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Sustainable Model-Predictive Control in Urban
Traffic Networks: Efficient Solution Based

on General Smoothening Methods
Anahita Jamshidnejad, Ioannis Papamichail, Markos Papageorgiou, Fellow, IEEE,

and Bart De Schutter Senior Member, IEEE

Abstract— Traffic-responsive control approaches, including
model-predictive control (MPC), are efficient methods for mak-
ing the best use of the available network capacity. Moreover,
gradient-based approaches, which can be applied to smooth opti-
mization problems, have proven their efficiency, both computa-
tionally and performance-wise, in finding optima of optimization
problems. In this paper, we propose an MPC system for an
urban traffic network that applies a gradient-based optimiza-
tion approach to solve the control optimization problem. The
controller uses a new smooth integrated flow-emission model to
find a balanced tradeoff between reduction of the congestion and
of the total emissions. We also introduce efficient smoothening
methods for nonsmooth mathematical models of physical systems.
The effectiveness of the proposed approach is demonstrated via
a case study.

Index Terms— Gradient-based optimization, model-predictive
control (MPC), smoothening, urban traffic control.

I. INTRODUCTION

TRAFFIC congestion increases the fuel consumption, since
vehicles will idle in standing queues for a while. In addi-

tion to that, these vehicles will distribute harmful substances
such as nitrogen oxides (NOx ), hydrocarbon (HC), carbon
monoxide (CO), and carbon dioxide (CO2) in the environ-
ment [1]–[4]. The mentioned consequences are the source of
huge economical and environmental cost for modern societies.
Hence, from the economical and environmental points of view,
efficient actions should be undertaken to reduce both traffic
congestion and emissions, especially in urban areas.

Inefficient use of the available capacity of the urban traf-
fic networks is one of the main reasons of traffic con-
gestion [5]. Real-time traffic-responsive control strategies,
including optimization-based and especially model-predictive
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control (MPC) approaches, can be used to manage the road
capacity in both freeways and urban areas [6]–[10]. MPC is an
optimization-based control approach that originates from the
process industry, and unlike regular optimal control that works
in an entirely open-loop scheme, it uses at every time step
new measurements of the outputs and/or states of the system.
Hence, a system that is controlled via a model-predictive
controller is more robust toward external disturbances.

The focus of this paper is on the development of MPC
strategies for urban traffic networks in order to reduce both
congestion and emissions. The MPC controller needs a model
of the system that is accurate, and at the same time simple and
fast for real-time applications. Different models have been pro-
posed for urban traffic flow modeling, such as the store-and-
forward model [11], which has also been used in [12] and [6];
the BLX model [13]; the S-model; and a macroscopic urban
traffic flow model developed in [14].

Moreover, to solve the optimization problem of the
MPC controller, we want to apply efficient gradient-based
approaches. However, many of the available mathemati-
cal models, including traffic models, have nonsmooth func-
tions or discrete variables in their formulations. Applying
these models as prediction models of MPC controllers results
in a nonsmooth MPC optimization problem, which restricts
application of gradient-based approaches, e.g., methods that
are based on Pontryagin’s principle [15], [16].

Hence, we propose general smoothening methods for math-
ematical models of physical systems. For illustration purposes,
we consider the S-model [17], which is a nonlinear flow model
for urban traffic networks. However, we should note that the
proposed smoothening methods can be applied to many other
mathematical models too.

One of the efficient gradient-based approaches that has
been widely used [18], [19] is the feasible direction algorithm
proposed in [20]. To identify an efficient search direction for
the optimization, we will apply the latest version of a well-
known approach called the resilient back-propagation (RProp)
given in [21], while the main approach had been initially
introduced in [22].

The structure of this paper is as follows. In Section II,
we introduce general smoothening approaches for mathe-
matical models of physical systems that involve nonsmooth
functions. Section III introduces a general approach for trans-
forming a time-delayed differential equation with time-varying
time delays into an equivalent discrete-time time-delayed
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Fig. 1. Nonsmooth functions (black curves) and their smooth approximators (red curves). From left to right: indicator function, maximum function, floor
function, and remainder function.

difference equation. Section IV discusses the urban traffic flow
model, called the S-model, used in this paper for estimation
of the urban traffic flows. We propose extensions to the
S-model that allows the model perform more accurately, and
for more possible traffic scenarios. Section V proposes a new
integrated framework that results in an urban traffic flow and
emission model that can be used as the prediction model of an
MPC controller. In Section VI, an MPC controller for urban
traffic networks is developed that finds a balanced tradeoff
between reduction of the total time spent and total emissions
of the vehicles. We also consider a gradient-based optimization
solver that benefits from the RProp method. Section VII
presents the results of a case study.

Contributions of this Paper: We propose general smoothen-
ing methods for mathematical models of physical systems,
where the proposed methods can be applied to various models
with nonsmooth functions, including transportation models.
The resulting smooth models can be used in model-based opti-
mal control techniques, e.g., in MPC, where the optimization
problem can be solved by efficient smooth and gradient-based
solvers.

We also develop a general formulation for transforming
a time-delayed system with a time-varying delay given in
the continuous-time domain into an equivalent time-delayed
system in the discrete-time domain. The resulting formula-
tion can be used in discrete-time physical models of sys-
tems that involve time-varying time delays, and can give
much more accurate results than a time-independent delay
approximation.

Implementing the proposed general smoothening methods,
we show that even for nonsmooth and nonlinear flow models,
we can easily apply an efficient gradient-based optimization
approach that uses RProp and solves the optimization problem
of the MPC controller much faster than nonsmooth optimiza-
tion approaches. Finally, all these methods are combined to
develop a novel approach to urban traffic network control
aiming at optimizing a tradeoff of congestion mitigation versus
emission reduction.

II. GENERAL SMOOTHENING METHODS FOR

MATHEMATICAL MODELS OF

PHYSICAL SYSTEMS

Many of the available mathematical models of physical
systems, including transportation networks, involve nonsmooth
functions in their formulations. Some examples of such

transportation models include the cell transmission model [23],
the dynamic IFTN model [24] applied in modeling the con-
tainer flows, and also max-plus-linear models (see [25]) that
are used to model railway transportation systems. It is very
beneficial if we can use these models as the prediction model
of an MPC controller, and still apply efficient gradient-based
approaches (e.g., Pontryagin’s approach [15]) to solve the
optimization problem of the MPC. For this aim, we first need
to find general approaches to render these nonsmooth functions
smooth and, hence, differentiable. In this section, we develop
smooth approximate functions for the nonsmooth indicator,
maximum, minimum, floor, ceiling, and remainder functions
that appear frequently in mathematical models of physical
systems.

A. Indicator Function

The indicator function Ix≥a is defined by

Ix≥a =
{

1, x ≥ a

0, x < a
(1)

where in [26] the smooth form of the indicator function
is approximated by a sigmoid function (see the first plot
of Fig. 1) Ix≥0 ≈ (1 + e−αx)−1 with α > 0 a smoothening
parameter.

B. Maximum and Minimum Functions

It is easy to verify that for α � 1, we have (also see
the second plot of Fig. 1)

max
i=1,...,n

{xi } ≈ 1

α
log

n∑
i=1

eαxi (2)

min
i=1,...,n

{xi } ≈ − 1

α
log

n∑
i=1

e−αxi . (3)

C. Floor and Ceiling Functions

The smooth form of the floor and ceiling functions can
be constructed from pieces of differently transformed sigmoid
functions

�x� ≈ −0.5 +
∑
k∈Z

((1 + e−α (x−k))−1 − 0.5) (4)

�x	 ≈ 0.5 +
∑
k∈Z

((1 + e−α(x−k))−1 − 0.5) (5)

with �·� and �·	 indicating the floor and ceiling function,
respectively. The third plot of Fig. 1 illustrates the floor
function (solid curve) and its smooth form (red dotted curve).
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D. Remainder Function

The remainder function rem{a, b} yields the remainder
value of the division of a by b, i.e., rem{a, b} = a − qb,
where q is the quotient. The fourth plot of Fig. 1 illustrates
the graph representing rem{a, b} for b = 2. We consider the
concept of Euclidean division.

1) For a positive divisor b > 0, we have q = �a/b�.
2) For a negative divisor b < 0, we have q = �a/b	.

The above expressions can equivalently be expressed by

q = 1 + sign(b)

2

⌊a

b

⌋
+ 1 − sign(b)

2

⌈
a

b

⌉
(6)

with

sign(x) =
{

1 x > 0

−1 x < 0.

We can write sign(x) = Ix≥0 − Ix≤0. Therefore

sign(x) ≈ (1 + e−αx)−1 − (1 + eαx)−1 (7)

and for the remainder function, we obtain

rem{a, b} ≈ a − b
∑
k∈Z

((
1 + e−α

(
a
b −k

))−1 − 0.5
)

+b

2
((1 + e−αb)−1 − (1 + eαb)−1). (8)

III. DISCRETIZATION OF A DIFFERENTIAL

EQUATION WITH TIME-VARYING

TIME DELAY

Consider the time-delayed differential equation

ẋ(t) = Ax(t) + Bu(t − τ (t)) + Ce(t) (9)

with u(·) and e(·) two continuous-time functions representing
the inflow and outflow functions of the dynamic system.
We should first discretize the model to find x̃(k + 1) from
the current state x̃(k), where the discrete-time variables are
identified by a tilde, and the time step counter is denoted by k.
In addition, τ (k) = δ(k)h+γ (k), with h the sampling time and

δ(k) = �τ (k)/h�, γ (k) = rem{τ (k), h}. (10)

Lemma 1: The equivalent difference equation in the
discrete-time domain of the delayed differential equa-
tion (9), (10), and with an input function u(t) that is piece-
wise constant in the interval [ch, (c + 1)h), c ∈ Z, is

x̃(k + 1)

= Ãx̃(k) +
δ(k−1)−δ(k)+1∑

i=0

B̃i (k)ũ(k − δ(k − 1) − 2 + i)

+ C̃ẽ(k) (11)

with B̃0(k) = γ (k − 1)/h, B̃i (k) = 1 for i ∈ {1, . . . , δ(k −
1) − δ(k)}, and B̃δ(k−1)−δ(k)+1(k) = (h − γ (k))/h.

For the proof, see Appendix A.

IV. URBAN TRAFFIC FLOW MODEL

A. Original S-Model

The S-model is a nonlinear and discrete-time urban traffic
flow model that provides an appropriate balance between low
computation time and desirable accuracy. The model was
introduced in [17], where the simulation sampling time of the
S-model is one cycle time of the downstream intersection of
a link. Therefore, the model updates the states less frequently
than other macroscopic traffic models that typically have a
sampling time of 1 s (such as the BLX model [13], the model
in [27], and the model proposed in [9]). This characteris-
tic helps the S-model to be faster for model-based control
applications, and to provide a tradeoff between accuracy and
computation time. Moreover, the simulation sampling time for
each link may differ from other links.

In the S-model, a network is modeled as a collection of
nodes and links, where each node represents an intersection
and each link represents a road. We use the pair (u, d) to
indicate a link with node u as its starting node (i.e., the
upstream intersection of the corresponding road), and node
d as its end node (i.e., the downstream intersection of the
corresponding road). The sets of all links and intersections
within the network are denoted by, respectively, L and N ,
and the state variables of the model include the total number
of vehicles nu,d(kd) on link (u, d), and the number of vehicles
qu,d,o(kd) in the queue on link (u, d) that intend to move to
the outgoing link (d, o) at time step kd for all (u, d) ∈ L. Both
nu,d(kd) and qu,d,o(kd) are given in “number of vehicles.” The
set of all downstream nodes of the outgoing links of link (u, d)
is denoted by O(u,d), and the set of all upstream nodes of the
incoming links of link (u, d) is denoted by I(u,d).

The state variables of the S-model are updated at every
simulation time step kd of the link (u, d) by

nu,d(kd + 1) = nu,d(kd) + (
αenter,l

u,d (kd) − αleave,l
u,d (kd)

)
cd

(12)

qu,d,o(kd + 1) = qu,d,o(kd) + (
α

arrive,q
u,d,o (kd) − αleave,l

u,d,o (kd)
)
cd

(13)

with qu,d(kd) = ∑
o∈O(u,d)

qu,d,o(kd). Note that cd is the

cycle time of the downstream intersection d , αenter,l
u,d (kd) and

αleave,l
u,d (kd) are the average entering and exiting flow rates of

link (u, d) within the time interval [kdcd , (kd + 1)cd), and
α

arrive,q
u,d,o (kd) and αleave,l

u,d,o (kd) are the average arriving flow rate
at the tail of the waiting queue and the average leaving flow
rate of the substream that intends to move toward o within
[kdcd , (kd +1)cd). Note that these flow rates are computed for
all the intermediate links of the S-model using the equations
that will be given in this section, except for αenter,l of the
source links and αleave,l of the exit links in the network.
The entering flow rates of the source links are indeed the
demand profiles that should either be given to the network
as an input, or that should be determined by a prediction
model. Similarly, the leaving flow rates of the exit links
should be defined/given as the boundary conditions of the
network or should be predicted by a model. Moreover, qu,d(kd)
is the total number of vehicles waiting in the queue on link u, d
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Fig. 2. Illustration of a link in an urban traffic network at time step kd , and
with the entering, arriving, and leaving flows.

at time step kd (note that nu,d and qu,d,o admit real nonnegative
values in the S-model). Moreover, we have (also see Fig. 2)

αenter,l
u,d (kd) =

∑
i∈I(u,d)

αenter,l
i,u,d (kd) (14)

αleave,l
u,d (kd) =

∑
o∈O(u,d)

αleave,l
u,d,o (kd) (15)

αleave,l
u,d,o (kd) = min

⎛
⎝βu,d,o(kd)μu,d gu,d,o(kd)/cd ,

qu,d,o(kd)/cd + α
arrive,q
u,d,o (kd),

βu,d,o(kd)
/∑
i∈I(d,o)

βi,d,o(kd)
Cd,o−nd,o(kd)

cd

⎞
⎠

(16)

α
arrive,q
u,d (kd) = (cd −γu,d(kd))/cd

∑
i∈I(u,d)

αleave,l
i,u,d (kd −δu,d(kd))

+ γu,d(kd)/cd

∑
i∈I(u,d)

αleave,l
i,u,d (kd − δu,d(kd)−1)

(17)

α
arrive,q
u,d,o (kd) = βu,d,o(kd) · αarrive,q

u,d (kd) (18)

where

δu,d(kd) = �τu,d(kd)/cd� (19)

γu,d(kd) = rem{τu,d(kd), cd } (20)

with μu,d the saturated flow rate of link (u, d), gu,d,o(kd)
the green time length during [kdcd , (kd + 1)cd) for the traffic
substream that leaves link (u, d) toward node o, βu,d,o(kd) the
fraction of vehicles within link (u, d) that intend to turn to o,
α

arrive,q
u,d (kd) the average within [kdcd , (kd + 1)cd) of the flow

rate of vehicles arriving at the tail of the queue in link (u, d),
and τu,d (kd) the average delay time (from now on, we just
call it the delay time) of the vehicles on link (u, d) within
the interval [kdcd , (kd + 1)cd), i.e., the time vehicles entering
the link need to reach the tail of the waiting queue. For more
details about the S-model, we refer the readers to [17].

In the S-model, the simulation sampling time of different
links might not be the same, and hence, their time steps may
not be synchronized automatically. However, especially for
the neighboring links, for which some variables are shared,
synchronization of the joint variables between neighboring
links is essential. For instance, αleave,l

i,u,d (kd) for link (i, u) forms

a fraction of αenter,l
u,d (kd) for link (u, d), while αleave,l

i,u,d is updated

Fig. 3. Synchronization of joint variables for the neighboring links.

only at ku ∈ Ku , which may not be synchronized with
kd ∈ Kd .

Synchronization of the Joint Variables: Fig. 3 illustrates
αleave,l

i,u,d (·), which is updated at time steps ku ∈ Ku , while

we need to find αenter,l
i,u,d at time step kd . We first make the

discrete-time functions αleave,l
i,u,d and αenter,l

i,u,d continuous in time,

assuming that the continuous-time functions αleave,l,c
i,u,d (·) and

αenter,l,c
i,u,d (·) are piecewise constant. Hence, αleave,l,c

i,u,d (·) between

any two consecutive time steps ku and ku+1 equals αleave,l
i,u,d (ku).

Similarly, αenter,l,c
i,u,d (·) between any two consecutive time steps

kd and kd +1 equals αleave,l
i,u,d (kd). Since the numbers of vehicles

that leave link (i, u) and enter link (u, d) between any two
consecutive time steps kd and kd +1 are equal, the highlighted
surfaces in Fig. 3 should have the same area

αenter,l
i,u,d (kd) = 1

cd

∫ (kd +1)cd

kd cd

αleave,l,c
i,u,d (t) · dt . (21)

B. Extensions for the S-Model

In the original S-model, only the dynamics of the sys-
tem within the network of interest is considered. However,
the dynamics of the source nodes, which are located on
the boundaries of the network, is missing. This may not
bring issues when the source links of the network are under-
saturated. However, for larger demands at the source nodes
that may result in saturated and over-saturated links, defining
the appropriate dynamics for the boundaries of the network is
essential. This is because the additional vehicles that cannot
immediately enter the network should not be injected into the
entering links. However, this issue occurs with the original
S-model and may lead to negative states with large absolute
values. In contrast, those vehicles should be kept in queues
that will gradually form at the sources of the network, and they
should be injected into the network only when the available
free space of the source links allows it.

In addition, in the original S-model, the formula for the
computation of the arriving flow α

arrive,q
u,d,o (kd) (see (17)) is

extracted based on the (hidden) assumption that the delay
times for the vehicles are time independent (see [28] for
more details). Numerical experiments show that with this



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAMSHIDNEJAD et al.: SUSTAINABLE MPC IN URBAN TRAFFIC NETWORKS 5

Fig. 4. Two source links (us,1, s) and (us,2, s) that feed links (s, ds,1)
and (s, ds,2) of the network via source node s.

assumption and using (17), in some cases, the error in compu-
tation of the updated states can grow up to 50% (this error is
larger when the difference between the previous and current
delay times is prominent, e.g., when the traffic scenario on
the link changes from under-saturated to saturated or over-
saturated in between two consecutive time steps).

To solve the first issue, we propose an additional network
element for the S-model called the source link, which is a
link that has one of the source nodes of the network as its
downstream node (see Fig. 4), and that feeds the network with
new demand at every time step. Moreover, we develop a gen-
eral formulation for discrete-time systems with time-varying
delays, which produces accurate results compared with the
results produced by the continuous-time formulation. We later
use this discrete-time representation to compute α

arrive,q
u,d,o (kd).

1) Formulating the Source Queues for the S-Model:
Suppose that S is the set of all source nodes of the network,
s is a source node, U (s) and D(s) are the sets of all upstream
nodes of s outside of the network and all downstream nodes
of s inside the network, us,i ∈ U (s), i ∈ {1, . . . , card (U (s))}
denotes the upstream nodes of source node s outside of the
network, and ds, j ∈ D(s), j ∈ {1, . . . , card (D(s))} denotes
the downstream nodes of source node s inside of the network.
A queue will be formed within a source link (us,i , s), if there
is not enough free space for the given demand of link (us,i , s)
on those links of the network that are connected to this source
link via node s (i.e., links (s, ds, j ), j ∈ {1, . . . , card (D(s))}).
We define qsource

s (ks), called the source queue, as the overall
queue length in [veh/s] at source node s at time step ks . Thus,
the source queue qsource

s is the summation of all queue lengths
for the source links for node s. We then have

qsource
s (ks + 1) = qsource

s (ks) + (
αdem

s (ks) − αleave,l
s (ks)

)
cs

(22)

where αdem
s (ks) is the cumulative demand flow in [veh/s] at

source node s at time step ks , given by

αdem
s (ks) =

card(D(s))∑
j=1

αdem
s,ds, j

(ks) (23)

and αleave,l
s (ks) is the cumulative leaving flow in [veh/s]

at source node s at time step ks (i.e., the total flow of
vehicles that can enter the network via source node s during

[kscs , (ks + 1)cs)). We have

αleave,l
s (ks) = min

⎧⎨
⎩μs, α

dem
s (ks) + qsource

s (kds )

cs
,

card(D(s))∑
j=1

Cs,ds, j − ns,ds, j (kds )

cs

⎫⎬
⎭ (24)

with μs = ∑card(U(s))
i=1 μus,i ,s the cumulative saturated leaving

flow rate at source node s.
2) Extended Formulation of the Time-Delayed Equation for

Arriving Flow: To compute α
arrive,q
u,d (kd), we should consider

the time the entering vehicles in link (u, d) need to reach
the tail of the waiting queue, i.e., the delay time τu,d(kd),
and the entering rate of the vehicles in the link τu,d (kd) time
units ago. Thus, for the queue length qu,d,o(kd), we actually
have a time-delayed differential equation (in the discrete-
time domain). Using the results of Section III, x̃(k) will be
substituted by qu,d,o(kd), and the factors Ã and C̃ by 1 and −1.
We obtain

qu,d,o(kd + 1)

= qu,d,o(kd) + βu,d,o(kd)

·
δu,d (kd −1)

−δu,d (kd )+1∑
i=0

B̃u,d,i(kd)αenter,l
u,d (kd − δu,d(kd − 1) − 2 + i)

− αleave,l
u,d,o (kd)cd (25)

where

B̃u,d,0(kd) = γu,d(kd − 1)/cd

B̃u,d,i(kd) = 1 for i ∈ {1, . . . , δu,d (kd − 1) − δu,d(kd)}
B̃u,d,δu,d (kd−1)−δu,d (kd )+1(kd) = (cd − γu,d(kd))/cd

and

δu,d(kd) = � ((τu,d(kd))/cd )�, γu,d(kd) = rem{τu,d(kd), cd }.
Comparing (25) with (13) and (18), we conclude that

α
arrive,q
u,d (kd) =

δu,d (kd−1)
−δu,d (kd )+1∑

i=0

B̃u,d,i .

αenter,l
u,d (kd − δu,d(kd − 1) − 2 + i). (26)

Moreover, the delay time τu,d(kd) at time step kd (assumed
to be constant within [kdcd , (kd + 1)cd)) is computed as
follows. Vehicles are assumed to enter the link with vfree

u,d .
If there is an idling queue in front of them, after a while they
will decelerate1 with adec

u,d to reach v idle
u,d . During this period,

the distance between the upstream intersection and the tail of
the waiting queue will be traveled by these vehicles (note that

1The typical values of the speeds and acceleration can be determined via
identifying the S-model’s parameters with respect to real-life data or data from
a traffic microsimulator. The difference between the output produced by the
model and the data is then minimized by solving an optimization problem
offline [29].
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Fig. 5. Traffic behaviors on link (u, d) within one cycle in an under-saturated traffic scenario for urban traffic networks.

in the original S-model [17], it is assumed that this distance
is traveled with a constant speed vfree

u,d ). Therefore(
Cu,d − qave

u,d(kd)
)
lveh

N lane
u,d

= vfree
u,d · T free

u,d (kd) + 1

2
adec

u,d

(
v idle

u,d − vfree
u,d

adec
u,d

)2

+ vfree
u,d

(
v idle

u,d − vfree
u,d

adec
u,d

)
(27)

where Cu,d is the storage capacity of link (u, d), qave
u,d(kd) is the

average queue length on link (u, d) within [kdcd , (kd + 1)cd),
lveh is the average length of the vehicles, N lane

u,d is the number
of lanes in link (u, d), vfree

u,d and v idle
u,d are the free-flow and

idling speed on link (u, d), and adec
u,d is the deceleration. Note

that (v idle
u,d − vfree

u,d )/adec
u,d is the time needed for vehicles to reach

v idle
u,d from vfree

u,d by the constant deceleration adec
u,d . Then the

delay time τu,d(kd) of the vehicles is obtained by

τu,d(kd) = T free
u,d (kd) + v idle

u,d − vfree
u,d

adec
u,d

(28)

where the value of T free
u,d (kd) is computed from (27). Hence,

the delay time is

τu,d(kd) =
(
Cu,d − qave

u,d(kd)
)
lveh

N lane
u,d vfree

u,d

−
(
v idle

u,d − vfree
u,d

)2

2adec
u,dvfree

u,d

. (29)

In order to compute the average queue length qave
u,d(kd), we pro-

pose to substitute qave
u,d(kd) with the average of the queue

lengths at kd and at kd + 1, where, to estimate qu,d(kd + 1) at
kd , we can use extrapolation

qu,d(kd + 1) = qu,d(kd) + qu,d(kd) − qu,d(kd − 1).

Then we have

qave
u,d(kd) = 3

2
qu,d(kd) − 1

2
qu,d(kd − 1). (30)

V. INTEGRATED FLOW AND EMISSION MODEL FOR

URBAN TRAFFIC NETWORKS

In this section, we briefly discuss a general mesoscopic
framework for integrating macroscopic urban traffic flow mod-
els with microscopic emission models. The resulting integrated
flow and emission model can be used with an MPC con-
troller to reduce congestion and emissions in urban traffic

networks. The mesoscopic framework has been introduced
in [30], and considers three different urban traffic scenar-
ios: under-saturated, saturated, and over-saturated. For each
scenario, groups of vehicles with a similar traffic behavior
are distinguished, where the general behavior of the group is
represented by a single time–speed representative curve. Next,
we present the proposed framework for the under-saturated
scenario. For equations and details regarding the other two
scenarios, see [30].

A. Under-Saturated Traffic

The under-saturated traffic scenario occurs when the
demand on a link is less than the number of vehicles that
can be discharged by the saturated average leaving flow rate
within one cycle. The time–speed curves for different traffic
behaviors in under-saturated traffic are illustrated in Fig. 5.
Correspondingly, the vehicles can be divided into four groups.

Group 1: Composed of those vehicles that are already in a
queue on the link at the beginning of the current
cycle (see the solid curve in Fig. 5). At tgreen,
when the traffic light turns green, these vehicles
start to accelerate and leave the link by the saturated
leaving flow rate μu,d .

Group 2: Composed of those vehicles that arrive at the tail of
the queue during the current cycle (see the dashed
curve in Fig. 5). These vehicles decelerate from
vfree

u,d to reach v idle
u,d as they approach the tail of the

queue, and idle for a while. When the traffic light
turns green, each vehicle waits for the vehicles in
front to accelerate. Then it also accelerates until its
speed reaches vfree

u,d . The leaving flow rate for the
vehicles in group 2 is also μu,d .

Group 3: Composed of those vehicles that arrive at the tail
of the queue (which is formed by the vehicles in
group 1 and group 2, and the pioneers of its own
group), when this queue has already started to move
forward. The dashed-dotted curve in Fig. 5 illus-
trates the average behavior for the representative
vehicle of group 3. These vehicles do not need
to decrease their speed to v idle

u,d , since when they
approach the tail of the queue, it has a higher
speed vmiddle

u,d than the idling speed v idle
u,d , where

vmiddle
u,d = 0.5(vfree

u,d +v idle
u,d ). Therefore, these vehicles

will only decelerate until they also reach vmiddle
u,d .
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As soon as these vehicles are at the end of the
moving queue, they mimic the time–speed curve of
the front queue and move forward with it, i.e., they
accelerate until their speed reaches vfree

u,d , and after
a while they leave the link.

Group 4: Composed of those vehicles that enter the link when
they do not need to decelerate at all, because there
is enough space between them and the groups of
vehicles that move in front of them. Therefore,
the vehicles in group 4 move forward with vfree

u,d
until they leave the link. The average behavior of
the vehicles in group 4 is illustrated by the dotted
curve in Fig. 5.

We first determine the number of vehicles in each of the
groups. From the definitions given above, we can write

nG1
u,d(kd) = qu,d(kd) (31)

nG2
u,d(kd) = α

arrive,q
u,d (kd) · T arrive,G2

u,d (kd) (32)

nG3
u,d(kd) = α

arrive,q
u,d (kd) · T arrive,G3

u,d (kd) (33)

nG4
u,d(kd) = nu,d (kd) −

3∑
i=1

nGi
u,d(kd) (34)

where

T arrive,G2
u,d (kd) = μu,d

/(
μu,d − α

arrive,q
u,d (kd)

)
· (cd −gu,d(kd) + nG1

u,d (kd)
/
μu,d − τ G2

u,d (kd)
)

(35)

T arrive,G3
u,d (kd) = τ

G2
u,d(kd) + (

vfree
u,d − v idle

u,d

)
/aacc

u,d (36)

with T arrive,G2
u,d (kd) and T arrive,G3

u,d (kd) the overall arrival time
for all vehicles in group 2 and in group 3 (where the overall
arrival time is the temporal distance between the starting points
of the time-speed curves of the first and the last vehicle in a
group), respectively, and τ

G2
u,d(kd) the average delay time for

the vehicles in group 2, i.e., the average time a vehicle in
group 2 needs to reach the tail of the waiting vehicles. This
delay time is computed by (29) for qG2,ave

u,d (kd) = nG1
u,d (kd).

We next explain how (35) and (36) are obtained, considering
the time–speed curves of the first and the last vehicle of
group 2 and group 3. The difference between the time spent
by these two vehicles during the current cycle depends on
the difference between the arriving flow rate α

arrive,q
u,d (kd) and

the leaving flow rate μu,d for the vehicles in the group.
The reason is that the temporal distance between the starting
points and the endpoints of the time–speed curves of the
vehicles is determined by these flow rates. For the vehi-
cles in group 2, the temporal distance between the start-
ing points of the two consecutive time–speed curves equals
(α

arrive,q
u,d (kd ))−1, while it is less, i.e., (μu,d)−1 for the endpoints

of these curves (note that μu,d > α
arrive,q
u,d (kd)). Since the

number of vehicles in group 2 is α
arrive,q
u,d (kd)T arrive,G2

u,d (kd),
the overall temporal distance between the starting points
of the time-speed curves of the first and the last vehicle
of group 2 is (α

arrive,q
u,d (kd ))−1α

arrive,q
u,d (kd )T arrive,G2

u,d (kd ), while
the overall temporal distance between the endpoints of their
time-speed curves is (μu,d (kd))−1α

arrive,q
u,d (kd)T arrive,G2

u,d (kd).
Hence, the difference between the time spent by the first and

the last vehicle of group 2 on the link during the current
cycle is ((μu,d − α

arrive,q
u,d (kd))/μu,d )T arrive,G2

u,d (kd). Moreover,
the time needed for all vehicles in group 2 to leave the
network after they start to accelerate is almost the same
assuming that they all travel the same distance, while the
time they spend before accelerating might be different (due
to different idling times for different vehicles). This time
for the first vehicle of group 2 includes the duration of the
red + yellow phase, i.e., cd − gu,d(kd), in addition to the

time nG1
u,d(kd)/μu,d , the first vehicle of group 2 should wait

for the vehicles in front of it to accelerate. The time spent
by the last vehicle of group 2 before it accelerates is the
time it needs to reach the tail of the front queue, i.e., the
average delay time τ G2

u,d(kd) of the vehicles in group 2. Finally,
from the explanations given, we can obtain (35) (for more
details, see [30]).

For (36), since in the limit, the last vehicle of group 3
will behave similarly to the first vehicle of group 4 (purely
free-flow behavior), we can assume that the starting point of
the time–speed curve of the last vehicle in group 3 almost
coincides with the starting point of the free-flow behavior
of the first vehicle in this group (see [30] for extra details).
Hence, the overall arrival time of the vehicles in group 3
T arrive,G3

u,d (kd), i.e., the temporal distance between the starting
points of the time–speed curves of the first and the last vehicle
of group 3, equals the time spent by the first vehicle of
group 3 before it reaches vfree

u,d at the end of its travel on
the link. The first vehicle of group 3 enters the link with
vfree

u,d and approaches the tail of the queue formed by the
vehicles in groups 1 and 2 when this queue has just started
to accelerate and move forward. Hence, the first vehicle of
group 3 decelerates to the current speed of the queue, i.e., v idle

u,d .
The time needed by this vehicle to reach the tail of the moving
queue is, in the limit, the same as the average delay time
τ G2

u,d(kd) of the vehicles in group 2 (see the first term of (36)).
Then the first vehicle of group 3 accelerates to move forward
with the front queue and reach vfree

u,d before it leaves the link
(see the second term of (36)).

The different traffic behaviors can be divided into four
types: free-flow, idling, decelerating, and accelerating.
A microscopic emission model, such as VT-micro [31], can
compute the instantaneous emissions e(v, a) for a given
vehicle from the acceleration a and speed v of the vehicle.
Suppose that Eu,d denotes the total emissions on link (u, d)
in an under-saturated traffic case. Then for each of the
behaviors mentioned, we can write

E free
u,d =

∑
i

(
nfree,i

u,d (kd)T free,i
u,d (kd)

)
e
(
vfree

u,d , 0
)

(37)

E idle
u,d =

∑
i

(
nidle,i

u,d (kd)T idle,i
u,d (kd)

)
e
(
v idle

u,d , 0
)

(38)

Edec
u,d =

∑
i

(
ndec,i

u,d (kd)

adec
u,d

∫ v l,i,b
u,d

vh,i,b
u,d

e
(
v, adec

u,d

) · dv

)
(39)

Eacc
u,d =

∑
i

(
nacc,i

u,d (kd)

aacc
u,d

∫ v
h,i,b
u,d

v l,i,b
u,d

e
(
v, aacc

u,d

) · dv

)
(40)
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for i ∈ {G1, G2, G3, G4}, and where the superscripts l and h
indicate the lower and higher speeds for different traffic
behaviors b. From the given discussions for different groups
of vehicles, in the under-saturated case, the lower speed
may be v idle

u,d (see group 1 and group 2 in Fig. 5) or vmiddle
u,d

(see group 3 in Fig. 5), and the higher speed is vfree
u,d

(see groups 1–3 in Fig. 5). Next we determine the number
of vehicles from each group in the under-saturated case that
participate in a specific traffic behavior, and also the total
time spent by the representative vehicle for the free-flow and
the idling behavior.

From Fig. 5, all groups show the free-flow behavior during
the current cycle. Hence

nfree,G1
u,d (kd) = nG1

u,d(kd)

nfree,G2
u,d (kd) = nG2

u,d(kd)

nfree,G3
u,d (kd) = nG3

u,d(kd)

nfree,G4
u,d (kd) = nG4

u,d(kd) (41)

where the average time that each group spends on the free-flow
behavior is obtained by

T free,G1
u,d (kd) = 0.5nG1

u,d(kd)

N lane
u,d · vfree

u,d

lveh −
(
vfree

u,d

)2 − (
v idle

u,d

)2

2aacc
u,d · vfree

u,d

T free,G2
u,d (kd) = τ

G2
u,d (kd) − v idle

u,d − vfree
u,d

adec
u,d

+nG1
u,d (kd) + 0.5nG2

u,d(kd)

N lane
u,d · vfree

u,d

lveh

−
(
vfree

u,d

)2 − (
v idle

u,d

)2

2aacc
u,d · vfree

u,d

T free,G3
u,d (kd) = Cu,dlveh/N lane

u,d vfree
u,a

+ 0.5
(
vfree

u,d − v idle
u,d

)(
1/adec

u,d − 1/adec
u,d

)
T free,G4

u,d (kd) = nG4
u,d (kd)

/
α

arrive,q
u,d (kd). (42)

Now we prove and motivate the equations above. For the
vehicles in group 1, the free-flow behavior is observed at the
end of the time–speed curve. The average distance traveled
by the representative vehicle of group 1 after the traffic light
turns green is 0.5nG1

u,d(kd)lveh/N lane
u,d . This is because for the

representative vehicle we can assume that the total distance
that should be traveled to the end of the link is half of the
length of the queue formed by the vehicles in group 1, i.e., half
of the length nG1

u,d(kd)lveh/N lane
u,d , assuming that the vehicles are

equally distributed along the N lane
u,d lanes of the link. Knowing

that the representative vehicle should travel this distance partly
by the constant acceleration aacc

u,d and partly by the constant
speed vfree

u,d , from the kinematics knowledge,2 we can easily
obtain the first equation of (42). A similar reasoning holds
for the free-flow behavior of the representative vehicle of
group 2 at the end of its trip on the link, i.e., we assume

2The displacement �d of a vehicle that starts its motion with speed v0 and
moves with the constant acceleration a during a time period T is obtained
via �d = (1/2)aT 2 + v0T , while the displacement of the vehicle when it
moves with the constant speed v is �d = vT .

the distance traveled by the representative vehicle of group 2
is the average of the distances traveled by the first and the
last vehicle of group 2 (i.e., the average of nG1

u,d (kd)lveh/N lane
u,d

and (nG1
u,d (kd) + nG2

u,d(kd))lveh/N lane
u,d ). The last two terms of

the second equation of (42) are obtained this way. In addition,
free-flow behavior is also observed at the beginning of the trip
of the representative vehicle of group 2 (note that the distance
between the entrance of the link and the tail of the waiting
queue is traveled partly by the constant speed vfree

u,d , and partly
by the constant acceleration aacc

u,d ). The overall time for the
free-flow and the accelerating behaviors at the beginning of the
time–speed curve of the representative vehicle is the average
delay time of the vehicles in group 2. Hence, the first two
terms of (42) are obtained (see [30] for more details).

The idling behavior is observed for the vehicles in group 1
and group 2, while the vehicles in the other groups do not
show any idling behavior. Thus

nidle,G1
u,d (kd) = nG1

u,d(kd)

nidle,G2
u,d (kd) = nG2

u,d(kd)

nidle,G3
u,d (kd) = 0

nidle,G4
u,d (kd) = 0 (43)

where the time spent by the vehicles in each group for the
idling behavior is

T idle,G1
u,d (kd) = cd − gu,d(kd) + (

0.5nG1
u,d(kd)

)
/μu,d

T idle,G2
u,d (kd) = T idle,G1

u,d (kd) − τ G2
u,d(kd)

T idle,G3
u,d (kd) = 0

T idle,G4
u,d (kd) = 0. (44)

Note that the first vehicle of group 1 idles during the
red + yellow phase, i.e., for cd − gu,d(kd) time units, while
the last vehicle of the group should first wait for the rest of
the vehicles in the group to leave the link. Hence, the idling
time of the last vehicle of group 1 is nG1

u,d(kd)/μu,d time units
larger than that of the first vehicle of the group. The average
of the idling times of the first and the last vehicle is the idling
time of the representative vehicle of this group (see the first
equation of (44)). The idling time of the representative vehicle
of group 2 is similar to that of the representative vehicle of
group 1, except that both the first and the last vehicle idle
for τ

G2
u,d (kd) time units less than the first and the last vehicle

of group 1. This is because the first and the last vehicle
of group 2 enter the link with vfree

u,d , and hence they should
decelerate before they start their idling behavior. This explains
how the second equation of (44)) is obtained.

The decelerating behavior occurs for the vehicles in group 2
and group 3

ndec,G1
u,d (kd) = 0

ndec,G2
u,d (kd) = nG2

u,d(kd)

ndec,G3
u,d (kd) = nG3

u,d(kd)

ndec,G4
u,d (kd) = 0. (45)
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Finally, for the accelerating behavior, which is observed for
the first, second, and third groups, we have

nacc,G1
u,d (kd) = nG2

u,d (kd)

nacc,G2
u,d (kd) = nG2

u,d (kd)

nacc,G3
u,d (kd) = nG3

u,d (kd)

nacc,G4
u,d (kd) = 0. (46)

VI. MODEL-PREDICTIVE CONTROL FOR

URBAN TRAFFIC NETWORKS

MPC [32] is an optimization-based control approach that
leads the controlled system to operate close to a defined opti-
mal performance. In MPC, a performance index is minimized
over a finite-length prediction window spanning Np control
time steps. Next, only a part of the obtained suboptimal control
trajectory between the current and the next control time step
is applied to the system. The starting point of the prediction
horizon is then shifted and the optimization problem is solved
using the updated state measurements. Compared with the
optimal control strategies with an entirely open-loop scheme,
where the optimization problem is solved offline over the
entire simulation period, the suboptimal solution of the MPC
is more robust toward unexpected disturbances [33].

Taking into account the positive characteristics of an MPC
controller (i.e., it performs a feedback-based and to some
extent robust control approach), which fit well the require-
ments that are usually expected for management of traffic
networks with highly dynamic behaviors, we also consider
the MPC approach for urban traffic control. The aim of
the controller is to find a balanced tradeoff between pre-
vention/reduction of congestion and reduction of emissions.
Therefore, for the prediction model of the MPC controller,
which estimates the future states of the system along the
prediction window, the integrated flow and emission frame-
work introduced in Section V including the extended S-model
(see Section IV-B) and VT-micro [34] is used.

A. Formulation of the Optimization Problem

min
ũ(kc)

J (kc) = min
˜u(kc)

(J t (kc) + J s,cum(kc))

s.t. (49) and (50)

Integrated flow and emission model (12)–(46) [30]

U (ũ(kc)) = 0 (e.g., see (48))

umin ≤ ũ(kc) ≤ umax (47)

where J (kc) denotes the summation of the terminal objective
J t (kc) and the cumulative stage objective function J s,cum(kc)
that is computed within one prediction window starting at
control time step kc, i.e., within [kcTc, (kc+Np)Tc) with Tc the
control sampling cycle. Furthermore, the optimization variable
ũ(kc) is a vector that includes u�(kc), . . . , u�(kc + Np − 1),
u(kc) is a vector that includes all control inputs of the
system (the green time lengths for an urban traffic network
along the prediction window) at control time step kc, umin
and umax are vectors of the same size as u(kc) that include
element-wise the minimum and maximum allowed values for
the control inputs within u(kc), and U (u(kc)) = 0 indicates

the equality constraints on the control vector. For example,
U (u(kc)) = 0 may indicate that the summation of the green
and yellow times for each intersection equals the cycle time
for that intersection. More specifically, suppose that ud,i (l)
for all d ∈ Ictrl (with Ictrl the set of all intersections of the
urban traffic network that are controlled by traffic signals) and
i ∈ {1, . . . , ngreen

d } (with ngreen
d the number of green signals3 of

intersection d) indicates the i th traffic signal at intersection d .
Then for all d ∈ Ictrl, U (u(kc)) = 0 is a relationship of the
form

ngreen
d∑
i=1

ud,i (l) = cd − yd , l ∈ {kc, . . . , kc + Np − 1} (48)

where yd indicates the total yellow or all-red time within one
cycle of the intersection corresponding to node d .

The main aim of the control system is to find a balanced
tradeoff between reducing the congestion level, reducing the
total emissions, and preventing high fluctuations in time for the
control signals. Hence, the stage objective function of the MPC
controller is formulated as a weighted combination of the total
time spent (which quantifies the congestion level), the total
emissions, and the absolute difference of two temporally
successive control vectors. We have

J s(k) = wT
T (k)

T t +
∑
p∈P

wE p

E p(k)

Et
p

+ wv
V(u(k))

Vn (49)

with T (k) and E p(k) the total time spent and emissions of p ∈
P (where P is a set of pollutants, e.g., P = {CO, HC, NOx})
within one control sampling time, T t and Et

p typical values
of T (·) and E p(·) within one prediction window, V(u(k)) =
‖u(k) − u(k − 1)‖ for some norm function ‖·‖, and Vn a
nominal value for V(u(k)) in one control sampling time that
may be computed by ‖umax − umin‖.

B. Computation of the Objective Function

In (49), T (·) and E p(·) are the summation of the total
time spent and total emissions for all links in the traf-
fic network. In order to compute these quantities on each
link, we should first determine the ongoing traffic state
(see Section V and [30]). For the total time spent by the
vehicles on link (u, d) at time step kc, we have

Tu,d(kc) =
Ns

G∑
i=1

∑
b∈B

(
nb,i,s

u,d

(
k+

d (kc) − 1
)

· min
{
T b,i,s

u,d

(
k+

d (kc) − 1
)
, k+

d (kc)cd − kcTc
})

+
k++

d (kc)∑
j=k+

d (kc)

Ns
G∑

i=1

∑
b∈B

nb,i,s
u,d ( j)T b,i,s

u,d ( j)

+
Ns

G∑
i=1

∑
b∈B

(
nb,Gi ,s

u,d

(
k++

d (kc) + 1
)

· min
{
T b,i,s

u,d

(
k++

d (kc) + 1
)
,

(kc + Np)Tc − k++
d (kc)cd

})
(50)

3Note that at intersection d, for each right of way, we consider a traffic
signal.
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Fig. 6. Simulation and control time step counters.

TABLE I

NETWORK PARAMETERS

TABLE II

MODEL PARAMETERS

where s adopts under-saturated, saturated, and over-saturated
based on the ongoing traffic scenario on the link, B = {free,
idling, dec, acc}, Ns

G shows the number of different groups
for the ongoing traffic state, and T b,Gi ,s

u,d (kd) is computed
by the equations given in Sections V-A. The total emissions
E p of p for each link of the network can be computed
via (37)–(40).

In general, the system’s sampling time and the control
sampling time might not be equal, and therefore, the time
instants kd (i.e., the simulation time step counter for the
link (u, d)) and kc (i.e., the control time step counter of
the network) may not coincide; hence, we should find a
relationship between kd and kc. The first upcoming simulation
time step k+

d (kc) (see Fig. 6) for link (u, d) at time instant kcTc

is computed by

k+
d (kc) = �(kcTc − �Td,0)/cd	 (51)

where �Td,0 is the offset between the first simulation time step
of link (u, d) (kd = 0) and the first control time step (kc = 0).
For k++

d (kc), i.e., the last simulation time step that occurs
during the current prediction time interval (see Fig. 6), we can
write

k++
d (kc) = �((kc + Np)Tc − �Td,0)/cd�. (52)

VII. CASE STUDY

In this section, we consider a case study to evaluate the
designed smooth MPC controller. We focus on both the per-
formance and the computation speed of the proposed control
approach. We compare the values of total time spent, total
emissions, and the value of the objective function computed by
(49) for the proposed smooth MPC controller with those of the
no-control case, a simple state-feedback controller, an optimal
fixed-time controller that has been precomputed offline, and
an MPC controller with pattern search as the optimization
solver. Next, we also evaluate the controller from the point
of computational efficiency (i.e., the CPU time).

Fig. 7. Urban traffic network used for the case study.

A. Setup

The urban traffic network we use for the case study is
presented in Fig. 7. The network consists of 11 links, where
all links have the same characteristics, i.e., number of lanes
N lane, length �link, and saturated leaving flow rate μ. More-
over, the traffic lights of all the three intersections that are
controlled (see Fig. 7) have the same cycle time c. The
parameters β5,7,9, β5,7,11, β6,8,11, and β6,8,10 are the turning
rates (i.e., the percentage of vehicles on a link that turn
to a specific downstream link) of the vehicles at the corre-
sponding intersection. We use the proposed integrated flow
and emission model explained in Section V with the traffic
parameters listed in Tables I and II to simulate the traffic in this
network.

We run the simulations for three different demand profiles
shown in Fig. 8, where αenter

1 , αenter
2 , αenter

3 , and αenter
4 are

the demands (i.e., the entering flow rates) of, respectively,
origin 1–4 in Fig. 7. These profiles have been selected in
such a way that they highlight specific features, and such that
they result in various traffic scenarios (e.g., under-saturated,
saturated, and over-saturated) on different links of the traffic
network. More specifically, “demand profile 1” corresponds
to a relatively balanced case for the four demands αenter

1 –
αenter

4 . “Demand profile 2” is a case where the demands at
origin 2 (αenter

2 ) and 3 (αenter
3 ) are medium. For “demand

profile 3,” the demand at origin 3 is very high, while at
the other origins, the demand is low to medium. Comparing
“demand profile 2” and “demand profile 3,” we see a
more irregular pattern for the latter case. Note that for
each of the three demand profiles, at some periods dur-
ing the simulation, congestion occurs, more specifically on
links (1, 5), (2, 5), (3, 6), (4, 6), (7, 11), and (8, 11). More-
over, on the intermediate links (5, 7) and (6, 8), a moderately
congested traffic is sometimes observed. Each simulation run
covers an entire hour. For each demand profile, we repeat
the simulations ten times and compute the CPU time and
the realized values of the objective function, the total time
spent, and the total emissions of CO, HC, and NOx for
each run. We will consider and compare the performance of
different controllers that are described in Section VII-B with
the no-control case, which corresponds to a case where there
are no traffic lights at all at the intersections (i.e., all links are
always open to the vehicles, unless the downstream road is
blocked).
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Fig. 8. Different demand profiles used for three simulations cases.

B. Controllers

1) State-Feedback Controller: At every control time step
k, the feedback controller divides the green times gu1,d and
gu2,d between two incoming links (u1, d) and (u2, d) at
an intersection d considering the total number of vehicles
nu1,d and nu2,d on the links, and the number of vehicles
in the queues qu1,d and qu2,d , i.e., based on the ratios
(nu1,d(k) + ρqu1,d(k))/(nu1,d(k) + nu2,d(k) + ρ (qu1,d (k)+
qu2,d(k))) and (nu2,d (k) + ρqu2,d(k))/(nu1,d (k) + nu2,d (k)+
ρ (qu1,d (k)+qu2,d (k))), respectively. Note that ρ is a parameter
that can be tuned.

2) Optimal Fixed-Time Controller: This controller has con-
stant signal settings that have been optimized offline for each

demand class (demand profiles 1–3) separately. For this aim,
the objective function (i.e., the weighted sum of the total time
spent and total emissions) was minimized for each demand
class in a 1-h simulation using brute force with a grid size
of 0.1, and a fixed traffic signal setting was obtained.

3) MPC Controller With RProp: This controller uses a
gradient-based optimization approach based on the RProp
algorithm (see Appendices B and C), and is designed as
explained in Section VI, with the smooth and extended
S-model (see Sections II and IV-B) as the prediction flow
model and VT-micro [34] as the prediction emission model
of the controller. These two models are integrated using the
mesoscopic framework proposed in Section V. The control
sampling time is equal to the cycle time of the traffic lights
in the traffic network (60 s), and the length of the prediction
horizon is seven time steps (note that according to the tuning
rules proposed in [35], the horizon length is selected such
that it is longer than the time needed for vehicles to cross the
network).

4) MPC Controller With Pattern Search: For evaluation of
the CPU time, we compare the smooth MPC controller with
a nonsmooth MPC controller. In general, several nonsmooth
optimization algorithms exist, among which pattern search and
genetic algorithm are the most frequently used algorithms.
We noted from several experiments that the performance and
the computation speed for pattern search are more satisfactory
than those of the genetic algorithm. Hence, we used pattern
search for the case study that is implemented in the Global
Optimization Toolbox of MATLAB, version R2015B.

The experiments were run on a PC with an Intel Xeon Quad-
Core E5-1620 V3 CPU with a clock speed of 3.5 GHz.

C. Results and Discussion

Since the MPC optimization problem may in general be
a nonconvex one, in order to prevent the gradient-based
approach from giving a solution that is only locally optimal
and that may give a much worse performance than the global
optimal value, we first ran a set of offline experiments. The aim
was to determine how starting control points may play a role in
getting a good approximation for the global optimum, and that
what is the best choice for the selection of the starting points.
These points have been selected in a structured way, i.e., we
have three sets of deterministic starting points and two sets
of random ones. The deterministic starting points include the
shifted suboptimal solution of the previous control time step,
the average of the shifted suboptimal solutions determined
in the two previous control time steps, and the average of
all the shifted suboptimal solutions found in the previous
control time steps. The random starting points are feasible
points with a uniform distribution. The results of the offline
optimization did not show a notable difference in the overall
performance of the controlled system for different choices of
the starting points. Hence, for the online application of the
optimization-based control approaches in this paper, we used
one set of starting control points at every control time step,
in particular, the shifted suboptimal solution of the previous
control time step. For pattern search, we used a similar
approach.
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TABLE III

VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE
ENTIRE SIMULATION PERIOD FOR THE NO-CONTROL CASE

TABLE IV

VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE

ENTIRE SIMULATION PERIOD FOR THE STATE-FEEDBACK CONTROLLER

TABLE V

VALUE OF THE OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER THE

ENTIRE SIMULATION PERIOD FOR THE OPTIMAL FIXED-TIME CONTROLLER

TABLE VI

VALUE OF THE AVERAGE CPU TIME, OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER
THE ENTIRE SIMULATION PERIOD FOR THE SMOOTH MPC CONTROLLER WITH RPROP

TABLE VII

VALUE OF THE AVERAGE CPU TIME, OBJECTIVE FUNCTION, TOTAL TIME SPENT, AND TOTAL EMISSIONS OVER
THE ENTIRE SIMULATION PERIOD FOR THE NONSMOOTH MPC CONTROLLER WITH PATTERN SEARCH

Tables III–VII show the resulting value of the objective
function, the total time spent, and the total emissions of
CO, HC, NOx for the no-control case, and for the state-
feedback, optimal fixed-time, and smooth and nonsmooth
MPC controllers applied to the urban traffic network illustrated
in Fig. 7. We have considered the following values for the
parameters given in (49): wT = 0.3, wECO = wEHC =
wENOx

= 0.2, T t = 105 [s], Et
CO = Et

HC = Et
NOx

= 1 [kg],
and wv = 0. These results show that compared with the no-
control case, the overall performance of the system is improved
significantly with the state-feedback and optimal feedback
controllers. The reason that the fixed-time traffic signal setting
performs much worse than the state-feedback controller for
demand profile 3 is the irregular pattern of this demand profile
compared with the other two profiles (see Fig. 8). A constant
setting is of course not always expected to be the best choice
for both a very high and a very low demand, which occurs
in Demand profile 3 for origin 3. However, a state-feedback
controller that considers the queue lengths can adapt its traffic

signal setting with respect to the current traffic state, and hence
performs better than the fixed-time controller.

From Table VI, the improvement of the system’s perfor-
mance for the smooth MPC controller is higher than for the
other controllers with respect to the no-control case. Therefore,
we can conclude that the online smooth MPC approach for the
given case study is highly beneficial compared with the other
given controllers.

Next, we compare both the computation time and the
performance of the smooth MPC controller that uses RProp
with those of a nonsmooth MPC controller that uses pattern
search. The corresponding results showing the performance of
pattern search are given in Table VII. We see that for all the
given demand profiles, the CPU time for the MPC controller
with RProp is 12–45 times less than the CPU time for pattern
search. This indicates that the gradient-based optimization
approach performs significantly better than pattern search
considering the computation speed. Moreover, the realized
value of the objective function for a 1-h simulation for the
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TABLE VIII

PERCENTAGE OF IMPROVEMENT OF THE OBJECTIVE VALUE
WITH RESPECT TO THE STATE-FEEDBACK CONTROLLER:

((Jstate−feedback − JMPC)/(Jstate−feedback))
(+: IMPROVED AND −: BECAME WORSE)

TABLE IX

PERCENTAGE OF IMPROVEMENT OF THE OBJECTIVE VALUE

WITH RESPECT TO THE OPTIMAL FIXED-TIME CONTROLLER:
((Jfixed−time − JMPC)/(Jfixed−time)) (+: IMPROVED

AND −: BECAME WORSE)

gradient-based optimization approach is almost 31.5% of the
realized value of the objective function for pattern search
for “demand profile 1,” 11% for “demand profile 2,” and
11.5% for “demand profile 3” (compare Tables VI and VII).
In addition to that, by looking at the realized values of the
total time spent and total emissions of CO, HC, and NOx

individually, we see that all these quantities are prominently
smaller for the gradient-based optimization compared with
pattern search. Note that for pattern search, the optimization
procedure takes long, and hence, sometimes the maximum
number of iterations is reached before the optimum values
are found.

We have listed the percentages of improvement for the
MPC controllers with respect to the state-feedback and optimal
fixed-time controllers in Tables VIII and IX. These results
show that for the traffic network shown in Fig. 7, the proposed
smooth MPC controller that uses RProp is the most efficient
controller among the other given controllers. In addition,
from the smooth and nonsmooth MPC controllers, both the
performance and the CPU time of the smooth one are much
better.

VIII. CONCLUSION

We have proposed a highly efficient smooth model-
predictive controller for urban traffic networks, with the aim of
finding a balanced tradeoff between reduction of the total time
spent by the vehicles and the total emissions. We have applied
a gradient-based optimization approach based on the RProp to
find the suboptimal solution of the MPC controller. To make
the proposed gradient-based optimization approach applicable
to different physical systems, we have introduced general
smoothening methods for nonsmooth mathematical models.
We have also introduced a general formulation for transform-
ing a time-delayed differential equation in the continuous-time
domain into an equivalent discrete-time difference equation.

The simulation results have shown that the smooth MPC
controller improves the performance of the network signifi-
cantly with respect to the no-control case, and state-feedback,

Fig. 9. Effective inflow during [t, t + h) for a delayed-time differential
equation with a time-varying delay.

optimal fixed-time, and nonsmooth MPC-based controlled
cases. Moreover, the smooth (gradient-based) optimization
method is much faster than the nonsmooth one (the CPU time
of the smooth method is 12–45 times less than the CPU time
of the nonsmooth method). Note that although the resulting
CPU time for the smooth optimization-based controller shows
a significant decrease compared with that of the nonsmooth
optimization-based controller, it is currently not yet suited for
real-time control. Therefore, further improvements in com-
putation speed of the smooth optimization-based controller
should be obtained. This improvement may be achieved using
dedicated software and hardware, distributed MPC, fast MPC
techniques, parameterized control approaches, and so on.

Topics for future work include implementing the smooth
optimization approach to a large-scale network considering a
multilevel and/or multiagent control architecture. In addition,
to make the MPC controller faster, we can consider parame-
terized control laws. We also suggest an extensive validation
of the proposed control approach for various networks with
real-life data sets.

APPENDIX A
PROOF OF LEMMA 1

Suppose that we want to find the effective inflow ūh(t)
during [t, t + h) for a delayed differential equation with a
time-varying delay function

ūh(t) = 1

h

∫ t+h−τ (t+h)

t−τ (t)
u(t)dt . (53)

Assuming a piece-wise constant inflow function u(t) in
[st, st +h), s ∈ Z (see Fig. 9), and τ (t) = δ(t)h +γ (t), ∀t ∈
[t, t + h), there are two cases.
Case 1: Suppose that we have δ(k) ≤ δ(k −1)+1; then (53)

can be extended as

ūh(t) = 1

h

∫ t−δ(t)h

t−δ(t)h−γ (t)
u(θ)dθ

+ . . . + 1

h

∫ t+h−δ(t+h)h−γ (t+h)

t−δ(t+h)h
u(θ)dθ

= 1

h
γ (t)u(t − (δ(t) + 1)h)

+ 1

h

⎛
⎝h

δ(t)−δ(t+h)∑
i=1

u(t − (δ(t) − i + 1)h)

⎞
⎠

+h − γ (t + h)

h
u(t − δ(t + h)h).
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In order to represent the above expression in
discrete-time domain, we substitute t + h by kh and
t by (k − 1)h. In this way, (11) will be obtained.

Case 2: For δ(k) > δ(k − 1) + 1, in a similar way as for
Case 1, (11) can be obtained.

APPENDIX B
PONTRYAGIN’S MINIMUM PRINCIPLE

Our problem includes finding a suboptimal control strategy
solving a smooth optimization problem for a discrete-time
nonlinear system. We first explain how to solve such a problem
using Pontryagin’s minimum principle [16]. Consider the
discrete-time nonlinear system

x(k + 1) = f (k, x(k), u(k)) (54)

where f (·) can in general be a nonlinear smooth function.
Define a performance index for (54) during the prediction time
interval [kcTc, (kc + Np)Tc) by

J(kc) = J t (kc) +
kc+Np−1∑

k=kc

J s(k) (55)

with J s(·) the stage objective function, which at control time
step k ∈ {kc, . . . , kc+Np−1} can be given by an expression of
the control time step k, the state vector x(k), and the control
input u(k), i.e., J s(k) = J s(k, x(k), u(k)), and with J t (·)
the terminal objective function, which at control time step kc

can be given by an expression of the terminal control time step
kc+Np and the terminal state vector x(kc+Np), i.e., J t (kc) =
J t (kc + Np , x(kc + Np)). In our specific problem, the stage
objective is obtained by summing up the total time spent (50)
and the total emissions (37)–(40) over all links (u, d) ∈ L. The
Hamiltonian function [16] for minimizing (55) with respect
to (54) at control time step k ∈ {kc, . . . , kc + Np − 1} is
defined by

H (k,λ(k + 1), x(k), u(k))

= J s(k, x(k), u(k)) + λ�(k + 1) · f (k, x(k), u(k)) (56)

where λ(·) is called the costate. Pontryagin’s minimum prin-
ciple [15] states that for an input function ū(·) to make the
performance index (55) optimal, the following should hold for
all k ∈ {kc, . . . , kc + Np − 1} at the same time [16]:

x(k + 1) = ∂ H (k,λ(k + 1), x(k), ū(k))

∂λ(k + 1)
(57)

λ(k) = ∂ H (k,λ(k + 1), x(k), ū(k))

∂x(k)
(58)

G(k) = ∂ H (k,λ(k + 1), x(k), ū(k))

∂u(k)
= 0 (59)

where G(·) is called the reduced gradient [20]. In order to
numerically solve (57), we can start from the initial state of the
system, x(kc). To solve (58) via backward integration, we start
from λ(kc + Np), which is given by

λ(kc + Np) = ∂ J t(kc + Np, x(kc + Np))

∂x(kc + Np)
. (60)

In our problem, we considered J t (kc + Np) =
α

∥∥x(kc + Np)
∥∥ for the terminal objective (with α a

positive constant) to reduce the final queue lengths on the
links. Applying an iterative algorithm involving an adaptive
optimization method known as the RProp algorithm, which
was initially introduced in [22] and was more recently
extended in [21], we can find the optimal input function ū(·).

APPENDIX C
RESILIENT BACK-PROPAGATION ALGORITHM

Using RProp [22], we can find the increment �ū� of the
control vector at iteration � based on the values of the reduced
gradients in the current and in the previous iterations, i.e., G(�)

and G(�−1). The elements of G and �ū are indicated by,
respectively, Gi and �ūi for i = 1, . . . , |ū|, where | · | gives
the number of entries of a vector. The elements of �ū� at time
step k ∈ {kc, . . . , kc + Np − 1} are updated by

ūi,(�)(k) = sat(ūi,(�−1)(k) + �ūi,(�)(k)) (61)

where

sat(ūi ) =

⎧⎪⎨
⎪⎩

ui,max, if ūi ≥ umax

ūi , if umin < ūi < umax

ui,min, if ūi ≤ umin

with ui,max and ui,min the upper and the lower bound for the
element ūi . Finally, for i = 1, . . . , |ū|, RProp (for 0 < η− < 1
and η+ > 1) gives

�ui,(�)(k)

=

⎧⎪⎨
⎪⎩

−sign(Gi,(�)(k))η+|�ui,(�−1)(k)|,
for Gi,(�−1)(k)Gi,(�)(k) > 0

�ui,(�)(k) = −η−�ui,(�−1)(k), otherwise.
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