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ABSTRACT

Advancements in aircraft performance require increasingly complex design processes
and tools. Simulating the unsteady non-linear aerodynamic interaction between a ma-
neuvering aircraft and the surrounding flowfield poses serious challenges. High-Fidelity
Computational Fluid Dynamics (CFD) methods, based on the numerical solution of the
Navier-Stokes equations, can in general provide accurate solutions but at a computa-
tional cost that is often unfeasible for many applications that require real-time evalu-
ation of the aerodynamic responses over a large range of conditions. Reduced Order
Models (ROMs) are methods that can alleviate the computational burden of perform-
ing High-Fidelity simulations while providing accurate solutions over a wide extent of
parametric variations. In the context of unsteady aerodynamics simulations, most tra-
ditional Reduced Order Models are limited to the prediction of integral loads and do not
scale well for the treatment of high-dimensional systems.
Recently, within the Science and Technology Organization work-group of NATO, a data-
driven ROM based on the Proper Orthogonal Decomposition and Neural Networks (POD-
LSTM) has been proposed for the prediction of the unsteady pressure fields on the UCAV
MULDICON aircraft configuration, showing good potential in terms of computational
efficiency and interpretability compared to the previously developed ROM based on
end-to-end Convolutional Neural Networks. The POD-LSTM model is limited by the
linear modal decomposition method that shows a slow convergence rate, in terms of la-
tent space dimension, to the full-order solution. The high-projection error, localized in
specific regions of the parameter space, translates into a consistent inaccuracy in the
prediction of integral loads.
In order to overcome these limitations, two main methodologies are proposed to replace
the Global POD basis with modal bases localized in i) the computational space or ii) in
the parameter space, yielding the development of Local ROMs. The first methodology
is based on a Domain Decomposition strategy and aims to reduce the projection error
in specific regions of the wing surface. The second methodology, the Cluster-POD, fo-
cuses on partitioning the parameter space in relevant flow regimes and constructs Local
Reduced Order models on each cluster. The choice of surrogate models, for latent dy-
namics modeling, is also discussed and Machine Learning methods based on the Long
Short Term Memory Neural Network, Multi-layer-Perceptron, and Gaussian Process Re-
gression are tested and compared.
Results show that Local ROMs can improve the efficiency of the global latent represen-
tation, by generating sets of modes with more localized information content. The pro-
posed Cluster-POD-based ROM, in particular, can be developed using a systematic pro-
cedure that automatically detects the parameter space partitions based on an a-posteriori
error indicator. It is also briefly shown, as a proposal for future research, how Gaussian
Mixture Models can be used to generate overlapping clusters, that solve some of the lim-
itations of traditional Cluster-based ROMs based on the K-means clustering.
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Furthermore, improvements in the prediction of integral loads are demonstrated by
including the loads coefficients directly in the Machine Learning surrogate models tar-
gets, in order to remove the projection error emerging from the use of a reduced order
basis.
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1
INTRODUCTION

1.1. BACKGROUND
The performance, control, and stability characteristic are ultimately determined by the
aerodynamic loads acting on an aircraft. Modern combat aircraft are designed to per-
form complex maneuvers over a wide range of operating conditions, thus experiencing
highly non-linear interaction with the surrounding flow field. The unsteadiness of this
interaction poses serious issues and unwanted consequences such as flutter instability
[21] and other aeroelastic phenomena that must be taken into account during the design
phase of the aircraft. The correct prediction of the aerodynamic loads and loads distri-
butions is therefore a fundamental step of the design process and the accuracy of these
predictions determines the gap between the theoretical and the real performances of the
aircraft. Traditional analytical models for the evaluation of aerodynamic loads [64, 60]
are limited to simplified configurations and are not capable of correctly modeling the
unsteady and non-linear aerodynamics of a full-scale aircraft [28], typically character-
ized by a large number of degrees of freedom.

Computational Fluid Dynamics (CFD) methods, on the other hand, offer powerful
tools to simulate the mathematical model used to approximate the physical reality of
fluid flows and can provide high-fidelity solutions that optimally correlate with experi-
mental results and real-life scenarios. Several frameworks are available to numerically
solve the Navier-Stokes Equations on a discretized domain: performing Direct Numer-
ical Simulations (DNS) of this system of PDEs allows to solve the entire range of spatial
and temporal scales of the flow at a prohibitive computational cost for most applica-
tions. The Large Eddy Simulation (LES) and Reynolds Averaged Navier Stokes (RANS)
formulation, include physical considerations to fully (RANS) or partially (LES) model
the dynamics of the smallest scales of motion, reducing the computations of DNS while
providing high-fidelity solutions. However, in the context of multi-disciplinary design,
typically an abundant number of simulations over a wide range of operating conditions
is needed in order to perform aerodynamic optimization tasks or to devise flow control
strategies: in these cases performing high-fidelity CFD simulations becomes extremely
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demanding.
Reduced Order Models (ROMs) are a class of methods developed in order to alleviate
the computational burden associated with the simulation of complex physical problems
characterized by a large number of degrees of freedom while providing relatively accu-
rate solutions. In the context of aerodynamics load predictions most ROM strategies
found in the relevant literature are based on Modal Reduction [33, 56, 14], Indicial Re-
sponse Theory [61, 22], Volterra Theory [55, 4, 24] and surrogate-based frameworks [24].

State-of-the-art surrogate models include Bayesian approaches such as Gaussian Pro-
cess Regression [54, 16] and Machine Learning methods such as Artificial Neural Net-
works (ANNs). In particular, thanks to the increasing availability of data, the develop-
ment of more powerful computational units (such as GPUs and TPUs), and the scala-
bility of modern Machine Learning algorithms, the use of Deep Learning architectures
for the construction of ROM are gaining in popularity [10]. Nevertheless, most Deep
Learning based ROMs for the analysis of unsteady non-linear aerodynamics are limited
to the prediction of a small number of integral aerodynamics scalar quantities such as
force and moment coefficients [45, 66] and are mostly based on Recurrent Neural Net-
works (RNNs). More complex is the problem of generating high-dimensional flowfield
predictions such as velocity or pressure field distributions over an airfoil or a wing, as
the problem becomes computationally untractable for most standard Artificial Neural
Networks. Convolutional Neural Networks (CNNs) have demonstrated unmatched effi-
ciency in processing high-dimensional spatially related data and have found application
in the generation of ROMs for the prediction of the steady non-linear aerodynamic [38,
17]. The application of CNNs to high-dimensional and time-dependent aerodynamics is
problematic, requiring a large amount of data to train complex models. The end-to-end
CNN model proposed by Papp [51] shows good promise for the prediction of pressure
fields over a maneuvering aircraft but suffers from several drawbacks related to the diffi-
culty of including time-history effects in the model and the complexity of the model that
ultimately influences the training time. Bourier [9] proposes to combine a dimension-
ality reduction technique based on the Proper Orthogonal Decomposition [31] and to
model the low-order dynamics on the POD linear subspace through a Long Short Term
Memory Network (LSTM). The resulting POD-LSTM improves the computational effi-
ciency of the CNN method with similar levels of accuracy. Nevertheless, the use of the
global POD basis presents limitations and large projection errors originate from the lin-
ear subspace projection of the full-order dynamics on the POD manifold. These errors
are also responsible for the low level of accuracy in the prediction of certain integral
quantities such as the pitching moment coefficient.
In this study, the POD-LSTM model serves as a starting point for the analysis of the di-
mensionality reduction techniques and the reduced dynamics modeling. The identifica-
tion of local bases in the computational space through Domain Decomposition or over
the parameter space through Clustering techniques is proposed, yielding local ROMs
with the goal of overcoming the limitation of the use of a global linear subspace. Alter-
natives to the surrogate modeling of the reduced dynamics are discussed, with the aim
of understanding the accuracy and computational efficiency gained from using a Recur-
rent Neural Network architecture. Moreover, the integral loads’ predictions are directly
obtained as an output of the surrogate model, limiting the influence of projection errors
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in the computation of these quantities.

1.2. PROJECT MOTIVATION
This project is part of the ongoing research on the development of Reduced Order Mod-
els for the multi-disciplinary design and simulation of combat aircraft, conducted by
the AVT-351 North Atlantic Treaty Organisation (NATO) STO research task group. Previ-
ous studies conducted by David Papp [51] (within the AVT-251 research task group) and
Sébastien Bourier [9] at the Royal Netherlands Aerospace Center (NLR) have focused on
the development of ROMs for the prediction of the unsteady pressure fields over the Un-
manned Combat Air Vehicle (UCAV) configuration. The ultimate goal of the research
is the development of an unsteady ROM that can be used for the prediction of pres-
sure and loads distribution over a specified aircraft configuration, which can be general-
ized to complex six degrees of freedom maneuvers and can include variations in the free
stream conditions (Mach and Reynolds numbers). Such a model could allow fast pre-
diction of the aerodynamic forces over a large range of conditions and could be coupled
with structural analysis tools in order to investigate the aeroelastic behavior of the air-
craft. This work is primarily focused on clarifying some of the aspects of the POD-LSTM
method and identifying alternative procedures to generate the ROM based on Local De-
composition methods in order to improve the accuracy and efficiency of the baseline
method.

1.3. RESEARCH OBJECTIVE & RESEARCH QUESTIONS
The primary research objective that is addressed by the M.Sc. thesis work can be stated
as follows.

"The objective of this research is to improve and extend the performance Reduced
Order Model based on Modal Decomposition and Neural Networks for the prediction of
the integral loads and the pressure fields of the UCAV MULDICON aircraft design, with
a specific focus on Local Modal Decomposition approaches and alternative surrogate
models for the prediction of the reduced dynamics"

In order to achieve this objective, the following main research question is formulated:

"What are the limitations of the POD-LSTM method, and how can Local ROMs in-
crease the performance of the existing ROM in the prediction of the unsteady pressure
fields and integral loads of the UCAV MULDICON test case?"

The following sub-questions, which specify the limits and the extension of this in-
vestigation, are identified.

1. Can the Cluster POD local bases improve the reduced representation of the full-order
system? How can the snapshot set be optimally clustered?

2. Can the Domain Decomposition local bases improve the accuracy of the ROM in
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specific regions of the wing compared to the standard POD? How does the decompo-
sition geometry influence the spatial accuracy of the resulting ROM?

3. How do the performances of an LSTM Neural Network compare to a simpler Multi-
Layer-Perceptron and to a Bayesian approach based on Gaussian Process Regres-
sion?

4. Can the ROM prediction accuracy of the integral loads coefficient be increased through
a modification of the POD basis? Is there a more efficient procedure to predict these
quantities?

1.4. REPORT OUTLINE
In this report, the limits of the Global POD-LSTM model are investigated and new ap-
proaches for the construction of local Reduced Order Models for unsteady aerodynamics
are proposed and tested. In Chapter 3, the methodology of the ROMs is presented, with
a special focus on the MULDICON UCAV test case, the generation of the dataset, the
dimensionality reduction techniques, and the Machine Learning surrogate models. In
Chapter 4, the main results and outcomes are presented, centering the discussion on the
comparison of the various proposed approaches in order to provide satisfactory answers
to the research questions. In Chapter 5, the main conclusions are given, by answering
the research questions and several recommendations to further develop the methodol-
ogy are suggested. In the Appendices A, additional material and results are provided for
completeness.
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LITERATURE: REDUCED ORDER

MODELS

Reduced Order Models (ROMs) are a class of methods that allow the simulation of com-
plex physical systems with limited resources, reducing the computational effort of high-
fidelity solvers. Fluid dynamics systems can often be described accurately by the Navier-
Stokes equations, but the typically high number of degrees of freedom needed to capture
the spatial and time evolution of these dynamical systems makes the numerical simula-
tion of these equations unpractical for real-time applications.
In the field of Aerodynamics, several ROMs have been developed in order to model the
dynamics of fluid flows, to describe, control, and predict the evolution of the system
in time or for different parametric instances. In particular, for the prediction of loads
and pressure distribution over a maneuvering aircraft, various models have been de-
scribed in the relevant literature: these models are based on modal reduction methods,
indicial response theory, Volterra theory, and surrogate-based models (including Ma-
chine Learning methods). This brief literature review will cover the basic theory of non-
intrusive Reduced Order Models based on modal dimensionality reduction and surro-
gate modeling of the low-order dynamics.

2.1. THE PROPER ORTHOGONAL DECOMPOSITION
The Proper Orthogonal Decomposition (POD) in Fluid dynamics was first introduced by
Lumley [7] to study the dynamics of the turbulent wake behind a cylinder, but the tech-
nique is widely known in other fields under different denominations (Principal Compo-
nent Analysis, Kevin-Love decomposition). The objective of POD is to determine an op-
timal representation of an ensemble of data using a reduced number of modes, namely
a linear subspace Vr of the full space VN , spanned by a reduced number of POD modes.
The ensemble of data from which the full order space is obtained can be generated by
sampling the high-fidelity solution in the computational domain Ω at different instants
in time or at different values of the system parameters. In the latter case, the set of sam-

5



2

6 2. LITERATURE: REDUCED ORDER MODELS

ples (commonly referred to as snapshots) S = {uN ,m}M
m=1 corresponds to M distinct re-

alizations of the dynamical system in the p-dimensional parameter domain Θ: θ⃗m ∈Rp .
The goal of POD is to find the optimal set of spatial basis functions {φn(x)}N

n=1 such that
each element in the original set of snapshots can be expressed as:

uN ,m(x) =
N∑

n=1
an,mφn(x) (2.1)

where the coefficients {an,m}N
n=1 are obtained by projection of the snapshots on the POD

orthonormal basis. If the average of the snapshots is not centered around zero, it can be
advantageous [58] to use only consider the fluctuating part of the snapshot:

u′
N ,m(x) = uN ,m(x)− ū(x) (2.2)

but in the remainder of the discussion, the notation is not changed for clarity. The
POD optimality condition is expressed mathematically as a minimization problem in
the form:

min
{φn (x)}r

n=1

M∑
m=1

|uN ,m −
r∑

l=1
(uN ,m ·φl )(φl )|2 (2.3)

where || · || is the norm induced by the L2(Ω) inner product (·) [37]. The choice of the
inner product determines the notion of optimality, thus several formulations of POD
can be derived. However, the inner product on the Hilbert space of square-integrable
complex-valued functions in Ω is naturally suited for fluid dynamics application, since
it corresponds to a finite kinetic energy flow.

It can be shown by means of variational calculus tools [31] that the solution to the
minimization problem of Eq. 2.3 can be found by computing the Singular Value Decom-
position of the snapshot matrix X :

X =ΦΣΩ (2.4)

where X = [uN ,1, ...,uN ,M ] ∈RN×M , Σ= di ag (σ1, ...,σp ,0, ...,0) ∈RN×M is a diagonal ma-
trix, and the left singular matrixΦ= [φ1, ...,φN ] ∈RN×N contains the POD modes. Order-
ing the eigenvaluesσi by magnitude, provides the ranking of the POD modes in terms of
energetic content of the original snapshot set contained in each mode, in other words,
the mode associated with the largest eigenvalues produces the smallest average projec-
tion error of the snapshot set on said mode, the modes associated to the second largest
eigenvalue the second smallest average projection error and so on.

The coefficients of the POD expansion 2.1 of the snapshots can be determined using
the orthonormality property of the modes:

an,m = uN ,m ·φn . (2.5)

Thanks to the energetic ranking of the POD modes the truncation of the POD expansion
in Eq. 2.1 yields the optimal representation of the snapshot (in the POD sense) using a
reduced number r of modes:

uN ,m(x) ≈
r∑

n=1
an,mφn(x) (2.6)
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and therefore the full dynamics of the system can be compressed to the knowledge of a
reduced set of coordinates {an,m}n=r,m=M

n=1,m=1 . These coefficients can then be used to train
a data-driven surrogate model to approximate the latent dynamics as a function of the
parametric inputs:

{an,m}r
n=1 =F (⃗θm) (2.7)

The Proper Orthogonal Decomposition is a powerful tool to reduce the order of com-
plex systems. The optimality of the POD modes can be expressed in two ways: firstly
in terms of minimization of the mean square error between the original snapshots and
their truncated representation, and secondly in terms of the minimum number of modes
required to reconstruct the snapshots for a given error.

The orthogonality of POD modes is a useful property for the computation of the re-
duced coordinates and a prerequisite for projection-based methods such as the Galerkin
projection method [57]. Nevertheless, the global POD basis suffers from several short-
comings associated with the linear nature of the method. Firstly, POD modes are ar-
ranged only according to their energy contents and do not take into account the dynamic
importance of each mode. As a result, truncation leads to ignoring low energy modes
that can have a relevant impact on the dynamics of the retained modes [5]. Correlated
to this observation, the POD modes rarely resemble physical evolving structures: as the
temporal and spatial frequencies are mixed, the physical interpretation of such struc-
tures is complicated [50]. Furthermore, when large parametric variations in the input
space are considered, the ensemble of snapshots contains many different flow regimes
as the Navier-Stokes equation can exhibit bifurcating behavior for certain values of the
parameters. For instance, in transonic flows, the solutions are extremely sensitive to the
Mach number and angle of attack variations, and bifurcation of the solutions appears
at the critical Mach number. Computing a POD basis mixing subsonic and supersonic
snapshots would yield a reduced basis that does not capture structures that are peculiar
to one of the two regimes, but rather an average of the various flow topologies. Although
at subsonic Mach numbers the solution continuously depends on the input parameters,
many flow structures are typical of a specific location in the computational domain or of
a specific region in the parameter space. These observations motivate the modification
of the Global ROM approach to a Local approach, which will be a central theme of this
thesis work and will be further discussed in the following Chapters.

2.2. MACHINE LEARNING
Machine Learning (ML) is a generic expression used to refer to a broad class of mod-
els and algorithms that involve a certain form of learning. Machine Learning is gaining
growing popularity in the field of Fluid Dynamics, and research has been focused es-
pecially on three aspects [62]: accelerating CFD high-fidelity simulations, identifying
data-driven closure models for turbulence modeling, and constructing ROMs. The fo-
cus in the following paragraphs is put on the latter, in particular with respect to some of
the most commonly used methods to model the low-order dynamics deriving from the



2

8 2. LITERATURE: REDUCED ORDER MODELS

dimensionality reduction of a high-dimensional dynamical system.

2.2.1. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs), are the most representative learning models in the
Machine Learning field. ANNs have been used in a variety of applications, and have
shown an unmatched ability to solve complex learning tasks in a supervised and un-
supervised manner. In the field of speech recognition, natural language processing, and
computer vision, for example, Deep Neural Networks typically outperform traditional al-
gorithms and represent the state-of-the-art tools to solve machine perception tasks [42].
In particular, ANNs present the inherent capability of learning hierarchical representa-
tions of the data [18], while traditional models often rely on hand-engineered features.
The success of Machine Learning should also be attributed to the development, in the
last decades, of computing power and parallel computing architectures such as GPUs
and TPUs. The availability of large datasets to properly train large Neural Networks is
also a determining factor, as simple linear models tend to underfit when a large amount
of data is employed, leading to under-utilization of the computing resources. The goal
of this section is to introduce the key aspects of ANNs, and focus on a particular class of
Networks, namely the Recurrent Neural Networks (RNNs). The notation, as well as some
of the diagrams, are borrowed from the excellent review paper of Lipton et al. [42].

NEURONS, WEIGHTS AND BIASES

ANNs are biologically inspired computational models: the building blocks of Neural
Networks are the neurons, often called nodes, connected between each other through
weighted connections (the equivalent of synapses). Each neuron j carries an associ-
ated activation function l j (·) which is a non-linear function of the weighted sum of the
neuron inputs. In particular, denoting the weight associated with the connection from
the node j ′ to the node j as w j j ′ the output value v j of every neuron j is computed as
follows:

v j = l j

(∑
j ′

w j j ′ · v j ′

)
(2.8)

and it is schematically described in Fig. 2.1, where the circles represent the neurons,
the edges are the connections and the sigmoid activation function is used. Other com-
mon choices for the activation function are the hyperbolic tangentφ(z) = ez−e−z

ez+e−z and the
rectified Linear Unit (ReLu) l j (z) = max(0, z). In general, the choice of this function can
depend on the type of task performed by the ANN.
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Figure 2.1: Simple neuron operation. [42]

FEEDFORWARD NETWORKS, LOSS FUNCTION, AND BACKPROPAGATION

A wide range of architectures and topologies can be derived by choosing different ways
to connect the neurons of a network, and therefore the order in which the different com-
putations are performed between the input and the output nodes. The most classical
architecture is the Feedforward Network, displayed in Fig. 2.2: between the input and
the output layers, a chosen number of hidden (intermediate) layers can be present and
the value of each node in a certain layer is computed progressively as a function of the
outputs of the prior layer, until the final output.

Figure 2.2: Simple Feedforward Neural Network with one hidden layer [42]

For supervised learning tasks, the Network undergoes a training phase during which
the weights associated with the connection edges are updated in order to achieve suf-
ficient accuracy on the training data. In particular, the training data is given as a list
of inputs x and corresponding target y values. The Network processes the inputs with
the above-explained operations and provides the output ŷ at the utmost layer. The dis-
tance between the target and the network output can be measured with a scalar-valued
loss function L (y , ŷ) and the objective of the training phase can be expressed as a min-
imization of the loss function over the training data. The most widely used algorithm
that can be used to perform this optimization task is the Backprogation introduced by
Rummelhart et al. [15]. This procedure allows the computation of the gradients of the
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loss function with respect to the weights of the network. In particular, at each output
node k the following quantity can be computed:

δk = ∂L
(
ŷk , yk

)
∂ŷk

· l ′k (ak ) (2.9)

using the chain rule, at each node j in the previous layer the following expression is
derived:

δ j = l ′
(
a j

)∑
k
δk ·wk j (2.10)

and performing the same operation for the previous layers the σ j values are obtained
and represent the partial derivative of the loss function with respect to the node’s in-
coming activation. As the values v j are calculated during the forward pass, the partial
derivatives of L with respect to the weight w j j ′ is given by:

∂L

∂w j j ′
= δ j v j ′ . (2.11)

Once these gradients are known, the weights can be updated using stochastic gradient
descent:

w ← w −η∇w Fi (2.12)

where ∇w Fi is the gradient of the loss function with respect to the weights calculated on
the sample (xi , yi ). Usually, this operation is not performed on single samples, but on
mini-batches of samples. The hyper-parameter η represents the learning rate and can
be adaptively tuned.

TRAINING A SUPERVISED NEURAL NETWORK ALGORITHM

During the training phase of a supervised Neural Network algorithm the weights are con-
tinuously updated in order to minimize the Loss Function over a set of training samples.
During each epoch of the training, the computational loop summarized in Fig. 2.3 is
performed. In the Batch Gradient Descent framework, all the training samples are pro-
cessed together, with the training loss being evaluated once per epoch and the weight
update being performed once per epoch. When dealing with large training datasets,
samples are typically processed in multiple batches [25]: Stochastic Gradient Descent
algorithms process each sample singularly in a random order, iteratively updating the
weights multiple times during the same epoch. This procedure allows to reduced the
memory requirements. Most modern optimizers implement the Mini-Batch Gradient
Descent procedure: the batch size is therefore an hyperparameter and indicates the
number of processed samples for an evaluation of the loss function and an update of
the ANN weights.
Another important aspect of training is related to the formulation of the minimization
problem. The loss function, in fact, is minimized across multiple epochs in order to
obtain a model that optimally fits the training data. However, the goal of the ANN is
to provide good prediction capabilities on unseen data (within the specific ranges) for
which the targets are not already available. A common undesired overfitting behaviour
can emerge from the difference between loss function definition and generalization goal
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of the ANN: due to the noise inherently present in the data and/or the relatively small
size of the dataset, the training loss decrease over epochs does translates in poorer per-
formance of the Network predictions on unseen test data. This behaviour is a manifesta-
tion of the fact that the weights are learning noise and unimportant relations in the data.
In order to prevent the model from overfitting, part of the training data can be used as
a validation set and not used to optimize the network. The loss function can be com-
puted on the validation data, providing and indication on whether the network is able
to generalize on unseen data. The training phase can be stopped when a minimum in
the validation loss is reached: practically this can be done by setting a patience hyper-
paramter which indicates the number of epochs after which the training is stopped if a
minimum in the validation loss is not reached.
The opposite pattern of overfitting, namely underfitting, can occurr when the model is
not expressive enough to capture the non-linearities of the data. This behaviour typically
translates in a non-decreasing training loss after a certain number of epochs. Underfit-
ting can be simply obtained when trying to fit data distributed according to a high-order
polynomial law, using a lower-order regression model (for instance a linear model).

Figure 2.3: Supervised Training Flowchart of a standard ANN

2.2.2. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNN) are a special type of ANN, in which the time history
of the input-target samples is taken into account. Unlike simple feedforward NN, recur-
rent edges that connect adjacent time-steps are present. RNNs are therefore suitable to
be employed in tasks involving time-sequential data: the input of the network can be ex-
pressed as x (t ) and the corresponding output as ŷ (t ). If time-history effects are included,
x (t−1) can influence ŷ (t ) and the next time-steps. Considering the simple RNN in Fig. 2.4,
the forward pass of the network can be expressed through the hidden state h(t ):

h(t ) =σ
(
W hxx (t ) +W hhh(t−1) +bh

)
(2.13)

and therefore the output will be:

ŷ (t ) =σ
(
W yhh(t ) +b y

)
(2.14)
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where the weights are now compactly organized in the matrices W hx,W hh and the biases
vectors b are included.

Figure 2.4: Unfolded Recurrent Neural Network [42]

In Fig. 2.4, the same network is unfolded in time to better explain the logic of the
recurrence, but it is clear that the weights are shared through time steps. Training an
RNN is typically more difficult than a standard Neural Network, especially when long
time-range dependencies are considered [6]. This problem is related to the vanishing-
exploding gradient phenomenon well described in the work of Hochreiter et al. [30]. As
the expression suggests, in fact, the gradients of the error function at time t with respect
to the input at a previous time τ tend to grow or decrease exponentially with the time-lag
t −τ: this happens because the weight of the recurrent edge remains the same at each
time-step. Depending on the value of this weight the gradient will explode (if the weight
is greater than one) or vanish (if the weight is smaller than one).

LONG SHORT-TERM MEMORY NETWORKS

To overcome the problems associated with vanishing gradients of standard RNNs, the
Long Long Short-Term Memory Networks (LSTM) were introduced by Hochreiter and
Schmidhuber [29]. In this type of Network, neurons of the hidden layers are replaced by
memory cells: each cell contains a neuron with a self-connected edge of constant unitary
weight. In this way, the growth of the gradient across many time steps stays contained,
avoiding the above-described issues. The memory cell can be seen as a combination of
simple nodes connected between each other in a specific manner, and with the inclusion
of special multiplicative nodes. The anatomy of a memory cell is displayed in Fig. 2.5
where all the fundamental elements and connections are represented.
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Figure 2.5: Schematic representation of the memory cell of an LSTM network [42]

In particular, the following nomenclature can be introduced:

• Input node: indicated by gc , applies an activation function to the weighted combina-
tion of the input x (t ) and the hidden state at the previous time-step h(t−1).

• Input gate: indicated by its value ic , it is typically a sigmoid activation on the weighted
combination of the input x (t ) and the hidden state at the previous time-step h(t−1).
The name gate refers to the fact that its value is multiplied by the value of another
node, and therefore when ic = 0 the gate is closed there is no flow from that node,
while when ic = 1 the gate is open and all the flow is passed through.

• Internal state: the node sc placed at the center of the memory cells contains the in-
ternal state, and consists of a linear activation of its inputs. A self-connected re-
current edge of constant unitary weight is used to transfer information about the
previous internal state:

s(t ) = g (t ) ⊙ i (t ) + s(t−1) (2.15)

where ⊙ is the pointwise multiplication (Hadamard product) and it is performed
by the multiplicative nodes

∏
.

• Forget gate: indicated by fc , it is used to filter the content of the previous time-step,
therefore the full equation for the internal state reads:

s(t ) = g (t ) ⊙ i (t ) + f (t ) ⊙ s(t−1) (2.16)

• Output gate: indicated by oc , has a similar working principle to the input gate but
multiplies the internal state sc at the current time-step (or a t anh activated version
of the internal state).

The full algorithm of a memory cell computation can therefore be summarized in the
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following formulas:
g (t ) =φ(

W gxx (t ) +W ghh(t−1) +bg
)

i (t ) =σ(
W ixx (t ) +W ihh(t−1) +bi

)
f (t ) =σ(

W fxx (t ) +W fhh(t−1) +b f
)

o(t ) =σ(
W oxx (t ) +W ohh(t−1) +bo

)
s(t ) = g (t ) ⊙ i (i ) + s(t−1) ⊙ f (t )

h(t ) =φ(
s(t )

)⊙o(t )

(2.17)

The effect of the gates can be analyzed for both the forward and the backward pass. Dur-
ing the forward pass, the LSTM input gate learns when to let the activation into the
internal state and the output gate when to let the value go out. If both gates’ value is
zero, hence the gates are closed, the activation cannot exit the memory cell and does
not influence the intermediate time-steps output. During the backward pass, the gradi-
ent is propagated across several time steps without exploding or vanishing thanks to the
constant recurrent connection. Compared to standard RNNs, which possess long-term
memory in terms of learning the weights and short-term memory in terms of the simple
activation function, LSTMs are characterized by an intermediate memory type, through
the memory cell composite unit.

2.2.3. GAUSSIAN PROCESS REGRESSION
A common surrogate model that can be found in the ROM literature in combination with
dimensionality reduction techniques or as a standalone model to predict scalar quanti-
ties, such as aerodynamics loads [23], is the Gaussian Process Regression. In the recent
paper of Maulik et al. [46], the Gaussian Process Regression is used to evolve the la-
tent dynamics resulting from the dimensionality reduction performed through POD, a
Convolutional Auto-Encoder (CAE) and a Variational Auto-Encoder (VAE). Compared to
traditional interpolation and regression methods, GPR formulates the regression task
in probabilistic terms: the predictions are interpreted as the most probable outcome
(mean) in sampling a probability distribution over the function space. Hence, this for-
mulation allows for direct quantification of the uncertainty in the predictions.
The definition of a Gaussian Process can be introduced as a collection of random vari-
ables such that every finite subset of that collection is distributed according to a multi-
variate normal distribution [54]. The main assumption of GPR is that the output y of a
function f is related to its input x through:

y = f (x)+ϵ (2.18)

where ϵ is a Gaussian noise distribution with zero mean and variance σϵ:

ϵ∼N (0,σ2
ϵ ). (2.19)

The basic idea of GPR is that any observation y of a non-linear system is inherently af-
fected by noise, which cannot be reduced by increasing the number of observations that
are made. At the same time, also the underlying function f is modeled as a random pro-
cess, namely a Gaussian Process: in this way the uncertainty on its outputs is naturally
included in the model. Specifically, it is possible to write:

f (x) ∼GP (µ(x),k(x , x ′)) (2.20)
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where µ(x) is the mean function, whose estimation over a generic x represents the goal
of the regression. The function k(x , x ′) is the covariance function, also referred to as
kernel function, and measures the correlation between the function f at two different
input points. A particular set of functions, namely the Radial Basis Function (RBFs) is
a common choice to express the kernel. In fact, under the hypothesis of the function
smoothness, the correlation between closer inputs should be increasingly high, reach-
ing the maximum value for coincident inputs, while approaching zero in the limit of
infinitely distant inputs. The RBF expression reads:

k(x , x ′) =σ2
0e−

||x−x′ ||
2l2 (2.21)

hyper-parameterized by the length-scale l and the variance σ0 which can be optimized
in order to increase or decrease the maximum correlation between points and the rate
of decay of the correlation between further points.
Using a Bayesian approach the uncertainty on the function f can be reduced by the
knowledge of some observed system outputs measured at different values of the input
parameters {x t , y t }. By definition of GP, these points define the prior Multivariate Gaus-
sian distribution:

y t = [y 1,t , y 2,t , ..., y M ,t ]T ∼N (0,Σt ). (2.22)

The predictions y p for new unseen inputs x p can be made by drawing samples from
the posterior distribution p( f |{x t , y t }). In particular, since the Gaussian Process models
both observation and predictions, the global joint multivariate Gaussian distribution can
be written as: (

yt

fp

)
∼N [

(
0
0

)
,

(
K(x t, x t)+σ2

ϵ I K (x t , x p )
K (x p , x t ) K (x p , x p ).

)
] (2.23)

The conditional posterior distribution p( f |{x t , y t }) can be obtained by using Bayes
theorem and can be shown to be a Multivariate normal distribution with mean:

K (x p , x t )[K (x t , x t )+σ2
ϵ I ]−1 y t (2.24)

and covariance:

K (x p , x p )−K (x p , x t )[K (x t , x t )+σ2
ϵ I ]−1K (x t , x p ). (2.25)

The choice of the hyper-parameters is crucial to ensure a good fit of the training data
and satisfactory generalizability to unseen data. In order to find the optimal hyper-
parameter values it is possible to maximize the marginal likelihood:

p(y |x) =
∫

p(y | f , x)p( f |x)d f (2.26)

which under the hypothesis of Gaussian prior can be analytically integrated yielding the
log marginal likelihood expression:

log p(y |x) =−1

2
y T (Kt t +σ2

ϵ I )−1 y − 1

2
log |Kt t +σ2

ϵ I |− n

2
log 2π (2.27)
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which can be maximized using a gradient-based algorithm [54]. It is interesting to clarify
the role of the three terms included in Eq. 2.27. The first term contains the observation
and therefore measures the data-fit quality of the model. The second term is a com-
plexity penalty term and is only a function of the inputs and the covariance function.
The first term only works as a normalization term. Most of the computational com-
plexity lies in inverting the covariance matrix in the first term, while the computation
of the derivatives of the log marginal likelihood can be performed efficiently when the
inverse is known: the use of gradient-based methods for the optimization of the hyper-
parameters is therefore advantageous.



3
ROM METHODOLOGY

In this chapter, the methodology for the construction of the Reduced Order Models is
described in depth. In particular, Section 3.1 provides an extensive description of the
aircraft configuration taken into consideration, the CFD methodology adopted to gener-
ate the data and the sampling approach of the ROM. In Section 3.3 the systematic proce-
dure to obtain scaled reduced order basis is discussed and justified. Sections 3.4 and 3.5
include the methodology to construct local reduced order basis respectively using Do-
main Decomposition and Clustering techniques. The modeling of the latent dynamics,
obtained from the global and the local dimensionality reduction methods is described
in Section 3.6.

3.1. THE MULDICON UNMANNED COMBAT AERIAL VEHICLE
The test case considered in this study for the generation of the high-fidelity simulations
and the assessment of the proposed ROM methodology is the Unmanned Combat Air
Vehicle (UCAV) test configuration of the Science and Technology Organization (STO) re-
search task group AVT-251 [40]. This configuration is denominated Multi-Disciplinary-
Configuration (MULDICON) [41] and has been used to assess the performance of high-
fidelity numerical tools for the simulation of the non-linear unsteady aerodynamic phe-
nomena characterized by strong vortical flow physics. The MULDICON UCAV has also
been used as the test case for the assessment of the performance of the CNN-based ROM
of Papp [51] and the POD-LSTM ROM of Bourier [9].
The MULDICON UCAV is a tailless Blended-Wing-Body (BWB) and represents the sec-
ond design iteration of the predecessor SACCON UCAV (Stability and Control Configu-
ration) [40], developed in order to improve the performance of the SACCON at higher
angles of attack and to meet desirable maneuverability requirements of an agile combat
aircraft [49]. The main design requirements of the MULDICON are inherited from the
SACCON and are displayed in Tab. 3.1.

17
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Design Parameter Value

Propulsion Single Turbofan without afternburner

Thrust to weight ratio 0.4

Payload Mass 2×1250 kg

Design Range 3000 km without refueling

Cruise Mach number 0.8

Cruise Altitude 11 km

Stability margin 0−3% MAC

CG range 5.82 - 6.00 m

Table 3.1: Main Design Parameters of the MULDICON [40]

The planform of the MULDICON is an evolution of the SACCON, with many common
characteristics. Both configurations share the same leading edge sweep angle and semi-
span length. The main differences are relative to the trailing edge sweep angle, which
is reduced in the MULDICON with the aim to improve the control performance of the
aircraft. Both platforms are displayed in Fig. 3.1, where the main geometrical differences
can be appreciated.

Figure 3.1: SACCON and MULDICON planforms. [49]

The geometrical reference parameters of the MULDICON configuration are also sum-
marized in Tab. 3.2.

The design requirements of the MULDICON are similar to a "Bomber- low-level pen-
etration" mission [41]. The mission consists of several phases: the initial climb at a low
Mach number, followed by a cruise flight at high altitude, a descent phase, and a low
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Reference parameter Symbol Value

Reference Area [m2] Sr e f 77.8

Reference Chord [m] cr e f 6.0

Reference Span [m] br e f 15.38

Moment Reference Point [m] (xr e f , yr e f , zr e f ) (6.0,0,0)

Table 3.2: Reference Geometrical Parameters of the MULDICON configuration [49]

altitude dash towards the target, which is then followed by a turning phase and a return
through the same flight profile. The mission profile is also sketched in Fig. 3.2, in terms
of altitude and Mach number trends over the mission distance. The key design points
for the several phases of the mission are summarized in Table 3.3.
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Parameter Take-Off Cruise Approach

Altitude [km] 0 11 0

Mach Number [-] 0.2 0.8 0.4

Max AoA [deg ] 20−21 12−14 -

Roll Rate [ deg
s ] 30/1.1 90/1.7 90/1.7

Pitch Rate [ deg
s ] 20 20 20

Yaw Rate Rate [ deg
s ] 10−15 10−15 10−15

Table 3.3: MULDICON Mission Design Points. [41]

Figure 3.2: Design mission profile of MULDICON [41]

3.2. FLIGHT CONDITIONS & FLIGHT DYNAMICS

The chosen flight conditions for the evaluation of the proposed ROM strategies in this
study correspond to the take-off design point in Table 3.3. In particular, the Mach num-
ber is kept constant to a low value in the incompressible regime, and a zero constant
altitude is considered with standard atmospheric conditions. Large ranges of variation
in the angle of attack and the pitch rate are considered. Only maneuvers in the vertical
plane are considered, in order to simplify the analysis and the dimension of the param-
eter space. The specific flight conditions are summarized in Table 3.4.

The flight dynamics of the aircraft, for maneuvers limited to the vertical plane, can be
fully described in the earth reference frame through the angle of attackα(t ) and the pitch
angle θ(t ). In particular, α(t ) describes the angle between the velocity vector and the
body reference frame, while θ(t ) indicates the angle between the earth reference frame
and the body reference frame, as schematically depicted in Fig. 3.3.
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Flight Conditions Symbol Value

Mach Number [-] M∞ 0.2

Velocity [ m
s ] V∞ 68.06

Pressure [Pa] p∞ 101325

Density [ kg
m3 ] ρ∞ 1.225

Temperature [K ] T∞ 288.15

AoA range [deg ] α [−2,20]

Max Pitch Rate [ deg
s ] qmax 20

Table 3.4: Chosen Flight Conditions.[51]

Figure 3.3: Reference frames and motion variables description. [51]

The components of the velocity in the different reference frames can be simply cal-
culated by applying the planar rotation matrix to the constant module velocity vector
V∞. A more detailed description of this procedure can be found in the thesis of Papp
[51].

3.2.1. HIGH-FIDELITY SOLUTIONS OF THE UNSTEADY AERODYNAMICS

The high-fidelity simulations for the generation of the dataset used for the construction
of the ROM have been carried out during a previous computational campaign at the
Netherlands Aerospace Centre (NLR), using the unsteady flow-solver ENSOLV [36]. This
CFD solver numerically approximates the solution of the discretized Reynolds Averaged
Navier Stokes system of equations, employing a cell-centered finite volume approach
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[49] on a structured multi-block grid. The computational mesh is an O-type mesh con-
sisting of 12 million cells in total, with 112 cells along the chord and 128 cells along the
span of the wing surface. The visualization of the mesh along the wing is provided in
Fig. 3.4. The employed turbulence model is the Menter’s Shear Stress Transport (SST)
two-equation model [47]. For the integration in time, a dual-stepping scheme with the
Runge-Kutta method is used. Due to the considered flight motion, symmetry with re-
spect to the midplane is assumed and the flow is only solved over half of the wingspan.

(a) Rear View (b) Leading Edge Apex

(c) Trailing Edge on mid-plane (d) Leading Edge at wingtip

Figure 3.4: Computational Mesh on the MULDICON UCAV surface for the RANS solutions compu-
tation by the ENSOLV solver. [49]

The outputs of the CFD solver, at each time-step, used for the construction of the
ROM are the pressure distribution, in terms of the non-dimensional coefficient:

Cp = p −p∞
1
2ρ∞ρ∞V 2∞

(3.1)

from which the integral force and moment coefficients (only pressure components) are
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derived by integration of the pressure coefficient over the wing:

CF = [C A ,CN ,CZ ] = 1
1
2ρ∞ρ∞V 2∞Sr e f

N∑
i=1
∆Fi

CM = [CMx ,CMy ,CMz ] = 1
1
2ρ∞ρ∞V 2∞Sr e f lr e f

N∑
i=1
∆Mi

(3.2)

where the contributions of each cell to the total force distribution is expressed as:

∆Fi =Cp
1

2
ρ∞V 2

∞Ai n⃗i

∆Mi = r⃗i ×∆Fi .
(3.3)

The pressure coefficient, in particular, is given on each vertex of the wing surface
and organized in a matrix format of dimensions [113,65] after a halving procedure per-
formed to limit the memory requirements of the models [9]. The organization of the data
matrix with respect to the wing geometry is illustrated in Fig. 3.5. Although the flowfield
is solved over the entire computational domain, for the construction of the ROM, the
number of spatial degrees of freedom is greatly reduced by only considering the surface
pressure fields.
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Figure 3.5: Data Structure of the Wing surface pressure coefficient. [9]

In Fig. 3.6 the CFD solutions, for different angles of attack, at steady conditions and
subsonic Mach number 0.2, are displayed. These plots show the pressure coefficient dis-
tribution and the skin friction lines along the wing surface and are useful to provide an
overview of the main vortical structures characterizing the flowfield at higher angles of
incidence. For α = 10[deg ], two main vortices appear on the wing: the first one origi-
nates from the wing apex and follows an outboard trajectory moving downstream, while
the second one is the wing-tip vortex which is contained in a small region near the lead-
ing edge. For larger values of the incidence, the vortices increase in intensity and interest
larger regions of the wing, with the main apex vortex being responsible for the genera-
tion of the large low-pressure region located approximately along the line that connects
the two main sections of the wing. Furthermore, the outboard movement of the vortex
towards the leading edge causes strong spanwise flow: this consideration is important
because it might explain the observed fluctuations of the pitching moment coefficient
that will be presented in the following Chapters, and that is at the basis of the difficulty
of predicting this integral quantity encountered in the work of Bourier [9] and Papp [51].
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(a)α= 10[deg ] (b)α= 12[deg ] (c)α= 14[deg ] (d)α= 16[deg ]

Figure 3.6: High fidelity solutions from ENSOLV of pressure fields in steady conditions (M = 0.2) for
different angles of attack [49].

3.2.2. PARAMETER SPACE SAMPLING: TRAINING MANEUVER

In order to construct a data-driven non-intrusive Reduced Order Model that effectively
learns the dynamics of the system over the considered range of variation of the parame-
ters, it is fundamental to sample the parameter space efficiently. The high-fidelity sam-
ples should, in fact, provide good coverage of the parameter space and as a consequence,
a sampling strategy with good space-filling properties should be employed. Additionally,
a wide range of flow phenomena should be included in the CFD dataset, in order to be
present on a reduced basis: refining the sampling density in regions of the parameter
space characterized by larger variations in the flowfield is often beneficial. On the other
hand, the number of samples should be limited, to fully exploit the computational ad-
vantages of using a ROM. The generation of high-fidelity snapshots is in fact the most
demanding step of the ROM construction.
Design of Experiments (DoE) techniques can be adopted to sample the parameter space
efficiently: these strategies can generally be classified between a-priori and adaptive
sampling strategies. The POD-greedy procedure [26] is an example of an adaptive strat-
egy, where the sampling points are iteratively chosen as the points where the projection
error of the full model on the reduced basis reaches its maximum. In the context of ROM
for unsteady aerodynamics, the parameter space is not discretely sampled in a specific
number of points, but the sampling is defined by a continuous input maneuver in the
space of the motion variables. Adaptive approaches are not typically applicable in a
straightforward manner. A-priori sampling strategies can be used to generate a train-
ing maneuver, with specific requirements in terms of space-filling properties: the paper
of Jirasek et al. [32] compares the performance of unsteady ROMs generated using dif-
ferent training maneuvers.
In this work, the already existing CFD training dataset obtained by Papp [51], following
an a-priori sampling technique based on Schroeder-sweeps [48], is used. In particular,
an extension of the Schroeder sweep, introduced by Morelli [48], for the design of multi-
ple input signals, is employed. The motion variables α(t ) and θ(t ), generically denoted
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by u are prescribed as a sum of phase-shifted sinusoids:

ui =
M∑

k=1
Ak cos(2π fk ti +φk ) ti = i∆t (3.4)

where M is the total number of frequencies used, Ak , fk are the amplitude and the fre-
quency of the k th component of the signal, and the anglesφk are the phase shift angles of
the k th component. The signal is evaluated at each time step (δt ) of the CFD simulation.
The frequencies fk are sequentially defined from the minimum observable frequency
f1 = 1

T , being T the total duration of the signal, to the chosen maximum frequency. The
amplitudes are chosen in order to obtain uniform power distribution for all the signal
components:

Ak = Ap
N

(3.5)

where A is selected depending on the desired range of values taken by the motion vari-
able. In general, if the oscillation is not centered around zero, Eq. 3.4 can be modified
into:

ui = A0 +
M∑

k=1

Ap
N

cos(2π fk ti +φk ) ti = i∆t (3.6)

as A0 defines the new center of oscillation. The phase shifts φk are calculated in such a
way as to minimize the so-called Relative Peak Factor (RPF):

RPF (u) = (maxi ui −mini ui )

2
√

2
∑

i u2
i

(3.7)

which reaches its minimum at 1 when the multi-signal input contains only one compo-
nent. Lower RPFs are in fact desirable because the associated signals can extract good
information content from the system response with a relatively low amplitude perturba-
tion. Morelli [48] describes the RPF as an efficiency measure of the signal: using low RPF
he is able to describe the aircraft dynamics with a linearized model about a reference
point. More detail about the optimization procedure for the computation of the phase
shifts can be found in the thesis of Papp [51]. The final training signal parameters are
summarized in Table 3.5: these values are in accordance with the design parameters for
the take-off configuration introduced in the previous sections. The angle of attack range
is between 0[deg ] and 20[deg ]: the nominal value A0 is therefore set to 12.5[deg ] with
a signal amplitude of 10[deg ] in order to achieve good coverage of the parameter space.
The maximum frequency is selected at 1H z, a value that is much larger than the pitch
rate requirement of 50deg /s: this yields a signal built from 25 sinusoids of uniformly
spaced frequencies between 0.04H z and 1H z.

The angle of attack and pitch rate signals for the training maneuvers are illustrated
in Fig. 3.7.
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Parameter Symbol Value

Signal Duration [s] T 25

Minimum Frequency [H z] fmi n 0.04

Maximum Frequency [H z] fmax 1

Number of Components M 25

Initial AoA [deg ] α0 12.5

Initial Pitch Angle [deg ] θ0 0

AoA Amplitude [deg ] Aα 10

Pitch Angle Amplitude [deg ] Aθ 10

Table 3.5: Multisine input signal for training maneuver. [51]

Figure 3.7: Angle of Attack and Pitch Rate signals over time for training maneuver.

The corresponding plots in the parameter space (α, α̇, α̈, q, q̇) can be obtained by pro-
jecting the training maneuver into each of the coordinate planes. The most relevant con-
trol variable space projections are presented in Fig. 3.8. It can be seen from Fig. 3.8c, that
good coverage of the α−q space is achieved within the design requirements of the mis-
sion. This coverage is not homogeneous but s increasingly dense towards the lower and
upper bound of the angle of attack range. Nevertheless, from Fig. 3.8a, it can be inferred
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a poorer coverage of the central region of theα−α̇ plane, corresponding to a smaller rate
of change of the angle of attack.

(a)α− α̇ (b)α− α̈

(c)α−q (d) q − q̇

Figure 3.8: Projected regressor space coverage for training maneuver.

3.2.3. TEST MANEUVERS

In order to evaluate the performance of the developed ROM strategies in the prediction
of unseen operating conditions, additional test maneuvers over the parameter space are
computed. Two distinct types of motions are considered: pitch and plunge. Pitching
motions only interest the variation of the pitch angle, leaving the absolute velocity vec-
tor fixed. Plunging motions, instead, keep a fixed angle of attack while changing the nor-
mal and axial components of the absolute velocity vector. The illustration of these two
types of motion is given in Fig. 3.9b. The resulting pitching and plunging maneuvers are
defined as sinusoidal inputs of the angle of attack, generically sketched in Fig. 3.9a: the
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Variable Symbol Value

Nominal AoA [deg ] A0 5 10 10 15
Amplitude [deg ] A 5 5 10 5
Frequency [H z] f 0.25 0.5 1.0 0.25 0.5 1.0 0.1250.25 0.5 0.25 0.5 1.0

Period [s] T 4 2 1 4 2 1 8 4 2 4 2 1
Horizontal Velocity [ m

s ] U0 67.8 67.0 67.0 65.7
Vertical Velocity [ m

s ] W0 5.9 11.8 11.8 17.6

Table 3.6: Motion variables values for pitch test maneuvers [51]

three main parameters to describe these maneuvers are in fact the nominal value of the
harmonic oscillation A0 (center of oscillation), the amplitude of the oscillation A and its
frequency f .

(a) Generic test input signal and parameters
for the angle of attack.

(b) Pitch (top) and plunge (bottom) motion
illustration.

Figure 3.9: Description of pitch and plunge input signal and motions.

For the pitch maneuvers, the considered values are provided in Table 3.6: the changes
in the AoA are obtained by directly changing the pitch angle while keeping both horizon-
tal and vertical components of the velocity constant.

The plunge maneuvers parameters are described in Table 3.7. The pitch angle is
kept constant and therefore the sinusoidal variation in the angle of attack is obtained
by changing the components of the velocity vector (while keeping the Mach number
constant).
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Variable Symbol Value

Nominal AoA [deg ] A0 5 10 10 15
Amplitude [deg ] A 5 5 10 5
Frequency [H z] f 0.25 0.5 1.0 0.25 0.5 1.0 0.125 0.25 0.5 0.25 0.5 1.0

Period [s] T 4 2 1 4 2 1 8 4 2 4 2 1
Horizontal Velocity min [ m

s ] Umi n 67.3 65.7 64.0 64.0
Horizontal Velocity max [ m

s ] Umax 68.1 67.8 68.1 67.0
Vertical Velocity min [ m

s ] Wmi n 0.0 5.9 0.0 11.8
Vertical Velocity max [ m

s ] Wmax 11.8 17.6 23.3 23.3

Table 3.7: Motion variables values for plunge test maneuvers [51]

3.3. THE SCALED GLOBAL POD
The Proper Orthogonal Decomposition procedure directly applied to the pressure fields
yields a set of modes that minimizes the total projection error of the high-fidelity sam-
ples on the reduced basis, in the standard L2 optimal sense. The notion of optimality,
however, depends on the metrics adopted, which in turn is dependent on the objective
of the ROM. In this context, the pressure coefficient fields are defined along the wing sur-
face on cell areas of different sizes, resulting from the discretization of the computational
domain: the density of the grid points greatly increases towards the leading edge of the
wing, resulting in a large scale separation of cell areas as summarized in Fig. 3.10. Hence,
directly the direct POD on the pressure snapshots accounts for the all different pressure
values independently from the cell areas on which they are defined, inevitably leading
to relatively high projection error in the larger regions of the wing where the cell density
is lower. As a consequence, this inaccuracy is amplified in the prediction of the integral
force and moment coefficients, as the contribution of larger cell areas has a larger weight
for the computation of these scalar quantities.

Figure 3.10:
Acel l
Ami n

Ratio between individual cell areas and minimum cell area along the wing upper surface

In order to account for this aspect and to capture more efficiently the larger coher-
ent structures, an adequate scaling of the snapshots can be introduced. In the work of
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Scaling Name Scaling Vector w

Pressure POD Unscaled

Force POD {A(xi )}N
i=1

Moment POD {A(xi ) · |⃗ri × n⃗i |}N
i=1

Table 3.8: Description of the spatial scaling of the snapshots .

Bourier [9], the scaling is defined in each cell as the sum of the surrounding cell areas.
In this work two natural choices for the scaling are employed: the cell area distribution
and the cell area distribution multiplied by the modulus of the cross product between
the pressure points and the moment reference point. Pre-multiplication with these scal-
ing quantities, in fact, respectively yields the force and moment distributions along the
wing (locally oriented along the cell normal vectors). Since the integral coefficient is
defined as a linear combination of these fields, an increased accuracy in the computa-
tion of these quantities is expected compared to the results of using a Pressure POD. The
scaling strategies are summarized in Tab. 3.8.

In order to obtain the reduced basis corresponding to a given scaling, the pressure
coefficient snapshots are pre-multiplied by the scaling vector w . In matrix form this
product is expressed as:

ũ = di ag (w )u =W u. (3.8)

The SVD of the matrix X̃ , containing the scaled snapshots { ˜uN ,m}N
m=1 generates the or-

thonormal modes φw associated with the scaled quantity, i.e. pressure, force, and mo-
ment modes as displayed in Fig. 3.11. The scaling-back operation of the modes can
be performed through the multiplication by W −1: this yields fields with the dimension
units of pressure, but which are not orthogonal under the standard inner product, as the
multiplication by a non-identity matrix does not preserve orthogonality of the modes.
However, these pressure fields are orthogonal under the weighted inner product defined
by the square of the scaling matrix:

〈W −1φw
i ,W −1φw

j 〉W 2 =W −1φw
i W 2W −1φw

j = 〈φw
i φ

w
j 〉 = δi , j . (3.9)
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Figure 3.11: First three modes on the wing upper surface resulting from the snapshot scaling. Top: Pressure-
POD modes (unscaled). Middle: Force-POD modes. Bottom: Moment-POD modes.

In order to clarify the idea of scaling and relate it to the choice of the optimality mea-
sure of the reduced space [63], it is interesting to note that the modes associated with the
scaled quantity φw could be obtained by modifying the metric of the POD optimization
problem as follows:

min
{φw

n (x)}r
n=1

M∑
m=1

||uN ,m −
r∑

l=1
(〈uN ,mW −1φw

l )(W −1φw
l )〉W 2 ||2W 2 where ||W −1φw ||W 2 = 1

(3.10)
These considerations serve to demonstrate the equivalence of the two procedures:

performing the POD on the scaled snapshots, with the scaling defined by the matrix W =
di ag (w ), or performing the POD directly on the pressure field but choosing the weighed
inner product defined by the matrix W 2 for the POD maximization problem. Obviously,
it is much simpler to perform the POD on the scaled snapshots, and use the modes of the
scaled quantities for the projection and the linear expansion of the reconstructed fields,
performing the scaling back operation only on the final predicted fields.
Moreover, it is interesting to observe that the unconstrained optimization problem for a
Goal Oriented approach to mode decomposition [11], would yield analogous results. In
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fact, if the quantity of interest can be expressed as a linear function of the state variable
(i.e. pressure and normal force distribution are obtained from the matrix multiplication
of the pressure distribution) through the matrix W , the Lagrangian associated to the Goal
Oriented problem would read:

L = 1

2

M∑
m=1

(uN ,m −Φam)T W T W (uN ,m −Φam)T + β

2

M∑
j=1

(1−φT
j φ j )2 + β

2

M∑
i , j=1

(φT
i φ j )2.

(3.11)
This function is analogous to the weighed POD optimization problem if the terms

associated with β, which promote the orthogonality of the resulting modes, are set to
zero. In the analyzed case, orthogonality of the pressure modes is not essential, as the
modes associated with the scaled quantity can be used and the predicted pressure fields
can be retrieved in the final phase of the ROM through multiplication by the (inverse of
the) scaling matrix.

3.4. DOMAIN DECOMPOSITION POD
Domain Decomposition is a technique employed to separate the computational domain
into a series of overlapping or non-overlapping sub-domains, and extensively used in
CFD solvers to mitigate computational and memory requirements or to speed up calcu-
lations. In the context of dimensionality reduction, Domain Decomposition has often
been used together with POD (DD-POD) in order to model the dynamics of a moving
shock [44, 43]. In the present work, DD-POD is used to generate local non-intrusive
ROMs with improved accuracy in critical regions of the domain, also by leveraging the
additional flexibility in the choice of the number of modes used for reconstruction of the
pressure fields in each domain. The adopted strategy follows the monolithic approach
described in the paper of Baiges et al. [3]: the wing is divided into two non-overlapping
domains, meaning that each grid point is assigned to only one of the two sub-domains.
The border between each region has been chosen to be coincident with the vertices of
the geometry of the leading edge and to run along the axial direction. This choice yields
the two possible decompositions displayed in Fig. 3.12. In the first one (Fig. 3.12a), the
two sub-domains are separated at y = 0.3: this division appears to make sense also in
light of the shape of the global force and moment distribution modes in Fig. 3.11, as the
coherent dominant flow structure appear to be distinct between the two domains due to
the grid refinement and small grid areas near that region. In the second one (Fig. 3.12a)
the division is placed at y = 0.8: this choice is motivated by the necessity to capture accu-
rately the dominant flow structures at the wing-tip of the wing which has been observed
in the present work and in the results of Bourier [9] to be responsible for high projec-
tion error of the global POD-LSTM model in that region of the computational domain.
It should be noted that although only the upper surface of the wing is displayed, each of
the two regions extends on the lower surface.

Two SVDs are performed independently on the two snapshot matrices resulting from
the decomposition of each pressure coefficient field: the time complexity and memory
requirements of these operations depend on the sizes of the snapshots matrices and
therefore on the number of snapshots and grid points considered. A summary of these
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(a) DD0.3 (b) DD0.8

Figure 3.12: Geometry decomposition of the wing upper surface. The lower surface is continuously
attached to the upper surface at the leading edge.

Decomposition Type Number of grid points N Number of Snapshots m

DD0.3

Domain 1 5570 5666
Domain 2 1775 5666

DD0.8

Domain 1 2201 5666
Domain 2 5144 5666

Table 3.9: Decomposition types and corresponding datasets dimensions.

parameters is presented in Table 3.9.

In Fig. 3.13 the first three modes shapes on the upper surface of the wing are dis-
played for the two types of decomposition. The bottom row highlights how isolating the
wing-tip regions leads to modes that capture more accurately the fluctuations in these
specific regions. In particular, observing the evolution of the time coefficient associated
with the second mode of the wing-tip subdomain in Fig. 3.14, an "on-off" behavior can
be detected: the value is close to zero everywhere, except at high angles of attack. Al-
though POD modes rarely resemble true physical evolving phenomena, in this case, the
second mode carries the information of wing-tip vorticity generated at high incidences.
As a consequence, the projection error deriving from the use of a reduced basis is ex-
pected to decrease when compared to the global POD performance.
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Figure 3.13: First three modes on the wing upper surface for two different geometry decompositions. First
Row: DD0.3. Second Row: DD0.8

Figure 3.14: Second POD coefficients over the training maneuver for the DD0.8 decomposition

The projection of the high-fidelity decomposed snapshots on the two reduced basis
yields the time coefficients corresponding to the evolution of the pressure fields in the
reduced spaces: two training datasets (one for each domain) consisting of 5666 samples
are then used to train the low-order regression model, typically represented by a Long
Short Term Memory Network in a similar fashion to the global POD-LSTM model. The
offline stage of the ROM is completed when convergence in the training procedure is
achieved, as the trained ANNs and the POD basis are used to predict the local pressure
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fields at unseen operating conditions for a given maneuver. The full domain pressure
fields are recovered simply through the composition of the local pressure fields: if the
predictions of the ROM are accurate enough near the boundary of the decomposition,
no discontinuities appear and an additional interpolation step is not needed. The entire
procedure of the DD-ROM is schematically illustrated in Fig. 3.15.

Figure 3.15: DD-POD based ROM flowchart. The flowchart does not include the parameter space sampling
and the CFD simulation step for the sake of conciseness.

3.5. CLUSTERED POD: FROM GLOBAL TO LOCAL
The development of a Reduced Order Model through a linear dimensionality reduction
technique such as a POD, allows for the identification of a low-dimensional global basis
which is assumed to carry the most energetically important features present in the data.
However, dynamically important but low energetic structures are often neglected by the
global basis, leading to large projection errors and poor performance of the resulting
ROM. Local spatial approaches such as the DD-POD described in the previous chapter
can improve the low-order approximation of the flow physics in specified regions of the
computational domain, through the definition of local basis: these approaches, how-
ever, demonstrate their full potential only when applied to problems characterized by a
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clear spatial separation of the flow physics. Another local approach to dimensionality
reduction can instead be motivated by the inefficiency of the global basis to capture the
distinct dominant physical features corresponding to large variations of the input vari-
ables. The Navier-Stokes equations, present a strong dependency on the parameter’s
instances and can exhibit bifurcating solutions. The dominant POD modes are therefore
in general a mixture of the dominant coherent structures appearing in different subre-
gions of the parameter space, rather than authentic physically significant phenomena.
The idea of Clustered-POD (CPOD) is to generate reduced bases that are local in the pa-
rameter space, ideally grouping solutions with similar patterns to the same set of modes.
The first example of CPOD-based ROM has been used in literature [34] to partition the
state space into clusters corresponding to several representative problems, in combi-
nation with a probabilistic model based on Markov processes to model the transition
dynamics between clusters, however without identification of the local dynamics within
a cluster. Another notable example comes from the work of Hess et al. [27]: a Cluster-
based ROM is built in order to identify the bifurcations in the solutions of the incom-
pressible Navier-Stokes characterized by variation in the Reynolds number. A similar
methodology is described here, although several modifications in the ROM development
are proposed. Moreover, the application to unsteady parametric aerodynamics requires
adequate adaptation of several aspects of the model. In particular, the procedure to con-
struct the ROM can be divided into four steps, each one described more in detail in a
dedicated paragraph:

1. Cluster the training maneuver snapshots, depending on a compressed represen-
tation of each snapshot. This step includes the choice of the number of clusters
based on an a-posteriori error indicator.

2. Construct a local reduced base for each cluster.

3. Model the dynamics in each cluster with a low-order surrogate model.

4. Assign a new testing parameter to each cluster.

It is important to note that in this description, the phase of the ROM construction re-
lated to the generation of data has been left out to avoid redundancy, as this step is in
common with the other models presented in this report without further modifications.
Nevertheless, it must be emphasized that the entire model only relies on the information
present in the training snapshots, and thus the ROM capabilities to capture accurately
the dominant features of the solution at testing operating points depend on whether
similar features are present in the training snapshots.

3.5.1. SNAPSHOT CLUSTERING

Let S = {uN ,m}M
m=1 be the set of training snapshots corresponding to the sampling set

ΘTr
M = {⃗θm}M

m=1 in the p-dimensional parameter domain Θ: θ⃗m ∈Rp . The clustering pro-
cedure aims to divide the snapshot set into k clusters {Ck ′ }M

k ′=1 in such a way that an
optimal division is achieved. The definition of optimality, once again, drives the strategy
to determine the clustering and to tune the choice of the algorithm hyperparameters.
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The algorithm used to perform this operation is the k-means clustering, which is an
unsupervised classification algorithm that accepts as inputs the number of clusters and
a metric to compute the distance between points in the clusters. In particular, the k-
means is an iterative algorithm that is initiated by a random choice of k cluster centroids
c1, ...,ck among the data-points in {uN ,m}M

m=1, and at each step minimizes the following
functional:

E(c1, ...,ck ) =
M∑

m=1

k∑
k ′=1

I (uN ,m ∈Ck ′ )d(uN ,m ,cm) (3.12)

where d() measures the distance between the centroid and the data point and is typically
chosen to be the euclidean distance while I is equal to one of zero depending on whether
the data point belongs to the cluster. In fact, each data point is assigned to the cluster for
which the distance from the its centroid is minimum. At each iterative step, the position
of the cluster centroids is updated until convergence is reached. The sensitivity of the
method from the clusters-center initialization is mitigated by restarting the algorithm
with random initialization several times. In this context, it is enough to highlight how
the results of the clustering depend on the specified number of clusters and the choice
of the distance metric, which are critical for the performance of the resulting ROM.

CLUSTERING FEATURES AND DISTANCE

The guiding logic behind the method is to cluster the snapshots according to their sim-
ilarity, in such a way that snapshot belonging to the same cluster exhibit common fea-
tures. The most straightforward approach would be to simply define d() as the Euclidean
distance in the space of the high-fidelity snapshots VN , thus identifying the clustering
features as the entire pressure fields. This choice presents two main issues:

• the dimension N of each snapshot corresponding to the number of cell points in the
computational domain, makes the optimization problem associated with the k-
means algorithm computationally expensive.

• During the online phase, assigning test points, for which the full prediction of the pres-
sure field is not known a priori (being the ultimate output of the ROM), to a cluster
is not directly possible, as the assignment criterion is based on the computation of
the above-mentioned distance.

An alternative selection of the clustering features can be made by directly using the in-
put parameters, thus specifying the Euclidean distance in the parameters space Θ. This
approach overcomes the limitation of the previous strategy since the parameter space is
generally low dimensional (and only a limited set of influential parameters can generally
be used) and the input parameters are known a priori during the online phase. Although
this choice leads to a significant simplification of the model, it is generally sub-optimal,
unless a clear dependence of the full solution on the input parameters is known: this
is the case when the solutions exhibit clearly distinct behavior for small differences in
the parameter’s value (i.e. bifurcations). For example in the case of transonic flow over
an airfoil, the appearance of the shock at the critical Mach number divides the parame-
ter space into a subsonic regime M < Mcr i t and a supersonic regime M > Mcr i t . In the
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present case (the incompressible unsteady aerodynamics over the UCAV MULDICON
wing), the parameter space is continuously sampled with a training maneuver with a
continuous dependence of the solution on the input parameter: it is therefore impossi-
ble to optimally establish a priori the desired clustering directly in the parameter space.
In addition to that, the challenge of choosing which parameters have the most influence
on the solution (quantifying it through weights) must be addressed: using the entire set
of parameters is not particularly beneficial as several parameters do not heavily affect
the solution. On the other hand, using only one parameter (for example the angle of at-
tack) can lead to neglecting important dependencies.
In order to overcome these limitations, a compressed representation of the snapshots
can be considered as clustering features: the Global Proper Orthogonal Decomposition
is used to determine this representation. In particular, the global POD basis is computed,
allowing to express of each training snapshot as:

uN ,m(x) =
N∑

n=1
an,mφn(x) (3.13)

where {φn(x)}N
n=1 represents the POD basis (and is a basis for the solution space VN ),

while the coefficients {an,m}N
n=1 are obtained by projection of the snapshots on the re-

duced basis. These reduced coordinates, do not only serve as a compressed representa-
tion but are also ranked in terms of energy content and it is, therefore, possible to con-
sider a truncated version of the reduced coordinates as clustering features: {an,m}r

n=1
where r represent the truncation index. The distance d is thus defined as the Euclidean
distance in the subspace A r ∈Rr spanned by the first r reduced coordinates. It must be
noted that because of the energy ranking of the modes, the coordinates carry decreas-
ingly less information, and therefore the weighted Euclidean distance is employed:

d(a1, a2) =
√

r∑
i=1

wi (a1i −a2i )2 (3.14)

where wi are taken to be equal to the eigenvalue of the diagonal matrix of the Singular
Value Decomposition of the snapshot matrix, which is an indication of the "pressure en-
ergy" contained in each mode (if the snapshots represent turbulent fluctuations then the
eigenvalues indicate the amount of Turbulent Kinetic Energy contained in each mode).
Although this method, compared to the snapshot direct clustering, solves the problem
associated with the computational cost of running the k-means algorithm, during the
online phase of the ROM, the global reduced coordinates of a testing parameter are not
known but have to be predicted in order to assign the testing point to a cluster. To cir-
cumvent this issue, a surrogate model to map the input parameters to the global reduced
coordinates is used: the details of this procedure are described in the following sections.
In Fig. 3.16 the results of the k-means clustering algorithm on training snapshots are dis-
played. In particular, the clustering features are chosen as the first two (r = 2) reduced
coordinates of the global POD: on the left column, the POD is performed on the pres-
sure distribution while on the right column on the moment distribution (as described
in Section 3.3). The plots in the first row show the clustering in the (truncated) reduced
coordinate space: the separation between clusters appears almost vertical since the first
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coordinate (on the x-axis) has the most important in the distance definition. The bottom
row shows the same clustering but in the parameter space of the angle of attack and the
pitch rate. It is interesting to observe how the clustering based on the pressure POD pro-
duces in the parameter domain one large cluster for moderate angles of attack (in the
linear regime) and three smaller clusters for higher angles of attack (in the non-linear
regime).

(a) Coordinate space-Moment POD (b) Coordinate space-Pressure POD

(c) Input space-Moment POD (d) Input space-Pressure POD

Figure 3.16: K-means Clustering visualization in the input space (α−q) and in Global POD coordi-
nates (a1 −a2) for two distinct POD decompositions.

OPTIMAL NUMBER OF CLUSTERS

The number of clusters is a key parameter of the clustering process which needs to be
specified in advance. When the training data is amenable to clustering and it is possible
to visually partition a compressed representation of the snapshot, the choice of the op-
timal number of clusters kopt is straightforward. However, in most cases, the parameter
sampling (DoE) is designed in such a way to maximize regressor space coverage and uni-
formity (as it is visible in the bottom plots of Fig. 3.16): as a result, due to the continuous
dependency of the solution from the parameter values, also the low-order representation
of the data (top plots of Fig. 3.16) presents a rather homogeneous coverage and it is diffi-
cult to distinguish clearly predefined clusters. It is therefore important to define a metric
to unambiguously determine the optimal number of clusters, which can be generalized
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to different ROM datasets. The standard choice in literature requires the computation of
the k-means variance indicator:

V ar (k) =
k∑

k ′=1

∑
{m:an,m∈Ck′ }

|an,m − cm |2 (3.15)

where the distance is computed in the space of the reduced coordinates and therefore
here cm indicates the reduced coordinates of the cluster centroid. This quantity monotonously
decreases with the number of clusters k and in the limit of the number of clusters being
equal to the number of snapshots it reaches its minimum at zero, resulting in the local
bases coinciding with each snapshot: clearly not optimal. Moreover, for non-intrusive
ROM applications, the surrogate model for the reduced dynamics is dependent on the
number of samples in the dataset: after clustering the data is partitioned into smaller lo-
cal datasets on which a local model is trained (in the case of a Neural Network). Limiting
the number of clusters is therefore crucial for the entire ROM development. The crite-
rion associated with the k-means variance is commonly referred to as "Variance Elbow",
in fact, kopt is chosen as the smallest integer for which the variation in the derivative of
V ar (k) is smaller than a specified tolerance, thus visually corresponding to an elbow in
the V ar (k) vs k plot. The "Variance Elbow" criterion is computationally efficient requir-
ing only a priori evaluation of the clustering distances on the low-order version of the
snapshot set. At the same time, the choice of kopt depends on the tolerance adopted
for the minimum variation of the slope and can therefore be a source of ambiguity. Fur-
thermore, there is no guarantee that the kopt determined by this criterion is optimal in
terms of the performance of the resulting ROM, as this would require a certain form of
a-posteriori evaluation of the performance of the local base. Motivated by these obser-
vations, a different method for the determination of kopt is proposed, based on an a
posteriori indicator of the total projection error produced by the local bases on a vali-
dation maneuver. In particular, for each k = 1, ...,kmax the snapshot set is clustered into
k clusters following the procedure described above. Afterwards, a set of of k local POD

bases is computed {ψnk′ ,k ′ }
Nk′
nk′=1 (for more details about this step the reader can jump

to the next paragraph). A validation maneuver is considered, for which the snapshot set

{ũN ,m}M̃
m=1 is known, and therefore also the global POD coefficients {ãn,m}M̃

m=1 can be
obtained by projection of the snapshot onto the global POD basis. The knowledge of the
global coefficients allows for the partition of the validation snapshot set into k disjoint
sets, as each snapshot is assigned to a cluster Ck ′ by the k-means algorithm (in predictive
mode). The optimization metric is based on the total Mean Absolute Error of projection
of the validation snapshots on the truncated local bases:

MSE(k) =
k∑

k ′=1

∑
{m:ãn,m∈Ck′ }

|ũN ,m −
r∑

l=1
(ũN ,m ·ψl ,k ′ )(ψl ,k ′ )|2

kopt = {k | MSE(k) = min
k ′ MSE(k ′)}

(3.16)

where r indicates the truncation index and it is typically set to 5. The smallest k for
which a minimum is reached by the error metrics is chosen as the optimal number of
clusters. It is important to motivate the use of a validation maneuver: simply evaluating
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the projection error on the training maneuver does not provide such an accurate indica-
tion of how the local basis would perform when used in the predictive mode for unseen
test data, in fact, all the training snapshots are contained within the local basis (because
included into the local snapshot matrices) and the projection error on the snapshot lo-
cated at the border of the clusters is contained. When a testing snapshot is located close
to the border of the clusters, an increase in the projection error is instead observed due to
the poor extrapolation capabilities of the local basis when predicting a data point located
outside of the cluster range. Additionally, the validation maneuver should be designed
in such a way as to cover a wide range of flow conditions and therefore to pass through
every cluster: for this reason, in this study, the maneuver with the largest angle of attack
and pitch rate amplitudes is selected. Compared to the Variance Elbow method, the de-
scribed procedure is computationally more demanding as it requires the computation
of the set of basis functions corresponding to each cluster. Nevertheless, this process
is only carried out once during the online phase, as the optimal number of clusters is a
property of the snapshot set.

3.5.2. LOCAL BASIS COMPUTATION

Following the optimization procedure to determine the optimal number of clusters, the
kopt reduced bases can be determined with the Proper Orthogonal Decomposition (this
step can be skipped if the bases have already been computed during the optimization
process). The local snapshot matrix X k is assembled in each cluster Ck k = 1, ...,kopt ,
containing |Ck | (scaled) snapshots. The local POD minimization problem now reads:

min
ψ1,k ,...,ψrk ,k

∑
ũN ,m∈C∥

|ũN ,m −
rk∑

l=1
(ũN ,m ·ψl ,k ′ )(ψl ,k ′ )|2 (3.17)

subject to the orthonormality of the modes. The solution is obtained from the SVD of
the snapshot matrix:

X k =ΨkΣkΩk k = 1, ...,kopt (3.18)

as the first rk columns of the left singular vector matrix Ψk denoted by {ψl ,k }rk
l=1. The

number of modes contained in each cluster basis can be chosen according to the eigen-
value spectrum of the diagonal matrixΣk . In Fig. 3.17 the first three modes shape on the
upper surface of the wing are displayed for the four different clusters.
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Figure 3.17: First three modes on the wing upper surface for each cluster local basis. Each row corresponds to
a cluster. The cluster numbering follows Fig. 3.16. The POD is performed on the Moment scaled snapshots.

3.5.3. SURROGATE MODELLING OF CLUSTER LOCAL DYNAMICS
The identification of several regions in the parameter space, and the computation of a
local reduced basis over each cluster, allow for a substantial reduction of the degrees of
freedom of the high-dimensional snapshots into a low-order representation of the global
features through the POD reduced coordinates. In the Global POD, these coordinates are
obtained by projecting the snapshots into the global basis: for the CPOD, the projection
is performed cluster by cluster, only considering the snapshot that belongs to a cluster,
onto the cluster local basis:

ak
n,m = uN ,m ·ψn,k k = 1, ...,kopt (3.19)
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Cluster Number Number of grid
points n

Number of Snap-
shots m

1 5666 1336

2 5666 1286

3 5666 1159

4 5666 1185

Table 3.10: Clustering using 4 cluster: datasets dimensions.

where the index k denotes the cluster number, and it is used to distinguish local reduced
coordinates from global ones. The projection, therefore, gives rise to kopt low-order local
dynamics:

ak
n,m = f k (⃗θk ) k = 1, ...,kopt (3.20)

where each input parameter vector is mapped to its local reduced representation. In-
trusive methods, such as the Galerkin Projection [57], identify the dynamics with the
governing equations (projected on the basis), and therefore do not require different def-
initions of the dynamics depending on the cluster. Nonintrusive methods, however,
approximate the true underlying dynamics with a surrogate model, typically based on
data-driven methods. In this case, it is more convenient to define the surrogate dynam-
ics separately within each cluster, as the projection onto different bases inevitably pro-
duces discontinuous hypersurfaces over the parameter domain. Training a Neural Net-
work on discontinuous data, presents several challenges, as the information of a clus-
ter transition has to be learned by the network during training, and the weights must
be able to model different local dynamics. Additionally, ANNs are typically continuous
maps from the input to the output space and achieve better performance when approx-
imating a continuous function. In light of these observations, in this work, the local low-
order dynamics are approximated by an LSTM Network (although other models such as
the Multi-Layer Perceptron and the Gaussian Process Regression are discussed) with the
same architecture in each cluster but trained on the kopt different input-output pairs re-
sulting from the projection in Eq. 3.19. A detailed description of the training process and
the surrogate models is extensively presented in the following sections. However, it is im-
portant to observe that the clustering of the data produces several datasets with smaller
sample sizes: this aspect should be taken into account when analyzing the results of the
Network prediction, as Deep Learning models tend to overfit on small datasets and the
training sample size is a critical factor in the convergence of the training procedure. On
the other hand, by clustering the parameter space, each local regression task is defined
on a smaller range of the input space: good model accuracy can therefore be achieved
with little data. In Tab. 3.10 the local datasets sample sizes are given for the clustering
displayed on the left side of Fig. 3.16.

Once the local dynamics are modeled, the ROM is ready to be deployed for predic-
tions of the high-dimensional pressure fields, and the most computationally demanding
phase of the ROM construction is concluded. The offline stage complete algorithm is
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given in Alg. 1 and Alg. 2 where the Global and Local ROM computation steps are di-
vided for clarity.

Algorithm 1 Offline Stage: Global ROM computation

Input: Snapshot set {uN ,m}M
m=1 at sampling pointsΘTr

M
Output: Global modes {φn(x)}r

n=1, coefficients {an,m}r
n=1, eigenvalues {σn}r

n=1, map

F (⃗θ) = a

1: Compute Global POD on snapshots set {uN ,m}M
m=1

2: Store First r modes {φn(x)}r
n=1, coefficients {an,m}r

n=1, normalized eigenvalues
{σn}r

n=1

3: Train NN (LSTM) model F with {(⃗θ, an)m}M
m=1 samples

Algorithm 2 Offline Stage: Local ROM computation

Input: Snapshots set {uN ,m}M
m=1, global coefficients {an,m}r

n=1, eigenvalues {σn}r
n=1,

Validation maneuver {ũN ,m}M̃
m=1

Output: kopt , Local basis {ψl ,1}r1
l=1, ..., {ψl ,kopt

}
rkopt

l=1 , Local surrogate models
F1, ...,Fkbest

1: for k = 1, ...,kmax do
2: k-Means Clustering on scaled global coefficients {an,m ·σn}M

m=1

3: Assign Validation snapshot to clusters based on {ãn,m ·σn}M̃
m=1.

4: for k ′ = 1, ...,k do
5: Compute Local POD Basis {ψl ,k ′ }

rk
l=1 at cluster k ′

6: Compute Cluster projection error E(k ′) = ∑
{m:ãn,m∈Ck′ } |ũN ,m − ∑r

l=1(ũN ,m ·
ψl ,k ′ )(ψl ,k ′ )|

7: end for
8: Compute sum of Cluster Projection Errors M AE(k) =∑k

k ′=1 E(k ′)
9: if M AEk > M AEk−1 then

10: kopt = k −1
11: end if
12: end for
13: Train Local surrogate models F1, ...,Fkbest

for each cluster with {(⃗θk ′
, ak ′

n )m}
|Ck′ |
m=1 pairs.

3.5.4. ASSIGN UNSEEN PARAMETER POINT TO A CLUSTER
During the online phase of the ROM, the model receives as input an unseen parameter
point (or a series of parameter points, i.e. a maneuver), here for brevity referred to as a
test point. Unlike the training points, for which a reduced representation of the snapshot
set is available, test points are only specified in the parameter space, as the prediction of
the snapshots is the actual final output of the model. As a result, deciding on which clus-
ter the parameter instance lies, and thus its associated local surrogate model and local
basis requires an additional predictive step. In synthesis, the clustering is performed in
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the global reduced coordinates space while the online assignment of the cluster has to
be performed in the parameter space. In order to close this process, the information
from the training snapshot set can be leveraged in different ways. In particular, the clus-

tering {Ck }
kopt

k=1 of the training snapshots {uN ,m}M
m=1 induces the clustering of the training

parameter pointsΘTr = {⃗θm}M
m=1 into smaller sets:

ΘTr
k = {⃗θm ∈ΘTr : uN ,m ∈Ck } k = 1, ...,kopt . (3.21)

The simplest method would compute the parameters’ mean in each cluster:

θ⃗k = θ⃗

|Ck |
, θ⃗ ∈ΘTr

k (3.22)

and assign the test parameter instance to the cluster that minimizes its distance from
the mean. This method, despite its simplicity, can lead to erroneous results: the clus-
ter’s parameter mean does not generally correspond to the cluster’s centroid (which is
instead defined as an average in the reduced coordinates space) and therefore does not
provide a good reference for calculating distances. Additionally, the map from the re-
duced coordinates space to the parameter space does not conserve distances: clusters
have non-uniform sizes in the parameter space and this should be taken into account.
The midrange criterion, proposed by Hess [27] for a uni-dimensional parametric case,
defines instead a cluster radius and a cluster midrange in the parameter space in order
to account for the different sizes of the cluster. Extension of this criterion to a multi-
dimensional case is nevertheless complex, as different parameters have different influ-
ences on the solution.

Algorithm 3 Online Stage

Input:Test maneuver points θ⃗(Test )
m , Global regression model F , Local surrogate

models F1, ...,Fkbest
, Local basis {ψl ,1}r1

l=1, ..., {ψl ,kopt
}
rkopt

l=1

Output: Snapshots predictions û(Test )
N ,m

1: Predict global coefficients test maneuver {a(Test )
n,m }r

n=1 =F (⃗θ(Test )
m )

2: Assign Testing points to cluster based on a(Test)
n,m ·σn .

3: Predict local coefficients test maneuver in each cluster {â(Test ,k)
n,m }rk

n=1 =Fk (⃗θ(Test )
m )

4: Predict full snapshots û(Test )
N ,m =∑r

l=1 â(Test ,k)
l ,m ψl ,k {m : a(Test )

n,m ∈Ck }

The proposed method, instead, aims to approximate the map between the parame-
ter space and the global reduced coordinates, counting on the fact that the pre-trained
k-means algorithm can be used to classify the global coordinates to each cluster. Luck-
ily, not much additional work has to be done in order to find the approximate map, as
in the global POD-LSTM, the Neural Network is used exactly for this purpose. This ex-
plains why in the first phase of the offline stage, a global regression model is trained.
Therefore the composition of the k-means and the pre-trained global surrogate model
directly solves the classification task. One can observe that a classification model could
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be trained on the same data, directly predicting a number in the range 1, ...,kopt , thus
avoiding the composition of the k-means and the global regression model. The results
would in fact be really similar, as a regression ANN can be turned into an equivalent
classifier just by adding a dense layer with softmax activations. However, the k-means
practically plays the part of the dense layer and it is computationally more efficient. Ad-
ditionally, changing the number of clusters would not require modifications in the re-
gression model, as instead would be the case for a classification model with a variable
number of classes.

3.5.5. GAUSSIAN MIXTURE MODELS FOR OVERLAPPING CLUSTERS
Gaussian Mixture Models (GMMs) are a class of probabilistic models based on the as-
sumption that a sample of observed data is generated from a mixture of Gaussian distri-
butions. GMMs can be used as clustering techniques, by identifying the distribution that
has the highest probability of having generated a given data-point. This technique can
also be seen as a generalization of the K-means algorithm allowing the identification
of clusters not only with spherical shapes but with elliptic shape, thanks to the incor-
poration of information about the data covariance. Compared to K-means clustering,
GMMs do not perform "hard cluster assignments" (i.e. the only output of the model
is whether a data-point belongs or not to a cluster) but also output an estimate of the
probabilities of a data-point belonging to each cluster. This aspect is a key factor for
the definition of overlapping clusters: overlap regions between clusters can be detected
when the maximum cluster probability is lower than a predefined threshold value. Over-
lapping clusters, allow for the construction of local snapshots matrices with elements in
common, and therefore Local Bases that contain common information. This feature en-
ables a good coverage of the local regressor spaces even along the clusters borders, and
eliminates the peaks observed in the projection error in proximity of cluster transition
regions.
A Gaussian mixture distribution can be expressed as [8]:

p(x) =
K∑

k=1
πkN (x |µk ,Σk ) (3.23)

where the quantity πk is denoted as mixing coefficient, and K is the total number of
components of the GMM model. The K-dimensional random variable z is introduced,
such that only one zk is equal to 1 and the rest to 0: this variable defines the actual state
k (or cluster) among the possible K states. The marginal distribution over z is expressed
through the mixing coefficients:

p(zk = 1) =πk (3.24)

where pik are probabilities, and sum to 1. In the case several independent observation
(data-points) X = {x1, ..., xM } are drawn from the distributions, it is possible to express
the log-likelihood of the data given the parameters as [8]:

ln p(X |π,µ,Σ) =
M∑

m=1
ln

K∑
k=1

πkN (xm |µk ,Σk ). (3.25)

Maximizing this function with respect to the parameters, means maximizing the prob-
ability that the observed data points have been generated from the Gaussian Mixture
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Models. Differentiating with respect to the parameters uk and setting the derivatives to
zero, yields the following expressions:

µk = 1

Mk

M∑
m=1

γ(zmk )xm

Σk = 1

Mk

M∑
m=1

γ(zmk )(xm −µk )(xm −µk )T

πk = Mk

M

(3.26)

where γ(zmk ) ≡ p(zmk = 1|xm) is the responsibility which indicate the probability of a
data-point belonging to each cluster, and can be calculated as:

γ(zmk ) = πkN (x⇕|µ∥,Σ∥)∑K
i=1πi N (xm |µ〉,Σ〉)

Mk =
M∑

m=1
γ(zmk )

(3.27)

Practically, the log-likelihood is maximized by initializing the parameters, and iteratively
evaluating the responsiblities and the parameters, until convergence is achieved [8].

The knowledge of the "responsibilities", i.e. the probability of each data-point be-
longing to each cluster, can be leveraged to assign data-points to multiple clusters, dur-
ing the generation of the local snapshot matrices. A threshold probability, pϵ can be
used:

xm ∈Ck if γ(zmk ) > pϵ. (3.28)

This criterion can also be used when generating the reduced representations of the train-
ing snapshots that are used to train the local regression models. However, in this work,
GMM overlapping-clusters are only briefly introduced as a solution to the problem of the
high projection error near the cluster transition regions, caused by the poor coverage of
the reduced basis in those regions.

In Fig. 3.18, a comparison of the cluster definition in POD reduced coordinate space,
between the K-means hard clustering and the GMM clustering with overlap is displayed.
The GMM with overlap demonstrates to be a robust dimensionality reduction model,
overcoming the main limitation of the Cluster-POD based on disjoint clusters.

Although this clustering strategy presents several advantages compared to the stan-
dard K-means clustering, in this thesis it has only been used to demonstrate how the
projection error peaks near the cluster transition regions can be reduced by the defini-
tion of overlap regions. Therefore, the online results and final predictions of the ROMs
are only based on the K-means clustering technique, while a short section (4.3) will be
dedicated to the offline results of the GMM-based model.
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(a) Gaussian Mixture Model, pϵ = 0.3 (b) Disjoint K-means clustering.

Figure 3.18: Comparison of clusters in the POD coordinates subspace, using GMM with overlap and
K-means algorithm. Points in red indicate the overlap regions. K = 4.

3.6. LATENT DYNAMICS MODELLING
This section describes the Machine Learning procedure followed to model the dynamics
of the reduced coordinates derived from the dimensionality reduction of the full system.
Most of the methods presented are general and applicable to both global and local model
decomposition methods. Nevertheless, the specific inputs and parameters for each of
the methods are also specified in the following paragraphs. Moreover, some of the most
relevant training results of the Machine Learning methods are reported and discussed.

3.6.1. MACHINE LEARNING FOR REGRESSION
The objective of the non-intrusive surrogate model is to learn a continuous map from the
parameter space (also referred to as the input features space) to the reduced coordinate
space:

F (⃗θ; w) : θ⃗m −→ {an,m}r
n=1 (3.29)

where the surrogate model F is a non-linear function parametrized by its weights w .
The output space has a user-defined dimension r which corresponds to the truncation
index of the sum associated with the modal reconstruction. The input space dimen-
sion depends on which features are selected to feed the model: the unsteadiness of the
CFD simulations implies that the compressed representation of the snapshots contains
time-history effects and therefore, not only the instantaneous input vector θ⃗t should be
included as input features, but also the inputs at previous time-steps. The continuity of
the input signal in the α− q sample space implies that the derivatives of these param-
eters might also have an important influence on the instantaneous pressure fields and
should therefore be incorporated in the regressor input features.
The relative importance of each input can be quantified by looking at the correlations be-
tween input features and expected outputs. The Pearson product-moment correlation
coefficient is used to measure the correlation, being a common choice in the Feature
Selection step of Machine Learning pipelines:

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2 ∑

(yi − ȳ)2
(3.30)
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where xi , yi are any of the two input or output features and x̄, ȳ the means of these fea-
tures.

In Fig. 3.19, the heatmap of the Pearson correlation coefficient for the instantaneous
inputs and outputs is displayed. The strongest correlation can be found between the an-
gle of attack α and the first reduced coefficient a1 (associated with the most energetic
mode) suggesting that this parameter is the most meaningful in determining the un-
steady pressure fields. High correlation to a1 can be found with the second time deriva-
tive of the angle of incidence α̈: this is however due to the high correlation between α

and α̈ which results from the sinusoidal shape of the input signal for the training ma-
neuver, and consequently removing the feature α̈ from the inputs should not influence
the accuracy of the regression model. The pitch rate q appears to strongly influence the
fourth reduced coefficient. Although removing some of the low correlated input features
could be beneficial in terms of the model efficiency, in this context all of the considered
input features are kept, in order to allow for a simpler comparison of the resulting ROM
with the POD-LSTM model of Bourier [9], in which the Neural Network was trained with
all the listed inputs. However, when a larger number of degrees of freedom or parameters
are considered in the generation of the samples, a Feature Selection study can result in a
remarkable gain in computational efficiency and accuracy, by removing the redundant
input features from the model.

Figure 3.19: Pearson correlation coefficient between the instantaneous control inputs and the first five global
POD reduced coefficient.

DATA PREPARATION

The set(s) of reduced coefficients resulting from the Global or Local decomposition meth-
ods and the control inputs are fed into the Regression models as training samples. In
order to ensure that all components of the multi-input and multi-output vectors have
similar ranges of variations, the input and output data should be normalized. The nor-
malization procedure is beneficial for the training convergence because it promotes a
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loss function that is more spherical with respect to the output features (without normal-
ization, an output feature with a larger scale of variation would have a larger weight in
determining the loss minimum). Therefore, all inputs and output features are normal-
ized to lie in the range of values [0,1] using a Min-Max scaler:

ascaled = a −ami n

amax −ami n
. (3.31)

3.6.2. THE MULTI-LAYER-PERCEPTRON
The Multi-Layer-Perceptron architecture presented in Chapter 2 is a common choice
[25] to solve supervised regression tasks due to the computational efficiency and flexi-
bility of the model to learn the non-linear mapping between the inputs and the outputs.
Additionally, this model is often used as a baseline for comparison with more complex
architecture, such as the LSTM network [59].

Figure 3.20: Multi-Layer-Perceptron Architecture.

In Fig. 3.20, a schematic representation of the architecture used in this study is given,
highlighting the input and output features of the model. In particular, it must be noted
how the parameter input vector θ⃗ is fed into the input layer at the current time step and
at previous time steps until tp . The number of outputs can be chosen depending on
the level of accuracy needed for the reduced representation of the pressure fields and it
is generically indicated by r . Note that the MLP architecture is also used in this study
for the direct prediction of the loads coefficient as explained in Sec. 3.6.5: in that case,
the size of the output layer is 3, corresponding to the Axial Force Coefficient, Normal
Force Coefficient, and Pitching Moment Coefficient. The final MLP model in this study is
dependent on the choice of the hyperparameters and the loss function. In the following
paragraph, these choices are specified and justified.
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Hyperparameter Tested Values Baseline Optimal Value

Number of Hidden Layers [1,2,3,4] 2 3
Number of Hidden Units [64,128,256,512,1024] 128 512

Batch Size [8,16,32,64,128] 32 64

Table 3.11: Hyperparamter optimization settings and results.

LOSS FUNCTION

The loss function used in the training of the MLP model for the prediction of the re-
duced coordinates is the weighted sum of the Mean Square distance between the pro-
jected snapshots and the predicted snapshots and the Mean Square distance between
the predicted and the true coordinates. The outputs of the network {ân,m}r

n=1 are there-
fore multiplied by the POD modes and then compared to POD expansion of the true
targets {an,m}r

n=1:

L = ||
r∑

n=1
an,mφn(x)−

r∑
n=1

ân,mφn(x)||2 +λ
r∑

n=1
||ân,m −an,m ||2. (3.32)

The first term of the sum accounts for the relative importance of the POD coefficients
in the full-state representation of the snapshots: the lower-ranked terms play a stronger
role in determining the dominant feature of the snapshots and the Network should pri-
marily learn to accurately predict these terms. Nevertheless, a second term weighed
by the scalar λ is added, in order to guarantee a certain level of accuracy even on the
higher-ranked modes which can have a remarkable impact on the solutions of the test-
ing snapshots. For the direct prediction of the integral loads, the Loss function is simply
defined as:

L =
3∑

i=1
||ĈF i ,m −CF i ,m ||2. (3.33)

where:
CF = [C A ,CN ,CMy ] (3.34)

HYPERPARAMETER TUNING AND TRAINING PROCEDURE

The hyperparameter choices influence the performance of a Neural Network in terms
of minimum loss and training time. An extensive sensitivity study is performed in the
work of Bourier [9], in order to understand the influence of each hyperparameter on
the performances of the LSTM network in the prediction of the reduced coefficients. In
this study, however, the tuning is performed only on the most relevant hyperparameters
that define the architecture (Number of Hidden Layers, Number of Hidden Units) and
the training phase (Batch size). An optimization script is run, changing each hyperpa-
rameter one at a time with respect to the baseline settings (as shown in Tab. 3.11) and
performing training for a maximum number of 1000 epochs, which is stopped when the
validation loss does not decrease for 200 epochs (patience parameter).

The final model settings are summarized in Tab. 3.12 and are common to all the MLP
Networks used in the remainder of the thesis.
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Settings Value

Number of Hidden Layers 3
Number of Hidden Units [512,512,512]

Batch Size 64
Learning Rate 1e-3

Activation [t anh, t anh, t anh]
Optimizer ADAM
Patience 200
Epochs 2000

tp 5

Table 3.12: Hyperparamter and training settings of the final MLP model.

The MLP architecture and training modules are implemented within the Keras [13]
API of the TensorFlow library.

3.6.3. THE GAUSSIAN PROCESS REGRESSION

The theoretical background of the Gaussian Process Regression has been introduced in
Sec. 2.2.3: the goal of this paragraph is to describe the actual implementation of the
method used in this work, with particular respect to the hyperparameter optimization
framework.
The library GPyTorch [20] is used for the implementation of Gaussian Process Regres-
sion: this package is built in PyTorch [52] and therefore allows integration of GPR and
Neural Network Models. The advantage of using GPyTorch routines compared to other
popular libraries such as GPFlow [65], is the possibility to use GPU acceleration. In fact,
the computation of the marginal log-likelihood introduced in Eq. 2.27, is only based
on matrix-matrix multiplication, leveraging the BlackBox Matrix-Matrix Multiplication
(BBMM) inference, introduced by Gardner et al. [20].
The hyperparameters are optimized using the ADAM algorithm [35] on the loss defined
by the negative log marginal likelihood. The training time is remarkably decreased when
GPU acceleration is employed, even for a large number of data points. In the specific
case of the Global POD surrogate modeling, for tp = 5, the dimension of the input space
is 25 and the output space dimension depends on the number of modes used. For the
training, 5666 data points are used: most standard implementations would require un-
feasible training time.

3.6.4. THE LONG SHORT TERM MEMORY NETWORK

The Long Short Term Memory Network, introduced in Section 2.2.2, is a common choice
for unsteady ROM construction, due to its capabilities to process time-dependant data
and to naturally model time-history effects. In this section, the main features of the spe-
cific LSTM model employed in this work are presented.
The architecture considered for the prediction task (for both the reduced coordinates
and the integral coefficient predictions) is the many-to-one-type RNN: the predictions
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are only performed at the present time-step, based on multiple input vectors given at
previous time-steps up to tp . An illustrative example of this type of architecture is dis-

played in Fig. 3.21, where the inputs θ⃗t are highlighted in green and are sequentially pro-
cessed by the LSTM gates (in blue) across the Network layers (moving upwards). Com-
pared to the Multi-Layer-Perceptron, each sample input vector [⃗θt , ..., θ⃗t−tp ] is not flat-
tened along the time-dimension but it is processed as a time-series of dimension [tp , p]
where p = 5 is the number of parameters used to describe the input at each time-instant.
As a consequence, unlike the MLP, the weights that process the same inputs (or interme-
diate outputs) are shared across time steps. The architecture in Fig. 3.21 only serves as
an example to describe how the information across time steps propagates in the LSTM.
The true architecture of the LSTM resembles the MLP in Fig. 3.20, where the standard
units in the intermediate layers are replaced by LSTM units, followed by a densely con-
nected layer. This architecture does not differ from the one used in the thesis of Bourier
[9].

Figure 3.21: LSTM many-to-one Architecture.

The selected loss function is analogous to the MLP loss function of Eq. 3.32 with
λ = 0.1 for the prediction of the reduced coordinates. For the prediction of the inte-
gral loads coefficients Eq. 3.33 is used. The hyper-parameter tuning is performed in a
similar fashion to the MLP architecture, also exploiting the results of the extensive sen-
sitivity study on the LSTM network parameters present in the work of Bourier [9]. The
best accuracy, in terms of minimum validation loss, is achieved for a Network with two
LSTM layers, followed by a densely connected layer. Each LSTM layer contains 1024
units, while the densely connected layer contains 90 units. The other hyperparameters
are summarized in Table 3.13: after the LSTM layers, a dropout layer with a dropout rate
of 0.2 is included to avoid overfitting. This architecture, however, is remarkably larger in
terms of number of tunable parameters, with a sensible increase in training time com-
pared to the smaller MLP. In order to allow for a fair comparison of the LSTM and MLP
architectures, a smaller LSTM with the same number of hidden layers and hidden units
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Settings LSTM LSTM (small)

Number of LSTM Layers 2 2
LSTM Units [1024,1024] [512,512]

Number of FC Layers 1 1
FC Units 128 128

Batch Size 64 64
Learning Rate 1e-3 1e-3

Activation [t anh, t anh, t anh] [t anh, t anh, t anh]
Dropout Rate 0.2 0.2

Optimizer ADAM ADAM
Patience 200 200
Epochs 2000 2000

tp 5 5

Table 3.13: Hyperparameters and training settings of the final LSTM model and the downscaled version.

as the MLP is considered, where one of the fully connected layers of the MLP is replaced
by an LSTM layer. The architectural and training features of this LSTM (referred to as
"small" LSTM) are also included and presented in Table 3.13.

3.6.5. DIRECT LOADS COEFFICIENTS PREDICTION VIA SURROGATE MODEL-
ING

The predictions of the total integrated force and moment coefficients can be performed
by direct integration of the predicted pressure fields: as the pressure fields can be ex-
pressed as a linear combination of the first r modes and the integration is a linear op-
eration, the modes can be integrated in advance and the resulting integrated forces can
also be expressed as a linear combination of the integrated modes using the same pre-
dicted reduced coordinates. Nevertheless, the predicted pressure fields are affected by
two main sources of error: the projection error and the network error, which are prop-
agated into the integrated coefficients. It is therefore convenient, in order to bypass
the projection error, to directly infer these scalar quantities through the same regression
models used to predict the reduced coordinates. The true coefficients could be added to
the output of the models by adequately modifying the loss function used to predict the
reduced coordinates. However, in the present thesis, distinct models (with the analogous
architectures described in the previous paragraphs) are trained using the Loss Function
defined in Eq. 3.33 to output the three loads coefficients. It must be noted that this direct
procedure offers additional flexibility compared to the integration of the pressure fields,
as it can be used as a standalone model for the prediction of integral quantities when the
pressure fields are not a desired output of the model. Additionally, it can be generalized
to cases where not only the pressure component of the forces is taken into account for
the computation of integral forces.
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3.7. ERROR ANALYSIS

The dimensionality reduction based on a linear subspace approximation allows for a
clear separation between the offline and the online stage of the ROM. The immediate
consequence is that access to the latent representation of each snapshot is possible
through simple projection on the reduced space, and reconstruction of the truncated
version of the snapshots is performed by simple linear expansion. As a result, it is possi-
ble to distinguish between two forms of errors:

• the projection error ϵ
cp

P on the pressure coefficient distribution, resulting from the use
of a reduced basis and independent of the regression model performance, which
can be calculated as:

ϵ
cp

P (x) = |uN ,m −
r∑

l=1
a l ,mφl | (3.35)

• the network error ϵ
cp

N N on the pressure coefficient distribution, which has a source in
the regressor network and it is essentially a measure of the distance between the
true reduced coordinates and the predicted reduced coordinates:

ϵ
cp

N N (x) = |
r∑

l=1
a l ,mφl −

r∑
l=1

â l ,mφl | = |
r∑

l=1
(a l ,m − â l ,m)φl |. (3.36)

The total error ϵ
cp

T of the ROM on the pressure coefficient distribution can be evaluated
as the difference between the ground truth and the predicted pressure fields and it there-
fore inherently contains both projection and projection error:

ϵ
cp

T (x) = |uN ,m −
r∑

l=1
â l ,mφl |. (3.37)

It might be tempting to express the total error as the sum of the projection and the net-
work error but this is in general not true due to the presence of the absolute values. The
described metrics are useful to evaluate the error as a function of space and the specific
snapshot within a maneuver. In order to evaluate the performance of the models over
multiple snapshots that form a maneuver, a scalar measure of the errors based on the
Mean Square error metric is also introduced :
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(3.38)
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Similarly, the instantaneous errors on the integral loads’ coefficients can be introduced:

ϵ
c f

P = |I (uN ,m)−I (
r∑

l=1
a l ,mφl )|

ϵ
c f

N N = |I (
r∑

l=1
a l ,mφl )−I (

r∑
l=1

â l ,mφl )|

ϵ
c f

T = |I (uN ,m)−I (
r∑

l=1
â l ,mφl )|

(3.39)

where I indicates the integral operator that maps the pressure field coefficients to the
specific integral loads’ coefficients. The global MSE over a maneuver is then calculated
as:
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(3.40)

When the integral loads are computed directly through the surrogate models, it is obvi-
ous that:

ϵ
c f

P = 0 −→ ϵ
c f

N N = ϵc f

T (3.41)





4
RESULTS AND DISCUSSION

This chapter includes the most relevant results of the application of the three ROMs de-
scribed in the Methodology chapter: Global POD-ANN, Domain Decomposition POD-
ANN, and Cluster POD-ANN. The offline and online stage performances are first de-
scribed separately for each method and then included in a comparative study of the
ROMs, which is at the heart of the thesis work. The effect of the snapshot scaling on
the decomposition is also given, in terms of projection error on the integral loads’ co-
efficients. The direct integral load coefficient predictions, performed through the three
surrogate models employed (Multi-Layer-Perceptron, Long Short Term Memory Archi-
tecture, Gaussian Process Regression), is described in the following sections and serves
as a comparison of the regression methods.

4.1. SCALED POD
The idea of scaling the pressure field snapshots was introduced in Chapter 3, with the
aim of determining a reduced basis with increased efficiency in capturing spatially ex-
tended dominant structures and improving the performance of the ROM in key areas of
the spatial domain, such as the wingtip region, where large projection errors have been
observed in the thesis of Papp [51] and Bourier [9]. As previously observed, the snapshot
scaling is equivalent to an alternative definition of the norm that is minimized by the
POD procedure. Therefore, by introducing a scaling based on the cell areas, the physi-
cal interpretation of the POD subspace is not merely based on the maximization of the
"pressure energy" (where the term energy comes from the analogy with POD in the con-
text of turbulent flow analysis, where the maximization of the turbulent kinetic energy is
the goal of the POD) contained in the retained modes, but can be seen as the maximiza-
tion of "force energy" and equivalently the "moment energy" when the distance scaling
is considered as well. The load coefficients are calculated from the force and moment
distributions on the wing and it is expected that additional accuracy in the prediction of
these quantities derives from the use of a scaled POD basis when the same number of
modes are used. Looking at the problem from another perspective, the improvement in
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the projection error of the pressure fields in certain regions (for instance near the wing-
tip for the Moment-POD), leads to the consequent improvement of integral quantities
that have a stronger dependence on those regions.

In Fig. 4.1 a typical projection error of the pressure distribution along the wing ϵ
cp

P (x)
resulting from the use of the different scaling procedures is displayed. The L 2-norm of
the error would provide a minimum value for the Pressure-POD, as the corresponding
basis is tailored for this goal. Nevertheless, larger areas of the domain are characterized
by a more significant projection error for the pressure-POD compared to the Force and
Moment POD. The former two bases do not present remarkable differences, as it was
already clear from the shape of the dominant modes in Fig. 3.11: this is because the
multiplication by the cell areas dominates over the multiplication factor that accounts
for the distance from the pitching moment pole. One could further modify the scaling
by introducing a weighting factor that accounts for the distance from the wingtip, in
order to increase the accuracy of the ROM in that region. The choice of the weighting
function is arbitrary and depends on the goal functional: Bourier [9] proposes a linear
scaling function dependent on the distance from the wing-tip. However, if the goal func-
tional is set as the pitching moment coefficient, the best way of scaling is represented by
the Moment-POD, since the optimization problem is defined as the minimization of the
projection error on the moment distribution.

Figure 4.1: Absolute projection error ϵ
cp
P (x) using three different snapshot scaling methods. Pitch harmonic

maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z at t = 1s. α= 1.71[deg ],α̇= 23.4[deg /s],q = 23.4[deg /s]

In Fig. 4.2, the projections of axial force coefficient, normal force coefficient, and
pitching moment coefficient on the three scaled bases are respectively displayed, and
compared to the ground truth data, for the same testing maneuver of Fig. 4.1. In partic-
ular, 5 modes are used to perform the projection: this would be the result of integrating
the projected pressure fields on a POD subspace spanned by the dominant 5 modes.
These plots clearly display the advantages of using a load-scaled basis instead of apply-
ing the POD decomposition directly on the pressure fields: the pressure-POD presents
large inaccuracies in representing the normal force coefficient CN , although it manages
to capture its general trend. Relative to the pitching moment coefficient CMy , instead,
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the inaccuracy largely exceeds the acceptable level of error of a Reduced Order Model,
and the number of modes should be greatly augmented to achieve a comparable level of
accuracy to the scaled modes.

Figure 4.2: Projection of the integral loads’ coefficients using 5 modes and three different scaled bases.Pitch
harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z. Top: Axial Force Coefficient C A . Mid-
dle:Normal Force Coefficient CN . Bottom:Pitching Moment Coefficient CMy

In Tab. 4.1 the Mean Absolute Error, for the same maneuver of Fig. 4.2, is presented
for a varying number of modes. The error on C A is contained within acceptable ranges
for all methods using a minimal number of modes, although the Pressure-POD shows
the best performance in the prediction of this quantity. Significant differences can be
detected in the projection error on CN , with the Force and Moment POD being O(101)
more accurate than the Pressure-POD for all the considered truncation indices: using 40
Pressure-POD modes provides a similar error of using only 5 scaled POD modes. Similar
differences can be observed in the predictions of the pitching moment coefficient, as
the Moment-POD displays the best performance with superior accuracy to the pressure-
POD even when using a factor of eight fewer modes.

Interestingly, the training results also show differences between the three decom-
positions for the same Neural Network architecture and hyper-parameter settings. The
distribution of the reduced coefficients resulting from the three bases are in fact strongly
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Scaling N. Modes E
C A
P E

CN
P E

CMy

P

Pressure 5 0.0011870 0.0526189 0.0116343
Force 5 0.0016809 0.0028256 0.0026799
Moment 5 0.0023635 0.0078735 0.0016667

Pressure 10 0.0004553 0.0342688 0.0070497
Force 10 0.0007188 0.0022346 0.0013448
Moment 10 0.0009675 0.0023856 0.0007925

Pressure 20 0.0002623 0.0197256 0.0026204
Force 20 0.0002710 0.0003266 0.0003126
Moment 20 0.0003870 0.0013067 0.0003850

Pressure 40 0.0001192 0.0020636 0.0022470
Force 40 0.0001273 0.0002304 0.0002203
Moment 40 0.0001684 0.0003084 0.0001510

Table 4.1: Projection error on integral loads coefficients using different scaling and for a different number of
modes.

related to their corresponding POD subspace: the performances of the Neural Network
are affected by the distribution of its outputs, tending to overfit on the training data for
output signal characterized by a larger amount of noise. This overfitting behavior is vis-
ible in Fig. 4.3, where the training-validation loss convergence curve is shown for the
three scaling procedures, using three analogous LSTM Networks with a patience of 200
epochs (the training stops when the validation loss does not improve for 200 epochs):
the pressure POD validation loss starts to grow after 300 epochs, indicating that the NN
is learning non-generalizable patterns in the training data. The minimum validation
losses for the Moment and Force POD are around one order of magnitude smaller than
the Pressure-POD validation loss, demonstrating the advantages of scaling the snapshots
even for the Network prediction error.

Figure 4.3: Training and Validation Loss curves for LSTM network trained on the same input. The outputs are
the first 5 reduced coefficients of the three bases.

Considering the results and the analysis conducted in this Section, scaling the modes
by the cell areas appears to consistently improve the performance of the resulting ROMs,
both in terms of the integral loads’ projection errors and in the Neural Network training
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convergence. For this reason, in the remainder of the Chapter, unless differently speci-
fied, the Moment-POD is used to generate the global and the local basis during the of-
fline stage.

4.2. DOMAIN DECOMPOSITION POD
This section includes the result of the Domain Decomposition-POD (DD-POD) based
ROM, following the methodology described in Sec. 3.4. In the first paragraph, the offline
stage results are presented: the spatial projection error arising from the dimensional-
ity reduction is discussed, focusing on a challenging testing condition, highlighting the
advantages of the spatially localized basis and the differences between the two decom-
position strategies employed (DD0.8 and DD0.3). Global measures of the projection error
are also presented for several testing maneuvers and for a varying number of modes. The
analysis of the second source of error, namely the network error, ends the discussion of
the offline stage of the ROM. The second part of the Section deals with the online stage
results, in particular the full pressure distribution predictions and the total ROM error.

OFFLINE STAGE

During the offline stage of the ROM, two sets of local bases are computed, one for each
decomposition type. Each set consists of two local bases: the truncation of these basis
allows for the evaluation of the projection error ϵP (x) using Eq. 3.35. In Fig. 4.4, this
quantity is plotted using a low number of modes, for an operating point correspond-
ing to a high angle of incidence, for which the Global-POD basis shows a large projec-
tion error. The same snapshot is also considered in the work of Papp [51], as the worst
performances of the CNN-based model in terms of MSE are observed. The largest de-
viations are concentrated at the leading edge portion in the proximity of the wingtip
region of the wing, as the truncation of the basis leads to neglecting the higher order
modes that account for the vorticity generated at the wing-tip due to the large pressure
difference between the upper and lower surface. However, it is important to note that
the DD0.8 decomposition limits the magnitude and the extension of the higher-error
spots in the wing-tip region, compared to the DD0.3 case. This behavior is mainly due
to the capabilities of a spatially local basis to better capture the dynamically most rel-
evant structures: the formulation of the DD-POD can in fact be seen as a combination
of two distinct L2 minimization problems over two different domains. It results that, in
order to be included in the lower-ranked modes, the local coherent structures in each
sub-domain are not "competing" in terms of energetic content with the coherent struc-
tures in other sub-domains, thus producing modes with stronger local dynamical signif-
icance. On the other hand, by splitting the decompositions, the spatial correlations be-
tween sub-domain are also neglected: the dominant modes are in fact computed as the
eigenmodes associated with the largest eigenvalues of the correlation matrix C = X T X .

The global performances of the local DD-POD basis over several testing maneuvers,
expressed in terms of time-averaged Mean Square Error, are displayed in Fig. 4.5 as a
function of the number of modes retained in the reduced representation. For all the con-
sidered maneuvers, the error decreases by around one order of magnitude going from a
reduced representation with 5 modes (in each domain) to 40 modes. Not surprisingly,
the pitch maneuvers centered at a higher angle of attack display a slower convergence
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(a) DD0.3 (b) DD0.8

Figure 4.4: Absolute projection error ϵP (x) using different geometry decompositions. Pitch har-
monic maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z at t = 0.25s. Instantaneous parameters:
α= 19.93[deg ],α̇= 5.38[deg /s],q = 5.38[deg /s]

rate, due to the difficulty of the reduced basis to capture the vortical structures appear-
ing at those incidences. The DD0.8 decomposition performs consistently better than the
DD0.3, for all considered number of modes settings: this feature clearly demonstrates
how the decomposition geometry can affect the resulting basis quality, and in this spe-
cific case, how the isolation of the wing-tip region leads to improve performance of the
ROM.

Figure 4.5: Time averaged Mean Squared Projection Error vs number of modes over several testing maneuvers,
using two different decomposition strategies.
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ONLINE STAGE

During the online stage of the method, the reduced coordinates are predicted by the local
surrogate models on each sub-domain, and the final pressure field prediction is obtained
through the geometric composition of the local POD sum expansion with the local bases.
The ROM pressure fields for the same operating condition of Fig. 4.4 is now shown in Fig.
4.7, as the DD0.3 (Fig. 4.7a) and the DD0.8 (Fig. 4.7b) predictions are compared to the
ground truth CFD fields (Fig. 4.7c). This operating condition is of particular interest, due
to the complex flowfield pattern, highlighting the largest inaccuracies of the considered
ROMs and therefore allowing for a better comparison of the models. In particular, the
suction region at the leading edge sections towards the wingtip is underpredicted by the
DD-ROMs leading to a peak in the total error over the mentioned area as visible in Fig.
4.6.

(a) DD0.3 (b) DD0.8

Figure 4.6: Absolute total error ϵP (x) using different geometry decompositions. Pitch harmonic ma-
neuver with A0 = 15[deg ], A = 5[deg ], f = 1H z at t = 0.25s. α = 19.93[deg ],α̇ = 5.38[deg /s],q =
5.38[deg /s]

4.3. CLUSTER POD
In this Section, the results concerning the Cluster POD (CPOD) methodology described
in Sec. 3.5 are presented and discussed. The CPOD offline stage, in particular, is char-
acterized by several steps: the discussion is here focused on the result of the optimiza-
tion procedure that justifies the number of clusters employed in the ROM. Additionally,
global measures of the projection error are given as a function of the basis truncation
index. Some relevant examples of pressure fields predictions are then presented, high-
lighting the strength and deficiencies of the model.

OFFLINE STAGE

During the offline stage of the CPOD, the optimal number of clusters is chosen according
to an a-posteriori indicator of the projection error evaluated on a validation maneuver,
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(a) DD0.3 (b) DD0.8 (c) Ground Truth

Figure 4.7: DD POD-LSTM pressure field predictions and comparison with CFD ground truth data.
Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z at t = 0.25s. α= 19.93[deg ],α̇=
5.38[deg /s],q = 5.38[deg /s]

which is selected to be the Pitch Maneuver at nominal incidence A0 = 10[deg ], ampli-
tude A = 10[deg ] and frequency f = 0.5[H z], because of the good coverage of the param-
eter space in terms ofα and q , which represent the most correlated parameters in deter-
mining the dominant feature of the pressure fields. This is also shown in Fig. 4.8a, where
the validation maneuver coverage of the α-q space is represented by the black curve. As
the number of clusters is varied in the optimization loop, the Mean Square Projection Er-
ror for each validation snapshot is computed, while the assignment of a validation point
through a cluster is performed in the global reduced coordinate space as explained in
Sec. 3.5. In Fig. 4.8b, the MSE over the validation maneuver is shown for a changing
number of clusters (k=1,...,4): it is obvious that for the vast majority of timesteps the
error decreases with k due to the more localized content of the local bases, yielding a
considerable improvement to the global basis performance. Despite the general trend,
some isolated peaks in the MSE indicator can be detected in correspondence with the
snapshots located near the border of two neighboring clusters: this can be explained by
the poor coverage of the local snapshots matrices in said regions of the parameter space.

In order to assess the optimal value for the number of clusters, the summation of the
MSE values over the entire validation maneuver is performed, using Eq. 3.16, providing a
scalar quantity for each value k. The results of this analysis are displayed in Fig. 4.9b: the
minimum total MSE is reached at k = 4. The largest improvement appears between one
cluster (i.e the global basis) and three clusters, with a reduction of approximately 40% in
the total MSE. Although, several other local minima are present at k = 6 and k = 8 the
curve shows an increasing trend: by adding clusters, in fact, the number of border snap-
shots increases as well, with a detrimental effect on the global error measure. Further-
more, the optimal number of clusters should be chosen as the smallest integer for which
a local minimum is detected, in order to address the drawback of training the surrogate
model with datasets that are not large enough. Depending on the original database and
the snapshot sampling, in fact, a local minimum in the total MSE could be found for a
value of the number of clusters that is too large relative to the cardinality of the clus-
ter snapshot set: in such case, a penalization term that accounts for the magnitude of k
could be included in the optimization metric.



4.3. CLUSTER POD

4

67

(a) Clusters in the α-q space using k = 4. (b) MSE over validation maneuver

Figure 4.8: Optimal clustering of the input space (α-q) and MAE optimization curves. Cluster fea-
tures: first 5 global Moment-POD coefficients. In black the validation maneuver: harmonic pitch
at A0 = 10[deg ], A = 10[deg ], f = 0.25H z.

The alternative criterion for the choice of kopt is the commonly used "Variance Elbow"
method, and requires the computation of the Within Cluster Sum of Squared Variance
as in Eq. 3.15: this quantity is calculated for the analyzed case taken and displayed in
Fig. 4.9a. The monotonicity of the WCSS does not allow for a simple definition of kopt ,
which is instead often heuristically identified as the integer for which the curve shows
an elbow-like shape. This would correspond to k = 2 in the considered plot. This choice,
however, would not yield the largest decrease in the total MSE, which instead occurs
for k = 3. The discrepancy between the results of the two criteria indicates that in many
cases, the a-posteriori error indicator can yield a more informed choice of kopt and result
in better performance of the resulting ROM. Nevertheless, the additional computational
cost and the ambiguity in the choice of the validation maneuver can represent a limiting
factor in the adoption of the described criterion, making the Variance Elbow method a
more direct and accessible procedure.

The overall performance of the Cluster POD, measured in terms of Mean Absolute
projection error and as a function of the number of modes, is displayed for several ma-
neuvers in . 4.10. The maneuvers oscillating around moderate angles of attack (A0 =
5[deg ]) are characterized by lower projection errors, even when a small number of modes
is considered: for r = 5 modes, the error is approximately 10−2, decreasing up to 10−3

as the number of modes is increased to 40. The efficient data compression of the lo-
cal Cluster bases for this range of α is a result of the parameter space clustering. For
α< 12[deg ], in fact, the testing point are entirely contained inside Cluster 4 and Cluster
2 in Fig. 4.8a: the flowfield topology over this parameter range does not exhibit strong
non-linearities, and the contained variations within a cluster can be captured efficiently
by a local low-dimensional subspace. For the maneuvers spanning larger portions of the
parameter space, the projection error is remarkably higher, showing also a slower con-
vergence rate: the flowfield around α = 12[deg ] is characterized by large fluctuations
of the dominant coherent structures and large sensitivity with respect to the angle of
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(a) WCSS, as in Eq. 3.15. (b) Total MSE as in Eq. 3.16

Figure 4.9: Within Cluster Sum of Squared Errors and Total MSE on validation maneuver vs number
of clusters

attack. This is also visible in Fig. 3.16, when looking at the clustering based on the Pres-
sure POD global features: the largest variations of the global coefficient a2 are associated
with the cluster around α= 12[deg ] (colored in purple). Nevertheless, the differences in
performances of the local basis on each cluster can be alleviated by choosing different
numbers of truncation indices of each local basis: as a consequence, the resulting ROM
can have homogeneous accuracy over the entire parameter range. This is not possible
using a global basis, as the number of modes is also a global parameter.

Figure 4.10: Time averaged Mean Squared Projection Error vs the number of modes over several testing ma-
neuvers. k = 4 clusters.

OVERLAPPING CLUSTERS WITH GAUSSIAN MIXTURE MODELS

This section is relative to the alternative methodology for the generation of clusters, pre-
sented in Sec. 5. In particular, the comparison of the projection error between the K-
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means and the GMM with overlap clustering is presented. The projection error plots ver-
sus time, for the Pitch harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.5H z
(validation maneuver), comparing the projection error emerging from the use of the
truncated Global POD basis, the Local Bases obtained from the K-means clustering and
from the GMM clustering with overlap are provided in Fig. 4.11. The GMM and K-means
basis produce similar results with the fundamental difference that in proximity of the
cluster transition regions timestep = 65,205,265,405, the GMM error does not present
the characteristic peaks of the K-means methodology.

Figure 4.11: Instantaneous inputs and Mean Squared Projection error using Global POD, Cluster POD with
overlapping GMM and Cluster POD with K-means. Pitch harmonic maneuver with A0 = 10[deg ], A = 10[deg ],
f = 0.5H z. Number of modes: 10

ONLINE STAGE

The first step of the online stage of the CPOD-ROM is represented by the assignment of
each testing parameter to its corresponding cluster. As the clustering is performed in the
(weighed) global POD subspace, the first two global reduced coordinates are predicted
through a global surrogate model (LSTM in this case) in an analogous way to the Global
POD ROM. Since the prediction of the global coordinates is affected by the intrinsic er-
ror of the regressor model, a misplacement of the testing point is expected in the POD
subspace with the possibility of the k-means algorithm assigning the point to a cluster
different from the exact one (when the true global coordinates are given to the k-means).
The wrong cluster assignment can sometimes lead to large projection and network er-
rors for the interested testing point, especially when the distance of the testing point
from the true cluster centroid is much smaller than the distance from the assigned one.
It is therefore important for the assignment accuracy to be as high as possible, in order to
limit those cases. In Tab. 4.2 the assignment accuracy is summarized for some relevant
test maneuvers, showing how in most cases, the testing conditions are assigned to the
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Maneuver Accuracy

Pitch A0 = 5[deg ],A = 5[deg ], f = 0.5H z 99.7 %
Pitch A0 = 10[deg ],A = 10[deg ], f = 0.5H z 98.9 %
Pitch A0 = 10[deg ],A = 5[deg ], f = 0.25H z 98.1 %

Pitch A0 = 5[deg ],A = 5[deg ], f = 1H z 98.1 %
Pitch A0 = 15[deg ],A = 5[deg ], f = 1H z 96.0 %

Pitch A0 = 10[deg ],A = 10[deg ], f = 0.0125H z 95.7 %
Pitch A0 = 10[deg ],A = 10[deg ], f = 0.25H z 94.5 %

Table 4.2: Assignment accuracy using global LSTM model for different maneuvers.

correct cluster and thus proving the reliability of the clustering predictive algorithm.
Once each testing point is assigned to a cluster, the local basis and surrogate model

are used to predict the pressure fields. In Fig. 4.12, the prediction of the CPOD ROM (Fig.
4.12a) are compared with the CFD data (Fig. 4.12b), highlighting the absolute prediction
error in Fig. 4.12c. The chosen testing condition is the same as Fig. 4.7, corresponding to
a high angle of attack case, where the Global POD displays large errors near the wingtip.
The CPOD is instead able to capture with improved accuracy the pressure fluctuations
in this region, using a limited number of modes, as it is clear from the comparison of the
total error with the plots in Fig. 4.6.

(a) Cluster POD-LSTM (b) Ground Truth (c) Total Absolute Error ϵT (x)

Figure 4.12: Cluster POD-LSTM pressure field prediction, comparison with CFD ground truth data,
and absolute prediction error. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z
at t = 0.25s. Instantaneous parameters: α= 19.93[deg ],α̇= 5.38[deg /s],q = 5.38[deg /s]
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4.4. COMPARATIVE STUDY BETWEEN METHODS

In this Section, a comparative analysis of the performance of the Global (scaled) POD,
the DD-POD, and the Cluster POD is presented. The decomposition methods are all cou-
pled with the LSTM Network Architecture described in Chapter 3 for the prediction of the
global or local low-order dynamics. Although the ROMs are flexible in terms of the sur-
rogate model that can be used for the reduced coefficients, and therefore the considered
dimensionality reduction techniques could be coupled with the Multi-Layer-Perceptron
and the Gaussian Process Regressor, the goal of this section is to compare the decompo-
sition methods and to highlight the relative advantages and drawbacks of local methods
compared to the global POD. Furthermore, the use of the LSTM facilitates the compari-
son of the obtained results with the POD-LSTM model of Bourier [9].

4.4.1. PROJECTION ERROR

The projection error on the surface pressure coefficient is a key measure of the offline
performance of the ROM. In particular, the efficiency of a decomposition method is a
function of the projection error, relative to the dimension of the latent space: the smaller
the error for a fixed number of latent coordinates, the more efficient and parsimonious
the information compression. In Fig. 4.10, projection error, in terms of time-averaged
MSE over a testing maneuver, is presented as a function of the number of modes, for
several pitch oscillations centered around three different values of α0. For all the con-
sidered methods, the maneuvers oscillating around α0 = 10[deg ] are characterized by
the largest projection errors: this is a result of the input signal design: the sampling is
not uniform over the regressor space, but most training samples are concentrated near
the boundaries of the α−q plane, leaving the mid-regions with a scarcer coverage. It is
interesting to note that for some maneuvers, the projection error curves do not show a
monotonous behavior with respect to the number of modes: this is counter-intuitive, as
adding dimensions (i.e. adding terms in the POD expansion) should yield a better ap-
proximation of the true solution. The explanation for this phenomenon is hidden in the
construction of the basis and the choice of the metrics to evaluate the projection error:
the employed bases (both local and global) are obtained from the snapshot scaling, as
described in Sec. 3.3, and therefore from a modification of the standard L2 metric (MSE
in the discrete setting) with an alternative weighted metric (defined by the weighting ma-
trix that generates the scaling). Consequently, the monotonous convergence of the POD
expansion to the true solution is only valid under the alternative metric. In other terms,
the Moment-scaled basis approximates better the moment distribution as the number
of modes is increased but not necessarily the pressure distribution. Nevertheless, for
r < 20 modes, the projection error decays rapidly for all the considered test maneuvers.
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Figure 4.13: Time averaged Mean Squared Projection Error vs number of modes over harmonic pitching ma-
neuvers for the Global POD, DD0.8-POD and Cluster POD bases.

For a limited number of modes (r ≤ 5), the Cluster POD shows the best performance,
especially at lower angles of attack (A0 = 5[deg ]) where the projection error is three to
five times smaller than the DD-POD and the Global POD. For the same maneuver, the
Global POD requires 40 modes to achieve a similar error value to the CPOD method with
5 modes. At larger angles of attack A0 = 15[deg ], the CPOD performs consistently bet-
ter than the Global POD, with the difference being more pronounced for r ≤ 10 modes.
When a larger number of modes is considered, the Domain Decomposition strategy
yields the best approximations, displaying the most rapid rate of convergence. This be-
havior can be explained by looking at the spatial distribution of errors on the wing sur-
face. For most cases, in fact, a small number of modes is enough to accurately capture
most pressure fluctuations, except for the wingtip region where the projection error is
the highest: adding localized modes in this region yields the largest decrease in projec-
tion error, compared to improving the approximation in the rest of the wing where the
error is already low.
Similar considerations are valid for the projection error on the plunge maneuvers, dis-
played in Fig. 4.14, with the main difference that the largest error is obtained for the
maneuvers around α0 = 15[deg ].
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Figure 4.14: Time averaged Mean Squared Projection Error vs number of modes over harmonic plunging ma-
neuvers for the Global POD, DD0.8-POD and Cluster POD bases.
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4.4.2. TOTAL ERROR

The overall performance of the ROMs is not only dependent on the projection of the re-
duced bases but is also a function of the performance of the surrogate models for the
reduced dynamics. In particular, the use of distinct sets of modes implies that the pro-
jection of the full-order dynamics yields datasets with different statistical distributions,
on which the same data-driven surrogate models can have different performances in
learning the model parameters. In the following the total error plots over time for sev-
eral maneuvers are presented: the focus here is only to compare the different ROMs and
thus a small number of modes (5 modes) for the pressure field reconstruction is consid-
ered, in order to better appreciate the models’ relative differences. In the Appendix A.4.2,
additional plots are provided using a larger number of modes which clearly show a sen-
sible decrease in the total error thanks to the superior size of the corresponding latent
spaces.

In Fig. 4.15 the Total Mean Squared error over a maneuver centered at a low angle
of attack is plotted, and accompanied by the corresponding values of the inputs over
time. The Cluster POD performs better than the DD-POD and the Global POD for all
time instants, reducing the total error of the Global POD-LSTM model by one order of
magnitude in the range of α between 0[deg ] and 5[deg ]. The DD-POD error is also
smaller than the Global-POD for nearly almost timesteps.

Figure 4.15: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 1H z. Number of
modes: 5.

In Fig. 4.16, the pitch oscillation around α0 = 10[deg ] is considered: this maneuver
crosses three clusters (Cluster 2,3,4 in 4.8a) and for a large number of timesteps (100-
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400) the testing conditions are placed close to the border clusters. Due to the reduced
coverage of the local bases in these areas, the total error of the CPOD ROM is larger than
the one of the Global POD. For the rest of the snapshots, the CPOD and DD-POD solu-
tions show remarkable improvements and again the largest differences are observable in
the angles of attack smaller than 10[deg ].

Figure 4.16: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5

The pitch maneuvers aroundα0 = 15[deg ] are interesting cases to be discussed since
the Global POD ROM shows the largest deficiencies at high angles of attack. The CPOD
total has good performance for α ∈ [17[deg ],20[deg ]], corresponding to the local model
of Cluster 1. In particular, the largest error of the Global POD (timestep 46) is reduced by
a factor of 5 using the CPOD ROM. Nevertheless, the CPOD curve presents several local
maxima (peaks), corresponding to cluster transition areas. The considerations made for
the pitch maneuvers are also valid in general for the plunge maneuvers, as the main
parametric influence in driving the ROMs error is represented by the angle of attack. In
Fig. 4.18 the total error plots can almost be overlapped to the plots of Fig. 4.16.
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Figure 4.17: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z.Number of
modes: 5
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Figure 4.18: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5.

4.4.3. ROM COMPUTATIONAL COST

The computational cost of the developed ROMs can be quantified by looking at the total
elapsed time during the computations. The offline phase of the ROMs represents the
most computationally demanding part of the models’ construction: it is constituted by
the determination of the Reduced Basis (through one or more SVDs on the snapshot ma-
trices), and the training of the single or multiple regressor models for the low-order dy-
namics. In this work, the SVDs are performed using the Python routine numpy.linalg.eigh
on the correlation matrix and are run on a personal laptop CPU AMD Ryzen™ 5 3500U
(2.1 GHz). The trainings of the regressor models are run on a single GPU NVIDIA GeForce
RTX 3080.
The Global SVD takes approximately 40 [sec] on the global snapshot matrix of dimen-
sions [7335,5666], while the two Domain Decomposition Local SVDs take 43 [sec], and
four SVDs on the local Cluster Snapshot matrices approximately 135 [sec]. For all meth-
ods, the cost of determining the reduced bases is extremely low and could be further
cut down by parallelizing the procedure for the local bases or by employing online SVD
algorithms [39]. It must be noted that independently from the number of modes used
for the POD expansion, the cost of a standard SVDs does not change. For the Cluster
POD, the optimization loop for the selection of the optimal number of clusters requires
the determination of several sets of local bases and the computation of the a-posteriori
error indicator: this translates into a sensible increase in the computational time.
The training time of the regressor models strongly depends on the type of Architecture
employed and the choice of the Decomposition Method. The Global POD results in a
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ROM Model Offline [s] Online [s]

LSTM 2111 5
Global POD MLP 259 4

GPR 312 5

LSTM (×4) 2344 7
Cluster POD MLP (×4) 744 6

GPR (×4) 821 6

LSTM (×2) 4939 6
DD POD MLP (×2) 560 6

GPR (×2) 723 5

Table 4.3: Oflline and Online computational time of the considered ROMs equipped with different surrogate
models. Number of modes: 5.

unique set of input-output pairs and thus only one training of the regressor model, while
the Local POD methods require the training of multiple regressor models for each local
basis (2 for DD-POD and 4 for Cluster-POD). For the Cluster-POD, however, a remarkable
decrease in the total training time is observed, as the sizes of the local reduced coordi-
nate datasets are reduced by the partition of the snapshot set, yielding smaller training
time per epoch (fewer batches) and at the same time a smaller number of epochs due to
the Networks overfitting smaller datasets.
The LSTM Network results in the largest training times, due to the backpropagation of
gradients in time, typical of Recurrent Neural Networks. The Multi-Layer-Perceptron
and the Gaussian Process Regression demonstrate superior efficiency, with remarkably
lower training times. The GPR on the other hand typically requires larger memory stor-
age: ANNs once trained, in fact, only need to store weight and biases in order to perform
predictions, while the entire training dataset is needed for GPR to make inferences at
new operating conditions.
The computational time of the Online phase of the ROM is typically negligible, and de-
pending on the number of points at which the predictions are performed can differ by a
few seconds. In Table 4.3, a summary of the online and offline computational time for
the three different ROMs is given, depending on the type of regressor model employed.
In this specific case, 5 reduced coordinates are predicted and used for the online recon-
struction of the pressure fields.
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4.5. DIRECT COEFFICIENT PREDICTION AND SURROGATE MODEL

COMPARISON

The integral load coefficients (Normal Force Coefficient CN , Axial Force Coefficient C A ,
and Pitching Moment Coefficient CMy ) can be included as a direct prediction of the sur-
rogate model. Since the reduced coordinates and the integral loads are scalar outputs
defined over the same input space, the same models used to learn the map from the pa-
rameter space to the reduced order space can be trained to output the coefficients. As
explained in Sec. 3.6.5, this procedure is computationally more efficient and does not
introduce additional sources of error other than the network error, compared to the in-
tegration of the predicted pressure fields which are instead affected by the projection
error resulting from the dimensionality reduction.
The predictions are performed using the three different data-driven methods consid-
ered: the Multi-Layer-Perceptron, the Long Short Term Memory Network, and the Gaus-
sian Process Regression. Furthermore, two different variants of the LSTM Network are
considered. The first one is the analogous architecture used for the prediction of the
reduced coordinates and used for the generation of the results included in the previous
sections, whose hyperparameters are also summarized in Sec. 3.6.4. The second LSTM
(small) is a downscaled version, with a lower number of units, which resembles the MLP
architecture, thus allowing for a fair comparison of the two ANNs.

4.5.1. INTEGRAL LOADS COEFFICIENT PREDICTION

The predictions of the integral loads coefficient are displayed in Fig. 4.19 for a maneu-
ver at low angles of attack and high oscillation frequency: all the investigated methods
accurately capture the axial and normal force coefficient variation over time. Some dis-
crepancies can be detected in the prediction of the pitching moment coefficient: the
LSTM and the MLP Networks achieve higher accuracy compared to the GPR which over-
estimates the maximum value of the coefficient. Considering a maneuver centered at
a larger angle of attack, in Fig. 4.20, the variation of the pitching moment coefficient
presents more pronounced non-linearities, deviating from the sinusoidal trend of the
force coefficients in the range of α between 10[deg ] and 20[deg ]. As a result, the Neu-
ral Network based methods show greater accuracy than the GPR, thanks to the superior
capabilities of modeling non-linear dynamics. The LSTM, in particular, is able to bet-
ter capture (with half of the average MSE) the general trend compared to the MLP: this
can be due to the pre-defined time sequential structure of how the Network process the
input data.
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Figure 4.19: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 5[deg ], A = 5[deg ], f = 1H z

Figure 4.20: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z
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Analyzing the results for large values ofα in Fig. 4.21, it is clear how the performances
of the three methods do not differ when the output has a sinusoidal shape with the same
frequency of the input maneuver and therefore can be inferred using a simple linear
regression (as in the normal force coefficient CN ). However, the flowfield non-linearities
appearing at larger angles of attack influence more strongly the value of the pitching
moment coefficient: the use of an ANN model is therefore beneficial to predict those
non-linearities.

Figure 4.21: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z
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Figure 4.22: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.25H z

4.5.2. ACCURACY AND EFFICIENCY OF THE SURROGATE MODELS
The accuracy and efficiency of the various surrogate models on the integral loads’ pre-
diction regression task. In Table 4.4 the Mean Square Error in the prediction of the
axial force coefficient, normal force coefficient, and pitching moment coefficient are
compared for the different surrogate models over several testing maneuvers. Again, the
smallest errors are found for the maneuvers oscillating at lower angles of attack, with
a weak dependence on the oscillation frequencies. The normal force coefficient is pre-
dicted accurately by all regressors, without considerable discrepancies between models.
The largest differences in the prediction errors can be appreciated for the pitching mo-
ment coefficient: the NN approaches present higher accuracy compared to the GPR,
with the larger LSTM network displaying slightly higher performance in general.

The training time for the integral loads coefficient prediction task is given in Table
4.5. Similarly to the reduced coordinates predictions, the trainings are run on a single
GPU. As expected, a larger training time is observed for the LSTM networks compared to
the MLP and the GPR. In particular the small LSTM architecture, despite having a similar
size in terms of layers and units per layer compared to the MLP, takes on average double
the time per epoch.
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Maneuver Model MSE C A MSE CN MSE CMy

LSTM 3.24e-06 3.30e-04 4.69e-06
Pitch LSTM (small) 3.91e-06 3.43e-04 6.19e-06
A0 = 10[deg ],A = 5[deg ], f = 0.25H z GPR 5.51e-06 5.91e-04 4.03e-05

MLP 1.00e-05 5.60e-04 1.92e-05

LSTM 1.12e-05 1.36e-03 3.11e-05
Pitch LSTM (small) 1.44e-05 1.31e-03 2.51e-05
A0 = 10[deg ],A = 5[deg ], f = 1H z GPR 1.49e-05 1.99e-03 1.23e-04

MLP 2.04e-05 1.95e-03 9.95e-05

LSTM 4.33e-06 1.10e-04 1.29e-05
Pitch LSTM (small) 4.26e-06 1.04e-04 1.15e-05
A0 = 15[deg ],A = 5[deg ], f = 0.5H z GPR 1.12e-05 1.42e-04 2.78e-05

MLP 3.22e-06 7.45e-05 8.31e-06

LSTM 2.46e-05 2.41e-04 1.26e-05
Pitch LSTM (small) 9.95e-06 2.43e-04 1.68e-05
A0 = 15[deg ],A = 5[deg ], f = 1H z GPR 4.20e-05 2.59e-04 3.40e-05

MLP 1.66e-05 1.92e-04 1.75e-05

LSTM 1.53e-07 2.82e-06 2.10e-07
Pitch LSTM (small) 7.06e-08 1.78e-05 3.03e-07
A0 = 5[deg ],A = 5[deg ], f = 0.25H z GPR 1.60e-07 3.09e-05 1.12e-05

MLP 5.19e-07 2.88e-06 1.61e-06

LSTM 1.64e-06 2.26e-04 1.66e-05
Pitch LSTM (small) 1.24e-06 1.43e-04 8.66e-06
A0 = 5[deg ],A = 5[deg ], f = 1H z GPR 3.09e-06 1.58e-04 1.79e-05

MLP 9.20e-07 1.41e-04 1.54e-05

LSTM 3.09e-06 1.96e-05 1.99e-06
Plunge LSTM (small) 8.33e-06 5.13e-05 3.36e-06
A0 = 10[deg ],A = 10[deg ], f = 0.25H z GPR 3.45e-06 6.97e-05 1.16e-05

MLP 7.97e-06 2.97e-05 9.26e-06

LSTM 8.58e-06 1.05e-04 3.11e-06
Plunge LSTM (small) 7.27e-07 4.35e-05 3.15e-06
A0 = 10[deg ],A = 5[deg ], f = 0.25H z GPR 3.47e-06 8.16e-05 2.30e-05

MLP 3.42e-06 2.42e-05 2.41e-06

LSTM 6.31e-06 2.31e-04 3.64e-06
Plunge LSTM (small) 4.15e-06 3.09e-04 8.03e-06
A0 = 10[deg ],A = 5[deg ], f = 1H z GPR 7.37e-06 3.38e-04 3.07e-05

MLP 3.94e-06 2.79e-04 1.58e-05

LSTM 6.78e-06 4.81e-05 5.64e-06
Plunge LSTM (small) 8.79e-06 5.83e-05 8.62e-06
A0 = 15[deg ],A = 5[deg ], f = 0.25H z GPR 1.20e-05 9.71e-05 2.28e-05

MLP 8.72e-06 4.38e-05 6.10e-06

Table 4.4: Prediction error on the integral loads coefficient of different surrogate models for several maneuvers.
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Model Epochs Trained Training Time [s] Training Time
per epoch [s]

LSTM 1472 1937 1.3
LSTM (small) 993 537 0.54
GPR 70 16 0.22
MLP 544 126 0.23

Table 4.5: Training time comparison of different surrogate models for the direct prediction of integral loads
coefficients.



5
CONCLUSION

The conclusion to this work can be presented by answering the research questions for-
mulated in the introductory chapter of this report.

"What are the limitations of the POD-LSTM method, and how can Local ROMs increase
the performance of the existing ROM in the prediction of the unsteady pressure fields
and integral loads of the UCAV MULDICON test case?"
The POD-LSTM method is a Reduced Order Model based on linear dimensionality re-
duction and recurrent Latent Dynamics modeling that improves the computational ef-
ficiency of the previously developed NN-based ROM [51], allowing for the inclusion of
time-history effects and greater interpretability of the ROM. The main limitations of this
method are a result of the use of the global POD basis: the projection of the full order dy-
namics into a lower dimensional linear subspace leads to high prediction errors driven
by the projection error when a limited number of modes are considered. Local ROMs can
be defined on the computational domain through Domain Decomposition, reducing the
projection error in critical regions of the wing surface, compared to the Global POD, for
the same fixed number of modes. Clustering the snapshots according to global features
can lead to the construction of Local ROMs in the parameter space with improved phys-
ical meaningfulness and projection efficiency. The procedure of scaling the snapshot
according to the force or moment distribution is here demonstrated to be optimal in
order to obtain better predictions of the integral loads’ coefficients. Nevertheless, di-
rectly predicting the force and moment coefficients from the input parameters through
a surrogate model, thus bypassing the issue of integrating pressure fields affected by pro-
jection error, proves to be the most accurate method.

Can the Cluster POD local bases improve the reduced representation of the full-order
system? How can the snapshot set be optimally clustered?
The Cluster POD bases in most cases display a remarkably smaller projection error for
the harmonic oscillating test maneuvers compared to the Global POD basis. The lim-
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itations of the local bases are related to the approximations of the snapshots located
near the cluster borders, due to the limited coverage of the local bases in those regions.
Nevertheless, a procedure based on Gaussian Mixture Models to generate overlapping
clusters, described in Section , allows to overcome this limitation. The best clustering
features are represented by the first global POD coefficients representation of the snap-
shots. The number of clusters can be chosen through an optimization procedure based
on an a-posteriori indicator of the projection error on a validation set of snapshots.

Can the Domain Decomposition local bases improve the accuracy of the ROM in spe-
cific regions of the wing compared to the standard POD? How does the decomposition
geometry influence the spatial accuracy of the resulting ROM?

The Domain Decomposition provides sets of modes that are more representative of
the local flow features on the wing surface. The POD L2 minimization problem is solved
separately on each domain and, depending on the geometry decomposition, more weight
can be given to a domain in the reduced representation. For the MULDICON UCAV test
case, the isolation of the wing-tip regions is useful to reduce the high-projection error of
the Global POD basis for the same number of modes.

How do the performances of an LSTM Neural Network compare to a simpler Multi-
Layer-Perceptron and to a Bayesian approach based on Gaussian Process Regression?

The LSTM model appears to perform better in terms of accuracy compared to the
Multi-layer-Perceptron and the Gaussian Process Regression for the direct prediction of
the integral loads. The advantage of using a Neural Network is more clear when repro-
ducing non-linear mappings between the input and the output features, such as in the
pitching moment coefficient prediction. Compared to the MLP, the Recurrent nature of
the LSTM appears to be more suitable to process time-sequential data. Nevertheless,
both the MLP and the GPR approaches demonstrate smaller training time compared to
the LSTM Network.

Can the ROM prediction accuracy of the integral loads coefficient be increased through
a modification of the POD basis? Is there a more efficient procedure to predict these quan-
tities?

Pre-scaling the pressure field snapshots in order to obtain Force and Moment distri-
bution along the wing, as described in Section 3.3, is shown to be the optimal (linear)
way to generate a POD basis that minimizes the error on the integral loads’ projection.
In order to avoid the projection error, the same surrogate models used for the reduced
coordinates predictions can be trained to predict the integral loads’ coefficients.
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5.1. RECOMMENDATIONS FOR FUTURE WORK
The presented models address some of the limitations of the global POD-LSTM, mainly
related to the dimensionality reduction method, by constructing local reduced-order
bases. Future research can focus on improving several aspects of dimensionality reduc-
tion:

• Cluster POD:
The methodology described in Section 5 based on Gaussian Mixture Models over-
lapping clusters can be used to reduced the limitation of the K-means cluster POD
at the cluster interfaces and should be tested also for online prediction. Adaptive
resampling of the parameter space, as proposed by Dupuis et al. [16], could further
improve the performance of the Local Bases by increasing the snapshot density in
said regions.

• Domain Decomposition POD:
The choice of the geometrical decomposition could be optimized to minimize the
projection error on the local bases. This model should be tested in the case of flow
discontinuities, for instance, in the transonic flow regime.

• Scaled POD:
The procedure of scaling the snapshots can be tailored to a specific goal functional,
following a Goal Oriented approach [11, 12]. The flexibility in decoupling the gov-
erning equations from the constraint, makes the use of the Neural Network (or
Gaussian Process Regression) for the adjoint problem possible, allowing to exploit
the beneficial properties of ANNs in terms of differentiability.

Concerning the surrogate models for the reduced dynamics, of great interest could
be investigating the following:

• Uncertainty Quantification of the ROM outputs:
The Gaussian Process Regression directly allows for the evaluation of the uncer-
tainty, based on the variance of the posterior distribution. Standard Artificial Neu-
ral Networks, however, do not directly provide this quantity. Modern approaches,
based on Bayesian Neural Networks [2] or Montecarlo Based methods [19] could
be leveraged to quantify the surrogate models’ uncertainty.

• Autoregressive methods:
Inserting the predictions at previous time steps in the inputs for the predictions
of future time steps could yield an increase in accuracy in the reduced coefficient
prediction. This autoregressive approach is often used in ROMs for fluid dynamics
[46], due to its similarity to time integration schemes.

Moreover, future work should focus on testing the models on more complex dynam-
ics, by increasing the number of Degrees of Freedom for the aircraft maneuver or by
including variations in the Mach number. This step requires the generation of addi-
tional CFD data and therefore the identification of adequate sampling strategies: greedy
approaches to sampling could be considered [53, 1], in order to adaptively sample the
parameter space in the regions of higher projection error.
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ADDITIONAL RESULTS

A.1. SPECIAL MANEUVER: SHARP PITCH UP-DOWN

The developed ROMs are further tested on a special type of maneuver that differs from
the oscillating pitching and plunging maneuver considered in the report: the sharp pitch
up-down motion. The motion variables variation over time is described in Fig. A.2: the
aircraft is initially at an incidence of 15[deg ] and zero angular and pitch rate (the ver-
tical component of the velocity is zero and the aircraft is moving horizontally at con-

stant velocity). A step variation of 20 [deg ]
s in the pitch rate is then introduced, which

produces a steep constant variation in the angle of attack from 15[deg ] to 22[deg ], dur-
ing which, in order to keep the total velocity vector magnitude constant, the horizontal
component decreases while the vertical component increases (in absolute value). After

reaching 22[deg ], the pitch rate is inverted to −20 [deg ]
s , and the angle of attack is sym-

metrically linearly decreased up to 15[deg ].
The time-average projection error for a varying number of modes is displayed in Fig.
A.1 as a result of using the Global POD and the Local methods. For a limited number
of modes, the Cluster POD and the DD-POD show better compression capabilities com-
pared to the global basis. This is true also for larger number of modes for the DD-POD,
whìch demonstrates to better capture the vortical structures appearing at the wing-tip
at higher incidences.
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Figure A.1: Time averaged Mean Squared Projection Error vs number of modes over sharp pitch up-down
maneuver for the Global POD, DD0.8-POD and Cluster POD bases.

The total error for a 5 modes reconstruction of the pressure fields, in terms of mean
square error is displayed in Fig. A.2. Most of the differences between the ROMs are vis-
ible at higher angles of attack in the range [20,22][deg ] where the Cluster POD presents
the lowest error, thanks to the localized set of modes which efficiently captures most of
the dominant features in said region of the input space. For intermediate values of the
incidence, the Global POD yields better performance, thanks to the better coverage of
the regressor space.

Figure A.2: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Sharp pitch up-down maneuver.Number of modes: 5
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The pressure fields predictions, using 5 modes, for the different ROMs are displayed
for the case with the highest total error. Most of the error is concentrated towards the
outboard segment of the wing where the vortical structures create a large region of low
pressure, highly underestimated by the ROMs. The low-pressure trace of the main apex
vortex is predicted slightly better by the Cluster-POD.

(a) Global POD (b) DD0.8 POD

(c) Cluster POD (d) Ground Truth

Figure A.3: Pressure field prediction for highest error case of pitch up-down maneuver. α =
21.95[deg ],α̇=−0.58[deg /s],q =−20[deg /s]

The direct prediction of the integral loads coefficients via the surrogate models, pro-
vides good accordance with the CFD data. Most of the errors are concentrated near the
pitching rate inversion zone.
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Figure A.4: Direct Integral Loads coefficient prediction using the three different surrogate models. Sharp pitch
up-down maneuver.

A.2. DIRECT LOAD PREDICTIONS

Figure A.5: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z
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Figure A.6: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.5H z

Figure A.7: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.5H z
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Figure A.8: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.0125H z

Figure A.9: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.25H z
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Figure A.10: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.5H z

Figure A.11: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z
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Figure A.12: Integral Loads coefficient prediction using the three different surrogate models. Pitch harmonic
maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.5H z

Figure A.13: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z
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Figure A.14: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.5H z

Figure A.15: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 5[deg ], A = 5[deg ], f = 1H z
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Figure A.16: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.0125H z

Figure A.17: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.5H z
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Figure A.18: Integral Loads coefficient prediction using the three different surrogate models. Plunge harmonic
maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z

A.3. PROJECTION ERRORS

Figure A.19: Time averaged Mean Squared Projection Error vs number of modes over harmonic plunging ma-
neuvers for the Global POD, DD0.8-POD and Cluster POD bases.
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Figure A.20: Time averaged Mean Squared Projection Error vs number of modes over harmonic plunging ma-
neuvers for the Global POD, DD0.8-POD and Cluster POD bases.

A.4. TOTAL ROM ERRORS

A.4.1. 5 MODES RECONSTRUCTION

Figure A.21: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5
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Figure A.22: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 5

Figure A.23: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 5
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Figure A.24: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 1H z.Number of
modes: 5

Figure A.25: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 5
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Figure A.26: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5

Figure A.27: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5
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Figure A.28: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 5

Figure A.29: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 1H z.Number of
modes: 5
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Figure A.30: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.125H z.Number
of modes: 5

Figure A.31: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.25H z.Number
of modes: 5
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Figure A.32: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.5H z.Number of
modes: 5

Figure A.33: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5
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A.4.2. 10 MODES RECONSTRUCTION

Figure A.34: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 10

Figure A.35: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 10
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Figure A.36: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 1H z.Number of
modes: 10

Figure A.37: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 10
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Figure A.38: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 10

Figure A.39: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 1H z.Number of
modes: 10
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Figure A.40: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 10

Figure A.41: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Pitch harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 1H z.Number of
modes: 10
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Figure A.42: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 10

Figure A.43: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 5[deg ], A = 5[deg ], f = 0.5H z.Number of
modes: 10
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Figure A.44: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 10

Figure A.45: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 5[deg ], f = 1H z.Number of
modes: 10
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Figure A.46: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.125H z.Number
of modes: 10

Figure A.47: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.25H z.Number
of modes: 10
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Figure A.48: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 10[deg ], A = 10[deg ], f = 0.5H z.Number of
modes: 10

Figure A.49: Instantaneous inputs and Mean Squared Total error using Global POD-LSTM, DD0.8-POD-LSTM,
Cluster POD-LSTM ROMs. Plunge harmonic maneuver with A0 = 15[deg ], A = 5[deg ], f = 0.25H z.Number of
modes: 5
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