
MSC THESIS: TU DELFT - OCTOBER 2019 1

A trade-Off analysis between random noise
attenuation and muscle state preservation: A
simulation study on stretch reflex responses

Itai Heijmans

Abstract—The surface electromyographic (sEMG) signals that
originate from skeletal muscle electrical activity, are used clin-
ically and experimentally to determine muscular behaviour,
e.g. amplitude, area under the curve and onset of activity.
Surface EMG signals are inevitably contaminated by noise and
artefacts from the site between the skin and electrodes, non-
target muscles and recording hardware. After recording, signal
processing methods like filtering, are used in an attempt to
determine the underlying active state of the muscle, portrayed
by the motoneuron pool firing. As EMG is in fact a deformed
representation of the actual muscle activity, processing is used to
extract a more veracious description of the active muscle states.
This study investigated the effects of random noise - which
in practice resembles transducer noise -, and filtering on the
simulation accuracy of short and long latency muscle stretch
responses, extracted from simulated EMG signals. To obtain the
deviation from the noiseless signals, a fiber potential model was
developed to simulate the EMG surface potentials that used an
existing motoneuron pool firing model by Schuurmans et al. 2009.
The resulting EMGs were the muscle responses to stretch pertur-
bations at different velocities and amplitudes combinations (1.5,
2, 3, 5 rad/s and 0.06, 0.10, 0.14 rad). Consecutively, the EMG
signals were contaminated with different noise intensities (SNR: -
1, 2, 5, 7, 9 dB) and then filtered with a 3rd order Butterworth low-
pass filter, with cut-off frequencies between [1-200Hz]. Finally, the
short- and long latency stretch responses areas were calculated
and compared between the filtered noiseless and filtered noisy
EMG signals, by calculating the difference between the values
as a fraction of the value from the noiseless simulated signal.
It was found that a signal-to-noise ratio of at least 5 dB with a
85Hz cut-off low-pass filter was necessary to keep the error below
10% maintaining M1 and M2 characteristics. It was also seen
that M1 was more affected than M2 under the same amount of
contamination, suggesting different spectral frequency contents
between the stretch responses, and different underlying neuronal
firing behaviour. The described signal-to-noise ratio thresholds
and proposed cut-off frequencies resulting in acceptable signal
error, can be used as a reference on accuracy of latency response
simulations. The error courses provide information about the
way error and signal are attenuated or preserved. Besides, the
differences in error course comparing the two latency responses
provides an insight into the difference in behaviour between
the underlying reflex mechanisms. Apart from the findings the
combination of adapted and developed model can be used in
future research where noise-free surface potentials are required,
and can be further developed to produce veracious EMG signals.

Index Terms—EMG, fiber potential modeling, Filtering, Noise

I. INTRODUCTION
Electromyography (EMG) is the recording and evaluation of
the electrical action potentials generated from skeletal muscle
fibers [1]. The potentials travel from the innervation zone,

Figure 1: Schematic image of a motor unit action potential (MUAP)
acquisition. The motoneuron axon innervates and activates a muscle
fiber, creating an electrical potential, traveling along the fibre, creating
an intracellular potential. The time-dependent contribution of the
MUAP resembles a sinusoidal function, as the magnitude of the
recorded potential is distance-dependent: The recorded MUAP inten-
sity increases as the axial distance to the closest electrode decreases.
At the minimal distance from the first electrode, a peak is reached,
and when the distance is equal to either electrode, the summed
potential cancels out and thus zero. Then, when the potential reaches
the minimal distance to the second electrode, another (negative) peak
arises creating a biphasic signal [5].

bi-directional with approximately 4m/s, along the fibers
towards the tendons (see. Fig.1) [2]. The EMG is considered
a super positioned sum of separate muscle fiber potentials
originating from the active motor units, each potential having
a specific amplitude and frequency. The propagating potentials
can be estimated by their contribution with respect to the
recording electrodes, then they are summed to the EMG
signal by an operational amplifier [3]. Such a signal is called
a motor unit action potential (MUAP), which amplitude and
phase are mainly influenced by the depth of the recorded
fibers inside the innervation zone and the distance between
the recording electrodes, respectively.

EMG is often measured with electrodes on the skin covering
the muscle of interest, this technique is called surface
EMG (sEMG). sEMG is commonly used both clinically
and experimentally, as it allows an easy and non-invasive
measurement of muscle activity [2][4].

EMG signals can be difficult to interpret due to their stochastic
nature [6], therefore signal processing is an important part of
the acquisition. After recording, signal processing methods
are operations that alter the acquired data in an attempt to
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determine the underlying active state of the muscle, portrayed
by the motoneuron pool firing. As EMG is in fact a deformed
representation of the actual muscle activity, processing is used
to extract a more veracious description of the active muscle
states. Typical EMG processing methods are rectification,
smoothing and filtering. The latter also is frequently used
to attenuate components of the recorded signal that are
not considered part of the underlying muscle EMG signal,
examples of which are; power line interference [7], motion
artifacts [8] and cross talk from other muscles (e.g. ECG [9])
[10]. After filtering, the resultant EMG signals can be used as
a measure of motoneuron pool activity. Commonly assessed
EMG features are activation onset (see Fig.2) [11][12], peak
amplitude [13] and magnitude of the short- (M1), and long
latency responses (M2), which occur after an active muscle
is stretched [14].

M1 is a response that follows after muscle stretch where
muscle spindles are activated and induce afferent stimulation.
This reflex is thus a result of activity of the monosynaptic
circuit and predominantly velocity dependent. The long la-
tency response is less well-understood and likely contains a
compound response from multiple afferent inputs mediated by
both spinal and supra-spinal pathways [15][16].
Getting a clear picture of EMG features is always a trade-off
between the amount of noise-removal and muscle activity
conservation. While the ultimate goal of using filters is to
analyse noise-free signals, it is often unclear to what extent
signal quality is really degraded by both noise and filtering
methods. Research has shown how noise can change action
potential shape and induce delays into onset simulations
[17][18], filter use can also alter important signal properties
which can skew their estimations [19]. An insight into the
effects of filtering of contaminated signals on simulation of
commonly assessed EMG features like stretch responses,
could help future research appraise the accuracy of estimates.

This study investigated the effect of random noise on M1
and M2 area values, along with the trade-off between noise
attenuation and degradation of electrical signals converted
from binary motoneuron output. The random noise was chosen
to mimic transducer noise [21]. The dynamics of this trade-

Figure 2: Top: Example of a ramp-and-hold perturbation of 0.14
radians, at a velocity of 3 rad/s eliciting a stretch reflex response.
Bottom: The M1 and M2 areas and onset of the evoked reflex are
indicated in a signal from the developed model.

off were related to the low-pass filter cut-off frequency. A
muscle spindle model by Schuurmans et al. 2009, was used to
obtain motoneuron output. The output was a neuronal firing
response to stretch perturbations on a simulated muscle, with
the properties of a flexor carpi radialis. Next, a model was
built to simulate electrical activity (MUAPs) at muscle fiber
level and convert this activity to skin surface potentials, from
which noise-free and noisy EMG signals were created at
different signal-to-noise ratio’s. Lastly, after estimating the
latency responses, the simulation error of the M1 and M2
responses areas were compared between noisy and noiseless
signals for different low-pass filter cut-off frequencies.

II. METHODS

To evaluate the effect of noise on the simulations, noiseless
and noisy EMG signals were generated. Ramp-and-hold per-
turbations with combinations of stretch amplitude and stretch
velocity were simulated to elicit M1 and M2 responses on the
flexor carpi radialis (see Fig.2).
Two models were combined to synthesize noise free EMG
signals. First, a muscle spindle model from Schuurmans et
al. 2009 [15] simulated the neuronal response to ramp-and-
hold stretch perturbations. Second, a fiber potential simulating
model that produced an sEMG recording was built. The second
model was fed with the output of the motoneuron pool model
and produced 1.2 second signals. The functioning of the fiber
potential model was checked by comparing a single MUAP
shape and the M1 and M2-stretch velocity and amplitude
relationship to findings in literature [22]. Consecutively, the
simulated EMG signal was compared to the output of the
spindle model and an experimentally recorded EMG (see
Fig.4). Additionally, the motoneuron pool model and the
fiber potential model outcomes were compared in terms of
the M1/M2 response relationship for all stretch velocity and
stretch amplitude combinations.

A. Models
1) Muscle spindle model

The muscle spindle model from Schuurmans et. al. 2009 [15]
was used for this study. The model consisted of a motoneuron
pool of 300 neurons innervated by tonic supra-spinal input for
a constant torque, and a Ia afferent input from muscle spindles
(see Fig.3). Each of the neurons in the pool received input
from 100 tonic firing descending fibers and 120 Ia afferent
fibers. The tonic input was 47 spikes per second to provide
background activity of 10 spikes per second. The input from
the muscle spindles as a response to stretch velocity and
amplitude was given by a feline muscle spindle model that
described bag1,2- and chain fibers described by Mileusnic et
al. [20]. The final output was the motoneuron pool’s action
potentials modeled as discrete events at every 1ms (i.e. 1
when a neuron fired, 0 when it did not). Twelve perturbation
trials were simulated from the combinations of three stretch
amplitudes (0.06, 0.10 and 0.14 rad) and 4 stretch velocities
(1.5, 2, 3 and 5 rad/s). Each of the trials resulted in a 1.2
seconds signal with a 1000Hz resolution.
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Figure 3: Schematic representation of the process converting stretch and tonic input, to recorded EMG output with the used models. (left
to right): Simulink muscle spindle model by Mileusnic [20] to produce Ia and tonic firing as a result of ramp-and-hold stretch perturbations.
Motoneuron pool model integrated with the muscle spindle model by Schuurmans et al. 2009. The MUAP simulating model converting
the motoneuron firing into EMG signal by simulation of the neuron-to-fiber branching, potential travel and recorded potential contribution
resulting in an EMG signal.

Figure 4: Experimentally recorded (1) and simulated (2,3 and 4)
signals from a perturbation with stretch amplitude 0.14 rad and
velocity 2 rad/s. Top to bottom: Recorded signal by Schuurmans et
al. 2009, Motoneuron pool output Schuurmans et al. 2009, MUAP
simulating model output, filtered MUAP simulating model output. All
signals were 3rd order low-pass Butterworth filtered, at 80Hz cut-off).
Additional comparisons can be found in Fig.8.

2) Fiber potential model

To transform motoneuron pool’s action potentials into an EMG
signal, a model was required to translate the binary input from
the muscle spindle model into electrical activity at muscle
fiber level. First, the flexor carpi was modelled as a cylinder
with a length of 158.5mm and a radius 12.4mm, equal to
the muscle dimensions described by Schuurmans et. al. 2009
[15]. The muscle’s motor units were realized by randomly
assigning 30 muscle fibers to each of the 300 motoneurons,
resulting in a density of ∼15 fibers/mm2 [23]. Innervation
points and therefore muscle fiber locations, could not overlap
in the YZ-plane (see Fig.5). The innervation zone was created
by randomly scattering 9000 points (300 neurons×30 fibers)
in a cylindrical ring within the modeled muscle with a radius
of 12.4mm and a length of 5mm [24], [25]. The motoneurons
were programmed to activate fast muscle fibers in the outer re-
gion of the muscle, considering the type of contraction (reflex)
[26]. Above mentioned arrangement emulated the branching of
axons onto a group of nearby muscle fibers. Hence, adjacent
muscle fibers did not necessarily belong to the same motor

Figure 5: 3-Dimensional representation of the simulated innervation
zone inside the muscle and electrodes on its surface. The innervation
zone shows the 9000 points where individual muscle fibers are
innervated. One muscle fiber is shown, the black dot indicates the
location where the fiber is innervated. For illustrative purpose a
propagating potential in one direction is shown.

unit and each individual muscle fiber was innervated by
only one neuron [27]. Fiber thickness was assigned from a
Gaussian distribution with a mean of 55µm diameter and a
standard deviation of 9µm [27]. The muscle fiber conduction
velocity (MFCV - pulse propagation along the fiber length),
was dependent on the muscle fiber thickness (MFD, ′d′),
according to the relationship: MFCV=0.05×MFD+0.95 [28].
Finally, two recording bar-shaped electrodes (Delsys Bagnoli,
contact dimensions: 10x1mm) were simulated 5mm above the
most superior muscle fiber with a 10mm spacing between each
other along the muscle fiber length.

3) MUAP generation

To produce an EMG signal, the potential contribution of
each activated muscle fiber to a point on the electrode was
calculated at every time step, while the current travels from
the innervation zone, bi-directionally, towards the tendons. The
muscle was considered to be cylindrically anisotropic in terms
of its conducting properties [29]. The method to calculate the
potential contribution was adapted from Nandedkar et al. 1985
[30]. The potential contribution can be obtained by convoluting
the transmembrane current contribution i(t) with a weight
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function w(t) [22], [30], [31]:

APn(t) = i(t) ∗ w(t) = F−1[I(ω)W (ω)] (1)

I(ω) = F [i(t)],W (ω) = F [w(t)] (2)

Where F denotes a Fourier transform. As described by Rosen-
falck et al. 1969[32], the transmembrane current is propor-
tional to the second derivative of the intracellular potential.
The current can be summed over the fiber axis, expressed as:

im(x) =
σiπd

2

4
p′′i (x) (3)

d: muscle fiber diameter
σi: intracellular conductivity (1.01 S)
pi(x): intracellular potential

in previous work[31], the intracellular potential was expressed
as

pi(x) = 768x3e−2x − 90 (4)

Therefore, the second derivative of pi(x) was

p′′i (x) = 1536e−2x(3x− 6x2 + 2x3) (5)

As stated by Nandedkar 1983. the electrical potential Φ, of the
current source in the muscle fiber’s coordinate system’s origin
at point (r,x) is defined as follows:

Φ(r, x) =
I

4πσr
√
Kr2 + x2

(6)

Where,
I: strength of the current source (388 μA)
K: σx/σr
σx: axial conductivity (0.33 S/m)
σr: radial conductivity (0.063 S/m)

With r and x being the radial and axial distance, respectively
in the YZ-plane.

The simulated recording electrodes had a rectangular contact
area, where thus far the contributions were considered with re-
spect to a point-shaped electrode. Therefore, the contributions
with respect to the electrode surface were calculated using the
weight function. The weight function is determined by inte-
grating Φ(r, x) over the surface of the electrode. Considering
the location of the unit source at coordinates [x0, y0, z0], and
[x, yel.1, z] to [x, yel.2, z] for the electrode along the y-axis,
the recorded potential by the first electrode is

1

4π
√
K

ln[
y2 − y0 +

√
(y2 − y0)2 +B

y1 − y0 +
√

(y1 − y0)2 +B
] (7)

For yel.1 < y0 < yel.2

1

4π
√
K

ln[
y1 − y0 +

√
(y1 − y0)2 +B

y2 − y0 +
√

(y2 − y0)2 +B
] (8)

For yel.2 < y0 < yel.1 where
B: (y − y0)2 + (z − z0)2/K

Finally, taking the inverse Fourier transform of the product
of the Fourier transform of both the current contribution and

the weight function, the potential contribution is calculated
(see Eq.2).

As previously mentioned, the sample frequency used for the
developed fiber potential model as well as the muscle spindle
model was 1000Hz. Hence, each 1 ms the voltage output of the
pulses propagating along activated muscle fibers was summed
for both recording electrodes. The MUAP shape behaviour
was tested as a response to distance-to-electrode and electrode
spacing where amplitude decreased with increasing distance-
to-electrode and phase increase with electrode spacing, as
expected.

Figure 6: Schematic representation of the processing approach from
motoneuron firing to error calculation. nGaussian: White Gaussian noise,
ε: error between simulated noiseless M1/M2 value and the same value
skewed by noise per cut-off frequency setting.

B. Procedures
1) Filter settings and noise

To find the effect of the noise on the stretch reflex responses
simulations, two types of signals were prepared for the trials;
(1) the simulated EMG, (2) simulated EMG + white noise.
The random noise was chosen to mimic transducer noise,
which is caused by differences in the impedance between the
skin and the electrode, and from redox reactions occurring in
the contact region between the electrode and the conductive
gel [21].

Five noise intensities were included into the trials: SNR -
1, 2, 5, 7 and 9dB, for their prevalence in literature and
experimental cases [18], [33]. Therefore, the 12 combinations
of velocity and amplitude were each contaminated with the five
noise levels. Adding the random noise to the EMG signals was
achieved using the MATLAB function awgn, which computes
a ratio of the input signal’s summed squared magnitude to
that of the noise [34]. Next, the noisy signals were rectified
and then filtered with a 3rd order Butterworth low-pass filter
with cut-off frequencies from 1-200Hz, with a 1Hz step size.
The signals were filtered using MATLAB’s filtfilt function to
minimize phase shift, the processing methods are presented
schematically in Fig.6.

2) Stretch reflex responses

For the noiseless and noisy EMG signals, the short and
long latency responses were determined. The M1 response
considered between 20 and 50 ms after stretch onset and
the M2 response between 55 and 100 ms after stretch onset
[35]. Each signal was normalized with respect to the mean
background activity, then the area under the curve for M1 and
M2 were calculated. To ensure reproducible results from both
the motoneuron pool model as well as the fiber potential model
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the randomization algorithm was reset throughout the program
(MATLAB function rng(’default’)).

3) Stretch reflex simulation error

To quantify the effect of filtering on the accuracy of stretch
reflex responses, the errors (ε) from the noisy signals were
computed: The M1 and M2 values for all combinations of
stretch velocities and amplitudes were calculated for both the
unfiltered noiseless and filtered contaminated signals and then
subtracted from the M1 and M2 of the noiseless unfiltered
signals, finally they were divided by the noiseless unfiltered
values to represent the error relative to the ’true’ value (see
Eq.9).

εM1 =

∣∣∣∣M1simulated −M1contaminated

M1simulated

∣∣∣∣ (9)

To verify that the noiseless signal would change most where
filter order was highest and cut-off frequency lowest, a test
was done comparing the difference brought upon the signal
as a function of the two filter settings. This was tested in
order to verify the expectation behind the noise and EMG
filtering relation; (decreasing cut-off attenuates both EMG
and noise signal). The outcome is shown in Fig.7, which
shows the cumulative difference for varying the three filter
orders and cut-off frequencies, for all four stretch velocities
and two stretch amplitudes, 0.06 and 0.14 rad.

Figure 7: Visualization of the effect of the filter cut-off frequency and
order on the error between filtered and unfiltered noiseless EMG for
the M1 area. column 1st column: cut-off frequency 80Hz. 2nd column:
cut-off frequency 160Hz. 3rd column: cut-off frequency 240Hz. In-
creasing cut-off frequency while decreasing the difference from pure
EMG. Row 1: scatter plots per cut-off frequency showing filtered data
points in colored triangles and simulated EMG data points in black
boxes. row 2: the summed deviation between unfiltered noiseless data
and filtered noiseless data, per stretch velocity. (box locations depend
on stretch velocity and amplitude combination, model order indicated
by color) 4: 0.06 rad filtered O: 0.14 rad filtered �: unfiltered
simulated EMG M1 area value.

Figure 8: Plots of M1 and M2 magnitude (stretch amplitude and
velocity) relation produced by the motoneuron pool model Schuur-
mans 2009, and the fiber potential model. The stretch amplitudes
0.06, 0.10 and 0.14 rad, are indicated per line. Mean error between
models was 0.014 for M1 and 0.016 for M2: calculated as the mean
difference between values of each amplitude-velocity combination,
for both models and expressed as a fraction of neuron pool model
values.

III. RESULTS

A. Model comparisons
The average error between M1 plots and M2 plots, comparing
the motoneuron pool model and the fiber potential model
suggests that using neuron pool firing is nearly equivalent
to using the sEMG signal that the motoneuron pool firing
results in (see Fig.8). Therefore, the velocity-amplitude-reflex
response relationships found in [15] still hold.

In Fig.9 the effect of noise at three intensities and filtering
is visualised. A signal from a perturbation of 2 radians at 3
radians/s, was contaminated with three levels of noise. All
three signals were filtered with a 3rd order Butterworth filter,
cut-off at 80Hz. Additionally, an experimentally recorded and
filtered signal by Schuurmans 2009. is shown for the same
amplitude-velocity perturbation combination. It is seen that
higher SNR shows more variation in both the unfiltered and
filtered signals. The signal with the highest SNR resembles
the recorded and filtered EMG signal most. The noise
contribution throughout the signal influences the M1 and M2
both in shape and size.

B. M1 and M2 stretch velocity-amplitude relation
The results of the shape and size change of M1 and M2 are
displayed in Fig.10, where noisy and noiseless (SNR=∞)
signals were used to plot M1 and M2 velocity-amplitude
relations, using the same filter setting as Fig.9. The influence
of the amount of noise is shown for M1 and M2 from the
simulated unfiltered and filtered signals. Especially comparing
the extremes (SNR: -1dB and 7dB), the plots show how
the relation between stretch velocity and stretch amplitude
in terms of magnitude of the responses is altered; for M1
resulting from noiseless EMG signals, a linear relationship
between stretch velocity and magnitude exists, stretch
amplitude has no influence as all three stretch amplitude
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lines deviate little along the Y-axis. However, considering
the relationship for the three SNR levels, it can be seen how
the amount of noise presence influences this relationship.
The same linear relationship between velocity and magnitude
of M1 is less distinguishable and a normally non-existent
effect of stretch amplitude is seen, as the difference in M1
magnitude increases.

Considering the M2 plots, the negative linear relationship still
holds, although the shape of the plots is compromised: the
size of the error between the stretch amplitude plots appears
to decrease with higher stretch velocity. Additionally, both
in M1 and M2 plots, the errors for 0.10 rad perturbation are
consistently largest.

1) Cut-off frequency and error relation

The errors of M1 and M2 observed in Fig.10, were further
investigated along with the effect of cut-off frequency on the
course of the error. The error between M1 and M2 values
that were contaminated by one of five noise intensities, and
the simulated noiseless EMG signals is shown as a function
cut-off frequency range 1-200Hz, for a 3rd order Butterworth
low-pass filter in Fig.11. For both M1 and M2, the error
decreases as the cut-off frequency increases. The error in
M1 declines to zero for a lower cut-off frequency than M2.
As the noise presence was equal for all combinations of
stretch amplitude and velocity, suggesting a difference in
frequency content. Between 7 and 9dB little difference is
seen, suggesting that increasing the SNR above 7dB does not
contribute in the same amount as increasing the SNR by 2dB
in the -1 to 7dB range.

Considering the 5dB SNR, which is a realistic signal to
noise ratio in EMG recordings [18], in case of M1, the error
does not further decrease below 10% consistently after 75
Hz, which suggests a point where a balance is encountered
between noise attenuation and signal preservation. In case
of the M2, however, the 5 dB SNR course resembles the 7
and 9 dB courses much more as all lie close together, but
after 85 Hz does not decline below 5% error consistently.
Meaning that the balance between noise attenuation and
signal preservation is reached at a higher cut-off frequency
and ultimately reaches a smaller error than when M1 is
estimated.

Lastly, considering the lowest SNR (-1dB) for M1 simulation,
Fig.11 shows that the error does not decrease below 23%,
making signals with such SNR unsuitable for M1 area mea-
surement. For M2 Fig.11 shows how the error is much lower
across the frequency range, compared to M1, as it lies between
10-20%. The variability of the course of the error however is
high, as the error can change up to 7% over the course of only
8Hz (seen between 80-100Hz). Comparing the changes on M1
and M2 magnitude introduced by the noise, M1 is clearly
more affected than M2. The difference of impact is seen when
considering the dispersion of the plot-lines for both the short
and long latency response. These error courses over cut-off

Figure 9: Visualisation of the effect of noise and filtering on EMG
signals contaminated with white Gaussian noise for three SNR levels.
The top signal, is an experimentally recorded and filtered signal by
Schuurmans et al. [15], the 2nd 3rd and 4th signals are simulated by
the fiber potential model. All signals are Butterworth 3rd order low-
pass filtered at 80Hz cut-off and elicited by perturbations at 0.14 rad,
5 rad/s.

Figure 10: The M1 and M2 areas at different stretch velocities
and amplitudes for noisy and noiseless EMG signals. SNRs (top to
bottom): -1, 5 and 7 dB. Stretch amplitude line styles [rad]: 0.06 line,
0.10 dashed, 0.14 dotted.

frequency show that for M1 and M2 simulation, for signals
with SNR 5dB, an error of under 10% can be achieved by
using a cut-off frequency of 80Hz. An interesting finding seen
in Fig.11, was that when comparing the error course for the
low cut-off frequencies (0-27Hz), M2 showed highest errors
for signals with the lowest noise presence. Compared to the
same range for M1, errors were highest for the lowest SNR,
as expected and as is visible over the entire cut-off frequency
range, both for M1 and M2.
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Figure 11: (top M1, bottom M2). The error courses displayed are
relative to unfiltered simulated noiseless EMG value and is displayed
as function of cut-off frequency for five signal-to-noise ratio’s. The
error is averaged over all combinations of stretch velocity-amplitude
combinations. Filter used: low-pass Butterworth 3rd order.

IV. DISCUSSION
The present study investigated the effect of noise
contamination on the simulation of the short latency
and long latency stretch response, along with the trade-off
between noise attenuation and signal degradation by low-pass
filtering. A model was developed to convert binary neuron
firing signals from an existing model, into simulated surface
potentials to form EMG signals. The obtained signals were
contaminated with white Gaussian noise and low-pass filtered
for a range of cut-off frequencies (range?). Next the areas
of short latency and long latency reflexes (M1 and M2)
were calculated as a function of stretch velocity, for three
stretch amplitudes. The area calculations were done for
both the noiseless and contaminated signals. Finally, errors
were calculated between M1 and M2 values extracted from
contaminated signals and the ones from noiseless EMG
signals.

A. Error size effect and cut-off recommendation
The study revealed that short-, and long-latency response
simulations could be heavily altered by random noise con-
tamination, skewing existing stretch velocity and amplitude
relationships. Errors ≤10% maintained the amplitude-velocity
relationships as found by Schuurmans et al 2009. For signals
with SNRs lower than 5dB, the 3rd order low-pass filter could
not decrease errors consistently to under 10% within the 1-
200Hz cut-off frequency range, neither for M1 nor M2.
For SNRs of 5dB and higher, a cut-off frequency of at least
80Hz (for M1) and 85Hz (for M2) was necessary to maintain
validity of stretch amplitude and stretch velocity relationships
of the latency responses, and keep the average error below
10%. It was also concluded that simulation accuracy of the
short latency response was worse by equal amounts of noise at
equal filtering methods, compared to the long latency response.
As shown in Fig.11, M1 error is visibly higher than M2, for
the same cut-off, and as noise contributions are equal, this

indicates a higher magnitude and/or frequency presence in the
20-65Hz region.
Part of the results featured a contradicting finding that could
not readily be explained: where overall the lowest errors were
seen for the highest signal-to-noise ratio’s, in case of the error
course of M2, the opposite was found in the lowest cut-off
frequency range (0-25Hz). As added noise was completely
equal for every signal contamination, it is very unlikely that
the difference can be attributed to the noise contribution.
Therefore, a difference in frequency contents between M1 and
M2 could explain the discrepancy. The error course between
0-25Hz, might be explained by a high presence of frequencies
in this region for M2, where with high SNR, using low cut-off
frequency, significant portions of the spectrum are attenuated.
This is translated to the contributions in time domain, which
are used for the area calculations, resulting in a high error.
As SNR decreases, more noise is attenuated or coincidentally
contributed to a recovery of M2 features in this frequency
range.

B. Limitations and recommendations for future research
An important basis on which the conclusions were drawn
in this work, was the type of noise used to contaminate the
EMG signals. The random noise used here, does not represent
completely the contamination EMG signals can be corrupted
by in experimental settings. Namely, recording EMG often
means recording power line interference, motion artifacts
and when recording trunk muscles, ECG noise. Findings in
this work could therefore be strengthened, would they be
conducted under conditions where added noise resembled
experimentally recorded signal corruptions better.

The other important factor leading to the findings was the
generated EMG signal. As mentioned before, mimicking
experimental conditions helps improve the validity of the
outcomes and several factors such as muscle and muscle
fiber shape, quantity and composition, non-ideal electrode
positioning could improve their factuality, as these influence
the motor unit action potential.

In previous work that simulated EMG, higher quantities
(∼40000) of muscle fibers were simulated for smaller
muscles than the flexor carpi radialis in this work, for
which 9000 fibers were simulated [36]. As pulses from
motoneurons were pseudo-randomly assigned to muscle
fibers, smaller muscle fiber pools can introduce bias, where
certain regions of the modeled muscle are excited significantly
more than others. Therefore, a bias towards exciting regions
closer or further away from the recording sites could exist.
Electrode distance has been shown to influence the MUAP’s
amplitude and mean power frequency, also, muscle fibers
within the proximity of 10-12mm from the electrode have
been shown to dominate the contribution to the signal
energy [37]. Therefore, a bias towards activation of certain
regions can influence factors determining the M1 and M2 area.

Other filtering settings than cut-off frequency were not taken
into account in this study. Different types of filters than
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the Butterworth filter, and other orders than 3rd could have
different outcomes than the ones in the present work. Also,
the effect of the used filter has been limited to the area of
the short and long latency responses, where onset detection
or/and peak detection could be influenced by the filtering
method differently. Additional research is therefore needed,
simulating recorded EMG as truthful as possible, using a
larger variety of methods to help create a more complete
picture of the best ways to prepare EMG signals before
analysis.

The described signal-to-noise ratio thresholds and proposed
cut-off frequencies resulting in acceptable signal error, can
be used as a reference or prior knowledge on the simulation
accuracy of latency response simulations. The error courses
provides information about the way error and signal are at-
tenuated or preserved. Besides, the differences in error course
comparing the two latency responses provides an insight into
the difference in behaviour between the underlying mecha-
nisms. The combination of adapted and developed model can
be further refined and used to accurately estimate surface EMG
signals and the dynamics thereof.

C. Conclusions
• The study revealed adverse effects of random noise in

EMG signals, on accuracy of latency response calcula-
tions.

• With the help of the Butterworth low-pass filtering,
insight to the underlying muscle activity state of con-
taminated stretch reflex responses can be improved.

• There is little difference between using motoneuron pool
firing and MUAP potentials in short, and long latency
magnitude simulations (Fig.8).

• Random noise contamination below 5dB SNR, can skew
stretch amplitude-velocity relations up to 30%.

• To maintain stretch amplitude-velocity relations for both
short, and long latency responses, EMG signals with
SNRs > 5dB need to be low-pass filtered with at least a
3rd order filter at 85Hz cut-off frequency.

• Short- and long latency responses are not to the same
extent affected by random noise contamination, seen
from their non-similar error courses, which suggests a
difference in frequency contents.
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