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Abstract

In statistical learning over large data-sets, labeling all points is ex-
pensive and time-consuming. Semi-supervised classification allows
learning with very few labels. Naturally, selecting a few points to
label becomes crucial as the performance relies heavily on the labeled
points. The motivation behind active learning is to build an optimal
training set keeping the classifier in mind. Random or heuristic-driven
selection does not care for the classification process or are trivially de-
fined. We are interested in the graph structure formed by the data,
as seen in citation, social and biological networks. Accordingly, ac-
tive semi-supervised learning on graphs labels nodes to enhance the
performance of classification. We propose a new methodology to per-
form active learning for diffusion-based semi-supervised classifiers. In
particular, we focus on a classifier which diffuses probability distribu-
tions over the graph through random walks. We postulate the active
learning problem as i) a linear inverse problem with a sparse start-
ing distribution over the nodes; ii) a model output selection problem.
For the former, we use sparsity-regularized inverse problems to select
nodes. For the latter, we use tools from Compressed Sensing and
Sparse Sensing to select the nodes with the relevant model output.
We show that we can select all the relevant nodes in a single shot
fashion, hence avoiding reliance on multiple training phases. Results
on simulated as well as real data-sets show the proposed methods
outperform random labeling, thereby proving to be relevant for active
semi-supervised learning on graphs.
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Abstract

In statistical learning over large data-sets, labeling all points is expensive and time-
consuming. Semi-supervised classification allows learning with very few labels. Natu-
rally, selecting a few points to label becomes crucial as the performance relies heavily
on the labeled points. The motivation behind active learning is to build an optimal
training set keeping the classifier in mind. Random or heuristic-driven selection does
not care for the classification process or are trivially defined. We are interested in
the graph structure formed by the data, as seen in citation, social and biological net-
works. Accordingly, active semi-supervised learning on graphs labels nodes to enhance
the performance of classification. We propose a new methodology to perform active
learning for diffusion-based semi-supervised classifiers. In particular, we focus on a
classifier which diffuses probability distributions over the graph through random walks.
We postulate the active learning problem as i) a linear inverse problem with a sparse
starting distribution over the nodes; ii) a model output selection problem. For the
former, we use sparsity-regularized inverse problems to select nodes. For the latter, we
use tools from Compressed Sensing and Sparse Sensing to select the nodes with the rel-
evant model output. We show that we can select all the relevant nodes in a single shot
fashion, hence avoiding reliance on multiple training phases. Results on simulated as
well as real data-sets show the proposed methods outperform random labeling, thereby
proving to be relevant for active semi-supervised learning on graphs.
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Introduction 1
1.1 Motivation

Nowadays, we are witnessing an increase in the volume and diversity of data-sets. Ex-
amples can be found in social [1], biological [2] [3] and citation networks [4], to name
a few. When we think of network data, we consider a network defined through the
relationship between data points. The network can also be seen as a graph with nodes
(vertices) representing the data points. For example, in a weather monitoring network,
each station can be considered to be a node and the data its measurements. Two sta-
tions located close to each other are connected through edges, where the importance of
each edge depends on the distance between the stations that share it. There are several
advantages of this representation. First, the data now resides on a lower-dimensional
manifold [5]. Secondly, existing research on spectral graph theory can be leveraged to
process data [6]. Third, the graph structure allows for distributed processing [7]. The
availability of graph (network) data and the numerous advantages offered by graphs
signify these data processing tasks. One such task is making an inference about the
entire network while observing information over a very small portion of it. To be more
specific, for each node of the network we would like to infer about its properties or
predict some value associated with it. But this is a stumbling block for networks often
due to their huge size and irregular structure. So we rely on selecting a small set of
nodes, whose information makes the aforementioned task easier.

We focus on classifying the nodes of a graph. Given a graph data-set, the nodes are
the objects and have their respective labels. We want to predict the labels of all nodes.
As an example, we consider a social network such as Facebook, with its users as nodes
and edges capturing friendships [1]. We want to classify the users according to their
political affiliation (i.e. Republican or Democrat). Classification requires the presence
of labeled information (data). For our Facebook graph, this requires the affiliation of
all users which is difficult to acquire due to the size of such a network and the difficulty
involved in acquiring it. The natural choice is to focus on training with labeled data
which is much smaller in number than the unlabeled data. This does not bode well
for supervised learning, as it can learn only from labeled data and generally performs
better with more labeled data. Semi-supervised learning is the way to proceed [8]. It
learns a classifier from both labeled and unlabeled data. The goal is to incorporate
the unlabeled data and the structure of the overall data to aid the learner and perform
better than using the labeled data alone. For our example network, this means we need
the affiliation of only a few users and use that information to predict those of the rest.
To ensure a good classification performance, one approach is to build the optimal set of
points to be labeled (queried) from the available data. The field of active learning looks
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into this particular problem [9]. This means for the Facebook network, we build the
optimal set of users using an active learning approach. Next, we obtain their affiliations
and then predict the labels of the other users.

1.2 Current Literature

Active learning and experimental design (optimal selection or allocation of objects to
facilitate experiments) are well connected, and this is evident from the literature on this
topic [10] [11] [12] [13] [14] [15]. Scholars have looked into this for classifiers like Gaus-
sian random fields on graphs [10] [16] [17], graph Laplacian regularized least squares
[11] [18], the logistic classifier [13] and ridge regression [12]. In terms of the querying
criterion (a function which evaluates how optimal a point or a set of points are), the
most informative points can be selected based on uncertainty [19] [20], smoothness [21]
[22], experimental design [11] [12], error bounds [18] [14] and node density [23]. The
literature also contains methods which consider training over multiple batches [16] or
just one batch [10].

However, little is known about active learning for label propagation on graphs,
a popular semi-supervised learning technique. The work in [19] combines different
criteria but assumes the learning and selection processes to be independent while the
work in [20] depends solely on the entropy. The work in [23] uses node densities to
select nodes and then uses semi-supervised label propagation to detect communities
on graphs. These methods are based on heuristics. Incorporating active learning into
the classification model can increase the quality of the selected samples as well as
the classification accuracy. There exists a semi-supervised classifier which is adaptive
to each class in the graph and uses a finite number of random walks to propagate
labels [24]. Some of the works which use experimental design are aimed primarily
at regularized regression (which is conceptualized in the Euclidean space) and impose
smoothness constraints on the classifier.

1.3 Research Question and Proposed Approach

To bring closer active learning on graphs with adaptive diffusion, this thesis concerns
the research question:

Given an unlabeled data-set and a graph built from it, what is the set of nodes that
should be queried jointly so that an adaptive diffusion-based semi-supervised classifier

can perform optimally?

We will answer the above question for the semi-supervised classifier on graphs dis-
cussed in [24]. By accounting for the classifier model (linear label propagation/ diffu-
sion), we formulate the problem of building the optimal set of nodes in two different
ways. In the first approach, we assume it to be the solution of a regularized inverse

2



problem. The second approach is based on model output selection (i.e. selecting the
nodes with the most relevant outputs). We will select the nodes jointly instead of mul-
tiple batches involving repeated training and we will motivate why that is possible. We
will evaluate their performance and relative strengths/ weaknesses.

We adopt two sets of approaches to solve this problem. In the first, we try to
solve the inverse problem directly to find the starting distribution of the diffusion
by relying on some proxies of the landing probabilities as defined in [24]. These are
obtained through a fuzzy clustering of the nodes and are used as observations to solve
for the starting densities. Once they are recovered, we query the labels at the non-zero
locations and proceed with semi-supervised learning [24]. In the second approach, we
do not bother with obtaining proxies or the nature of the starting density. We select
the nodes whose observations (i.e. outputs observed at those nodes) are the most
important for estimating the starting density. We use tools from Sparse Sensing and
Compressed Sensing to come up with two different methods to tackle this problem. For
sparse sensing, we rely on experimental design while for compressed sensing we rely on
real equiangular frames [25].

Our contributions are as follows: i) we postulate the problem of a single pool-based
active semi-supervised learning for adaptive diffusion on graphs as i.i) one based on
model output selection and i.ii) one based on solving a sparse inverse problem with
estimated proxies; ii) the model output selection has been tied to Compressed Sensing
[26] and Sparse Sensing [27], with each approach imposing different priors on the labeled
nodes. Numerical results on simulated and real graphs corroborate our findings and
showcase the improved performance compared with the state of the art.

1.4 Notation and Outline

In this thesis, we will adopt the following notation. A scalar variable is represented
by a plain alphabet a or A while a vector is represented by a bold alphabet like a. A
matrix is presented as a bold upper-case alphabet A. Sets are denoted by calligraphic
alphabets like S and their cardinality is denoted as |S|. Referring the ith element of a
vector a is done as ai or [a]i while an element in the ith row and jth column of a matrix
is indicated as Aij or [A]ij. The matrix obtained by extracting the rows and columns
of A indexed by the set S is AS×S . The diagonal matrix with its diagonal elements
a = [a1, . . . , aN ] is denoted by diag(a). Likewise, a = diag(A) is the vector comprised
of the diagonal elements of a square matrix A. The trace of a matrix A is denoted
as tr(A). Numbers in bold case, like 1N and 0N denote the N -dimensional vectors of
all ones and all zeros, respectively. Matrices AH and AT represent the Hermitian and
transpose of matrix A, respectively. Matrices A−1 and A† denote the matrix inverse
and pseudo-inverse of A. The expectation operator is E(·). The symbol RN represents
the space of N dimensional real vectors, RM×N that of M ×N real matrices and SN×N
represents the space of N×N symmetric matrices. The p-norm of a vector a is referred
as ||a||p and ||a||2A = aTAa is the weighted 2-norm of a with respect to matrix A. The
matrix or spectral norm of A is denoted by ||A||. The sign operator is sign(·). The
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updated value of x after the kth step in an iterative algorithm is x(k). The parentheses
{·} are usually used for elements of a set while the bracket symbol [·] is used to denote
vectors or matrices.

The outline of this thesis is as follows: Chapter 1 is the introduction; Chapter
2 deals with the background information; Chapter 3 reviews the existing literature;
Chapter 4 introduces the diffusion-based adaptive semi-supervised learner; Chapter 5
describes the two sets of approaches we propose in this thesis; Chapter 6 shows the
results obtained on some standard synthetic graphs and real-world data-sets and offers
a deeper understanding of the methods; Chapter 7 discusses our findings, conclusions,
limitations and the scope of future work.
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Background 2
This chapter introduces the background material which will be required for under-
standing the material in the rest of the thesis. The terminology, theory, problems and
algorithms presented in this chapter will often be referred to in the upcoming chap-
ters. This chapter is organized as follows: Section 2.1 is a brief introduction on Active
Learning and its types; Section 2.2 introduces the Sparse Sensing framework for Statis-
tical Inference; Section 2.3 introduces Graph Signal Processing, the field of processing
data observed over graphs; Section 2.4 discusses the representation and clustering of
the nodes of a graph; Section 2.5 highlights the important terms, concepts and algo-
rithms of the Compressed Sensing framework; Section 2.6 concludes the chapter by
highlighting the key concepts and ideas from each section which will be combined in
the thesis.

2.1 Active Learning

Active learning is a branch of machine learning where the learner can select the data it
wants to learn from [9]. In supervised learning, the classifier can work only on labeled
data. Obtaining labels is often expensive and time-consuming as it usually involves
a human expert. For instance, downloading academic papers is practically free but
classifying them according to their field of study would need an expert to read and
label each paper. In such a situation, we would like to use a learning mechanism that
gives a good performance but for a small number of labeled objects. Selecting which
data to label becomes the central topic of active learning. Figure 2.1 shows the general
active learning framework. This framework is composed of four modules and follows
four stages indicated by the numbers over the arrows.

1. There is usually a set of labeled data L and a set of unlabeled data U at the
start of the process. A machine learning model or classifier is trained over L and
sometimes L and U in the case of semi-supervised learning.

2. The learner “searches” over U and selects objects to query which are optimal
for a particular criterion. There are different criteria to select from. Some com-
monly used criteria include uncertainty, expected model change [28] and expected
generalization error [16].

3. The selected objects are sent to an oracle or expert to provide labels. This is
called the querying stage.

4. The queried objects now have a label and are incorporated into the labeled set L.
The learner can now operate on this set, thereby completing one cycle of active
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Labeled Training set Unlabeled Pool 

Machine Learning
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Active Query
Selection
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34

Figure 2.1: General Active Learning Framework. There are four modules: namely the Labeled
Training Set, a Machine Learning Model, a pool of Unlabeled data and an Oracle. In step
1, the learner trains itself on the labeled set; in step 2 the optimal set of objects are selected
from the unlabeled data; in step 3, these objects are sent to an oracle to be queried; in step
4, after querying, they are added to the labeled set.

learning. This is repeated until the desired performance criterion is met or until
the required number of training samples is selected.

Active learning approaches can be classified based on the scenario and/ or the
querying criterion. A particular criterion can be combined with a particular scenario
depending on the problem.

2.1.1 Classification based on Scenario

The following are the three scenarios used to classify active learning:

2.1.1.1 Membership Query Synthesis

The learner queries any unlabeled data given as an input [29] [30]. The queries are
made to identify a concept. As a result, arbitrary and non-informative points can be
labelled. This can work in some scenarios but its arbitrariness and tendency to pick
non-informative points renders it unappealing for more difficult problems.

2.1.1.2 Stream-based Selective Sampling

As the name suggests, this active learning method deals with a stream of data [31].
There is a source from which all unlabeled instances are generated. The learner gets
access to each instance sequentially and has to decide for each. If chosen to be queried,
the object is sent to the expert who provides the label and updates the labeled set.
This approach is also called sequential active learning. The availability of one point at
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a time can be thought of as a uniform sampling over the instance set, which has its
underlying distribution.

2.1.1.3 Pool-based Learning

In pool-based active learning, the main assumption is the existence of a large pool of
unlabeled data Ũ ⊆ U . The difference between this and stream-based selective sampling
is that in stream-based selective sampling, the learner has access to only one unlabeled
object at a time whereas now the learner has access to a pool of unlabeled data. This
opens up new approaches to select the desired points. The learner can also query up to
several points and send them to the expert. After updating the learner, another batch
of unlabeled points can be requested again, and the process repeats. Depending on the
feasibility of the scenario, some learners depend only on one batch [18],[22] while others
consider more than one batch [16], [19]. Reliance on one batch can be due to a slow
training procedure, limited waiting time or the nature of the querying criterion. By
having access to more points, we can make use of the advantages provided by unlabeled
data and build more sophisticated decision models. This is the go-to scenario for our
problem. However, selecting all the points depending on some criterion in one go has
its drawbacks. Selecting the K-best points based on informativeness, for instance, may
not be the best for classification as there may be correlated information between them.
Instead, some diversity between the selected points could also be considered.

2.1.2 Classification based on Querying Criterion

At the heart of active learning approaches is the evaluation of a certain object (or
a set of objects) on how optimal it is (they are) for being labeled. This evaluation
is carried out by the querying criterion. As explained in [9], some categories used
to measure optimality are as follows: Uncertainty Sampling, Query by Committee,
Expected Model Change and Estimated Error Reduction.

2.1.2.1 Uncertainty Sampling

In the uncertainty sampling based approach, the learner queries the most informative
points [32]. The entropy of a random variable is a measure of its uncertainty [33]; higher
entropy implies more uncertainty. For an unlabeled object x in a C-class classification
problem, the posterior probabilities p(y1|x;θ),. . . , p(yC |x;θ) form a distribution, where
{y1, . . . , yC} is the set of labels and θ denotes the parameters of the classifier. The
entropy of such a distribution is

h(x) = −
C∑
c=1

p(yc|x;θ)log
(
p(yc|x;θ)

)
. (2.1)

A higher value of entropy means that the classifier is unsure as to which class this
object belongs and this makes it a difficult point to classify. This measure can be used
for classifiers which obtain the exact posterior probabilities like the logistic regression
classifier. This is also suitable for classifiers where the posterior probability can be
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approximated. A related measure is the least confident criterion [34]. The object x in
the unlabeled pool Ũ , that has the least maximum value of posterior probability for
any of the C classes is chosen.

2.1.2.2 Query by Committee

In query by committee, a committee of classifiers is formed and their predictions are
used together to select the most informative objects [35]. Let {θ1, . . . ,θK} denote
the set of K classifiers or experts sampled from the hypothesis space H(θ) which are
consistent with the labeled data L. This set is also called the version space. The aim
of Query by Committee is to reduce the version space, by selecting points from the
unlabeled set U which reduces the version space. As Settles [9] puts it,

“If we view machine learning as a search for the best model within the version
space, then our goal in active learning is to constrain the size of this space as
much as possible (so that the search can be more precise) with as few labeled
instances as possible.”

One way to reduce the version space is to train each of its members on L, and then
predict the labels on U . The vote-based entropy criterion

(x∗) = argmax
x∈U

−
C∑
c=1

Vc
K

log
Vc
K

(2.2)

is used to select the most informative objects [36]. The variable Vc refers to the number
of committee members who predicted that object x belongs to class c. This is a form of
the entropy measurement defined for the distribution over committee votes. There are
other criteria as well, like the one based on the average Kullback-Leibler Divergence
[37] and the one on support vector classifiers [38].

2.1.2.3 Expected Model Change

This querying strategy selects those points that influence the model to change the most.
For instance, one way to select an optimal point is the one, which when added to L
increases the length of the gradient of the cost function (associated with the model
parameters of the classifier) the most [28]. The selection is represented as

x∗ = argmax
x∈U

C∑
c=1

Pθ(yc|x;θ)||∇lθ(L ∪ {x, yc})|| (2.3)

where x∗ is the optimal point chosen. ||∇lθ(L ∪ {x, yc})|| is the magnitude of the
derivative of some function l taken with respect to the classifier parameter θ and
evaluated for the training set {L ∪ {x, yc}}. The length of the gradient is averaged
across all possible labels to give the expected gradient length. The point x which
maximizes the change in gradient length, and hence that of the model, is added to L.
This is one example of selection through model change.
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2.1.2.4 Estimated Error reduction

In this approach, the future expected generalization error is calculated for an object
x when it is added to the labeled set L. This is done for all x ∈ U and the one that
leads to the minimum error is selected. This is a computationally demanding approach
because for each point x, the model has to be trained on L ∪ {x} to get the future
predictions and this is repeated for all possible labels of x. The work in [16] uses the
expected classification error as the querying criterion to actively select unlabeled nodes
for a semi-supervised learning task on graphs.

2.2 Sparse Sensing for Statistical Inference

Sparse sensing for inference involves sampling from a set of observations for estimating
a parameter of interest. In this section, we will deal with the estimation of a determin-
istic (non-random) parameter from its observations for a linear model. Section 2.2.1
discusses the model under these assumptions and the performance metrics; Sections
2.2.2 and 2.2.3 discuss the A and D-experimental design approach for sparse sensing,
respectively.

2.2.1 Model

In statistical estimation theory, we are interested in estimating parameters, given ob-
servations which are linked to the parameters through a model [39]. The linear mea-
surement model is

y = Ax + n, (2.4)

where y ∈ RM is the observation vector, x ∈ RN is the deterministic parameter vector
of interest with usually M < N and A ∈ RM×N is the M × N system matrix. The
vector n ∈ RM is the additive noise, commonly assumed to be Gaussian and white.
Each element of y is a random variable due to the influence of noise. The estimate
of x is x̂ = g(y). The function g(·) is the estimator. The estimate also is a random
variable due to its dependence on y, with mean E(x̂) and covariance matrix Σx̂. It is
now important to introduce two quantities to evaluate the estimation. The first is the
mean square error (MSE) in x, denoted as

MSE = E||x− x̂||2. (2.5)

The other quantity is the trace of the error covariance matrix Σx−x̂. It is defined as

Σx−x̂ = E
(
(x− x̂)(x− x̂)T

)
. (2.6)
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An important relation linking the two is

tr(Σx−x̂) =
N∑
i=1

E(x̂i − xi)2

=E
N∑
i=1

(x̂i − xi)2

=E||x̂− x||2

=MSE.

(2.7)

The trace of the error covariance matrix is the same as the mean square error. In the
case of an unbiased estimator [39], we have E(x̂) = x and the error covariance matrix
is the same as the covariance matrix of x̂. To minimize the MSE, we have to obtain
the error covariance matrix in terms of the system matrix A. The vector Cramer-Rao
Lower bound theorem [39] states that for a vector parameter x, its covariance matrix
for an unbiased estimator x̂ follows

Σx−x̂ ≥ I−1x , (2.8)

where Ix is the Fisher Information Matrix (FIM) of x [39]. The probability of observing
y, parameterized by x is p(y; x). Mathematically, the FIM in defined as

Ix = E
[(

∂ln(p(y; x))

∂x

)(
∂ln(p(y; x))

∂x

)T]
, (2.9)

where
∂ln(p(y; x))

∂x
=
[∂ln(p(y; x))

∂x1
, . . . ,

∂ln(p(y; x))

∂xN

]T
,

with ln(p(y; x)) the log-likelihood of the probability. The equality in (2.8) is achieved
when the Minimum Variance Unbiased Estimator (MVUE) exists for x. The mathe-
matical condition for it to exist [39] is

∂ln(p(y; x))

∂x
= Ix

(
g(y)− x

)
. (2.10)

In such an event, g(y) is the MVUE of x. When the noise n ∼ N (0, σ2I), the MVUE
for x exists and the FIM is given by

Ix =
1

σ2
ATA =

M∑
i=1

1

σ2
aia

T
i , (2.11)

where ai denotes the ith row of A. Therefore the MSE for this model is

MSE = tr(Σx−x̂) = tr(I−1x ) = tr

( M∑
i=1

1

σ2
aia

T
i

)−1
. (2.12)
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Sparse sensing selectively samples a fixed number of observations from y in order
to ensure that the MSE or a related measure (concerning the quality of estimation of
x) is optimized. There could be realistic constraints of several kinds (expert involve-
ment, difficulty in labeling, budget constraints) which restrict us with the option to
choose only a few observations. Applications of sparse sensing include sensor selection
[27], sensor placement [40] and as we will explore in this thesis, active semi-supervised
learning on graphs.

Let us assume we need to select R of the M observations. We take the sensing vector
w with wi = 1 if the ith observation yi is selected and wi = 0 if yi is not selected. We
also associate a selection matrix Φ(w) ∈ {0, 1}{R×M} of size R×M . Each row of Φ(w)
has exactly one element equal to one and the rest are zero. The index corresponding
to 1 in the k-th row of Φ(w) is the index of w where the kth 1 appears. The sensed
measurement vector is z = Φ(w)y = Φ(w)(Ax + n).

In the context of the background provided in the previous section, we now look into
the estimation problem and MSE in terms of the sensing vector w. The FIM for the
model in (2.4) and for n ∼ N (0, σ2IM) is given as [41]

Ix =
M∑
i=1

wi
σ2

aia
T
i , (2.13)

where wi is one for yi being selected and is zero otherwise. In (2.13), the summation
is possible because of the white noise; all observations are mutually uncorrelated and
the FIM for each observation adds up. If an observation is not selected, it provides no
information.

2.2.2 Sparse Sensing with A-experimental Design

We know from Section 2.2.1 that the MSE is equal to the trace of the inverse of the
FIM (given the Minimum Variance Unbiased Estimate (MVUE) exists [39]). In the
case of additive white Gaussian Noise in a linear observation model, it can be shown
that the MVUE does exist [39]. This allows us to work with the MSE directly and to
select R observations that leads to the minimum MSE. The l0 norm of w should be
R. The l0 norm of a vector calculates the number of non-zero elements it contains.
We look to minimize the MSE given we can select only R observations. In terms of an
optimization problem, this is expressed as

minimize
w

tr

( M∑
i=1

wi
σ2

aia
T
i

)−1
subject to ||w||0 = R,

w ∈ {0, 1}M .

(2.14)
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The l0 norm is not a convex function and is also called a pseudo-norm.. The l0 norm
can be relaxed to the l1 norm, which is defined as

||x||1 =
N∑
i=1

|xi| (2.15)

for an N dimensional real vector x. For the FIM to be invertible, all the wi’s have to
be positive and be upper bounded by 1 for the selection constraint to make sense. The
relaxed problem is

minimize
w

tr

( M∑
i=1

wi
σ2

aia
T
i

)−1
subject to 1Tw = R,

0 ≤ w ≤ 1.

(2.16)

This problem is the A-experimental design problem for sparse sensing. The assumption

made here is that

(∑M
i=1

wi
σ2 aia

T
i

)
is invertible. Problem (2.16) is convex in w [42],

implying that a unique solution exists and can be obtained using readily available
solvers [43].

2.2.3 Sparse sensing with D-experimental design

The error covariance matrix Σx−x̂ in Section 2.2.1 captures the distribution of the error
x̂−x. The η confidence ellipsoid is the N dimensional ellipsoid having minimum volume
which contains the error x̂ − x. The log-volume of this ellipsoid [27] for the model in
(2.4) is given as

log vol(η) = β − logdet

(
1

2

M∑
i=1

1

σ2
aia

T
i

)
. (2.17)

The log-volume with respect to the sparse sensing vector w is

log vol(η) = β − logdet

(
1

2

M∑
i=1

wi
σ2

aia
T
i

)
. (2.18)

One is interested in the ellipsoid having minimum possible volume, which amounts to

maximizing the function logdet

(
1
2

∑M
i=1

wi
σ2 aia

T
i

)
. In the sparse sensing context, this is

posed as

minimize
w

− logdet

(
1

2

M∑
i=1

wi
σ2

aia
T
i

)
subject to ||w||0 = R,

w ∈ {0, 1}M .

(2.19)
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As we saw before, this formulation is not convex because ||w||0 is not a convex function
in w and {0, 1}M is not a convex set. So, the relaxed problem is solved as

minimize
w

− logdet

(
1

2

M∑
i=1

wi
σ2

aia
T
i

)
subject to 1Tw = R,

0 ≤ w ≤ 1.

(2.20)

This approach is called the D-experimental design problem for sparse sensing. The
objective function is concave in w [42] and it can be solved by interior point based
solvers which adopt a semi-definite programming (SDP) approach [43].

2.3 Graph Signal Processing

Graph signal processing is an emerging field for processing data which resides over
the nodes of a graph [44]. Throughout this section we will consider an undirected
graph G with its node set V = {v1, . . . , vN} and edge set E . If nodes v1 and v2 are
connected through an edge, then (v1, v2) ∈ E . |V| = N is the number of nodes in
the graph and |E| = M is the number of edges. G is also assumed to be acyclic, i.e.
it has no self-loops. In this section, we highlight the important concepts, operators
and data-processing tasks carried out in graph signal processing. We start with some
important matrices which capture the graph structure, namely the Adjacency, Degree
and the graph Laplacian matrix. Then, we discuss Shift Operators, the Graph Fourier
Transform and Graph Filters, which show how data is processed on the graph. We
conclude this section by discussing FIR graph filters and their connection to label
propagation, a type of semi-supervised learning usually practised on graphs.

2.3.1 Graph Signals

A graph signal x ∈ RN is a mapping from V to RN [44]. Each node vi has a value xi
associated to it. In the case of a graph of a sensor network monitoring the temperature
over a space, vi represents a sensor and xi the temperature recorded at that sensor.
Figure 2.2 shows a graph signal observed over a sensor network having 150 nodes.
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Figure 2.2: A graph signal over a sensor network graph. The circles are the nodes and the
lines joining them are the edges. The node colour is the signal value over the graph.

2.3.2 Important Matrices and Operators

An N × N matrix S that captures the structure of the graph is called a graph shift
operator [45]. For example, the adjacency matrix A is a shift operator such that Aij
represents the similarity between any two nodes vi and vj. A common way to define A
is through the Gaussian kernel [46]:

Aij =

{
1
c

exp
−||xi−xj ||2

2σ2 ||xi − xj||22 < δ

0 otherwise
(2.21)

where xi, xj are the representations or features associated with vi and vj respectively, σ
controls the decay of the Gaussian and c is a positive scaling factor. The edge (vi, vj) is
allocated to E only if ||xi−xj||22 < δ where δ is a practically set threshold. This ensures
that A captures the structure of the graph. The closer two objects xi and xj are in the
Euclidean space, the higher the value of Aij = Aji. The adjacency matrix A accepts
the eigendecomposition A = UAΣAUT

A with UT
AUA = IN and ΣA containing its real

eigenvalues. S can also be non-symmetric like a random walk matrix [24]. The degree
matrix D is a diagonal matrix with its ith diagonal entry Dii representing the degree
of node vi. It is mathematically represented as D = diag(A1N), where 1N is the N
dimensional vector of all ones. The graph Laplacian, also known as the combinatorial
graph Laplacian, is defined as L = D−A. L is symmetric and its eigendecomposition
is L = UΣUT . The columns of U contain the eigenvectors of L and Σ contains the
eigenvalues. The eigenvalues of L are also called the spectrum of the graph [47]. The
graph Laplacian is an important matrix associated with graph signal processing and
the spectral properties of the graph [6].
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2.3.3 Graph Shift Operators

In classical signal processing, linear time-invariant (LTI) systems are based on shift
operators. For time signals, shifting a signal is easy to visualize, but it is difficult to
imagine shifting a graph signal over its nodes. To understand how shift operators are
used on graph signals, consider we have a graph signal x. The adjacency matrix shift
operator applied on it gives the 1-shifted signal

x(1) = Ax

with ith entry

x
(1)
i =

N∑
j=1

Aijxj =
∑

j:vj∈N (vi)

Aijxj. (2.22)

This shows that x
(1)
i only depends on the signal values of the nodes it shares an edge

with. The shift operation means each node collects values from its neighbors, weighs
and combines them, and this spreads the signal at each node throughout the graph over
multiple shifts. This operation will be fundamental in defining graph filters in Section
2.3.5 and label propagation on graphs in Section 2.3.6.

2.3.4 Graph Fourier Transform

The Graph Fourier Transform (GFT) of a graph signal x represents the signal in the
Graph spectrum. It is defined as x̂ = UTx where U is the eigenvector matrix of
the Laplacian matrix given by L = UΣUT [47]. The GFT is the projection of x on
the eigenvectors of L. x̂i is the GFT coefficient for the ith eigenvalue λi of L. The
GFT decomposes x into its spectral components. Similarly, the Inverse Graph Fourier
Transform (IGFT) combines these components to synthesize x through x = Ux̂. The
eigenvalues of L, {λ1, . . . , λN} are collectively called the spectrum of G.

2.3.5 Graph Filters

In LTI systems, a filter is a linear operator which shapes the spectrum of the signal it
operates on by a point-wise multiplication in the spectral domain. Likewise, a graph
filter shapes the GFT of a graph signal as follows:

ŷn = h(λn)x̂n, (2.23)

where ŷn, x̂n are the GFT coefficients at the output and input for frequency λn, respec-
tively. λn is the nth eigenvalue of L. The spectral filter response h(λn) characterizes
the graph filter and shapes x in the graph spectral domain. There are several ways
proposed to design graph filters [48] [49]. Two examples are

h(λn) =

{
c λn ≤ λc
0 otherwise

and

h(λn) =
1

c
e−

λ2n
2σ2
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The first is a band-limited graph filter with cut-off frequency λc. It cuts all spectral
components corresponding to frequencies λn > λc. The second example is the expo-
nentially decaying filter, where the decay is controlled by the parameter σ. This filter
attenuates the input signal more for larger values of λn.

The filtered signal in the vertex domain is y = Uŷ. From (2.23), by taking the
IGFT on both sides, we obtain

y =
(
UΛUH

)
x, (2.24)

where Λ = diag([h(λ1), . . . h(λn)]). UΛUH is the graph filter in the vertex domain. We
use the eigendecomposition of L to illustrate this concept but any suitable shift matrix
S can also be used.

2.3.5.1 FIR graph filter

A Finite Impulse Response (FIR) graph filter of order K is of the form H(S) =∑K
k=0 αkS

k, where αk denotes the kth graph filter coefficient. The role of αk is to
weigh the k-shifted version of the graph signal. This operation is similar to how a filter
behaves in LTI systems. The transfer function is h(λn) =

∑K−1
k=0 αkλ

k
n, where λn is the

n-th eigenvalue of S. The FIR filter also has the advantage of being distributed and
is easy to operate because of the recursive nature of its computation. This is because
x(1) = Sx, x(2) = S2x = S

(
Sx
)

= Sx(1). In general the k-shifted output is related to

its previous shifted output as x(k) = Sx(k−1) and so on.

2.3.6 Label Propagation and FIR graph filters

Label propagation on graphs is a popular semi-supervised learning technique [50]. For
this thesis, we will look at label propagation in terms of graph signals and FIR graph
filters [48]. Consider a two-class problem on a graph G with N nodes. The two classes
are ω1 and ω2, with labels +1 and −1, respectively. Since we are in the semi-supervised
setting, the labels are known at only some of the nodes. Based on this assumption, the
graph signal can be considered as x with

xi =


+1 vi ∈ ω1

−1 vi ∈ ω2

0 otherwise

. (2.25)

This graph signal has a value of +1 or −1 at each labeled node and zero at each
unlabeled node. If a row normalized version of the adjacency matrix, An is taken as
the shift operator, Anx gives the spread of the labels over the graph after one step,
A2
nx the spread over two steps and so on. After every spread or shift, the value of

the shifted signal on the nodes which have labels is usually clamped to the original
value to provide a constant source of the original label. This process converges and
the unlabeled nodes that have a value greater than zero are classified to ω1 and the
rest to ω2. We refer readers interested in this class of problems to [50] for an in-depth
view. The output of such a process involves inverting a matrix of the order of the size
of unlabeled data as shown in [50].
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Label propagation can also be seen as graph filtering. Instead of depending only on
the kth powers of An for label propagation through y = AK

n x, the labels can depend
on all the previous powers to get

y =
K∑
k=0

αkA
k
nx. (2.26)

The operator
∑K

k=0 αkA
k
n is an FIR graph filter of order K. Depending on the choice

of A (and therefore An) and the nature of the αk’s, we can have more control over
label propagation. The αk’s are usually designed for each specific problem [24] [49]
[48]. The graph filtering operation is sufficiently fast. We will consider such a filter for
our analysis, as presented in [24].

(a) Label Propagation in ac-
tion.

(b) Label Propagation in ac-
tion.

(c) Label Propagation in ac-
tion.

(d) Label propagation first it-
eration.

(e) Label propagation after
convergence.

(f) Predicted Labels.

Figure 2.3: Label propagation phenomenon illustrated: Figure 2.3a (top left) shows the
original labels of each node (red and green); Figure 2.3b (top middle) shows one labeled node
selected from each class (i.e. training set), red has positive label while green negative; Figure
2.3c (top right) shows the first diffusion step where the labeled nodes spread their values to
their neighbours; Figure 2.3d (bottom left) shows the subsequent diffusion step; Figure 2.3e
(bottom middle) shows the values at each node at the end of propagation; Figure 2.3f (bottom
right) shows the predicted label at each node.

Figure 2.3 illustrates a label propagation process. Figure 2.3a shows the entire
dataset, which is the ground truth. Figure 2.3b shows the semi-supervised stage with
one node selected from each class (red and green). The label attached to the red node
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is assumed to be positive (bar up) while the one with the green is assumed negative
(bar down). Figure 2.3c shows the label propagation in action with the arrows (in
yellow) along the edges denoting the spread of labeled information through connected
nodes. Figure 2.3e shows the spread of the original labels from two nodes over the entire
graph after convergence (i.e. no more spreading necessary). A threshold operation then
predicts the labels for the unlabeled nodes, as shown in Figure 2.3f.

2.4 Clustering on Graphs

Clustering divides objects into groups. This section discusses clustering the nodes of
a graph. Two popular clustering techniques, namely K-means and Fuzzy-C-means are
discussed in Section 2.4.1. Section 2.4.2 discusses an appropriate node embedding for
carrying out the clustering operation.

2.4.1 K-means and Fuzzy C-means clustering

In this section, we will briefly explain the two clustering methods, one of which we will
use in this thesis: K-means and Fuzzy C-Means clustering. The K-means algorithm
is one of the most popular hard clustering techniques [51]. Given a D-dimensional
data-set X = {x1, . . . ,xN} with xi the ith data point, K-means minimizes the cost

J(U,C) =
K∑
i=1

N∑
j=1

Uij||xj − ci||2, (2.27)

where the column ci of matrix C is the cluster centre of the ith cluster, Uij is the
similarity between data point xj and cluster centre ci, and N and K denote the number
of objects and the number of clusters, respectively. The task is to jointly find the
optimal Uij’s and the ci’s that minimize J . In K-means, for each xj, the corresponding
uj = [u1j, u2j, . . . , uKj]

T has only one element which is one and the rest are zero. This is
known as hard clustering. The element which is equal to one corresponds to the cluster
to which xj is assigned. Each step in K-means comprises two updates: the first step
in K-means assigns each point to its nearest cluster in a hard fashion; the second step
updates the cluster centres based on the objects assigned to them. Then the objects
are assigned to the clusters again and this goes on until convergence.

Fuzzy C-Means clustering assigns a membership value to each point. The mem-
bership function defined between a point and a cluster returns a value between zero
and one which quantifies the probability of that point belonging to that cluster. One
represents maximum membership and zero denotes no membership. Membership can
also be thought of as belongingness. For FCM [52], the cost function J(·) is similar to
K-Means but the assignment of an object to a cluster is no longer hard. Two constraints
are imposed on uj for each object xj. As the membership values for each point are
probabilities, they must add up to one over the clusters and they must be individually
non-negative. These values will be generally more spread out compared to K-means.
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More specifically, FCM solves

minimize
U∈RK×N ,C∈RD×K

K∑
i=1

N∑
j=1

Um
ij ||xj − ci||2

subject to 1TKU = 1TN , Uij > 0, i = 1, . . . K, j = 1, . . . N.

(2.28)

The exponent m controls the degree of fuzziness and its default value is two.

2.4.2 Laplacian Eigenmap Embedding

To cluster the nodes of a graph, we need a representation or feature vector for each
node. A representation or embedding maps every node to a feature vector. If the graph
is built from data, then clustering with the original representation may not be desired
because we need to use the underlying graph structure. One representation useful for
clustering nodes is the Laplacian eigenmap embedding [46]. This reduces the dimension
of the original feature vectors such that if two points are similar in the Euclidean space,
they will be similar in this lower-dimensional space concerning the graph.

The Laplacian eigenmap problem is defined as follows: Given a dataset of size N×D,
with objects stacked row-wise, we want to learn the embedding in a P -dimensional space
and generate the matrix P of size N × P with P � D. The latter can be recast as
solving the optimization problem

minimize
P∈RN×P

tr(PLPT )

subject to PTP = IP ,
(2.29)

where IP is the P × P identity matrix and L the graph Laplacian learned from the
original data-set. The solution to this problem contains the first P eigenvectors of
L stacked column-wise. These are the eigenvectors corresponding to the lowest P
eigenvalues of L. However, for feature representation, the eigenvector corresponding to
the zero eigenvalue is ignored as it is a constant vector and does not help in providing
information about any node. If we want to cluster the nodes into 2 clusters, for instance,
we need the eigenvector corresponding to the second smallest eigenvalue of L, u2. If
we need K clusters we need the first K eigenvectors barring the first to construct the
embedding P = [u2, . . . ,uK ]. Upon obtaining P for the data-set, we can use it to
cluster the nodes of the graph.

Figure 2.4 illustrates the key difference between K-means and FCM clustering using
the bunny graph. The Laplacian embedding is used for a two cluster problem. We
choose the second feature for each node as the first feature is a constant; there is one
feature per node. Figure 2.4a shows the hard clustering nature of K-means. Each node
is assigned a value of either one or two. In terms of membership values, this means each
node belongs either to the first or the second class with a membership of one. Figure
2.4b shows the membership values obtained by FCM for each node and the first cluster
and Figure 2.4c the second cluster. We can see that the values vary from zero to one for
each cluster smoothly with a transition at the border between the two clusters. We will
use the combination of Laplacian eigenmap embedding and Fuzzy C-means clustering
to perform active learning.

19



1

K-means Clusters

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(a) K-Means membership values
for two clusters.

1

Membership values Cluster 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) FCM Membership values for
the first cluster.

1

Membership values Cluster 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) FCM Membership values for
second cluster.

Figure 2.4: K-means and Fuzzy C-means Clustering on the Bunny graph. Fig 2.4a (left)
shows the K-means clustering of the nodes of the Bunny graph for 2 clusters. Each node has
a value of either one or two. Figures 2.4b (middle) and 2.4c (right) show the membership
functions obtained through FCM clustering for the first and second cluster, respectively. Each
node has two membership values (one for each cluster) that add up to one.

2.5 Compressive Sensing

Compressive (Compressed) sensing deals with the reconstruction of signals that are
sparse in some basis from sub-sampled measurements. It is a rich research area and
has led to advances in signal processing. This section will provide a brief introduction to
the main functional aspects of compressed sensing. Section 2.5.1 describes the notations
and framework of such a system; Section 2.5.2 describes two popular methods to recover
signals.

2.5.1 Compressed Sensing Framework

A signal x ∈ RN can be expressed as the combination of N basis vectors in RN as

x = Ψs. (2.30)

Ψ = [ψ1, . . . ,ψN ] is the basis matrix. {ψ1, . . . ,ψN} are the basis vectors and s ∈ RN

contains the coefficients which represent x in this basis. The signal s is said to be
S-sparse if only S � N of the entries in s are non-zero. x is then said to be S-sparse
in the basis Ψ. A popular example of a basis Ψ is the Discrete Fourier Basis [53].
Compressive sensing concerns itself with the theoretical framework of reconstructing s
(hence x) exactly from M � N measurements without knowing the locations of the
non-zero elements in s. The measurements are obtained through the following sensing
mechanism:

y = Φx = ΦΨs, (2.31)

where Φ is an M × N sensing matrix. The vector y ∈ RM can also be viewed as the
projection of x on the M rows of Φ.
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Figure 2.5: A Compressed Sensing system. Vector y is the M×1 observed vector with M = 7.
The sparse vector s is 3-sparse with non-zero entries in 3 locations: s4, s8 and s14. The basis
Ψ is of size N × N with N = 14. Φ is a random sensing matrix (i.e. sensing matrix filled
with random values drawn from an i.i.d. Gaussian distribution for example).

The main questions associated with the reconstruction of x given Ψ are:

1. What does Φ tell us about reconstructing x ?

2. If a good Φ exists, how does one reconstruct x ?

From equation (2.31), ΦΨ can be written as a matrix A of size M × N , which is
also called a dictionary. One criterion which allows the successful reconstruction of x
with high probability is the Restricted Isometry Property (RIP) [54]. A satisfies the
RIP if there exists a δK ∈ (0, 1) such that

||(1− δK)s||22 ≤ ||As||22 ≤ ||(1 + δK)s||22 (2.32)

where s belongs to the set of all signals having l0 norm less than or equal to K.
Expression (2.32) says that A with RIP approximately preserves the norm of s, when
reducing it from an N to an M -dimensional space. Since A = ΦΨ and Ψ is usually
fixed, designing A is the same as designing Φ. Constructing Φ such that A satisfies
the RIP is an NP-hard problem. Instead, if we select every element of Φ, φi,j such that
φi,j ∼ N (0, 1

N
), then A obeys the RIP with high probability when

M ≥ cKlog(
N

k
), (2.33)

with c being a constant [54][55][56]. The inequality (2.33) gives a lower bound on the
number of measurements M one needs in such a case.

Another important parameter which can determine the success of the reconstruction
of x is the mutual coherence of the matrix A, denoted by µA. µA is defined as

µA = max
1<=i,j<=N ;i 6=j

|aTi aj|
||ai||2||aj||2

(2.34)
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where ai represents the ith column of A. The mutual coherence qualitatively gives us
a picture of what is the highest similarity between any two different columns of A.
A lower value of mutual coherence helps algorithms like Orthogonal Matching Pursuit
[57] and Basis Pursuit [58] to reconstruct s (and x) perfectly with high probability in
the noiseless case. In the noiseless case, the exact sparse solution is guaranteed when
S ≤ 1

2

(
1 + 1

µA

)
.

2.5.2 Recovering the Sparse signal

Given a matrix Φ which satisfies the RIP condition, the problem for finding the sparsest
s is

minimize
s∈RN

||s||0

subject to ΦΨs = y.
(2.35)

The Problem (2.35) is non convex, due to the l0 norm. Since the non-zero positions are
not known, solving (2.35) is difficult and is NP-hard. There are two sets of approaches
for solving it. One is based on greedy methods like Orthogonal Matching Pursuit
(OMP), Matching Pursuit (MP), thresholding and the other is based on convex relax-
ations of the l0 norm like Basis Pursuit (BP). Approximate methods like Orthogonal
Matching Pursuit (OMP) [57], Basis Pursuit (BP) [58] obtain the true solution to (??)
conditionally [54] [55] [56].

2.5.2.1 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is one of the most important methods which falls
into the category of greedy approximations to solve problem (2.35) [57]. It selects the
desired support for the sparse s from the columns from A, one at a time.

Algorithm 1 Orthogonal matching pursuit (OMP) [57]

Require: sparse s, ||s||0 = S.
Input: A ∈ RM×N , y ∈ RM×1, S.
Output: s.
1: Initialization s0 = 0, r0 = y, S = {}, ai = ai

|ai| ; i = 1, . . . , N .

2: while |S| ≤ S do
3: k = k + 1,
4: j= argmax

i∈{1,...,N}
|aTi rk−1|1 ,

5: S=S ∪ {j} ,
6: sk = argmin

s∈R|S|
||ASs− y||22 ,

7: rk = ASsk − y ,
8: end while

The algorithmic description of OMP is shown in Algorithm 1. A brief overview of
OMP is as follows: The columns of A are normalized to have unit norm in line 1. The
set S contains the support of s. S is initialized to the null set. The residue r = As−y
is a measure of the approximation of the system and is initialized to y. At each step,
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the columns of A are projected onto the residual and the column which has the highest
absolute component along the residual is selected in line 4. The index of this column
is then added to the support in line 5. The solution of s corresponding to the support
S is obtained through the least squares solution of ASs = y in line 6. AS contains
the columns of A indexed by the elements of S. The residue obtained in line 7 is the
least square error of the approximation. This residue is used in the next iteration. It is
important to note that the residue is perpendicular to the current support because of
the nature of the least squares solution. In the next step, the current support will have
no components along it and the search is conducted in a direction orthogonal to the
current support. The steps are repeated until the desired cardinality of S is reached or
the norm of the residue is below a certain limit.

2.5.2.2 Basis Pursuit

The l1 convex relaxation of problem (2.35) is

minimize
s∈RN

||s||1

subject to As = y
(2.36)

This is solved by the basis pursuit algorithm [58]. It is a convex problem and can be
solved by converting it into a linear program or using any off-the-shelf solver [43].

2.6 Conclusion

This concludes the background material. In this thesis, we focus on active learning
for semi-supervised classifiers on graphs. The following concepts will be important for
the rest of this thesis from each section: from Section 2.1, we will focus on a variant
of Pool-based active learning; from Section 2.2, we use both A and D-experimental
design as a querying criterion for active learning in Chapter 5; from Section 2.3, we
focus on shift operators, graph filters and label propagation; from Section 2.4, we use
the Laplacian eigenmap embedding problem along with Fuzzy C-Means clustering for
one set of approaches in Chapter 5; from section 2.5, we use OMP, basis pursuit and
the concept of mutual coherence and projection matrices in Chapter 5.
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Literature Review 3
This chapter discusses the relevant literature on active semi-supervised learning on
graphs. The material and concepts touched upon in Chapter 2 will be leveraged to
discuss these methods. This review will also cast the differences between these methods.
We identify one scenario, that of pool-based semi-supervised learning to categorize the
literature. The chapter is organized as follows: Section 3.1 introduces the Pool-based
semi-supervised active learning scenario, which is classified into two categories: multiple
batch training and single batch training. Section 3.2 summarizes the literature and
highlights some gaps.

3.1 Pool-based Active Semi-supervised Learning on Graphs

The topic of active semi-supervised learning contains a multitude of approaches, as
shown in [9]. The methods considered in this literature review consider the graph
structure of the data, while using it as a regularizer [5], or as a platform for label prop-
agation [59]. However, an exception is made for the method in [12]. Although not being
graph-based, we discuss this method because it considers transductive learning, which
is a common theme for semi-supervised learning on graphs. The methods included
in this survey fall into the pool-based active learning scenario as described in Section
2.1. Pool-based active learning deals with selecting one or more points from a pool of
unlabeled data. There are two types of pool-based active learning: Multiple training
phases and Single training phase. Active learning can also be classified based on the
objective function chosen for selecting querying points, or the semi-supervised method
used.

3.1.1 Multiple Training Phase

In this mode, active learning is carried out over more than one training phase. After
each phase, the learner queries the desired points and they are added to the labeled
set. The learner trains itself on this set, and this continues until the desired criteria
are met. Listed below are examples of such methods found in the literature.

• Gaussian Fields and Harmonic Functions in Active Learning

Zhu et.al. in [16] combines pool-based active learning over multiple batches with
semi-supervised learning on graphs. The classifier is based on Gaussian random
fields and harmonic functions [60]. The node labels together form a graph signal.
It has its own distribution. The classifier solves for a graph signal which promotes
the smoothness of the labels over the graph (for both labeled and unlabeled nodes)
while the labeled nodes retain their values. The classifier minimizes an energy
function which is indicative of the smoothness of the labels on the graph. There
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are multiple interpretations to the solution of this problem which link it to random-
walk matrices and Gaussian processes [61]. Once the classifier output is obtained,
a greedy search is done over the unlabeled nodes and the one that minimizes
the empirical risk (i.e. expected classification error) is added to the labeled set
L. This is pool based learning wherein each batch, one node is selected. The
classifier is trained on the updated L to select another node until the desired
cardinality on L is met. The main contribution of this method is in using the
semi-supervised learner and formulating an empirical risk for selecting the optimal
nodes. Several extensions to this approach have been made, like [17] which works
with the estimation of the expected generalization error. Another method that
shares the same classifier but opts for one training phase and selects the nodes
together is shown in [10].

• Active Learning Networked Data

Bilgic et al developed ALFNET, which stands for Active Learning for Networked
Data. ALFNET uses two different representations for each data point [62]. The
content-only representation contains the original features while the collective rep-
resentation takes each data point’s neighborhood in the graph into account. The
graph is initially divided into several clusters using modularity clustering [63].
From some of these clusters, a point is added to the labeled set at random. Then
the logistic classifier is trained on both the content-only and collective data. Each
cluster is evaluated on how much the classifier disagrees over the points contained
within it. Nodes from the most disagreeable clusters are selected at random and
added to the labeled set and the process continues. This is an example of multi-
ple batch pool-based active learning with multiple nodes being selected per phase.
The work in [19] considers label propagation on graphs during the learning phase.
For selecting points, they introduce a new cost function comprising three criteria:
the uncertainty, impact and redundancy. The uncertainty can be calculated after
each training phase through the entropy. This method does not select nodes solely
on one criterion as the K most uncertain or informative points may not result in
the best classification. The impact measures the influence of the selected point
on the remaining unlabeled nodes. Redundancy tends to select points that do not
overlap in terms of informativeness. The overall cost function is sub-modular and
allows greedy selection. The method in [20] uses entropy as the criterion to select
points after each training phase.

3.1.2 Single Training Phase

In the single training mode of pool-based active learning, the training is carried out
only once, after the set of optimal points is selected by the learner in one go.

• Variance Minimization Criterion

The work in [10] assumes the labels of the nodes will be smooth with respect to
the graph structure; i.e., it is a smooth graph signal. This means if two nodes
are connected with high similarity, they will have similar labels. Such signals
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are described by a Gaussian multivariate probability distribution. In the semi-
supervised scenario, the labels of the unlabeled points are determined by the
conditional distribution over the unlabeled nodes, given the labeled nodes. This
conditional distribution is also a multivariate Gaussian [64] and its mean is the
classifier output. The trace of the covariance matrix is the mean square error of
the prediction (cf. Section 2.2.1). The trace does not depend on the labels and
this allows the selection of nodes that minimize it greedily. Once the labels are
obtained, the classifier is run on each class and the unlabeled nodes are classified.
The highlights of this method are: it selects all points in one go, so it can be done
offline; it uses the Gaussian Process-based classifier and minimizes the variance
of prediction. It should also be noted that this classifier does not need multiple
batches. The work in [15] is related to [10] but they consider the Σ optimality
criterion for active surveying, which is the sum of all elements of the inverse of the
Laplacian sub-matrix indexed by the unlabeled nodes. The authors inspect the
sub-modularity of this criterion and select nodes greedily with improved results
over the trace-based criterion.

• Error Bound Minimization

In paper [18], the authors use a Laplacian regularized least squares classifier [5].
They take into account the structure formed by the data through the graph Lapla-
cian. The authors derive an upper bound on the mean square predicted error. The
goal is to select the samples that minimize this upper bound. This problem is
originally NP-hard, so a reformulation is introduced to select rows from the data
matrix. Projected gradient descent is used to find such an optimal matrix. This
approach shares similarity with optimal experimental design as it solves the A-
experimental design problem under a specific condition. The work in [11] looks
at the D-experimental design aspect of the same classifier but the focus is to min-
imize the MSE of the classifier and not its prediction. The authors also extend
their work to account for kernels. The work in [13] uses a similar approach by us-
ing the logistic classifier. It should, however, be noted that [13] solves the problem
without considering the graph structure. The work in [21] also proposes an active
labeling scheme on graphs for one batch training by minimizing an error bound
which depends on the prediction error in terms of label smoothness. They use a
graph min-cut based algorithm to partition the graph and predict the remaining
nodes [65].

• Transductive Experimental Design

The paper in [12] introduces the framework of selecting data points for pool-
based active learning for linear and non-linear regression problems. It focuses on
the variance of the classifier prediction on test data. If all the data (i.e. training
and testing) is used together, which is the case with transductive learning, the
necessary error function can include the entire data. The authors show that the
solution to the transductive A-experimental design error function is the same as
that of a representation problem that involves all the data. Selecting the most
informative points that minimize the variance of prediction on the test set is the
same as selecting the set of data points which capture the most information about
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the entire dataset. This is a strong result and motivates the use of transductive
A-experimental design. Another advantage of a linear model is that the A(or
D) experimental design cost function is independent of labeled information. The
authors also extend their method to kernels and propose an alternating optimiza-
tion routine to solve the selection problem (an alternative to the slow semi-definite
programming solvers).

• Band-limited Graph Signal Sampling

Gadde et.al [22] take a different approach to the graph active learning problem.
They assert that the membership functions for all classes should be smooth graph
signals for graphs which are built on the similarity between data points. The mem-
bership function of each class is treated to be a bandlimited graph signal as such
signals are smooth [66]. However, in practice such signals are not bandlimited;
hence, there is a need for a bandlimited approximation of such graph signals for
each class, given a set of nodes which belong to that class. They leverage the the-
ory of sampling and reconstruction of bandlimited signals [67], [68] and organize
the active learning algorithm as follows: In the first stage, the method greedily
selects the nodes from which a graph signal of the highest cut-off frequency can
be perfectly reconstructed; next, these nodes are labeled and the band-limited
approximations of all class membership graph signals are obtained; finally, these
functions are compared at each unlabeled node to classify them.

3.2 Discussion

Table 3.1 categorizes the literature relevant to this thesis. This organization suggests
that such methods can be classified based on multiple categories. We opt for the
scenario criterion (i.e. multiple batches and one batch) shown in the third column
of the table to do so since it is the most intuitive. Looking at the table, we see
that methods which utilize label propagation do not unify the classifier and the active
learning process. Usually, the propagation is carried out first, then the points are
queried according to some known criterion. This is a gap that will be bridged in
this thesis. Besides, the label propagation methods reviewed belong to the multiple
training category of pool-based learning. Training multiple times is affordable when
the training phase is fast and when the querying function is dependent on the current
state of the classifier. When the function does not depend on the labels or the state of
the classifier, all the points can be selected in one go and multiple training stages are not
required. In [10], for instance, the objective function depends on the matrix obtained by
selecting the rows and columns of the graph Laplacian corresponding to the unlabeled
nodes. This is independent of the classifier or the labeled information; hence, all points
can be selected together. The same can be said for some of the methods based on
experimental design which are based on a linear classifier model [12], [18]. Column four
shows that optimal experimental design, error bound minimization and information
criteria are commonly used querying functions. The selection is done using greedy
approximations [22], relaxed methods [18], or a mixture of both [12]. Experimental
design has been linked to active learning on classifiers which are not conceptualized
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Paper Classifier Batch Query Selection

Zhou et.al. [16] Gaussian Pro-
cess harmonic
function

Multiple Expected general-
ization error

Greedy

Bilgic et.al. [62] Logistic Regres-
sion

Multiple Disagreement
within cluster

Random

Shi et.al. [19] Label Propaga-
tion

Multiple Entropy, Influ-
ence, Redun-
dancy

Greedy

Gu et.al. [13] Logistic regres-
sion

Multiple
batches

Variance of classi-
fier

Non-greedy

Long. et.al. [20] Label Propaga-
tion

Multiple Entropy Non-greedy

Yu et.al. [12] Ridge Regression Single Transductive
A-experimental
design

Alternating
optimization,
Greedy search

Ji et.al. [10] Gaussian pro-
cess harmonic
function

Single Variance of pre-
diction

Greedy

Ma et.al. [15] Gaussian pro-
cess harmonic
function

Single Σ criterion Greedy

Gu et.al. [18] Laplacian reg-
ularized least
squares

Single Prediction MSE
error bound

Non-greedy

He et.al. [11] Laplacian reg-
ularized least
squares

Single D-experimental
design

Non-greedy

Gadde et.al. [22] Band-limited sig-
nal reconstruction

Single Bandwidth incre-
ment

Greedy

Guillory et.al.
[21]

Graph Mincuts Single Generalization er-
ror

Greedy

Table 3.1: Review of relevant literature. The first column mentions the authors along with
the citation; the second column shows the classifier used; the third column specifies the pool-
based approach being adopted (i.e. multiple or single batch); the fourth column shows the
querying criterion; the fifth column shows the nature of selection of the points (i.e greedy or
non-greedy selection).

in the vertex domain but on regression problems with smoothness constraints. For
a label propagation scenario, the same assumptions do not hold. In this thesis, we
analyze how experimental design applies to this setting. We also want to look at other
querying methods that consider the graph structure.

In summary, current works have not explored label propagation from the classifier’s
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perspective for one training batch. We aim to analyze the impact of experimental
design on this classifier and provide interdisciplinary querying techniques.
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Semi-supervised Classifier 4
In this chapter, we introduce the semi-supervised classifier chosen for this thesis [24].
Section 4.1 introduces random walks and the semi-supervised classifier. This classifier
works on the diffusion of labeled information (probabilities) of each class over the
graph following the principle of random walks. Section 4.3 summarizes this method,
the assumptions and the problems arising from it.
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Figure 4.1: A probability state transition diagram: the circles A,B,C and D represent the
states; the arrows indicate the transition between states; the arrow numbers indicate the
conditional probabilities of each state transition.

31



4.1 Random Walk-based Diffusions on Graphs

We start this section by introducing the concept of a state and state landing proba-
bilities. Figure 4.1 shows four different circles with a set of arrows: the circles are the
states; the arrows indicate the transition between states and the numbers indicate the
conditional probabilities of each state transition. For instance, the probability of tran-
sitioning from state A at any time instant k to B at time k+ 1 is 0.30. The movement
from one state to the next is also called a step or a hop. There are also probabilities
associated with no change of state, e.g. being in state A and remaining at that state
at any time instance k has a probability of 0.30.

A walk is a series of steps or hops. To describe a walk mathematically, we first
define the probability state vector p0 = [p0,A, p0,B, p0,C , p0,D]T . Each entry indicates the
probability of being present at that particular state at the start of the walk (hop=0).
The transition probabilities are conditional only on the current state (first order Markov
property) and not on the previous ones. We place the state transition probabilities in
the matrix

S =


0.3 0.25 0 0.4
0.3 0.7 0.2 0
0 0.05 0.1 0.2

0.4 0 0.7 0.4

 ,
where Sij indicates the transition probability from the current state j to next state i.
When S is multiplied with p0, we get the probability state vector p1 as

p1 = Sp0. (4.1)

The ith element of p1, [p1]i denotes the probability of being at state i after one tran-
sition from the starting state p0. This is the one-hop probability vector. The k-hop
probability vector starting from p0 is

pk = Skp0. (4.2)

This model is central to the diffusion semi-supervised classifier we discuss next. The
state transition matrix for this classifier is a weighted combination of the powers of the
random walk matrix, which is also a graph shift operator (Section 2.2). Each state is
now a node.

Let W be the weighted adjacency matrix of a graph G with N nodes and C classes.
The matrix D = diag(W1N) is the degree matrix, with 1N the N -dimensional vector
of all ones. The random walk model over a graph consists of a discrete Markov chain.
pk is the state probability vector defined over the nodes at hop k, whose entries sum up
to one. The entry [pk]i is the probability of the walk being present at node i at hop k.
The matrix S = WD−1 is the state transition matrix with [WD−1]ij the probability of
making a hop from node j (at hop k) to node i (at hop k+ 1) for all k. The sum of all
Sij’s for a fixed j is equal to one, which is expected, since the sum of the jth column
of W equals dj. So,

Sij = Pr(Xk = i|Xk−1 = j) = Wij/dj = [WD−1]ij (4.3)
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denotes the probability of landing at node i from node j and Xk denotes the state
of the walk at time k. The vector p0 denotes the probability state vector, which is a
distribution over the nodes at the start (i.e. at hop k = 0). The vector p1 = Sp0 is
the probability state vector at hop k = 1, p2 = S2p0 the state vector at hop k = 2,
and so on. In general, Skp0 is the probability state vector after hop k. The entry
[pk]i = [Skp0]i denotes the probability of a walk landing at node i, having started
from the initial probability state vector p0. We introduce a K × 1 parameter vector
θ = [θ1, . . . , θK ]T , that combines the landing probability vectors of the first K hops as

f(θ) =
K∑
k=1

θkpk, (4.4)

where θ belongs to the probability simplex SK (i.e., θ ≥ 0 and θT1K = 1). The entry
θj is the weight for the jth hop probability state vector. The parameter θ characterizes
the diffusion process and is unique for each class. We exploit this to find this parameter
for each class.

4.2 Adaptive Random Walk Diffusion-based Semi-supervised
learning on Graphs

We are given G with N nodes and C classes. In the semi-supervised setting, only a
few labeled nodes are known for each class [24]. For a class c, Lc ⊂ V is the index set
of the labled nodes belonging to class c. For class c, the starting probability vector vc
(equivalent to p0 above) is

[vc]i =

{
1
|Lc| , if iεLc
0, otherwise

, (4.5)

where |Vc| is the number of objects in class c. This walk starts uniformly at random
from any of the labeled nodes belonging to that class c. After K hops, the probability
vector for class c is

fc(θc) =
K∑
k=1

θc,kpc,k = Pc,Kθc, (4.6)

where Pc,K = [pc,K ,pc,K−1, . . . ,pc,1] contains the state vector distributions for the K
hops stacked column-wise and pc,k is the probability state vector for the diffusion of
class c after k hops from the starting state. The term θc,k is the diffusion coefficient
for the kth hop for class c. The vector θc contains the coefficients which characterizes
the diffusion for class c. θc is the parameter of interest and is solved for each class [24];
hence, making the method adaptive to each class. The target vector for each class, yLc
is

[yLc ]i =

{
1
|L| , if iεLc
0, otherwise

. (4.7)
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The set L =
C⋃
c=1

Lc contains all the labeled nodes. The target vector contains 1
|L| as an

entry for all nodes labeled as belonging to class c and zero otherwise. The matrix D−1L
is an N ×N diagonal matrix defined as

[D−1L ]ii =

{
1
di
, if iεL

0, otherwise
. (4.8)

To solve for the parameter θc for each class, a problem (cost function) has to be
formulated with θc as the variable. The function l(yLc , fc(θc)) measures the normalized
square error loss between the target vector [yLc ]i and [fc(θc)]i if the node i is labeled.
When i belongs to class c, a low error will be achieved when [fc(θc)]i is close to 1

|L| .

This error is similar to the labeled error loss usually seen in semi-supervised learning.
For class c, the following problem is solved to find θc:

minimize
θc

l(yLc , fc(θc)) + µR(fc(θc))

subject to θc ≥ 0, θTc 1K = 1.
(4.9)

Here, l(yLc , fc(θc)) = (yLc−fc(θc))
TD−1L (yLc−fc(θc)) is the weighted least squares error.

D−1L ensures that the error is calculated only at the labeled nodes. The second error
term µR(fc(θc)) is a regularization term on fc(θc). By enforcing the cluster assumption
[8], nodes belonging to the same class should be in the same cluster; i.e. [fc(θc)]i is
similar for nodes in the same class. We use a regularization that penalizes fc(θc)’s
that are not smooth over the graph. Normalized Tikhonov regularization is used with
R(fc(θc)) = fc(θc))

TD−1LD−1fc(θc). µ is the regularization parameter which influences
how much a non-smooth fc(θc) should be penalized. By substituting these two terms
in the cost function, Problem (4.9) becomes

minimize
θc

||yLc − fc(θc)||2D−1
L

+ µfc(θc)
TD−1LD−1fc(θc)

subject to θc ≥ 0, θTc 1K = 1.
(4.10)

where ||x||2A = xTAx is the norm of vector x with respect to matrix A. Note that the
problem (4.10) is solved for each class c in a one-vs-all fashion and the corresponding
θc’s are obtained. The unlabeled nodes are classified only after all the θc’s are obtained.
For each unlabeled node vj, the value of [fc(θc)]j is compared for all classes c = 1, . . . , C.
The class for which [fc(θc)]j is the largest is assigned to vj as follows:

ĉj = argmax
c={1,...,C}

[fc((θ)c)]j (4.11)

where ĉj is the class assigned to the unlabeled node vj.

4.3 Discussion

The assumptions and noteworthy points about this approach are as follows:
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1. The knowledge of the target yLc depends on the knowledge of vc; both of them
have non-zero elements in the same indices. This assumes zero landing probabili-
ties for nodes which are not in the same class.

2. The non-zero elements in yLc are 1
|L| at the nodes which are labeled. The target

K-step probability vector says that no matter which labeled node of class c one
starts from, it is equally probable to land on any of the labeled nodes of that class.

3. In equation (4.4), the value of k runs from k = 1 to k = K. The value k = 0 is
ignored.

4. The diffusion parameters of each class are learnt separately.

This concludes our discussion of the semi-supervised classifier. We recall that the cost
function in (4.10) has two terms, an error as per the model and a constraint term.
fc(θc) is a linear function of both θc and vc, written as

yLc = fc(θc) =
K∑
k=1

θc,kS
kvc (4.12)

For the semi-supervised classifier, from equation (4.12) it is clear that the starting
density vc must be known. For single-batch pool-based active learning, no knowledge
of vc, and hence yLc is available. To be able to learn, vc needs to be estimated, given
S and θ. The one-batch pool scenario has no labeled data as input, so yLc is also
unknown. Finding vc thus becomes a challenge.

This concludes the discussion on the random walk model and adaptive semi-
supervised classifier which utilizes this model. We see that the classifier follows a linear
model and is adaptive for each class. In the next chapter, we will focus on developing
a methodology to solve the pool-based single batch active node selection problem for
this classifier. We will look at methods to select nodes to query which will result in
good classification performance.
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Proposed Active Sensing 5
This chapter discusses the main contribution of this thesis and introduces the methods
adopted to solve the single-batch pool-based active semi-supervised learning for random
walk diffusions on graphs. We divide our methods into two broad categories. Meth-
ods in the first category solve a regularized inverse problem with sparse constraints —
Section 5.1. Methods in the second category do not focus on the inverse problem but
solve for the most informative nodes using compressed sensing and sparse sensing —
Section 5.2. Section 5.3 mentions approaches based on heuristics and random sampling
which we use as a benchmark. Section 5.4 concludes the chapter. Table 5.1 presents

Method Solves for Class Name

Proxy-Iterative
reweighted l1

Sparse vc
Proxy-based
deterministic
estimationProxy-Orthogonal

matching pursuit

Sparse Sensing - Active
Learning(A design) Model Output Active Sensing

Sparse Sensing - Active
Learning(D design)

Compressed Sensing -
Active learning

Random Sampling Nothing Other approaches

Table 5.1: Overview of approaches considered in this chapter. The first column names the
approach used; the second column specifies the underlying objective; the third column cate-
gorizes them.

the approaches considered in this thesis. The first column names the method; the sec-
ond column mentions the objective behind each method; the third column categorizes
them on the basis of their objective. There are three categories, namely, Proxy-based
deterministic estimation, Active Sensing and Other approaches respectively, which we
will discuss in the sequel.
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5.1 Proxy-based deterministic estimation.

As discussed in Section 4.2 of Chapter 4, the semi-supervised classifier follows the model
[24]:

fc(θc) =
K∑
k=1

θc,kS
kvc, (5.1)

where fc(θc) is the classifier output of the K combined landing probabilities for class c,
and θc = [θc,1, . . . , θc,K ]T is the vector containing the K diffusion coefficients for the cth
class. In the one-batch scenario, we jointly select all the relevant nodes from scratch
(i.e., without labeled information). From (5.1), we see that the classifier output is linear
in vc.

In this class, we assume the starting node distribution vc (for class c) holds the key
to understanding which nodes could be important to start the diffusion from. More
specifically, we assume that only a few nodes from each class play the most influential
role in the diffusion in (5.1); this means vc is sparse. For each class, vc can be obtained
by solving the inverse problem posed by (5.1). To solve this, the landing probabilities
fc(θc) and labels of all nodes need to be known beforehand, which is indeed what we
seek to obtain. The methods in this section operate in two steps: in the first step,
the proxies of the landing probabilities are obtained for each class c; in the second
step, they are used as observations to solve the inverse problem. Figure 5.1 shows the
flowchart of the methods to be discussed in this section.

5.1.1 Obtaining Proxies

Consider the N node classification problem with C classes. We perform Fuzzy-C-Means
clustering [cf. Section 2.4.1] on these nodes for C clusters. The number of clusters is
assumed to be the number of classes [8]. The nodes are represented by the Laplacian
Eigenmap Embedding [cf. Section 2.4.1] up to dimension C − 1. For each node vj, tjc
denotes the membership value (posterior probability) of node j in cluster c. For each
cluster c, the membership values of all nodes are in the vector tc = [t1c, t2c, . . . , tNc]

T .
tc is a graph signal for cluster (class) c. The normalized version of tc, t̃c is obtained
by dividing it with the sum of its elements. t̃c is a probability mass function defined
over the nodes and is used as a proxy for the landing probabilities of class c. (5.1) then
rewrites as

t̃c ≈ fc(θc) =
K∑
k=1

θc,kS
kvc, c = 1, . . . , C. (5.2)

Vector θc that weighs each of the K-hop probabilities over the graph. In [24], the
assumption is there is a class-specific θc. In our scenario, θc is not known for any c.
Solving for vc and θc simultaneously is challenging. To avoid this, we have taken a
fixed θ for all classes. For a K-hop process, θ = (1− α)[α0α1 . . . αK ] with 0 < α < 1,
which is inspired by Personalized Page Rank diffusion [69] [70]. The working model is
now

t̃c =
K∑
k=1

θkS
kvc, c = 1, . . . , C (5.3)
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We now want to solve for vc given t̃c and θ. The value of α can be determined via
cross-validation.

5.1.2 Iterative re-weighted l1 norm minimization

Iterative re-weighted l1 norm minimization minimizes the weighted l1 norm of the vari-
able for which sparsity is desired. It solves a series of weighted l1 minimization problems.
In our scenario, this problem becomes

minimize
vlc

||Wl−1vlc||1

subject to ||t̃c −
K∑
k=1

θkS
kvlc||2D−1 ≤ δ

(5.4)

where vlc is the solution obtained at the lth iteration and Wl−1 = diag(wl−11 , . . . , wl−1N )
contains the weights updated during the (l − 1)th iteration along its diagonals. The
w’s are initialized to 1, which makes ||W1vlc||1 the l1 norm. Upon solving Problem
(5.4), the w’s are updated to enhance the sparsity of vl+1

c and (5.4) is solved again
with the updated w’s. A detailed analysis of the method is provided in [71]. δ is the
permissible tolerance for the error in approximating the landing probability, which is
indicated as ||t̃c−

∑K
k=1 θkS

kvc||2D−1 = (t̃c−
∑K

k=1 θkS
kvc)

TD−1(t̃c−
∑K

k=1 θkS
kvc), the

squared error normalized with the degree matrix D.

The clustering, even though built on reasonable assumptions, is not guaranteed to
group nodes which belong to the same class to the same cluster. The term δ specifies
how much we want to rely on the clustering and allows us to have some control over
the solution. After the minimization has run enough times, the nodes corresponding to
the maximum vales of the final vc are identified. They are the nodes that contribute
the most to the diffusion process for the given proxies and will be queried.

5.1.3 Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit [57], as seen in Section 2.5.2.1 recovers the sparse solution
to a linear under-determined system of the form y = Ax. In our context, this implies
using OMP for solving each vc, as follows:

minimize
vc

||vc||0

subject to t̃c =
( K∑
k=1

θkS
k)vc,

(5.5)

for each c = 1, . . . , C. The difference between this and the l1 minimization approach
is that the OMP algorithm minimizes the l0 norm while the l1 minimization minimizes
a relaxed version of the original cost. Also, the OMP is faster in execution than SDP-
based solvers, which is one of the ways used to solve the iterative minimization problem.
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5.1.4 Remarks

This section discusses the assumptions behind this type of approaches.

• The clustering is carried out on one graph. If the graph is naturally defined
(through connections, citations), not much can be done about it. However, when
the graph is to be built from the data, the question “What is a good enough
graph?” comes into the picture. For instance, if we have a data-set and its objects
can be part of two two-class classification problems. Then, the same graph may
work for one problem but not for the other. In such a case, the graph should be
constructed carefully.

• The assumption behind clustering is that nodes which are in the same class should
belong to the same cluster in the graph. This is not always guaranteed to happen.

• In each of the methods in Sections 5.1.2 (Iterative re-weighted l1) and 5.1.3 (OMP),
the key idea is that solving C inverse problems independently will give us the
desired points.

5.2 Active sensing

In this section, we introduce and motivate the second type of approaches. In the first
type (Section 5.1), we were primarily focusing on recovering a sparse vc for each class
c, given proxies obtained by a fuzzy clustering of the nodes. The main difference here
is that we do not care about estimating vc directly, nor do we care about finding
proxies for the landing probabilities. Instead, we focus on a common diffusion which
operates on the labels of all the labeled nodes from all classes together. We propose
approaches which select the nodes on which the output of such a diffusion are important
for estimating vc for all classes together. This simplifies the linear system (5.2) to

y = Hv + n, (5.6)

where v contains the information regarding all the important nodes, irrespective of
the class and n is the additive noise. The design of H =

∑K
k=1 θkS

k incorporates
the common diffusion assumption with a fixed diffusion parameter vector θ = (1 −
α)[α0α1 . . . αK ] with 0 < α < 1, as shown in Section 5.1.1. With this assumption,
the active learning approach is not adaptive, unlike the classifier. Each observation
yi = hTi v + ni is related to the ith row of H and node vi of the graph.

We do not always make assumptions about the nature of v. We propose two methods
in this section: the first one based on Compressive Sensing [26] and the second based
on Sparse Sensing [27]. Figure 5.2 provides an overview of the active sensing approach.

5.2.1 Compressed Sensing Active Learning (CS-AL)

This section introduces the approach which takes inspiration from compressive sens-
ing. The background material needed has been covered in Chapter 2. Section 5.2.1.1
introduces the mutual coherence concept and its importance; Section 5.13 describes
the approach used; Section 5.2.3 comments on the assumptions and remarks on this
approach.
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5.2.1.1 Mutual Coherence

Compressive sensing deals with recovering signals x ∈ RN which are sparse with respect
to a basis Ψ ∈ RN×N from subsampled measurements. The vector x is expressed as
x = Ψs where s is a sparse vector. The measurements y are obtained as

y = Φx = ΦΨs, (5.7)

as shown in [55] [26]. The matrix Φ ∈ RM×N denotes the sensing matrix with usually
M � N . The system can also be written as y = Px with the dictionary P = ΦΨ ∈
RM×N .

The mutual coherence of P, µP is defined as

µP = max
1<=i,j<=N, i 6=j

|pTi pj|
||pi||2||pj||2

, (5.8)

with pi being the ith column (atom) of P. The mutual coherence quantifies the highest
similarity between all pairs of columns (atoms) of P. A high value of µP means that
there are at least two columns in P that are aligned closely. A small value of µP

indicates that the two most similar columns are not so much aligned and the remaining
pair-wise alignments will be even less aligned. This also implies that the columns
of matrix P are not as redundant (for M � N , the columns are linearly dependent
already). The reason we elaborate on this interpretation of the mutual coherence is
because the solution to Problem (2.35) depends on it. If the cardinality of a candidate
solution to Problem (2.35) satisfies

||scandidate||0 ≤
1

2

(
1 +

1

µP

)
, (5.9)

then it is necessarily the optimal solution [55].
The highest possible value of mutual coherence is 1. In such a case, the cardinality of

the optimal solution would satisfy ||scandidate||0 ≤ 1
2

(
1 + 1

1

)
= 1. This is not informative

as we know the sparsest s for a non trivial y will always have a cardinality of at least 1.
This motivates the use of dictionaries which have low mutual coherence. As a popular
example, a P with each of its elements drawn from an i.i.d Gaussian distribution will
have low mutual coherence [56]. In our case, H in (5.6) plays the same role as Ψ in
(5.7). This leads to a discussion on Φ and the following section discusses how Φ can be
designed, given Ψ, so as to reduce some measure associated with the mutual coherence
(reducing the mutual coherence directly is a difficult problem).

5.2.1.2 Projection Matrix Design for Improved Compressive Sensing Perfor-
mance

This section discusses the idea behind designing a projection matrix Φ such that the
recovery performance of a Compressive Sensing system as shown in Section 2.5 is en-
hanced. It first introduces equiangular frames, the Welch bound and some projection
matrix design approaches with equiangular frames in mind. We then introduce our
method to select rows from the basis matrix which is motivated by the same.
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A frame [25] is a set of vectors {fi}, i = 1, . . . , N , such that there exists constants
0 ≤ P,Q ≤ ∞ such that

P ||x||22 ≤
N∑
i=1

| < x, fi > |2 ≤ Q||x||22,

∀ x in a Hilbert space H where < a,b > represents the dot-product between vectors a
and b. When ||fi||2 = ||fj||2 ∀ {i, j}, the frame is called an equal norm frame. A frame
can also be thought of as a matrix, with the elements fi, i = 1, . . . , N stacked column-
wise. An Equiangular Frame (EF) EM,N of sizeM×N is an equal norm frame with norm
equal to one and where each element (atom) has the same alignment in magnitude with
every other atom. The Gram matrix of such a frame GM,N = ET

M,NEM,N has absolute
value entries

|Gi,j| =

{√
N−M
M(N−1) i 6= j

1 i = j
. (5.10)

Every pair of non-identical atoms of EM,N has the same angle between them in mag-

nitude. The term
√

N−M
M(N−1) is also known as the Welch bound. The columns of H are

each in the M dimensional positive orthant as Hij ≥ 0 ∀ {i, j}. Hence, all elements
of the gram matrix will be greater than or equal to zero. The ambiguity surrounding
the absolute value sign for Gij is lost and the Gram matrix, if it exists, is determined
uniquely by

Gi,j =

{√
N−M
M(N−1) i 6= j

1 i = j
. (5.11)

We now discuss some popular methods which have aimed at designing Φ for a fixed Ψ
so that the resultant dictionary ΦΨ is close to such equiangular frames.

Elad, in his paper [72] finds the optimal Φ through an iterative process. Φ is
initialized with random values. At any particular iteration, the following happens: the
Gram matrix is built; next, it shrinks the values of the mutual coherence that are
greater than a set threshold in absolute value and retains the smaller values; next,
the rank of the modified Gram Matrix is then reduced and the optimal Φ is solved
for in the least squares sense through the dictionary decomposition. Elad considers
the reduction of the t-averaged mutual coherence through this method, instead of the
mutual coherence. In [73], the general theory behind designing equiangular tight frames
is discussed. To design such a frame, an alternate projection is used. One projection
involves projecting upon the space of tight frames, whereas the other projects the Gram
matrix on the space of equiangular frames (all values in the Gram matrix which have
absolute value more than the Welch bound are clamped to that bound). The method
in [74] considers the joint design of Φ and Ψ by assuming the equivalent Gram matrix
to be identity (i.e. all columns are orthogonal to each other, which is a special case of
an EF).
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The common theme across these methods is that GM,N is not known because of
the ambiguity in the sign, which does not allow for a definite problem formulation and
encourages iterative approaches based on projections. Also, in [72], Elad evaluates the
method on Ψ of size 80×120 with random entries, while reporting that the reconstruc-
tion performance for OMP and Basis Pursuit did not improve for structured bases. In
our case, the system matrix H =

∑K
k=1 Skθk is structured through the shift operator S

and its powers.

We design a sensing mechanism on the system output y (i.e., model output selec-
tion), by selecting the rows of H through a matrix Φ such that the resultant Gram
matrix is as close to GM,N as possible. Each row of Φ ∈ RM×N has one element equal
to one to indicate the selected row and the rest zero. The sensing vector is w = {0, 1}N
with wi = 1 if row i is selected and zero otherwise. The matrix Φ has two properties:
ΦTΦ = diag(w); ΦΦT = IM . If M rows of H are to be selected through Φ, the Gram
matrix of the row selected matrix ΦH is HTΦTΦH = HTdiag

(
w
)
H with ||w0|| = M .

The selection problem can be written as

minimize
w

||HTdiag
(
w
)
H−GM,N ||2F

subject to ||w||0 = M, w ∈ {0, 1}N .
(5.12)

Problem (5.12) is a combinatorial NP-hard problem. We can solve it efficiently by
substituting the l0 pseudo-norm ‖w‖0 = M with the l1 norm surrogate ‖w‖1 = M and
the Boolean constraint w ∈ {0, 1}N with the box one w ∈ [0, 1]N . This transforms
(5.12) into a convex problem

minimize
w

||HTdiag
(
w
)
H−GM,N ||2F

subject to 1Tw = M, 0 ≤ w ≤ 1.
(5.13)

In addition, a different version of Problem (5.13) can also be solved, where we add a
regularization cost to the original function as follows:

minimize
w

||HTdiag
(
w
)
H−GM,N ||2F + γM,N ||Hw||2L

subject to 1Tw = M, 0 ≤ w ≤ 1,
(5.14)

with γM,N weighing the regularization term which enforces smoothness with respect to
the graph on the K-hop diffused density. The optimization constraints ensure that Φ is
a selection matrix. Once w is obtained the rows corresponding to the location of the top
M values of w are selected. Relaxing the problem leads often to solutions that are far
from the optimal one. We have found instead that solving (5.12) with greedy methods,
i.e., starting with the set V and removing one node at a time that decreases the cost
the least until M nodes are left, leads often to better results. As far as we know, it has
not been proven to be sub-modular. The regularization controls the diffusion of the
selected labels over the graph; e.g., ||Hw||2L = wTHTLHw imposes that the diffused
labels of the nodes in w are smooth over the graph. We will investigate the role of
γM,N in Section 6.1.5.3.
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5.2.2 Sparse Sensing Active Learning (SS-AL)

In this section, we solve our active learning problem using experimental design. The
preliminaries on experimental design have been covered in Section 2.2 of Chapter 2.
Here, we focus on a sparse sensing approach that provides which observations or nodes
to select such that the estimation of v in (5.6) is optimal in the mean square error and
the confidence ellipsoid volume [27]. Additionally, we look at selecting nodes which
allow optimal estimation of the classifier prediction, as that is also important from a
classification perspective. We do not make assumptions about the nature of v (i.e.
smooth or sparse).

5.2.2.1 A-Design (SS-AL(A))

For sparse sensing, A-experimental design is equivalent to minimizing the mean square
error (MSE) of predicting the parameter of interest, which in this case is v from (5.6).
The sensing vector w is such that wi = 1 if node i is selected and zero otherwise. The
noise in (5.6) is white, with each element having the same variance σ2. The problem
for selecting M nodes under these assumptions, as shown in the background chapter is

minimize
w∈{0,1}N

tr

( N∑
i=1

wihih
T
i

)−1
subject to ||w||0 = M,

(5.15)

where hi is the ith row of H. Problem (5.15) is not convex. Instead the relaxed version

minimize
w

tr

( N∑
i=1

wihih
T
i

)−1
subject to 1Tw = M

0 ≤ w ≤ 1.

(5.16)

is a convex problem that can be solved using widely used solvers such as CVX [43]

5.2.2.2 D-Design (SS-AL(D))

The D-experimental design maximizes the log-determinant of the Fisher information
matrix [39] of the parameter v. This is equivalent to minimizing the volume of the
confidence ellipsoid associated with estimating v [27]. The sensing variable w is such
that wi = 1 if node i is selected and zero otherwise. The problem for selecting M nodes
under these assumptions is stated as

maximize
w

log det
( N∑
i=1

wihih
T
i +εIN

)
subject to w ∈ {0, 1}N ,

||w||0 = M,

(5.17)
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where hi is the ith row of H. Problem (5.17) is not convex. Its relaxed version is convex
[27], but slow to solve with semi-definite programming solvers [43]. However, the log
determinant of a positive semi-definite matrix is a sub-modular function [75] and can
be maximized greedily i.e. starting with an empty set and by adding one node at a
time to this set which increases the cost function the most. To ensure the determinant
does not go to zero, the cost function is modified as log det

(∑N
i=1wihih

T
i +εIN

)
, where

ε is chosen to ensure the existence of the determinant. Algorithm 2 summarizes the
selection process. The general assumption throughout literature is that the rows of
the system matrix H span Rn, which is not always true. In these situations, when
adding the nodes greedily, we consider only those nodes whose corresponding row in H
increases the rank with respect to the already selected rows.

5.2.2.3 Minimizing Variance of Prediction through Sparse Sensing

So far, we have focused sparse sensing tools on the estimation of v in (5.6). However,
while estimating v is important, the classification depends on the diffused version of v,
Hv, where H represents the N × N diffusion operator or graph filter. Here, we focus
on estimating the classifier output and the equivalent sparse sensing problem. This is
similar to transductive active learning [12]. Under the same model assumptions (i.e.,
additive white noise), the error covariance matrix will be

E
(
(Hv−Hv̂)(Hv−Hv̂)T = E(H(v− v̂)(Hv− v̂)T

)
= HE

(
(v− v̂)(v− v̂)T

)
HT

= H
( N∑
i=1

wi
σ2
i

hih
T
i

)−1
HT

= H
( 1

σ2
HTdiag(w)H)−1HT ,

(5.18)

where w is the sensing vector. We are interested in selecting the nodes which will help
estimate the classifier output optimally. The problem of selecting these nodes has been
shown to be [27]

minimize
w

log det H
(
HTdiag(w)H)−1HT

subject to 1Tw = M,

0 ≤ w ≤ 1.

(5.19)

When H is invertible, the outer H and HT in (5.19) can be ignored and we can focus on

the term
(
HTdiag(w)H

)−1
, given the sparse sensing constraints. Minimizing the log

determinant of this term is same as maximizing the log determinant of
(
HTdiag(w)H

)
.

This is the problem we solve in SS-AL(D) in Section 5.2.2.2. It appears that sensing
for optimal estimation of the starting density is equivalent to sensing for estimating
the optimal classification output when the system matrix H =

∑K
k=1 θkS

k is invertible.
Under this assumption, solving for D-optimality is enough. However, there are no
guarantees that H is full rank. During simulations, we did notice that in most cases,
H was full rank, especially for real data.
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Algorithm 2 Greedy log-determinant maximization

Require: L∗,|L∗| = M
Input: Graph G, node set V, matrix H, number of nodes M
Output: Set of selected nodes L∗
1: Initialization L∗ = ∅, i = 0
2: while i ≤M do
3: j=argmax

k∈V−L∗
log det

(∑
i∈L∗

1
σ2
i
hih

T
i + 1

σ2
k
hkh

T
k + εIN

)
,

4: L∗=L∗ ∪ j,
5: i = i+ 1,
6: end while

5.2.3 Remarks

We are now in a position to critically remark on the CS-AL (Section 5.2.1) and SS-AL
(Section 5.2.2) approaches.

1. For CS-AL, the existence of an EF is not guaranteed for any combination of
(M,N). Finding N equally aligned points in RM is a difficult problem. There
are some conditions for which a real M ×N frame is equiangular [25]. One such

condition is N ≤ M(M+1)
2

.

2. The sensing vector w is used at the output of the system to sense the node outputs
that enable reconstruction of the sparse starting state vector. Let W denote the
set containing the indices of the selected rows. The row selected version of H, HW ,
when used with the observations yW to estimate a sparse v (i.e. through OMP)
is not guaranteed to give a v which is element-wise non-negative and sums to one.
The assumption requires it to be a distribution, but the model-based compressive
sensing approach is not guaranteed to give a distribution. This may introduce
some mismatch and could influence the results. In that case, we do not rely on
the landing probabilities but the filtered version of a sparse graph signal, which
has positive or negative signal values at the desired nodes. In case of SS-AL, when
HW is used to estimate v, it is not guaranteed to give a v which sums to one over
all nodes.

3. Through different backgrounds, both CS-AL and SS-AL arrive at a row selection
procedure.

5.3 Other approaches

This section contains some methods which will be used as a reference to compare the
methods proposed in the previous two sections. One basic approach is to sample nodes
throughout the graph at random and feed them to the classifier. This selects nodes
without taking the structure or the diffusion phenomenon into account.

We also considered the heuristic which involved selecting the nodes with the highest
degree, as it would seem that they would have more influence on the propagation of
the probabilities. However, this approach leads to a poor performance and we did
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not include it in this report. We also sampled according to the membership functions
returned for each cluster in Section 5.1. For each cluster, we selected the nodes having
maximum membership. This is a naive way of output selection and did not work for
reasons we shall see in the next chapter.

5.4 Conclusion

In this chapter, we have proposed two sets of approaches to the active learning problem.
The first tries to find a small set of nodes per class which are important for matching
proxies of the landing probabilities per cluster on the graph. The second tries to find
nodes on which to sample the output of the system (ideally landing probabilities) so
that the initial starting density can be estimated optimally. We are now in a position
to evaluate these methods on synthetic and real datasets, which we will do in the next
chapter.
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Results 6
In this section, we evaluate the approaches developed in the previous chapter on two
synthetic graphs and two graphs from real data. Section 6.1 introduces each graph and
the performance of the methods on them; Section 6.1.5 showcases some properties of
selected methods; Section 6.2 contains the results obtained for real data-sets.

6.1 Simulated data

We test the active learning approaches on two simulated networks: a stochastic block
model and a random sensor network.

6.1.1 Stochastic Block Model

The Stochastic Block Model (SBM) generates graphs which have some community
structure. A community is a well-clustered set of nodes in a graph which unites nodes
having some degree of similarity. A stochastic block model is generated using the
following parameters:

1. Number of nodes N ,

2. The community set C1, . . . , CR with R denoting the number of communities,

3. The R×R edge probability matrix Pe with [Pe]ij denoting the probability of an
edge existing between a node from community Ci and a node from community Cj.
There are two probabilities involved: the inter and intra-class probabilities.

Given the parameters, each edge is sampled at random to generate an instance of the
stochastic block model. We generated such graphs using the graph signal processing
toolbox [76]. We assume the inter and intra-cluster probabilities to be fixed (i.e. Pe

has equal diagonal and off-diagonal elements). For our simulations, we consider such
a network with N = 200 nodes and C = 4 communities with inter and intra-cluster
edge probabilities of 0.01 and 0.8 respectively is shown in the following figure. These
parameters will be used in the evaluation process. A realization of this is shown in
Figure 6.1.

6.1.2 Random Sensor Network

The random sensor network comprises sensors nodes arranged at random in a rectan-
gular area. We considered a connected random sensor network for with N = 200 nodes
and C = 4 classes. A realization of this is shown in Figure 6.2.
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1

Figure 6.1: A stochastic block model network of N = 200 nodes with C = 4 classes.

1

Figure 6.2: A random sensor network of N = 200 nodes with C = 4 classes.

6.1.3 Experimental Setup

Each simulated graph has N = 200 with C = 4. We consider two values for the
filter or diffusion order K. We take K to be the diameter of the graph or its half, to
illustrate its effect. The value of K is 4 for Stochastic block model and is around 15 for
the random sensor network. We consider µ for the semi-supervised classifier in (4.9)
to be 1. We take the diffusion weights of the form θ = (1 − α)[α0α1 . . . αK ] for all
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graphs with α = 0.9. We consider 10 realizations for each graph to obtain the average
performance. To assign labels we clustered the nodes as per fuzzy C-means clustering
on the Laplacian embedding and then label the points according to the cluster to which
they belong. In this way, we obtained labels that are smooth over the graph. For the
CS-AL approach (5.2.1), we take γM,N = 0. We did not try to optimise for gamma in
terms of classification error for these plots. The solution to the iterative re-weighted
l1 (5.1.2) and SS-AL using A-experimental design (5.2.2.1) was carried out using CVX
[43]. For iterative re-weighted l1, we iterate 10 times and take δ = 0.1. We average the
results for random selection over 200 iterations.

6.1.4 Results

Figures 6.3 and 6.4 show the classification error plots for the stochastic block model,
while Figures 6.5 and 6.6 show the same for the random sensor network.
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Figure 6.3: Classification error vs. percentage of labeled points for six active learning methods
on the Stochastic block model graph of 200 nodes and four classes. The diffusion order is the
graph diameter.

Figures 6.3 and 6.4 show the mean classification error as a function of the percentages
of labeled points for two scenarios of the SBM graph. Figure 6.3 considers the diffusion
order K to be the graph diameter while Figure 6.4 considers K to be half of the
diameter. There are six curves, five of those for the active learning methods proposed
in Chapter 5 and one for the random selection. We observe the method based on proxies
of landing probabilities and OMP (5.1.3) and D-experimental design (5.2.2.2) obtain
perfect classification, even for as less as 2% of the data, which equals 4 points. This is
possible as the graph has four well-structured clusters (Figure 6.1) and sampling one
node per cluster is good enough. SS-AL with D experimental design manages to do
this without relying on any proxies. The CS-AL approach does not perform as well as
the previous two. We believe this is because it suffers from the condition which requires
equiangular frames to exist (5.2.3). The equiangular frame condition is satisfied when
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Figure 6.4: Classification error vs. percentage of labeled points for six active learning methods
on the Stochastic block model graph of 200 nodes and four classes. The diffusion order is half
of the diameter of the graph.

20 or more labels are queried (i.e. 5% of the data). From the figures, the performance
does move a lot closer to the optimal classification performance (zero error) after the
5% mark. The performance can be further improved with incorporating λM,N in (5.14)
but here we show how the approach holds up. The proxy-based l1 solution does not do
as good but still better than random selection. The SS-AL method on A-experimental
design (MSE) performs the worst.

However, we do note an increase in classification accuracy for all the methods apart
from the optimal ones when K is half the diameter i.e. K = 2. A hop of 2 prevents
the unlabeled nodes from being affected by diffusion from other classes. The effect of
diameter is more prevalent on this graph, but it is not so easy to conclude for other
graphs, as we shall see later. This graph was chosen for its obvious structure and to
test how the different methods are capable of picking up nodes from each cluster.

Figures 6.5 and 6.6 display the same curves of classification error as a function of
the percentage of labeled points for the random sensor network. The sensor network
has four classes which are not well-separated from each other (see Figure 6.2). It
is interesting to see how the methods behave for such a graph as getting optimal
classification (zero error) is challenging. The proxy-based OMP method outperforms
the rest when the number of nodes to be queried is limited but the error does not
reduce much when more samples are collected. This could point us to a possible
drawback of this approach, which we discuss more into detail in Section 6.1.5.2. The CS-
AL and SS-AL(D) plots do better overall than the rest, especially when the diffusion
order is half the diameter. This throws some light upon the role of K for active
learning. K influences the process in two ways: i) by influencing the contents of matrix

H =
∑K

k=1 Skθk and ii) determining the extent of spread with respect to the graph
structure. It is not obvious if increasing K will lead to a poorer performance for any
graph. Moreover, each class has its own sub-graph with its own intrinsic diameter
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Figure 6.5: Percentage of labeled points vs. Classification error for six active learning methods
on the Sensor network graph of 200 nodes and four classes. The diffusion order is the diameter
of the graph.
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Figure 6.6: Percentage of labeled points vs. Classification error for six active learning methods
on the sensor network graph of 200 nodes and four classes. The diffusion order is half of the
diameter of the graph.

and ideally each class should diffuse to an extent which covers only its members. This
classifier assumes a fixed order of diffusion for each class. The fixed number will be
more than the internal diameter for some classes and less for the rest. So it is difficult
to predict how a change in K will hamper the performance unless there is some clear
structure in the graph and the class-specific diameters are known.

Having examined the performance on these two graphs, we see a trend of three
methods (proxy-based OMP, SS-AL(D) and CS-AL) performing better than the random
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selection which is the purpose behind active learning. We will continue to look into the
strengthens and weaknesses of these methods in more detail in the next few subsections.

6.1.5 Experiments for particular algorithms

In this section, we elaborate further on different aspects of the methods which performed
well in the previous section: namely, the CS-AL, SS-AL(D), and proxy-based OMP
solution.

6.1.5.1 Greedy selection

The SS-AL(D) approach selects points exploits the log determinant function’s sub-
modularity and greedily selects points. In this portion of this chapter, we look at
the nature of this selection. We perform active learning to select nodes equalling the
number of classes, which is 4 in all cases so far. We show the sequence of selection
of the first four points for the SBM network, a modified version of it and the sensor
network as seen before.

Figure 6.7 shows the first four nodes selected by SS-AL(D) sequentially. Each of
these nodes is from one cluster. This illustrates the effectiveness of this method. The
SBM graph has close to an equal number of nodes per class. Next, we change the
community sizes to see if it changes the nature of selection. We generate a community
graph with 4 communities of size 10, 70, 70 and 100 respectively. The results for this
is shown in Figure ??. It is seen that the learner selects one node from each class for
the first four selected nodes.

6.1.5.2 OMP plots

In the results of simulated graphs, we noticed that the proxy-based OMP method
was among the best performers. It achieved optimal classification for the SBM and
outperformed all methods for a very low percentage of queried points on the sensor
network (see Figs 6.5,6.6). The method depends on the proxies of landing probabilities,
which are described in Section 5.1.3. The proxies were obtained in such a way that
each proxy would give higher membership values around one cluster and low for the
rest. This is possible for the stochastic block model graph and the sensor network for
4 classes. We suspect that with an increase in the number of classes, the membership
functions would appear more similar and this would limit the potential of the OMP
algorithm in terms of the number of unique points it can generate from each proxy.
To test this, we plot the difference between the number of requested queries and the
number of unique queries generated by this method for the same graph and observe the
trend in increasing the number of classes. For example, in a graph of 200 nodes and 4
classes, if 2 queries are requested per class, we would require 8 labeled nodes and the
algorithm should ideally be able to provide the same number.

Figures 6.9a and 6.9b showcase the results on the sensor network. Figure 6.9a
plots the difference between the number of labels requested and the number of unique
labeled objects returned by the method, averaged over 10 iterations. The plot captures
the effect of increasing the number of classes. It is clear that with an increase in
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Figure 6.7: The first (top left), second (top right), third (bottom left) and fourth(bottom
right) nodes selected by SS-AL(D) for a Stochastic Block Model graph. The selected nodes
are denoted in magenta and the rest in cyan.

the number of classes, this difference increases. A high difference means fewer points
being selected, and this will lead to an inferior performance compared to methods
which guarantee the selection of the same number of unique labels as requested, like
the SS-AL(D) approach. Figure 6.9b showcases the effect of this difference on the
mean classification error. When the number of desired queries is higher, the error for
5 and 6 classes is higher than for 3 or 4 classes. The error curves do not reduce in
the same manner with the increase in desired queried labels. Figures 6.10a and 6.10b
showcase the difference in performance between the proxy-based OMP methods and
SS-AL(D) (i.e. a method which returns the same number of points as requested) for
a higher number of classes than shown in Section 6.1.4. We take the same graphs i.e.
the stochastic block model and the random sensor network with 200 nodes but this
time with 6 classes. The mean classification error performance is compared between
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Figure 6.8: The first (top left), second (top right), third (bottom left) and fourth(bottom
right) nodes selected by SS-AL(D) for a skewed Stochastic Block Model graph of community
size 10, 70, 70 and 100. The selected nodes are denoted in magenta and the rest in cyan.

the two methods. In Figure 6.10a, SS-AL(D) can still obtain optimal performance
for all sets of queries while proxy-based OMP struggles to pick up nodes from each
community for a small number of requested queries. Figure 6.10b shows a similar trend
for sensor networks. Due to the generated proxies being similar, the OMP method
cannot distinguish between them and generate sparse signals which are unique for each
proxy. As a result, the corresponding error curve does not go down with an increase in
the number of labeled points requested, whereas the SS-AL(D) method performs better
in the long run.
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Figure 6.9: Label Propagation. 2.3a shows the original labels, 2.3b shows one selected fro each
class with their label value, 2.3c, 2.3d show how the propagation takes place through colours,
2.3e shows the final values after propagation concludes, 2.3f shows the predicted labels after
propagation.

6.1.5.3 CS-AL plots

In this section, we examine the role of γM,N as introduced in Section 5.2.1. The term
γM,N weighs the regularization terms which penalizes the smoothness of the signal
obtained by diffusion of the queried labels. We vary γM,N over four values, 0, 1, 10
and 20. γM,N = 0 corresponds to no regularization. The results are obtained for the
SBM and sensor graphs with 200 nodes and 4 classes. We want to check if adding this
constraint helps in selecting a better-labelled set. Figure 6.11a shows the comparison
between different values of γM,N for different values of M . For M varying from 2%
to 4% and M beyond 8% of the total nodes, the higher values of γM,N gives better
mean classification error. Between 4% to 8%, lower γM,N performs slightly better. This
means when the number of selected nodes is very low, a harsher penalty needs to be
imposed on its diffused version. The nature of this plot is not revealing much about
the existence of an optimal γM,N . Moreover from the nature of problem (5.14), for a set
(M,N), there should ideally be one γM,N . So, the optimal gamma can depend on M .
We cannot draw any clear conclusion about the optimal γM,N from this graph. Figure
6.11b, however, provides more clarity on this. Here, γM,N is optimal for all M when
it is zero (i.e. no smoothing is preferred). This is due to the graph structure (Figure

59



1

3 6 9 12 15

Percentage of labeled points

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Comparison on SBM with 6 communities

SS-AL(D)

OMP

(a)

1

3 6 9 12 15

Percentage of labeled points

0

0.05

0.1

0.15

0.2

0.25

C
la

ss
if

ic
at

io
n

 e
rr

o
r

Sensor network comparison with 6 classes

OMP

Logdet

(b)

Figure 6.10: Label Propagation. 2.3a shows the original labels, 2.3b shows one selected fro
each class with their label value, 2.3c, 2.3d show how the propagation takes place through
colours, 2.3e shows the final values after propagation concludes, 2.3f shows the predicted
labels after propagation.

6.1). The diffused version of the graph signal for the selected nodes up to M = 6% is
already smooth with respect to the graph structure and penalizing it is not useful. We
think the structure of the graph has a say on the role of γM,N .

6.2 Real Data

6.2.1 Facebook egonet subnetwork

The Facebook egonet subnetwork is a small portion of the ego network found in [77].
The ego network consists of 4039 nodes and is made up of circles and friend-lists of
people on Facebook. The data-set contains anonymous features (i.e. values only) for
each user, circles and ego networks. We choose a sub-network of N = 234 nodes, with
two communities and a diameter of 8. There are no labels available per se as the graph
is usually analysed for communities and circles [1]. To provide some labels, we label
the graph the same way we labeled the graphs in the simulated section (c.f. 6.1). Upon
doing that we obtain two classes with strength 219 and 15 respectively. We then use the
methods which performed well in the previous section, namely proxy-OMP, SS-AL(D)
and CS-AL to select relevant nodes.

Figure 6.12 shows the comparison between the proxy-OMP, SS-AL(D) and the CS-
AL approaches on a section of the Facebook ego network. The value of γM,N for
CS-AL is taken 0 to evaluate the performance of the idea and not necessarily any
improvements brought upon by regularization. Also, The Ge used for CS-AL in this
example is the identity matrix IN , which is also an equiangular frame and the nodes
are selected greedily. The random selection was run 200 times. Figure 6.12a and 6.12b
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(a) Role of γ of CS-AL on classification
error for sensor network.
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(b) Role of γ of CS-AL on classification
error for stochastic block model network.

Figure 6.11: Figures 6.11a and 6.11b showcase the effect of regularization on the node se-
lection and ultimately, the classification error. In 6.11a there is no gamma which is optimal
throughout. For the stochastic block model in Fig 6.11b, the results indicate γ = 0 is overall
a good choice (i.e. regularization is not desired).

Class 1 Class 2

CS-AL SS-
AL(D)

Random proxy-
OMP

CS-AL SS-
AL(D)

Random proxy-
OMP

Class 1 214 214 208.6 215 0 0 5 1
Class 2 0 0 7.5 0 14 14 6.9 12

Table 6.1: Confusion matrix for the proposed CS-AL and SS-AL, random labeling, and degree-
based labeling on the Facebook subnetwork for |V̄| = 6 and filter order K = 4. Each row
shows how the different algorithms classify the nodes belonging to that class. .

show the classification error plots obtained for K equal to the graph diameter and its
half, respectively. For K half of the diameter, CS-AL performs optimal classification,
followed by SS-AL(D) and proxy-OMP. All methods outperform random selection For
K equal to the graph diameter, the CS-AL and SS-AL(D) method does poorly for
M = 2% of the graph, but outperforms the rest for M ≥ 4%. Also, the performance
for K equaling half the diameter is better. This is attributed to one class being larger in
size, so a higher value of K would mean many points from this class would be classified
into the smaller class.
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(a) Comparison of error performance of
the active learning methods on the Face-
book egonet graph with diffusion order
equal to the graph diameter.
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(b) Comparison of error performance of
the active learning methods on the Face-
book egonet graph with diffusion order
equal to half of the graph diameter.

Figure 6.12: Comparison between the proxy-OMP, SS-AL(D), CS-AL and the random ap-
proaches on a section of the Facebook ego network with N = 234 nodes and C = 2 classes
defined as per the structure. Figure 6.12a and 6.12b show the classification error plots ob-
tained for K equal to the graph diameter and its half, respectively. The Ge used for CS-AL in
this example is the identity matrix IN . For K half of the diameter, CS-AL performs optimal
classification, followed by SS-AL(D) and proxy-OMP. For K equal to the graph diameter all
methods outperform random selection except when the labeled set is 2% of the graph.

Table 6.1 shows the confusion matrix for each method for the ego sub-network.
The data corresponds to the case where K = 4 (i.e. half of the diameter). For each
method,the cell (i, j) denotes the number of nodes belonging to class i that are classified
to class j. These results confirm those in Figure 6.12b. CS-AL and SS-AL(D) classify all
points correctly in this scenario, as the off-diagonal elements in their confusion matrix
are zero.

6.2.2 USPS Dataset

The USPS data-set comprises images of size 16 × 16 representing hand-written digits
from 0 to 9 as its objects. It has 1100 objects per class. We sample 100 objects per
class at random and build a graph of N = 1000 nodes. To build the graph, we obtain

a similarity measure Wij = exp
(−||xi−xj ||22

σ2

)
, where xi is the 256-dimensional feature

vector for node i, formed of the pixel intensity values of the corresponding image.
The parameter σ is taken to be one-third of the average distance to the P -th nearest
neighbor for all objects. The approach behind selecting σ this way is shown in [8]. We
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take P to be 5. We obtain our results over 5 realizations. We observe that the diameter
of the graph is around 10. We repeat the results for random selection 50 times. Figures
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(a) Comparison of error performance of
the active learning methods on USPS
data with diffusion order K = 5
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(b) Comparison of error performance of
the active learning methods on USPS
data with diffusion order K = 10.

Figure 6.13: Comparison between the SS-AL(D) and the random selection approaches on
the USPS data with N = 1000 nodes and C = 10 classes. Figure 6.13a and 6.13b show
the classification error plots obtained for K = 10 and K = 20, respectively. In both plots,
SS-AL(D) outperforms random labeling. There is not much of a difference in performance for
the two values of K.

6.13a and 6.13b showcase the improvement in performance achieved by SS-AL(D) over
random labeling in the range of 1% to 10% of labeled data. We omit the results due
to proxy-OMP because they were not good compared to both of these methods. The
performance for both values of K is similar. This shows that changing K does not
always predict the shift in the performance of the classifier.

6.3 Conclusion

In this chapter, we evaluate the proposed active learning methods on two simulated
graphs, namely, the stochastic block model and the random sensor network. The results
showcase the superiority of some approaches. For the said approaches, we conduct some
more experiments to obtain insight into how they work. Next, we test these methods
on two graphs related to real data, namely, a sub-network of a social network and a
graph built from image data. Improvement in achieved over random labeling, which
achieves the basic objective behind active learning.
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Conclusion 7
In this thesis, we proposed an active learning methodology for an adaptive semi-
supervised classifier on graphs which diffuses probabilities through random walks over
it. Acquiring labels for all nodes is an expensive affair and semi-supervised learning
is a natural solution. Diffusion-based semi-supervised classifiers spread labeled infor-
mation over the graph, the source of the diffusion being the labeled nodes. Pool-based
active learning with one batch relies on the learner to label all nodes together before
training, instead of relying on multiple phases, which is faster. We made the following
contributions:

We postulated the active learning problem as finding the sparse solution to a linear
system which characterizes the diffusion, given the landing probabilities for each class
across all nodes. These probabilities depend upon the starting distribution and hence
are unavailable, which prompts us to use proxies based on clustering and smoothness.
In our numerical experiments, we saw the performance of these methods degrades
with an increase in the number of classes and they depend strongly on the clustering
assumption.

We also presented the active learning problem as a model output selection, i.e.,
selecting nodes on which the landing probabilities are important for estimating the
starting distribution. We developed two methods to accomplish this: the first method,
Compressed Sensing-Active Learning, assumes that sensing the output at a small frac-
tion of the nodes is enough to recover the starting sparse distribution; the second
method, Sparse Sensing-Active Learning, senses those nodes which are important for
estimating any starting distribution optimally. These methods, while not being free
from their drawbacks, are more flexible, generalize better for multi-class problems and
perform better than random selection, which is the basic goal behind active learning.
A discussion on the possibilities of future work is now in order. The aim behind these
suggestions is to make the approaches more realistic or cater more to some of the
assumptions made in this thesis.

1. While obtaining proxies of landing probabilities, the dimensionality of the node
embedding was taken to be (C − 1), with C being the number of classes. As this
method suffered for multi-class problems, the dimensionality of the embedding
should be increased to have more separation in the feature space, so that the
membership values are more distinct.

2. The active learning carried out is not adaptive, unlike the semi-supervised classifier
[cf. [24]] which relies on it. The classifier uses a fixed diffusion order K for all
classes but K could be class-specific. For each class, the spread of the diffusion
should be contained within it ideally. One way to do this would be to identify
clusters or communities given the graph, treat each community as an isolated
graph and solve the active learning problem for each sub-graph as we did in this
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thesis. This could be faster than solving for the entire graph. The number of
nodes from each sub-graph could also be a variable.

3. Almost all the graphs (expect the USPS graph) considered for evaluation are either
defined naturally (i.e. through connections, citations or bounded by structure). If
the graph is to be inferred from data, it should be well suited for adaptive diffusion
and classification with multiple labels. One can also envisage the possibility of
forming a consensus over multiple graphs (for example, different N neighbourhood
graphs), each governed by its own diffusion.

4. The active sensing approaches, CS-AL and SS-AL are rooted in different theories
but both arrive at a similar formulation, based on row selection. If the SS-AL(D)
method can be solved with greedy selection, it would be interesting to see if the
same applies to the cost of CS-AL. In this thesis, we tried greedy selection on CS-
AL and saw it performs reasonably well, but we are not aware of any sub-modular
property.

5. We solve for a sensing variable w for the cost ||HTdiag
(
w
)
H−GM,N ||2F in (5.16).

Throughout, we assumed that the diffusion parameters are fixed during active
learning to simplify the problem. However, the relation H =

∑K
k=1 Skθk can be

utilized to minimize the cost for both w and θ simultaneously. For CS-AL, it
means there exists some underlying optimal diffusion which improves the sensing
system. The problem could be formulated as

minimize
w∈{0,1}N ,θ∈RK

||
( K∑
k=1

Skθk
)T

diag
(
w
)( K∑

k=1

Skθk
)
−GM,N ||2F

subject to 0K ≤ θ ≤ 1K ,
K∑
k=1

θk = 1.
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[2] Jüri Reimand, Laur Tooming, Hedi Peterson, Priit Adler, and Jaak Vilo. Graph-
web: mining heterogeneous biological networks for gene modules with functional
significance. Nucleic acids research, 36(suppl 2):W452–W459, 2008.

[3] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interac-
tive graph analytics and visualization. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[4] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic
citation indexing system. In Proceedings of the Third ACM Conference on Digital
Libraries, DL ’98, pages 89–98, New York, NY, USA, 1998. ACM.

[5] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples. Journal
of machine learning research, 7(Nov):2399–2434, 2006.

[6] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92.
American Mathematical Soc., 1997.

[7] Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus
with least-mean-square deviation. Journal of parallel and distributed computing,
67(1):33–46, 2007.

[8] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learn-
ing (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks, 20(3):542–542, 2009.

[9] Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[10] Ming Ji and Jiawei Han. A variance minimization criterion to active learning on
graphs. In Artificial Intelligence and Statistics, pages 556–564, 2012.

[11] Xiaofei He, Ming Ji, and Hujun Bao. A unified active and semi-supervised learning
framework for image compression. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 65–72. IEEE, 2009.

[12] Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental
design. In Proceedings of the 23rd international conference on Machine learning,
pages 1081–1088. ACM, 2006.

[13] Quanquan Gu, Tong Zhang, and Jiawei Han. Batch-mode active learning via error
bound minimization. In UAI, pages 300–309, 2014.

67



[14] Andrew Guillory and Jeff A Bilmes. Active semi-supervised learning using sub-
modular functions. arXiv preprint arXiv:1202.3726, 2012.

[15] Yifei Ma, Roman Garnett, and Jeff Schneider. σ-optimality for active learning on
gaussian random fields. In Advances in Neural Information Processing Systems,
pages 2751–2759, 2013.

[16] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning
and semi-supervised learning using gaussian fields and harmonic functions.

[17] Kwang-Sung Jun and Robert Nowak. Graph-based active learning: A new look
at expected error minimization. In 2016 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 1325–1329. IEEE, 2016.

[18] Quanquan Gu, Tong Zhang, Jiawei Han, and Chris H Ding. Selective labeling via
error bound minimization. In Advances in neural information processing systems,
pages 323–331, 2012.

[19] Lixin Shi, Yuhang Zhao, and Jie Tang. Batch mode active learning for networked
data. ACM Transactions on Intelligent Systems and Technology (TIST), 3(2):33,
2012.

[20] Jun Long, Jianping Yin, Wentao Zhao, and En Zhu. Graph-based active learning
based on label propagation. In International Conference on Modeling Decisions
for Artificial Intelligence, pages 179–190. Springer, 2008.

[21] Andrew Guillory and Jeff A Bilmes. Label selection on graphs. In Advances in
Neural Information Processing Systems, pages 691–699, 2009.

[22] Akshay Gadde, Aamir Anis, and Antonio Ortega. Active semi-supervised learning
using sampling theory for graph signals. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 492–501.
ACM, 2014.

[23] Mingwei Leng, Yukai Yao, Jianjun Cheng, Weiming Lv, and Xiaoyun Chen. Ac-
tive semi-supervised community detection algorithm with label propagation. In
DASFAA, 2013.

[24] Dimitris Berberidis, Athanasios N Nikolakopoulos, and Georgios B Giannakis.
Adaptive diffusions for scalable learning over graphs. IEEE Transactions on Signal
Processing, 67(5):1307–1321, 2018.

[25] Peter G Casazza, Dan Redmond, and Janet C Tremain. Real equiangular frames.
In 2008 42nd annual conference on information sciences and systems, pages 715–
720. IEEE, 2008.

[26] Richard G Baraniuk. Compressive sensing. IEEE signal processing magazine,
24(4), 2007.

[27] Siddharth Joshi and Stephen Boyd. Sensor selection via convex optimization. IEEE
Transactions on Signal Processing, 57(2):451–462, 2008.

68



[28] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning.
In Advances in neural information processing systems, pages 1289–1296, 2008.

[29] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342,
1988.

[30] K Lang and E Baum. Query learning can work poorly when a human oracle is
used. ieee intl. In Joint Conference on Neural Networks, 1992.

[31] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine learning, 15(2):201–221, 1994.

[32] David D Lewis and William A Gale. A sequential algorithm for training text
classifiers. In SIGIR94, pages 3–12. Springer, 1994.

[33] Claude Elwood Shannon. A mathematical theory of communication. Bell system
technical journal, 27(3):379–423, 1948.

[34] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured
prediction tasks. In AAAI, volume 5, pages 746–751, 2005.

[35] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee.
In Proceedings of the fifth annual workshop on Computational learning theory,
pages 287–294. ACM, 1992.

[36] Ido Dagan and Sean P Engelson. Committee-based sampling for training proba-
bilistic classifiers. In Machine Learning Proceedings 1995, pages 150–157. Elsevier,
1995.

[37] Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-based
active learning for text classification. In Proc. International Conference on Ma-
chine Learning (ICML), pages 359–367. Citeseer, 1998.

[38] Simon Tong and Daphne Koller. Support vector machine active learning with appli-
cations to text classification. Journal of machine learning research, 2(Nov):45–66,
2001.

[39] Steven M Kay. Fundamentals of statistical signal processing. Prentice Hall PTR,
1993.

[40] Sundeep Prabhakar Chepuri and Geert Leus. Continuous sensor placement. IEEE
Signal Processing Letters, 22(5):544–548, 2014.

[41] Sundeep Prabhakar Chepuri and Geert Leus. Sparsity-promoting sensor selection
for non-linear measurement models. IEEE Transactions on Signal Processing,
63(3):684–698, 2014.

[42] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge uni-
versity press, 2004.

69



[43] Michael Grant and Stephen Boyd. Cvx: Matlab software for disciplined convex
programming, version 2.1, 2014.

[44] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. arXiv
preprint arXiv:1211.0053, 2012.

[45] Aliaksei Sandryhaila and Jose MF Moura. Big data analysis with signal processing
on graphs. IEEE Signal Processing Magazine, 31(5):80–90, 2014.

[46] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in neural information processing systems,
pages 585–591, 2002.

[47] Aliaksei Sandryhaila and Jose MF Moura. Discrete signal processing on graphs:
Frequency analysis. IEEE Transactions on Signal Processing, 62(12):3042–3054,
2014.

[48] Mario Coutino, Elvin Isufi, and Geert Leus. Advances in distributed graph filtering.
IEEE Transactions on Signal Processing, 67(9):2320–2333, 2019.

[49] Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Optimal graph-filter
design and applications to distributed linear network operators. IEEE Transactions
on Signal Processing, 65(15):4117–4131, 2017.

[50] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation.

[51] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[52] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means
clustering algorithm. Computers & Geosciences, 10(2-3):191–203, 1984.

[53] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency information.
IEEE Transactions on information theory, 52(2):489–509, 2006.

[54] Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency information.
arXiv preprint math/0409186, 2004.

[55] David L Donoho et al. Compressed sensing. IEEE Transactions on information
theory, 52(4):1289–1306, 2006.

[56] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. The
johnson-lindenstrauss lemma meets compressed sensing. preprint, 100(1):0, 2006.

70



[57] Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on information theory,
53(12):4655–4666, 2007.

[58] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decom-
position by basis pursuit. SIAM review, 43(1):129–159, 2001.

[59] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation.

[60] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning
using gaussian fields and harmonic functions. In Proceedings of the 20th Interna-
tional conference on Machine learning (ICML-03), pages 912–919, 2003.

[61] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer
School on Machine Learning, pages 63–71. Springer, 2003.

[62] Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for networked
data. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 79–86, 2010.

[63] Mark EJ Newman. Modularity and community structure in networks. Proceedings
of the national academy of sciences, 103(23):8577–8582, 2006.

[64] Theodore Wilbur Anderson. An introduction to multivariate statistical analysis.
1962.

[65] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using
graph mincuts. 2001.

[66] Antonio G Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro. Sam-
pling of graph signals with successive local aggregations. IEEE Transactions on
Signal Processing, 64(7):1832–1843, 2015.

[67] Aamir Anis, Akshay Gadde, and Antonio Ortega. Towards a sampling theorem for
signals on arbitrary graphs. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3864–3868. IEEE, 2014.

[68] Sunil K Narang, Akshay Gadde, Eduard Sanou, and Antonio Ortega. Localized
iterative methods for interpolation in graph structured data. In 2013 IEEE Global
Conference on Signal and Information Processing, pages 491–494. IEEE, 2013.

[69] Isabel M Kloumann, Johan Ugander, and Jon Kleinberg. Block models and person-
alized pagerank. Proceedings of the National Academy of Sciences, 114(1):33–38,
2017.

[70] Konstantin Avrachenkov, Alexey Mishenin, Paulo Gonçalves, and Marina Sokol.
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[76] Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vassilis Kalo-
folias, Pierre Vandergheynst, and David K Hammond. Gspbox: A toolbox for
signal processing on graphs. arXiv preprint arXiv:1408.5781, 2014.

[77] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

72

http://snap.stanford.edu/data

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Current Literature
	Research Question and Proposed Approach
	Notation and Outline

	Background
	Active Learning
	Classification based on Scenario
	Classification based on Querying Criterion

	Sparse Sensing for Statistical Inference
	Model
	Sparse Sensing with A-experimental Design
	Sparse sensing with D-experimental design

	Graph Signal Processing
	Graph Signals
	Important Matrices and Operators
	Graph Shift Operators
	Graph Fourier Transform
	Graph Filters
	Label Propagation and FIR graph filters

	Clustering on Graphs
	K-means and Fuzzy C-means clustering
	Laplacian Eigenmap Embedding

	Compressive Sensing
	Compressed Sensing Framework
	Recovering the Sparse signal

	Conclusion

	Literature Review
	Pool-based Active Semi-supervised Learning on Graphs
	Multiple Training Phase
	Single Training Phase

	Discussion

	Semi-supervised Classifier
	Random Walk-based Diffusions on Graphs
	Adaptive Random Walk Diffusion-based Semi-supervised learning on Graphs
	Discussion

	Proposed Active Sensing
	Proxy-based deterministic estimation.
	Obtaining Proxies
	Iterative re-weighted l1 norm minimization
	Orthogonal Matching Pursuit (OMP)
	Remarks

	Active sensing
	Compressed Sensing Active Learning (CS-AL)
	Sparse Sensing Active Learning (SS-AL)
	Remarks

	Other approaches
	Conclusion

	Results
	Simulated data
	Stochastic Block Model
	Random Sensor Network
	Experimental Setup
	Results
	Experiments for particular algorithms

	Real Data
	Facebook egonet subnetwork
	USPS Dataset

	Conclusion

	Conclusion

