose in the rectum and bladder are given in Table 4.1. Overall the doses in the
rectum and bladder are considered sufficiently low.

In Figure 4.2, the DVH for an average performing treatment plan is shown. This plan is chosen since both
the prostate’s V95 and V107 are close to the treatment plan average. The target dose, as well as 97% and
107% of the target dose, are indicated for both target structures. For both targets, 95% of the volume
receives at least the target dose and only 2.5% of the volume receives less than 97% of the target dose. The
volume percentage that receives more than 107% of the target dose is around 5% for both structures. This
example shows that although the treatment plans are not of clinical quality, the dose in the target volumes
is pretty homogeneous and the dose in the OARs is relatively low.

Figure 4.2: DVH for an average performing treatment plan. The dotted line indicates the target dose
for the prostate and the seminal vesicles. The shaded areas indicate the dose between 97% and 107% of
the target dose.

The coverage of the target volumes is not as good as previously achieved with IMPT plans and is certainly
not of clinical quality. If this is desired, more effort should be put into optimizing each plan individually,
but this was now only done for the worst-performing plans because of the large number of scans. Also,
using another treatment planning system is advised if treatment plans of outstanding quality are required
since insufficient target coverage also occurred when target coverage was the only objective given to Mat-
Rad. Nevertheless, the treatment plans were deemed sufficiently homogeneous to serve as ground truth
treatment plans for optimal dose prediction, as this is the actual goal.
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4.2 Predicted Contours
The average and median MSD and DSC between the predicted contours and manual contours for the test
set are given in Table 4.2 and Table 4.3. Results for the 95% HD are given in the Appendix A. Results
are compared against results from literature that use the same method and dataset [6]. The results are
also compared against another deep learning method, namely JRS-GAN [58]. This method is similar to
the registration network; only it uses a discriminator network for giving feedback on the warped images
and contours. If we compare the segmentation network on the 1st row with the registration network
on the 3rd row, we see that the segmentation network predicts the contours better for every structure.
The segmentation network performs better when there is a lot of contrast between the structure and the
background, as is the case with the bladder and the prostate. The registration network struggles with
structures that tend to deform between visits, such as the bladder and the rectum. Since the structures
differ too much, it fails to transform the contour from the moving image to the correct contour on the fixed
image. The cross-stitch network on the 5th row does not seem to improve significantly over the single-
task segmentation and registration networks. This is in contrast to the original research, where combining
both tasks in a cross-stitch network improved the results over the single-task networks. Contour prediction
together with dose prediction is not included in this section as it did not improve upon the single-task
networks, and their main goal was to improve the dose prediction.

We now compare our results with the results obtained by Beljaards et al. [6]. Our segmentation network
performs significantly better for all the structures. This is probably because the planning contours were
given as input to the network, which was not the case in the original research2. The segmentation network
can probably benefit from prior knowledge about the shape and location of the structures. The registration
network performs worse than the previously implemented registration network, both for the single-task
network and for the registration path of the cross-stitch network. A convincing reason why this is the case
has not been found. The segmentation path of the cross-stitch network performs similarly to the previously
achieved results. Although this could be the case because the single-task segmentation network performed
better, due to the planning contours that were used as additional input.

Table 4.2: MSD (mm) values for the different approaches. The best result for each structure is made
bold. Results from literature are highlighted in gray.

Prostate Seminal vesicles Rectum Bladder
Output Path µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Segmentation 1.05± 0.4 1.03 1.66± 1.2 1.27 1.79± 0.8 1.57 0.84± 0.3 0.79
Segmentation [6] 1.49± 0.3 1.49 2.50± 2.6 2.09 3.39± 2.2 2.73 1.60± 1.1 1.13
Registration 1.40± 0.7 1.17 2.22± 1.9 1.53 2.66± 1.2 2.38 2.55± 1.2 2.49
Registration [6] 1.20± 0.4 1.13 1.35± 0.7 1.16 2.08± 1.0 1.82 2.63± 2.3 1.90
Cross-Stitch Segmentation 1.03± 0.4 0.98 1.52± 0.7 1.20 2.05± 1.0 1.83 0.84± 0.3 0.70

Registration 1.30± 0.6 1.12 2.22± 2.0 1.67 2.70± 1.3 2.37 2.48± 1.2 2.43
Cross-Stitch Segmentation 1.06± 0.3 0.99 1.27± 0.4 1.15 1.76± 0.8 1.47 0.91± 0.4 0.82
[6] Registration 1.10± 0.3 1.06 1.30± 0.6 1.13 2.00± 1.0 1.75 2.45± 2.1 1.81
JRS-GAN [58] 1.27± 0.3 1.25 1.47± 0.5 1.32 2.03± 0.6 1.85 1.75± 1.0 1.26

Table 4.3: DSC values for the different approaches. The best result for each structure is made bold.
Results from literature are highlighted in gray.

Prostate Seminal vesicles Rectum Bladder
Output Path µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Segmentation 0.87± 0.04 0.87 0.64± 0.15 0.68 0.86± 0.05 0.87 0.94± 0.02 0.94
Segmentation [6] 0.84± 0.03 0.84 0.60± 0.14 0.62 0.75± 0.10 0.77 0.90± 0.07 0.93
Registration 0.82± 0.07 0.84 0.52± 0.23 0.54 0.77± 0.07 0.79 0.84± 0.08 0.86
Registration [6] 0.87± 0.04 0.87 0.67± 0.15 0.72 0.83± 0.06 0.84 0.87± 0.08 0.91
Cross-Stitch Segmentation 0.87± 0.04 0.87 0.63± 0.15 0.69 0.85± 0.05 0.86 0.94± 0.02 0.95

Registration 0.82± 0.07 0.84 0.52± 0.22 0.53 0.77± 0.08 0.78 0.85± 0.07 0.86
Cross-Stitch Segmentation 0.88± 0.04 0.88 0.70± 0.11 0.74 0.86± 0.05 0.88 0.94± 0.02 0.95
[6] Registration 0.87± 0.03 0.88 0.68± 0.15 0.73 0.84± 0.05 0.85 0.88± 0.08 0.91
JRS-GAN [58] 0.86± 0.04 0.87 0.61± 0.20 0.67 0.82± 0.06 0.83 0.88± 0.08 0.92

2The paper did mention that adding planning contours as input improved the segmentation network.
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Figure 4.3: Examples of predicted contours for the segmentation, registration and cross-stitch networks.
From left to right, the shown contours are the 1st, 2nd and 3rd quantile lowest prostate MSD of the cross-
stitch network.

Figure 4.3 contains examples of predicted contours for the different networks. The output of the seg-
mentation, registration and cross-stitch network are compared with the manual contours used to train the
networks. In the middle and the right image, the segmentation and cross-stitch contours are very similar
to the manual contours. On the left image, a slice is chosen that lies on the boundary between different
structures, and it is apparent that the networks have more trouble defining the contours there correctly.
Although the contours of the registration network are generally located correctly, the boundaries are pretty
wobbly, something which is not the case in other studies implementing registration networks. This could
indicate that the registration network does not entirely work as it should.

The single-task segmentation network and the segmentation path of the cross-stitch network predict con-
tours of similar quality as state-of-the-art contour definition methods. The registration network predicted
worse contours than the segmentation network for every structure and did not achieve results comparable
with previous studies. The cross-stitch network did not have the beneficial effect that has been observed
in previous research. This can be because the segmentation network performed very well already without
the cross-stitch units or because the registration network did not work correctly.

4.3 Predicted Dose Distributions
4.3.1 Gamma Analysis of the Predicted Dose Distribution

For the different dose prediction methods described in Section 3.5 and Section 3.6, the average 2%/2mm
GPR of the dose predictions made for the test set is given in Table 4.4. The 3%/3mm GPR of the dose
predictions is given in Table A.2. The GPR is highest in the prostate for almost all approaches. This makes
sense since the treatment plan objectives create a homogeneous dose distribution in the target volumes
and the loss function of the dose prediction networks is weighted higher for the prostate. The average GPR
in the entire dose distribution is always lower than the GPR in the different structures. This is because the
dose prediction network has a hard time predicting the ray effect of the proton beams that occurs to the
left and right of the structures. The dose prediction network is also inclined to predict the dose well inside
structures because of the sampling of patches and the weights of the loss function.
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Table 4.4: The average and standard deviation of the 2%/2mm GPR (%) of the test set for the different
dose prediction approaches. The GPR is given for the entire dose distribution and for each structure.

Model Dose Prostate Seminal vesicles Rectum Bladder
Manual Contours 79.0± 2.5 93.4± 3.2 88.6± 7.1 95.9± 5.0 94.7± 5.0
Predicted Contours 65.4± 4.9 83.8± 6.9 71.1± 15.5 82.6± 13.6 80.7± 12.3
No Contours 46.5± 5.7 83.6± 6.5 72.7± 14.9 65.3± 18.2 65.1± 18.0
DVF on Planning Dose 55.7± 9.4 84.1± 6.1 72.1± 18.3 59.5± 19.6 69.8± 18.4
Cross-Stitch Segmentation & Dose 50.4± 7.4 82.5± 6.9 67.7± 15.4 67.6± 17.9 65.8± 21.3

Registration & Dose 50.3± 7.2 73.3± 9.9 67.6± 19.4 60.2± 19.1 70.0± 17.8
W-Net Before Training Together 52.3± 6.7 81.4± 8.1 75.2± 14.0 77.7± 21.5 78.4± 15.3

After Training Together 51.5± 7.2 82.4± 8.9 73.8± 14.8 75.7± 21.3 73.9± 16.3

If we compare the different approaches, it is clear that the manual contour based dose prediction network
performs better than all other approaches. This is expected since the ground-truth dose distributions are
based on the manual contours. When we look at the results for the model where manual contours are used
for training and predicted contours are used for testing, we see that the predicted dose distributions fail the
gamma test for up to three times as many points in some structures. It is clear that accurately knowing the
locations of the structures used for treatment planning is really important for predicting the resulting dose
distribution. W-net consists of a network that predicts the contours for a CT scan and a dose prediction
network trained and tested using those predicted contours. This performs worse than the network that used
manual contours for training and predicted contours for testing. Especially the predicted dose distribution
outside the structures is worse, probably because the lateral projections of the target volumes are not given
as input to the dose prediction network of the w-net. Both the network trained without contours as input
and the cross-stitch networks fail to predict dose distributions better than a transformed planning dose
distribution. These networks that do not use contours as input fail to predict any optimality. Adding the

Figure 4.4: A comparison between predicted dose distributions from the manual contour based network
and the w-net. From left to right, the ground-truth dose distribution, the predicted dose distribution,
the difference between the two (Dtrue-Dpred) and a 2%/2mm gamma map of the prediction are shown.
(a): A good prediction (3rd quartile of prostate GPR for the w-net). (b): A bad prediction (1st quartile
of prostate GPR for the w-net).
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segmentation network or the registration network to the dose prediction network via cross-stitch units
does not seem to benefit the dose prediction network. Also, training the contour prediction network and
the dose prediction network of the w-net together does not seem to give any benefit.

Predicted dose distributions from the manual contour based network are compared to those of the w-net
in Figure 4.4. Both the difference between the prediction and the ground-truth dose distribution and a
2%/2mm gamma map, which gives the gamma index of each of the predicted points, is given. Gamma
values between 0 and 1 indicate that the prediction meets the criteria, and gamma values above 1 indicate
that the prediction does not meet the criteria. These images show that the dose prediction networks have
difficulty correctly predicting the ray effect of the proton beams, which appears to the left and right of the
structures. This is partly because the patch-based network has a hard time predicting the dose distribution
in those areas due to the lack of structures. However, there is also something inherently tricky about
predicting these rays accurately since their locations in a treatment plan are not self-evident. Around the
structures, the predicted dose is close to the ground-truth dose, and as expected, most of the prediction
there meets the 2%/2mm criteria. The dose prediction from w-net around the structures sometimes suffers
from inaccurately predicted contours, although this is not really visible from these images.

4.3.2 Dose-Volume Histogram Comparisons

For the different dose prediction approaches, the average ∆DVH between the predicted and ground-truth
dose distributions of the test set are given in Table 4.5 and Table 4.6. ∆DVH is calculated using Equation 3.7
for Dmean, D95 and V95% of the target volumes. Here Dmean is the average dose, D95 is the 5th percentile lowest
dose delivered to a structure and V95% is the volume percentage receiving at least 95% of the prescribed
dose. For the organs at risk, averages of the absolute dose differences are given for ∆DVH instead of
percentage differences since the dose in these structures is low. Here differences in Dmean and D2 are given,
where D2 is the 2nd percentile highest dose in a structure.

Just as with the gamma analysis, the manual contour based dose predictions are the most accurate for
predicting DVH points. This method outperforms the other approaches, especially for structures where the
contours are hard to predict, such as the seminal vesicles. Although the predicted contour based approaches
can predict Dmean quite well, they fail to predict the D95, V95% and D2. Since knowing these DVH points is
essential for knowing the quality of a treatment plan, any method besides the manual contour based one
does not predict dose distributions accurate enough to be helpful in the treatment planning process.

Table 4.5: ∆DVH (%) for the different dose prediction approaches. The percentage difference for Dmean,
D95 and V95% of the target volumes is given.

∆DVH Prostate (%) ∆DVH Seminal Vesicles (%)
Model Dmean D95 V95% Dmean D95 V95%

Manual Contours 0.5± 0.4 1.4± 1.0 1.0± 0.8 1.1± 0.8 2.9± 3.0 3.1± 3.8
Predicted Contours 1.4± 1.1 8.2± 5.3 6.7± 4.6 4.4± 4.3 17.6± 15.0 19.6± 15.2
No Contours 0.9± 0.8 4.4± 5.1 2.7± 2.9 3.2± 4.2 16.5± 18.4 16.5± 18.4
DVF on Planning Dose 1.8± 1.5 9.9± 8.6 6.9± 4.1 6.0± 9.2 21.6± 24.3 17.7± 19.2
Cross-Stitch Segmentation & Dose 1.2± 1.1 6.0± 5.9 3.9± 3.7 3.2± 3.5 13.1± 14.8 12.6± 14.1

Registration & Dose 1.2± 1.0 8.9± 6.5 6.4± 4.5 4.0± 5.3 15.3± 17.1 15.2± 18.9
W-Net Before Training Together 1.9± 1.2 8.4± 5.1 6.7± 4.3 4.0± 3.7 16.0± 13.8 16.5± 14.2

After Training Together 1.5± 1.5 9.2± 6.3 7.3± 5.2 4.3± 3.9 17.2± 13.4 19.3± 14.9

Table 4.6: ∆DVH (Gy) for the different dose prediction approaches. The dose difference for Dmean and
D2 of the organs at risk is given.

∆DVH Rectum (Gy) ∆DVH Bladder (Gy)
Model Dmean D2 Dmean D2

Manual Contours 0.49± 0.3 2.93± 2.6 0.46± 0.3 4.22± 2.6
Predicted Contours 0.92± 0.7 7.34± 5.7 0.70± 0.6 5.80± 4.7
No Contours 2.14± 1.8 17.15± 8.0 2.06± 1.3 12.20± 8.9
DVF on Planning Dose 2.74± 2.5 16.28± 11.2 1.78± 1.5 11.84± 8.2
Cross-Stitch Segmentation & Dose 1.67± 1.1 11.44± 8.6 2.09± 1.7 14.88± 10.5

Registration & Dose 2.40± 2.2 7.72± 4.9 1.71± 1.4 9.15± 6.4
W-Net Before Training Together 1.35± 1.4 8.69± 6.5 0.98± 0.9 7.59± 6.2

After Training Together 1.26± 1.2 8.22± 6.8 1.12± 1.0 9.77± 7.0
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In Figure 4.5, the DVH of a test patient is plotted for the ground-truth dose distribution and the dose
predictions from the manual contour based network and the w-net. The DVH of the manual contour based
dose prediction and the w-net dose prediction are both very similar to the DVH of the ground-truth dose
distribution. This indicates that although the predicted dose distributions are not very accurate outside
the structures used for treatment planning, the dose prediction inside the structures is acceptable. Only
the w-net predicts too low a dose for the lowest 10% of the target volumes, which could be because the
predicted contours do not align with the manual contours.

Figure 4.5: DVH plot comparing predicted dose distributions for a test patient. Dose distributions from
the ground-truth (solid line), manual contour based network (dashed line) and w-net (dotted line) are
compared.

4.4 Discussion of the Predicted Dose Distributions
Both the gamma analysis and the DVH comparisons indicate that dose prediction approaches that do not
use manual contours do not perform as well as an approach that does use the manual contours. When
no contours are available, it is best first to predict the contours and then use those contours to predict the
optimal dose distribution. Methods that use no contours for dose prediction or perform dose prediction
and contour prediction simultaneously do not result in predicted dose distributions better than the dose
distribution of the planning CT transformed to the daily CT scan. This indicates that these approaches
can not predict an optimal dose distribution, merely a dose distribution that is somewhat similar to the
optimal dose distribution. Table 4.7 compares the average ∆DVH obtained on the test set for Dmean and
D95 of the PTV, and Dmean of the rectum with two other dose prediction studies for prostate cancer. The
manual contour based network predicts Dmean in the PTV better than other results from literature, but
D95 similar or worse. The predicted contour based network predicts Dmean similar to other results, but
it predicts D95 significantly worse. It has to be noted here that the PTV used in this study is simply the
structure volume of the prostate, in contrast to the other studies where a PTV was used that contains target
margins. Furthermore, the percentage difference in Dmean for the rectum is way worse than the results from
literature. This is probably because the average dose in the rectum is very low in these treatment plans (4.9
Gy), which causes the error percentage to be high. The difference between prediction and ground-truth
Dmean for the rectum is within 0.5 Gy, which is smaller than reported in other studies.

Table 4.7: Comparison of obtained ∆DVH (%) with results from literature. ∆DVH is given for Dmean

and D95 of the prostate and for Dmean of the rectum.

∆DVH Prostate (%) ∆DVH Rectum (%)
Model Dmean D95 Dmean

Manual Contours 0.45± 0.36 1.40± 1.02 9.91± 6.22
Predicted Contours 1.38± 1.07 8.21± 5.28 18.59± 13.48
Meerbothe, 2020 [38] 0.99± 0.67 1.42± 1.26 3.39± 2.47
Kandalan et al., 2020 [37] 1.60± 0.55 0.40± 0.60 1.25± 0.95
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4.4.1 Usefulness for Adaptive Proton Therapy

The difficulty with predicting an optimal dose distribution for a daily CT scan in APT is that the contours
of the structures are not known beforehand. It was clear that all attempts to find a substitute for the
manual contours did not produce dose predictions nearly as good as the manual contour based approach.
Especially errors in DVH statistics like D95 and V95% make that these methods are probably not helpful in
the treatment planning process of APT since these statistics are often used to determine the quality of a
treatment plan. The best option is to predict the contours based on the CT scan and use those predicted
contours for dose prediction. Since the predicted contours in this study are of high quality and still fail to
predict dose distribution similar to those from the manual contours, it can be concluded that the quality
of a predicted dose distribution depends heavily on accurate knowledge of the structure locations.

Dose distributions from IMPT treatment plans usually have higher dose gradients than those resulting from
photon radiotherapy. This is because the depth dose distribution of protons allows for dose distributions
that are more conformal to the tumor. Dose distributions with higher gradients are more difficult to predict
since slight spatial deviations lead to higher dose differences. Given this fact, it might be more challenging
to predict IMPT dose distributions than dose distributions resulting from photons. However, compared to
networks predicting VMAT dose distributions, the manual contour based network obtained similar results.

4.4.2 Effect of Multi-Task Learning

Combining the dose prediction network with a segmentation or registration network via cross-stitch units
did not benefit the dose prediction network. The main reason for this is the poor performance of a dose
prediction network that does not use structure masks as input. Dose prediction is a complicated task
that requires many different resolution feature maps of the structures used for the treatment plan. This
missing information in the dose prediction network could not be substituted by information from the
feature maps used in the segmentation or registration network. Cross-stitch networks should be used to
improve competence in tasks that can already be performed correctly to a certain extent.

The w-net did not benefit from training the segmentation and dose prediction network together. A problem
is that a small change in a predicted contour only slightly affects the predicted dose distribution. Therefore,
any effect the loss of the dose prediction has on the parameters of the segmentation network might be
negligible. Probably more could have been done with the way the loss of the network is calculated. Now
the losses of both networks are given a weight and added up. Determining which loss should be valued
more using dynamic weights could be an interesting way of improving this. A plot of the training and
validation loss of the w-net is given in Figure A.1. As can be seen, the validation loss does not improve
much after 100 epochs. Even unfreezing the parameters of the segmentation network after 400 epochs and
training both networks together does not have much effect on the loss. One of the reasons the validation
loss is higher than the training loss is that the network lacks information to generalize well to new examples.
A possibly interesting way of increasing the information available for dose prediction in the w-net is adding
feature maps from the segmentation network back to the dose prediction, similar to how this is done in
the cross-stitch network. The information from the different feature maps in the segmentation network
might be helpful in addition to the predicted contours. However, this will not eliminate the error arising
from the difference between the predicted and manual contours.

4.4.3 Limitations of the Study

One of the critical problems in most deep learning methods used for medical image applications is the lack
of training data. In this study, 129 daily CT scans and treatment plans were available for training. Since
these are large 3D images, this should be sufficient for training the network. However, the problem is that
this training data is from only 14 different patients. This makes it hard for the network to generalize the
model to anatomies of new patients. Augmentation of data in the form of rotations has been tried, but since
this changes the angles of the proton beams, this had no positive effect on the dose prediction network.
A form of data augmentation is done by randomly selecting patches from the image, which drastically
increases the number of different inputs available to the network.

Another advantage of patch-based networks is the memory saved by using smaller inputs. Furthermore, a
patch-based network is not dependent on the geometrical location of the structures, which makes it less
dependent on the homogeneity of the input. Despite these advantages, patch-based networks also have
some disadvantages. Most importantly, the lack of global geometrical information about the patch makes
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it difficult for the network to say something useful about what the dose distribution in the patch should
be. Especially in this study, where the contours of only four structures are used, it is difficult to predict a
dose distribution in patches that contain no structure information. In the manual contour based network,
this was solved by adding the lateral projections of the target volumes as input to the network. These
projections give some information regarding the position of the proton beams, but it is not sufficient. This
is why dose predictions outside the defined structures are generally quite off. Recently, other studies from
literature have utilized patch-based dose prediction networks [34, 52], but they did not report the same
difficulties. This probably is because those studies involved head and neck cancer patients where there are
many more structures present in the image.

The created treatment plans have quite a bit of variation in the resulting dose distributions. Although some
variability due to the different anatomies is expected, more homogeneous treatment plans are definitely
possible. In addition, only four structures were used to create the treatment plans due to a lack of manual
contours. Adding more structures, such as the femoral heads, could lead to better treatment plans. This
could lead to better training of the network and better generalization to the test data, which could improve
the manual contour based dose prediction.

4.4.4 Suggestions for Future Research

If similar research aims at leveraging multi-task learning for predicting optimal dose distributions and
contours together, the dose prediction should probably be based on predicted contours. This is because the
dose prediction is highly dependent on the structure information. Some interesting directions to explore
are using multiple resolution feature maps from the segmentation network as input for the dose prediction
network and using dynamic loss weights to optimally combine the losses of both networks. If further work
is carried out with the code used in this research, then the registration network should be checked since
the resulting contours had not the same accuracy as in previous work.

This research found that calculating the loss on multiple resolution levels had a positive effect compared
to calculating the loss only at the end of the network. This feature is not utilized in most deep CNN. It
could be interesting to investigate the effect of multiple losses and how they should be weighted to obtain
an optimal result. Another minor finding concerns inference with a patch-based network. Being free to
choose the patch for which to predict a dose distribution makes it so multiple predictions can be made for
a single voxel. We found that taking the average of 8 predictions improves the dose prediction slightly. Of
course, increasing the number of predictions per voxel increases the inference time. However, if there is
an optimal way of utilizing multiple predictions, this is something worth exploring.

A promising direction for future research is further investigating the automation of treatment planning.
Knowing what dose distribution is achievable based on historic treatment plans gives an idea of what
quality should be strived for, but it does not tell what treatment plan results in such a dose distribution.
The next step is a network capable of predicting beam angles and intensities of an optimal treatment
plan. The treatment planning system can then use these parameters to quickly optimize the treatment
plan without much assistance from a clinician. Some exciting research has been done on this problem in
the last couple of years [38, 59], but the high number of parameters that must be predicted makes it a
complex problem. Nevertheless, with the emergence of new knowledge and the increasing capabilities of
neural networks, in the near future, it might be possible to automatically determine an optimal treatment
plan based on the patient’s anatomy.
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5 Conclusion

This research aimed to determine an approach that can predict the dose distribution of an optimal treat-
ment plan without using manual contours of the structures. Multiple methods, such as using no contours,
using predicted contours or predicting contours and dose distributions simultaneously, have been tried.
We found that basing the dose prediction on predicted contours gives the most accurate results. However,
dose predictions based on predicted contours are significantly worse than those based on manual contours,
having a test set average 2%/2mm GPR of 83.8%±6.9% compared to 93.4%±3.2%. Furthermore, the errors
for predicting DVH statistics, such as D95 and V95%, range from 7% to 20%, which makes these predicted
dose distributions not accurate enough to be helpful for treatment planning. This shows that dose predic-
tion relies heavily on exact knowledge of the structure locations, considering the predicted contours have
similar quality as those from state-of-the-art methods.

The second goal of this research was to investigate the potential benefit of performing dose prediction
and contour prediction together in a multi-task network. However, no successful method for combining
contour prediction and dose prediction in a multi-task network has been found. Firstly, combining a dose
prediction network with a segmentation or registration network via cross-stitch units had no advantageous
effects on the predicted dose distributions, mainly because dose predictions not based on structure masks
were too bad for it to have any effect. Secondly, a w-net that performs contour definition and dose predic-
tion consecutively did not benefit from training the segmentation and dose prediction networks together.
A possible improvement to the w-net could be how the losses of both tasks are combined. The main con-
clusion is that multi-task learning can only benefit related tasks if they can already be performed on their
own to a certain extent. It is not a substitute for missing information required to perform the task.

The developed approaches for predicting optimal dose distributions for daily CT scans do not improve
the APT workflow. Further advancements in fast contour definition methods and accurate dose prediction
methods are necessary for this to be the case. A possible improvement would be to also determine the
machine parameters leading to an optimal dose distribution, in addition to the contour definition and dose
prediction. This would allow a network to determine an optimal treatment plan based on a CT scan. Such
a predicted plan can drastically speed up the treatment planning process, making online treatment plan
adaptation feasible. This adaptation would allow for more optimal dose delivery, which in the end, will
result in better patient outcomes.
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A Additional Results

Table A.1: 95% HD values for the different approaches. The best result for each structure is made bold.
Results from literature are highlighted in gray.

Prostate Seminal vesicles Rectum Bladder
Output Path µ±σ Median µ±σ Median µ±σ Median µ±σ Median

Segmentation 3.4± 1.1 3.3 6.8± 7.2 4.5 8.5± 4.1 7.4 3.5± 2.0 2.5
Segmentation [6] 4.4± 1.0 4.4 8.6± 8.6 7.3 16.5± 11.0 13.3 6.9± 6.6 4.0
Registration 5.2± 3.8 4.5 7.0± 4.6 5.9 10.0± 4.7 8.7 10.9± 4.3 11.8
Registration [6] 5.5± 4.5 4.0 5.6± 4.1 4.3 11.0± 6.4 9.4 15.7± 9.6 12.1
Cross-Stitch Segmentation 3.4± 1.1 3.3 5.4± 2.7 4.0 9.6± 4.9 8.0 3.4± 1.8 2.6

Registration 4.3± 1.8 4.0 6.7± 4.0 6.0 10.2± 5.0 9.9 10.7± 4.5 11.4
Cross-Stitch Segmentation 3.0± 1.0 3.0 4.3± 1.7 3.9 9.5± 6.2 7.2 3.3± 2.9 2.3
[6] Registration 3.2± 0.9 3.0 4.5± 3.3 3.6 9.8± 6.3 8.6 12.2± 10.1 9.7
JRS-GAN [58] 3.4± 1.2 3.0 5.3± 3.0 4.6 10.1± 6.1 8.4 11.0± 9.6 7.6

Table A.2: The 3%/3mm GPR (%) for the different dose prediction approaches. The GPR and its
uncertainty is given for the entire dose distribution and also for each individual structure.

Model Dose Prostate Seminal vesicles Rectum Bladder
Manual Contours 87.0± 2.2 98.2± 0.8 96.5± 3.7 98.4± 3.0 98.7± 2.1
Predicted Contours 78.3± 4.5 93.0± 4.8 83.6± 12.8 91.4± 9.5 91.0± 8.8
No Contours 61.5± 6.9 93.4± 3.3 85.8± 11.7 78.5± 17.7 81.4± 16.1
DVF on Planning Dose 69.1± 9.6 92.2± 4.8 82.5± 16.4 71.8± 17.2 81.6± 17.1
Cross-Stitch Segmentation & Dose 62.7± 7.7 92.5± 4.8 83.1± 13.3 79.3± 15.5 77.6± 19.6

Registration & Dose 64.1± 7.8 89.4± 6.2 80.8± 18.3 77.8± 16.2 83.8± 15.8
W-Net Before Training Together 64.6± 6.9 92.1± 5.0 85.9± 11.8 86.6± 17.2 88.3± 11.9

After Training Together 63.7± 7.3 92.3± 5.1 84.8± 12.4 86.2± 17.7 84.8± 12.4



Figure A.1: Training and validation WMSE loss of the w-net. At 400 epochs the parameters of the
segmentation network are unfrozen and image segmentation and dose prediction are trained simulta-
neously.
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