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Preface
Today, exactly six years ago, I left my home country to pursue my studies in Applied Physics and Ap-
plied Mathematics, two fields that I found to be utterly fascinating. Today, six years later, so much
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fiercely trying to show me how to think like a researcher. To Bas, a mathematical poet of whom I am
certain that he dreams in the language of mathematics, for the very, very long meetings, after each of
which I left the room convinced that deep secrets of Nature had just been revealed to me, for the little
words of wisdom with a very big significance, and for trying to teach me how to speak in (mathematical)
tongues. Finally, to you both, for helping me see the beauty of our fields again. Really seeing, the
seeing that is done with the heart.

I am also indebted to others for enriching those myriad aspects of life that exist beyond the reach of
lemmata and formulæ. Thank you, first and foremost, to my mother and to Elmar, for always being
there for me — and for everything else. To Sieske and Roel, for their support throughout: gran tangi.
To Sam, my unbelievably brilliant study buddy since the very beginning and through thick and thin, with
whom every conversation, whether about stare decisis, category theory, or Sesame Street memes, is
always a great joy. To Charlie, my partner in philosophy, for refusing to just calculate lest we falter
to the challenging of the Gestell. To Saqar, in whose fascination for the beauty of mathematics I am
reminded of my own, for the napkins full of mathematics. To my sister Shannon and to my friends, of
whom I must surely mention Armanda, Tahisa, Fabian, and Bowy, for always keeping me caffeinated,
and for always believing in me.

Stephan Loor
Delft, July 23rd, 2022
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Abstract
In the past few years, the search for good quantum low density parity check (qLDPC) codes suddenly
took flight, and many different constructions of these codes have since been presented, including many
product constructions. As these code constructions have a natural interpretation in the language of
homology, this thesis studies the interplay between homological algebra and various recent product
constructions of qLDPC codes.

First, we provide an overview of the theory of singular homology, cellular homology, and homological
algebra over vector spaces, and use this theory to analyse two product constructions: the hypergraph
product construction and the distance balancing procedure. These constructions can be interpreted as
tensor products of chain complexes over vector spaces. We present new proofs for results from the
literature regarding the distance and the number of encoded qubits of these product codes.

Secondly, we survey the theory of homology over ring modules, and use this theory to interpret and
analyse another product code construction (the lifted product code construction), which is a generali-
sation of the hypergraph product construction. We prove a Künneth theorem for these codes, and use
this theorem to prove a formula for the number of qubits such codes encode.

Thirdly, we investigate the homology of fibre bundles. To this end, we provide an overview of the theory
of covering spaces and of fibre bundles, as well as an overview of the theory of homology with local
coefficients and of spectral sequences. We then calculate the homology of a specific class of fibre
bundles using three different methods. After this discussion, we consider two product code construc-
tions: the fibre bundle product construction and the balanced product construction. We explicate their
mathematical foundations, and use these insights to prove two new results for the number of qubits that
these product codes encode. Finally, we explain under which conditions these two code constructions
and the lifted product construction coincide.

Lastly, we consider a specific example of fibre bundle product codes: the twisted toric code. We deter-
mine an analytic expression for the distance of such a code and verify this expression using numerical
simulations. Furthermore, we perform an extensive numerical study on these codes to determine how
performing a twist alters the scaling of the logical error rate of such codes. We present a new ana-
lytic method to explain the scaling of these codes on a small domain, and verify the validity of these
calculations by comparing them with the results of our numerical simulations.
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Introduction
One of the grand promises of quantum computing is the ability to solve some hard computational prob-
lems exponentially faster than any classical computer can or ever could, like factorising large numbers
or simulating complex molecular structures [Sho94, NC10, CRO+19]. Recently, some first experimen-
tal demonstrations of this so-called quantum supremacy have been presented [ZCC+22, MLFA+22,
AAB+19], albeit in very limited settings. Regardless of the large potential of quantum computing, the
road towards building a fully functional quantum processor is plagued by many difficulties. Firstly,
quantum systems are subject to decoherence: due to interaction with the environment, the information
encoded in the system is quickly lost. Secondly, errors occur while manipulating or reading out the
information stored.

The way forward is to try to mitigate the effects of physical errors on the system by using quantum error
correction. In short, this amounts to encoding information into a large, highly entangled multi-qubit sys-
tem in such a way that one can perform measurements to detect and correct errors without destroying
the encoded information. The threshold theorem by Aharanov and Ben-Or [ABO08] guarantees that
this is not a completely hopeless endeavour, as we can be confident that any quantum circuit can be
simulated in a fault-tolerant manner with polylogarithmic overhead, provided that the rate of occurrence
of physical errors in the system is below some threshold value, which, for the surface code [BK98], was
proved to be around 1% [FSG09].

Looking at the performance of the best-known classical error correcting codes, one would hope to
be able to find families of quantum error correcting codes that perform just as well as so-called good
codes, in the sense that they possess a non-vanishing encoding rate and a distance that is linear in the
code size. While such well-performing quantum correcting schemes do exist [BE21b], the weight of the
parity checks involved in these codes grows rapidly with the system size (i.e. the number of qubits),
therefore rendering these codes experimentally infeasible. This issue can be resolved by restricting
one’s attention to the class of quantum Low Density Parity Check (qLDPC) codes.

Interestingly enough, in 2013, Gottesman proved that by considering this class of codes, one could
improve Aharanov and Ben-Or’s threshold theorem to require only an asymptotically constant over-
head to fault-tolerantly simulate an arbitrary quantum circuit [Got13]. Yet, although many examples of
qLDPC codes, like Kitaev’s toric code [Kit03] and the surface code, were known at the time, none of
these known examples could come close to their classical counterparts in terms of their performance.
Therefore, researchers set out to search for families of good qLDPC codes.

The first major result in the search for good qLDPC codes was obtained in 2009, when Zémor and
Tillich constructed a family of qLDPC codes with a non-vanishing rate and a distance Ω(√𝑛), where
𝑛 is the number of physical qubits [TZ09]. This construction entailed taking products of graphs that
can be associated to classical codes, so-called Tanner graphs, and was called the hypergraph product
construction. Researchers soon realised that this construction could be understood in terms of homol-
ogy. This homological interpretation of the hypergraph product construction is no mere coincidence —
in fact, it was already known that the class of so-called Calderbank-Shor-Steane (CSS) codes, which
contains all the well-known examples of qLDPC codes, admits a natural description in homological
terms [AC19]. Although homology was initially developed as a technique for answering questions in al-
gebraic topology regarding the structure of topological spaces, it has since grown into its own sub-field
of mathematics: homological algebra. Within the framework of homological algebra, CSS codes can
be interpreted as chain complexes, the principal objects of homological algebra, whereas the parity
check matrices and their stabiliser checks can be seen as the differentials of the chain complexes.

Taking a homological approach to the hypergraph product codes offered a natural interpretation of this
construction in terms of the tensor product of chain complexes over vector spaces, and, moreover, this
approach allowed one to determine the number of encoded qubits 𝑘 in a very elegant and easy manner.
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Introduction 2

Ever since, researchers have set out to improve on this tensor product construction by generalising it:
in 2020, Evra, Kaufman, and Zémor introduced the so-called distance balancing procedure, which they
used to construct codes with distance Ω(𝑛1/2 log(𝑛1/2)) [EKZ20]. Afterwards, researchers tried to in-
troduce twists and lifts to the hypergraph product construction to improve upon them: Hastings and
Freedman used their fibre bundle product to obtain a family of codes with distances Ω(𝑛3/5polylog(𝑛))
[HHO21] (but vanishing rates), Breuckmann and Eberhardt used their balanced product construction
to obtain distances of Ω(𝑛3/5) (but rates of Θ(𝑛−1/5)), and finally, Panteleev and Kalachev used their
lifted product code construction to construct asymptotically good LDPC codes for the first time ever
[PK22b, PK22a].

Although motivated by the equivalence between the hypergraph product of codes and the tensor prod-
uct of chain complexes over vector spaces, the homological aspects of the code constructions de-
veloped afterwards are substantially less clear: firstly, no general way of determining the number of
encoded qubits 𝑘 for the lifted product codes is known in the current literature. Secondly, the exact na-
ture of the relation of the fibre bundle product codes and the balanced product codes to fibre bundles
is unclear. Thirdly, although it is clear that some relationship exists between the fibre bundle product
codes and the balanced product [BE21b], the literature is unclear about what this relationship is and
when it holds precisely. Similarly, it is unclear how to relate the fibre bundle product to the lifted product
construction. In this thesis, we will therefore try to shed a light on these issues from the perspective of
homological algebra, and we will, moreover, try to understand how applying a twist affects a code by
studying the example of the toric code. To this end, we will answer the following questions:

1. How can one understand the hypergraph product construction without the use of Tanner graphs?

2. Can we determine the number of encoded qubits 𝑘 of the lifted product code construction using
ring module homology?

3. How can we use fibre bundles to understand the underlying ideas of the fibre bundle and balanced
product code construction?

4. How can one calculate the homology of a fibre bundle, and how can one use these techniques
to analyse the different code constructions?

5. How do the fibre bundle product, balanced product, and lifted product constructions relate, and
when do they coincide?

6. How does the introduction of a twist alter the performance of Kitaev’s toric code?

We provide an extensive survey of all the mathematical theory needed to understand these code con-
structions, to rephrase them in terms of homology, and to answer the questions pertaining to them.
This thesis is therefore divided into three parts: in Part I, we survey the theory of vector space homol-
ogy and consider the product constructions that can be understood in those terms: the hypergraph
product, the distance balancing procedure, and their generalisation [ZP19]. Afterwards, in Part II, we
discuss homological algebra over ring modules and present and analyse the lifted product construction.
Subsequently, in Part III, we consider the theory of fibre bundles and the related theories of homology
with local coefficients and spectral sequences, after which we turn to our study of the homology of
fibre bundles and to the twisted product constructions, i.e., the fibre bundle product and the balanced
product. Finally, we study the effects of applying a twist to the toric code.

For the convenience of the more mathematically inclined reader, we note that some sections of this
thesis provide an overview of standard mathematical theory and can therefore be skipped by the reader
who is well acquainted with these topics. In particular, Chapter 1 provides an account of homotopy
theory, of singular and cellular homology, and of homological algebra over vector spaces, Chapter 4
provides an account of ring module homology, Section 6.1 provides an overview of standard covering
space theory, and Section 6.2 provides an overview of the theory of fibre bundles.
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1
Homology and Homotopy

In this chapter, we will introduce two fundamental tools in algebraic topology: the homotopy and homol-
ogy groups of a topological space. Both homology and homotopy theory revolve around associating
algebraic objects— so-called algebraic invariants— to topological spaces, in order to answer questions
about these topological objects that are often otherwise difficult to answer using standard topological
arguments. Such questions are often (non-)existence questions — the classical motivational exam-
ple of such a question is the question whether there exists a homeomorphism between a torus and a
sphere. We will first show how homotopy answers such a question, and we will provide an account of
homotopy theory. Next, we will show how homology aims to answer such questions, after which we will
formally introduce two forms of homology: singular and cellular homology. Afterwards, we will take the
first few steps towards formalising these constructions into a more abstract framework: homological
algebra. Before all of that, however, we present the classical motivational example of the torus and
the sphere. The interested reader can find a more elaborate treatment of the contents of this chapter
in [Hat01, Sag21, Wei94, Rie16].

1.1. Finding Homeomorphisms between 𝑆2 and 𝕋
Are there any homeomorphisms between the torus 𝕋 and the 2-sphere 𝑆2? To answer such a question
affirmatively, is — in principle — rather simple: one has but to give an example of a map between these
two spaces that is an open, continuous bijective map. To prove that the answer to this question is “no”,
however, is substantially harder, as one basically has to prove for each and every map 𝑆2 → 𝕋 that it
is not a homeomorphism. To do so by direct computation is a hopeless endeavour, thus, one will have
to resort to alternative methods that take into account the structure of the two spaces at hand.

An interesting way forward is given by the observation that homeomorphisms necessarily preserve
loops. Therefore, in order to answer questions concerning the existence of homeomorphisms between
e.g. the torus and the sphere, it could be instructive to consider the structure of the loops on these
spaces — this is the fundamental idea behind homotopy. Let us think this through, by first considering
two loops on the sphere 𝑆2 that go through the same basepoint 𝑏:

𝛾0

𝛾1 𝑏

Figure 1.1: The 2-sphere with base point 𝑏 and two loops 𝛾0 and 𝛾1 that are based in 𝑏.

With a little bit of imagination, one can see that the loop 𝛾1 can be continuously deformed into loop 𝛾0

4
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and vice versa by “interpolating” between these two loops:

𝛾0

𝛾1 𝑏

Figure 1.2: The 2-sphere with base point 𝑏 and two loops 𝛾0 and 𝛾1 that are based in 𝑏. By continuously deforming 𝛾1 in the
direction of the arrow, one obtains 𝛾0.

Although there are awfully many possible loops on the sphere with basepoint 𝑏, we see that — up to
continuous deformation — many of them are in fact similar. By restricting our attention to loops that
cannot be deformed into each other, we see that not much remains, as every loop over the 2-sphere
can be continuously deformed into the constant loop, even more exotic ones:

𝑏 𝑏 𝑏

Figure 1.3: The 2-sphere with base point 𝑏 and two loops 𝛾0 and 𝛾1 that are based in 𝑏.

This information is encoded in the so-called fundamental group of 𝑆2, 𝜋1(𝑆2):

𝜋1(𝑆2) = 0 (1.1)

Next, let us consider the torus. Following the same procedure of modding out continuous deformations,
one sees that there are at least two fundamental classes of loops that cannot be deformed into each
other:

Figure 1.4: The torus 𝕋, along with two loops that cannot be continuously deformed into each other.

Let us consider just one of these loops with basepoint 𝑏, say, 𝛾1. By flipping the direction of the loop,
we actually obtain a new loop that cannot be deformed into our original loop. Let us denote this loop
by 𝛾−11 . Similarly, we see that by composing this loop with itself, we obtain a new loop that goes around
twice. This newly found loop, however, cannot be deformed into our original loop either. Let us denote
the composition of two loops by 𝛾21 ∶= 𝛾1∗𝛾1. We can proceed inductively to define 𝛾𝑛1 . Similarly, we see
that 𝛾1 ∗ 𝛾−11 = 𝛾−11 ∗ 𝛾1 is contractible to the point 𝑏, and is therefore, up to continuous deformation, the
constant loop. As such, we see that the composition operation, when acting on the classes of loops,
allows one to identify this loop space with a group, where each of the loops generates a subgroup
isomorphic to ℤ. Therefore, we conclude that the fundamental group of the torus 𝕋 is:

𝜋1(𝕋) = ℤ ⊕ ℤ (1.2)

The point, now, is that homeomorphisms do not just send loops to loops, rather, they also preserve
the loop structure of spaces and hence descend to isomorphisms between the loop spaces modulo
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continuous deformations, that is, to the fundamental groups in the form of group isomorphisms. As the
fundamental groups of the torus and the sphere are not isomorphic, we can thus safely conclude that
no homeomorphism between these two spaces can exist.

A different, although somewhat related approach to solving this conundrum begins with the observation
that the holes of the torus and the hole within the 2-sphere are also quite different. This is the information
that homology tries to capture. Yet, a hole is the absence of space, so how can it be captured purely in
terms of spatial objects? Let us demonstrate this by considering a closed, 1-dimensional loop on the
sphere. One can convince oneself quite easily that such a closed, 1-dimensional loop is always the
boundary of some 2-dimensional subspace on the sphere:

𝛾 Γ

Figure 1.5: On the left, we see the 2-sphere, along with a closed 1-dimensional subspace on the 2-sphere, 𝛾. On the right, we
see that this closed 1-dimensional subspace can be interpreted as being the boundary of Γ, a 2-dimensional subspace of the
2-sphere.

In some sense, this means that there are no “1-dimensional holes”, as every possible 1-dimensional
hole — i.e. every 1-dimensional boundary without any space inside of it — is actually filled by a 2-
dimensional part of the space. In the language of homology, this is equivalent to saying that the 1st
homology group is trivial, i.e.:

ℋ1(𝑆2) = 0 (1.3)

For the torus, however, this is not the case. Consider these two loops:

Figure 1.6: Two examples of 1-dimensional subspaces of the torus that cannot be interpreted as the boundary of a 2-dimensional
subspace on the torus.

One sees that these two loops can both not be considered to be the boundary of some two-dimensional
object in the space. The first homology group of the torus captures precisely this information:

ℋ1(𝕋) = ℤ ⊕ ℤ (1.4)

If one can prove that homeomorphisms preserve the holey structure of spaces (as captured by its
homology), one immediately finds that no homeomorphisms between the torus and the 2-sphere can
exist. This is indeed the case, and we will do so rigorously in the upcoming sections.

1.2. Homotopy Theory
As we showed in the example above, homotopy tries to capture the structure of the loops of topological
spaces. The time has come to formalise this idea.

Before we proceed, let us first establish the following conventions: in this section, 𝑋, 𝑌 will denote topo-
logical spaces, and 𝑓, 𝑔 ∶ 𝑋 → 𝑌 will denote continuous maps between them.

We first formalise the notion of a continuous deformation between functions.
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Definition 1.1. A homotopy 𝐻 ∶ 𝑋 × [0, 1] → 𝑌 between 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑋 → 𝑌 is a continuous
map such that:

𝐻(𝑥, 0) = 𝑓(𝑥), 𝐻(𝑥, 1) = 𝑔(𝑥) (1.5)

If a homotopy between 𝑓 and 𝑔 exists, we call 𝑓 and 𝑔 homotopic, and denote this by 𝑓 ≃ 𝑔.

In our introductory example, the paths on the 2-sphere were maps 𝛾𝑖 ∶ [0, 1] → 𝑆2, and the contin-
uous deformation between them was actually a continuous map 𝐻 ∶ [0, 1] × [0, 1] → 𝑆2 such that
𝐻(𝑡, 𝑖) = 𝛾𝑖(𝑡).

The Homotopy (and homology) of two spaces is not just preserved by homeomorphisms, but also by
a weaker form of equivalence of topological spaces.

Definition 1.2. 𝑓 ∶ 𝑋 → 𝑌 is said to be a homotopy equivalence between 𝑋 and 𝑌 if ∃𝑔 ∶ 𝑌 → 𝑋 ∶

𝑓 ∘ 𝑔 ≃ id𝑌 ∧ 𝑔 ∘ 𝑓 ≃ id𝑋 (1.6)

If a homotopy equivalence between 𝑋 and 𝑌 exists, 𝑋 and 𝑌 are said to be homotopy equivalent. We
denote this by 𝑋 ≃ 𝑌 .

We are now ready to consider homotopy groups.

Definition 1.3. Let 𝑋 be a topological space, and let 𝑥0 ∈ 𝑋 be its base point. For every 𝑛 ≥ 0, we
define the 𝑛th homotopy group to be the homotopy class of basepoint preserving maps between the
𝑛-sphere and 𝑋, i.e.:

𝜋𝑛(𝑋, 𝑥0) = [(𝑆𝑛, 𝑠0), (𝑋, 𝑥0)]∗ (1.7)

We note that the homotopy groups indeed possess group structure, but given that we will only be con-
cerned with the first homotopy group (i.e., the fundamental group) in this thesis, we do not discuss this
matter any further and refer the interested reader to e.g. [Sag21, Hat01]. Furthermore, one can take
on a categorical approach to homotopy. For example, one can define the fundamental group functor
from the category of based topological spaces to the category of groups, i.e. 𝜋1 ∶ Top*→ Grp.

On a final note, however, we remark that homotopy groups tend to become complicated to calculate
quite quickly, for example, the homotopy groups 𝜋𝑛(𝑆𝑚, 𝑠0) are quite complicated for 𝑛 ≥ 𝑚, whereas the
homology groupsℋ𝑛(𝑆𝑚) are all trivial. Furthermore, there are relatively simple spaces, like the wedge
product 𝑆1⋁𝑆3 and its double cover, that have isomorphic homotopy groups but are not homotopy
equivalent, as follows e.g. from the fact that their homology groups are different. Therefore, we see
that there are more than enough reasons not to restrict one’s attention to just homotopy groups.

1.3. Homology
Homology aims to resolve questions pertaining to (the equivalence between) topological spaces by
looking at the structures of the holes of these spaces, as was shown in the example of the torus and
the 2-sphere. We first formalise the theory behind that example, the so-called singular homology theory.
Afterwards, we present a different homology theory, which can often be used to calculate the singular
homology of a topological space more easily: cellular homology.

1.3.1. Singular Homology
In the motivational example, we distinguished 1-dimensional and 2-dimensional subspaces of the 2-
sphere and the torus. We can formalise this idea of 𝑛-dimensional subspaces with the notion of an
𝑛-simplex. Before we can introduce those, however, we first need the notion of a standard 𝑛-simplex:

Definition 1.4. The standard 𝑛-simplex Δ𝑛 ⊆ ℝ𝑛1 is the subspace given by:

Δ𝑛 ∶= {(𝑡0,… , 𝑡𝑛) ∶ 𝑡𝑖 ≥ 0∀𝑖 ∧∑
𝑖
𝑡𝑖 = 1} (1.8)
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The standard 𝑛-simplices can be seen as 𝑛-dimensional subspaces of ℝ𝑛+1:

0

Δ0
Δ1 Δ2

Figure 1.7: From left to right: the standard 0-simplex Δ0, the standard 1-simplex Δ1, and the standard 2-simplex Δ2.

Embedding these into 𝑋 gives us a way of talking about 𝑛-dimensional subspaces of 𝑋:

Definition 1.5. A continuous function 𝜎𝑛 ∶ Δ𝑛 → 𝑋 is called an 𝑛-simplex of 𝑋. We denote the set of
all 𝑛-simplices of 𝑋 by 𝑆𝑛(X).

Δ2

𝜎𝑛

Figure 1.8: An example of a 2-simplex 𝜎2 of the 2-sphere 𝑆2, which continuously maps the standard 2-simplexΔ2 to the 2-sphere.

Note that we can identify 𝑆0(𝑋) with 𝑋, while we can identify 𝑆1(𝑋) with all the paths in 𝑋.

In order to speak of holes, we need to be able to talk about boundaries of spaces. This implies that we
need a way to e.g. say that 𝑥 and 𝑦 are the boundary points of some path 𝛾. To do so, we consider not
just the simplices, but take them as the basis of a free abelian group:

Definition 1.6. Let 𝐴 be an abelian group and let 𝑋 be a topological space. The set of singular 𝑛-chains
of 𝑋 with coefficients in 𝐴, 𝐶𝑛(𝑋; 𝐴), is defined as:

𝐶𝑛(𝑋; 𝐴) ∶= 𝐴[𝑆𝑛(𝑋)] (1.9)

That is, 𝐶𝑛(𝑋; 𝐴) can be interpreted as the abelian group consisting of all finite, formal sums of elements
of the form 𝑎 ⋅ 𝜎, where 𝑎 ∈ 𝐴 and 𝜎 ∈ 𝑆𝑛(𝑋), such that:

1. 𝑎1 ⋅ 𝜎 + 𝑎2 ⋅ 𝜎 = (𝑎1 + 𝑎2) ⋅ 𝜎 for all 𝑎1, 𝑎2 ∈ 𝐴 and 𝜎 ∈ 𝑆𝑛(𝑋)

2. 0 ⋅ 𝜎1 = 0 ⋅ 𝜎2 for all 𝜎1, 𝜎2 ∈ 𝑆𝑛(𝑋).

We now have all the preliminary notions we need to work towards defining boundary maps. To this end,
we first note introduce the concept of a face map, which are simply the maps that return a boundary of
a standard 𝑛-simplex:

Definition 1.7. The map 𝛿𝑛𝑖 ∶ Δ𝑛−1 → Δ𝑛, given by:

𝛿𝑛𝑖 (𝑡0,… , 𝑡𝑛−1) = (𝑡0,… , 𝑡𝑖−1, 0, 𝑡𝑖+1,… , 𝑡𝑛) (1.10)

is called the 𝑖th face map.
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Δ2Δ1

𝛿21

𝛿22
Figure 1.9: Two examples of face maps. One can see that each of these face map returns a different side of the standard
2-simplex.

By precomposing an 𝑛-simplex 𝜎𝑛 with a face map, we see that it is possible to define an 𝑛−1-simplex,
which is given by the restriction of 𝜎𝑛 to one of its boundaries, as is illustrated in Figure 1.10.

Δ2

𝜎2

Δ1

𝛿21

𝜎2∘𝛿21

Figure 1.10: An example of how a 1-simplex 𝜎1 can be constructed from a 2-simplex 𝜎2 by precomposing it with a face map 𝛿21,
which effectively embeds the standard 1-simplex Δ1 into the boundary of the standard 2-simplex Δ2.

By precomposing with the various face maps, therefore, we can find the various sides of an 𝑛-simplex.
To determine the complete boundary of such an 𝑛-simplex, we take alternating sums of its sides:

Definition 1.8. We denote by 𝑑𝑛𝑖 ∶ 𝐶𝑛(𝑋; 𝐴) → 𝐶𝑛−1(𝑋; 𝐴) the map 𝑎 ⋅ 𝜎𝑛 ↦ 𝑎 ⋅ (𝜎𝑛 ∘ 𝛿𝑛𝑖 ). Using these
maps, we can define the 𝑛th boundary map 𝜕𝑛 ∶ 𝐶𝑛(𝑋; 𝐴) → 𝐶𝑛−1(𝑋; 𝐴) as:

𝜕𝑛 =
𝑛
∑
𝑖=0
(−1)𝑛𝑑𝑛𝑖 (1.11)

We can nicely display the constructions presented up until now in the form of a so-called chain complex:

⋯ 𝐶3(𝑋; 𝐴) 𝐶2(𝑋; 𝐴) 𝐶1(𝑋; 𝐴) 𝐶0(𝑋; 𝐴)
𝜕3 𝜕2 𝜕1𝜕4

Later, we will explain in detail why this is much more than just a nice way of displaying these construc-
tions. For now, however, let us work towards defining the central objects of this section: homology
groups. Before doing so, however, we first point to the following lemma, which can be proved in a
straightforward way by writing out the definitions (see e.g. [Sag21]):

Lemma 1.1. Given a topological space 𝑋 and an abelian group 𝐴, the boundary maps 𝜕𝑛 ∶ 𝐶𝑛(𝑋; 𝐴) →
𝐶𝑛−1(𝑋; 𝐴) satisfy the following property:

𝜕𝑛 ∘ 𝜕𝑛+1 = 0 (1.12)

Or, equivalently: Im (𝜕𝑛+1) ⊆ ker (𝜕𝑛).
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Because of this lemma, we can now finally define the homology groups of a topological space.

Definition 1.9. Let 𝐴 be an abelian group, let 𝑋 be a topological space, and let 𝜕𝑛 ∶ 𝐶𝑛(𝑋; 𝐴) →
𝐶𝑛−1(𝑋; 𝐴) denote the boundary maps of 𝑋. The 𝑛th homology group of 𝑋 with coefficients in 𝐴,
ℋ𝑛(𝑋; 𝐴), is defined as:

ℋ𝑛(𝑋; 𝐴) ∶= ker (𝜕𝑛) /Im (𝜕𝑛+1) (1.13)
We take 𝜕0 to be the zero map, such thatℋ0(𝑋; 𝐴) = 𝐶0(𝑋; 𝐴)/Im (𝜕1).
One can take a categorical approach to singular homology, and interpret this construction as a homol-
ogy functor from the category of topological spaces to the category of abelian groups,ℋ𝑛 ∶ Top→ Ab.
This perspective is quite fruitful and will be exploited later on. For now, however, we simply note that
this perspective can be used to show that the homology functor is invariant under homotopy equiva-
lences (see e.g. [Sag21] for a detailed proof).

We now introduce one concept:

Definition 1.10. Given a topological space 𝑋 and a subspace 𝑋 ′ ⊆ 𝑋. The relative homology groups of
the pair (𝑋, 𝑋 ′), which are denoted byℋ𝑛(𝑋, 𝑋 ′; 𝐴) are defined as the homology groups of the following
quotient complex:

𝐶𝑛(𝑋, 𝑋 ′; 𝐴) ∶= 𝐶𝑛(𝑋; 𝐴)/𝐶𝑛(𝑋 ′; 𝐴) (1.14)

Before proceeding, we quickly mention that the homology and homotopy groups of spaces can, in some
instances, be related to each other, for example using Hurewicz’ theorem (see e.g. [Sag21]). Moreover,
one can easily relate the first homology group and the fundamental group of a path-connected space
[Sag21]:

Theorem 1.2. Let 𝑋 be a path-connected topological space. Then:

ℋ1(𝑋; ℤ) ≃ 𝜋1(𝑋, 𝑥0)/[𝜋1(𝑋, 𝑥0), 𝜋1(𝑋, 𝑥0)] (1.15)

On a final note, we note that it suffices to restrict one’s attention to the case where 𝐴 = ℤ, as the
so-called universal coefficient theorem (see e.g. [Hat01]) allows one to obtain the homology groups of
𝑋 with coefficients in 𝐴 from its homology groups with coefficients in ℤ. In particular, if 𝐴 is a vector
space, one finds:

ℋ𝑛(𝑋; 𝐴) ≃ ℋ𝑛(𝑋; ℤ) ⊗ℤ 𝐴 (1.16)
In what is to come, we will therefore mostly discuss the case for 𝐴 = ℤ, and, when we do so, we will
omit 𝐴 from our notation, such that e.g. 𝐶𝑛(𝑋) will denote 𝐶𝑛(𝑋; ℤ), andℋ𝑛(𝑋) will denoteℋ𝑛(𝑋; ℤ).

1.3.2. Cellular Homology
Calculating the singular homology of spaces using elementary definitions is often quite cumbersome.
One way of greatly simplifying calculations for well-behaved spaces (which we call CW-complexes) is
using cellular homology.

The fundamental idea behind cellular homology is to break larger spaces up into smaller pieces (called
cells) in a systematic manner. As the definitions and the constructions involved are quite formal, let us
first provide a small example of how one can break up a CW-complex into smaller pieces. We show
this process for a filled triangle in Figure 1.11.

Figure 1.11: From left to right: we consider a filled triangle, which is a two-dimensional space. We can distinguish the interior of
the triangle, and its boundary, which is a 1 dimensional space. Each of the edges forming its boundary, however, has a boundary
as well, consisting of two points, which are 0-dimensional spaces. We can thus compose the triangle out of three points (0-cells),
three edges (1-cells), and its interior (a 2-cell).
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As Figure 1.11 illustrates, we can build up a triangle using three 0-dimensional cells (the vertices of the
triangle), three 1-cells (the edges forming its boundary), and one 2-dimensional cell (its interior). This
can be done as follows: one starts with the three 0-cells. One introduces the three 1-cells and identi-
fies their boundary points with the three 0-cells. Afterwards, one introduces the 2-cell and identifies its
boundary with the space thus far constructed. Such a procedure of constructing a space is formalised
using the notion of a cellular attachment.

We now proceed with the formal definitions. For the purpose of defining cellular attachments, we first
define the notion of a pushout.

Definition 1.11. Let 𝑋, 𝑋 ′, 𝑌 be topological spaces, and consider the continuous maps 𝑖 ∶ 𝑋 ′ → 𝑋 and
𝑓 ∶ 𝑋 ′ → 𝑌 . We can represent this with the following diagram:

𝑋 𝑋 ′ 𝑌𝑓𝑖

The pushout of this diagram, 𝑋 ∪𝑋′ 𝑌 is defined as 𝑋 ∪𝑋′ 𝑌 ∶= 𝑋 ⊔ 𝑌/ ∼, with 𝑖(𝑥′) ∼ 𝑓(𝑥′).

Alternatively, one can define the pushout in categorical terms. To this end, we note that the pushout
𝑋 ∪𝑋′ 𝑌 is the space satisfying the following universal property: For every topological space 𝑍 for which
the following diagram commutes 1

𝑋 ′ 𝑌

𝑋 𝑍

𝑓

𝑖

we have that the following diagram commutes as well:

𝑋 ′ 𝑌

𝑋 𝑋 ∪𝑋′ 𝑌

𝑍

𝑓

𝑖

∃!

Within this categorical framework, we call the square a pushout square if the map 𝑋 ∪𝑋′ 𝑌 → 𝑍 is a
homeomorphism.

One can use the concept of a pushout to define cell attachments. To this end, we denote the 𝑛-disk
by 𝐷𝑛 for every 𝑛 ≥ 0. Note that we take the 0-disk 𝐷0 to be the 1-point set ∗, and that, moreover, its
boundary is taken to be empty.

Definition 1.12. Let 𝑋, 𝑌 be topological spaces such that 𝑋 → 𝑌 is a continuous map. We say that
𝑌 arises from 𝑋 by attaching n-cells if there is some index set ℐ along with a so-called attaching map
𝑓 ∶ ℐ × 𝜕𝐷𝑛 → 𝑋 such that the following holds:

𝑌 ≅ ℐ × 𝐷𝑛 ∪ℐ×𝜕𝐷𝑛 𝑋 (1.17)

Phrased in categorical terms, this is equivalent to requiring that the following square is a pushout
square:

ℐ × 𝜕𝐷𝑛 𝑋

ℐ × 𝐷𝑛 𝑌

𝑓

𝑖

1We note that a diagram is said to commute if all compositions starting from one set and going to another yield the same result.
Explicitly, in this diagram, it means that the composition of the map 𝑋 → 𝑍 with 𝑖 is equal to the composition of the map 𝑌 → 𝑍
with 𝑓.
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Let us try to give some intuition for this definition using an example: noting that 𝐷1 = [−1, 1], we show
how 𝑆1 arises from the one-point space 𝑋 = ∗ by attaching a 1-cell with attaching map 𝑓 ∶ [−1, 1] → ∗
in Figure 1.12.

𝐷1

∗

𝜕𝐷1 𝐷1

∗

𝜕𝐷1
𝐷1

𝜕𝐷1 = ∗

𝑓 ∶ 𝜕𝐷1→∗

Figure 1.12: From left to right: The 1-disk 𝐷1, which is homeomorphic to the unit sphere, along with its boundary 𝜕𝐷1, which
consists of two points, and the one-point set ∗. One can use the attaching map 𝑓 ∶ 𝜕𝐷1 → ∗ to identify both points in 𝜕𝐷1 with
∗. In doing so, one obtains the circle 𝑆1.

The spaces we are interested in, CW-complexes, are spaces that can be built up by repeatedly attach-
ing 𝑛-cells.

Definition 1.13. Given a topological space 𝑋−1. A topological space 𝑋 is called a CW-complex relative
to 𝑋−1 if:

1. there is a sequence of subspaces 𝑋0, 𝑋1,… such that 𝑋1 ⊆ 𝑋0 ⊆ 𝑋1 ⊆ … ⊆ 𝑋.

2. for each 𝑛 ≥ 0, we have that 𝑋𝑛 arises from attaching 𝑛-cells to 𝑋𝑛−1
3. a set 𝑂 ⊆ 𝑋 is open if and only if 𝑂 ∩ 𝑋𝑛 is open in 𝑋𝑛 for each 𝑛 ≥ −1.

If 𝑋−1 = ∅, we call 𝑋 an absolute CW-complex.

Let us establish the convention that we will denote the index set of the 𝑛-cells by 𝒥𝑛.

A useful example of a CW-complex is the 1-sphere 𝑆1. This space can be interpreted as an absolute
CW-complex with 𝑘 0-cells and 𝑘 1-cells for every integer 𝑘 ≥ 1. We have already seen this for 𝑘 = 1
in Figure 1.12. Another example of this can be found in Figure 1.13.

Figure 1.13: An example of a cellular complex of 𝑆1 consisting of five 0-cells and five 1-cells.

We note that under certain conditions, products of CW-complexes are again CW-complexes (see e.g.
[Hat01]). For example, if 𝑋 and 𝑌 are finite CW-complexes, their Cartesian product 𝑋 × 𝑌 is again a
CW complex, and, moreover, we can actually identify the 𝑛-cells of 𝑋 × 𝑌 with all pairs of 𝑝-cells of 𝑋
and 𝑛 − 𝑝 cells of 𝑌 for each 𝑝 = 0,… , 𝑛.

One can also visualise this quite nicely for small complexes, as is done for the product of two straight
lines in Figure 1.14.
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Figure 1.14: The product of two straight lines is a square. Taking two straight lines as CW-complexes with three 0-cells and two
1-cells each, we find a CW-complex for the square consisting of nine 0-cells, twelve 1-cells and four 2-cells. From left to right,
one can see how the 0-cells can be identified with pairs of 0 -cells (blue), while 1-cells can be identified with pairs of one 0-cell
and one 1-cell (red), and 2-cells can be identified with pairs of 1-cells (green).

Given that we have now formally defined CW-complexes, we can now proceed with defining cellular
homology. To this end, we introduce the definition of a cellular complex.

Definition 1.14. Given a CW complex 𝑋, we define the cellular chain complex of 𝑋 with coefficients in
𝐴 as the chain complex:

̃𝐶𝑛(𝑋; 𝐴) ∶= ℋ𝑛(𝑋𝑛, 𝑋𝑛−1; 𝐴) (1.18)

The differential ̃𝜕𝑛 ∶ ℋ𝑛(𝑋𝑛, 𝑋𝑛−1; 𝐴) → ℋ𝑛−1(𝑋𝑛−1, 𝑋𝑛−2; 𝐴) is the connecting homomorphism of the
triple (𝑋𝑛, 𝑋𝑛−1, 𝑋𝑛−2).

The definition of the differential ̃𝜕 will become clear when we discuss the more general theory of homo-
logical algebra. For now, however, it suffices to know that we can define a cellular complex for every
CW-complex, and that this cellular complex is isomorphic to a very simple complex [Sag21]:

Theorem 1.3. Given a CW complex 𝑋 and its cellular complex ̃𝐶𝑛(𝑋; 𝐴). Then:

̃𝐶𝑛(𝑋; 𝐴) ≃ 𝐴[𝐽𝑛] ≃ 𝐴⊕|𝐽𝑛| (1.19)

So, returning to the example of the CW-complex of 𝑆1 in Figure 1.13, this theorem immediately tells us
that its cellular complex is of the following form:

⋯ 0 0 𝐴⊕5 𝐴⊕5̃𝜕1

For such cellular complexes, one can compute the cellular homology of the underlying topological
space.

Definition 1.15. Given a CW complex 𝑋. The 𝑛th cellular homology group of 𝑋 with coefficients in 𝐴 is
defined as:

ℋ̃𝑛(𝑋; 𝐴) ∶= ker ( ̃𝜕𝑛) /Im ( ̃𝜕𝑛+1) (1.20)

Returning to the example of 𝑆1 in Figure 1.13, we see that, as we know the form of its cellular complex,
most of its homology groups are trivial:

ℋ̃𝑛(𝑆1; 𝐴) = 0 ∀𝑛 ≥ 2 (1.21)

The question, now, is whether using these cellular computations to calculate the cellular homology of
a space is in any way relatable to its singular homology. This is, fortunately, indeed the case[Sag21]:

Theorem 1.4. Given an absolute CW-complex 𝑋. Then:

ℋ𝑛(𝑋; 𝐴) ≃ ℋ𝑛( ̃𝐶𝑛(𝑋); 𝐴) (1.22)

The hardest part of performing cellular computations is usually determining the differential. The exam-
ples we consider here, however, will not be very complicated, and therefore, we omit a discussion of
how to do so here, and refer the interested reader to e.g. [Sag21].
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1.4. Homological Algebra over Vector Spaces
After having given a brief overview of the theory of singular and cellular homology, let us now present
a generalised perspective on the objects that we constructed.

1.4.1. Generalising Chain Complexes and Homology Groups
Firstly, we can introduce the general notion of a chain complex.

Definition 1.16. A chain complex (of abelian groups) (𝒞∗, 𝜕∗) is a family of abelian groups 𝐶𝑛 (for
𝑛 ∈ ℤ), together with group homomorphisms 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 called differentials, such that:

𝜕𝑛 ∘ 𝜕𝑛+1 = 0 ∀𝑛 ∈ ℤ (1.23)

We note that these chain complexes are the objects of a category, which we denote by Ch(Ab). A
category, however, has morphisms too — these can be defined as follows:

Definition 1.17. Given two chain complexes (𝒞∗, 𝜕𝐶∗ ) and (𝒟∗, 𝜕𝐷∗ ). Then a collection of group homo-
morphisms 𝑓𝑛 ∶ 𝐶𝑛 → 𝐷𝑛 is called a morphism of chain complexes, or a chain map, if for each 𝑛 ∈ ℤ,
the following diagram commutes:

𝐶𝑛 𝐶𝑛−1

𝐷𝑛 𝐷𝑛−1

𝜕𝐶𝑛

𝑓𝑛

𝜕𝐷𝑛

𝑓𝑛−1

That is, if the following equation holds:

𝜕𝐷𝑛 ∘ 𝑓𝑛 = 𝑓𝑛−1 ∘ 𝜕𝐶𝑛 (1.24)

We can now also generalise the notion of homology to arbitrary chain complexes.

Definition 1.18. The 𝑛th homology group of the chain complex (𝒞∗, 𝜕∗) is given by:

ℋ𝑛(𝒞) = ker (𝜕𝑛) /Im (𝜕𝑛+1) (1.25)

As the differentials of chain complexes and their morphisms commute, we see that every morphism of
chain complexes 𝑓 ∶ 𝒞∗ → 𝒟∗ descends to a sequence of maps between their homology groups. We
will denote each of these induced maps by (𝑓𝑛)∗ ∶ ℋ𝑛(𝒞) → ℋ𝑛(𝒟).

For the category-minded reader, we note that these considerations (by definition) imply that there actu-
ally exists a homology functor from the category of chain complexes to the category of abelian groups,
ℋ𝑛 ∶ Ch(Ab) → Ab. This perspective allows us to prove that the homology is invariant under homotopy
equivalences, as is done in e.g. [Sag21].

1.4.2. Exact Sequences of Chain Complexes
In this section, we introduce exact sequences, which are essential tools for relating (the homology of)
different chain complexes to each other. Before we can define exact sequences for chain complexes,
however, we must first define them for abelian groups.

Definition 1.19. Let {𝐴𝑛}𝑛∈ℤ be a family of abelian groups, and consider homomorphisms 𝑓𝑛 ∶ 𝐴𝑛 →
𝐴𝑛−1. This can be represented as the following sequence:

… 𝐴𝑛+1 𝐴𝑛 𝐴𝑛−1 𝐴𝑛−2 …𝑓𝑛 𝑓𝑛−1 𝑓𝑛−2𝑓𝑛+1𝑓𝑛+2

Such a sequence is called exact at 𝐴𝑖 if ker (𝑓𝑖) = Im (𝑓𝑖+1). The sequence is called exact if it is exact
at 𝐴𝑖 for each 𝑖 ∈ ℤ.
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Note that a chain complex (𝒞∗, 𝜕∗) is exact at 𝐶𝑖 if and only if its ith homology groupℋ𝑖(𝒞) is trivial.

We can distinguish two special types of exact sequences that will play an important role in our later
work.
Definition 1.20. A short exact sequence (of abelian groups) is an exact sequence of the following form:

0 𝐴3 𝐴2 𝐴1 0𝑓2𝑓3

A long exact sequence is an exact sequence of the following form:

⋯ 𝐴4 𝐴3 𝐴2 𝐴1 0𝑓2𝑓4 𝑓3𝑓5

While exact sequences are sequences of abelian groups, we can lift these notions to define exact
sequences of chain complexes. As we will only be interested in short exact sequences of chain com-
plexes, let us define this notion explicitly.

Definition 1.21. Let 𝒞′∗, 𝒞∗ and 𝒞∗ be chain complexes, and let 𝑖 ∶ 𝒞′∗ → 𝒞∗ and 𝑝 ∶ 𝒞∗ → 𝒞∗ denote
morphisms of chain complexes. We then say that the following sequence of chain complexes:

0 𝒞′∗ 𝒞∗ 𝒞∗ 0𝑝𝑖

is a short exact sequence if the chain complexes are level-wise exact, that is, if for each 𝑛 ∈ ℤ, the
following sequence of abelian groups is exact:

0 𝐶′
𝑛 𝐶𝑛 𝐶𝑛 0𝑝𝑛𝑖𝑛

Such short exact sequences of chain complexes are quite useful, as applying the homology functor to
them yields a long exact sequence of homology groups, i.e.:
Theorem 1.5. Given the following short exact sequence of chain complexes:

0 𝒞′∗ 𝒞∗ 𝒞∗ 0𝑝𝑖

This sequence induces a long exact sequence of the following form:

ℋ𝑛+1(𝒞) ℋ𝑛(𝒞′) ℋ𝑛(𝒞) ℋ𝑛(𝒞) ℋ𝑛−1(𝒞′) ℋ𝑛−1(𝒞) … ℋ0(𝒞)
(𝑝𝑛)∗ 𝛿𝑛(𝑖𝑛)∗ (𝑖𝑛−1)∗ (𝑝0)∗𝛿𝑛+1

where the maps 𝛿𝑛 are called the connecting homomorphisms.
Proof. The proof of this theorem follows from diagram chasing and can be found in e.g. [Sag21].

In what is to come, we will abbreviate “short exact sequence” to SES, and similarly, “long exact se-
quence” to LES, and we will refer to this theorem as the “SES implies LES property”.

Before proceeding, we remark that this theorem is quite useful, as it, for example, tells us that there
is always a long exact sequence relating the relative homology groups ℋ∗(𝑋, 𝑋 ′; 𝐴) to the homology
groups of 𝑋 and 𝑋 ′. Similarly, the differentials in the cellular complex of a CW-complex are defined as
the connecting homomorphism that is induced by the short exact sequence of a triple of spaces.

Lastly, we want to point out one important corollary of this theorem, which allows us to calculate the
homology of a space in terms of the homology of two of its (often simpler) subspaces, and which we
will use (much) later in this work.
Theorem 1.6. Given a topological space 𝑋 and given two open sets 𝑈1, 𝑈2 ⊆ 𝑋 such that 𝑈1 ∪𝑈2 = 𝑋.
We have the following SES:

0 𝐶𝑛(𝑈1 ∩ 𝑈2) 𝐶𝑛(𝑈1) ⊕ 𝐶𝑛(𝑈2) 𝐶𝑛(𝑋) 0(𝑖1)∗⊕(𝑖2)∗ (𝑝1)∗−(𝑝2)∗

where 𝑖𝑘 ∶ 𝑈1 ∩ 𝑈2 ↪ 𝑈𝑘 and 𝑝𝑘 ∶ 𝑈𝑘 → 𝑋 is the projection map (for 𝑘 = 1, 2). This SES induces the
following LES, which we call the Mayer-Vietoris Sequence:

… ℋ𝑛+1(𝑋) ℋ𝑛(𝑈1 ∩ 𝑈2) ℋ𝑛(𝑈1) ⊕ℋ𝑛(𝑈2) ℋ𝑛(𝑋) ℋ𝑛−1(𝑋) …
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1.4.3. Tensor Products of Chain Complexes and The Künneth Theorem
Given two topological spaces 𝑋 and 𝑌 , the so-called Eilenberg-Zilber theorem relates the homology
of their Cartesian product to the tensor product of their chain complexes (which we will soon define)
[Hat01]:

Theorem 1.7. Let 𝑋, 𝑌 be topological spaces. Then:

ℋ𝑛(𝑋 × 𝑌; 𝐴) ≃ ℋ𝑛(𝒞∗(𝑋; 𝐴) ⊗ 𝒞∗(𝑌 ; 𝐴)) (1.26)

Taken together with the so-calledKünneth theorem and requiring that𝐴 is a field, we obtain the following
neat result for the homology of 𝑋 × 𝑌 :

ℋ𝑛(𝑋 × 𝑌; 𝐴) ≃
𝑛

⨁
𝑝=0

ℋ𝑛(𝑋; 𝐴) ⊗ℋ𝑛−𝑝(𝑌 ; 𝐴) (1.27)

The goal of this section will be to prove (a slightly more general) version of the Künneth theorem. To
do so, we will have to define the tensor product of chain complexes. Before we can do that, however,
we will need the notion of a direct sum of chain complexes.

Definition 1.22. Let {(𝒞𝑖∗, 𝜕𝑖∗)}𝑖∈ℐ be a family of chain complexes with index set ℐ. The direct sum of
these chain complexes, ((⨁𝑖∈ℐ 𝒞𝑖)∗ , 𝜕

⊕𝑖
∗ ) is again a chain complex, and is defined as follows:

(⨁
𝑖∈ℐ

𝐶𝑖)
𝑛

=⨁
𝑖∈ℐ

(𝐶𝑖)𝑛 with 𝜕⊕𝑖((𝑎𝑖)𝑖∈ℐ) = (𝜕𝑖(𝑎𝑖))𝑖∈ℐ (1.28)

We note that the direct sum is already useful on its own in the context of singular homology, as we have
the following two results (see [Wei94, Sag21]). Firstly, for any indexed family of topological spaces 𝑋𝑖,
we have that:

𝐶𝑛(⊔𝑖𝑋𝑖; 𝐴) =⨁
𝑖
𝐶𝑛(𝑋𝑖; 𝐴) (1.29)

and, moreover, given an indexed family of chain complexes 𝒞𝑖∗, we have that:

ℋ𝑛(⨁
𝑖
𝒞𝑖; 𝐴) =⨁

𝑖
ℋ𝑛(𝒞𝑖; 𝐴) (1.30)

Before we can define tensor products of chain complexes, we first have to introduce two more defini-
tions.

Definition 1.23. A double complex (ℬ∗∗, 𝑑𝑣∗∗, 𝑑ℎ∗∗) is a family of abelian groups 𝐵𝑝,𝑞 for 𝑝, 𝑞 ∈ ℤ with
so-called horizontal differentials 𝑑ℎ𝑝,𝑞 ∶ 𝐵𝑝,𝑞 → 𝐵𝑝,𝑞−1 and vertical differentials 𝑑𝑣𝑝,𝑞 ∶ 𝐵𝑝,𝑞 → 𝐵𝑝−1,𝑞 that
anticommute, i.e.:

𝑑𝑣𝑝,𝑞−1𝑑ℎ𝑝,𝑞 + 𝑑ℎ𝑝−1,𝑞𝑑𝑣𝑝,𝑞 = 0 (1.31)

To every double complex, one can associate a chain complex called the total complex:

Tot(ℬ∗∗)𝑛 ∶=
𝑛

⨁
𝑝=0

𝐵𝑝,𝑛−𝑝 (1.32)
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One can represent a double complex as follows:

⋮ ⋮ ⋮ ⋮

⋯ 𝐵2,−1 𝐵2,0 𝐵2,1 𝐵2,2 ⋯

⋯ 𝐵1,−1 𝐵1,0 𝐵1,1 𝐵1,2 ⋯

⋯ 𝐵0,−1 𝐵0,0 𝐵0,1 𝐵0,2 ⋯

⋯ 𝐵−1,−1 𝐵−1,0 𝐵−1,1 𝐵−1,2 ⋯

⋮ ⋮ ⋮ ⋮

𝑑ℎ2,2

𝑑𝑣2,2

In order to define the tensor product of chain complexes, we note that one can construct a double
complex by taking the term-wise tensor product of chain complexes. That is, given two chain complexes
(𝒞∗, 𝜕𝐶∗ ) and (𝒟∗, 𝜕𝐷∗ ), we can define a double complex as follows:

𝐵𝑝,𝑞 = 𝐶𝑝 ⊗𝐷𝑞 (1.33)

moreover:
𝑑ℎ𝑝,𝑞 = id⊗ 𝜕𝐷𝑝 , 𝑑𝑣𝑝,𝑞 = 𝜕𝐶𝑝 ⊗ id (1.34)

This newly obtained double complex can be visualised as follows:

⋮ ⋮ ⋮ ⋮

⋯ 𝐶2 ⊗𝐷−1 𝐶2 ⊗𝐷0 𝐶2 ⊗𝐷1 𝐶2 ⊗𝐷2 ⋯

⋯ 𝐶1 ⊗𝐷−1 𝐶1 ⊗𝐷0 𝐶1 ⊗𝐷1 𝐶1 ⊗𝐷2 ⋯

⋯ 𝐶0 ⊗𝐷−1 𝐶0 ⊗𝐷0 𝐶0 ⊗𝐷1 𝐶0 ⊗𝐷2 ⋯

⋯ 𝐶−1 ⊗𝐷−1 𝐶−1 ⊗𝐷0 𝐶−1 ⊗𝐷1 𝐶−1 ⊗𝐷2 ⋯

⋮ ⋮ ⋮ ⋮

id⊗𝜕𝐷2

𝜕𝐶2 ⊗id

The tensor product of these two chain complexes, now, is simply defined as the total complex of this
double complex:

Definition 1.24. Let (𝒞∗, 𝜕𝐶∗ ) and (𝒟∗, 𝜕𝐷∗ ) be chain complexes of abelian groups. We define their tensor
product ((𝒞 ⊗𝒟)∗, 𝜕𝐶⊗𝐷

∗ ) as the chain complex satisfying:

(𝒞 ⊗𝒟)𝑛 =
𝑛

⨁
𝑝=0

𝐶𝑝 ⊗𝐷𝑛−𝑝 (1.35)

and whose differential 𝜕𝐶⊗𝐷
∗ is the group homomorphism induced by the bilinear maps:

𝐶𝑝 × 𝐷𝑛−𝑝 → (𝐶 ⊗ 𝐷)𝑛−1 ∶ (𝑥, 𝑦) ↦ 𝜕𝐶𝑝 (𝑥) ⊗ 𝑦 + (−1)𝑝𝑥 ⊗ 𝜕𝐷𝑛−𝑝(𝑦) (1.36)
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We recall that the Cartesian product of two finite CW-complexes is again a CW-complex, and that its 𝑛
cells are given by the products of 𝑝-cells and 𝑛 − 𝑝 cells for 𝑝 = 0,… , 𝑛. This gives us a natural inter-
pretation for the notion of the tensor product of a chain complex: if 𝑋 and 𝑌 are finite CW-complexes,
the following holds:

̃𝐶∗(𝑋 × 𝑌) ≃ ( ̃𝐶∗(𝑋) ⊗ ̃𝐶∗(𝑌))∗ (1.37)

In summary, in the context of finite CW-complexes, we see that the notions of tensor products of cellular
complexes and Cartesian products of spaces coincide.

We now turn to the goal of this section, which was to prove the Künneth theorem. This theorem allows
us to relate the homology groups of the tensor product of chain complexes to the tensor product of their
respective homology groups. Phrased in the general setting of chain complexes of abelian groups,
however, this relationship is quite delicate, and even more advanced mathematical machinery than we
have seen thus far is needed to state it. We will introduce this more advanced machinery in Chapter
4 — for now, we restrict ourselves to the case in which our chain complexes are all chain complexes
of vector spaces, as this will be the setting of Chapter 2 and Chapter 3. Now, fortunately, the Künneth
theorem takes on quite an elegant form [Hat01]:

Theorem 1.8 (Künneth Formula). Let (𝒞∗, 𝜕𝐶∗ ) and (𝒟∗, 𝜕𝐷∗ ) be chain complexes of vector spaces. Then:

ℋ𝑛(𝒞 ⊗𝒟) ≃
𝑛

⨁
𝑝=0

ℋ𝑝(𝒞) ⊗ℋ𝑛−𝑝(𝒟) (1.38)

Proof. We consider the subspaces 𝑍𝑛 = ker (𝜕𝐶𝑛 ) and 𝐵𝑛 = Im (𝜕𝐶𝑛+1). Note that 𝒵 ∶= (𝑍∗, 𝜕𝐶∗ ) is a
subcomplex of 𝒞, with 𝜕𝐶𝑛 |𝑍𝑛 = 0. As 𝐵𝑛 ⊆ 𝑍𝑛, ℬ = (𝐵𝑛, 𝜕𝐶𝑛 ) is also a subcomplex of 𝒞. As such, these
subspaces yield the following SES:

0 (𝒵 ⊗𝒟)𝑛 (𝒞 ⊗𝒟)𝑛 (ℬ ⊗𝒟)𝑛−1 0𝜕𝐶𝑛⊗id

where the map (𝒵 ⊗𝒟)𝑛 ↪ (𝒞 ⊗𝒟)𝑛 is the inclusion map.

Given that 𝐵𝑛 ⊆ 𝑍𝑛 are in the kernel of 𝜕𝐶𝑛 , the following diagram commutes:

0 (𝒵 ⊗𝒟)𝑛 (𝒞 ⊗𝒟)𝑛 (ℬ ⊗𝒟)𝑛−1 0

0 (𝒵 ⊗𝒟)𝑛−1 (𝒞 ⊗𝒟)𝑛−1 (ℬ ⊗𝒟)𝑛−2 0

𝜕𝐶𝑛⊗id

(−1)𝑝 id⊗𝜕𝐷

𝜕𝐶⊗id

(−1)𝑝 id⊗𝜕𝐷𝜕𝐶⊗id+(−1)𝑝 id⊗𝜕𝐷

Hence, we see that the inclusion maps, along with the maps 𝜕𝐶∗ ⊗ id, are actually chain maps, and as
such, we have the following SES of chain complexes:

0 (𝒵 ⊗𝒟)∗ (𝒞 ⊗𝒟)∗ (ℬ ⊗𝒟)(∗−1) 0𝜕𝐶∗ ⊗id

This SES now induces the following LES:

… ℋ𝑛(ℬ ⊗𝒟) ℋ𝑛(𝒵 ⊗𝒟) ℋ𝑛(𝒞 ⊗𝒟) ℋ𝑛−1(ℬ ⊗𝒟) ℋ𝑛−1(𝒵 ⊗𝒟) …𝛿𝑛𝛿𝑛+1

Our goal, now, is to deduce a SES from this LES. We proceed in three steps: we first determine the
connecting homomorphism 𝛿𝑛. Afterwards, we will use this to deduce a right and left-exact sequence
from the LES, respectively.

In order to determine 𝛿𝑛+1, we first note that as 𝐵𝑛 ⊆ 𝑍𝑛 ⊆ 𝐶𝑛, there is actually a sequence of inclusion
maps:

(ℬ ⊗𝒟)𝑛 ↪ (𝒵 ⊗𝒟)𝑛 ↪ (𝒞 ⊗𝒟)𝑛 (1.39)
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We thus claim that any class [𝑥] ∈ ℋ𝑛(ℬ ⊗ 𝒟) is mapped to the class [𝑥] ∈ ℋ𝑛(𝒵 ⊗ 𝒟) by the con-
necting homomorphism, that is, we claim for any class in ℋ𝑛(ℬ ⊗ 𝒟), one can determine the image
of this class under the connecting homomorphism by simple taking a representative of this class and
returning the class that it represents inℋ𝑛(𝒵 ⊗𝒟).

For our claim to be true, 𝑥, when seen as an element of (𝒵⊗𝒟)𝑛, must satisfy the following requirement:
given any 𝑦 ∈ (𝒞 ⊗ 𝒟)𝑛+1 such that 𝑥 = (𝜕𝐶𝑛 ⊗ id)(𝑦), then 𝑥 + Im ((−1)𝑝id⊗ 𝜕𝐷𝑛+1) must be in the
(𝜕𝐶𝑛+1 ⊗ id + (−1)𝑝id⊗ 𝜕𝐷𝑛+1)-image of 𝑦. This is indeed true, as:

(𝜕𝐶𝑛+1 ⊗ id + (−1)𝑝id⊗ 𝜕𝐷𝑛+1)𝑦 = 𝑥 + (−1)𝑝id⊗ 𝜕𝐷𝑛+1𝑦 (1.40)

Hence, we see that 𝛿𝑛 is induced by the inclusion 𝐵𝑛 ↪ 𝑍𝑛, and is, furthermore, injective.

We can now use the injectivity of the connecting homomorphism to deduce a right-exact sequence
from the LES: as the homomorphism 𝐻𝑛−1(ℬ ⊗ 𝒟) → 𝐻𝑛−1(𝒵 ⊗ 𝒟) is injective, it has a trivial kernel,
and hence, by exactness, the map before it must have a trivial image. Restricting to the image of that
map, we find the following right-exact LES:

… 𝐻𝑛(ℬ ⊗𝒟) 𝐻𝑛(𝒵 ⊗𝒟) 𝐻𝑛(𝒞 ⊗𝒟) 0𝛿∗

In order to extract a left-exact sequence from this right-exact sequence, we first show that there is a
natural isomorphismℋ𝑛(𝒵∗ ⊗𝒟∗) ≃ (𝒵∗ ⊗ℋ∗(𝒟))𝑛. Indeed:

ℋ𝑛(𝒵∗ ⊗𝒟∗) = ker (𝜕𝑍⊗𝐷
𝑛 ) /Im (𝜕𝑍⊗𝐷

𝑛+1 ) = (
𝑛

⨁
𝑝=0

𝑍𝑝 ⊗ ker (𝜕𝐷𝑛−𝑝)) / (
𝑛

⨁
𝑝=0

𝑍𝑝 ⊗ Im (𝜕𝐷𝑛+1−𝑝)) (1.41)

≃
𝑛

⨁
𝑝=0

(𝑍𝑝 ⊗ ker (𝜕𝐷𝑛−𝑝)) / (𝑍𝑝 ⊗ Im (𝜕𝐷𝑛+1−𝑝)) (1.42)

≃
𝑛

⨁
𝑝=0

𝑍𝑝 ⊗ (ker (𝜕𝐷𝑛−𝑝) /Im (𝜕𝐷𝑛+1−𝑝)) (1.43)

=
𝑛

⨁
𝑝=0

𝑍𝑝 ⊗ℋ𝑛−𝑝(𝒟) (1.44)

= (𝒵∗ ⊗ℋ∗(𝒟))𝑛 (1.45)

where the first isomorphism follows from the fact that 𝑍𝑝⊗ker (𝜕𝐷𝑛−𝑝) ⊆ 𝑍𝑝⊗Im (𝜕𝐷𝑛+1−𝑝), and the second
isomorphism follows from the exactness of the tensor product between vector spaces.
Similarly, it follows that ℋ𝑛(ℬ∗ ⊗ 𝒟∗) ≃ (ℬ∗ ⊗ℋ∗(𝒟))𝑛. But then, by the naturality of these isomor-
phisms, it can easily be seen that the following diagram commutes:

ℋ𝑛(ℬ∗ ⊗𝒟∗) ℋ𝑛(𝒵∗ ⊗𝒟∗)

(ℬ∗ ⊗ℋ∗(𝒟))𝑛 (𝒵∗ ⊗ℋ∗(𝒟))𝑛

≃ ≃

where the upper arrow is the injection induced by the inclusion. Hence, we can deduce the following
commutative diagram:

… ℋ𝑛(ℬ ⊗𝒟) ℋ𝑛(𝒵 ⊗𝒟) ℋ𝑛(𝒞 ⊗𝒟) 0

0 (ℬ∗ ⊗ℋ∗(𝒟))𝑛 (𝒵∗ ⊗ℋ∗(𝒟))𝑛

𝛿∗

≃ ≃
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We have thus obtained the desired SES (in black). Now, as the kernel of the map (𝒵∗ ⊗ℋ∗(𝒟))𝑛 →
ℋ𝑛(𝒞⊗𝒟) is equal to the image of the inclusion map, we see that taking quotients induces an injective
map:

… (ℬ ⊗ℋ∗(𝒟))𝑛 (𝒵∗ ⊗ℋ∗(𝒟))𝑛 ℋ𝑛(𝒞 ⊗𝒟) 0

0 (𝒵∗ ⊗ℋ∗(𝒟))𝑛/(ℬ ⊗ℋ∗(𝒟))𝑛

0

We have therefore found the desired isomorphism:

ℋ𝑛(𝒞⊗𝒟) ≃ (𝒵∗⊗ℋ∗(𝒟))𝑛/(ℬ∗⊗ℋ∗(𝒟))𝑛 ≃
𝑛

⨁
𝑝=0

𝑍𝑝/𝐵𝑝⊗ℋ𝑛−𝑝(𝒟) =
𝑛

⨁
𝑝=0

ℋ𝑝(𝒞)⊗ℋ𝑛−𝑝(𝒟) (1.46)

1.4.4. The Landscape of Homological Algebra
We dedicate a few words to the observation that we have thus far already seen two different homology
theories: singular homology and cellular homology. There are, in fact, many more homology theories,
like group homology (see e.g. [Wei94]), but also homology with local coefficients (see e.g. [DK01]) or
homology over ring modules (see e.g. [Wei94]), the latter two of which we will discuss in Chapter 7
and Chapter 4, respectively. One can unite these different theories in one unifying framework by taking
on an axiomatic approach to homology, as was first set out in [ES45]. We mention this fact, because
some of the results we derived here, like the Mayer-Vietoris sequence, can actually be derived from
these axioms alone [Hat01], and therefore can be used regardless of which specific homology theory
is considered.

Furthermore, the categorically oriented reader might not be surprised to read that there is also a theory
of cohomology. Here, the primary objects of study are cochain complexes, which are similar to chain
complexes, except for the fact that the direction of their arrows is flipped. When considering e.g. chain
complexes consisting of finite dimensional inner product spaces, this may seem like a mere notational
difference (as one can always switch between a chain complex and a cochain complex by taking the
dual), yet, in more general settings, the theory of cohomology offers additional richness than the theory
of homology. For the purpose of our study, however, we will only be interested in the structure that can
be captured using just homology, and therefore, we refer the interested reader to [SH22].



2
Quantum LDPC Codes

Quantum Low-Density Parity Check (qLDPC) codes are a subclass of the so-called Calderbank-Shor-
Steane (CSS) codes, which are again a subclass of the stabiliser codes. We therefore first review the
stabiliser formalism. Afterwards, we present the definitions of CSS and qLDPC codes, and we discuss
how CSS codes can be understood in terms of homology. Lastly, we take a look ahead by considering
how (good) qLDPC codes could be constructed.

2.1. The Stabiliser Formalism
The stabiliser formalism [Ter15, Bro14] allows us to understand a large class of quantum error correcting
codes, the so-called stabiliser codes, in terms of Pauli operators instead of state vectors. Stabiliser
codes are defined by two ingredients: a so-called stabiliser group, and a set of logical operators. In
order to define these, we first introduce the Pauli group for an 𝑛-qubit system: the Pauli group 𝒫𝑛 is the
group generated by the Pauli operators 𝑋𝑖 and 𝑍𝑖 for each 𝑖 ∈ {1,… , 𝑛}, as well as the operator 𝑖𝐼 —
that is:

𝒫𝑛 ∶= ⟨𝑖𝐼, 𝑋1, 𝑍1, 𝑋2,… , 𝑍𝑛⟩ (2.1)

The stabiliser group 𝒮, now, is any subgroup of the Pauli group that does not contain −𝐼. Choosing the
stabiliser group fixes the code space of the stabiliser code at hand, as we define this code space to be
the simultaneous +1 eigenspace of all the elements of the stabiliser group, i.e.:

𝒞 ∶= {|𝜓⟩ ∶ 𝑆 |𝜓⟩ = |𝜓⟩ ∀𝑆 ∈ 𝒮} (2.2)

Given that 𝒮 has 𝑛 − 𝑘 independent generators, i.e. 𝒮 = ⟨𝑆1,… , 𝑆𝑛−𝑘⟩, one can deduce that the dimen-
sion of the code space is given by 𝑛 − (𝑛 − 𝑘) = 𝑘.

We must now still determine the final ingredient: the logical operators. Given that 𝒮 has 𝑛 − 𝑘 inde-
pendent generators, one can still choose 𝑘 pairs of elements of the Pauli group, which we denote by
(𝑋 𝑖, 𝑍𝑖), that commute with all of 𝒮 and with all other pairs, but whose elements anticommute. We call
these operators the logical operators, and note for completeness that the centraliser of the stabiliser
group can be generated by the stabilisers and the logical operators, i.e.:

𝐶(𝒮) = ⟨𝑆1,… , 𝑆𝑛−𝑘, 𝑋1, 𝑍1,… , 𝑍𝑘⟩ (2.3)

We defining the weight of a Pauli operator 𝐿, |𝐿|, to be the number of qubits on which the operator
acts non-trivially. The (minimum) distance of a code, 𝑑, is then defined as the minimum weight of all
possible logical operators of the code, i.e.:

𝑑 ∶= min
𝐿∈𝐶(𝒮)⧵𝒮

|𝐿| (2.4)

We usually denote a stabiliser code that encodes 𝑘 logical qubits into an 𝑛-qubit system with distance
𝑑 by [[𝑛, 𝑘, 𝑑]].

21
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An exemplar of stabiliser codes is the toric code. Given an 𝐿×𝐿 lattice with periodic boundary conditions,
we can associate qubits to each of its edges, as is shown in Figure 2.1.

Figure 2.1: Source: [Bro14]. A square (5 by 5) lattice with periodic boundary conditions encoding the toric code. The grey
edges are identified with the edges on the opposite side. The white circles represent qubits, while the Z-checks correspond to
plaquettes (left), and the X-checks correspond to the vertices (right).

As Figure 2.1 illustrates, we can define 𝑍-stabilisers for every plaquette on the lattice, i.e. by taking the
operator that acts as a 𝑍 on each of the qubits bordering the plaquette, and by acting as the identity
operator on the other qubits. Similarly, one can define 𝑋-stabilisers for every vertex. Note that these
commute, as they always overlap in an even number of qubits.

One can now identify the following minimum weight logical operators as the operators corresponding
to closed horizontal and vertical lops on the lattice, as is illustrated in Figure 2.2.

Figure 2.2: Source: [Bro14]. Four examples of independent logical operators for the toric code encoded on a square (5 by
5) lattice with periodic boundary conditions. One can see that the 𝑍1-logical operator (𝑍2) and the 𝑋1-logical operator (𝑋2)
anticommute, as they overlap in one qubit. Each of these logical operators has a weight of 5.

As there are 2 pairs of independent logical operators, we see that the number of encoded qubits is
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𝑘 = 2. Furthermore, as the weight of the minimum weight logical operators is 𝐿, we deduce that the
toric code has minimum distance 𝑑 = 𝐿 (which is indeed the case, see e.g. [Kit03]).

2.2. CSS and qLDPC Codes
CSS codes are particular stabiliser codes that are generated by two linear classical codes. It is therefore
instructive to first recall some basic facts and definitions from classical coding theory.

2.2.1. Basic Facts from Classical Coding Theory
Recall that each binary, linear classical code 𝒞 that encodes 𝑘 (logical) bits into 𝑛 (physical) bits can
be specified by a so-called parity check matrix 𝐻 ∈ ℳ𝑟×𝑛 (𝔽2) with 𝑛 − 𝑘 independent rows, such that
𝑟 ≥ 𝑛 − 𝑘. The defining property of a parity check matrix is that a word 𝑐 ∈ 𝔽𝑛2 is a code word of the
code 𝒞 if and only if 𝐻𝑐 = 0. Therefore, we can identify 𝒞 with the kernel of 𝐻, ker (𝐻).

Analogously, every binary, linear classical code that encodes 𝑘 (logical) bits into 𝑛 (physical) bits can be
specified by a generator matrix 𝐺 ∈ ℳ𝑠×𝑛 (𝔽2) with 𝑘 independent rows, such that 𝑠 ≥ 𝑘. The defining
property of a generator matrix of a code 𝒞 is that its row space equals the space of codewords of the
code, that is: Row(𝐺) = 𝒞.

Furthermore, every classical code has aminimum distance, 𝑑, which is defined as the minimum weight
of its non-zero codewords, i.e.:

𝑑 ∶= min
𝑐∈ker(𝐻)⧵{0}

|𝑐| (2.5)

where |𝑐| ∶= ∑𝑛
𝑖=1 𝑐𝑖 is the weight of the code word 𝑐.

We note that every classical code is fully characterised by the size of its code space, 𝑛, the number of
bits it encodes, 𝑘, and its minimum distance, 𝑑. We therefore often refer to a classical code using the
notation [𝑛, 𝑘, 𝑑].

Finally, for every such code 𝒞, one can define its dual code, 𝒞⟂, as the code with code words 𝑐⟂ ∈ 𝔽𝑛−𝑘2
satisfying the following relation1:

⟨𝑐⟂, 𝑐⟩ ∶=
𝑛−𝑘
∑
𝑖=1

𝑐⟂𝑖 𝑐𝑖 = 0 (mod 2) ∀ 𝑐 ∈ 𝒞 (2.6)

Equivalently, every parity check matrix of 𝒞 is a generator matrix of 𝒞⟂ (and vice versa).

2.2.2. CSS codes
Having recalled these definitions from classical coding theory, are finally ready to introduce the definition
of a CSS code.

Definition 2.1 (CSS code). Let 𝒞𝑋 and 𝒞𝑍 be two binary, linear codes with parity check matrices
𝐻𝑋 ∈ ℳ𝑟𝑋×𝑛(𝔽2) and 𝐻𝑍 ∈ ℳ𝑟𝑍×𝑛(𝔽2), and parameters [𝑛, 𝑘𝑋 , 𝑑1] and [𝑛, 𝑘𝑍 , 𝑑2], respectively, such
that 𝒞⟂𝑋 ⊆ 𝒞𝑍. The pair (𝒞𝑋 , 𝒞𝑍) generates an [[𝑛, 𝑘, 𝑑]]-stabiliser code, whose parameters are given
by:

𝑘 = 𝑘𝑥 + 𝑘𝑍 − 𝑛, 𝑑 = min {𝑑𝑋 , 𝑑𝑍} (2.7)
Here, we have that 𝑑𝑋 and 𝑑𝑍 are given by:

𝑑𝑍 = min
𝑥∈ker(𝐻𝑋 )⧵Im(𝐻𝑇

𝑍 )
|𝑥|, 𝑑𝑋 = min

𝑥∈ker(𝐻𝑍)⧵Im(𝐻𝑇
𝑋 )
|𝑥| (2.8)

The X-stabilisers (Z-stabilisers) of the code are generated by the rows of 𝐻𝑋 (𝐻𝑍) and are thus of the
following form:

Π𝑛
𝑗=1𝑋

(𝐻𝑋 )𝑖𝑗
𝑗 for each 𝑖 ∈ {1,… , 𝑛} (2.9)

Such a stabiliser code is called the CSS code generated by the pair (𝒞𝑋 , 𝒞𝑍).
1For the mathematically oriented reader, we emphasise that this is a bilinear form on the vector space 𝔽2.



2.2. CSS and qLDPC Codes 24

Before proceeding to an example, let us unwrap this definition: firstly, we remark that the requirement
𝒞⟂𝑋 ⊆ 𝒞𝑍 is equivalent to the requirement that 𝐻𝑍𝐻𝑇

𝑋 = 0. This requirement on the two classical codes
is necessary, because it ensures that the stabiliser checks commute. Indeed, we see that:

(𝐻𝑍𝐻𝑇
𝑋)𝑖𝑗 = 0 ⟺

𝑛
∑
𝑚=1

(𝐻𝑍)𝑖𝑚 (𝐻𝑇
𝑋)𝑚𝑗 = (𝐻𝑍)𝑖𝑚 (𝐻𝑋)𝑗𝑚 = 0 (mod 2) (2.10)

In words, this boils down to requiring that every row of 𝐻𝑋 be dual to every row of 𝐻𝑍, or, equiva-
lently, that the number of qubits that any 𝑍-stabiliser and any 𝑋-stabiliser simultaneously act on is
even. Therefore, we see that the product of two such stabilisers contains an even number of terms
𝑋𝑍-terms. Under commutation, each such term contributes a factor −1. As there is an even number
of these terms, we see that the product actually commutes.

Furthermore, we see that the orthogonality condition gives us a convenient way of determining the dis-
tance of a CSS code. Indeed, the distance of the code is the minimumweight of non-stabiliser elements
in the centraliser of the stabiliser group. Furthermore, an element of the centraliser is — per definition
— an element that commutes with both the 𝑋 and the 𝑍 stabilisers. To this end, we note that we can
decompose every string of Paulis, 𝐿, into an 𝑋-string, 𝐿𝑋 , and a 𝑍-string, 𝐿𝑍. Therefore, we see that
the requirement of being in the centraliser corresponds to the requirement that 𝐿𝑋 commutes with all
𝑍-stabilisers, and 𝐿𝑍 commutes with all 𝑋-stabilisers. But this is equivalent to requiring that 𝐿𝑋 lies in
ker (𝐻𝑍), and 𝐿𝑍 lies in ker (𝐻𝑋). The weight of 𝐿 is always greater than the weight of 𝐿𝑋 and 𝐿𝑍, hence,
the lowest possible weight for 𝐿 is the minimum of the lowest possible weights for 𝐿𝑋 and 𝐿𝑍. However,
as the stabilisers correspond to Row(𝐻𝑋) = Im (𝐻𝑇

𝑋) and Row(𝐻𝑍) = Im (𝐻𝑇
𝑍 ), we have to exclude the

possibility of 𝐿𝑋 , 𝐿𝑍 lying in these. We then see that the minimum weight of 𝐿𝑋 corresponds to 𝑑𝑋 in
our definition, while the minimum weight of 𝐿𝑍 corresponds to 𝑑𝑍.

Lastly, we can easily see that the expression for the number of encoded qubits holds true by counting:
there are 𝑛 qubits, 𝑛 − 𝑘𝑋 independent 𝑋-stabilisers, and 𝑛 − 𝑘𝑍 independent 𝑍-stabilisers, so there
number of encoded qubits is:

𝑘 = 𝑛 − (𝑛 − 𝑘𝑋) − (𝑛 − 𝑘𝑍) = 𝑘𝑋 + 𝑘𝑍 − 𝑛 (2.11)

Example 2.1.1. The [[7,1,3]] Steane code can be seen as the CSS code generated by taking 𝐶𝑋 , 𝐶𝑍
to both be the [7,4,3] Hamming code. Indeed, the [7,4,3] code has parity check matrix:

𝐻 =
⎛
⎜⎜⎜
⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎟⎟⎟
⎠

(2.12)

And hence, we see that the Z-check matrices are 𝑍1𝑍3𝑍5𝑍7, 𝑍2𝑍3𝑍6𝑍7 and 𝑍4𝑍5𝑍6𝑍7, as expected.

One may wonder whether considering the class of CSS codes might be too restrictive. This is, for-
tunately, not the case: it has been proved that every [[𝑛, 𝑘, 𝑑]] stabiliser code can be mapped onto a
[[4𝑛, 2𝑘, 2𝑑]] CSS code [BTL10].

2.2.3. qLDPC Codes and Good Codes
In classical coding theory, a low-density parity check code is a family of codes for which both the number
of bits involved in each check, and the number of checks a bit is involved in, is bounded by a constant
for the whole code family. As each parity check corresponds to a row in the parity check matrix, the
number of bits involved in a check is the number of 1’s in the corresponding row. Similarly, each column
in the parity check matrix represents a bit, and hence, the number of 1’s in each column represents the
number of parity checks performed on each bit. Therefore, one can introduce the following quantity in
order to understand classical LDPC codes:

Definition 2.2. Let 𝐻 be a parity check matrix of the code 𝒞. The Hamming weight of the code, 𝑤(𝐻)
is defined as the maximum of the number of non-zero elements in the rows and the columns of 𝐻.
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We say that a family of classical codes is LDPC if the weight of the code family is asymptotically bounded
by a constant, i.e. if 𝑤(𝐻) = 𝒪(1). A simple family of LDPC codes are the repetition codes: for every
𝑛, we have that 𝑤(𝑅𝑛) = 2.

As a CSS code is defined by two classical codes, we can easily generalise this definition to the quantum
case: given a CSS code 𝒞 generated by the parity check matrices 𝐻𝑋 and 𝐻𝑍, we define the weight of
the CSS code to be:

𝑤(𝒞) = max {𝑤(𝐻𝑋), 𝑤(𝐻𝑍)} (2.13)

In turn, a family of codes 𝒞 is said to be a qLDPC code if 𝑤(𝒞) = 𝒪(1).

Being LDPC does not necessarily imply that a family of codes performs well, as it could be the case
that this family encodes few qubits, or that the distance scales poorly with the number of qubits (like
the toric code, which is an LDPC code, but has parameters [[𝑛, 2,√𝑛]]). Therefore, we introduce the
notion of a good code.

Definition 2.3. A [[𝑛, 𝑘, 𝑑]]-code is called good if it has a constant encoding rate 𝑘
𝑛
= Ω(1) and linear

distance 𝑑 = Ω(𝑛).

2.3. Error Correcting Codes and Homology
We now delve into the question of how one can use the language of homology to understand error
correcting codes.

2.3.1. A Homological Interpretation of Classical Codes
We start off this journey by making the (somewhat trivial) observation that every classical code (with
parity check matrix 𝐻) can be represented by a chain complex 𝒞∗ of 𝔽2-vector spaces of the following
form:

𝐶1 𝐶0𝐻

and, conversely, every chain complex of this form corresponds to a classical code.

Let us consider the first homology group of this chain complex. We find:

ℋ1(𝒞) = ker (𝐻) (2.14)

Hence, we see that the number of encoded bits 𝑘 can be defined purely in homological terms, namely
as 𝑘 ∶= dim (ℋ1(𝒞)).

Moreover, such a chain complex can always be related to a hypergraph, simply by taking the parity
check matrix to represent a hyperedge-vertex incidence matrix. For example, the repetition-5 code 𝑅5
can be related to the following graph:

𝑣2

𝑣1

𝑣5

𝑣3𝑣4

𝑒1 𝑒2

𝑒3

𝑒4

𝑒5

Figure 2.3: The graph associated to the 5-repetition code by interpreting its parity check matrix as a edge-vertex incidence matrix.
One can see that this graph corresponds to a cellular complex of the circle 𝑆1.

This graph, now, is actually a cellulation of the circle! Moreover, this conclusion holds for the whole
family of repetition codes, not just for 𝑅5: each 𝑅𝑛 arises from a cellulation of a circle with 𝑛 1-cells and
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𝑛 0-cells. This yields some important insights: firstly, as the homology of a space is invariant under the
choice of cellulation, we can immediately conclude that the repetition code encodes the same number
of bits, regardless of the code size. Secondly, we see that the code distance is not a homological
property: the distance of the repetition code 𝑅𝑛 is 𝑛, and hence, is not invariant under changes in the
cellulation of the circle.

2.3.2. A Homological Interpretation of CSS Codes
Naturally, one may wonder whether we can also represent quantum codes as a chain complex. As
all length 1 complexes correspond to classical code, one would need a complex of (at least) length
two. For such complexes, however, we will need to proceed more cautiously, as the condition on the
boundary maps (𝜕2 = 0) is no longer automatically satisfied. The attentive reader will have noticed that
this condition is reminiscent of the orthogonality condition for CSS codes (𝐻𝑍𝐻𝑇

𝑋 = 0). Indeed, given
a CSS code with parity check matrices 𝐻𝑋 and 𝐻𝑍, the orthogonality condition allows us to represent
this code as a chain complex 𝒞 of 𝔽2-vector spaces:

𝐶2 𝐶1 𝐶0
𝜕2=𝐻𝑇

𝑋 𝜕1=𝐻𝑍

Given that we understand how to use homology for the purpose of analysing classical codes, let us
try to apply these same techniques to CSS codes. To this end, let us first calculate the first homology
group:

ℋ1(𝒞) = ker (𝐻𝑋) /Im (𝐻𝑇
𝑍 ) . (2.15)

The dimension of the first homology group is:

dim (ℋ1(𝒞)) = dim (ker (𝐻𝑋)) − dim (Im (𝐻𝑇
𝑍 )) = 𝑘𝑋 − dim (ker (𝐻𝑍)

⟂) = 𝑘𝑋 + 𝑘𝑍 − 𝑛 (2.16)

which is the number of encoded qubits of the CSS code! Note that the converse also holds true: given a
2-chain complex with first homology group of dimension 𝑘, then we can associate to this chain complex
a quantum CSS code that encodes k qubits. Even stronger: given any 𝑛-complex with 𝑛 ≥ 2, say:

0 𝐶𝑛 𝐶𝑛−1 ⋯ 𝐶0

We can always take a subcomplex of non-zero chains, say:

𝐶𝑘 𝐶𝑘−1 𝐶𝑘−2

And interpret this complex as a CSS-code. In this case, the (𝑘 − 1)th homology group of our initial
complex gives the number of encoded qubits.

As in the classical case, the distance of a quantum CSS code is not fixed by the homology of the
underlying space. We can, however, phrase it in terms of these homological notions. We saw earlier
that:

𝑑𝑋 = min
𝑥∈ker(𝐻𝑍)⧵Im(𝐻𝑇

𝑋 )
|𝑥| (2.17)

Recalling that the first homology group is the quotient ker (𝐻𝑍) /Im (𝐻𝑇
𝑋), we see that the minimum

weight of the 𝑋-logicals can be interpreted as the minimum weight of the representatives of all the
trivial classes in the first homology group. Similarly, we can flip the arrows in the complex to obtain a
new chain complex2:

𝐶0 𝐶1 𝐶2
𝐻𝑇
𝑍 𝐻𝑋

We now see that the minimum weight of non-trivial elements of the first homology group of this newly
obtained complex3 corresponds to the minimum weight of the 𝑍-logicals, 𝑑𝑍.

2For completeness, we note that this is actually the cocomplex of our complex, however, when considering complexes of vector
spaces, these notions can be identified in a natural manner.

3For completeness, we note that this is actually the first cohomology group of the complex corresponding to the CSS code. As
we are working over vector spaces, however, these distinctions are merely formal.
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Finally, as mentioned in the previous chapter, every finite dimensional chain complex of this form can
actually be interpreted as a CW-complex, and hence as a tesselation of some topological space. Since
we can relate quantum CSS codes to chain complexes, we can therefore also relate them to topological
spaces. In the case of the toric code, for example, one can interpret the 2-chains as the plaquettes
of the underlying lattice, while the 1-chains correspond to the edges, and the 0-chains correspond to
the vertices. We will return to this example later in this thesis in order to explore this connection more
thoroughly.

2.4. Constructing qLDPC codes
Let us briefly consider how one could construct a family of qLDPC codes. A simple idea would be to
concatenate codes. This is not a very fruitful exercise, however: consider a [[𝑛, 1, 𝑑]] with weight 𝑤,
and suppose that we concatenate this code with itself repeatedly to generate a family of larger codes.
The parameters of the 𝑘-times concatenated code become [[𝑛𝑘, 1, 𝑑𝑘]] but the weight is also𝑤𝑘. There-
fore, given that the weight is larger than 1 (which is a necessary requirement for a non-trivial code), the
generated code family cannot have asymptotically bounded weight, and hence cannot be qLDPC.

We are therefore led to consider more complex ways of constructing qLDPC codes. Given the fact that
classical LDPC codes are understood very well and that good classical LDPC codes can be generated
quite easily, it is instructive to consider whether we can somehow construct CSS codes out of classical
codes. Surely, one can simply take the two classical codes 𝒞𝑋 and 𝒞𝑍 to be LDPC, however, these
codes cannot be simultaneously good: the orthogonality condition 𝒞⟂𝑋 ⊆ 𝒞𝑍, together with the fact that
the rows of 𝐻𝑋 are in 𝐶⟂

𝑋 , implies that 𝒞𝑍 contains rows of 𝐻𝑋 . But as these codes are LDPC, the rows
of 𝐻𝑋 are of bounded weight, and hence, the distance of 𝒞𝑍 is 𝒪(1).

Therefore, one will need to find more complex ways of combining good classical LDPC codes in order
to construct good qLDPC codes. The homological interpretation of these codes suggests that one can
seek an answer to this question by looking into ways in which one can combine two chain complexes
(or two topological spaces) to form a third, larger chain complex.



3
Products of Codes and Tensor Products

of Chain Complexes
In this section, we review three product constructions of CSS codes: the hypergraph product, the
distance balancing procedure, which we shall dub the EKZ-product, and their generalisation.

3.1. Hypergraph Product Codes
The hypergraph product code construction, which was devised by Tillich and Zémor [TZ09], was actu-
ally first constructed in a non-homological way. We therefore begin by presenting the initial construction,
and afterwards show how it can be understood much more naturally in the language of homology.

3.1.1. The Tanner Graph Approach: The Construction
There is a natural way to associate graphs to parity check matrices: one simply creates vertices for
each row (that is, for each check) and for each column (that is, for each physical qubit), and adds an
edge between a row vertex and a column vertex if the element of the parity check matrix corresponding
to that row and that column is 1 (so, if the qubit is involved in the check). Proceeding in this way, one
finds a bipartite graph, which is called the Tanner graph. We can formalise this construction as follows:

Definition 3.1. Given a classical code with an 𝑟 × 𝑛 parity check matrix 𝐻. Let 𝑉 = {1, 2,… , 𝑛} and
𝐶 = {1, 2,… , 𝑟}. The Tanner graph Τ(𝑉, 𝐶, 𝐸) associated to this code is a bipartite graph with node set
𝑉 ∪ 𝐶 and edge set consisting of all pairs (𝑣, 𝑐) such that 𝐻𝑣𝑐 = 1.

Note that not only can we construct a Tanner graph for every parity check matrix, but every bipartite
graph is also the Tanner graph of some classical code. As an example, let us consider the following
parity check matrix of a repetition code with open boundaries:

(
1 1 0
0 1 1

) (3.1)

The Tanner graph associated to this code can be found in Figure 3.1.

𝑐1
𝑐2

𝑣1
𝑣2
𝑣3

Figure 3.1: The Tanner graph corresponding to the repetition code with open boundaries. There are two vertices 𝑐1 and 𝑐2 that
correspond to the rows of the parity check matrix, and three vertices 𝑣1, 𝑣2, 𝑣3 corresponding to the columns.

Given two classical codes, we can construct their Tanner graphs. For graphs, one has the notion of
a graph product. It turns out that graph products can be used to define CSS codes from two classical

28



3.1. Hypergraph Product Codes 29

codes. The definition of the graph product is quite formal, however, and this construction is better un-
derstood visually. We therefore present this construction in Figure 3.2 after giving the formal definition.

Definition 3.2 (Graph Product). Let 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2) be Tanner graphs. We
define their product graph 𝒢1 × 𝒢2 as the graph Τ(𝑉, 𝐶, 𝐸), where 𝐶 = 𝐶𝑋 ∪ 𝐶𝑍, and furthermore:

𝑉 = 𝑉1 × 𝑉2 ∪ 𝐶1 × 𝐶2 (3.2)
𝐶𝑋 = 𝐶1 × 𝑉2 (3.3)
𝐶𝑍 = 𝑉1 × 𝐶2 (3.4)

The edge set is the union of the edge set of the subgraphs 𝒢1×𝑋 𝒢2 and 𝒢1×𝑍 𝒢2. We define 𝒢1×𝑋 𝒢2 =
Τ(𝑉, 𝐶𝑋 , 𝐸𝑋), and take the edge set 𝐸𝑋 as follows:

𝐸𝑋 = {((𝑥, 𝑦), (𝑥′, 𝑦′)) ∈ 𝑉 × 𝐶𝑋 ∶ (𝑥 = 𝑥′ ∈ 𝐶1 ∧ (𝑦, 𝑦′) ∈ 𝐸2) ∨ (𝑦 = 𝑦′ ∈ 𝑉2 ∧ (𝑥, 𝑥′) ∈ 𝐸1)} (3.5)

and take an analogous definition for 𝒢1 ×𝑍 𝒢2 = Τ(𝑉, 𝐶𝑍 , 𝐸𝑍).

Figure 3.2: Source: [TZ09]. An illustration of the graph product of two codes. On the left, the Tanner graphs Τ(𝑉1.𝐶1, 𝐸1) and
Τ(𝑉2, 𝐶2, 𝐸2) of two classical codes are visualised. The Tanner graph of their graph product is a bipartite graph consisting of a
vertex set 𝑉1 ×𝑉2 ∪𝐶1 ×𝐶2 and another vertex set 𝐶1 ×𝑉2 ∪𝑉1 ×𝐶2. To construct the edge set 𝐸𝑋 , one has to draw edges
between all pairs of vertices (𝑣1, 𝑣2) and (𝑐1, 𝑣2), and between all pairs of vertices (𝑐1, 𝑐2) and (𝑐1, 𝑣2). This is represented by
the straight lines labelled with the letter 𝑋. Similarly, the edges belonging to edge set 𝐸𝑍 are represented by dashed lines, and
are labelled with the letter 𝑍.

Definition 3.3 (Graph Product Code). Given two classical codes 𝒞1, 𝒞2 and their corresponding Tanner
graphs 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2). We define their graph product code𝒬(𝒢1×𝒢2) by setting
𝒞𝑋 = 𝒞(𝒢1 ×𝑋 𝒢2) and 𝒞𝑍 = 𝒞(𝒢1 ×𝑍 𝒢2).

Note that this is a CSS code: the two parity check matrices generated by the graph product satisfy
the condition 𝒞⟂𝑋 ⊆ 𝒞𝑍. To prove this, we first note that 𝒞𝑍 = ker (𝐻𝑍) = Row (𝐻𝑍)

⟂. Hence, the
statement is equivalent to proving that Row (𝐻𝑋) ⊆ Row (𝐻𝑍)

⟂, that is, for every row ℎ𝑥 of 𝐻𝑋 , that
ℎ𝑧 ⟂ ℎ𝑥 ∀ℎ𝑧 ∈ Row (𝐻𝑍). It suffices to prove this for all rows of 𝐻𝑍. To this end, consider a row ℎ𝑍
corresponding to (𝑣1, 𝑐2) ∈ 𝐶𝑍 and a row ℎ𝑋 corresponding to an element (𝑐1, 𝑣2) ∈ 𝐶𝑋 :

⟨ℎ𝑋 , ℎ𝑍⟩ = ∑
(𝑣,𝑣′)∈𝑉

ℎ𝑋(𝑣,𝑣′)
⋅ ℎ𝑍(𝑣,𝑣′) = ℎ𝑋(𝑣1,𝑣2)

⋅ ℎ𝑍(𝑣1,𝑣2) + ℎ𝑋(𝑐1,𝑐2)
⋅ ℎ𝑍(𝑐1,𝑐2) = 0 (mod 2) (3.6)



3.1. Hypergraph Product Codes 30

This sum simplifies to just two terms, because we have that:

ℎ𝑋(𝑣,𝑣′)
⋅ ℎ𝑍(𝑣,𝑣′) = 1 ⟺ ℎ𝑋(𝑣,𝑣′)

= ℎ𝑍(𝑣,𝑣′) = 1 ⟺
⎧⎪
⎨⎪
⎩

𝑣1 = 𝑣 = 𝑐1 ∧ (𝑐2, 𝑣′), (𝑣2, 𝑣′) ∈ 𝐸2
𝑣1 = 𝑣 ∧ 𝑣2 = 𝑣′ ∧ (𝑐1, 𝑣) ∈ 𝐸1 ∧ (𝑣′, 𝑐2) ∈ 𝐸2
𝑣′ = 𝑐2 ∧ 𝑣 = 𝑐1 ∧ (𝑣1, 𝑣) ∈ 𝐸1 ∧ (𝑣2, 𝑣′) ∈ 𝐸2
𝑐2 = 𝑣′ = 𝑣2 ∧ (𝑣1, 𝑣), (𝑐1, 𝑣) ∈ 𝐸1

(3.7)

={𝑣1 = 𝑣 ∧ 𝑣2 = 𝑣′ ∧ (𝑐1, 𝑣1) ∈ 𝐸1 ∧ (𝑣2, 𝑐2) ∈ 𝐸2
𝑣′ = 𝑐2 ∧ 𝑣 = 𝑐1 ∧ (𝑣1, 𝑐1) ∈ 𝐸1 ∧ (𝑣2, 𝑐2) ∈ 𝐸2

(3.8)

From the final expression, we see that ℎ𝑋(𝑣1,𝑣2)
⋅ ℎ𝑍(𝑣1,𝑣2) = ℎ𝑋(𝑐1,𝑐2)

⋅ ℎ𝑍(𝑐1,𝑐2) , and thus, we conclude that
the orthogonality condition indeed holds.

Let us now work out an example of this graph product. To this end, we again consider the repetition
code with open boundaries (whose Tanner graph 𝒢1 can be found in Figure 3.1). We denote its parity
check matrix by 𝐻1. Moreover, let us consider the code1 whose parity check matrix 𝐻2 is taken to be
𝐻2 = 𝐻𝑇

1 , and whose Tanner graph we denote by 𝒢2. We can then determine the graph product of
these two codes. For completeness, we first display their Tanner graphs in Figure 3.3.

𝑐1
𝑐2

𝑣1
𝑣2
𝑣3

𝑐′1
𝑐′2

𝑣′1
𝑣′2

𝑐′3
Figure 3.3: On the left: the Tanner graph of the repetition code with open boundaries, 𝒢1. On the right, the Tanner graph of the
code whose parity check matrix is the transpose of the parity check matrix of the repetition code with open boundaries, 𝒢2.

We can now determine their product graph. We first display the subgraph 𝒢1 ×𝑋 𝒢2 in Figure 3.4.

(𝑐1, 𝑐′1)
(𝑐1, 𝑐′2)

(𝑣2, 𝑣′2)
(𝑣2, 𝑣′1)
(𝑣1, 𝑣′2)
(𝑣1, 𝑣′1)

(𝑣3, 𝑣′2)
(𝑣3, 𝑣′1)

(𝑐2, 𝑐′1)
(𝑐2, 𝑐′2)

(𝑐1, 𝑐′3)

(𝑐2, 𝑐′3)

(𝑐1, 𝑣′1)
(𝑐1, 𝑣′2)
(𝑐2, 𝑣′1)
(𝑐2, 𝑣′2)

(𝑣1, 𝑐′2)
(𝑣1, 𝑐′1)

(𝑣1, 𝑐′3)

(𝑣2, 𝑐′2)
(𝑣2, 𝑐′1)

(𝑣2, 𝑐′3)

(𝑣3, 𝑐′2)
(𝑣3, 𝑐′1)

(𝑣3, 𝑐′3)

Figure 3.4: The subgraph 𝒢1 ×𝑋 𝒢2 of the product graph of the repetition code with open boundaries and its transpose code.
Different groups of edges are coloured for clarity.

1In our discussion of the homological approach to these product codes, it will become clear why this is not just an arbitrary choice
for the second code.
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From this subgraph, we can derive an expression for the parity check 𝐻𝑋 , namely:

𝐻𝑋 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 0 0 1 1

⎞
⎟
⎟
⎟
⎟
⎠

= (𝐻1 ⊗ 𝐼2|𝐼2 ⊗𝐻𝑇
2 ) (3.9)

Furthermore, we present the subgraph 𝒢1 ×𝑍 𝒢2 in Figure 3.5.

(𝑐1, 𝑐′1)
(𝑐1, 𝑐′2)

(𝑣2, 𝑣′2)
(𝑣2, 𝑣′1)
(𝑣1, 𝑣′2)
(𝑣1, 𝑣′1)

(𝑣3, 𝑣′2)
(𝑣3, 𝑣′1)

(𝑐2, 𝑐′1)
(𝑐2, 𝑐′2)

(𝑐1, 𝑐′3)

(𝑐2, 𝑐′3)

(𝑐1, 𝑣′1)
(𝑐1, 𝑣′2)
(𝑐2, 𝑣′1)
(𝑐2, 𝑣′2)

(𝑣1, 𝑐′2)
(𝑣1, 𝑐′1)

(𝑣1, 𝑐′3)

(𝑣2, 𝑐′2)
(𝑣2, 𝑐′1)

(𝑣2, 𝑐′3)

(𝑣3, 𝑐′2)
(𝑣3, 𝑐′1)

(𝑣3, 𝑐′3)

Figure 3.5: The subgraph 𝒢1 ×𝑍 𝒢2 of the product graph of the repetition code with open boundaries and its transpose code.
Different groups of edges are coloured for clarity.

The corresponding parity check matrix 𝐻𝑍 is now given by:

𝐻𝑍 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (𝐼3 ⊗𝐻𝑇
1 |𝐻2 ⊗ 𝐼3) (3.10)

To understand this code, we introduce a 3 by 3 lattice and label its edges as is done in Figure 3.6.
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1 2

3 4

5 6

7 8 9

10 11 12

Figure 3.6: A 3 by 3 lattice along with a labelling of its edges.

As Figure 3.7 shows, the 𝑍-checks of the CSS code (i.e. the rows of 𝐻𝑍) can be identified with the
vertices of this lattice.

1 2

3 4

5 6

7 8 9

10 11 12
𝐻𝑍 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 1 0 0 0 0 0
⋮

0 0 1 1 0 0 0 1 0 0 1 0
⋮

⎞
⎟
⎟
⎟
⎟
⎠

Figure 3.7: On the left, the first row of the 𝑍-check matrix of the product code considered above is given in red. On the right,
one can see that the check corresponding to this row can be identified with the top left vertex of the lattice (in red). Similarly, one
can identify the fifth row of 𝐻𝑍 (in green) with the middle vertex of the lattice (also in green).

Furthermore, as is illustrated in Figure 3.8, the 𝑋-checks can be identified with the plaquettes of this
lattice.

𝐻𝑋 = (
1 0 1 0 0 0 1 1 0 0 0 0

⋮
)

1 2

3
4

5 6

7 8 9

10 11 12

Figure 3.8: On the left, the first row of the 𝑋-check matrix of the product code considered above is given in red. On the right,
one can see that the check corresponding to this row can be identified with the top left plaquette of the lattice (in red).

We have thus found the product code 𝒬(𝒢1×𝒢2). While the construct code is not very useful (as it does
not encode any qubits2), it will help to get an intuition for the product construction once we discuss this
product within the context of homology.

3.1.2. The Tanner Graph Approach: Determining 𝑛, 𝑘 and 𝑤
The parameters of the hypergraph product of the repetition code found in the previous section can be
derived from more general results, which were first presented in [TZ09]. In this section, we will present
a different proof than the one presented in [TZ09] for their most generic results, which establish a
relationship for the number of encoded qubits, the weight and the number of physical qubits of the
graph product of two classical codes in terms of the parameters of these classical codes.

Theorem 3.1. Given two classical codes 𝒞1, 𝒞2 with parameters [𝑛𝑖, 𝑘𝑖, 𝑑𝑖] and weight 𝑤𝑖 (for 𝑖 = 1, 2)
and their corresponding Tanner graphs 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2) such that their corre-
2This can be seen by calculating the number of independent stabilisers. As these correspond to the rows of the parity check
matrices, the number of independent stabilisers is the sum of their row ranks. As row and column ranks are equal, the fact
that the first two and last two columns of 𝐻𝑋 are linearly independent ensures that the rank of 𝐻𝑋 is 4. The rank of 𝐻𝑍 is 8,
although this can best be seen by manual computation.
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sponding parity check matrices 𝐻1 and 𝐻2 are full-rank matrices, i.e. 𝐻2 has full row-rank and 𝐻1 has
full column-rank. The parity check matrices of the code corresponding to their graph product are then
given by:

𝐻𝑋 = (𝐻1 ⊗ 𝐼𝑛2 |𝐼𝑛1−𝑘1 ⊗𝐻𝑇
2 ) , 𝐻𝑍 = (𝐼𝑛1 ⊗𝐻2|𝐻𝑇

1 ⊗ 𝐼𝑛2−𝑘2) (3.11)

and, moreover, the product code is an [[𝑛1𝑛2 + (𝑛1 − 𝑘1)(𝑛2 − 𝑘2), 𝑘1𝑘2,min {𝑑1, 𝑑2}]]-code with weight
𝑤1 + 𝑤2.

As stated above, we will not prove this theorem, but rather, we will prove a more general result that
omits the requirement that these matrices be full-rank. To do so, however, we will need the concept of
a transpose graph.

Definition 3.4 (Transpose Graph). Let 𝐺 = Τ(𝑉, 𝐶, 𝐸) be the Tanner graph of a code 𝒞 with parity check
matrix𝐻𝑇 . Then its transpose graph 𝐺𝑇 is the Tanner graph Τ(𝐶, 𝑉, 𝐸). Furthermore, the classical code
associated to the transpose graph has parity check matrix 𝐻𝑇 , and we denote the number of bits in
encodes by 𝑘𝑇 bits. This code associated to the transpose graph is denoted by 𝒞𝑇 .

We can easily determine the number of encoded qubits of this transpose code:

Lemma 3.2. Consider a code 𝒞 with an 𝑟 × 𝑛 parity check matrix 𝐻 encoding 𝑘 bits and consider its
transpose code 𝒞𝑇 . Then:

𝑘𝑇 = 𝑟 − 𝑛 − 𝑘 (3.12)

Proof.

𝑘 = dim (ker (𝐻)) = 𝑛 − dim (Row (𝐻)) = 𝑛 − dim (Col (𝐻)) = 𝑛 − dim (Row (𝐻𝑇)) (3.13)
= 𝑛 − (𝑟 − dim (ker (𝐻𝑇))) (3.14)
= 𝑛 − 𝑟 + 𝑘𝑇 (3.15)

We are now ready to state the general result.

Theorem 3.3. Given two classical codes 𝒞1, 𝒞2 with parameters [[𝑛𝑖, 𝑘𝑖, 𝑑𝑖]] and weight 𝑤𝑖 (for 𝑖 = 1, 2)
and their corresponding Tanner graphs 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2). The product code
𝒬(𝐶1, 𝐶2) has parameters 𝑛 = 𝑛1𝑛2 + 𝑟1𝑟2, 𝑘 = 𝑘1𝑘2 + 𝑘𝑇1 𝑘𝑇2 and has weight 𝑤 = 𝑤1 + 𝑤2.

Proof. First note that 𝑉 = 𝑉1 × 𝑉2 ∪ 𝐶1 × 𝐶2, and hence the code space is a subspace of a 𝑛 = |𝑉| =
|𝑉1||𝑉2| + |𝐶1||𝐶|2 = 𝑛1𝑛2 + 𝑟1𝑟2 dimensional code.
We now prove that the quantum code encodes 𝑘 ∶= 𝑘1𝑘2 + 𝑘𝑇1 𝑘𝑇2 qubits. To this end, note that:

𝑘 = dim (𝒞𝑋/𝒞⟂𝑍) = dim (𝒞𝑋) + dim (𝒞𝑍) − (𝑛1𝑛2 + 𝑟1𝑟2) (3.16)

Hence, it suffices to determine ker (𝐻𝑋) and ker (𝐻𝑍). We claim that dim (ker (𝐻𝑋)) = 𝑛1𝑛2+𝑟1𝑟2−𝑟1𝑛2+
𝑘𝑇1 𝑘2.

Consider 𝐻𝑋 = (𝐻1 ⊗ 𝐼𝑛2 |𝐼𝑟1 ⊗𝐻𝑇
2 ). First note that for 𝑥 ∈ 𝔽𝑛1𝑛22 , 𝑦 ∈ 𝔽𝑟1𝑟22 , we have that 𝐻𝑋(𝑥 𝑦)𝑇 =

(𝐻1 ⊗ 𝐼𝑛2)𝑥 + (𝐼𝑟1 ⊗𝐻2)𝑇𝑦. Hence:

(
𝑥
𝑦
) ∈ ker (𝐻𝑋) ⟺ (𝐻1 ⊗ 𝐼𝑛2)𝑥 = (𝐼𝑟1 ⊗𝐻𝑇

2 )𝑦 (3.17)

We thus write 𝑥 = ∑1≤𝑖≤𝑛1
1≤𝑗≤𝑛2

𝛼𝑖𝑗𝑒𝑖 ⊗ 𝑓𝑗 and 𝑦 = ∑1≤𝑘≤𝑟1
1≤𝑙≤𝑟2

𝛽𝑘𝑙𝑔𝑘 ⊗ ℎ𝑙, where we take 𝑒𝑖 and 𝑔𝑘 such that:

1. {𝐻1𝑒𝑖|1 ≤ 𝑖 ≤ 𝑛1 − 𝑘1} is a basis of Col (𝐻1) ⊆ 𝔽𝑟12
2. 𝑔𝑖 = 𝐻1𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑛1 − 𝑘1
3. {𝑒𝑖 | 𝑛1 − 𝑘1 < 𝑖 ≤ 𝑛1} is a basis of ker (𝐻1) ⊆ 𝔽𝑛12
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4. {𝑔𝑘 = (𝛿𝑖)𝑘 | 𝑛1 − 𝑘1 < 𝑘 ≤ 𝑟1} with (𝛿𝑖)𝑗 = 𝛿𝑖𝑗 extends {𝑔𝑘 | 1 < 𝑘 ≤ 𝑛1 − 𝑘1} to a basis of ⊆ 𝔽𝑟12 .

Similarly, we take 𝑓𝑗 and ℎ𝑙 such that:

1. {𝐻𝑇
2 ℎ𝑙|1 ≤ 𝑙 ≤ 𝑛2 − 𝑘2} is a basis of Col (𝐻𝑇

2 ) ⊆ 𝔽𝑛22
2. 𝑓𝑗 = 𝐻𝑇

2 ℎ𝑗 for all 1 ≤ 𝑗 ≤ 𝑛2 − 𝑘2

3. {ℎ𝑙 | 𝑛2 − 𝑘2 < 𝑙 ≤ 𝑟2} is a basis of ker (𝐻𝑇
2 ) ⊆ 𝔽𝑟22

4. {𝑓𝑗 = (𝛿𝑗)𝑘 | 𝑛2 − 𝑘2 < 𝑗 ≤ 𝑛2} extends {𝑓𝑗 | 1 ≤ 𝑗 ≤ 𝑛2 − 𝑘2} to a basis of 𝔽𝑛22 .

We first determine (𝐻1 ⊗ 𝐼𝑛2)𝑥.

(𝐻1 ⊗ 𝐼𝑛2)𝑥 = (𝐻1 ⊗ 𝐼𝑛2)
⎛
⎜
⎜
⎝

∑
1≤𝑖≤𝑛1
1≤𝑗≤𝑛2

𝛼𝑖𝑗𝑒𝑖 ⊗ 𝑓𝑗
⎞
⎟
⎟
⎠
= ∑

1≤𝑖≤𝑛1
1≤𝑗≤𝑛2

𝛼𝑖𝑗𝐻1𝑒𝑖 ⊗ 𝑓𝑗 (3.18)

= ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2

𝛼𝑖𝑗𝐻1𝑒𝑖 ⊗ 𝑓𝑗 = ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2

𝛼𝑖𝑗𝑔𝑖 ⊗ 𝑓𝑗 (3.19)

= ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗𝑔𝑖 ⊗ 𝑓𝑗 + ∑
1≤𝑖≤𝑛1−𝑘1
𝑛2−𝑘2<𝑗≤𝑛2

𝛼𝑖𝑗𝑔𝑖 ⊗ 𝑓𝑗 (3.20)

= ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗𝑔𝑖 ⊗𝐻𝑇
2 ℎ𝑗 + ∑

1≤𝑖≤𝑛1−𝑘1
𝑛2−𝑘2<𝑗≤𝑛2

𝛼𝑖𝑗𝑔𝑖 ⊗ 𝑓𝑗 (3.21)

(3.22)

We now determine (𝐼𝑟1 ⊗𝐻𝑇
2 )𝑦:

(𝐼𝑟1 ⊗𝐻𝑇
2 )𝑦 = (𝐼𝑟1 ⊗𝐻𝑇

2 )
⎛
⎜
⎜
⎝
∑

1≤𝑘≤𝑟1
1≤𝑙≤𝑟2

𝛽𝑘𝑙𝑔𝑘 ⊗ ℎ𝑙
⎞
⎟
⎟
⎠
= ∑

1≤𝑘≤𝑟1
1≤𝑙≤𝑟2

𝛽𝑘𝑙𝑔𝑘 ⊗𝐻𝑇
2 ℎ𝑙 = ∑

1≤𝑘≤𝑟1
1≤𝑙≤𝑛2−𝑘2

𝛽𝑘𝑙𝑔𝑘 ⊗𝐻𝑇
2 ℎ𝑙 (3.23)

= ∑
1≤𝑘≤𝑛1−𝑘1
1≤𝑙≤𝑛2−𝑘2

𝛽𝑘𝑙𝑔𝑘 ⊗𝐻𝑇
2 ℎ𝑙 + ∑

𝑛1−𝑘1<𝑘≤𝑟1
1≤𝑙≤𝑛2−𝑘2

𝛽𝑘𝑙𝑔𝑘 ⊗𝐻𝑇
2 ℎ𝑙

(3.24)

For (𝑥 𝑦)𝑇 to be in ker (𝐻𝑋), we thus have that:

⎧
⎨
⎩

𝛼𝑖𝑗 = 𝛽𝑖𝑗 𝑖 ∈ {1,… , 𝑛1 − 𝑘1} , 𝑗 ∈ {1,… , 𝑛2 − 𝑘2}
𝛼𝑖𝑗 = 0 𝑖 ∈ {1,… , 𝑛1 − 𝑘1} , 𝑗 ∈ {𝑛2 − 𝑘2,… , 𝑛2}
𝛽𝑘𝑙 = 0 𝑘 ∈ {𝑛1 − 𝑘1,… , 𝑟1} , 𝑗 ∈ {1,… , 𝑛2 − 𝑘2}

(3.25)

We thus conclude that all elements of the kernel of 𝐻𝑋 are of the form:

∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗 (
𝑒𝑖 ⊗𝐻𝑇

2 ℎ𝑗
𝐻1𝑒𝑖 ⊗ ℎ𝑗

) + ∑
𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2

𝛼𝑖𝑗 (
𝑒𝑖 ⊗ 𝑓𝑗

0
) + ∑

1≤𝑘≤𝑟1
𝑛2−𝑘2<𝑙≤𝑟2

𝛽𝑘𝑙 (
0

𝑔𝑘 ⊗ ℎ𝑙
) (3.26)

We thus see that the dimension of the kernel is:

(𝑛1 − 𝑘1) (𝑛2 − 𝑘2) + 𝑛2𝑘1 + 𝑟1 (𝑟2 − 𝑛2 + 𝑘2) = 𝑛1𝑛2 + 𝑘1𝑘2 − 𝑘2𝑛1 + 𝑟1𝑟2 − 𝑟1𝑛2 + 𝑟1𝑘2 (3.27)
= 𝑛1𝑛2 + 𝑟1𝑟2 − 𝑟1𝑛2 + (𝑘1 − 𝑛1 + 𝑟1) 𝑘2 (3.28)
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By the lemma above, the proof of the claim is finished. The proof that dim (ker (𝐻𝑍)) = 𝑛1𝑛2 + 𝑟1𝑟2 −
𝑟2𝑛1 + 𝑘1𝑘𝑇2 can be derived in an analogous manner. We thus see that:

𝑘 = 2𝑛1𝑛2 + 2𝑟1𝑟2 − 𝑟1𝑛2 − 𝑟2𝑛1 + 𝑘1𝑘𝑇2 + 𝑘𝑇1 𝑘2 − 𝑛1𝑛2 − 𝑟1𝑟2 (3.29)
= 𝑛1𝑛2 + 𝑟1𝑟2 − 𝑟1𝑛2 − 𝑟2𝑛1 + 𝑘1𝑘𝑇2 + 𝑘𝑇1 𝑘2 (3.30)
= 𝑛1𝑛2 + 𝑟1𝑟2 − 𝑟1𝑛2 − 𝑟2𝑛1 + 𝑘1 (𝑘2 + 𝑟2 − 𝑛2) + 𝑘𝑇1 𝑘2 (3.31)
= 𝑘1𝑘2 + 𝑟2 (𝑘1 + 𝑟1 − 𝑛1) + 𝑛2 (𝑛1 − 𝑟1 − 𝑘1) + 𝑘𝑇1 𝑘2 (3.32)
= 𝑘1𝑘2 + 𝑟2𝑘𝑇1 − 𝑛2𝑘𝑇1 + 𝑘𝑇1 𝑘2 (3.33)
= 𝑘1𝑘2 + 𝑘𝑇1 (𝑘2 − 𝑛2 + 𝑟2) = 𝑘1𝑘2 + 𝑘𝑇1 𝑘𝑇2 (3.34)

Lastly, from the expressions for 𝐻𝑋 and 𝐻𝑌 , one can easily see that each row has weight at most
𝑤1 + 𝑤2.

We see that the rate of the hypergraph product of two codes can, in principle, scale nicely. Let us
take two full-rank parity check matrices 𝐻1 and 𝐻2 of two codes with rates 𝑅1 = 𝑘1/𝑛1 and 𝑅2 = 𝑘2/𝑛2,
respectively. The rate of their hypergraph product, 𝑅, becomes:

𝑅 = 𝑘
𝑛 = 𝑘1𝑘2

𝑛1𝑛2 + (𝑛1 − 𝑘1)(𝑛2 − 𝑘2)
= 𝑅1𝑅2
1 + (1 − 𝑅1)(1 − 𝑅2)

= 1
1 + 1

𝑅1
( 1
𝑅2
− 1) + 1

𝑅2
( 1
𝑅1
− 1)

(3.35)

One sees that by taking the hypergraph product of two codes, the rate of the new code scales like

𝑅 ∼ 1
1 + Ω( 1

𝑅1
)

(3.36)

Hence, for good input codes, the rate of their hypergraph product can be Ω(1). The authors of the
original paper were indeed able to construct a code family with positive rate [TZ09].

3.1.3. The Tanner Graph Approach: Determining the Distance
We now turn our attention to determining the distance of the graph product of two classical codes in
terms of their respective distances. In order to find an explicit expression for the distance, we need to
make some assumptions.

Theorem 3.4. Given two classical codes 𝒞1, 𝒞2 with parameters [[𝑛𝑖, 𝑘𝑖, 𝑑𝑖]] (𝑖 = 1, 2) and their corre-
sponding Tanner graphs 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2). The distance of their product code
𝒬(𝐶1, 𝐶2), 𝑑, satisfies the following lower bound3:

𝑑 ≥ min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 } (3.37)

Furthermore, if 𝑑1 = min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 } and 𝑑2 ≠ ∞, then 𝑑 = min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 }. This final statement
still holds if we swap 𝑑1 and 𝑑2, or if we swap the distances for the transposed distances.

Proof. We first prove that 𝑑 ≥ min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 }. Note that it suffices to prove that 𝑑𝑋 ≥ min {𝑑1, 𝑑𝑇2 }
and that 𝑑𝑍 ≥ min {𝑑2, 𝑑𝑇1 }.
As 𝑑𝑋 = min𝑥∈𝒞𝑋⧵𝒞⟂

𝑍
{|𝑥|}, proving that 𝑑𝑋 ≥ min {𝑑1, 𝑑𝑇2 } is equivalent to proving that ∀𝑥 ∈ 𝒞𝑋 ∶ |𝑥| <

min {𝑑1, 𝑑𝑇2 }, we must have that 𝑥 ∈ 𝒞⟂𝑍 . Consider one such 𝑥. We have already seen that 𝑥 can be
written as:

𝑥 = ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗 (
𝑒𝑖 ⊗𝐻𝑇

2 ℎ𝑗
𝐻1𝑒𝑖 ⊗ ℎ𝑗

) + ∑
𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2

𝛼𝑖𝑗 (
𝑒𝑖 ⊗ 𝑓𝑗

0
) + ∑

1≤𝑘≤𝑟1
𝑛2−𝑘2<𝑙≤𝑟2

𝛽𝑘𝑙 (
0

𝑔𝑘 ⊗ ℎ𝑙
) (3.38)

We now prove that 𝑥 ∈ 𝒞⟂𝑍 by showing that it is in Row (𝐻𝑍) (note that the parity check matrix 𝐻𝑍 is the
generator matrix of 𝒞⟂𝑍). We thus first determine a basis of Row (𝐻𝑍). Note that Row (𝐻𝑍) = Col (𝐻𝑇

𝑍 ),
3Here we take the distance of a code encoding zero bits to be∞.
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and furthermore note that given some basis {𝑣𝑖} ⊆ 𝔽𝑛1𝑟22 , Col (𝐻𝑍) = Span𝔽2 {𝑣𝑖}. We already have such
a basis, the basis consisting of vectors 𝑒𝑖 ⊗ ℎ𝑗 for 𝑖 = 1,… , 𝑛1 and 𝑗 = 1,… , 𝑟2. Now:

𝐻𝑇
𝑍 (𝑒𝑖 ⊗ ℎ𝑗) = (

𝐼𝑛1 ⊗𝐻𝑇
2

𝐻1 ⊗ 𝐼𝑟2
) (𝑒𝑖 ⊗ ℎ𝑗) = (

(𝐼𝑛1 ⊗𝐻𝑇
2 )(𝑒𝑖 ⊗ ℎ𝑗)

𝐻1 ⊗ 𝐼𝑟2(𝑒𝑖 ⊗ ℎ𝑗
) = (

𝑒𝑖 ⊗𝐻𝑇
2 ℎ𝑗)

𝐻1𝑒𝑖 ⊗ ℎ𝑗
) (3.39)

Therefore:

Row (𝐻𝑍) = ∑
1≤𝑖≤𝑛1
1≤𝑗≤𝑟2

(
𝑒𝑖 ⊗𝐻𝑇

2 ℎ𝑗)
𝐻1𝑒𝑖 ⊗ ℎ𝑗

) (3.40)

= ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛾𝑖𝑗 (
𝑒𝑖 ⊗𝐻𝑇

2 ℎ𝑗
𝐻1𝑒𝑖 ⊗ ℎ𝑗

) + ∑
𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛾𝑖𝑗 (
𝑒𝑖 ⊗ 𝑓𝑗

0
) + ∑

1≤𝑘≤𝑛1−𝑘1
𝑛2−𝑘2<𝑙≤𝑟2

𝛾𝑘𝑙 (
0

𝑔𝑘 ⊗ ℎ𝑙
) (3.41)

For 𝑥 to be in Row (𝐻𝑍), we thus have to prove that

1. 𝛼𝑖𝑗 = 0 ∀ 𝑖, 𝑗 such that 𝑛1 − 𝑘1 < 𝑖 ≤ 𝑛1, 𝑛1 − 𝑘1 < 𝑗 ≤ 𝑛2
2. 𝛽𝑘,𝑙 = 0 ∀𝑘, 𝑙 such that 𝑛1 − 𝑘1 < 𝑘 ≤ 𝑟1, 𝑛2 − 𝑘2 < 𝑙 ≤ 𝑟2.

We prove the former statement, and note that the proof of the latter statement runs parallel to the proof
of the former. To this end, we note that as 𝑥 = (𝑥1, 𝑥2)𝑇 , the requirement |𝑥| ≤ min {𝑑1, 𝑑𝑇2 } in particular
implies that |𝑥1| ≤ min {𝑑1, 𝑑𝑇2 } ≤ 𝑑1. Now suppose that the statement does not hold. Then we can
write:

𝑥1 = ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖 ⊗𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖 ⊗ 𝑓𝑗) + ∑
𝑛1−𝑘1<𝑖≤𝑛1
𝑛2−𝑘2<𝑗≤𝑛2

𝛼𝑖𝑗(𝑒𝑖 ⊗ 𝑓𝑗) (3.42)

where the last term is non-zero. Note that as 𝑒𝑖 with 𝑖 > 𝑛1 − 𝑘1 is an element of ker (𝐻1), we have that
|𝑒𝑖| ≥ 𝑑1. Furthermore, as 𝛼𝑖𝑗 ∈ {0, 1}, we can write ̂𝑒𝑗 = ∑𝑛1−𝑘1<𝑖≤𝑛1 𝛼𝑖𝑗𝑒𝑖, such that:

𝑥1 = ∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖 ⊗𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖 ⊗ 𝑓𝑗) + ∑
𝑛2−𝑘2<𝑖≤𝑛2

( ̂𝑒𝑗 ⊗ 𝑓𝑗) (3.43)

Now, we can determine |𝑥1|:

|𝑥1| =

|
|
|
|
|
|
|
|
|
|

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖1 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖1 ⋅ 𝑓𝑗) + ∑
𝑛2−𝑘2<𝑗≤𝑛2

̂𝑒𝑗1 ⋅ 𝑓𝑗

⋮
∑

1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑛1 ⋅ 𝐻
𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑛1 ⋅ 𝑓𝑗) + ∑
𝑛2−𝑘2<𝑗≤𝑛2

̂𝑒𝑗𝑛1 ⋅ 𝑓𝑗

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|
|
|
|
|
|
|
|
|
|

(3.44)

Which is equal to:

|𝑥1| =
𝑛1
∑
𝑘=1

||||||
∑

1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝑓𝑗) + ∑
𝑛2−𝑘2<𝑗≤𝑛2

̂𝑒𝑗𝑘 ⋅ 𝑓𝑗

||||||
(3.45)

let us consider some 𝑗0 ∈ {𝑛2 − 𝑘2 + 1,… , 𝑛2} such that ̂𝑒𝑗0 ≠ 0. Then we can write:

|𝑥1| =
𝑛1
∑
𝑘=1

||||||
∑

1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝑓𝑗) + ( ̂𝑒𝑖0𝑘 ⋅ 𝑓𝑖0) + ∑
𝑛2−𝑘2<𝑗≤𝑛2

𝑗≠𝑗0

̂𝑒𝑗𝑘 ⋅ 𝑓𝑗

||||||
(3.46)
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Let us define the set 𝐾 ∶= {𝑘 ∈ {1,… , 𝑛1} ∶ ̂𝑒𝑖0𝑘 = 1}. Note that as these ̂𝑒𝑖’s are linear combinations of
elements in 𝒞1, we have that || ̂𝑒𝑖0 || ≥ 𝑑1, and therefore #𝐾 ≥ 𝑑1. Hence, we see that:

|𝑥1| ≥ ∑
𝑘∈𝐾

||||||
∑

1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝑓𝑗) + ̂𝑒𝑖0𝑘 ⋅ 𝑓𝑖0 + ∑
𝑛2−𝑘2<𝑗≤𝑛2

𝑗≠𝑗0

̂𝑒𝑖𝑘 ⋅ 𝑓𝑗

||||||
(3.47)

We now claim that ∀𝑘 ∈ 𝐾:
||||||

∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝑓𝑗) + ̂𝑒𝑖0𝑘 ⋅ 𝑓𝑖0 + ∑
𝑛2−𝑘2<𝑗≤𝑛2

𝑗≠𝑗0

̂𝑒𝑖𝑘 ⋅ 𝑓𝑗

||||||
≥ 1 (3.48)

We only have to rule out the case that the Hamming weight equals 0 (as Hamming weights are always
positive). To this end, we note that 𝑒𝑖0𝑘 = 1 for all 𝑘 ∈ 𝐾. Now suppose the weight were zero for some
𝑘 ∈ 𝐾. Then we this would imply that:

∑
1≤𝑖≤𝑛1−𝑘1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝐻𝑇
2 ℎ𝑗) + ∑

𝑛1−𝑘1<𝑖≤𝑛1
1≤𝑗≤𝑛2−𝑘2

𝛼𝑖𝑗(𝑒𝑖𝑘 ⋅ 𝑓𝑗) = 𝑓𝑖0 + ∑
𝑛2−𝑘2<𝑗≤𝑛2

𝑗≠𝑗0

̂𝑒𝑖𝑘 ⋅ 𝑓𝑗 (3.49)

This can only be the case, however, if both sides equal 0, i.e. if:

𝑓𝑖0 = ∑
𝑛2−𝑘2<𝑗≤𝑛2

𝑗≠𝑗0

̂𝑒𝑖𝑘 ⋅ 𝑓𝑗 (3.50)

But this cannot be the case, as all 𝑓𝑖’s considered are different basis vectors.  . Hence, the Hamming
weight is at least 1. But then, we see that:

|𝑥1| ≥ #𝐾 ⋅ 1 = 𝑑1 (3.51)

That is, |𝑥| ≥ |𝑥1| ≥ 𝑑1.  .
Note that the proof of 𝑑𝑍 ≥ min {𝑑2, 𝑑𝑇1 } is completely analogous to this proof. This thus proves the first
part of the theorem.

Now suppose that 𝑑1 = min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 } and that 𝑑2 ≠ ∞. We can now explicitly construct a codeword
𝑥 ∈ 𝒞𝑋 ⧵ 𝒞⟂𝑍 such that |𝑥| = 𝑑1. First consider a vector 𝑥0 ∈ 𝒞1 with Hamming weight 𝑑1 = |𝑥0|. As
𝑑2 ≠ ∞, 𝑘2 ≠ 0, and we see that there are 𝑓𝑗 ’s for 𝑗 > 𝑛2 − 𝑘2. But these 𝑓𝑗 ’s all have weight 1 (by
construction). Pick one such 𝑓𝑗 , say 𝑓𝑗0 . Then:

||𝑥0 ⊗ 𝑓𝑗0 || = |𝑥0| ⋅ ||𝑓𝑗0 || = |𝑥0| = 𝑑1 (3.52)

Furthermore, (𝑥0 ⊗ 𝑓𝑗0 , 0)
𝑇 ∈ 𝒞𝑋 ⧵ 𝒞⟂𝑍 , as 𝑓𝑗0 ∉ Col (𝐻𝑇

2 ).
The proof for the case where 𝑑𝑇2 = min {𝑑1, 𝑑2, 𝑑𝑇1 , 𝑑𝑇2 } and 𝑑𝑇1 ≠ ∞ runs similarly. The other two cases
can be proved similarly by constructing a codeword 𝑥 ∈ 𝒞𝑍 ⧵ 𝒞⟂𝑋 .

This theorem points towards a fundamental limitation of the hypergraph product construction: consid-
ering two families of classical codes with full rank parity check matrices and with linear distance, we
see that the minimum distance of the hypergraph product of these two codes scales like Θ(√𝑛), and
hence, is no longer linear. Thus, even with two good classical codes, the hypergraph product is still
not able to yield a good CSS code.

One may wonder why this code construction is called the hypergraph product construction. The reason
for this is there exists a different product of two Tanner graphs than the graph product we have seen
thus far, which is the so-called hypergraph product:

Definition 3.5. Given two Tanner graphs 𝒢1 = Τ(𝑉1, 𝐶1, 𝐸1) and 𝒢2 = Τ(𝑉2, 𝐶2, 𝐸2). The hypergraph
product of these two graphs, 𝐺1⊗𝐺2, is the Tanner subgraph of 𝐺1 ×𝐺2 with variable node set 𝑉1 ×𝑉2
and check node set 𝐶1 × 𝑉2 ∪ 𝑉1 × 𝐶2.
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One can use this hypergraph product, which is much easier to construct than the graph product, to
analyse the graph product of two codes, since the following relations hold:

𝒢1 ×𝑋 𝒢2 = (𝒢𝑇1 ⊗ 𝒢2)𝑇 (3.53)
𝒢1 ×𝑍 𝒢2 = (𝒢1 ⊗ 𝒢𝑇2 )𝑇 (3.54)

In [TZ09], this hypergraph product was used for the analysis of the graph product construction, and
therefore, their code construction was dubbed the hypergraph product construction. This point of view
will turn out to be valuable when we consider the homological perspective on these codes.

3.1.4. The Homological Approach: The Construction
Now that we have seen how the hypergraph product of two codes can be constructed using Tanner
graphs, we change perspectives and try to construct the hypergraph product from the point of view of
homology. Let us first consider the chain complexes which one can associate to two classical codes,
𝒞𝑇1 and 𝒞2:

𝔽𝑟12 𝔽𝑛12

𝔽𝑛22 𝔽𝑟22
𝐻2

𝐻𝑇
1

By taking the tensor product of these complexes, we obtain the following product complex:

𝔽𝑟12 ⊗ 𝔽𝑛22 𝔽𝑛12 ⊗ 𝔽𝑛22 ⊕ 𝔽𝑟12 ⊗ 𝔽𝑟22 𝔽𝑛12 ⊗ 𝔽𝑟22
𝜕2 𝜕1

Where:

𝜕2 = (
𝐻𝑇
1 ⊗ 𝐼𝑛2
𝐼𝑟1 ⊗𝐻2

) = 𝐻𝑇
𝑋 (3.55)

𝜕1 = (𝐼𝑛1 ⊗𝐻2 𝐻𝑇
1 ⊗ 𝐼𝑟2) = 𝐻𝑍 (3.56)

Taking the transposed complex of the one obtained here gives us 𝐻𝑋 as a differential. This procedure
shows the symmetry between taking tensor products of chain complexes and taking hypergraph prod-
ucts: we obtain 𝐻𝑋 as the differential of the complex (𝒞𝑇1 ⊗𝒞2)𝑇 , while we can obtain the Tanner graph
associated to the 𝑋-stabilisers, 𝒢1 ×𝑋 𝒢2, by taking the transpose graph of the hypergraph product of
the tranpose of one Tanner graph and the other, i.e. as (𝒢1 ⊗ 𝒢𝑇2 )𝑇 . Hence, we see that the operation
that the hypergraph product encodes in the world of Tanner graphs is equivalent to the operation that
the tensor product encodes in the world of chain complexes!

Let us return to the example of the graph product of a repetition codes with open boundaries and its
transpose code, as was presented at the end of Section 3.1.1. We denote this code by 𝒞, and we recall
that its parity check matrix of this code is given by:

(
1 1 0
0 1 1

) (3.57)

The chain complex corresponding to this code can actually be interpreted as the cellulation of a line,
as is illustrated in Figure 3.9.

𝑒1 𝑒2

𝑣1 𝑣2 𝑣3

Figure 3.9: The cellular complex corresponding to a repetition code with open boundaries.
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By shifting to the perspective of chain complexes and denoting the chain complex corresponding to the
code 𝒞 by 𝒞∗, we see that this graph product code is given by the chain complex 𝒞∗⊗𝒞∗. By Figure 3.9,
we see that the chain complex 𝒞∗ actually corresponds to the cellular complex belonging to a straight
line, which is homeomorphic to the closed unit interval [−1, 1]. As the tensor product of two cellular
complexes is a cellular complex of the product of the corresponding spaces, we see that 𝒞∗ ⊗ 𝒞∗ is
actually a cellular complex of [−1, 1]×[−1, 1]. This allows us to visualise this product construction quite
nicely, as is done in Figure 3.10.

Figure 3.10: A visualisation of the hypergraph product of the repetition code with open boundaries and its transpose code. As
this construction is equivalent to taking the tensor product of the chain complex corresponding to this code with itself, we see that
the product code is described by the tensor product complex. As the repetition code arises from a cellular complex of a straight
line, the product code therefore arises from the cellular complex of a square. This is illustrated in this figure. One can see that
the 𝑍-checks of the product code, which correspond to the 0-cells of the square (in blue), arise from taking the product of 0-cells
of the straight lines, whereas the 𝑋-checks, which correspond to the plaquettes (in green), arise from taking the product of two
1-cells.

3.1.5. The Homological Approach: Determining 𝑘
Given that we can therefore understand hypergraph product codes in terms of tensor products of chain
complexes, homology becomes the natural language for analysing this product. To this end, let us use
the Künneth formula to calculate the number of encoded qubits 𝑘 in a substantially easier manner. To
do so, however, we first need to determine the homology groups of the chain complexes related to 𝒞1
and 𝒞2:

𝐻0(𝒞𝑇1 ) = 𝔽𝑛12 /Im (𝐻𝑇
1 ) = 𝔽𝑛12 /Row (𝐻1) (3.58)

𝐻1(𝒞𝑇1 ) = ker (𝐻𝑇
1 ) /0 (3.59)

𝐻0(𝒞2) = 𝔽𝑟22 /Im (𝐻2) = 𝔽𝑟22 /Row (𝐻𝑇
2 ) (3.60)

𝐻1(𝒞2) = ker (𝐻2) (3.61)

Using the following Kunneth formula:

𝐻1(𝒞𝑇1 ⊗𝒞2) = 𝐻1(𝒞𝑇1 ) ⊗ 𝐻0(𝒞2) ⊕ 𝐻0(𝒞𝑇1 ) ⊗ 𝐻1(𝒞2) (3.62)

And hence, we almost immediately find the expected result:

𝑘 ∶= dim (𝐻1(𝒞𝑇1 ⊗𝒞2)) = dim (𝐻1(𝒞𝑇1 )) ⋅ dim (𝐻0(𝒞2)) + dim (𝐻0(𝒞𝑇1 )) ⋅ dim (𝐻1(𝒞2)) = 𝑘1𝑘2 + 𝑘𝑇1 𝑘𝑇2
(3.63)

We note that, although this perspective proves useful when determining the number of encoded qubits,
the distance is not captured by the homology of the space. Therefore, in order to analyse the distance,
one would still have to resort to alternative (linear algebraic) methods, like the one demonstrated in the
previous section.

3.2. The EKZ product
3.2.1. Motivation and Construction
In the previous section, we saw that the hypergraph product of two codes, which is a CSS code, can be
interpreted using homology. From that point of view, the hypergraph product becomes the tensor prod-
uct of two length-1 chain complexes, which correspond to two classical codes. Naturally, the question
arises whether one can extend this construction by taking the tensor product between a classical and
a quantum code. This idea was worked out in [EKZ20]. We will present this construction here, and
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determine the properties of such codes.

To this end, let us consider the following chain complexes, which correspond to a quantum CSS code
𝒬 with parity matrices 𝐻1 and 𝐻2, and a classical code 𝒞 with a full rank parity check matrix 𝐻.

𝔽𝑟12 𝔽𝑛𝑄2 𝔽𝑟22

𝔽𝑛𝑐2 𝔽𝑟𝑐2

𝐻𝑇
1 𝐻2

𝐻

We can take the tensor product of these chain complexes to find:

𝔽𝑟12 ⊗ 𝔽𝑛𝑐2 𝔽𝑛𝑄2 ⊗ 𝔽𝑛𝑐2 ⊕ 𝔽𝑟12 ⊗ 𝔽𝑟𝑐2 𝔽𝑟22 ⊗ 𝔽𝑛𝑐2 ⊕ 𝔽𝑛𝑄2 ⊗ 𝔽𝑟𝑐2 𝔽𝑟22 ⊗ 𝔽𝑟𝑐2

This is a chain complex of length 3, whereas CSS codes correspond to chain complexes of length
2. Hence, we cannot interpret this complex as a CSS code. This complication can be resolved quite
simply, however: we can just ignore the 0th or the 3rd chain in the complex, in order to obtain a complex
of length 2. Let us ignore the 0th chain, and consider the properties of the CSS code associated to the
three higher chains of the tensor product complex:

𝔽𝑟12 ⊗ 𝔽𝑛𝑐2 𝔽𝑛𝑄2 ⊗ 𝔽𝑛𝑐2 ⊕ 𝔽𝑟12 ⊗ 𝔽𝑟𝑐2 𝔽𝑟22 ⊗ 𝔽𝑛𝑐2 ⊕ 𝔽𝑛𝑄2 ⊗ 𝔽𝑟𝑐2
𝜕2 𝜕1

Where:

𝜕2 = (
𝐻𝑇
1 ⊗ 𝐼𝑛𝑐
𝐼𝑟1 ⊗𝐻

) (3.64)

𝜕1 = (
𝐻2 ⊗ 𝐼𝑛𝑐 ∅
𝐼𝑛𝑄 ⊗𝐻 𝐻𝑇

1 ⊗ 𝐼𝑟𝑐
) (3.65)

As a sanity check, we note that this is indeed a chain complex:

𝜕1 ∘ 𝜕2 = (
𝐻2 ⊗ 𝐼𝑛𝑐 ∅
𝐼𝑛𝑄 ⊗𝐻 𝐻𝑇

1 ⊗ 𝐼𝑟𝑐
) ⋅ (

𝐻𝑇
1 ⊗ 𝐼𝑛𝑐
𝐼𝑟1 ⊗𝐻

) = (
𝐻2𝐻𝑇

1 ⊗ 𝐼𝑛𝑐
2𝐻𝑇

𝑍 ⊗𝐻
) = 0 (3.66)

We dub this newly constructed code the EKZ product of 𝒬 and 𝒞, and denote it by EKZ(𝒬, 𝒞).

3.2.2. Properties
We claim that this code has the following parameters:

Theorem 3.5. Let 𝒬 be a CSS code with parameters [[𝑛𝒬, 𝑘𝒬, 𝑑1, 𝑑2]], and let 𝒞 be a classical code
with parameters [𝑛𝑐, 𝑘𝑐, 𝑑𝑐]. Their EKZ product, EKZ(𝒬, 𝒞), has the following parameters:

𝑛 = 𝑛𝒬 ⋅ 𝑛𝑐 + 𝑟1 ⋅ 𝑟𝑐 (3.67)
𝑘 = 𝑘𝒬 ⋅ 𝑘𝑐 (3.68)

𝑑𝑋 = 𝑑1 (3.69)
𝑑𝑍 = 𝑑2 ⋅ 𝑑𝑐 (3.70)
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Proof. The number of encoded qubits, 𝑘, easily follows from a Künneth formula:

𝑘 = dim (𝐻1(EKZ(𝒬, 𝒞))) = dim (𝐻2(𝒬 ⊗ 𝒞)) (3.71)
= dim (𝐻2(𝒬) ⊗ 𝐻0(𝒞) ⊕ 𝐻1(𝒬) ⊗ 𝐻1(𝒞) ⊕ 𝐻0(𝒬) ⊗ 𝐻2(𝒞)) (3.72)
= dim (𝐻2(𝒬) ⊗ 𝐻0(𝒞) ⊕ 𝐻1(𝒬) ⊗ 𝐻1(𝒞)) (3.73)
= dim (𝐻2(𝒬)) ⋅ dim (𝐻0(𝒞)) + dim (𝐻1(𝒬)) ⋅ dim (𝐻1(𝒞)) (3.74)
= dim (𝐻1(𝒬)) ⋅ dim (𝐻1(𝒞)) (3.75)
= 𝑘𝒬𝑘𝑐 (3.76)

where the fact that dim (𝐻0(𝒞)) = 0 follows from the fact that 𝐻 has full rank:

dim (𝐻0(𝒞)) = dim (𝔽𝑟𝑐2 /Im (𝐻)) = 𝑟𝑐 − Rank(𝐻) = 0 (3.77)

Furthermore, the distance of this code can be determined in an analogous manner as the distance of
the hypergraph product. Let us determine the parameter 𝑑𝑍. We proceed in two steps: first, we prove
that 𝑑2 ⋅ 𝑑𝒞 is a lower bound on the distance, and afterwards, we prove that there is a codeword in the
EKZ product code that attains this bound.
We thus first show that 𝑑𝑍 ≥ 𝑑2 ⋅ 𝑑𝒞, where 𝑑2 = min {|𝑥|}𝑥∈ker(𝐻2)⧵Row(𝐻1). To this end, we take 𝑥 ∈
ker (𝐻2) with |𝑥| < 𝑑2 ⋅ 𝑑𝒞, and show that 𝑥 ∈ Row (𝐻1). Analogous to the proof of the distance of the
hypergraph product code, we can give an explicit expression for ker (𝐻2) (and hence also for 𝑥):

ker (𝐻𝑍) = {(
𝑥
𝑦
) ∶ (𝐻2 ⊗ 𝐼𝑛𝑐)𝑥 = 0 and (𝐼𝑛𝒬 ⊗𝐻)𝑥 = (𝐻𝑇

1 ⊗ 𝐼𝑟𝑐)𝑦} (3.78)

which yields a general expression for 𝑥:

𝑥 = ∑
1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (
𝐻𝑇
1 𝑎𝑖 ⊗ 𝑏𝑗
𝑎𝑖 ⊗𝐻𝑏𝑗

) + ∑
1≤𝑖≤𝑛𝒬−𝑘2
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (
𝑐𝑖 ⊗ 𝑏𝑗

0
) + ∑

𝑛𝒬−𝑘1<𝑖≤𝑟1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (
0

𝑎𝑖 ⊗𝐻𝑏𝑗
) (3.79)

where we note that:

1. 𝑎𝑖 ∈ 𝔽𝑟12 are taken such that {𝐻𝑇
1 𝑎𝑖|1 ≤ 𝑖 ≤ 𝑛𝒬−𝑘1} is a basis of Col (𝐻𝑇

1 ) and {𝑎𝑖|𝑛𝒬 − 𝑘1 < 𝑖 ≤ 𝑟1}
is a basis of ker (𝐻𝑇

1 ).

2. 𝑐𝑖 = 𝐻𝑇
1 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛𝒬 − 𝑘1, and for 𝑖 ≤ 𝑖 ≤ 𝑛𝒬−𝑘2 , {𝑐𝑖} is an extension to a basis of ker (𝐻2).

(Note that 𝐻2𝐻𝑇
1 = 0 implies in particular that Col (𝐻𝑇

1 ) ⊆ ker (𝐻2)).

3. 𝑏𝑗 ∈ 𝔽𝑛𝑐2 are taken such that {𝐻𝑏𝑗 |1 ≤ 𝑗 ≤ 𝑛𝑐 − 𝑘𝑐} is a basis of Col (()𝐻) = 𝔽𝑛𝑐−𝑘𝑐2 (as 𝐻 has full
rank), and {𝑏𝑗 |𝑛𝑐 − 𝑘𝑐 < 𝑗 ≤ 𝑛𝑐} extends to a basis of ker (𝐻).

Furthermore, we can determine a basis of Row (𝐻𝑋) = Col (𝐻𝑋) by considering the span of all𝐻𝑋 (𝑎𝑖, 𝑏𝑗)
𝑇
:

𝑦 ∈ 𝒞⟂𝑋 ⟺ 𝑦 = ∑
1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛾𝑖𝑗 (
𝐻𝑇
1 𝑎𝑖 ⊗ 𝑏𝑗
𝑎𝑖 ⊗𝐻𝑏𝑗

)+ ∑
1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (
𝑐𝑖 ⊗ 𝑏𝑗

0
)+ ∑

𝑛𝒬−𝑘1<𝑖≤𝑟1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (
0

𝑎𝑖 ⊗𝐻𝑏𝑗
) (3.80)

We thus have to prove that for our choice of 𝑥: 𝛽𝑖𝑗 = 0 for all 𝑛𝒬−𝑘1 < 𝑖 ≤ 𝑛𝒬−𝑘2 and 𝑛𝑐−𝑘𝑐 < 𝑗 ≤ 𝑛𝑐.
We do this by deriving a contradiction: if there is such an 𝑥, then this 𝑥 necessarily has Hamming
weight |𝑥| ≥ 𝑑2𝑑𝑐. We restrict ourselves to the upper part of 𝑥, as its weight is always smaller than the
weight of all of 𝑥. Furthermore, we split up this upper part of 𝑥 into a 𝒞⟂𝑋 -term and a term outside of this
subcode:

|𝑥| ≥
||||||

∑
1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (𝐻𝑇
1 𝑎𝑖 ⊗ 𝑏𝑗) + ∑

1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑐𝑖 ⊗ 𝑏𝑗) + ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑐𝑖 ⊗ 𝑏𝑗)
||||||

(3.81)
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To avoid having to deal with any dependencies in the basis vectors 𝑐𝑖 in the last sum later on, we group
all terms corresponding to the same 𝑐𝑖 together — that is, we take ̂𝑏𝑖 = ∑𝑖𝑗 𝑏𝑗 . Now, let us consider a
non-zero term, and derive a contradiction. To this end, let 𝑖0 be an index such that ̂𝑏𝑖0 ≠ 0. Now:

|𝑥| ≥

|
|
|
|
|
|
|
|
|
|

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (𝑏𝑗1𝐻𝑇
1 𝑎𝑖) + ∑

1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑏𝑗1 ⋅ 𝑐𝑖) + ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2

𝛽𝑖𝑗 ( ̂𝑏𝑖1 ⋅ 𝑐𝑖)

⋮
∑

1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑛𝑐𝐻𝑇
1 𝑎𝑖) + ∑

1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑛𝑐 ⋅ 𝑐𝑖) + ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2

𝛽𝑖𝑗 ( ̂𝑏𝑖𝑛𝑐 ⋅ 𝑐𝑖)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

|
|
|
|
|
|
|
|
|
|

(3.82)

The latter term is equal to:

𝑛𝑐
∑
𝑙=1

||||||
∑

1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑙𝐻𝑇
1 𝑎𝑖) + ∑

1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑙 ⋅ 𝑐𝑖) + 𝑏𝑖0𝑙𝑐𝑖0 + ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2

𝑖≠𝑖0

𝛽𝑖𝑗 ( ̂𝑏𝑖𝑙 ⋅ 𝑐𝑖)
||||||

(3.83)

Note that 𝑏𝑖0 ∈ ker (𝐻), and hence it is non-zero at at least 𝑑𝑐 indices. We this sum is then larger than
the sum over those indices:

≥ 𝑑𝑐 ⋅ min
1≤𝑙≤𝑛𝑐

⎧⎪
⎨⎪
⎩

||||||
∑

1≤𝑖≤𝑛𝒬−𝑘1
1≤𝑗≤𝑛𝑐−𝑘𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑙𝐻𝑇
1 𝑎𝑖) + ∑

1≤𝑖≤𝑛𝒬−𝑘1
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑏𝑗𝑙 ⋅ 𝑐𝑖) + 𝑐𝑖0 + ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2

𝑖≠𝑖0

𝛽𝑖𝑗 ( ̂𝑏𝑖𝑙 ⋅ 𝑐𝑖)
||||||

⎫⎪
⎬⎪
⎭

(3.84)

But the term that is being minimised is simply a sum over 𝑐′𝑖𝑠 in both Row (𝐻1) and non-zero terms in
ker (𝐻2) ⧵ Row (𝐻1), and is therefore in ker (𝐻2) ⧵ 𝐻1. The latter terms are non-zero, as we chose our
̂𝑏𝑖’s such that all different 𝑐𝑖’s were linearly independent. But now, the minimum weight of elements in

this ker (𝐻2) ⧵ 𝐻1 is 𝑑2 (by definition!), hence we find that:

|𝑥| ≥ 𝑑𝑐 ⋅ 𝑑2 (3.85)

which is indeed a contradiction, thus 𝑑𝑋 ≥ 𝑑𝑐 ⋅ 𝑑2.
We now construct a codeword with Hamming weight 𝑑𝑐𝑑2. To this end, we can first construct a codeword
element 𝑥1 ∈ 𝒞 with |𝑥1| = 𝑑𝑐. Similarly, we can find a codeword 𝑥2 ∈ ker (𝐻2) ⧵ 𝐻1 such that |𝑥2| = 𝑑2.
But then, the codeword 𝑥 ∶= 𝑥1 ⊗ 𝑥2 has Hamming weight 𝑑2𝑑𝑐, and is in 𝒞𝑍/𝒞⟂𝑋 , as it is of the form

𝑥 = ∑
𝑛𝒬−𝑘1<𝑖≤𝑛𝒬−𝑘2
𝑛𝑐−𝑘𝑐<𝑗≤𝑛𝑐

𝛽𝑖𝑗 (𝑐𝑖 ⊗ 𝑏𝑗) (3.86)

for some non-zero 𝛽𝑖𝑗 . The proof for 𝑑𝑋 ≥ 𝑑1 is more simple than this proof (and is in fact almost
completely analogous to the proof of the distance of the hypergraph product code).

Although this construction is interesting already for the mere fact that it is a generalisation of the hyper-
graph product, it does offer another, somewhat surprising, advantage: given a quantum CSS code with
distances 𝑑𝑋 and 𝑑𝑍. it can of course happen that one distance is much larger than the other (or scales
more favourably than the other), for example that 𝑑𝑋 ≥ 𝑑𝑍. In this case, 𝑑𝑋 imposes a bottleneck on
the performance of this code, and hence, it can be useful to consider ways of increasing 𝑑𝑋 to (approx-
imately) 𝑑𝑍 without creating too many drawbacks on the code. One way of achieving this is actually by
taking the EKZ product with another classical code: take a classical code with a distance of 𝑑𝑐 ≃ 𝑑𝑍/𝑑𝑋 .
The EKZ product of these codes, then, yields a CSS code with distances 𝑑𝑍 and 𝑑𝑐 ⋅ 𝑑𝑋 ≃ 𝑑𝑍, and as
such, greatly improves the distance of our initial code, albeit at the expense of needing more qubits.
The EKZ product thus (partially) mitigates the distance limitation of the hypergraph product. This is
why this product was called a distance balancing method by the authors of the original paper [EKZ20].
They were indeed able to improve upon the distance record of the hypergraph product, by devising
a family of codes with a distance of Ω(√𝑛 log𝑛) — although they were unable to prove that this code
family had a non-vanishing rate.
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3.3. Products of Classical Codes and Chain Complexes of Arbi-
trary Length

The EKZ product generalised the hypergraph product by replacing one of the classical input codes
with a CSS code. In the spirit of regarding such codes as chain complexes, one can wonder whether
this approach can be generalised even further by considering products of classical codes and chain
complexes of arbitrary length. It is precisely this that the authors in [ZP19, ZP20] set out to do.

To this end, let us consider a [𝑛𝑐, 𝑘𝑐, 𝑑𝑐] classical code 𝒞 and a chain complex 𝒦 of length 𝐾 ≥ 2:

𝔽𝑛2 𝔽𝑟2

𝔽𝛼𝐾2 ⋯ 𝔽𝛼12 𝔽𝛼02

𝐻

The tensor product of these two complexes is simply:

𝐶𝐾+1 𝐶𝐾 ⋯ 𝐶1 𝐶0

where:
𝐶𝑖 = 𝔽𝑛2 ⊗ 𝔽𝛼𝑖−12 ⊕ 𝔽𝑟2 ⊗ 𝔽𝛼𝑖2 (3.87)

We can pick out a length 2 subcomplex of this tensor product complex, which is of the following form:

𝐶𝑖+1 𝐶𝑖 𝐶𝑖−1
𝜕𝑖+1 𝜕𝑖

We can now easily calculate the number of encoded qubits using the Künneth formula:

𝑘 = dim𝔽2(ℋ𝑖(𝒞 ⊗𝒦)) = dim𝔽2(ℋ0(𝒞)) ⋅ dim𝔽2(ℋ𝑖(𝒦)) + dim𝔽2(ℋ1(𝒞)) ⋅ dim𝔽2(ℋ𝑖−1(𝒦)) (3.88)

Using linear algebraic arguments, one can again derive an upper bound on the minimum distance of
the obtained code, and can furthermore prove that this bound is tight. To this end, let 𝑑𝑖(𝒞) denote the
minimum weight of a non-zero representative ofℋ𝑖(𝐶), then:

𝑑 = min {𝑑𝑖(𝐾) ⋅ 𝑑0(𝒞), 𝑑𝑖−1(𝐾) ⋅ 𝑑1(𝒞)} (3.89)

We do not present a proof for this statement, and refer the interested reader to [ZP19]. An analogous
statement can be derived for the minimum weight of a non-zero cohomology representative. In this
way, one can bound the minimum distance of the product code.

3.4. Beyond Tensor Products Codes
Even with the last, most generic, tensor product construction, good qLDPC codes had still not been
found. One is therefore led to conclude that tensor products of chain complexes over vector spaces,
unfortunately, are not tools powerful enough to devise good qLDPC codes. We are therefore led to
consider ways in which we can improve upon these tensor product constructions. The next two parts
of this thesis present two different approaches in that regard: one that can be said to generalise the
structure of the chains in the chain complexes, and another one which adds additional structure to the
differentials of the chain complexes.
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4
Homology of Ring Modules

The homological algebra presented up to this point mostly revolved around chain complexes over vec-
tor spaces: for example, the Künneth formula we used to analyse the various product constructions of
LDPC codes establishes a relationship between the homology groups of the tensor product of chain
complexes over vector fields and the tensor products of their homology groups. A natural direction in
which this theory can be generalised lies in imposing less structure on the chains of our chain com-
plexes.

In this chapter, we will consider chain complexes of modules over rings. This abstraction, however,
comes at a price, as tensor products over modules behave less nicely than tensor products over vector
spaces. In particular, the Künneth formula that we have seen up until now does not hold in the more
general context of chain complexes of modules over rings — at least, not in the same form. The final
goal of this chapter, therefore, will be to present a more general version of the Künneth theorem we saw
up until now. All of this work serves in preparation of the next chapter, where we will seek to generalise
the hypergraph product construction of qLDPC codes. The results in this chapter are mostly based on
[Wei94, Rie16, Len18].

4.1. Rings and Ring Modules
Before we can start discussing the homological aspects of ring modules, we first briefly remind the
reader of the definitions of rings and their modules.

Definition 4.1. A set ℛ equipped with two binary operations called addition + ∶ ℛ × ℛ → ℛ and
multiplication ⋅ ∶ ℛ × ℛ → ℛ and two neutral elements denoted by 0, 1 ∈ ℛ is called a ring if:

1. (ℛ,+, 0) is an abelian group

2. ⋅ is associative, i.e. (𝑟 ⋅ 𝑠) ⋅ 𝑡 = 𝑟 ⋅ (𝑠 ⋅ 𝑡) for all 𝑟, 𝑠, 𝑡 ∈ ℛ

3. 1 ⋅ 𝑟 = 𝑟 ⋅ 1 = 𝑟 for all 𝑟 ∈ ℛ

4. 𝑟 ⋅ (𝑠 + 𝑡) = 𝑟 ⋅ 𝑠 + 𝑟 ⋅ 𝑡 and (𝑟 + 𝑠) ⋅ 𝑡 = 𝑟 ⋅ 𝑡 + 𝑠 ⋅ 𝑡 for all 𝑟, 𝑠, 𝑡 ∈ ℛ.

Finally, if the multiplication operation is commutative, we call ℛ a commutative ring.

Some important examples of rings include the integers ℤ and the cyclic groups 𝐶𝑛 ∶= ℤ/𝑛ℤ. Given
any ring ℛ, the 𝑛 by 𝑛 matrices with coefficients in ℛ equipped with the standard addition and matrix
multiplication form a ring, which we denote byℳ𝑛(ℛ). Lastly, we note that every field is a ring.

Definition 4.2. Let ℛ be a ring and let (𝑀,+) be an abelian group that is equipped with an operation
⋅ ∶ 𝑀 × ℛ → 𝑀. 𝑀 is called a (left) ℛ-module if the following conditions are satisfied for all 𝑥, 𝑦 ∈ 𝑀
and 𝑟, 𝑠 ∈ ℛ:

1. 𝑟 ⋅ (𝑥 + 𝑦) = 𝑟 ⋅ 𝑥 + 𝑟 ⋅ 𝑦

2. (𝑟 + 𝑠) ⋅ 𝑥 = 𝑟 ⋅ 𝑥 + 𝑠 ⋅ 𝑥

45
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3. (𝑟 ⋅ 𝑠) ⋅ 𝑥 = 𝑟 ⋅ (𝑠 ⋅ 𝑥)

4. 1 ⋅ 𝑥 = 𝑥

We see that ifℛ is a field, then aℛ-module is nothing more than a vector field. Next to that, we note that
every abelian group𝐴 is a ℤmodule. Moreover, we note that every ideal of a ring is amodule of that ring.

Given two left-modules 𝑁,𝑀 such that 𝑁 ⊆ 𝑀. 𝑁 is a submodule of 𝑀 if it is a subgroup of 𝑀 that is
closed under multiplication. Supposing that 𝑁 is a submodule of 𝑀, we can now define the quotient
module𝑀/𝑁 as the quotient group equipped with theℛ-action 𝑟⋅(𝑚+𝑁) = 𝑟⋅𝑚+𝑁 for all 𝑟 ∈ ℛ,𝑚 ∈ 𝑀.

For the categorically oriented reader, we note that given a ring ℛ, its left-modules form a category,
which we denote by ℛ-Mod. Let us therefore recall the definition of morphisms of ring modules.

Definition 4.3. Let 𝑀,𝑁 be ℛ-modules. A map 𝑓 ∶ 𝑀 → 𝑁 is called a morphism of ℛ-modules if for
all 𝑚,𝑚′ ∈ 𝑀 and for all 𝑟 ∈ ℛ, the following two statements hold:

1. 𝑓(𝑚 +𝑚′) = 𝑓(𝑚) + 𝑓(𝑚′)

2. 𝑓(𝑟 ⋅ 𝑚) = 𝑟 ⋅ 𝑓(𝑚)

We note that 𝑓 is an isomorphism of ℛ-modules if it is also bijective.

Before we proceed, let us note that one can still speak of kernels and images of a morphism of left-
modules, and that, moreover, these are also proper submodules of the domain and the codomain,
respectively.

There is a well-behaved class of ring modules, called free modules, that will be of interest to us in the
next chapter.

Definition 4.4. Let 𝑀 be a ℛ-module, and let (𝑥𝑖)𝑖∈ℐ be an indexed family of elements in 𝑀. These
elements are called a basis of 𝑀 if for every 𝑥 ∈ 𝑀, there is a unique family of elements (𝑟𝑗)𝑗∈𝒥 in ℛ
with finite index set 𝒥 ⊆ ℐ such that:

𝑥 = ∑
𝑗∈𝒥

𝑟𝑗 ⋅ 𝑥𝑗 (4.1)

Lastly, we call 𝑀 a free left ℛ-module if 𝑀 admits a basis.

Having recalled all the basic definitions, we note that one can also define the concept of a right ℛ-
module by letting ℛ act on 𝑀 on the right. Furthermore, one can also define bimodules, which are
abelian groups that are left- and right-modules such that the left and right ℛ actions commute. As we
will only be interested in commutative rings, however, we do not worry about this distinction, as for such
rings, every left-module is a right-module, and therefore also a bimodule.

By restricting ourselves to discussing just commutative rings, we can avoid a very technical treatment
of the notion of a tensor product of modules. We thus present the definition of tensor products within
this context, but warn the reader that this definition does not make sense as soon as we consider
non-abelian rings (for a general treatment of this theory, see e.g. [Len18]).

Definition 4.5. Let ℛ be a commutative ring. Let 𝑀,𝑁 be two (left) ℛ-modules. We can then define
the tensor product of these two modules, 𝑀 ⊗𝑁, as the following quotient of a free abelian group:

𝑀 ⊗𝑁 ∶= ℛ[𝑀 × 𝑁]/ ∼ (4.2)

where we mod out the following relations for all 𝑚,𝑚′ ∈ 𝑀, 𝑛, 𝑛′ ∈ 𝑁 and 𝑟 ∈ ℛ:

1. (𝑚 +𝑚′, 𝑛) ∼ (𝑚, 𝑛) + (𝑚′, 𝑛)

2. (𝑚, 𝑛 + 𝑛′) ∼ (𝑚, 𝑛) + (𝑚, 𝑛′)

3. (𝑟𝑚, 𝑛) ∼ (𝑚, 𝑟𝑛)
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4.2. Chain Complexes of Ring Modules and Their Homology
In this section, we generalise the notions from homological algebra over vector fields to ring modules.
We let ℛ denote a ring.

We first note that one can define a chain complex of ring-modules in a similar manner as was done in
the case of chain complexes of abelian groups.

Definition 4.6. A chain complex (of leftℛ-modules) (𝒞∗, 𝜕∗) is a family of left-ℛ-modules 𝐶𝑛 (for 𝑛 ∈ ℤ),
together with ring module morphisms 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 called differentials, such that:

𝜕𝑛 ∘ 𝜕𝑛+1 = 0 ∀𝑛 ∈ ℤ (4.3)

As before, we also have the notion of a morphism of chain complexes over ring modules.

Definition 4.7. Given two chain complexes of left-ℛ-modules, (𝒞∗, 𝜕𝐶∗ ) and (𝒟∗, 𝜕𝐷∗ ). A collection of
left-ℛ-module morphisms 𝑓𝑛 ∶ 𝐶𝑛 → 𝐷𝑛 is a morphism of chain complexes of left-ℛ-modules if, for
every 𝑛 ∈ ℤ, the following diagram commutes:

𝐶𝑛 𝐶𝑛−1

𝐷𝑛 𝐷𝑛−1

𝜕𝐶𝑛

𝑓𝑛

𝜕𝐷𝑛

𝑓𝑛−1

Moreover, we can also lift the theory of homology groups to ring modules in a straight-forward manner.

Definition 4.8. The 𝑛th homology group of the chain complex of left ℛ-models (𝒞∗, 𝜕∗) is given by:

ℋ𝑛(𝒞) = ker (𝜕𝑛) /Im (𝜕𝑛+1) (4.4)

We note that within the context of left-ring modules, homology groups are not just groups, rather, they
are left-ring modules as well. As such, we actually have a homology functor going from the category of
chain complexes over ring modules, Ch(ℛ-Mod), to the category of ring modulesℋ𝑛 ∶ Ch(ℛ-Mod) →
ℛ-Mod.

As has probably become abundantly clear to the reader, the basic objects of the theory of homological
algebra over ring modules are defined in precisely the same manner as those of the homology over
abelian groups. We thus simply note that the concepts of an exact sequence of ring modules, of a short
and long exact sequence of ring modules (SES and LES) and of tensor products of chain complexes
of ring modules can also be lifted effortlessly to the context of ring module homology, and, as a conse-
quence, theorems like the SES implies LES property and the Mayer-Vietoris sequence are all still valid
within the context of ring module homology.

Given how effortlessly one can generalise these notions, one may wonder whether this can be drawn
any further. We note that this is indeed the case— one can devise a theory of homological algebra over
very abstract categories— so-called abelian categories—by simply replacing the word “abelian group”
by the word “abelian category” in all the definitions we have seen in the theory of homological algebra
over abelian groups. The reader eager to know the details of this construction is referred to Appendix
A, where we present the basic theory of abelian categories. For completeness, we simply remark,
however, that by the Freyd-Mitchell embedding theorem, we do not lose much generality by restricting
ourselves to the category of ring modules (see Appendix A for the theorem and further details).

4.3. Torsion and the Künneth Theorem
The tensor product of vector spaces is an exact functor. That is, given a SES of vector spaces, e.g.:

0 𝑉1 𝑉2 𝑉3 0
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The sequence we obtain by taking the tensor product with some other vector space 𝑊

0 𝑉1 ⊗𝑊 𝑉2 ⊗𝑊 𝑉3 ⊗𝑊 0

is still a proper SES.

This is, however, no longer the case when one works over general ring modules — in this case, the
tensor product is only right-exact. Let us illustrate this with an example. Consider the following SES:

0 ℤ ℤ ℤ/2ℤ 02

After taking the tensor product of this sequence with ℤ/2ℤ, the map induced by ℤ → ℤ ∶ 𝑛 ↦ 2𝑛 no
longer has a non-trivial kernel — instead, the kernel is now all of ℤ/2ℤ. Therefore, if we want to recover
an exact sequence, we would need to extend the newly found sequence:

0 ℤ/2ℤ ℤ/2ℤ ℤ/2ℤ ℤ/2ℤ 02

As the Künneth formula deals with tensor products of chain complexes, the more general Künneth
formula over ring modules will have to take this effect into account. This effect, which is called torsion,
is encoded in the so-called Tor-functor. We therefore work towards the construction of this functor. To
do so, we must first formalise the idea of extending sequences to make them exact. In every definition,
we take ℛ to be a ring, and take 𝑀 to be a (left) ℛ-module.
Definition 4.9. A left ℛ-module 𝑃 is called projective if for every surjective map 𝑓 ∶ 𝐴 → 𝐵 and every
map 𝜋 ∶ 𝑃 → 𝐵, it satisfies the following universal property: there is a map 𝜋 ∶ 𝑃 → 𝐴 such that the
following diagram commutes:

𝑃

𝐴 𝐵

𝜋

𝑓

𝜋

When considering the category of ℛ−modules, one can see that an object is projective if it is a direct
summand of a free ℛ-module. Therefore, we see that this category has enough projectives, that is,
we see that for every left-module 𝑀, there exists a projective module 𝑃 together with a surjective map
𝑃 → 𝑀.

Given a left-module 𝐴, we would like to extend 𝐴 by a chain complex of projectives.
Definition 4.10. Let 𝐴 be a left-module, then a left-resolution of 𝐴 is a chain complex 𝒫∗ along with an
augmentation 𝜖 ∶ 𝑃0 → 𝐴 such that the following is exact:

… 𝑃2 𝑃1 𝑃0 𝐴 0𝜕2 𝜕1 𝜖𝜕3

If, moreover, 𝒫∗ is a chain complex of projectives, such a left-resolution is called a projective resolution.
It should be noted that as the category of ring modules has enough projectives, one can always con-
struct projective resolution inductively for any given element of the category. One is left to wonder,
however, whether projective resolutions behave well in relation to homology. For this, we turn to the
following theorem:

Theorem 4.1. Let 𝐴, 𝐵 be two ℛ-modules. Given two projective resolutions 𝑃 𝜖→ 𝐴 and 𝑄 𝜂→ 𝐵, and
let 𝑓 ∶ 𝐴 → 𝐵 be a morphism in 𝒜. Then there exists a chain map 𝑓 ∶ 𝑃 → 𝑄 such that the following
diagram commutes:

… 𝑃2 𝑃1 𝑃0 𝐴 0

… 𝑄2 𝑄1 𝑄0 𝐵 0

𝜖

𝜂
𝑓̄𝑓0̄𝑓1̄𝑓2

Moreover, this map is unique up to chain homotopy.
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Taking 𝐵 = 𝐴 and𝑄 to be another projective resolution for 𝐴, one sees that there is a chain isomorphism
between the two projective resolutions, and hence, we conclude that the two resolutions are — at least,
homologically speaking — identical. This allows us to unambiguously define the notion of a left-derived
functor, of which the Tor-functor is a specific example.

Definition 4.11. Let 𝐹 ∶ ℛ-Mod→ ℛ-Mod be a right-exact functor. For an arbitrary left-module 𝐴, take
a projective resolution 𝑃 𝜖→ 𝐴. The left-derived functors of 𝐹, 𝐿𝑛𝐹 (𝑛 ≥ 0) are defined as follows:

𝐿𝑛𝐹(𝐴) = ℋ𝑛(𝐹(𝑃)) (4.5)

For reasons of clarity and brevity, we will refrain from explaining all the relevant mathematical details
here1, and we will simply note that, given that the left-derived functors of a functor 𝐹 exist, we are
ensured of the fact that every SES

0 𝐴 𝐵 𝐶 0

Induces a LES of the following form:

⋯ 𝐿2𝐹(𝐶) 𝐿1𝐹(𝐴) 𝐿1𝐹(𝐵) 𝐿1𝐹(𝐶) 𝐹(𝐴) 𝐹(𝐵) 𝐹(𝐶) 0

We can now define the Tor-functor.

Definition 4.12. Let 𝐵 ∈ ℛ − Mod, and consider the right-exact functor 𝐹 ∶ Mod − ℛ → Ab ∶ 𝐴 ↦
𝐴⊗ℛ 𝐵. We define the 𝑛th Tor-functor as follows:

Torℛ𝑛 (𝐴, 𝐵) = 𝐿𝑛(𝐹(𝐴)) (4.6)

The property of left-derived functors we stated implies that, for every 𝐴1, 𝐴2, 𝐴3, 𝐵 ∈ ℛ−Mod such that
the following is a SES:

0 𝐴3 𝐴2 𝐴1 0

There is a LES of the following form (see e.g. [Wei94]):

⋯ Torℛ2 (𝐴1, 𝐵) Torℛ1 (𝐴3, 𝐵) Torℛ1 (𝐴2, 𝐵)

Torℛ1 (𝐴1, 𝐵)

𝐴3 ⊗ 𝐵

𝐴2 ⊗ 𝐵 𝐴1 ⊗ 𝐵 0

Hence, we see that the Tor-functor allows us to determine the extension of a SES after applying the
tensor product with another module. Moreover, we see that in the example outlined in the introduction,
ℤ/2ℤ was precisely Torℤ/2ℤ1 (ℤ/2ℤ, ℤ/2ℤ), and that Torℤ/2ℤ1 (ℤ, ℤ/2ℤ) = 0. One might (rightly) expect the
modules satisfying the latter property to form an interesting class of objects, because they allow us
to use the Künneth formula we derived in the vector space case. Such modules are called flat left
ℛ-modules, and are defined as the modules for which − ⊗ℛ 𝐵 is exact. While all projective modules
are flat modules (simply take the projective resolution 𝑃𝑛 = 𝛿𝑛0𝑃), not all flat modules are projective
modules. Using the Tor-functor, we can thus characterise flat ℛ-modules.

Theorem 4.2. Let 𝐵 be a left ℛ-module. Then:

𝐵 is flat ⟺ ∀𝑛 ≥ 1, ∀𝐴 ∶ Torℛ𝑛 (𝐴, 𝐵) = 0 ⟺ ∀𝐴 ∶ Torℛ1 (𝐴, 𝐵) = 0. (4.7)
1Formally, this comes down to the fact that left-derived functors are 𝛿-functors. The formal treatment of these details can be
found in [Wei94].
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We are now ready to proceed a more general form of the Künneth formula. Before doing so, however,
we remark that one can define various notions that are dual to the ones introduced here: injectives
and injective resolutions, right-derived functors and the Ext-functor. These concepts form the building
blocks of the cohomology theory over ring modules. Hence, we omit them from our discussion, and
refer the interested reader to [Wei94].

Theorem 4.3. Let 𝒞∗, 𝒟∗ be chain complexes of right and left ℛ-modules, respectively, such that 𝐶𝑛
and 𝜕𝑛(𝐶𝑛) are flat ∀𝑛 ≥ 0. Then the following short sequence is exact:

0
𝑛
⨁
𝑖=1

ℋ𝑖(𝒞) ⊗ℋ𝑛−𝑖(𝒟) ℋ𝑛(𝒞 ⊗ℛ 𝒟)
𝑛−1
⨁
𝑖=1

Torℛ1 (ℋ𝑖(𝒞),ℋ𝑛−1−𝑖(𝒟)) 0

Note that for vector spaces, the tensor product is indeed flat, and hence the first Tor-functors vanish,

such that the SES induces an isomorphismℋ𝑛(𝐶 ⊗ℛ 𝒟) ≃
𝑛
⨁
𝑖=1

ℋ𝑖(𝒞) ⊗ℋ𝑛−𝑖(𝒟), as expected.



5
Lifted Product Codes

We now turn to the lifted product of Panteleev and Kalachev [PK22b]. This product can be interpreted
as a generalisation of the hypergraph product. We first explain why this is the case by taking on the
Tanner graph perspective on these codes. Afterwards, we will take on a homological point of view, and
show how the lifted product can be interpreted in terms of homology over ring modules. We prove a
Künneth formula for these codes, and present an approach that allows one to calculate the number of
encoded qubits of these codes more easily.

5.1. Motivation using Tanner Graphs
The lifted product of two codes is constructed by first “lifting” their Tanner graphs to much larger Tanner
graphs. We can try to visualise this idea using a small example. To this end, consider the Tanner graph
of the repetition code with open boundaries, as displayed in Figure 5.1.

𝑒1

𝑣2𝑣1

𝑒2

𝑣3

(
1 1 0
0 1 1

)

Figure 5.1: The Tanner graph of the repetition code with open boundaries, along with the corresponding parity check matrix.

We now show how to perform a 2-lift: first, we make a copy of the graph, such that for every edge (𝑣𝑖, 𝑒𝑗)
there is now a copy (𝑣′𝑖, 𝑒′𝑗). Now, we have the freedom to apply permutations between the edges (𝑣𝑖, 𝑒𝑗)
and (𝑣′𝑖, 𝑒′𝑗)—we could, for instance, choose to switch (cq. permute) 𝑒1 and 𝑒′1. We consider the effects
of two examples in Figure 5.2: a trivial 2-lift, and a 2-lift where we apply the aforementioned permutation.

51
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𝑒1

𝑣2𝑣1

𝑒2

𝑣3

⎛
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

⎞
⎟
⎟
⎟
⎟
⎠

𝑒′1

𝑣′2𝑣′1

𝑒′2

𝑣′3

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0 1 0 0
1 0 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

⎞
⎟
⎟
⎟
⎟
⎠

𝑒1

𝑣2𝑣1

𝑒2

𝑣3

𝑒′1

𝑣′2𝑣′1

𝑒′2

𝑣′3

Figure 5.2: Two examples of a lift of the Tanner graph of the repetition code with open boundaries. The first of these corresponds
to a trivial lift, where one just copies the vertices and edges of the Tanner graph. The second example corresponds to a twisted
lift, as the edge (𝑒1, 𝑣1) and the edge (𝑒′1, 𝑣′1) are twisted.

Note that these adjacency matrices can be recovered from the adjacency matrix of the initial Tanner
graph: if we replace the 1’s in the initial adjacency matrix by the 2 by 2 identity matrix, and all the 0’s
by the 2 by 2 zero matrix, we find the adjacency matrix of the trivial 2-lift!
Furthermore, we can retrieve the adjacency matrix of the twisted 2-lift by replacing the 1’s in the initial
adjacency matrix by the identity matrix for the unpermuted elements, and by the permutation matrix for
the permuted elements.

This is an example of a more general concept: we can construct an 𝑙-lift of a graph by making 𝑙 − 1
copies of the graph and by additionally applying permutations between copies of the same edges. If
these permutations are contained within a subgroup Γ of the permutation group 𝑆 𝑙 such that |Γ| = 𝑙, we
speak of a Γ-lift of the graph. Moreover, if Γ is generated by the 1-shift (123… 𝑙), we speak of an 𝑙-shift.
We will be considering the group algebra 𝔽2Γ, which, given that it possesses a lot of algebraic struc-
ture, allows us to take tensor products of the chain complexes associated to the Tanner graphs of lifted
codes in order to construct new codes — this is the central idea behind the lifted product construction.

Before proceeding, we note that one can use the 𝑙-shifts to generate an important class of examples of
classical codes, which are often referred to as quasicyclical codes. Such 𝑙-shifts are formalised using
the group algebra of the cyclic groupsℛ ∶= 𝔽2[𝐶𝑙]. We note for future reference that 𝔽2[𝐶𝑙] ≃ 𝔽2[𝑥]/(𝑥𝑙−
1). We will consider this important class of examples in more detail throughout our discussion.

5.2. The Homological Construction
We first present the formal construction of the lifted product using a homological approach. In what is
to come, we let ℛ denote a commutative, unital, 𝑙-dimensional, associative 𝔽2-algebra. Of course, one
immediately wonders why we are even considering such an 𝔽2-algebra in the first place. The reason is
that ℛ admits a faithful representation 𝔹 ∶ ℛ → End(𝔽𝑙2), that, in turn, allows us to think of the elements
of ℛ as 𝑙 by 𝑙 matrices over 𝔽2, and hence, such 𝔽2-algebras indeed allow us to capture the structure
needed in the constructions in the motivating examples. We will provide a rigorous account of these
results later on, but first, let us take the existence of such a representation as given and present the
construction of the lifted product from a homological perspective.

To start off, we first note that ℛ, as it is a commutative, unital, associative 𝔽2-algebra, is actually a
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commutative ring. Therefore, we can consider maps between free modules of ℛ:

ℛ𝑟1 ℛ𝑛1

ℛ𝑛2 ℛ𝑟2

𝐻𝑇
1

𝐻2

We see that this closely resembles the setting of the hypergraph product. Therefore, it is instructive to
consider the tensor product of these complexes:

ℛ𝑟1 ⊗ℛ ℛ𝑛2 ℛ𝑛1 ⊗ℛ ℛ𝑛2 ⊕ℛ𝑟1 ⊗ℛ ℛ𝑟2 ℛ𝑟1 ⊗ℛ ℛ𝑟2
𝜕ℛ2 𝜕ℛ1

We end up with a length 2 chain complex over ℛ. To define a CSS code, however, we would need a
chain complex over 𝔽2. To this end, we can evoke our representation 𝔹:

𝔹 (ℛ𝑟1 ⊗ℛ ℛ𝑛2) 𝔹 (ℛ𝑛1 ⊗ℛ ℛ𝑛2 ⊕ℛ𝑟1 ⊗ℛ ℛ𝑟2) 𝔹 (ℛ𝑟1 ⊗ℛ ℛ𝑟2)
𝔹(𝜕ℛ2 ) 𝔹(𝜕ℛ1 )

But, in order to do so, we need to be able to lift 𝜕ℛ𝑖 while preserving the (homological) structure of the
complex. We will explain how to do so rigorously in the next section, by delving more deeply into the
nature of the representation 𝔹.

5.3. Understanding the Representation 𝔹
Let us now construct this faithful representation 𝔹 ∶ ℛ → End(𝔽𝑙2) explicitly. As ℛ is an 𝑙-dimensional
𝔽2-algebra, we can find a basis {𝑟1,… , 𝑟𝑙} of ℛ. Let us define a map 𝕓 ∶ ℛ → 𝔽𝑙2, which is the linear
extension of the identification 𝑟𝑖 ↦ 𝑒𝑖. This map allows us to define 𝔹 as the linear extension of the
map for which the following expression holds:

𝕓(𝑟𝑖𝑟𝑗) = 𝔹(𝑟𝑖)𝕓(𝑟𝑗) ∀𝑖, 𝑗 (5.1)

Note, moreoever, that 𝔹 is a homomorphism, as:

𝔹(𝑟𝑖𝑟𝑗)𝕓(𝑟𝑘) = 𝕓(𝑟𝑖𝑟𝑗𝑟𝑘) = 𝔹(𝑟𝑖)𝕓(𝑟𝑗𝑟𝑘) = 𝔹(𝑟𝑖)𝔹(𝑟𝑗)𝕓(𝑟𝑘) (5.2)

This construction may seem to be basis dependent. Fortunately, it is not, due to the linear nature of all
maps involved.

Let us go back to our motivating example of the non-trivial 2-lift we worked out above. In this case, one
finds that the homomorphism 𝔹 ∶ 𝔽2[𝑥]/(𝑥2 − 1) → End(𝔽22) is given by the map:

[1] ↦ (
1 0
0 1

) , [𝑥] ↦ (
0 1
1 0

) (5.3)

which is exactly in line with our example! Similarly, it can be shown that for the Galois field GF(4) ∶=
{[0] , [1] , [𝑥] [𝑥2]}, which can be interpreted as an 𝔽2-algebra of dimension 2, one has the following
representation:

[0] ↦ (
0 0
0 0

) , [1] ↦ (
1 0
0 1

) (5.4)

[𝑥] ↦ (
1 1
1 0

) , [𝑥2] ↦ (
0 1
1 1

) (5.5)

Having constructed this representation 𝔹, one can easily generalise this to free modules ℛ𝑛 by making
the simple observation that ℛ𝑛 ≃ ℛ ⊗𝔽2 𝔽𝛼2 . This observation also allows us to determine what 𝔹(𝜕ℛ𝑖 )
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must be. Better yet, we can tackle the more general problem of determining what 𝔹(𝐻) should be for
any map 𝐻 ∶ ℛ𝑛 → ℛ𝑚. To this end, let us try to understand 𝔹(𝐻) with the following commutative
diagram:

ℛ𝑛 ℛ𝑚

ℛ⊗ 𝔽𝑛2 ℛ⊗ 𝔽𝑚2

𝔹(ℛ) ⊗ 𝔽𝑛2 𝔹(ℛ) ⊗ 𝔽𝑚2

�̃�

𝐻

(𝑟1,…,𝑟𝑛)↦∑𝑛
𝑖=1 𝑟𝑖⊗𝑒𝑖

𝔹⊗id 𝔹⊗id
𝔹(𝐻)

(𝑟1,…,𝑟𝑚)↦∑𝑚
𝑗=1 𝑟𝑗⊗𝑓𝑗

As 𝔹 is faithful, it is an isomorphism between its domain and its image. Hence, we can easily define
𝔹(𝐻) as:

𝔹(𝐻) = (𝔹 ⊗ id)�̃�(𝔹−1 ⊗ id) (5.6)
All of this means that if we can understand �̃�, we are done. This is quite simple, however: given a
vector

r𝑖 ∶= (0,… , 0, 𝑟, 0,… , 0)𝑇 ∈ ℛ𝑛 (5.7)
Then:

𝐻r𝑖 = (𝐻1𝑖𝑟,… ,𝐻𝑚𝑖𝑟)𝑇 ∈ ℛ𝑚 (5.8)
Chasing through the diagram, we see that:

�̃�(𝑟 ⊗ 𝑒𝑖) =
𝑚
∑
𝑗=1

𝐻1𝑖 ⋅ 𝑟 ⊗ 𝑓𝑗 (5.9)

But then, we see that:

𝔹(𝐻)(𝔹(𝑟) ⊗ 𝑒𝑖) =
𝑚
∑
𝑗=1

𝔹(𝐻1𝑖𝑟) ⊗ 𝑓𝑗 =
𝑚
∑
𝑗=1

𝔹(𝐻1𝑖)𝔹(𝑟) ⊗ 𝑓𝑗 (5.10)

Hence, we see that 𝔹(𝐻) takes on quite a simple form, namely:

𝔹(𝐻) =
⎛
⎜⎜⎜
⎝

𝔹(𝐻11) ⋯ 𝔹(𝐻1𝑚)
⋮

𝔹(𝐻𝑛1) ⋯ 𝔹(𝐻𝑛𝑚)

⎞
⎟⎟⎟
⎠

(5.11)

Defining 𝔹(𝐻) in such a manner is quite useful, as it immediately shows us that the lift 𝔹 preserves
the homological structure of the differentials. We can work out a small example to see this: let us take
ℛ = 𝔽2[𝐶4] = 𝔽2[𝜎0,… , 𝜎3]. We want to find a relation between the homology of 𝔹(𝐻) and 𝐻 itself,
where 𝐻 ∶ ℛ → ℛ is taken to be the left-multiplication with 𝜎1 + 𝜎3.
First note that the kernel of 𝐻 is equal to ker (𝐻) = 𝔽2 [𝜎1 + 𝜎3, 𝜎0 + 𝜎2]. Furthermore, we see that the
image of 𝐻 is also Im (𝐻) = 𝔽2 [𝜎1 + 𝜎3, 𝜎0 + 𝜎4]. Furthermore, we find that:

𝔹(𝐻) =

⎛
⎜
⎜
⎜
⎜
⎝

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎞
⎟
⎟
⎟
⎟
⎠

(5.12)

One can see that:

ker (𝔹(𝐻)) = Im(𝔹(𝐻)) = Span𝔽2

⎧⎪⎪
⎨
⎪⎪
⎩

⎛
⎜
⎜
⎜
⎜
⎝

1
0
1
0

⎞
⎟
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎜
⎝

0
1
0
1

⎞
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪
⎬⎪⎪
⎭

(5.13)
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We thus see the symmetry between the kernels and images of𝐻 and 𝔹(𝐻) appear: by identifyingℛwith
𝔽42 with the map 𝜎𝑖 ↦ 𝑒𝑖, we actually find vector space isomorphisms ker (𝐻) = Im (𝐻) ≃ Im (𝔹(𝐻)) =
ker (𝔹(𝐻)), and therefore, we see that also 𝐻1(𝔹(𝐻)) ≃ 𝐻1(𝐻).

5.4. An Explicit Expression for 𝐻𝑋 and 𝐻𝑍
Given two parity check matrices 𝐻1 and 𝐻2, we could find an explicit expression for the parity check
matrices 𝐻𝑋 and 𝐻𝑍 in terms of these matrices. Ideally, this would still be the case for our lifted product
codes, as we could then try to e.g. calculate the distance or weight in a similar manner. We show that
this fundamentally requires that ℛ be commutative.
Let us now consider two matrices over ℛ:

𝐻1 ∈ ℳ𝑟1×𝑛1(ℛ),𝐻2 ∈ ℳ𝑛2×𝑟2(ℛ) (5.14)

Given these two matrices, we can now construct the parity check matrices 𝐻𝑋 and 𝐻𝑍 using the tensor
product of the underlying chain complexes of these matrices:

𝐻𝑋 = (𝐻1 ⊗ℛ 𝐼𝑛2 |𝐼𝑟1 ⊗ℛ 𝐻𝑇
2 ) , 𝐻𝑍 = (𝐼𝑛1 ⊗ℛ 𝐻2|𝐻𝑇

1 ⊗ℛ 𝐼𝑟2) (5.15)

Using the representation 𝔹, we can lift these matrices to matrices over 𝔽2:

𝔹(𝐻𝑋) ∈ ℳ𝑙𝑟1𝑛2×𝑙(𝑛1𝑛2+𝑟1𝑟2)(𝔽2), 𝔹(𝐻𝑍) ∈ ℳ𝑙𝑛1𝑟2×𝑙(𝑛1𝑛2+𝑟1𝑟2)(𝔽2) (5.16)

We have now obtained the lifted product of the two codes, which has parity check matrices 𝔹(𝐻𝑋) and
𝔹(𝐻𝑍), provided that 𝔹(𝐻𝑋)𝔹(𝐻𝑍)𝑇 = 0. As 𝔹 is a faithful representation, this is equivalent to requiring
that𝐻𝑋𝐻𝑇

𝑍 = 0. This, however, requires that𝐻𝑋 and𝐻𝑍 be entry-wise commuting matrices (and hence,
that ℛ is itself commutative). Let us first write out the product:

𝐻𝑋𝐻𝑇
𝑍 = (𝐻1 ⊗ 𝐼𝑛2 |𝐼𝑟1 ⊗𝐻𝑇

2 ) (
𝐼𝑛1 ⊗𝐻𝑇

2

𝐻1 ⊗ 𝐼𝑟2
) = (𝐻1 ⊗ 𝐼𝑛2) (𝐼𝑛1 ⊗𝐻𝑇

2 ) + (𝐼𝑟1 ⊗𝐻𝑇
2 ) (𝐻1 ⊗ 𝐼𝑟2) (5.17)

Now, we can consider each of the terms separately using the Kronecker product:

(𝐻1 ⊗ 𝐼𝑛2) (𝐼𝑛1 ⊗𝐻𝑇
2 ) =

⎛
⎜⎜⎜
⎝

(𝐻1)11𝐼𝑛2 … (𝐻1)1𝑛1𝐼𝑛2
⋱

(𝐻1)𝑟11𝐼𝑛2 … (𝐻1)𝑟1𝑛1𝐼𝑛2

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

𝐻𝑇
2 ∅

⋱
∅ 𝐻𝑇

2

⎞
⎟⎟⎟
⎠

=
⎛
⎜⎜⎜
⎝

(𝐻1)11𝐻𝑇
2 … (𝐻1)1𝑛1𝐻𝑇

2

⋱
(𝐻1)𝑟11𝐻𝑇

2 … (𝐻1)𝑟1𝑛1𝐻𝑇
2

⎞
⎟⎟⎟
⎠

(5.18)
Similarly, we find:

(𝐼𝑟1 ⊗𝐻𝑇
2 ) (𝐻1 ⊗ 𝐼𝑟2) =

⎛
⎜⎜⎜
⎝

𝐻𝑇
2 (𝐻1)11 … 𝐻𝑇

2 (𝐻1)1𝑛1
⋱

𝐻𝑇
2 (𝐻1)𝑟11 … 𝐻𝑇

2 (𝐻1)𝑟1𝑛1

⎞
⎟⎟⎟
⎠

(5.19)

For this to be zero, we indeed see that 𝐻1 and 𝐻2 must commute elementwise.

Now that we have an explicit expression for the parity check matrices, we note that this lifted product
construction is indeed a generalisation of the hypergraph product construction: we can recover the
hypergraph product by simply taking ℛ = 𝔽2 — the restriction on 𝐻1 and 𝐻2 is then automatically
satisfied.

5.5. The Weight of Lifted Product Codes
Given that we understand the construction of the lifted product codes, we now determine their pa-
rameters. We start off by determining the weight of the lifted product in the most general case: let
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𝐺 = {𝑔1,… , 𝑔𝑙} be a finite, abelian group and consider the 𝐹2-algebra ℛ ∶= 𝔽2𝐺. Given an element in
ℛ, which we denote by 𝑎 ∶= ∑𝑙

𝑖=1 𝛼𝑖𝑔𝑖, we can use the map 𝕓 to write:

𝕓(𝑎) = (𝛼1 … 𝛼𝑙) (5.20)

Furthermore, by definition of 𝔹, the following expression holds:

𝔹(𝑎) =
𝑙
∑
𝑖=1

𝛼𝑖𝔹(𝑔𝑖) (5.21)

where 𝔹(𝑔𝑘) can be explicitly determined as the matrix satisfying [𝔹(𝑔𝑖)]𝑗𝑘 = 1 if and only if 𝑔𝑗 = 𝑔𝑖𝑔𝑘.
From this, one can now easily determine the weight of 𝔹(𝑎): Firstly, note that ∑𝑗 𝔹(𝑔𝑖)𝑗𝑘 = 1, as there
is precisely one 𝑔𝑗 such that 𝑔𝑗 = 𝑔𝑖𝑔𝑘. Thus, we find:

𝑙
∑
𝑗=1

𝔹(𝑎)𝑗𝑘 =
𝑙
∑
𝑖=1

𝛼𝑖 (
𝑙
∑
𝑗=1

𝔹(𝑔𝑖)𝑗𝑘) =
𝑙
∑
𝑖=1

𝛼𝑖 = wgt(𝕓(𝑎)) (5.22)

The same results hold when we sum over 𝑘, and hence, we conclude that:

wgt(𝔹(𝑎)) = wgt(𝕓(𝑎)) (5.23)

We thus conclude that the lifted product construction yields qLDPC codes, given that the input consists
of two classical LDPC codes.

5.6. An Algebraic Approach to Determining 𝑘: The Case of Quasi-
cyclic Codes

Let us start our discussion of determining the number of encoded qubits by returning to the example of
quasicyclic codes. Using an algebraic approach to these codes, we determine the number of encoded
qubits of the lifted product.

First, let us take ℛ ∶= 𝔽2[𝐶𝑙], with 𝑙 odd. By Maschke’s theorem[PK22b], we know that:

ℛ ≃
𝑘
∏
𝑖=1

𝔽2𝑠𝑖 (5.24)

let us write 𝜑𝑖 ∶ ℛ → 𝔽2𝑠𝑖 , where 𝔽2𝑠𝑖 ∶= GL(2𝑠𝑖 ). for the composition of the projection and the
isomorphism. Therefore, given any twoℛ-matrices 𝐴 and 𝐵, we can represent them using submatrices
𝜑𝑖(𝐴) and 𝜑𝑖(𝐵). The point is, now, that the degeneracy of codewords is respected by the isomorphism,
and that therefore, we easily find that:

𝑘 = dim (𝐿𝑃(𝐴, 𝐵)) =
𝑘
∑
𝑖=1

dim (𝐿𝑃(𝜑(𝐴𝑖), 𝜑(𝐵𝑖))) (5.25)

This result still holds when 𝑙 is even, but now, Maschke’s theorem cannot be used, but instead, we find
a direct product decomposition from the Chinese remainder theorem[LO14]:

ℛ ≃
𝑘
∏
𝑖=1

ℛ𝑖 (5.26)

We can still define a projection onto each of the rings ℛ𝑖, and as such, arrive at the same formula for 𝑘.

For illustrative purposes, let us work out a small example: let us take 𝑙 = 3 and apply Maschke’s
theorem to find that:

ℛ ∶= 𝔽2[𝑥]/(𝑥3 − 1) ≃ 𝔽2 × 𝔽4 (5.27)
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Note that this is indeed the case, as we have the following irreducible decomposition: 𝑥3 + 1 = (𝑥 +
1)(𝑥2 +𝑥+ 1), and 𝔽2[𝑥]/ (𝑥 + 1) ≃ 𝔽2, whereas 𝔽2[𝑥]/ (𝑥2 + 𝑥 + 1) ≃ 𝔽4. Now suppose that we want to
calculate the lifted product of the following matrix with itself:

(
[0] [𝑥2]
[𝑥] [𝑥2 + 1]

) (5.28)

Using the isomorphism, we can decompose this matrix as follows:

(
[0] [𝑥2]
[𝑥] [𝑥2 + 1]

)
ℛ

≃ (
[0] [1]
[1] [0]

)
𝔽2

× (
[0] [𝑥2]
[𝑥] [𝑥]

)
𝔽4

(5.29)

The lifted product of this matrix with itself can now be calculated by determining the lifted product of
these other matrices with themselves. The first of these reduces to a calculation of the hypergraph
product, while the second case can be tackled by using the Kronecker product, and then using the
representation 𝔹 ∶ GL(4) → End(𝔽22) that we determined in one of the previous sections.

5.7. A Homological Approach to Determining 𝑘
In the case of the hypergraph product, we could determine the number of encoded qubits using purely
linear algebraic arguments. One sees, however, that when studying the lifted product code, this is no
longer the case: even if we consider a specific subclass of such codes, like the quasicyclic codes, one
needs to make use of various results from the field of algebra to find an explicit expression for the num-
ber of encoded qubits. One could hope that a different approach to determining 𝑘 could offer us more
solace. As one could also make use of homological arguments for the hypergraph product codes, let us
thus try to see whether extending these to the lifted product codes offers us a better tool for this purpose.

5.7.1. The Case of Fields and Principal Ideal Domains
A first attempt at using homology for the purpose of determining the number of encoded qubits would
start from considering the structure ofℛ. As there is no ready-made theory of homology for 𝔽2-algebras,
one could first try to add more structure to ℛ and see whether this simplifies our calculations.
To this end, we turn to the case in which ℛ is a field, as this ensures that the Tor-functor vanishes. We
then find the regular Künneth formula:

ℋ1(𝐴 ⊗ℛ 𝐵) ≃ ℋ1(𝐴) ⊗ℛ ℋ0(𝐵) ⊕ℋ0(𝐴) ⊗ℛ ℋ1(𝐵) (5.30)

This theorem, however, is of limited use, as ℛ should also be an 𝔽2-algebra. Hence, we can fully
classify all possible choices of ℛ satisfying these properties: these are the Galois fields 𝔽2𝑙 ∶= GF(2𝑙).
Although this theorem offers us a way to simplify calculations, e.g. in the context of the quasicyclic
codes discussed in the previous section, we would ideally like to have a more generic form of the Kün-
neth formula.

A second attempt could spring from considering imposing less stringent conditions on ℛ. One idea
would be to assume that ℛ is a principal ideal domain (PID), as over such rings, modules behave
nicely — in particular, we know that all submodules of free modules in PIDs are again free, which thus
means that the kernels and images of the maps we are considering are free modules. We can therefore
invoke the following theorem [Hat01]:

Theorem 5.1. Let ℛ be a principal ideal domain, and consider two 2-complexes over ℛ, say 𝒜 and ℬ.
These complexes satisfy the following Künneth formula:

ℋ1(𝒜 ⊗ℛ ℬ) = ℋ1(𝐴) ⊗ℛ 𝐻0(𝐵) ⊕ℋ0(𝐴) ⊗ℛ 𝐻1(𝐵) (5.31)

And, moreover, this sequence splits non-canonically, i.e., we have that:

ℋ1(𝒜 ⊗ℛ ℬ) ≃ (ℋ1(𝐴) ⊗ℋ0(𝐵) ⊕ℋ0(𝐴) ⊗ℋ1(𝐵)) ⊕ (Torℛ1 (ℋ0(𝐴),ℋ0(𝐵))) (5.32)
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Note, however, that even this theorem is also of limited use when trying to devise a general formula
for the number of encoded qubits. There are two reasons for this: firstly, the requirement that ℛ be a
PID is also too stringent: the previously discussed quasi-cyclical codes, which can be formalised using
the group algebra of the cyclic groups ℛ ∶= 𝔽2[𝐶𝑙], are not PIDs: indeed, let ℛ ≃ 𝔽2[𝑥]/(𝑥𝑙 − 1). Then
𝑥𝑙 − 1 = (𝑥 − 1)(∑𝑙−1

𝑖=0 𝑥𝑖), hence 𝑥 − 1 is a zero divisor, and thus ℛ is not a domain, and therefore
certainly also not a PID.

Secondly, and more importantly, one cannot determine the Torℛ1 -functor in full generality. Even though
the zeroth homology groupsℋ0(𝐴) andℋ0(𝐵) are quotient groups of free modules, this does not guar-
antee that these are well-behaved.

Indeed, let us consider a simple example in which this theorem already fails to deliver useful, general
results: Let 𝐻1 ∶ ℛ → ℛ be the left-multiplication with some element 𝑎 ∈ ℛ that is not a zero divisor
(as PIDs are in particular domains), i.e. 𝐻1 ∶ 𝑟 ↦ 𝑎𝑟, and let 𝐻2 be some arbitrary map given by the
1-complex ℬ. Then Im (𝐻1) = 𝑎𝑅 is an ideal of ℛ, and hence we find the following SES:

0 ℛ ℛ ℛ/𝑎ℛ 0𝐻1

which, as Torℛ1 (ℛ,ℋ0(𝐵)) = 0, induces the following LES:

0 Torℛ1 (ℛ/𝑎ℛ,ℋ0(𝐵)) ℛ ⊗ℛ ℋ0(𝐵) ℛ ⊗ℛ ℋ0(𝐵) ℛ/𝑎ℛ ⊗ℛ ℋ0(𝐵) 0

We can simplify the central part of the sequence and use the first isomorphism theorem to derive that:

Torℛ1 (ℛ/𝑎ℛ,ℋ0(𝐵)) ≃ 𝑎ℋ0(𝐵) ∶= {𝑥 ∈ ℋ0(𝐵) ∶ 𝑎𝑥 = 0} (5.33)

And, given thatℋ1(𝐴) = ker (𝑥 ↦ 𝑎𝑥) = 0 (as 𝑎 is not a zero-divisor), we thus find:

ℋ1(𝒜 ⊗ℛ ℬ) ≃ (ℛ/𝑎ℛ ⊗ℛ ℋ1(𝐵)) ⊕ 𝑎ℋ0(𝐵) (5.34)

Assuming that 𝐻0(𝐵) is a finitely generated module [LO14], the structure theorem for finitely generated
modules tells us that there is an 𝑛 ∈ ℕ and there are ideals 𝐼1,… , 𝐼𝑘, such that:

ℋ0(𝐵) = ℛ𝑛 ⊕ (
𝑘

⨁
𝑖=1

ℛ/𝐼𝑘) (5.35)

We thus see that 𝑎ℋ0(𝐵) is non-trivial when this decomposition contains a summand ℛ/𝑎ℛ. Hence,
we cannot make any more general inferences about the first homology group of 𝒜⊗ℛ ℬ.

Both of these concerns can be resolved by going back to the basic structure of ℛ. Let us do just this.

5.7.2. Towards a General Expression for 𝑘: A Künneth Theorem
Given that we takeℛ to be an 𝔽2-module, one knows thatℛ-modules are themselves 𝔽2-modules. But,
as 𝔽2 is a field, every ℛ-module is automatically flat with respect to 𝔽2. One may wonder, therefore,
whether we cannot apply a change of rings, and show that the flatness with respect to 𝔽2 implies flatness
with respect to ℛ. The following theorem allows us to do just that [Wei94]:

Theorem 5.2. Let 𝒮 be a commutative ring, and let ℛ be a flat 𝒮-algebra. Then for every 𝒮-module 𝐴
and 𝐵, and for every 𝑛 ∈ ℕ, the following holds:

ℛ⊗𝒮 Tor
𝒮
𝑛(𝐴, 𝐵) ≃ Torℛ𝑛 (𝐴 ⊗𝒮 𝑇, 𝐵 ⊗𝒮 ℛ) (5.36)

Taking 𝒮 ∶= 𝔽2, and letting ℛ denote our 𝔽2-algebra, for any two ℛ-modules, this theorem tells us that:

Torℛ1 (𝐴 ⊗𝔽2 ℛ, 𝐵 ⊗𝔽2 ℛ) ≃ 𝑇 ⊗𝔽2 Tor
𝔽2
1 (𝐴, 𝐵) = 0 (5.37)
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Furthermore, as ℛ is a vector space, it is actually a free 𝔽2-module, such that:

Torℛ1 (𝐴 ⊗𝔽2 ℛ,𝐵 ⊗𝔽2 ℛ) ≃ Torℛ1 (𝐴 ⊗𝔽2 𝔽𝑙2, 𝐵 ⊗𝔽2 𝔽𝑙2) =⨁
𝑙2

Torℛ1 (𝐴 ⊗𝔽2 𝔽2, 𝐵 ⊗𝔽2 𝔽2) =⨁
𝑙2

Torℛ1 (𝐴, 𝐵)

(5.38)
Hence, we conclude that Torℛ1 (𝐴, 𝐵) = 0. As such, we see that, for 𝔽2-algebras, the general Künneth
formula for ring modules specialises to the formula we know and love from vector spaces:

ℋ𝑛 (𝐴 ⊗ℛ 𝐵) ≃
𝑛

⨁
𝑖=0

ℋ𝑖(𝐴) ⊗ℛ ℋ𝑛−𝑖(𝐵) (5.39)

Based on our analysis of the representation 𝔹, and on the Künneth theorem derived above, we find the
following expression for 𝑘:

𝑘 = dim𝔽2 (ℋ1(𝔹(𝐴 ⊗ℛ 𝐵))) (5.40)
= dim𝔽2 (ℋ1(𝐴 ⊗ℛ 𝐵)) (5.41)
= dim𝔽2 (ℋ1(𝐴) ⊗ℛ ℋ0(𝐵)) + dim𝔽2 (ℋ0(𝐴) ⊗ℛ ℋ1(𝐵)) (5.42)

Ideally, one would be able to relate the tensor product over ℛ to the tensor product over 𝔽2, such
that the dimension of the ℛ-tensor product of the homology groups can be calculated. Let us do so
by restricting our attention to group algebras of finite groups, ℛ = 𝔽2[𝐺], and noting that for arbitrary
ℛ-modules 𝐴, 𝐵:

𝐴⊗ℛ 𝐵 = (𝐴 ⊗𝔽2 𝐵) /𝑉 (5.43)

where:
𝑉 ∶= ⟨𝑔𝑎 ⊗ 𝑔𝑏 − 𝑎 ⊗ 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵⟩, 𝑔 ∈ 𝐺 (5.44)

We note that, therefore, 𝐴⊗ℛ 𝐵 is equal to (𝐴 ⊗𝔽2 𝐵)𝐺, the so-called 𝐺-coinvariants of 𝐴⊗𝔽2 𝐵. Given
all of this, we now see that:

𝑘 = dim𝔽2 ((ℋ1(𝐴) ⊗𝔽2 ℋ0(𝐵))𝐺) + dim𝔽2 ((ℋ1(𝐴) ⊗𝔽2 ℋ0(𝐵))𝐺) (5.45)

= dim𝔽2 ((ℋ1(𝐴) ⊗𝔽2 ℋ0(𝐵)) /𝑉) + dim𝔽2 ((ℋ0(𝐴) ⊗𝔽2 ℋ1(𝐵)) /𝑊) (5.46)
= dim𝔽2 (ℋ1(𝐴) ⊗𝔽2 ℋ0(𝐵)) + dim𝔽2 (ℋ0(𝐴) ⊗𝔽2 ℋ1(𝐵)) − dim𝔽2 (𝑉) − dim𝔽2 (𝑊) (5.47)
= dim𝔽2 (ℋ1(𝐴)) ⋅ dim (ℋ0(𝐵)) + dim (ℋ0(𝐴)) ⋅ dim (ℋ1(𝐵)) − dim𝔽2 (𝑉) − dim𝔽2 (𝑊) (5.48)
= dim𝔽2 (ℋ1(𝔹(𝐴))) ⋅ dim (ℋ0(𝔹(𝐵))) + dim (ℋ0(𝔹(𝐴))) ⋅ dim (ℋ1(𝔹(𝐵))) − dim𝔽2 (𝑉) − dim𝔽2 (𝑊)

(5.49)
= dim𝔽2 (ℋ1 (𝔹 (𝐴) ⊗𝔽2 𝔹 (𝐵))) − dim𝔽2 (𝑉) − dim𝔽2 (𝑊) (5.50)

(5.51)

where:

𝑉 ∶= ⟨𝑔𝑎⊗𝑔𝑏−𝑎⊗𝑏 ∶ 𝑎 ∈ 𝐻1(𝐴), 𝑏 ∈ 𝐻0(𝐵), 𝑔 ∈ 𝐺⟩, 𝑊 ∶= ⟨𝑔𝑎⊗𝑔𝑏−𝑎⊗𝑏 ∶ 𝑎 ∈ 𝐻0(𝐴), 𝑏 ∈ 𝐻1(𝐵), 𝑔 ∈ 𝐺⟩
(5.52)

We thus see that the problem of determining the number of encoded qubits of the lifted product code re-
duces to the problem of doing so for the hypergraph product and, moreover, determining the dimension
of 𝑉,𝑊 .
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6
Fibre Bundles and Covering Spaces

In this chapter, we will first discuss covering space theory. Afterwards, we will give an overview of the
theory of fibre bundles.

6.1. Covering Space Theory
Covering spaces are simply spaces that cover other spaces. Let us formalise this notion.

6.1.1. Ways of Covering a Circle
To gain some intuition for the concept of covering spaces, we start off by introducing an examplar of
this theory: the circle 𝑆1. One can easily cover the circle with another circle, by wrapping the second
circle around it once, twice, or even more times. To cover it infinitely often, one could use a helix (which
is homeomorphic to ℝ), as can be seen in this figure:

𝑆1

ℝ

Figure 6.1: A circle 𝑆1, together with a helix covering it. The helix is homeomorphic to ℝ.

Are there any more ways to cover 𝑆1? The answer to this question, surprisingly, is no (at least, not up
to isomorphism). To prove this, however, we need a better theoretic understanding of covering spaces.
To this end, let us first introduce the formal definition of a covering space. [DK01, ST].

6.1.2. Covering Spaces and their Morphisms
Definition 6.1. Let 𝐸, 𝐵 ∈ Top and let 𝑝 ∶ 𝐸 → 𝐵 be a surjective map such that every 𝑏 ∈ 𝐵 has an
open neighbourhood 𝑈 ⊆ 𝐵 such that:

1. 𝑝−1(𝑈) = ⨆𝑉𝛼, with 𝑉𝛼 ⊆ 𝐸 open

2. For each 𝛼, 𝑝|𝑉𝛼 is a homeomorphism 𝑉𝛼 ≅ 𝑈.

Then 𝐸 is a covering space of 𝐵 with covering map 𝑝.

We see that our motivating examples indeed satisfy this definition: in the case of the helix, we take
𝑝 to be the projection onto 𝑆1, whereas in the case in which the cover is the circle, one can take the
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complex valued map 𝑓𝑛 ∶ 𝑧 ↦ 𝑧𝑛 as the covering map.

Another, quite different example of a covering space can be constructed as follows: Let 𝐺 be a simply
connected, abelian Lie group, and let 𝔤 be its Lie algebra in some point, say 𝑥. Then 𝔤 can be seen as
a covering space of 𝐺. Here, the exponential map exp ∶ 𝔤 → 𝐺 serves as the covering map.

Given a covering space, we can easily find other covering spaces by restriction or by taking products.

Lemma 6.1. Let 𝑝 ∶ 𝐸 → 𝐵 be a covering space. Given some subset 𝐵0 ⊆ 𝐵. Then 𝐸0 ∶= 𝑝−1(𝐵0) ⊆ 𝐸
is a covering space of 𝐵0 with covering map 𝑝|𝐸0 .

Lemma 6.2. Let 𝑝 ∶ 𝐸 → 𝐵 and 𝑝′ ∶ 𝐸′ → 𝐵′ be covering spaces. Then 𝐸 × 𝐸′ is a covering space of
𝐵 × 𝐵′ with covering map 𝑝 × 𝑝′.

Proof. The proof of these lemmata follows readily from elementary topological arguments, see e.g.
[ST].

As a consequence of the last theorem, we see that the infinitely long cylinder 𝑆1 ×ℝ and the plane ℝ2,
are covers of the torus 𝕋 ≃ 𝑆1 × 𝑆1.

We will mostly be interested in spaces which admit a covering space that is — in a certain sense —
the largest possible covering space, much like how the helix is the largest covering space of 𝑆1. This
idea is captured in the notion of a universal cover.

Definition 6.2. Let 𝑝 ∶ 𝐸 → 𝐵 be a covering space. If 𝐸 is simply connected, it is the universal cover
of 𝐵.

One is guaranteed that a space possesses a universal cover if (and only if) it is a semilocally simply
connected, locally path connected and path connected space ([ST, Hat01]). From this point forward,
let us refer to such spaces as “sufficiently well-behaved spaces”, and let us assume that all the spaces
we consider are sufficiently well-behaved.

Having presented these elementary definitions, we can now move forward to show which favourable
properties covering spaces have, and turn to the question of how to classify the covering spaces of a
given topological space. To do so, however, we first need to introduce the notion of an equivalence of
covering spaces.

Definition 6.3. Let 𝑝 ∶ 𝐸 → 𝐵 and 𝑝′ ∶ 𝐸′ → 𝐵 be two covering spaces of 𝐵. A continuous mapping
𝑄 ∶ 𝐸 → 𝐸′ is said to be a covering space morphism if the following diagram commutes:

𝐸 𝐸′

𝐵

𝑄

𝑝′𝑝

if 𝑄 is, moreover, a homeomorphism, then 𝑄 is said to be an isomorphism of covering spaces. Lastly,
if 𝑄 is an automorphism of some covering space 𝐸, then 𝑄 is called a deck transformation.

Returning to the example of the covering space 𝑝 ∶ ℝ → 𝑆1, one can see that mapping the coils of
the helix onto the coils below them is an example of a deck transformation of the helix. Compositions
of these maps are again deck transformations, and, furthermore, one can identify an inverse deck
transformation as the map which maps each coil to the one above it:
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𝑏𝑏 𝑏

Figure 6.2: Three examples of the same covering of 𝑆1 using the helix with basepoint 𝑏, along with the deck transformations
between them. To move from the middle covering space to the leftmost one, one has to move down one winding of the helix,
as indicated by the blue dashed arrow. To move from the middle covering space to the rightmost one, one has to move up one
winding, as indicated by the red dashed arrow.

As such, one can see that the deck transformations actually form a group under composition. This is
true in general, and the generated group is called the automorphism group of the covering space (see
e.g. [Hat01]):

Theorem 6.3. Let 𝐵 be a sufficiently well-behaved space, and denote its universal cover by ̃𝐵. Then:

𝜋1(𝐵) ≃ Aut( ̃𝐵) (6.1)

6.1.3. Lifting Properties of Covering Spaces
By definition, the open sets of 𝐵 are lifted to open sets in 𝐸. This may lead us to wonder what additional
structure of 𝐵 might be lifted to its cover 𝐸. To this end, let us first return to the example of covering 𝑆1
by the helix. One can easily see that any path on 𝑆1 starting at some point 𝑏0 can be lifted to a path on
the helix, provided that we fix its starting point 𝑒0 ∈ 𝑝−1(𝑏0) on the helix:

𝑒0

𝑏0

Figure 6.3: A path on the circle 𝑆1 starting in the basepoint 𝑏0 (in red), along with its lift to the covering space ℝ that is based in
the point 𝑒0.

This is not merely a happy accident, but rather, is a property of every covering space.

Theorem 6.4 (Path Lifting Property). Let 𝑝 ∶ 𝐸 → 𝐵 be a covering space, and let 𝛾 ∶ [0, 1] → 𝐵
be a path in 𝐵 such that 𝛾(0) = 𝑏0. Given any 𝑒0 ∈ 𝐸 such that 𝑝(𝑒0) = 𝑏0, there is a unique path
̃𝛾 ∶ [0, 1] → 𝐸 such that ̃𝛾(0) = 𝑒0 and 𝑝∘ ̃𝛾 = 𝛾. In summary, we have the following commuting diagram:

[0, 1] (𝐸, 𝑒0)

(𝐵, 𝑏0)
𝛾 𝑝

∃! �̃�
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Proof. Let 𝒰 = {𝑈 𝑖} be an open cover of 𝐵, such that for each 𝑈 𝑖, 𝑝−1(𝑈 𝑖) can be written as the disjoint
union of open sets in 𝐸 and such that 𝑝, restricted to each of these open sets, is a homeomorphism.
By the Lebesgue number lemma, we can find a partition of [0, 1], say {[𝑡𝑖, 𝑡𝑖+1, 𝑖 = 1,… ,𝑁]} such that
each 𝛾([𝑡𝑖, 𝑡𝑖+1]) is contained a single open set in 𝒰, say 𝑈𝑡𝑖 . We can now define a proper lift for
𝛾|[𝑡0,𝑡1], as there is but one open set 𝑉0 in the preimage 𝑝−1(𝑈𝑡0) with 𝑒0 ∈ 𝑉0, and, moreover, 𝑝|𝑉0 is
a homeomorphism 𝑉0 ≅ 𝑈𝑡0 . Hence, we can define ̃𝛾|[𝑡0,𝑡1] = 𝑝|−1𝑉0 ∘ 𝛾|[𝑡0,𝑡1]. This procedure also fixes
the value for ̃𝛾(𝑡1). We can thus perform the same procedure to find the unique set 𝑉1 in the preimage
of 𝑈𝑡1 for which ̃𝛾(𝑡1) ∈ 𝑉1. Hence, we can define a lift for 𝛾|[𝑡1,𝑡2], and, continuing inductively, we find
lifts on each of the intervals [𝑡𝑖, 𝑡𝑖+1] such that ̃𝛾[𝑡𝑖 ,𝑡𝑖+1](𝑡𝑖+1) = ̃𝛾[𝑡𝑖+1,𝑡𝑖+2](𝑡𝑖+1). By the gluing lemma, we
conclude that ̃𝛾 ∶ [0, 1] → 𝐸 is a continuous path.
Lastly, given two lifts ̃𝛾1 and ̃𝛾2, one must have that:

𝑝|𝑉𝑖 ∘ ̃𝛾1|[𝑡𝑖 ,𝑡𝑖+1] = 𝛾|[𝑡𝑖 ,𝑡𝑖+1] = 𝑝|𝑉𝑖 ∘ ̃𝛾2|[𝑡𝑖 ,𝑡𝑖+1] (6.2)

By induction on 𝑖, one can easily see that ̃𝛾1|[𝑡𝑖 ,𝑡𝑖+1] and ̃𝛾2|[𝑡𝑖 ,𝑡𝑖+1] are in the same path component of
𝑝−1(𝑈𝑡0). As 𝑝|𝑉𝑖 is a homeomorphism, we now see that ̃𝛾1|[𝑡𝑖 ,𝑡𝑖+1] = ̃𝛾2|[𝑡𝑖 ,𝑡𝑖+1]. We thus conclude that
lifts of paths are unique.

Not just paths, but also homotopies between paths can be lifted to covering spaces.

Theorem 6.5 (Homotopy Lifting Property). Let 𝑝 ∶ 𝐸 → 𝐵 be a covering space, and let 𝐻 ∶ [0, 1] ×
[0, 1] → 𝐵 be a continuous function such that 𝐻(0, 0) = 𝑏0. Given any 𝑒0 ∈ 𝐸 such that 𝑝(𝑒0) = 𝑏0, there
is a unique homotopy �̃� ∶ [0, 1] × [0, 1] → 𝐸 such that �̃�(0, 0) = 𝑒0 and 𝑝 ∘ �̃� = 𝐻.
Proof. The proof runs analogous to the proof of the path lifting property, with the only difference being
that one must partition [0, 1]2 instead of [0, 1].

These lifting results can be generalised to arbitrary maps, provided that some additional conditions are
satisfied.

Theorem 6.6 (Lifting Criterion). Let 𝑝 ∶ (𝐸, 𝑒0) → (𝐵, 𝑏0) be a covering map, and suppose 𝑋 is a path
connected and locally path connected topological space. A map 𝑓 ∶ (𝑋, 𝑥0) → (𝐵, 𝑏0) has a (unique)
lift ̃𝑓 ∶ (𝑋, 𝑥0) → (𝐸, 𝑒0) if and only if 𝑓∗(𝜋1(𝑋, 𝑥0)) ⊆ 𝑝∗(𝜋1(𝐸, 𝑒0)).
Proof. ⇐. Let 𝑥 ∈ 𝑋 arbitrary. Define a path 𝛾 from 𝑥0 to 𝑥. We define ̃𝑓(𝑥) ∶= (̃𝑓 ∘ 𝛾)(1). We have
to prove two things: firstly, that this expression is well-defined, and secondly, that 𝑓 defined in this
pointwise manner is unique. Let us start with the first of these: suppose that there is another path 𝛾′
from 𝑥0 to 𝑥. We want to show that (̃𝑓 ∘ 𝛾)(1) = (̃𝑓 ∘ 𝛾′)(1). To this end, consider 𝛾′ ∗ 𝛾−1. One can
easily see that this is a loop in 𝑋. Furthermore, we see that the path 𝑓 ∘ (𝛾′ ∗ 𝛾−1) in 𝐵 is also a loop. As
its homotopy class is in the image of 𝑓∗, the assumption tells us that its homotopy class is also in the
𝑝∗-image of the fundamental group of (𝐸, 𝑒0), and hence, that ˜𝑓∘ (𝛾′ ∗ 𝛾−1) is homotopic to a path that
lifts to a loop in (𝐸, 𝑒0). By the path homotopy lifting property this means that ˜𝑓∘ (𝛾′ ∗ 𝛾−1) itself also
lifts to a path in (𝐸, 𝑒0) that is in the same homotopy class as a loop in 𝐸, and hence also a loop, i.e.:

𝑓 ∘ 𝛾′(1) = ˜𝑓 ∘ (𝛾′ ∗ 𝛾−1)(1) = ˜𝑓 ∘ (𝛾′ ∗ 𝛾−1)(0) = 𝑓 ∘ 𝛾−1(0) = 𝑓 ∘ 𝛾(1) (6.3)

To prove continuity, we point to the following commuting diagram:

(𝑋, 𝑥0) (𝐸, 𝑒0)

(𝐵, 𝑏0)

𝑝
𝑓

𝑓

Let 𝑥 ∈ 𝑋, and consider an open neighbourhood 𝑈 of 𝑓(𝑥). By continuity of 𝑓, there is a subset
𝑉 ⊆ 𝑋 ∶ 𝑓(𝑉) ⊆ 𝑊 . Now 𝑝−1(𝑈) is a disjoint union of open sets. Let𝑊 denote the subset of this disjoint
union such that ̃𝑓(𝑥) ∈ 𝑊 . Now, as 𝑝|𝑊 is a homeomorphism 𝑊 ≅ 𝑈, we see that ̃𝑓|𝑉 = 𝑝−1𝑊 ∘ 𝑓𝑉 , and
hence, that ̃𝑓|𝑉 is continuous.
⇒. This follows immediately from applying the functor 𝜋1 ∶ Top* → Grp to the commutative diagram
given above.
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The lifting criterion provides us with a tool for analysing the relationship between different covering
spaces of the same space. For example, by taking 𝑓 ∶ 𝑋 → 𝐵 to be the universal cover of 𝐵 and letting
𝐸 be an arbitrary different cover, we find that, as 𝜋1(𝑋) is trivial (by definition), 𝑓 lifts to a cover of 𝐸.
Hence, we conclude that the universal cover of 𝐵 is also the universal cover of every other covering
space of 𝐵.

This surprisingly profound yet simple consequence of the lifting criterion may lead one to speculate
whether there is a deeper connection between the fundamental group of 𝐵 and its covering spaces.
This is indeed the case, as we will demonstrate in the next section.

6.1.4. Classification of Covering Spaces and Covering Space Morphisms
In this section, we will make the relationship between the homotopy of a space and its covering spaces
explicit, and, in doing so, will fully classify the covering spaces of a given space.

To this end, let us first consider the example of the 2-fold covering of 𝑆1. Let us consider two opposite
points on 𝑆1, say 𝑥0 and 𝑥1, that both project onto the same point 𝑦.

𝑦

𝑥0 𝑥1

Figure 6.4: The 1-sphere with basepoint 𝑦, along with itself double cover. The preimage of 𝑦 under the covering map consists
of the points 𝑥0 and 𝑥1.

Inspired by the lifting criterion, one may ask how 𝑝∗(𝜋1(𝑆1, 𝑥0)) and 𝑝∗(𝜋1(𝑆1, 𝑥1)) relate to each other.
Although the answer can be derived from elementary algebraic topological considerations, it is never-
theless instructive to consider whether one can arrive at this answer in a different way. One approach
would be the following: let 𝛾 be the 1-loop starting and ending in 𝑦. By the path lifting property, we see
that 𝛾 lifts to a path ̃𝛾 from 𝑥0 to 𝑥1:

𝑦

𝑥0 𝑥1

𝛾

̃𝛾

Figure 6.5: The closed loop 𝛾 that goes around the circle 𝑆1 once and is based in 𝑦, along with its lift to the double cover of 𝑆1.
Its lift starts in 𝑥0 and ends in 𝑥1, and is therefore no longer a closed loop.

While conjugation by 𝛾 leaves 𝜋1(𝑆1, 𝑦) unaffected, we see that conjugation by ̃𝛾 shifts paths start-
ing in 𝑥0 to paths starting in 𝑥1 and vice versa. After projection, therefore, one expects the following
expression to hold:

𝑝∗(𝜋1(𝑆1, 𝑥0)) = [𝛾]−1𝑝∗(𝜋1(𝑆1, 𝑥1))[𝛾] (6.4)
This is indeed true, even in a more general setting:

Theorem 6.7. Let 𝑝 ∶ 𝐸 → 𝐵 and 𝑝′ ∶ 𝐸′ → 𝐵 be covering maps such that 𝑝(𝑒0) = 𝑝′(𝑒′0) = 𝑏0. There
is an isomorphism of coverings 𝑄 ∶ 𝐸 → 𝐸′ if and only if 𝑝∗(𝜋1(𝐸, 𝑒0)) is conjugate to 𝑝∗(𝜋1(𝐸, 𝑒1)) as a
subgroup of 𝜋1(𝐵, 𝑏0).
Proof. The proof to this theorem can be find in e.g. [Hat01, ST].

Let us return to the example of the 𝑛-fold covering 𝑆1 by 𝑆1: given a loop ̃𝛾(𝑡) in 𝑆1, we see that the
covering map 𝑓𝑛 ∶ 𝑧 ↦ 𝑧𝑛 maps this loop its 𝑛-fold copy. Therefore, identifying 𝜋1(𝑆1) with ℤ, we see
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that the covering map 𝑓𝑛 induces a map (𝑓𝑛)∗ ∶ 𝜋1(𝑆1) → 𝜋1(𝑆1) satisfying (𝑓𝑛)∗(ℤ) = 𝑛ℤ. Conversely,
we see that every non-trivial subgroup of ℤ is the image of some covering map (𝑓𝑛)∗, while the trivial
subgroup is the image of the universal covering map. This seems to imply that we can — in some
sense — identify a covering space 𝑝 ∶ 𝐸 → 𝑆1 with a subgroup of 𝜋1(𝑆1). As such, our initial claim that
𝑓𝑛 ∶ 𝑆1 → 𝑆1 and 𝑝 ∶ ℝ → 𝑆1 are the only covering spaces of 𝑆1 follows. This relationship between
covering maps on the one hand and subgroups of the fundamental group on the other holds more
generally:

Theorem 6.8. Let 𝐵 be a sufficiently well-behaved space. There is a one-to-one mapping between
the set of isomorphism classes of cover spaces 𝑝 ∶ 𝐸 → 𝐵 and the conjugacy classes of subgroups of
𝜋1(𝐵, 𝑏0).

Proof. We refer the reader to [ST] for the proof.

Lastly, it is instructive to consider the relationship between maps between covering spaces on the on
hand, and covering maps on the other. This relationship can be explicated as follows [ST]:

Theorem 6.9. Let 𝐸0, 𝐸1, 𝐵 ∈ Top be path connected and locally path connected spaces, and let 𝑝0, 𝑝1
and 𝑞 be maps such that the following diagram commutes:

𝐸1

𝐸0

𝐵

𝑞

𝑝1

𝑝0

If 𝑝0 and 𝑝1 are both covering maps, then so is 𝑞. Similarly, if 𝑝0 and 𝑞 are covering maps, then so is
𝑝1. Moreover, given that 𝐵 also admits a universal cover, If 𝑞 and 𝑝1 are both covering maps, then so
is 𝑝0.

We thus conclude that for semi-locally simply connected spaces, the notion of a covering map and a
morphism of covering spaces coincide.

6.2. Fibre Bundle Theory
We present elementary notions from fibre bundle theory. Before doing so, we let us first try to explain
why this theory was developed.

6.2.1. From Global To Local Descriptions
Not many spaces are easy to grasp in their entirety. The theory of manifolds, which are the spaces
of differential geometers, deals with this problem by stepping away from the urge to describe spaces
globally, and by describing them locally instead. In topology, this can be done using the notion of a
fibre bundle. Let us try to illustrate this using the example of a Möbius strip.

Figure 6.6: An artist’s impression of the Möbius strip.

Locally, the Möbius band is not much different from any ordinary band. Yet, globally, it possesses an
extra twist. That is, the strip, which can be seen as the product space 𝑆1 × [−1, 1], can be understood
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locally as a product space too, i.e. as (−1, 1) × [−1, 1]. The latter statement is also true for the Möbius
strip, yet, globally, it is not a simple product space.

The idea behind fibre bundle theory is to exploit the fact that the Möbius strip is locally quite simple. To
do so, we can break up the Möbius band into two overlapping strips:

Figure 6.7: Two overlapping parts of the Möbius strip, each of which is itself homeomorphic to the regular, untwisted strip.

Formally, these local descriptions are given by charts, which are local homeomorphisms between the
Möbius band and the strip (−1, 1) × [−1, 1]. In order to distinguish the regular, untwisted band from the
Möbius strip, we will need to specify how these different local descriptions of our space fit together. This
information is encoded in the transition functions, which tells us how to move from one local description
to the other via their overlap.

6.2.2. Fibre Bundles and Principal Bundles
After having presented the intuition behind the theory of fibre bundles, it is time to give an exposition
of the formal theory. This section is primarily based on [DK01].

Definition 6.4 (Fibre Bundle). Let 𝐹, 𝐵, 𝐸 ∈ Top and let 𝑝 ∶ 𝐸 → 𝐵 be a surjective map. (𝐸, 𝐵, 𝑝, 𝐹) is
called a locally trivial bundle if there is a collection of homeomorphisms called charts {𝜑 ∶ 𝑈 × 𝐹 → 𝑝−1(𝑈)}
for open sets 𝑈 such that:

1. The following diagram commutes for each chart 𝜑𝑈 :

𝑈 × 𝐹 𝑝−1(𝑈)

𝑈

𝜑𝑈

𝑝𝑈 𝑝

2. For every 𝑏 ∈ 𝐵: ∃𝑈 ⊆ 𝐵 open along with a chart 𝜑𝑈 such that 𝑏 ∈ 𝑈.
A locally trivial bundle is called a fibre bundle if, moreover, there is a topological group 𝐺 acting effec-
tively1 on 𝐹 such that the following two conditions hold:

3. for every two charts 𝜑𝑈 , 𝜑𝑈′ with𝑈∩𝑈 ′ ≠ ∅, there exists a continuous function, called a transition
function, 𝜃𝜑𝑈𝜑𝑈′ ∶ 𝑈 ∩ 𝑈 ′ → 𝐺, such that for each 𝑏 ∈ 𝑈 ∩ 𝑈 ′, 𝑓 ∈ 𝐹:

𝜑′(𝑏, 𝑓) = 𝜑(𝑏, 𝜃𝜑𝑈𝜑𝑈′ (𝑏) ⋅ 𝑓) (6.5)

We note that there is always a unique collection of charts that is maximal with respect to these con-
ditions. Restricting our attention to this maximal collection ensures that for every 𝜑𝑈 , given an open
subset 𝑉 ⊆ 𝑈, there is a chart 𝜑𝑉 such that 𝜑𝑉 = (𝜑𝑈) |𝑉 .

There are two other types of fibre bundles that one can consider.

Definition 6.5 (Principal Bundle). Let 𝐸, 𝐵 ∈ Top, and let 𝐺 ∈ Grp. A fibre bundle 𝑝 ∶ 𝐸 → 𝐵 with fibre
𝐺 is called a principal 𝐺-bundle if it has structure group 𝐺 which acts on the fibre by left-translation.
1We say that 𝐺 acts effectively on 𝑋 if the map 𝐺 → Homeo(X) is injective.
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One can see that covering spaces are specific instances of fibre bundles. Morphisms of covering
spaces are thus specific instances of morphisms between fibre bundles, which we will introduce later
on. Similarly, the universal cover of 𝑋 can be interpreted as a principal 𝜋1(𝑋)-bundle. More generally,
every regular covering space is a principal 𝜋1(𝑋)/𝑝∗[𝜋1(𝐸)]-bundle (see e.g. [DK01]).

There is another class of fibre bundles which will prove to be important later in our discussion.

Definition 6.6 (Local Coefficient Systems). Let 𝐴 ∈ Ab be topologised with the discrete topology, and
let 𝐺 be a subgroup of Aut(𝐴). A fibre bundle (𝐸, 𝐵, 𝑝, 𝐴) with structure group 𝐺 is called a system of
local coefficients on B.

Note that systems of local coefficients are, in fact, also covering spaces.

Although the definition of a fibre bundle requires an explicit description of the corresponding charts, we
can also describe a fibre bundle in terms of its transition functions alone ([DK01]):

Theorem 6.10 (Fibre Bundle Construction). Let 𝐵, 𝐹 ∈ Top and let 𝐺 be a topological group that acts
continuously on 𝐹. Given an open cover {𝑈 𝑖} of 𝐵 and a set of continuous functions 𝜃𝑖𝑗 ∶ 𝑈 𝑖 ∩ 𝑈𝑗 → 𝐺
satisfying the so-called Čech cocycle condition on every domain 𝑈 𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘:

𝜃𝑖𝑗 = 𝜃𝑖𝑘𝜃𝑘𝑗 (6.6)

Then there exists a fibre bundle (𝐸, 𝐵, 𝑝, 𝐹) that is locally trivialisable over {𝑈 𝑖} with transition functions
𝜃𝑖𝑗 .

One of the powerful implications of this theorem is that, given a fibre bundle 𝑝 ∶ 𝐸 → 𝐵 with structure
group 𝐺 and fibre 𝐹, and suppose that there is another space 𝐹′ ∈ Top on which 𝐺 acts effectively too.
Then, we can construct a new fibre bundle 𝑝′ ∶ 𝐸′ → 𝐵 with fibre 𝐹′ using the transition bundles of the
first bundle. For every fibre bundle, therefore, one can construct a principal 𝐺-bundle with fibre 𝐹′ = 𝐺.
Using the so-called Borel construction, one can associate a fibre bundle to every principal 𝐺-bundle
(see [DK01]):

Theorem 6.11. Let 𝑝 ∶ 𝑃 → 𝐵 be a principal 𝐺-bundle, and let 𝐹 ∈ Top such that there is a left-action
𝐺 × 𝐹 → 𝐹. We define:

𝑃 ×𝐺 𝐹 ∶= (𝑃 × 𝐹)/ ∼ (6.7)

where (𝑥, 𝑓) ∼ (𝑥𝑔, 𝑔−1𝑓). One can now define a projection 𝑃 ×𝐹 → 𝐵 ∶ (𝑥, 𝑓) ↦ 𝑝(𝑥), which descends
to a map 𝑞 ∶ 𝑃 ×𝐺 𝐹 → 𝐵. Now 𝑞 ∶ 𝑃 ×𝐺 𝐹 → 𝐵 is a fibre bundle with exactly the same transition
functions as 𝑝 ∶ 𝑃 → 𝐵.

One can use this construction to characterise local coefficient systems.

Theorem 6.12. Let (𝐸, 𝐵, 𝑝, 𝐴) be a local coefficient system over a sufficiently well-behaved space
𝐵 with universal cover ̃𝐵. Letting 𝜌 ∶ 𝜋1𝐵 → Aut(𝐴), one finds that 𝑝 ∶ 𝐸 → 𝐵 is the fibre bundle
associated to the principal 𝜋𝐵/ker (𝜌)-bundle 𝑝′ ∶ ̃𝐵 → 𝐵 constructed using the Borel construction with
action induced by the representation 𝜌.

6.2.3. Morphisms of Fibre Bundles
Having discussed the basic notions related to fibre bundles, it is time to introduce the maps between
them.

Definition 6.7 (Fibre Bundle Morphism). let (𝐸, 𝐵, 𝑝, 𝐹) and (𝐸′, 𝐵′, 𝑝′, 𝐹′) be two fibre bundles, and let
𝛽 ∶ 𝐵 → 𝐵′ and 𝜖 ∶ 𝐸 → 𝐸′ be two continuous maps. The pair (𝛽, 𝜖) is a fibre bundle morphism if the
following diagram commutes:

𝐸 𝐸′

𝐵 𝐵′

𝜖

𝛽

𝑝 𝑝′
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and, moreover, for every point 𝑏 ∈ 𝐵, every open neighbourhood of 𝑏, 𝑈 ⊆ 𝐵, and every open set
𝑈 ′ ⊆ 𝐵′ such that 𝛽(𝑏) ∈ 𝑈 ′, given two charts 𝜑𝑈 and 𝜑𝑈′ , there is a continuous map 𝜓𝜑𝑈𝜑𝑈′ ∶
𝑈 ∩ 𝑓−1(𝑈 ′) → 𝐺 such that the map:

{𝑏} × 𝐹 {𝑓(𝑏)} × 𝐹

𝑝−1(𝑏) (𝑝′)−1(𝑓(𝑏))𝜖

𝜑𝑈 𝜑𝑈′

is equivalent to the action induced by 𝜓𝜑𝑈𝜑𝑈′ (𝑏).

Lastly, we can introduce the notion of a fibre bundle equivalence, i.e. a fibre bundle isomorphism. We
define a fibre bundle morphism (𝜖, 𝛽) to be an isomorphism of fibre bundles if there are maps (𝜖′, 𝛽′)
going in the reverse direction such that the compositions of these maps are the identity.



7
Homology with Local Coefficients and

Spectral Sequences
We previously saw a generalisation of the theory of homology that replaced the vector space structure
of the chain complexes with the more general structure of a ring module. We now consider a differ-
ent generalisation of the theory of singular homology, which aims to loosen the assumptions on the
coefficient ring rather than the structure of the chain complexes. We first introduce this so-called ho-
mology with local coefficients. Afterwards, we introduce a technique that can be used to calculate the
homology of fibre bundles, so-called spectral sequences. We finally use the theory of homology with
local coefficients to construct a specific class of spectral sequences, the so-called Leray-Serre spectral
sequence.

7.1. Homology with Local Coefficients
7.1.1. Local Coefficients
The key insight that motivates the introduction of homology with local coefficients is the fact that the
homology theories we have considered thus far possess a certain globality. When considering fibre
bundles, however, we move from a global description to a local description of space. Therefore, we
would like to be able to do homology within such a local framework as well, and thus be able to make
inferences about the homological structure of a fibre bundle by using its base space, as well of in-
formation about its fibre. Yet, one ought to be careful, as paths over the base space with the same
endpoints no longer necessarily lift to paths with the same endpoints in the fibre bundle. Therefore,
when determining the boundary of some path over the base space, one must take into account not
only the endpoints of the path, but also the lifting properties of this path. To this end, we define a local
system on our (base) space 𝑋: [Max13]:

Definition 7.1. Let 𝑋 ∈ Top. A local system 𝐴 = {𝐴𝑥, 𝜏𝛾} assigns to each point 𝑥 ∈ 𝑋 an abelian group
𝐴𝑥 such that 𝐴𝑥 ≃ 𝐴𝑦 for each other point 𝑦 ∈ 𝑋. Furthermore, 𝐴 assigns to each path 𝛾 ∶ [0, 1] → 𝑋 a
isomorphism 𝐴𝛾(1) → 𝐴𝛾0 such that:

1. For the constant path 𝛾(𝑡) = 𝑥, 𝜏𝛾 = id, and

2. For each 𝜎 ∶ Δ2 → 𝑋, one has the following identity:

𝜏𝜎∘𝛿0 ∘ 𝜏𝜎∘𝛿2 = 𝜏𝜎∘𝛿1 (7.1)

The two conditions in the definition of a local system ensure the regularity of our construction: the first
condition makes sense, as we expect constant paths to lift to constant paths as well, while the second
condition ensures that our spaces are locally well-behaved, in the sense that, two paths within a nicely
behaved subspace with the same starting point and end point are required to behave similarly. One
can indeed prove that this condition implies that for homotopic paths 𝛾 ≃ 𝛾′, one has that 𝜏𝛾 = 𝜏𝛾′ (see
e.g. [Max13]).

70
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This definition is, moreover, equivalent to the definition of a local coefficient system given in the last
chapter: fixing some arbitrary point 𝑥 ∈ 𝑋, we can take the group 𝐴𝑥 as the fibre. The functions 𝜏𝛾 then
provide us with transition functions, where the second of the conditions of imposed on these functions
is equivalent to the Čech cocycle condition. As such, by the fibre bundle construction theorem, our
claim follows.

Each fibre bundle 𝑝 ∶ 𝐸 → 𝐵 induces a system of local coefficients. In fact, these will be the systems
of local coefficients that we will be most interested in in what is to follow. Fixing some 𝑞 ∈ ℤ, we can
define 𝐴𝑥 ∶= ℋ𝑞(𝑝−1(𝑥)). One can show that in this case, there are induced isomorphisms 𝜏𝛾 for every
1-simplex 𝛾 ∶ [0, 1] → 𝐵. We refer the interested reader to [Max13] for the technical details of this
construction.

There are two ways of constructing the homology groups with local coefficients of some given topo-
logical space: an algebraic approach and a topological approach [DK01, Geo78]. We present both of
these. Before that, however, note that we will always assume that our space 𝑋 is a semi-locally con-
nected, path connected and locally path connected space. Hence, 𝑋 admits a universal cover, which
we will denote by ̃𝑋.

7.1.2. The Algebraic Construction
Suppose we are given an abelian group 𝐴. We have already seen how to define the singular homology
groups of 𝑋 with coefficients in 𝐴. Another way of obtaining these singular homology groups, is from
the universal coefficient theorem, which, assuming that 𝐴 is flat as a ℤ-module, yields:

𝐻𝑖(𝑋; 𝐴) ≃ 𝐻𝑖(𝑋; ℤ) ⊗ℤ 𝐴 (7.2)

Now, let us assume moreover that we are given a representation 𝜌 ∶ 𝜋1(𝑋) → Aut(𝐴). In line with the
universal coefficient theorem, we would like to define the homology of 𝑋 with coefficients in 𝐴, but then
with an additional twist, as described 𝜌. As 𝜌 acts on 𝜋1(𝑋), which is isomorphic to the group of deck
transformations of ̃𝑋, it is natural to consider the following definition:

Definition 7.2. Let 𝑋 be a semi-locally, path connected, locally path connected space, and let 𝐴 be
an abelian group. Let 𝜌 ∶ 𝜋1(𝑋) → Aut(𝐴) be a representation. We define the homology of 𝑋 with
coefficients in 𝐴 twisted by 𝜌, 𝐻𝑛(𝑋; 𝐴𝜌), as the homology of the following chain complex:

𝐶𝑛(𝑋; 𝐴𝜌) ∶= 𝐶𝑛( ̃𝑋; ℤ) ⊗ℤ[𝜋1(𝑋)] 𝐴 (7.3)

We expect that taking a trivial twist in this construction brings us back to singular homology — let us
check this. Firstly, note that 𝐶𝑛(𝑋; ℤ) is a free ℤ-module. Let us denote its basis by {𝜎𝑖}. We can lift
this basis to a set { ̃𝜎𝑖} ⊆ 𝐶𝑛( ̃𝑋; ℤ). Acting on this set by all possible deck transformations, one finds a
ℤ-basis of 𝐶𝑛( ̃𝑋; ℤ). Therefore, this set is a ℤ[𝜋1(𝑋)]-basis of 𝐶𝑛( ̃𝑋; ℤ). Furthermore, as 𝜌 acts trivially
on 𝐴, we see that the following map is an isomorphism:

𝐶𝑛( ̃𝑋; ℤ) ⊗ℤ[𝜋1(𝑋)] 𝐴 → 𝐶𝑛(𝑋; ℤ) ⊗ℤ 𝐴 ∶ ̃𝜎𝑖 ⊗ℤ[𝜋1(𝑋)] 𝑎 ↦ 𝜎𝑖 ⊗ℤ 𝑎 (7.4)

Moreover, this map is clearly also a chain map. We have found a chain isomorphism between these
two chain complexes, and thus, we see that the homology with a trivial twist coincides with singular
homology.

Let us consider what happens when 𝐴 is a free ℤ[𝜋1(𝑋)]-module. To this end, it suffices to consider
the case when 𝐴 = ℤ[𝜋1(𝑋)]. We then see that:

𝐶𝑛( ̃𝑋; ℤ) ⊗ℤ[𝜋1(𝑋)] 𝐴 = 𝐶𝑛( ̃𝑋; ℤ) ⊗ℤ[𝜋1(𝑋)] ℤ[𝜋1(𝑋)] ≃ 𝐶𝑛( ̃𝑋; ℤ) (7.5)

Such that:
𝐻𝑛(𝑋; 𝐴𝜌) = 𝐻𝑛( ̃𝑋; ℤ) (7.6)

Taking the local coefficient system induced by the principal 𝜋1(𝑋)-bundle 𝑝 ∶ ̃𝑋 → 𝑋 with fibres iso-
morphic to 𝐻0(𝑝−1(𝑥)) for some 𝑥 ∈ 𝑋, one can choose 𝜌 to be the representation that identifies
𝜋1(𝑋) ≃ Aut( ̃𝑋). As the fibre of a local coefficient system is discrete, we have that 𝐻0(𝑝−1(𝑋)) ≃
ℤ[𝑝−1(𝑋)] ≃ ℤ[𝜋1(𝑋)]. Hence, by our last example, we see that, in this case, the homology with twisted
coefficients coincides with the homology of the universal cover.



7.2. Spectral Sequences 72

7.1.3. The Topological Construction
We now take a topological approach to constructing the twisted homology. To this end, let us consider
a system of coordinates 𝑝 ∶ 𝐸 → 𝑋, whose fibre is the discrete abelian group 𝐴. Let us define sets
𝐶𝑛(𝑋; 𝐸), whose elements are taken to finite sums of the following form:

∑
𝑖
𝑎𝑖𝜎𝑖 (7.7)

where 𝜎𝑖 ∶ Δ𝑛 → 𝑋 is a singular 𝑛-complex and 𝑎𝑖 is an element from the fibre 𝑝−1(𝜎𝑖((1, 0, 0,… , 0))). In
the trivial case, the various fibres 𝑝−1(𝑥) would be canonically isomorphic and this construction would
therefore be equivalent to the construction of the free abelian group 𝔸[𝑆𝑛(𝑋)].

After noticing that this complex can be realised as the following direct sum, one can easily see that it
has an abelian group structure:

𝐶𝑛(𝑋; 𝐸) ≃⨁
𝑥∈𝑋

𝐶𝑛(𝑋; 𝑝−1(𝑥)) (7.8)

Therefore, we can use these chain complexes to construct homology groups. One ingredient is missing,
however: the differentials. Let us try to proceed as usual: we consider face maps 𝛿𝑘 ∶ Δ𝑛−1 → Δ𝑛, and
consider the composition 𝜎𝑖 ∘ 𝛿𝑘. For 𝑘 ≥ 1, we see that 𝜎𝑖 ∘ 𝛿𝑘(1, 0,… , 0) = 𝜎𝑖(1, 0,… , 0). However,
for 𝑘 = 0, we see that 𝜎𝑖 ∘ 𝛿0(1, 0,… , 0) = 𝜎𝑖(0, 1, 0,… , 0), so precomposition with 𝛿0 does not lift
the basepoint in Δ𝑛−1 to the basepoint in Δ𝑛, and hence prohibits us from lifting elements 𝑎𝑖 from
𝑝−1(𝜎𝑖(1, 0,… , 0)) to 𝑝−1(𝜎𝑖∘𝛿0(1, 0,… , 0)). We can, however, use the local coordinate system to identify
elements of different fibres. To this end, given some 𝜎𝑖, let us consider the path 𝛾𝜎𝑖 ∶ [0, 1] → 𝑋 ∶ 𝑡 ↦
𝜎𝑖(𝑡, 1 − 𝑡, 0,… , 0). As local coefficient systems are also covering spaces, we can use the path lifting
property to find an isomorphism 𝑝−1(𝜎𝑖(1, 0, 0,… , 0)) ≃ 𝑝−1(𝜎𝑖(0, 1, 0,… , 0)). This isomorphism allows
us to define the differential 𝜕 as the linear extension of the following map:

𝑎𝑖𝜎𝑖 ↦ (𝛾𝜎𝑖 )∗(𝑎𝑖)𝜎 ∘ 𝛿0 +
𝑛
∑
𝑘=1

𝑎𝑖𝜎 ∘ 𝛿𝑘 (7.9)

The homology of this newly defined chain complex can be shown to be equal to the homology of 𝑋 with
twist 𝜌, provided that the system of coordinates 𝑝 ∶ 𝐸 → 𝑋 is of the form 𝑝 ∶ ̃𝑋 ×𝜋1(𝑋) 𝐴, where the
action of 𝜋1(𝑋) on 𝐴 is given by the twist 𝜌 (see e.g. [Geo78] for a proof).

7.1.4. Cellular Homology with Local Coefficients
Directly calculating the singular homology of spaces is already quite hard. One would therefore hope
to have an equivalent of cellular homology when using local coefficients. This, fortunately, is indeed
the case. We only sketch the construction here, and refer the interested reader to [Geo78, DK01].

Let 𝑋 be a connected and sufficiently well-behaved CW-complex. Let us denote its universal cover by

𝑝 ∶ ̃𝑋 → 𝑋. Now consider an open 𝑛-cell in 𝑋, say 𝐸𝑛𝑗 along with the homeomorphism 𝜒 ∶
∘
𝐷 → 𝐸𝑛𝑗 .

Let us now consider one of the path components of ̃𝐸 ⊆ 𝑝−1(𝐸𝑛𝑗 ). As both 𝜒 and 𝑝|�̃� are homeomor-
phisms, we see that ̃𝐸 can actually be interpreted as an open 𝑛-cell of ̃𝑋: by defining ̃𝑋𝑛 as all the path
components of all the open 𝑛-cells in 𝑋𝑛, we see that the ̃𝑋𝑛 form a CW complex, and, moreover, that
̃𝑋 = ⋃𝑛

̃𝑋𝑛. Furthermore, as the fundamental group of 𝑋 is isomorphic to the group of deck trans-
formations of ̃𝑋, we can actually interpret these results as saying that to every ℤ-cellular complex 𝒞𝑛
belonging to 𝑋, there is a ℤ[𝜋1(𝑋)]-cellular complex belonging to ̃𝑋. The differential of this new complex
is generated by the old differential through the path lifting property.

7.2. Spectral Sequences
Spectral sequences are powerful tools that can be used to calculate the homology of spaces. Their
power comes at the expense of great generality, which makes it hard to intuitively understand their
workings. At a very basic level, however, they can be understood as sequences of lattices of abelian
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groups.
⋮ ⋮ ⋮

⋯ 𝐸𝑟0,1 𝐸𝑟1,0 𝐸𝑟1,1 ⋯

⋯ 𝐸𝑟0,1 𝐸𝑟0,0 𝐸𝑟0,1 ⋯

⋯ 𝐸𝑟−1,−1 𝐸𝑟−1,0 𝐸𝑟−1,1 ⋯

⋮ ⋮ ⋮
Each such lattice is usually referred to as a page. Between the groups on each page, there are maps
which very closely resemble boundary maps we have considered earlier.

⋮ ⋮ ⋮

⋯ 𝐸21,−1 𝐸21,0 𝐸21,1 ⋯

⋯ 𝐸20,−1 𝐸20,0 𝐸20,1 ⋯

⋯ 𝐸2−1,−1 𝐸2−1,0 𝐸2−1,1 ⋯

⋮ ⋮ ⋮

Given some page, the groups on the lattice of the next page are the homology groups with respect to
the boundary-like maps between the groups on the previous page. The point, now, is that by choosing
these groups and maps appropriately, the lattice will start to stabilise as we walk through the different
pages. Hence, we can introduce a notion of convergence for such spectral sequences. By choosing
the first page and the boundary maps wisely, the limit page of the spectral sequence can be shown to
converge to the homology groups that one is interested in. We will formalise these ideas, after which
we will introduce an important spectral sequence: the Leray-Serre spectral sequence. This discussion
will primarily be based on [Max13, DK01, Hat01, Wei94].

7.2.1. Spectral Sequences of Filtered Complexes
We first formalise the idea of a lattice of groups.

Definition 7.3. A family of abelian groups 𝐸∗∗ with indices in ℤ is called a bigraded abelian group. A
family of homomorphisms 𝑓 between two bigraded abelian groups 𝐴 and 𝐵, such that 𝑓𝑝,𝑞 ∶ 𝐴𝑝,𝑞 →
𝐵𝑝+𝑎,𝑞+𝑏 is a bigraded map of degree (𝑎, 𝑏). One can define the kernel and image of such bigraded
maps as the family of kernels and images of the respective maps 𝑓𝑝,𝑞. Finally, we call a pair (𝐸∗∗, 𝜕)
consisting of a bigraded abelian group 𝐸∗∗ together with a bigraded map 𝜕 ∶ 𝐸∗∗ → 𝐸∗∗ satisfying the
condition 𝜕2 = 0 a differential bigraded abelian group.

The condition 𝜕2 = 0 invites us to consider the homology of such a differential bigraded abelian group.

Definition 7.4. Let (𝐸∗∗, 𝜕) denote a differential bigraded abelian group, and suppose that 𝜕 is a map
of degree (𝑎, 𝑏). The homology of (𝐸∗∗, 𝜕) is the bigraded abelian group defined as:

𝐻𝑝,𝑞(𝐸∗∗, 𝜕) =
ker (𝜕𝑝,𝑞)

Im (𝑑𝑝−𝑎,𝑞−𝑏)
(7.10)
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We can now define spectral sequences.

Definition 7.5. Given a collection of differential bigraded abelian groups {𝐸𝑟∗∗, 𝜕𝑟}𝑟∈ℕ where each dif-
ferential 𝜕𝑟 belonging to page 𝐸𝑟∗∗ is of bidegree (−𝑟, 𝑟−1). This collection is called a spectral sequence
if the following holds:

𝐸𝑟+1𝑝,𝑞 ≃ 𝐻𝑝,𝑞(𝐸𝑟, 𝜕𝑟) (7.11)

At the beginning of this section, we mentioned walking through the different pages of the spectral
sequence, until the spectral sequence had stabilised. The limit of this process is captured in the notion
of the limit page of a sequence. We can explicitly construct this limit page by induction. First, note
that we can define: 𝐸2𝑝,𝑞 = 𝑍1𝑝,𝑞/𝐵1𝑝,𝑞, where 𝑍1𝑝,𝑞 = ker (𝜕1𝑝,𝑞) and 𝐵1𝑝,𝑞 = Im (𝜕1𝑝+1,𝑞). Now, given that
ker (𝑑2)𝑝,𝑞 ⊆ 𝐸2𝑝,𝑞, we can write ker (𝑑2)𝑝,𝑞 ∶= 𝑍2𝑝,𝑞/𝐵1𝑝,𝑞. Similarly, we can write Im (𝜕2𝑝+2,𝑞−1) ∶= 𝐵2𝑝,𝑞/𝐵1𝑝,𝑞.
Therefore, we have that:

𝐸3𝑝,𝑞 = (𝑍2𝑝,𝑞/𝐵1𝑝,𝑞)/(𝐵2𝑝,𝑞/𝐵1𝑝,𝑞) ≃ 𝑍2𝑝,𝑞/𝐵2𝑝,𝑞 (7.12)

Proceeding inductively, we find a sequence of sets 𝑍𝑖𝑝,𝑞, 𝐵𝑖𝑝,𝑞 satisfying:

𝐵1𝑝,𝑞 ⊆ 𝐵2𝑝,𝑞 ⊆ …𝐵𝑛𝑝,𝑞 ⊆ 𝑍𝑛𝑝,𝑞 ⊆ … ⊆ 𝑍2𝑝,𝑞 ⊆ 𝑍1𝑝,𝑞 ⊆ 𝐸1𝑝,𝑞 (7.13)

for each 𝑛 ∈ ℕ, satisfying the property 𝐸𝑛+1𝑝,𝑞 ≃ 𝑍𝑛𝑝,𝑞/𝐵𝑛𝑝,𝑞. Hence, we can define 𝑍∞𝑝,𝑞 ∶= ∩∞𝑖=1𝑍𝑖𝑝,𝑞 and
𝐵∞𝑝,𝑞 ∶= ∩∞𝑖=1𝐵𝑖𝑝,𝑞. The limit page of the spectral sequence is now defined as the bigraded abelian group
𝐸∞𝑝,𝑞 for which the following holds:

𝐸∞𝑝,𝑞 ∶= 𝑍∞𝑝,𝑞/𝐵∞𝑝,𝑞 (7.14)
For a technical discussion of the well-definedness of this limit page, we refer the reader to [Wei94].

We will primarily be interested in spectral sequences that are induced by chain complexes. To this end,
we first introduce the notion of a filtration, which also allows us to understand the notion of convergence
of spectral sequences.

Definition 7.6. A filtration on an abelian group 𝐴 is a family {𝐹𝑝𝐴}𝑝∈ℤ of subgroups of 𝐴 such that:

… ⊆ 𝐹𝑝−1𝐴 ⊆ 𝐹𝑝𝐴 ⊆ 𝐹𝑝+1𝐴 ⊆ 𝐴 (7.15)

Each graded abelian group 𝐴∗ for which one can find a filtration, there is a naturally induced graded
abelian group, namely:

𝐸0𝑝,𝑞(𝐴∗, 𝐹∗) ∶= 𝐹𝑝𝐴𝑝+𝑞/𝐹𝑝−1𝐴𝑝+𝑞 (7.16)
With this in mind, we can now formalise the idea of convergence of a spectral sequence.

Definition 7.7. A spectral sequence {𝐸𝑟∗∗, 𝜕𝑟} is said to converge to the graded abelian group 𝐴∗ if there
is a filtration 𝐹∗ such that there are isomorphisms 𝐸∞𝑝,𝑞 ≃ 𝐸0𝑝,𝑞(𝐴∗, 𝐹∗). We denote this by 𝐸1𝑝,𝑞 → 𝐴𝑝+𝑞.
We can now finally introduce the notion of a filtered complex.

Definition 7.8. A filtered chain complex (𝒞∗, 𝜕) consists of a chain complex together with a filtration
{𝐹𝑝𝒞}𝑝∈ℤ such that the boundary map preserves the filtration, i.e. such that:

𝜕(𝐹𝑝𝒞𝑛) ⊆ 𝐹𝑝𝒞𝑛−1 (7.17)

We note that by definition, for each 𝑝, a (𝐹𝑝𝒞∗, 𝜕) again forms a chain complex. Moreover, the inclusion
𝐹𝑝𝒞∗ ↪ 𝒞∗ induces a filtration on the homology of 𝒞∗, which we denote by 𝐹𝑝ℋ∗(𝒞).

Assuming some technical conditions, a filtered chain complex induces a spectral sequence that con-
verges to the homology of the chain complex.

Theorem 7.1. Let (𝒞∗, 𝜕) be a filtered chain complex with filtration 𝐹∗, define

𝐸1𝑝,𝑞 = ℋ𝑝+𝑞 (
𝐹𝑝𝒞∗
𝐹𝑝−1𝒞∗

) , 𝜕1 ∶ [𝑥 + 𝐹𝑝−1𝒞∗] ↦ [𝜕(𝑥) + 𝐹𝑝𝒞∗] (7.18)

and assume, moreover, that the filtration is bounded in the following sense:

∀𝑛 ∈ ℕ ∶ ∃𝑃 ≤ 𝑄 ∶ {0} = 𝐹𝑃𝒞𝑛 ⊆ … ⊆ 𝐹𝑄𝒞𝑛 = 𝒞𝑛 (7.19)

There now is a spectral sequence {𝐸𝑟∗∗, 𝜕𝑟} with first page 𝐸1∗∗ such that 𝐸1𝑝,𝑞 ⇒ 𝐻𝑝+𝑞(𝒞)
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Proof. We refer the reader to [Max13] for the proof.

In particular, this result can be applied to double complexes. Recall that to each double complex 𝒞∗∗,
one can associate a total complex Tot⊕(𝒞)∗. This total complex can now be filtered horizontally and
vertically. We define its column-wise filtration as:

(𝐹↑𝑝 Tot⊕(𝒞))𝑛 ∶=⨁
𝑖≤𝑝

𝐶𝑖,𝑛−𝑖 (7.20)

And, similarly, its row-wise filtration as:

(𝐹←𝑝 Tot⊕(𝒞))𝑛 ∶=⨁
𝑗≤𝑝

𝐶𝑛−𝑗,𝑗 (7.21)

As these are clearly bounded (in the sense of Theorem 7.1), we see that there must exist a spectral
sequence converging to the homology of the total complex. We can use result to derive the Leray-Serre
spectral sequence.

7.2.2. The Leray-Serre Spectral Sequence
We now turn to the Leray-Serre spectral sequence, which can be used to find the homology of a fibre
bundle. To this end, we present the construction of Dress[Max13] .
Given a fibre bundle 𝑝 ∶ 𝐸 → 𝐵 with fibre 𝐹 and consider the following diagram:

Δ𝑝 × Δ𝑞 𝐸

Δ𝑝 𝐵

𝜎𝐸𝑝,𝑞

𝑝(𝑡,𝑠)↦𝑡

𝜎𝐵𝑝

We define 𝑆𝑝,𝑞 to be the set of all pairs (𝜎𝐸𝑝,𝑞, 𝜎𝐵𝑝 ) for which this diagram commutes. We can then define
the double complex 𝐶𝑝,𝑞 as the free abelian group with basis 𝑆𝑝,𝑞, and with horizontal and vertical
boundary maps 𝜕↑, 𝜕← for which, for each 𝑝, 𝑞 > 0:

𝜕↑𝑝,𝑞 ∶ (𝜎𝐸𝑝,𝑞, 𝜎𝐵𝑝 ) ↦
𝑝
∑
𝑖=0
(−1)𝑖(𝜎𝐸𝑝,𝑞 ∘ (𝛿𝑖 × idΔ𝑞), 𝜎𝐵𝑝 ∘ 𝛿𝑖) (7.22)

𝜕←𝑝,𝑞 ∶ (𝜎𝐸𝑝,𝑞, 𝜎𝐵𝑝 ) ↦
𝑞
∑
𝑗=0

(−1)𝑗+𝑝(𝜎𝐸𝑝,𝑞 ∘ (idΔ𝑝 × 𝛿𝑗), 𝜎𝐵𝑝 ) (7.23)

Using the theorem for filtered chain complexes from the previous section and using this construction,
one can prove the following theorem [Max13]:

Theorem 7.2. Let 𝑝 ∶ 𝐸 → 𝐵 be a fibre bundle.Then there is a first quadrant spectral sequence
{𝐸𝑟, 𝜕𝑟}𝑟≥2, the so-called Leray-Serre spectral sequence, that converges to the homology of the total
complex 𝐸, i.e. 𝐸2𝑝+𝑞 ⇒ ℋ𝑝+𝑞(𝐸). Moreover, the second page of the spectral sequence is given by the
homology of 𝐵 with coefficients in the local systemℋ∗(𝐹), i.e.:

𝐸2𝑝,𝑞 = ℋ𝑝(𝐵;ℋ𝑞(𝐹)) (7.24)



8
The Homology of the Fibre Bundles:
Twists, Mayer-Vietoris and Spectral

Sequences
An interesting example of a fibre bundle is the Möbius strip 𝑀. As alluded to before, the Möbius strip
can be understood locally as a strip (−1, 1) × [−1, 1], much like the band 𝑆1 × [−1, 1], but differs from
such a band globally due to its twist. We can therefore interpret the Möbius strip as a fibre bundle over
𝑆1 with the interval [−1, 1] as its fibre. Following the Borel construction, we can also interpret it as the
quotient space 𝑀 ≃ ℝ× [−1, 1]/ℤ, where the ℤ-action of is given by 𝑛 ⋅ (𝑥, 𝑦) = (𝑥 + 𝑛, (−1)𝑛𝑦).

Often, the homology of 𝑀 is calculated by noting that there is a homotopy equivalence 𝑀 ≃ 𝑆1, and
that therefore

ℋ𝑛(𝑀, ℤ) = {ℤ 𝑛 = 0, 1
0 𝑛 > 1 (8.1)

In this chapter, however, we will offer an exposition of three different techniques that can be used when
tackling the general problem of calculating the homology of a given fibre bundle. To this end, let us
consider the following more generic class of examples of fibre bundles:

𝐹 𝐸

𝑆1
𝑝

Given two points 𝑢1, 𝑢2 ∈ 𝑆1, we can define the open sets 𝑈 𝑖 = 𝑆1 ⧵ {𝑢𝑖}:

𝑢1 𝑢1

𝑈1

𝑢2

𝑈2

𝑢2

Figure 8.1: On the left: the circle 𝑆1, along with two points 𝑢1, 𝑢2. One can use these points to define open sets 𝑈𝑖 = 𝑆1 ⧵ {𝑢𝑖},
which are shown on the right.

In order to define a transition function 𝜃𝑖 ∶ 𝑈1⋂𝑈2 → Aut(𝐹), we introduce the following definitions:

76
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𝑢1

𝑢2
𝑈𝐼 𝑈𝑅

Figure 8.2: The points 𝑢1 and 𝑢2 on the circle 𝑆1, together with the intersection of the two sets 𝑈𝑖 = 𝑆1 ⧵ {𝑢𝑖}, The path
components of this set are dubbed 𝑈𝐼 and 𝑈𝑅, respectively.

In the case of the Möbius strip, one would define the transition function 𝜃1 as:

𝜃1|𝑈𝐼 = 𝐼, 𝜃1|𝑈𝑅 = 𝑅 (8.2)

where 𝑅 ∶ 𝐹 → 𝐹 ∶ 𝑓 ↦ −𝑓, and 𝜃2 = 𝜃−11 . We generalise this construction to an arbitrary fibre 𝐹, and
an arbitrary automorphism 𝑅 ∈ Aut(𝐹).

Firstly, we will show how one can calculate the homology of these twisted bundles through direct com-
putation. As these computations are rather cumbersome, we will only present them in the case of the
Möbius strip. Afterwards, we will show how to calculate the homology of the more general class of
twisted fibre bundles using the Mayer-Vietoris sequence, and spectral sequences.

8.1. Direct Computation Using Twists
We already noted that the Möbius strip can be defined as ℝ × [−1, 1]/ℤ, where the ℤ-action is defined
by 𝑛 ⋅ (𝑥, 𝑦) = (𝑥 + 𝑛, (−1)𝑛𝑦). Note that the quotient of ℝ with ℤ is the base space 𝑆1. One may
wonder whether the we could retrieve the homological structure of the twisted bundle by considering
the regular, untwisted Cartesian product of the base space and the fibre, but by encoding the twist into
the boundary map of the tensor product chain complex. To this end, we consider the chain complexes
associated to 𝑆1 and [−1, 1], and take their tensor product:

𝐶∗(𝑆1; ℤ) ⊗ 𝐶∗([−1, 1]; ℤ) (8.3)

Let us now consider how one can introduce a twist into the differential of these spaces. Given a path
𝛾 on the circle, and let 𝑓 be a point in [−1, 1]. We consider the element (𝛾, 𝑓) ∈ 𝑆1 × [−1, 1], which
can be interpreted as a 1-complex on the space, and therefore ought to have a counterpart in the
tensor product of the chain complexes of these respective spaces. If we are to consider this path as a
path on the Möbius strip, its boundary points will depend on the loop 𝛾: using the path lifting property
to lift 𝛾 to the universal cover of 𝑆1, ℝ, we see that if 𝛾 goes around an odd number of times (e.g.
once), one of its endpoints is shifted due to the non-trivial ℤ-action on the fibre [−1, 1]. Hence, we
propsose the following definition: given 𝜎1 ∈ 𝐶1(𝑆1; ℤ), the differential 𝜕 ∶ 𝐶1(𝑆1; ℤ) ⊗ 𝐶𝑛([−1, 1]; ℤ) →
𝐶1(𝑆1; ℤ) ⊗ 𝐶𝑛−1([−1, 1]; ℤ) ⊕ 𝐶0(𝑆1; ℤ) ⊗ 𝐶𝑛([−1, 1]; ℤ) is given by:

𝜕(𝜎1 ⊗ 𝑓𝑛) = 𝜎1 ⊗ 𝜕(𝑓𝑛) ⊕ (𝜎(1) ⊗ 𝜑(𝜎, 𝜎(1))𝑓𝑛 − 𝜎(0) ⊗ 𝑓𝑛) (8.4)

where the twist 𝜑 is given by:
𝜑(𝜎, 𝜎(1)) = (−1)𝑤(𝜎∗) (8.5)

Here, 𝑤(⋅) returns the winding number.

In order to perform calculations, however, singular homology becomes rather complicated. We there-
fore take a cellular approach to the problem. We first consider the following cellulations:

𝑆1
[−1, 1]

Figure 8.3: On the left: a cellulation of 𝑆1 consisting of 2 0-cells and 2 1-cells. On the right: a cellulation of the interval [−1.1]
consisting of 3 0-cells and 2 1-cells.
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The associated cellular complexes are therefore:

[−1, 1] ∶ ℤ2 ℤ3

𝑆1 ∶ ℤ2 ℤ2

Taking the tensor product of these spaces, we get the complex:

ℤ2 ⊗ℤ2 ℤ2 ⊗ℤ3 ⊕ℤ2 ⊗ℤ2 ℤ2 ⊗ℤ3𝜕1𝜕2

We now have to specify the boundary maps. We can use our previous considerations to see what this
map must be:

𝜕2((1, 0) ⊗ 𝑓) = ((1, 0) − (0, 1) ⊗ 𝑓) ⊕ ((1, 0) ⊗ 𝜕(𝑓)), (8.6)
𝜕2((0, 1) ⊗ 𝑓) = ((0, 1) ⊗ 𝑓 − (1, 0) ⊗ 𝑅(𝑓)) ⊕ ((0, 1) ⊗ 𝜕(𝑓)) (8.7)

And similarly for 𝜕1, we find:

𝜕1(0 ⊕ (1, 0) ⊗ 𝑓) = ((1, 0) − (0, 1)) ⊗ 𝑓 (8.8)
𝜕1(0 ⊕ (0, 1) ⊗ 𝑓) = (0, 1) ⊗ 𝑓 − (1, 0) ⊗ 𝑅𝑓 (8.9)

𝜕1(𝑥 ⊗ 𝑓 ⊕ 0) = −𝑥 ⊗ 𝜕(𝑓) (8.10)

where 𝑅 is the map on the cellular complex induced by the twist 𝜑. Indexing the 0-cells of [−1, 1] as
𝑓00 , 𝑓01 , 𝑓02 , and its 1-cells as 𝑓10 and 𝑓11 , and taking 𝜕(𝑓1𝑖 ) = 𝑓0𝑖 − 𝑓0𝑖+1, that is, as follows:

𝑓00 𝑓01 𝑓02

𝑓10 𝑓11
Figure 8.4: The cellulation of [−1, 1], along with a labelling of its cells.

We see that 𝑅 maps 𝑓01 to itself, and 𝑓00 to 𝑓02 and v.v., and, in order to commute with the differential, it
maps 𝑓10 to −𝑓11 and v.v. Note that we now indeed expect our complex to describe a cellular complex
of a Möbius strip, as the twist in the boundary map changes the product complex as follows:

Figure 8.5: On the left: cellulation of the product space of 𝑆1 and [−1.1] (i.e. the closed strip) as induced by their respective
cellulations. On the right: the cellular complex of their product space after applying the twist. One can easily see that this is, in
fact, a cellulation of the Möbius strip.

We thus see that we could have constructed the twist differently, that is, as the transition function be-
tween the two charts on the base space. From this point of view, our cellular complex corresponds to
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the open cover on the base space on which we defined the chart.

One can now easily determine the homology of this complex. To this end, note that ker (𝜕2) is trivial, as
some element ∑𝑖 𝑥𝑖 ⊗ 𝑓𝑖 in the kernel must satisfy ∑𝑖 𝑥𝑖 ⊗ 𝜕𝑓 = 0, but the boundary map on the fibre
is injective.

Next, we determine the image of 𝜕1. To this end, note that:

𝜕1(𝑥 ⊗ 𝜕(𝑓1𝑖 ) ⊕ 0) = −𝑥 ⊗ (𝑓0𝑖 − 𝑓0𝑖+1) (8.11)

Furthermore, we note that:

𝜕1(0 ⊕ (𝑛,𝑚) ⊗ 𝑓01 ) = (𝑛 − 𝑚,𝑚 − 𝑛) ⊗ 𝑓01 (8.12)
𝜕1(0 ⊕ (𝑛,𝑚) ⊗ 𝑓0𝑗 ) = (𝑛 − 𝑚,−𝑛) ⊗ 𝑓0𝑗 + (0,𝑚) ⊗ 𝑓02−𝑗 , 𝑗 = 0, 2 (8.13)

As such, we see that the following:

𝜕1((0,𝑚) ⊗ (𝑓10 + 𝑓11 ) ⊕ −(𝑛,𝑚) ⊗ 𝑓00 ) = (𝑛 − 𝑚,−𝑛 +𝑚) ⊗ 𝑓00 (8.14)
= (𝑛 − 𝑚,−𝑛 +𝑚) ⊗ 𝑓01 + (𝑛 − 𝑚,−𝑛 +𝑚) ⊗ (𝑓00 − 𝑓01 ) (8.15)
= (𝑛 − 𝑚,−𝑛 +𝑚) ⊗ 𝑓01 + 𝜕1(−(𝑛 − 𝑚,𝑚 − 𝑛) ⊗ 𝜕1(−𝑓11 ) ⊕ 0)

(8.16)

Such that:

𝜕1(0 ⊕ (𝑛,𝑚) ⊗ 𝑓00 ) = 𝜕1(0 ⊕ (𝑛,𝑚) ⊗ 𝑓01 ) + 𝜕1(−(𝑛 − 𝑚,𝑚 − 𝑛) ⊗ 𝜕1(−𝑓11 ) ⊕ 0) (8.17)

An analogous statement holds for 𝜕1(0 ⊕ (𝑛,𝑚) ⊗ 𝑓20 ), and, as such, we see that the image of 𝜕1 can
be reduced to the image of vectors of the following form:

0 ⊕ ℤ2 ⊗ 𝑓10 , ℤ2 ⊗ 𝑓1𝑖 ⊕ 0 (𝑖 = 0, 1) (8.18)

But note that a basis of the zeroth complex is given by:

(1, 0) ⊗ 𝑓0𝑖 , (0, 1) ⊗ 𝑓0𝑖 , 𝑖 = 0, 1, 2 (8.19)

Hence, we see that:

ℋ0 = ℤ[(1, 0) ⊗ 𝑓0𝑖 , (0, 1) ⊗ 𝑓0𝑖 ]/Im(𝜕1) = ℤ[(0, 1) ⊗ 𝑓01 , (1, 0) ⊗ 𝑓10 ]/ℤ((1, −1) ⊗ 𝑓01 ) ≃ ℤ (8.20)

as expected. Finally, we turn to the computation of the first homology group.
To this end, we see that the image of 𝜕2 is given by:

Im (𝜕2) = {(𝑛,𝑚 − 𝑛) ⊗ 𝑓1𝑖 − (𝑚, 0)𝑓11−𝑖 ⊕ (𝑛,𝑚) ⊗ (𝑓0𝑖 − 𝑓0𝑖+1), 𝑛,𝑚 ∈ ℤ, 𝑖 = 0, 1} (8.21)

We can now calculate the kernel of 𝜕1:

𝜕1 ((𝑥0 ⊗ 𝑓10 + 𝑥1 ⊗ 𝑓11 ) ⊕
2
∑
𝑖=0
(𝑛𝑖, 𝑚𝑖) ⊗ 𝑓0𝑖 ) (8.22)

= −𝑥0 ⊗ (𝑓00 − 𝑓01 ) − 𝑥1 ⊗ (𝑓01 − 𝑓02 ) + (𝑛0 −𝑚0, 𝑚2 − 𝑛0) ⊗ 𝑓00 + (𝑛1 −𝑚1, 𝑚1 − 𝑛1) ⊗ 𝑓01 + (𝑛2 −𝑚2, 𝑚0 − 𝑛2) ⊗ 𝑓02
(8.23)

= (−𝑥0 + (𝑛0 −𝑚0, 𝑚2 − 𝑛0)) ⊗ 𝑓00 + (−𝑥1 + 𝑥0 + (𝑛1 −𝑚1, 𝑚1 − 𝑛1)) ⊗ 𝑓01 (𝑥1 + (𝑛2 −𝑚2, 𝑚0 − 𝑛2)) ⊗ 𝑓02 = 0
(8.24)

This yields the following set of equations:

⎧
⎨
⎩

𝑥0 = (𝑛0 −𝑚0, 𝑚2 − 𝑛0)
𝑥0 − 𝑥1 = −(𝑛1 −𝑚1, 𝑚1 − 𝑛1)
𝑥1 = −(𝑛2 −𝑚2, 𝑚0 − 𝑛2)

=
⎧
⎨
⎩

𝑥0 = (𝑛0 −𝑚0, 𝑚2 − 𝑛0)
(0, 0) = −(𝑛0 −𝑚0 + 𝑛1 −𝑚1 + 𝑛2 −𝑚2, 𝑚1 − 𝑛1 +𝑚2 − 𝑛0 +𝑚0 − 𝑛2)
𝑥1 = −(𝑛2 −𝑚2, 𝑚0 − 𝑛2)

(8.25)
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where the middle two equations are linearly dependent, such that we can only deduce that:

𝑚2 = 𝑛0 −𝑚0 + 𝑛1 −𝑚1 + 𝑛2 (8.26)

As such, we can write the kernel as:

{((𝑛0 −𝑚0, 𝑚2 − 𝑛0) ⊗ 𝑓10 − (𝑛2 −𝑚2, 𝑚0 − 𝑛2) ⊗ 𝑓11 ⊕
2
∑
𝑖=0
(𝑛𝑖, 𝑚𝑖) ⊗ 𝑓0𝑖 } (8.27)

= {((𝑛0 −𝑚0, −𝑛0) ⊗ 𝑓10 + (0, −𝑚0) ⊗ 𝑓11 ) ⊕ (𝑛0, 𝑚0) ⊗ 𝑓00 − (𝑛1, 𝑚1) ⊗ 𝑓01 } ∪ (8.28)
{(0,𝑚2) ⊗ 𝑓10 + (𝑛2 −𝑚2, −𝑛2 ⊗ 𝑓11 ⊕ (𝑛2, 𝑚2) ⊗ 𝑓02 − (𝑛2, 𝑚2) ⊗ 𝑓01 } ∪ {0 ⊕ ℤ(1, 1) ⊗ 𝑓01 } (8.29)
≃ Im (𝜕2) ⊕ ℤ[(1, 1) ⊗ 𝑓01 ] (8.30)

Hence, we see that:
ℋ1 = ker (𝜕1) /Im (𝜕2) ≃ ℤ (8.31)

as expected.

Note that these calculations can be extended to themore general class of twisted bundles we introduced
earlier, as these, too, can be defined as a quotient:

ℝ × 𝐹/ℤ (8.32)

where now, the ℤ-action is given by 𝑛 ⋅ (𝑥, 𝑓) = (𝑥 + 𝑛, 𝑅𝑓).

8.2. Computations using the Mayer-Vietoris Sequence
We now proceed to calculate the homology of our twisted bundles by making use of the Mayer-Vietoris
sequence. To this end, let us define the following open sets 𝐸𝑖 = 𝑝−1(𝑈 𝑖) ⊆ 𝐸. Note that these sets 𝐸𝑖
define an open cover on 𝐸, and hence, we can make use of the Mayer-Vietoris sequence to calculate
the homology group of 𝐸 in terms of their homology groups:

0 𝐶𝑛(𝐸1 ∩ 𝐸2) 𝐶𝑛(𝐸1) ⊕ 𝐶𝑛(𝐸2) 𝐶𝑛(𝐸) 0𝑖1⊕𝑖2 𝑝1−𝑝2

The point here, however, is to exploit the fibre bundle structure of 𝐸, and to make use of the local charts
𝜑𝑖 ∶ 𝑈 𝑖 × 𝐹 → 𝐸𝑖 to find another SES in terms of the homology groups of 𝑈 𝑖 × 𝐹. With this in mind, we
note that we have the following commuting square:

0 𝐶𝑛(𝐸1 ∩ 𝐸2) 𝐶𝑛(𝐸1) ⊕ 𝐶𝑛(𝐸2) 𝐶𝑛(𝐸) 0

0 𝐶𝑛((𝑈1 ∩ 𝑈2) × 𝐹) 𝐶𝑛(𝑈1 × 𝐹) ⊕ 𝐶𝑛(𝑈2 × 𝐹) 𝐶𝑛(𝐸) 0

𝑖1⊕𝑖2 𝑝1−𝑝2

𝜄𝑛 𝜋𝑛
id𝜑1 𝜑1

Where we have that:

𝜄𝑛 ∶ 𝜎 ↦ 𝜎⊕ 𝜑2 ∘ 𝜑−11 (𝜎), 𝜋𝑛 ∶ 𝜎1 ⊕ 𝜎2 ↦ 𝜑−11 (𝜎1) − 𝜑−12 (𝜎2) (8.33)

This new SES is precisely the one we want, as it allows us to compute the homology of 𝐸 in terms
of the homology of the open cover of 𝑆1. Let us proceed to do just that, by first considering the LES
induced by this SES:

𝐻1((𝑈1 ∩ 𝑈2) × 𝐹)

𝐻1(𝑈1 × 𝐹) ⊕ 𝐻1(𝑈2 × 𝐹) 𝐻1(𝐸) 𝐻0((𝑈1 ∩ 𝑈2) × 𝐹)

𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹) 𝐻0(𝐸) 0
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8.2.1. The Homology Groups of Order 0
Let us first calculate the zeroth homology group of 𝐸 by applying the first isomorphism theorem and
using the exacteness of the LES:

𝐻0((𝑈1 ∩ 𝑈2) × 𝐹) 𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹) 𝐻0(𝐸) 0

𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹)/im ((𝜄0)∗)

(𝜄0)∗

From this, we immediately deduce that:

𝐻0(𝐸) ≃ 𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹)/Im ((𝜄0)∗) (8.34)

Here we can use the Künneth theorem, together with the fact that each 𝑈 𝑖 is a contractible space, to
find that:

𝐻0(𝑈 𝑖 × 𝐹) ≃ 𝐻0(𝑈 𝑖) ⊗ 𝐻0(𝐹) ≃ 𝐻0(𝐹) (8.35)

Moreover, we see that 𝑈1 ∩𝑈2×𝐹 = 𝑈𝐼 ×𝐹 ⊔𝑈𝑅 ×𝐹, therefore, again by the Künneth theorem, we find
that:

𝐻0(𝑈1 ∩ 𝑈2 × 𝐹) = 𝐻0(𝑈𝐼 × 𝐹) ⊕ 𝐻0(𝑈𝑅 × 𝐹) ≃ 𝐻0(𝐹) ⊕ 𝐻0(𝐹) (8.36)

We can now proceed to calculate (𝜄0)∗:

(𝜄0)∗ ∶ 𝐻0((𝑈1 ∩ 𝑈2) × 𝐹) → 𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹) ∶ [𝑥] ↦ [𝑥] ⊕ [𝜑2 ∘ 𝜑−11 (𝑥)] (8.37)

By the Künneth theorem, we can understand this map as a map:

(𝜄0)∗ ∶ 𝐻0(𝐹) ⊗ 𝐻0(𝐹) → 𝐻0(𝐹) ⊕ 𝐻0(𝐹) (8.38)

Where we stick to the convention that the first term in the domain corresponds to 𝐻0(𝑈𝐼 × 𝐹). We can
thus determine the effect of the transition function:

(𝜄0)∗ ∶[𝑥] ⊕ [0] ↦ [𝑥] ⊕ [𝑥] (8.39)
[0] ⊕ [𝑥] ↦ [𝑥] ⊕ [𝑅𝑥] (8.40)

We can now mod out the image of 𝐻0(𝐹) ⊕ 0, which we dub Δ𝐻0(𝐹) ∶= {[𝑥] ⊕ [𝑥], [𝑥] ∈ 𝐻0(𝐹)}, from
the image of (𝜄)∗ using the first isomorphism theorem:

im ((𝑖0)∗) (𝑅 − 𝐼)𝐻0(𝐹)

im ((𝑖0)∗) /Δ𝐻0(𝐹)

[𝑥]⊕[𝑦]↦[𝑥]−[𝑦]

≃

And similarly for its codomain:

𝐻0(𝐹) ⊕ 𝐻0(𝐹) 𝐻0(𝐹)

(𝐻0(𝐹) ⊕ 𝐻0(𝐹))/Δ𝐻0(𝐹)

[𝑥]⊕[𝑦]↦[𝑥]−[𝑦]

≃

Such that we can now use the third isomorphism theorem to find:

𝐻0(𝐸) ≃ ((𝐻0(𝐹) ⊕ 𝐻0(𝐹))/Δ𝐻0(𝐹)) / (im ((𝑖0)∗) /Δ𝐻0(𝐹)) ≃ 𝐻0(𝐹)/(𝑅 − 𝐼)𝐻0(𝐹) (8.41)
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8.2.2. The First Order Homology Groups
Having calculated the zeroth order homology groups, let us take on the task of calculating the first order
homology groups. To this end, we again apply the first isomorphism theorem to recover a SES from
our initial LES:

⋯ 𝐻1((𝑈1 ∩ 𝑈2) × 𝐹) 𝐻0(𝑈1 × 𝐹) ⊕ 𝐻0(𝑈2 × 𝐹) ⋯

𝐻1(𝑈1 × 𝐹) ⊕ 𝐻1(𝑈2 × 𝐹) 𝐻1(𝐸) 𝐻0((𝑈1 ∩ 𝑈2) × 𝐹)

0 𝐻1(𝑈1 × 𝐹) ⊕ 𝐻1(𝑈2 × 𝐹)/im ((𝜄1)∗) ker ((𝜄0)∗) 0

𝛿1
(𝜄1)∗

We now have to calculate ker ((𝜄0)∗) and Im ((𝜄1)∗). Let us start with the former:

ker ((𝜄0)∗) = {∑𝑛𝑖[𝑥𝑖]𝑖 ⊕∑
𝑗
𝑚𝑗[𝑦𝑗] ∶ ∑𝑛𝑖[𝑥𝑖]𝑖 +∑

𝑗
𝑚𝑗[𝑦𝑗] = 0 ∧∑𝑛𝑖[𝑥𝑖]𝑖 ⊕∑

𝑗
𝑚𝑗𝑅[𝑦𝑗] = 0} (8.42)

The first condition implies that we all the elements in the kernel are of the form∑𝑛𝑖[𝑥𝑖]𝑖⊕∑𝑗∑−𝑛𝑖[𝑥𝑖]𝑖.
The second condition, then tells us that we must have that:

∑𝑛𝑖[𝑥𝑖]𝑖 = 𝑅(∑𝑛𝑖[𝑥𝑖]𝑖) (8.43)

But these are precisely the elements of 𝐻0(𝐹)𝑅.

In order to calculate the Im ((𝜄1)∗), we proceed in an analogous way as we did for the zeroth homology:
first, by the Künneth formula and the fact that the 𝑈 𝑖’s are contractible, we see that:

𝐻1(𝑈 𝑖 × 𝐹) ≃ 𝐻1(𝐹), 𝐻1(𝑈1 ∩ 𝑈2 × 𝐹) ≃ 𝐻1(𝐹) ⊕ 𝐻1(𝐹) (8.44)

Furthermore, we note that the map induced by the inclusion behaves in precisely the same manner as
in the zeroth order case:

(𝜄1)∗ ∶[𝑥] ⊕ [0] ↦ [𝑥] ⊕ [𝑥] (8.45)
[0] ⊕ [𝑥] ↦ [𝑥] ⊕ [𝑅𝑥] (8.46)

Hence, we can proceed in an exactly analogous way by modding out the diagonal set Δ𝐻1(𝐹), and using
the third isomorphism theorem to find that:

(𝐻1(𝐹) ⊗ 𝐻1(𝐹))/Im ((𝑖1)∗) ≃ 𝐻1(𝐹)/(𝑅 − 𝐼)𝐻1(𝐹) (8.47)

Such that we obtain the following short exact sequence for 𝐻1(𝐸):

0 𝐻1(𝐹)/ ((𝑅 − 𝐼)𝐻1(𝐹)) 𝐻1(𝐸) 𝐻0(𝐸)𝑅 0

8.2.3. Higher Order Homology Groups
Having seen the similarity in the calculations for the zeroth and first order homology groups, one won-
ders whether these can be extended to determine the homology groups of arbitrary degree. To this
end, let us try to reproduce these calculations for higher order groups. Fix 𝑛 ∈ ℕ≥1. We can again
deduce a SES from the LES:

⋯ 𝐻𝑛((𝑈1 ∩ 𝑈2) × 𝐹) 𝐻𝑛−1(𝑈1 × 𝐹) ⊕ 𝐻𝑛−1(𝑈2 × 𝐹) ⋯

𝐻𝑛(𝑈1 × 𝐹) ⊕ 𝐻𝑛(𝑈2 × 𝐹) 𝐻𝑛(𝐸) 𝐻𝑛−1((𝑈1 ∩ 𝑈2) × 𝐹)

0 𝐻𝑛(𝑈1 × 𝐹) ⊕ 𝐻𝑛(𝑈2 × 𝐹)/im ((𝜄𝑛)∗) ker ((𝜄𝑛−1)∗) 0

𝛿𝑛
(𝜄𝑛)∗
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Similar to the previous case, we will have to calculate ker ((𝜄𝑛−1)∗) and Im ((𝜄𝑛−1)∗). We see, however,
that these calculations are completely similar! The Künneth formula tells us that:

𝐻𝑛(𝑈 𝑖 × 𝐹) ≃ 𝐻𝑛(𝐹), 𝐻𝑛(𝑈1 ∩ 𝑈2 × 𝐹) ≃ 𝐻𝑛(𝐹) ⊕ 𝐻𝑛(𝐹) (8.48)

Now, we can again use the first and third isomorphism theorem by looking at the diagonal space Δ𝐻𝑛(𝐹)
to find:

0 𝐻𝑛(𝐹)/ ((𝑅 − 𝐼)𝐻𝑛(𝐹)) 𝐻𝑛(𝐸) 𝐻𝑛−1(𝐸)𝑅 0

8.3. Computations using Spectral Sequences
Let us consider try to again calculate the homology of the fibre bundle discussed in the previous section
using the Leray-Serre spectral sequence. As our base space is now the circle 𝑆1, ℋ𝑝(𝑆1,ℋ𝑞(𝐹)) = 0
for 𝑝 ≥ 2. Hence, we obtain the following two-column spectral sequence:

⋮ ⋮

0 𝐸20,2 𝐸21,2 0

0 𝐸20,1 𝐸21,1 0

0 𝐸20,0 𝐸21,0 0

0 0

Note, however, that all the differentials in this setting have a trivial domain or codomain. Hence, we
conclude that 𝐸2∗∗ = 𝐸3∗∗. By induction, one easily sees that the spectral sequence actually stabilises at
page 2, i.e. that 𝐸∞∗∗ = 𝐸2∗∗. Therefore, we know that such a spectral sequence induces the following
SES (see e.g. [Wei94]):

0 𝐸2𝑝,𝑞 𝐻𝑝+𝑞(𝐸) 𝐸2𝑝+1,𝑞−1 0

Which, by definition of the Leray-Serre spectral sequence, is equivalent to:

0 𝐻𝑝(𝑆1, 𝐻𝑞(𝐵)) 𝐻𝑝+𝑞(𝐸) 𝐻𝑝+1(𝑆1, 𝐻𝑞−1(𝐵)) 0

Hence, we see that calculating the homology of a fibre bundle with a circle as its base is equivalent to
calculating the homology with local coefficients of the circle.

8.3.1. The Homology with Local Coefficients of the Circle
We can use cellular homology with local coefficients to determine the homology groups of 𝑆1. To this
end, let us consider the following CW-complex on the circle:

𝑣
𝑒

Figure 8.6: A cellular complex of the circle consisting of one 0-cell and one 1-cell.

This CW-complex lifts to a CW-complex of the universal cover of the circle, i.e.:
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𝑣
𝑒

𝑣−1

𝑣0

𝑣1
𝑒1

𝑒0

𝑒−1

Figure 8.7: The cellular complex of the circle lifts to its universal cover as a cellular complex consisting of countably many 0-cells
and countably many 1-cells (with respect to ℤ).

Hence, we see that the cellular complex of the circle

0 ℤ[𝑒] ℤ[𝑣]𝑒↦0

lifts to a ℤ[𝜋1(𝑋)]-cellular complex of the universal cover:

0 ℤ[𝑡, 𝑡−1][𝑒] ℤ[𝑡, 𝑡−1][𝑣]
̃𝜕1

Where we see that, given the lift 𝑒𝑖 of the edge 𝑒, its boundary is equal to 𝑣𝑖+1 − 𝑣𝑖, which is the (1 − 𝑡)-
image of the vertex 𝑣 of the cellular complex of the circle. Therefore, we see that ̃𝜕1(𝑒) = (1−𝑡)𝑣. Let us
now proceed with the algebraic approach to the homology with local coefficients. We find the following
chain complex:

0 𝑍[𝑡, 𝑡−1] ⊗ℤ[𝑡,𝑡−1] 𝐴 𝑍[𝑡, 𝑡−1] ⊗ℤ[𝑡,𝑡−1] 𝐴 0

0 𝐴 𝐴 0

̃𝜕⊗id

1⊗𝑎↦𝑎
Δ̃

1⊗𝑎↦𝑎

Now as the maps 1 ⊗ 𝑎 ↦ 𝑎 are isomorphisms, we see that we can calculate the homology with
coefficients in 𝐴 by determining the induced map Δ̃ and calculating its kernel and image. We now
have:

Δ̃(𝑎) = (1⊗𝑎 ↦ 𝑎) ̃𝜕1(1⊗𝑎) = (1⊗𝑎 ↦ 𝑎)(1⊗𝑎−𝑡⊗𝑎) = (1⊗𝑎 ↦ 𝑎)(1⊗𝑎−1⊗𝑅𝑎) = (𝐼−𝑅)𝑎 (8.49)

Hence, we see that:

ker (Δ̃) = 𝐴𝑅, Im (Δ̃) = (𝐼 − 𝑅)𝐴 (8.50)

And therefore, we conclude that:

𝐻0(𝑆1; 𝐴) ≃ 𝐴/(𝐼 − 𝑅)𝐴, 𝐻1(𝑆1𝑙𝐴) ≃ 𝐴𝑅 (8.51)

8.3.2. The Homology Groups of the Twisted Bundle
Taking 𝑝 = −1, 𝑞 = 1, and noting that 𝐸2𝑝,𝑞 = 0, our SES immediately yields:

𝐻0(𝐸) ≃ 𝐻0(𝑆1, 𝐻0(𝐹)) ≃ 𝐻0(𝐹)/(𝐼 − 𝑅)𝐻0(𝐹) (8.52)

Proceeding by taking 𝑝 = 0, 𝑞 = 1, we find the following SES:
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0 𝐻0(𝑆1, 𝐻1(𝐹)) 𝐻1(𝐸) 𝐻1(𝑆1, 𝐻0(𝐹)) 0

which is equivalent to the following SES:

0 𝐻1(𝐹)/(𝐼 − 𝑅)𝐻1(𝐹) 𝐻1(𝐸) 𝐻0(𝐹)𝑅 0

Proceeding inductively, we can take 𝑝 = 𝑛 − 1, 𝑞 = 1 for a given 𝑛 ∈ ℕ to find that the homology of the
space 𝐸 can be expressed in terms of the following LES:

0 𝐻𝑛(𝐹)/(𝐼 − 𝑅)𝐻𝑛(𝐹) 𝐻𝑛(𝐸) 𝐻𝑛−1(𝐹)𝑅 0



9
Twisted Product Codes

In this chapter, we introduce two related product code constructions, which are inspired by the idea of
twisting the product of two chain complexes.

9.1. Fibre Bundle Codes
In this section, we introduce the fibre bundle product construction as presented in [HHO21]. To this end,
we first substantiate the construction of these codes theoretically using the theory from our discussion of
fibre bundles as presented in the previous chapters, after which we formalise these results and present
two theorems to determine the number of encoded qubits 𝑘. Before proceeding, we remark that no
general way of determining the weight and the distance of such codes has currently been presented in
the literature.

9.1.1. From Hypergraph Products to Fibre Bundle Products
Let us consider two length-1 chain complexes, corresponding to classical codes, say ℱ and ℬ, which
arise due to cellulations of two topological spaces, say 𝑋ℱ and 𝑋ℬ. When constructing the hypergraph
product, one takes the tensor product of these complexes. This corresponds to the chain complex of
the Cartesian product of these spaces, i.e. of the space 𝑋ℬ × 𝑋ℱ . If, for instance, we take ℬ to arise
from a cellular complex of a circle (i.e. a repetition code), and ℱ from a cellular complex of a straight
line (i.e. a repetition code with open boundaries), their hypergraph product yields a cellular complex of
a strip 𝑆1 × [−1, 1], as is displayed in Figure 9.1.

Figure 9.1: The hypergraph product of a repetition code arising from a cellulation of a circle, and a repetition code with open
boundaries arising from a cellulation of a straight line. We see that this product yields a cellular complex of a string.

Our discussion of fibre bundles may lead one to wonder whether we could generalise this code con-
struction, which considers just product spaces, to the class of fibre bundles. For instance, following
our discussion in Chapter 8, we know that one introduce a twist to the differential of the tensor product
complex, in order to define a cellular complex of the Möbius strip, as is shown in Figure 9.2.

86



9.1. Fibre Bundle Codes 87

Figure 9.2: The twisted product a cellulation of a circle and a cellulation of a straight line. We see that this product yields a
cellular complex of a Möbius strip. By interpreting the cellular complexes as a repetition code and a repetition code with open
boundaries, respectively, we see that this product yields a new code, which differs from the hypergraph product of these two
codes.

More formally, let us consider the following fibre bundle:

𝑋ℱ 𝑋ℱ ×𝜑 𝑋ℬ

𝑋ℬ

Where we use the (somewhat suggestive) notation 𝑋ℱ ×𝜑 𝑋ℬ to denote the total space. If 𝑋ℬ admits
a universal cover, by the Borel construction (Theorem 6.11), we can interpret our fibre bundle as the
principal 𝜋1(𝐵)-bundle ̃𝑋ℬ × 𝐹/𝜋1 (𝑋ℬ). Assuming, moreover, that 𝜋1 (𝑋ℬ) is cyclic1, we can actually
find a twist 𝜑 ∈ Aut(𝑋ℱ) such that 𝑔 ⋅ (𝑥, 𝑓) = (𝑔𝑥, 𝜑𝑓), where 𝑔 is the generator of 𝜋1 (𝑋ℬ). As we saw
in the Chapter 8, one can use this twist to define a twisted differential on the tensor product complex of
these two codes, which we denote by 𝜕𝜑. The complex, together with this new differential, is denoted
byℬ⊗𝜑ℱ. This is the fundamental idea behind the fibre bundle code construction: by associating a so-
called base complex to the base space, and a fibre complex to the fibre space, and by considering the
twist induced by the associated bundle, one can create a new CSS code by considering the⊗𝜑-product
complex of these two complexes.

9.1.2. Formal Construction of the Fibre Bundle Product
The fibre bundle construction considers two chain complexes: a so-called base complex ℬ of length
1, and a fibre complex ℱ. The fibre complex is assumed to admit an automorphism group Aut(ℱ),
consisting of all the isomorphic chain maps from ℱ toℱ. As such, we can define a so-called connection,
i.e. a map

𝜑 ∶ {(𝑏, 𝑎) ∶ 𝑏, 𝑎 cells s.t. 𝑎 ∈ 𝜕(𝑏)} → Aut(ℱ) (9.1)

which is said to associate twists to the pairs (𝑏, 𝑎). Using this connection, we can define a different
boundary map 𝜕 on ℬ⊗ℱ as the map induced by the billinear maps:

𝐵0 × 𝐹𝑝 → (ℬ ⊗ℱ)𝑝 ∶ (𝑥, 𝑦) ↦ 𝑥 ⊗ 𝜕ℱ𝑝 (𝑦) (9.2)
𝐵1 × 𝐹𝑝 → (ℬ ⊗ℱ)𝑝+1 ∶ (𝑥, 𝑦) ↦ 𝑥 ⊗ 𝜕ℱ𝑝 (𝑦) + ∑

𝑎∈𝜕𝑥
𝑎 ⊗ 𝜑(𝑥, 𝑎)𝑦 (9.3)

One can prove that this indeed defines a proper differential. Furthermore, we see that when 𝜑 maps
to the trivial automorphism, we retrieve the differential associated to the (non-twisted) tensor product.
Lastly, it should be noted that this construction is more generic than the topologically motivated con-
struction we presented in the last section, as the codes at hand do not necessarily arise from cellulations
of topological spaces, and even if such topological spaces can be found, one is not guaranteed of the
existence of a universal cover for the base space, nor of the cyclicity of its fundamental group.

9.1.3. Determining the Number of Encoded Qubits
In this section, we present two ways of determining the number of encoded qubits. Firstly, we prove
the following theorem, which was first presented in [BE21a]:
1We make this assumption for reasons of clarity now. We will relax this assumption later on.
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Theorem 9.1. Let ℬ denote the length 1 base complex, and let ℱ denote the fibre complex. Given that
𝜑 acts trivially on the homology of ℱ, we have the following Künneth formula:

𝐻𝑛(ℬ ⊗𝜑 ℱ) ≃ ⨁
𝑝+𝑞=𝑛

𝐻𝑝(ℬ) ⊗𝔽2 𝐻𝑞(ℱ) (9.4)

Proof. As the ⊗𝜑-complex arises from the regular 𝔽2-tensor product of chain complexes, we can con-
sider the double complex (ℬ ⊗ ℱ)∗∗. By theorem 7.1, there is a spectral sequence 𝐸𝑟∗∗ converging to
the homology of the total complex, where 𝐸2∗∗ is obtained by first applying the homology with respect to
the differentials id⊗ 𝜕ℱ , and then with respect to the twisted differentials. As ℱ is a length-1 complex,
the zeroth page actually contains just two columns. Hence, starting from the third page, the differen-
tials vanish, causing the spectral sequence to stabilise at 𝐸2∗∗. The homology with respect to id⊗ 𝜕ℱ
of ℬ∗ ⊗ ℱ∗ is simply ℬ∗ ⊗ℋ∗(ℱ). Taking homology with respect to the twisted differential now yields
ℋ∗(ℬ) ⊗ℋ∗(ℱ), as the twist has a trivial action onℋ∗(𝐹).

We now try to generalise this result by relaxing the condition that 𝜑 acts trivially on the homology of ℱ.
By imposing additional structure on the chain complexes and the twist, we prove the following (new)
generalisation of the Künneth theorem:

Theorem 9.2. Let ℬ be a length 1-complex which can be interpreted as the cellulation of a compact
topological space 𝑋ℬ admitting a universal cover, and let ℱ be an arbitrary chain complex which arises
as a cellulation of a topological space 𝑋ℱ . Denoting a twist by 𝜑, the homology of the cellular complex
relating to the code ℬ⊗𝜑 ℱ can be expressed as:

ℋ𝑛 (ℬ ⊗𝜑 ℱ) ≃ ℋ1(ℬ;ℋ𝑛−1(ℱ)) ⊕ℋ0(ℬ;ℋ𝑛(ℱ)) (9.5)

Proof. Firstly, we note that as 𝑋ℬ is compact, its fundamental group 𝜋1 (𝑋ℬ) is finitely generated. For
every generator 𝑔 ∈ 𝜋1 (𝑋ℬ), define a 𝜋1 (𝑋ℬ)-action on 𝑋ℱ which is induced by 𝜑. Using this action,
we can associate a principal 𝜋1 (𝑋ℬ)-bundle to the space ℬ ⊗𝜑 ℱ, whose total space we denote by
𝑋ℱ ×𝜑 𝑋ℬ. We will again apply the Serre spectral sequence to calculate the homology of the total
space. Much like in our calculations from Chapter 8, we have that ℋ𝑛(ℬ) = 0 for 𝑛 ≥ 2. Therefore,
we again find a two-column spectral sequence, and can thus simply repeat the arguments presented
in Section 8.3 to find the following SES for the homology groups of the total space:

0 ℋ𝑝(ℬ;ℋ𝑞(ℱ)) ℋ𝑝+𝑞 (𝑋ℱ ×𝜑 𝑋ℬ) ℋ𝑝+1(ℬ;ℋ𝑞−1(ℱ)) 0

Which, as we are working over the field 𝔽2, splits, such that:

ℋ𝑝+𝑞 (𝑋ℱ ×𝜑 𝑋ℬ) ≃ ℋ𝑝+1(ℬ;ℋ𝑞−1(ℱ)) ⊕ℋ𝑝(ℬ;ℋ𝑞(ℱ)) (9.6)

Taking 𝑞 = 𝑛 and 𝑝 = 0 yields the desired result.

9.2. Balanced Product Codes
9.2.1. From Twists to Actions
We have thus far seen how the fibre bundle product construction generalised the hypergraph product
construction by introducing a twist in the differential, and we have seen how this shift can be motivated
by considering classical codes that correspond to cellulations of the base space and fibre of a fibre
bundle. Let us again consider two length-1 chain complexes ℱ and ℬ, which arise due to cellulations
of two topological spaces, which we call 𝑋ℱ and 𝑋ℬ. We again assume that 𝑋ℬ is compact and has a
universal cover ̃𝑋ℬ, and let us now assume that we can associate a length 1 chain complex ̃ℬ to ̃𝑋ℬ
as well. Now let us again consider the following fibre bundle:

𝑋ℱ 𝑋ℱ ×𝜑 𝑋ℬ

𝑋ℬ
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While in the fibre bundle product construction, the twist was encoded in the differential, the idea behind
the balanced product code is to encode the twist into the product of the two spaces using the Borel
construction. For the fibre bundle at hand, this construction yields the associated 𝜋1 (𝑋ℬ)-bundle:

𝑋ℱ ( ̃𝑋ℬ × 𝑋ℱ)/𝜋1 (𝑋ℬ)

𝑋ℬ

Given an appropriate choice of the cellulations, the 𝜋1 (𝑋ℬ)-action on ̃𝑋ℬ induces an action on the
cellular complex ̃𝑋ℬ, and similarly, the action on 𝑋ℱ induces an action on the cellular complex of 𝑋ℱ .
Hence, we see that the following holds:

𝐶∗ (( ̃𝑋ℬ × 𝑋ℱ) /𝜋1 (𝑋ℬ)) ≃ 𝐶∗( ̃𝑋ℬ × ̃𝑋ℱ)/𝜋1 (𝑋ℬ) ≃ (( ̃ℬ∗ ⊗ℱ∗) /𝜋1 (𝑋ℬ))∗ (9.7)

Defining this newly constructed complex to be the balanced product complex, we see that the differ-
entials of this complex are simply the maps obtained from 𝜕ℬ ⊗ id and id⊗ 𝜕ℱ after descending to the
quotient complex.

9.2.2. Formal Construction of the Balanced Product
The balanced product construction [BE21a] can be formalised as follows. Given two vector spaces
𝑉,𝑊 , and suppose that 𝑉 has a right-action by the group 𝐺, while 𝑊 has a left-action by this group.
The balanced product of 𝑉 and𝑊 , 𝑉⊗𝐺𝑊 , is then defined as the covariants of 𝑉⊗𝑊 under the group
action of 𝐺, i.e.:

𝑉 ⊗𝐺 𝑊 ∶= (𝑉 ⊗𝑊)/⟨𝑣𝑔 ⊗ 𝑤 − 𝑣 ⊗ 𝑔𝑤⟩ (9.8)
We can extend this notion to chain complexes of vector spaces: consider two chain complexes of
vector spaces 𝒞 and 𝒟 along with a group 𝐺, and suppose that there is a linear left 𝐺-action on 𝒟 and
a linear right-action on 𝒞 which restrict to an action on the bases of these chain complexes. We can
then define the chain complex (𝐶 ⊗𝐺 𝐷)∗ as the complex given by:

(𝐶 ⊗𝐺 𝐷)𝑛 ∶= ⨁
𝑝+𝑞=𝑛

𝐶𝑝 ⊗𝐺 𝐷𝑞 (9.9)

The differentials are now simply the maps induced by the differentials id⊗ 𝜕 and 𝜕 ⊗ id.

9.2.3. Determining 𝑘 for the Balanced Product
We first note that the following result has been derived by the authors in [BE21a]:

Theorem 9.3. Let 𝐺 be a finite group such that |𝐺| mod 2 = 1. Then:
ℋ𝑛(𝐶 ⊗𝐺 𝐷) ≃ ⨁

𝑝+𝑞=𝑛
ℋ𝑝(𝐶) ⊗𝐺 ℋ𝑞(𝐷) (9.10)

Based on the motivation for these codes, we see that we can prove a theorem similar to the new
generalisation of the Künneth formula that we derived for fibre bundle product codes.

Theorem 9.4. Let 𝑋ℬ be a compact topological space that admits a universal ̃𝑋ℬ. Assume moreover
that this space admits a CW-complex of degree 1, such that its universal cover has a cellulation given
by the 1-complex ̃ℬ. Moreover, suppose that we have another chain complex of arbitrary length repre-
senting a cellulation of a topological space, say 𝑋ℱ , which we denote by ℱ. We then have the following
formula for the homology of the balanced product code ̃ℬ ⊗𝜋1(𝑋ℬ) ℱ:

ℋ𝑛 ( ̃ℬ ⊗𝐺 ℱ) ≃ ℋ1(ℬ;ℋ𝑛−1(ℱ)) ⊕ℋ0(ℬ;ℋ𝑛(ℱ)) (9.11)

Proof. Wenote that modding out the𝜋1(𝑋ℬ)-action is equivalent to taking the total space ( ̃𝑋ℬ×𝑋ℱ)/𝜋1(𝑋ℬ).
But this is the principal 𝜋1(𝑋ℬ)-bundle belonging to the fibre bundle with base space 𝑋ℬ and fibre 𝑋ℱ .
Hence, we can evoke the proof of Theorem 9.2 by taking the twist to be the action induced by the
generators of 𝜋1(𝑋ℬ) on the fibre. By compactness of 𝑋ℬ, we note that 𝜋1(𝑋ℬ) is finitely generated.

Note that we can generalise this last theorem to arbitrary covers 𝐶 of our base space, provided that we
mod out the 𝜋1(𝐵)/𝐺𝐶-action, where 𝐺𝐶 is the subgroup corresponding to the covering space.



9.3. Relating Fibre Bundle Products, Balanced Products and Lifted
Products

The final theorem outlines how we can relate fibre bundle products codes to balanced product codes.
Given a length-1 complex ℬ, and an arbitrary complex ℱ with twist 𝜑, we see that we can interpret the
fibre bundle product ℬ ⊗𝜑 ℱ as the balanced product 𝒞 ⊗𝐺 ℱ under the following conditions: firstly,
both ℬ and ℱ must be cellulations of topological spaces. Secondly, the space associated to ℬ must
admit a universal cover, and, thirdly, it must be compact. Fourthly, the twist 𝜑 must be the map on the
fibre induced by the action of the fundamental group of the space corresponding to ℬ. In this case,
given a covering space 𝑋𝒞 of the space associated to the complex ℬ, and let 𝐺𝐶 denote the subgroup
corresponding to this covering space, one can take 𝒞 to be the cellulation corresponding to this cover-
ing space. By then taking 𝐺 = 𝜋1(𝐵)/𝐺𝐶 , we find that this fibre bundle product can be interpreted as a
balanced product. The converse result holds true as well.

Furthermore, we argue that the balanced product construction can be seen as a generalisation of the
lifted product (as was also noted in [BE21a]): given an abelian group 𝐺, we can define ℛ ∶= 𝔽2𝐺.
In deriving our formula for 𝑘 for the lifted product, we obtained the following expression for two ℛ-
bimodules 𝐴 and 𝐵:

𝐴⊗ℛ 𝐵 ≃ (𝐴 ⊗𝔽2 𝐵)𝐺 (9.12)

Taking the balanced product with 𝐺 of two chain complexes 𝒜 and ℬ, per definition, yields:

(𝒜 ⊗𝐺 ℬ)𝑛 ∶= (𝒜 ⊗𝔽2 ℬ)𝐺 (9.13)

Hence, we see that indeed:
(𝒜 ⊗𝐺 ℬ)∗ = (𝐴 ⊗ℛ 𝐵)∗ (9.14)

Conversely, we see that the balanced product taken with any finite, abelian group 𝐺 can be interpreted
as the lifted product with 𝔽2-algebra ℛ ∶= 𝔽2𝐺.
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10
The Toric Code, But With a Twist

At the very beginning of this thesis, we noted that the torus 𝕋 can be understood as the Cartesian
product of two circles, i.e. 𝕋 ≃ 𝑆1 × 𝑆1. As such, we see that the torus can actually be interpreted as a
trivial fibre bundle with base and fibre 𝑆1. By the Eilenberg-Zilber theorem, we have that:

𝐶(𝕋)∗ ≃ 𝐶(𝑆1 × 𝑆1)∗ ≃ 𝐶(𝑆1)∗ ⊗𝐶(𝑆1)∗ (10.1)

Combining this with our earlier observation that a cellular complex of 𝑆1 can be interpreted as the chain
complex associated to the repetition code, we therefore conclude that the toric code can be interpreted
as the hypergraph product of two repetition codes.

Given our previous discussion regarding twisted product codes, these considerations may lead one to
wonder how applying a twist to the toric code alters its performance. We can rephrase this question in
concrete terms using the formalism of the fibre bundle and balanced product codes. In this chapter, we
will therefore use the formalism of these fibre bundle product codes to characterise the performance
of the twisted toric code. Before explaining how we will do so, however, let us first present the twisted
toric codes that we will study.

10.1. The Framework
We start off this section by recalling that the repetition code can be associated to a cellulation of the
circle consisting of an equal number (say, 𝑛) of 0-cells and 1-cells. Such a cellulation can, in its turn,
be interpreted as a (regular) polygon, as is shown in Figure 10.1.

Figure 10.1: On the left: the cellulation of the circle corresponding to the repetition 5 code. On the right: up to continuous
deformation, one can see that this cellular complex is also a cellular complex of the pentagon.

This allows us to determine the automorphism group quite simply: it is the dihedral group 𝐷2𝑛. For the
purpose of our analysis, however, it is convenient to consider automorphisms that do not distinguish
between different 0-cells. We therefore consider the more well-behaved subgroup of this automor-
phism group, which is generated by all the regular shifts. Such a shift acts on each vertex 𝑖 by mapping
it to the vertex (𝑖 + 𝑘) mod 𝑛 for some fixed 𝑘, and similarly for each edge, and is therefore isomorphic
to the cyclic group 𝐶𝑛.
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Now, let us apply the formalism from Section 9.1.2 by taking the repetition code 𝑅𝑛ℱ as our fibre ℱ, and
the repetition code 𝑅𝑛ℬ as our base code ℬ. For convenience, we will assume that 𝑛ℱ and 𝑛ℬ are even
throughout this entire chapter. We can then index the 𝑖-chains of ℱ as 𝑓𝑖𝑗 for 𝑖 = 0, 1 and 𝑗 = 1,… , 𝑛ℱ ,
while for ℬ, we can index them as 𝑏𝑖𝑗 in an analogous manner. As before, we take the parity check
matrices of these codes to be the square matrix mapping the 𝑖th edge to the 𝑖th vertex plus the 𝑖 − 1th
vertex (modulo 𝑛).

Having established our framework more precisely, we can move on to constructing the twisted toric
code. To this end, we again note that the hypergraph product of these two codes must correspond to
the (untwisted) toric code, as can be seen in Figure 10.2.

𝑛ℱ

𝑛ℬ

𝑛ℱ

𝑛ℬ

Figure 10.2: On the left: a torus upon which one can implement a toric code. On the right: the corresponding toric code,
interpreted as the hypergraph product of two repetition codes with size 𝑛ℬ and 𝑛ℱ , respectively. We note that qubits reside on
the edges of the lattice. The dashed and dotted curved edges ensure the periodic boundary conditions. In this example, 𝑛ℬ = 5
and 𝑛ℱ = 6.

As such, we already know the vector spaces of which the chain complex of the twisted toric code
is composed. We therefore turn our attention to establishing the last piece of the possible, which is
constructing its differentials.

10.2. Defining the Twisted Differential
In order to construct the differentials of the toric code, let us first consider how applying a twist in the
form of an even shift 𝑘 alters the lattice. This is displayed in Figure 10.3.

𝑛ℱ

𝑛ℬ

𝑘

Figure 10.3: The twisted toric code with twist 𝑘 when interpreted as the fibre bundle product of two repetition codes of size 𝑛ℬ
and 𝑛ℱ . Due to the twist, the upper end of all the edges connecting the upper and lower sides of the lattice is displaced.

We therefore see that we can describe this twist using the following map 𝜑:

𝜑(𝑏1𝑖 , 𝑏0𝑗 )𝑓𝑘𝑙 = {𝑓
𝑘
(𝑙+𝑘 mod 𝑛ℱ ) 𝑖 = 𝑛ℬ ∧ 𝑗 = −1 mod 𝑛ℬ
𝑓𝑘𝑙 otherwise

(10.2)

From the fibre bundle product construction (as presented in Section 9.1.2), we see that the twisted
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differential 𝜕1 ∶ 𝐵1 ⊗ 𝐹0 ⊕ 𝐵0 ⊗ 𝐹1 → 𝐵0 ⊗ 𝐹0 is given by:

𝜕1(𝑏1𝑖 ⊗ 𝑓0𝑘 ⊕ 0) = 𝑏0𝑖 ⊗ 𝜑(𝑏1𝑖 , 𝑏0𝑖 )𝑓0𝑘 + 𝑏0𝑖−1 mod 𝑛ℬ ⊗ 𝜑(𝑏1𝑖 , 𝑏0𝑖−1 mod 𝑛ℬ )𝑓
0
𝑘 (10.3)

= {(𝑏
0
𝑖 − 𝑏0𝑖−1 mod 𝑛ℬ ) ⊗ 𝑓0𝑘 𝑖 ≠ 𝑛ℬ

𝑏0𝑖 ⊗ 𝑓0𝑘 + 𝑏0𝑖−1 mod 𝑛ℬ ⊗ 𝑓0𝑖+𝑘 mod 𝑛ℱ 𝑖 = 𝑛ℬ
(10.4)

This differential can be written in a clearer form by introducing the permutation matrices 𝑃𝑘 ∈ ℳ𝑛×𝑛(𝔽2)
with (𝑃𝑘)𝑖𝑗 = 𝛿𝑗,𝑖+𝑘 mod 𝑛, as well as matrices 𝑈 ∈ ℳ𝑛×𝑛(𝔽2) for which 𝑈 𝑖𝑗 = 𝛿𝑖,𝑛𝛿𝑗,1. We now see that
the action of the twisted differential on 𝐵1 ⊗ 𝐹0 can be written as:

𝜕1|𝐵1⊗𝐹0⊕0 = (𝐻ℬ − 𝑈) ⊗ 𝐼 + 𝑈 ⊗ 𝑃𝑘 (10.5)

Such that the differential becomes:

𝜕1 = [(𝐻ℬ − 𝑈) ⊗ 𝐼 + 𝑈 ⊗ 𝑃𝑘|𝐼 ⊗ 𝐻𝑇
ℱ] (10.6)

where 𝐻ℬ is the parity check matrix of the repetition code with size 𝑛ℬ, and, similarly, 𝐻ℱ is the parity
check matrix of the repetition code with size 𝑛ℱ .

10.3. The Effects of the Twist on the Code’s Performance
As mentioned in the introduction, we would like to determine how the performance of this newly con-
structed twisted toric code compares to that of the regular, untwisted toric code. As this twisted code
is a fibre bundle product code, and given that the authors in [HHO21] were able to improve upon the
distance results from [TZ09] by applying twists, one would hope to see an increase in the distance of
the toric code after applying a twist without causing a decrease in its encoding rate. We postulate that
this is indeed the case for our choice of twists.

The fact that the number of encoded qubits (and hence, the rate) does not change can be seen quite
easily: as the twist acts as the identity on the homology of the fibre, we see that the Künneth formula
still holds. Similarly, the chain complex corresponding to the twisted toric code is still a cellulation of
the torus, hence we see that the homology of the code remains unchanged after the twist. These two
different arguments, therefore, each allow us to safely deduce that the rate remains unchanged.

Determining the distance of this twisted toric code, however, requires much more work. We will there-
fore tackle this question later on by first presenting our analytical derivation, and by verifying the validity
of these results numerically.

Finally, when considering the regular, untwisted toric code, it is well known that the logical error rate of
this code improves as one increases the distance of the code by increasing the lattice size, as can be
seen in Figure 10.4.



10.4. The Distance of the Twisted Toric Code 94

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Physical error rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
og
ic
al

er
ro
r
ra
te

Shift: k = 0

L1 = 4, L2 = 4
L1 = 6, L2 = 6
L1 = 8, L2 = 8

Figure 10.4: The logical error rate as a function of the physical error rate for the toric code defined on a square lattice of with
sides of length 4, 6 and 8, respectively. One can see that below some threshold value of around 𝑝 ∼ 10%, an increase in the code
size (and hence, the distance) implies a decrease in the logical error rate. These simulations were performed by determining the
decoding success rate for a total of 500,000 randomly drawn samples at each of the physical error rates. The underlying error
model was taken to be an i.i.d. Bernouilli distribution with parameter 𝑝 (the physical error rate) for each of the physical qubits.

One would hope, therefore, that improving the distance of the toric code by applying a twist to the code
would improve the logical error rate of the code. The distance of a code, however, is but one of its
key performance indicators and previous research [BBKM19] has shown that a higher distance does
not necessarily translate into an improved scaling of the logical error rate of the code. In [BBKM19],
a comparison was made between the regular toric code and a “rotated” toric code. Moreover, based
on the ideas of [DKLP02], analytic expressions for the logical error rate were sought and compared in
order to be able to explain their numerical results. In the same vein, we will compare the twisted and
the untwisted toric code by determining and comparing the scaling of the logical error rates of these
codes, and by explaining this scaling behaviour for low values of 𝑝 using analytical considerations.

10.4. The Distance of the Twisted Toric Code
In this section, we first determine the distance of the twisted toric code, after which we verify these
results using numerical methods.

10.4.1. Analytical Derivation for the Distance
As seen in Chapter 2, the logical operators of the toric code correspond to closed loops on the torus.
Let us, therefore, consider how applying a twist affects these closed loops on the torus. For now, let
us assume that 𝑘 < 𝑛ℬ, 𝑛ℱ . We can then first consider closed loops in the direction of the fibre, as
displayed in Figure 10.5:

Figure 10.5: One loop (in red) on the torus. This loop corresponds to a minimum weight logical operator on the toric code. The
dotted circle indicates where the twist is applied.
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One can easily see that these loops are not affected by the twists. Therefore, one expects these loops
to still correspond to logical operators of the twisted toric code. This should not be too surprising, as
such loops correspond to the elements of 0 ⊕ ker (𝐼 ⊗ 𝐻𝑇

ℱ), which is still a subspace of the kernel of
the twisted differential.

The loops running in the direction of the base, however, do change, as the shift causes their endpoints
to become detached. This is displayed in Figure 10.6.

𝑘

Figure 10.6: Due to the twist, the endpoints of some of the loops that were initially closed on the untwisted torus become
detached. Therefore, these loops no longer correspond to logical operators once a twist is applied.

Logical operators, however, correspond to closed loops. Hence, in order to close these loops, one will
have to compensate for the displacement of the endpoints by twisting one of them back. In principle,
there are two ways to do so, which are shown in Figure 10.7.

𝑘

𝑛ℱ − 𝑘

Figure 10.7: On the left: the loop is closed by moving in the direction opposite to the twist. On the right, this is done by moving in
the direction of the twist. In the former case, the loop becomes 𝑘 units longer, while in the latter case, the loop becomes 𝑛ℱ −𝑘
units longer.

As we are only interested in determining the minimum weight logical operators, only the shortest of
these loops will be relevant for determining the minimum distance of the twisted toric code.

We can understand all of this quantitatively as well. In the untwisted case, these loops correspond to
the elements of ker (𝐻ℬ ⊗ 𝐼) ⊕ 0 = ker (𝐻ℬ) ⊗ 𝔽𝑛ℱ2 ⊕ 0. The elements of ker (𝐻ℬ) now, are precisely
the closed loops ∑𝑛ℬ

𝑖=1 𝑏1𝑖 , such that the minimum weight loops are of the form ∑𝑛ℬ
𝑖=1 𝑏1𝑖 ⊗ 𝑓, for some

𝑓 ∈ 𝔽𝑛ℱ2 . When introducing a twist, however, these elements are no longer in the kernel:

((𝐻ℬ − 𝑈) ⊗ 𝐼 + 𝑈 ⊗ 𝑃𝑘) (
𝑛ℬ
∑
𝑖=1

𝑏1𝑖 ⊗ 𝑓0𝑗 ) =
𝑛ℬ
∑
𝑖=2
(𝑏0𝑖 + 𝑏𝑖−1) ⊗ 𝑓0𝑗 + 𝑏1 ⊗ 𝑓0𝑗 + 𝑏0𝑛ℬ ⊗ 𝑓0𝑗+𝑘 mod 𝑛ℱ (10.7)

= 𝑏0𝑛ℬ ⊗ (𝑓0𝑗 + 𝑓0𝑗+𝑘 mod 𝑛ℱ ) (10.8)

This expresses quantitatively how the loops get detached. To mitigate the effects of the twist, one will
have to compensate by twisting the final endpoint back. Here again, we see that there are two different
ways of doing it, namely by either adding an element of the following form:

𝑏0𝑛ℬ ⊗
𝑘
∑
𝑖=0

𝑓0𝑗+𝑖 mod 𝑘 (10.9)

Which is equivalent to moving in the direction opposite to the twist, or, one can add an element of the
following form:

𝑏0𝑛ℬ ⊗
𝑛ℱ−𝑘
∑
𝑖=0

𝑓0𝑗−𝑖 mod 𝑘 (10.10)

which corresponds to moving along with the twist.
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We now want to work towards an explicit expression for the distance. To this end, let us first agree to
denote a representative of the first class of logical operators by 𝑍1, and the second class of logicals by
𝑍2, as can be seen in Figure 10.8.

𝑍1 𝑍2

Figure 10.8: The red loops that remain unchanged by the twist are associated with the logical operator 𝑍1, while the blue loops
are associated with the logical operator 𝑍2.

In this case, there are two possible loops that correspond to the logical 𝑍1𝑍2:

𝑍1
𝑍2 𝑍1𝑍2

𝑍
′

1

𝑍2 𝑍
′

1𝑍2

Figure 10.9: Top row: On the left, two loops corresponding to the logical operators 𝑍1 and 𝑍2 are given. On the right, their
product 𝑍1𝑍2 is given. This loop is clearly of length 𝑛ℱ +𝑛ℬ +𝑘. Bottom row: on the left, two loops corresponding to the logical
operators 𝑍

′
1 and 𝑍2 are given. On the right, their product 𝑍

′
1𝑍2 is given. This loop is clearly of length 𝑛ℱ + 𝑛ℬ − 𝑘.

Both of these classes of loops are of a higher weight than the loops corresponding to 𝑍1 and 𝑍2.
Therefore, we can safely conclude that given an 𝑛ℬ by 𝑛ℱ lattice and some twist 𝑘 < min {𝑛ℱ , 𝑛ℬ} = 𝑛ℬ,
the minimum distance of the twisted toric code is given by:

min {𝑛ℱ ,min {𝑛ℬ + 𝑘, 𝑛ℬ + (𝑛ℱ − 𝑘)}} (10.11)

Let us consider a few cases. First, if we assume that we are working with a square lattice, i.e. 𝑛ℱ = 𝑛ℬ,
we immediately see that the twist does not affect the minimum distance, i.e.:

𝑑 = 𝑛ℱ = 𝑛ℬ (10.12)

Hence, if we want to improve the distance of a toric code by applying a twist, we must consider non-
square lattices — specifically, lattices for which 𝑛ℱ ≫ 𝑛ℬ. Restricting our attention to such lattices, and
moreover assuming that 𝑘 < 𝑛ℱ −𝑘, we see that the minimum distance of the code scales linearly with
k:

𝑑 = 𝑛ℬ + 𝑘 (10.13)

This derivation does not hold true, however, once we let go of the requirement that 𝑘 < min {𝑛ℱ , 𝑛ℬ} =
𝑛ℬ. For instance, if we assume that 𝑛ℬ < 𝑘 < 𝑛ℱ , we see that the loops corresponding to 𝑍1𝑍2 of the
following form:

𝑍′
1

𝑍2 𝑍′
1𝑍2
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are of lower weight than 𝑍1-loops. When calculating the minimum distance of the code, therefore, we
have to take into account the length of such loops as well. Taking even larger twists complicates this
even further, as products of 𝑍1 and different loops corresponding to a 𝑍2-error can then still be of lower
weight than the loops corresponding to a 𝑍1-error. As all of this reduces the minimum distance instead
of increasing it, however, this is not a fruitful path to continue onto and therefore we do not pursue this
analysis any further — from now on, we restrict our attention to values of 𝑘 that are smaller than both
𝑛ℱ and 𝑛ℬ. In this case, the distance of our code is given by:

𝑑 = min {𝑛ℱ ,min {𝑛ℬ + 𝑘, 𝑛ℬ + (𝑛ℱ − 𝑘)}} (10.14)

We now note that there is a certain symmetry in the choice of twists, as twists 𝑘 = 𝑛ℱ/2 ± 𝑖 (with
0 ≤ 𝑖 ≤ 𝑛ℱ/2) yield the same result for the distance. Therefore, we can restrict our attention to twists
0 ≤ 𝑘 ≤ 𝑛ℱ/2 without loss of generality.

In summary, requiring that 𝑛ℱ > 𝑛ℬ, and moreover requiring that 0 ≤ 𝑘 < min {𝑛ℱ/2, 𝑛ℬ}, we find that
the minimal distance is given by:

𝑑 = min {𝑛ℱ , 𝑛ℬ + 𝑘} (10.15)

10.4.2. Numerical Verification
We now proceed with the numerical verification of these results. The Python scripts that were used
for this purpose are built upon modules performing linear algebra over 𝔽2. These modules were used
in [BVC+17] and were provided by the authors of this paper. We adapted their scripts for our own
research purposes. All the scripts used can be found in Appendix B.

Let us first restrict our attention to a square lattice. The results of our numerical study can be found in
Figure 10.10.
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Figure 10.10: The weight of the minimum weight loops of the chain complex corresponding to the twisted toric code are given
for an 8 by 8 lattice. 𝑑1 (in red) corresponds to the logical 𝑍1 (in red) in Figure 10.8, while 𝑑2 (blue) corresponds to the logical
𝑍2 (in blue) in Figure 10.8.

We indeed see that our analysis holds true: the loops corresponding to 𝑍1 are unaffected by the twist,
while the other loops become larger as on the domain 0 ≤ 𝑘 ≤ 𝑛ℱ/2. By the symmetry of the choice
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of twists, we see that as 𝑛ℱ/2 ≤ 𝑘 < 𝑛ℱ , the correction for the twist can be performed in the oppo-
site direction, and the distance starts decreasing, until 𝑘 attains the value 𝑛ℱ , which is mathematically
equivalent to not performing a twist at all. Theminimum distance of the code, nevertheless, remains 𝑛ℱ .

Let us now restrict our attention to a non-square lattice, for example to a lattice for which 𝑛ℱ = 2 ⋅ 𝑛ℬ.
The results of our numerical study can now be found in Figure 10.11.
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Figure 10.11: The weight of the minimum weight logicals of the twisted toric code on an 8 by 8 lattice are given. We see that
the distance 𝑑2 corresponds to the weight of the minimum weight loops corresponding to 𝑍2 in Figure 10.8. The distance 𝑑1,
however, corresponds to the logical 𝑍1 from Figure 10.8 for 𝑘 ≤ 8. For 8 < 𝑘 ≤ 16, the weight of the loops corresponding to
𝑍1𝑍2 becomes less than the weight of the loops corresponding to 𝑍1. Therefore, for these values of 𝑘,𝑑1 reflects their weight
instead of the weight of 𝑍1.

If we restrict our attention to the domain 𝑘 < 𝑛ℬ, then these results are in line with our expectations,
namely that the loops corresponding to 𝑍1 possess the same weight, while the minimumweight of those
corresponding to 𝑍2 increases with 𝑘. Increasing the twist on this domain thus improves the minimum
distance of the code. Going beyond this domain, however, we see that the minimum distance starts
decreasing, as the weight of the loops corresponding to 𝑍1𝑍2 becomes less than the weight of the loops
corresponding to 𝑍1. These numerical results therefore confirm that it suffices to restrict one’s attention
to relatively small values of 𝑘 if one wants to maximise the minimum distance of the code.

10.5. The Logical Error Rate of the Twisted Toric Code
Having determined the rate and the distance of the twisted toric code, we now turn to the question of
characterising the scaling of the logical error rate of the code as a function of the twist.

A lot of similar research has already been conducted for the class of surface codes (see e.g. [DKLP02]).
In [BBKM19], a comparison was made between the performance of the toric code and a rotated toric
code. In this paper, the researchers derived analytical approximations for the scaling of the logical error
rates of each of these codes, and benchmarked these against numerical analyses. We can make use
of their results for the toric code, and extend their analysis to the twisted toric code as well.

Before that, we note that an efficient decoder based on the minimum-weight perfect matching (MWPM)
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algorithm is already available for a wide class of codes, including the toric code. An efficient imple-
mentation of this decoder is given by the PyMatching Python package from [Hig22]. We can apply this
decoder to the twisted toric code as well, and as such, we can run simulations for these codes and
compare their performance. We will therefore start off our discussion with a numerical study of these
codes. Afterwards, we will explain these numerical results in the low 𝑝 regime by deriving analytical
expressions for their logical error rates by generalising the results from [BBKM19].

10.5.1. Numerical Simulations
In order to perform a numerical study of the scaling of the logical error rate of the twisted and untwisted
toric code, we first need to establish our assumptions. We will proceed by assuming that the physical
errors, i.e. the errors on each qubit, are i.i.d. Bernoulli random variables with parameter 𝑝, which is
commonly referred to as the physical error rate.

Furthermore, as the plaquette operators of the toric code are the vertex operators on its dual lattice,
there is no qualitative difference between the 𝑍 and 𝑋-types of errors, and therefore, it suffices to con-
sider just one of them. We thus restrict our attention to 𝑍-errors.

We have written software to numerically estimate the logical error rate of the toric code for an arbitrary
twist by calculating the fibre bundle product of a repetition code with parameter 𝑛ℱ as the fibre code
and a repetition code with parameter 𝑛ℬ as the base code, along with the twist discussed earlier. The
reader interested in the precise details of our implementation is referred to Appendix B, where all of our
code can be found.

Having established the framework, let us now proceed with performing an analysis of our codes in the
case in which they are defined on a square lattice. In order to compare their performance, we consider
a small lattice size 𝑛ℬ = 𝑛ℱ , as this ensures that the effects due to the twist are relatively large.

We therefore first compare the performance of the untwisted toric code on a 4 by 4 lattice and the same
code but with a twist of 𝑘 = 2. The results of this analysis can be found in Figure 10.12 and in 10.13.
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Figure 10.12: The logical error rate plotted as a function of the physical error rate for the twisted toric code defined on a 4 by 4
lattice for twists 𝑘 = 0 and 𝑘 = 2. For each of these values of 𝑘, the minimum distance of the code is 4. These simulations were
performed by determining the decoding success rate for a total of 500,000 randomly drawn samples at each of the physical error
rates.
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Figure 10.13: The results from Figure 10.12 considered on a smaller domain. The logical error rate is plotted as a function of
the physical error rate for the twisted toric code defined on a 4 by 4 lattice for twists 𝑘 = 0 and 𝑘 = 2. For each of these values
of 𝑘, minimum distance of the code is 4. These simulations were performed by determining the decoding success rate for a total
of 500,000 randomly drawn samples at each of the physical error rates.
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These numerical simulations seem to imply that for low values of 𝑝 (at least for 𝑝 < 0.02), the logical
error rate of a twisted toric code is lower than that of the untwisted toric code.

An interesting observation to make at this point is that the weight of the two independent minimum
weight errors 𝑍1 and 𝑍2 when applying a twist of 𝑘 = 2 is 4 and 6, respectively. This is also the case for
the regular, untwisted toric code defined on a 4 by 6 lattice. Hence, we can compare how these two
codes differ. The results of these simulations can be found in Figure 10.14.
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Figure 10.14: The logical error rate as a function of the physical error rate for the twisted toric code defined on a 4 by 4 lattice for
twists 𝑘 = 0 and 𝑘 = 2, as well as for the toric code defined on a 4 by 6 lattice. In each of these cases, the minimum distance
of the code is 4. These simulations were performed by determining the decoding success rate for a total of 500,000 randomly
drawn samples at each of the physical error rates.

It appears that the logical error rate of the twisted code and the toric code on a 4 by 6 lattice scale
similarly in the low 𝑝 regime. We will try to explain these results in the next section.

Let us now move on to codes defined on a non-square lattice, for example a lattice where 𝑛ℱ = 2 ⋅ 𝑛ℬ.
Here, too, we consider relatively small values of 𝑛ℬ, such that the effects due to the twist are visible.
The results of these simulations are presented in Figure 10.15 and Figure 10.16.
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Figure 10.15: The logical error rate is plotted as a function of the physical error rate for the twisted toric code defined on a 4 by 8
lattice for twists 𝑘 = 0 (with distance 𝑑 = 4) and 𝑘 = 2 (with distance 𝑑 = 6). These simulations were performed by determining
the decoding success rate for a total of 500,000 randomly drawn samples at each of the physical error rates.
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Figure 10.16: The results from Figure 10.15 considered on a smaller domain. The logical error rate is plotted as a function of
the physical error rate for the twisted toric code defined on a 4 by 8 lattice for twists 𝑘 = 0 (with distance 𝑑 = 4) and 𝑘 = 2 (with
distance 𝑑 = 6). These simulations were performed by determining the decoding success rate for a total of 500,000 randomly
drawn samples at each of the physical error rates.

We will explain this behaviour using analytic methods in the next section.
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10.5.2. The Logical Error Rate in The Low 𝑝 Limit: The Untwisted Case
Given some error model, one can — in principle — calculate the logical error rate of the toric code. We
proceed to do so, following the work of [BBKM19]: given a toric code defined on an 𝑛ℱ by 𝑛ℬ lattice,
one can identify each string of 𝑍-errors by their action on the qubits in the lattice. Such a string 𝐸 has
a weight, which we denote by 𝑤(𝐸). The logical error rate, now, is given by the sum of the probabilities
of occurrence of each error string for which the correction produced is incorrect. Assuming that the
𝑍-errors on the qubits can be modelled as i.i.d. Bernoulli variables, the probability of occurrence for an
error string 𝐸 is:

𝑃(𝐸) = (1 − 𝑝)𝑛−𝑤(𝐸)𝑝𝑤(𝐸) (10.16)

where 𝑛 ∶= 2⋅𝑛ℬ ⋅𝑛ℱ is the total number of qubits on the lattice. The total logical error rate, 𝑃(𝑛ℱ , 𝑛ℬ, 𝑝),
is now given by:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑝) =
𝑛
∑
𝑤≥0

Ω(𝑤)(1 − 𝑝)𝑛−𝑤𝑝𝑤 =
𝑛
∑
𝑤≥0

(1 − 𝑝)𝑛Ω(𝑤) ( 𝑝
1 − 𝑝)

𝑤
(10.17)

where Ω(𝑤) denotes the number of error strings with weight 𝑤 that cannot be corrected. We note that
Ω(𝑤) = 0 for 𝑤 < 1

2
min {𝑛ℱ , 𝑛ℬ} when using a minimum-weight decoder, as all strings with weight less

than half the distance of our code can be corrected.

Before proceeding with our actual analysis, we note that one can interpret this framework in the lan-
guage of statistical mechanics. To this end, one can apply the following substitutions:

𝛽 ∶= − log ( 𝑝
1 − 𝑝) , 𝑆(𝑤) ∶= log(Ω(𝑤)) (10.18)

By interpreting 𝛽 as an inverse temperature and 𝑆 as an entropy, we see that we can rewrite the logical
error rate as:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑝) = (1 − 𝑝)𝑛
𝑛
∑
𝑤≥0

𝑒−𝛽𝐹(𝑤) (10.19)

where 𝐹(𝑤) ∶= 𝑤−𝑆(𝑤)/𝛽 can be interpreted as a free energy. The goal of our analysis will be to derive
an expression for the contribution of the minimum weight 𝑤min error strings alone, we will approximate
the logical error rate as follows:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑝) ≃ (1 − 𝑝)𝑛𝑒−𝛽(𝑤min−𝑆(𝑤min)/𝛽) (10.20)

Hence, we see that we can distinguish between the entropic contributions to the logical error rate, and
energetic contributions. This point of view will be useful when interpreting our results.

Let us now start with our analysis. For the purpose of this analysis, we shift to the description of the
toric code as the hypergraph product of two repetition codes. From this point of view, the minimum
weight logicals correspond to vertical and horizontal loops over the lattice, as can be seen in Figure
10.17.

𝑍1
𝑍2

𝑍1

𝑍2

𝑛ℬ

𝑛ℱ

Figure 10.17: On the left, the two loops corresponding to minimum weight errors 𝑍1 (red) and 𝑍2 (blue). On the right, the toric
code when interpreted as the hypergraph product of two repetition codes. The counterpart of the loops are shown on the lattice,
where the lattice point on which they coincide is shifted slightly for illustrative purposes.
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Let us first direct our attention to the square lattice, that is, let us assume for now that 𝑛ℱ = 𝑛ℬ. The
loops of minimum weight are thus loops of weight 𝑑/2 = 𝑛ℬ/2. We now claim that the number of
minimum weight loops can be determined analytically using the following equation (as was proved in
[BBKM19]):

Ω(𝑛ℬ/2) =
1
2 ⋅ (𝑛ℬ ⋅ ( 𝑛ℱ

𝑛ℱ/2
) + 𝑛ℱ ⋅ ( 𝑛ℬ

𝑛ℬ/2
)) = 2𝑑

2 ⋅ ( 𝑑
𝑑/2) (10.21)

To see why this is the case, let us decompose this equation. Firstly, we note that for each loop corre-
sponding to an 𝑍2-error (equivalently, for each vertical loop on the lattice as defined in Figure 10.17),
there are

( 𝑛ℬ
𝑛ℬ/2

) (10.22)

unique chains of errors of weight 𝑛ℬ/2. An example of a few of such error chains can be seen in Figure
10.18.

x
x

x

x
x

x x
x

x

Figure 10.18: Three different minimum weight errors on the physical qubits (represented here as red crosses) are displayed
whose correction can induce the logical error 𝑍2 displayed in Figure 10.17.

Although most of these strings of errors produce a different syndrome, for each of these error strings,
however, there is another error string produces the same syndrome. An example of this can be found
in Figure 10.19.
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Figure 10.19: An example of two error strings (given by the red crosses) that result in the same syndrome.

The correction, however, for that syndrome, is always the same, hence, one of these strings gets
corrected, while the correction extends the other string to a logical 𝑍-error, as is illustrated in Figure
10.20.
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Figure 10.20: The two error strings from Figure 10.19, to which the same correction (the blue crosses) is applied. On the left,
we see that the error is corrected, while on the right, we see that the correction actually applies a logical error.

Hence, only half of these error strings cause a logical error (explaining the factor 1/2). Finally, there
are 𝑛ℱ different minimum weight loops corresponding to the 𝑍2-logical operator (these are the different
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vertical lines on the lattice in Figure 10.17), which is accounted for by the factor of 𝑛ℱ . The same
analysis holds for 𝑍1-errors (which correspond to the horizontal lines on the lattice), only now, there are
𝑛ℬ many of these. Hence, we conclude that the number of minimum weight errors is indeed

Ω(𝑛ℬ/2) =
2𝑑
2 ⋅ ( 𝑑

𝑑/2) (10.23)

Having presented the analysis for the case of a square lattice, we can now extend this analysis to
the case where 𝑛ℱ > 𝑛ℬ. We note that this is fairly straightforward: we can simply split Ω(𝑤) from
our previous analysis up into Ωℬ(𝑤), which counts the number of error strings causing a 𝑍2-error, and
Ωℱ(𝑤), which counts the number of strings causing a 𝑍1-error1. We then find the following expression
for the number of minimum weight errors:

Ωℬ (
𝑛ℬ
2 ) = 𝑛ℱ

2 ⋅ (𝑛ℬ𝑑/2), Ωℱ (
𝑛ℬ
2 ) = 0 (10.24)

As we are interested in the behaviour of the logical error rate in the low 𝑝 limit, the dominant errors will
be the low weight errors. Therefore, for small values of 𝑝, we can approximate the logical error rate by
only counting the contribution of the minimum weight logical errors. As such, we see that the logical
error rate can be approximated as follows:

𝑃(𝑛ℬ, 𝑛ℱ , 𝑝) ≃ (1 − 𝑝)𝑛 ⋅ (Ωℬ (
𝑑
2 ) + Ωℱ (

𝑑
2 )) (

𝑝
1 − 𝑝)

𝑑
2

(10.25)

We can now compare these approximations with our numerical results. We do so in Figure 10.21.
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Figure 10.21: The logical error rate as a function of the physical error rate for the regular, untwisted toric code defined on a 4 by
8 lattice, along with the analytically derived approximation for the logical error rate derived above. The minimum distance of this
code is 4. These simulations were performed by determining the decoding success rate for a total of 500,000 randomly drawn
samples at each of the physical error rates.

One can see that already for quite low values of 𝑝 (𝑝 ≃ 0.5%), this approximation becomes quite crude,
which suggests that for the chosen parameters, the higher weight error strings start becoming dominant
1We note that we do not have to take into account 𝑍1𝑍2-errors, as these cannot be of minimum weight.
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for low values of 𝑝. We expect the minimum weight error strings’ contribution to the logical error rate
to become dominant as 𝑝 ↓ 0. We check this against our simulations in Figure 10.22.
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Figure 10.22: A logarithmic plot of the results from Figure 10.21. The logical error rate is plotted as a function of the physical
error rate for the regular, untwisted toric code defined on a 4 by 8 lattice, along with the analytically derived approximation for
the logical error rate derived above. The minimum distance of this code is 4. These simulations were performed by determining
the decoding success rate for a total of 5,000,000 randomly drawn samples at each of the physical error rates.

These results indeed seem to verify the expected asymptotic behaviour of the logical error rate. We
note, however, that to ensure that this is the case, one would need to take an even larger sample
size. Yet, to get these accuracy results, we already had to increase the sampling rate by a factor of 10
to 5, 000, 000 samples per value of the physical error rate. Increasing the sampling rate even further,
unfortunately, lies beyond the reach of our current computational resources.

10.5.3. The Logical Error Rate in The Low 𝑝 Limit: The Twisted Case
Let us now generalise the calculations of the logical error rate to the twisted toric code. To this end, let
us again consider a 𝑛ℱ by 𝑛ℬ lattice, and let us apply the twist 𝑘 introduced above. The logical error
rate is now still given by the following expression:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑘, 𝑝) =
𝑛
∑
𝑤≥0

(1 − 𝑝)𝑛 (Ωℬ(𝑤, 𝑘) + Ωℱ(𝑤, 𝑘)) (
𝑝

1 − 𝑝)
𝑤

(10.26)

We note that the loops on the torus can now again be represented by loops on the (twisted) lattice, as
is displayed in Figure 10.23.
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Figure 10.23: On the left, the two loops corresponding to minimum weight errors 𝑍1 (red) and 𝑍2 (blue) for the twisted toric code.
On the right, the same twisted toric code when interpreted as the fibre bundle product of two repetition codes. The counterpart
of the loops are shown on the lattice, where the lattice point on which they coincide is shifted slightly for illustrative purposes.

We immediately see that our previous analysis (for the untwisted toric code) is still valid when we want
to calculate the number of horizontal (𝑍1) errors, as these loops are exactly the same loops as one
would have in the untwisted case! This enables us to explain why for the square lattice, we see that
the effect of a twist 𝑘 on the scaling of the logical error rate is similar to the scaling of the logical error
rate for the regular, untwisted toric code on a lattice with sides 𝑛ℬ and 𝑛ℱ + 𝑘: in the low 𝑝 regime,
the dominant logical errors are those of minimum weight, and hence correspond to 𝑍1, which remain
unaltered by our twist. We thus conclude that, for a square lattice and low values of 𝑝, the effects of
performing a twist are similar to increasing one side of the lattice by the twist, which is in line with our
numerical results, as presented in Figure 10.14.

The number of error strings corresponding to a 𝑍2-error, however, becomes substantially more complex
to calculate. To determine these errors, we first recall that the loops corresponding to such errors are
now of size 𝑛ℬ + 𝑘. Yet, here already do we depart from our analysis of the untwisted situation, as
all the possible minimum weight logical operators are not simply the vertical lines on the lattice, as is
illustrated in Figure 10.24.

Figure 10.24: While in the untwisted case the minimum weight logical operators corresponded to vertical lines on the lattice, the
minimum weight logical operators (in red) for the twisted code are much more diverse.

We want to count the number of different minimum weight error strings. To this end, we first start with
the observation that some minimum weight error strings are perfectly correctable — see Figure 10.25
for two examples.

x
x

x x

x

x

x x

Figure 10.25: Two examples of minimum weight error strings on the twisted toric code that can be corrected by the PyMatching
decoder.
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What distinguishes uncorrectable from correctable minimum weight strings of errors, is that for the for-
mer class of strings, one can always construct a minimum weight loop encoding a 𝑍2-logical that runs
through all the edges of the qubits onto which the error acts. Hence, we can exploit the structure of
these minimum weight logical operators to understand the possible minimum weight error strings.

To this end, let us start by investigating how one can construct specific minimum weight loops. We first
fix a twisted edge of the lattice. We then see that all the possible minimum weight loops going through
the lattice are bound to some sublattice, as is illustrated in Figure 10.26.

Figure 10.26: Choosing a twisted edge (in red), we see that the every minimum weight loop that runs through this edge is
confined to a square lattice, which is shown in black in the second frame.

As such, we see that the problem of constructing a minimum weight loop that acts on a twisted edge
is equivalent to the problem of choosing a path on a sublattice that starts in its upper right corner and
ends in its bottom left corner by moving in only two directions: downwards and leftwards. This can be
seen in Figure 10.27.

Figure 10.27: An example of a minimum weight loop going through the twisted edge (in red) and how the construction of this
loop can be interpreted as a path between two ends of a lattice by only going downwards and leftward.

This has immediate implications for our counting problem, as this implies that one cannot just arbitrarily
place errors on the lattice to obtain an uncorrectable error, but rather, that any relevant minimum weight
error string can always be said to have a top right edge — this is illustrated in Figure 10.28.

x
x

x
x

x
x

x
x

Figure 10.28: Two examples of minimum weight error strings, with the top right qubit given in orange, and the other errors in red.

Therefore, we can simplify our counting problem as follows. Let us focus on some specific section of
the lattice, which is illustrated in Figure 10.29.
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Figure 10.29: The section of the lattice (in black) that we will use in our counting problem. We adhere to the convention that the
twisted edge is the topmost edge of this section.

For each edge on this section of the lattice, we can count the number of possible minimum weight error
strings that lie on a minimum weight loop and whose top right qubit is on this edge. The sum of these
numbers yields the number of possible minimum weight error strings whose top right qubit lies on this
section. Let us denote it by 𝑁(𝑛ℬ, 𝑘).

But now, we see that we can tile the whole lattice using 𝑛ℱ of these sections, and that, moreover, all the
error strings whose top right qubit lies on one of these sections are not counted on other sections. But
given that each error string has a top right qubit, we see that we can simply calculate the total number
of possible minimum weight error strings that lie on a minimum weight loop. Noting that only half of
these will lead to a logical error after error correction, we find that the total number of unique minimum
weight errors that cannot be corrected is given by:

Ωℬ (
𝑛ℬ+𝑘
2 , 𝑘) = 1

2𝑛ℱ ⋅ 𝑁 (𝑛ℬ, 𝑘) (10.27)

We therefore move on to the problem of calculating 𝑁 (𝑛ℬ, 𝑘). We proceed inductively. First, note that
by choosing some top right qubit, we are free to choose the next qubit within some sublattice, because
of the very fact that this error string must lie on a minimum weight loop. This is illustrated in Figure
10.30.

x x

Figure 10.30: Two examples of how choosing a top right qubit (orange) allows one to choose the next qubit within a sublattice
(in purple).

Suppose now that we have chosen the first two qubits. The third qubit can then, again, be chosen from
some (smaller) sublattice, as can be seen in Figure 10.31

x x

x x

Figure 10.31: Two examples of how choosing a top right qubit (orange) and the first qubit (red) allows one to choose the next
qubit within a smaller sublattice (in purple).

Hence, we see that there is a recurrence relation at play in our problem. Let us try to establish this
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relation.

To this end, consider an 𝐿1 by 𝐿2 lattice, and let us denote the number of ways in which we can pick
𝑚 edges that lie on this lattice such that we can draw a path from the upper right corner to the bottom
left corner by only going downwards or leftwards by 𝐴(𝐿1, 𝐿2, 𝑚). We claim that we have the following
recurrence relationship for all 𝑚 ≥ 2:

𝐴(𝐿1, 𝐿2, 𝑚) = 2
𝐿1−1
∑
𝑙1=1

𝐿2−1
∑
𝑙2=1

𝐴(𝑙1, 𝑙2, 𝑚 − 1) +
𝐿2−1
∑
𝑙2=1

𝐴(𝐿1, 𝑙2, 𝑚 − 1) +
𝐿1−1
∑
𝑙1=1

𝐴(𝑙1, 𝐿2, 𝑚 − 1) (10.28)

and that, furthermore:
𝐴(𝐿1, 𝐿2, 1) = 2𝐿1𝐿2 − 𝐿1 − 𝐿2 (10.29)

We show that the equation for 𝐴(𝐿1, 𝐿2, 𝑚) holds by explaining each of the three terms. To this end, let
us consider an 𝐿1 by 𝐿2 lattice, and let us distinguish three regions where we can choose the rightmost
edge, that we will specify in Figure 10.32.

𝑅𝑒𝑔𝑖𝑜𝑛 𝐼

𝑅𝑒𝑔𝑖𝑜𝑛 𝐼𝐼

𝑅𝑒𝑔𝑖𝑜𝑛 𝐼𝐼𝐼

Figure 10.32: We distinguish three different regions on our lattice: Region 𝐼, corresponding to its interior, Region 𝐼𝐼, correspond-
ing to its top boundary, and Region 𝐼𝐼𝐼, corresponding to its right boundary.

We argue that Region 𝐼𝐼 corresponds to the second term in the summand, i.e. to the term

𝐿2−1
∑
𝑙2=1

𝐴(𝐿1, 𝑙2, 𝑚 − 1) (10.30)

Indeed, this is the case, as choosing the 𝑙1th edge (we start counting from the right) in this region returns
us to the problem of having to choose one less edge in a 𝐿1 by 𝑙2 sublattice, as is illustrated in Figure
10.33:

Figure 10.33: Choosing the orange edge, we see that the next edge can be chosen in the purple sublattice.

The fact that the third term corresponds to Region 𝐼𝐼𝐼 follows from an exactly analogous line of reason-
ing.

Lastly, we show that Region I corresponds to the first term, i.e. to the term

2
𝐿1−1
∑
𝑙1=1

𝐿2−1
∑
𝑙2=1

𝐴(𝑙1, 𝑙2, 𝑚 − 1) (10.31)
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To see why this is the case, we first note that we can form pairs of edges in Region 𝐼, each of which
yields the same sublattice to select the next edge from, as is illustrated in Figure 10.34.

Figure 10.34: Two examples of pairs of edges (in green) that allow one to choose the next edge in the same sublattice (in purple).

Therefore, we see that for each vertex of the lattice in Region 𝐼, there are two edges that allow us to
select the next qubit from the same sublattice. This explains the term 2 in front of the expression.

Moreover, we see that what defines these sublattices is their top right point, which is also the vertex in
which the two edges that form a pair coincide:

Figure 10.35: The vertex in which the pairs of edges (green) coincide is also the top right corner of the sublattice (in purple)
within which one can choose the next qubit

Hence, by indexing the vertices on the lattice, where we take the bottom left vertex to be (1, 1), we see
that for each vertex (𝑙1, 𝑙2) where 1 ≤ 𝑙𝑖 ≤ 𝐿𝑖 − 1, there are two edges that allow us to choose the next
edge in a 𝑙1 by 𝑙2 sublattice, which explains the rest of the equation.

Finally, we have to prove the expression for 𝐴(𝐿1, 𝐿2, 1). But this is just the number of edges on an 𝐿1
by 𝐿2 lattice, which is well-known to satisfy the expression given. Hence, we are done.

We now return to our original problem of calculating 𝑁(𝑛ℱ , 𝑘). We claim that the following holds:

𝑁(𝑛ℬ, 𝑘) =
𝑛ℬ
∑
𝐿=1

𝐴 (𝐿, 𝑘 + 1, (𝑛𝐵 + 𝑘)/2 − 1) +
𝑛ℬ
∑
𝐿′=1

𝐴 (𝐿′, 𝑘, (𝑛𝐵 + 𝑘)/2 − 1) (10.32)

To understand this equation, we turn back to the sections of the lattice on which we choose the top
rightmost edge. On these sections, the contribution of the vertical edges is given by the first sum in our
proposed equation, whereas the contribution of the horizontal edges is given by the second sum.

We argue why this is the case. Firstly, note that by selecting the topmost possible horizontal edge as
the top right qubit, one can choose the next edge in an 𝑛ℬ by 𝑘-sized lattice. Similarly, choosing the
topmost possible vertical edge (which is the twisted edge) allows one to choose the next edge in an 𝑛ℬ
by 𝑘 + 1 sized lattice. Choosing lower possible horizontal edges allows one to choose the next qubit
in an 𝐿 by 𝑘-sized lattice for 1 ≤ 𝐿 ≤ 𝑛ℬ, and, similarly, choosing a lower possible vertical edge as the
first qubit allows one to choose the next qubit from an 𝐿 by 𝑘 + 1-sized lattice. Two examples of this
are given in Figure 10.36.
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x

x

Figure 10.36: Choosing the top right qubit (in orange) to lie on a horizontal or a vertical edge determines whether the sublattice
from which one can choose the next qubit will have width 𝑘 or 𝑘 + 1 (here: 𝑘 = 2).

Lastly, we note that as the top right qubit is already fixed in this procedure, one can choose one less
qubit than the weight of the error string, which is (𝑛ℬ + 𝑘)/2, and as such, the third argument of the
functions is (𝑛ℬ + 𝑘)/2 − 1.

We have thus found a way to calculate the exact number of minimum weight error strings that lie on
a minimum weight loop. Therefore, if we approximate the logical error rate of the twisted toric code in
the low 𝑝 region by only counting the contribution of such errors, we find that we can approximate the
logical error rate as follows:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑘, 𝑝) ≃ (1 − 𝑝)𝑛 ⋅ Ωℬ (
𝑛ℬ + 𝑘

2 , 𝑘) ⋅ ( 𝑝
1 − 𝑝)

𝑛ℬ+𝑘
2

(10.33)

= 𝑛ℱ ⋅ (1 − 𝑝)𝑛
2 ⋅ 𝑁 (𝑛ℬ, 𝑘) ⋅ (

𝑝
1 − 𝑝)

𝑛ℬ+𝑘
2

(10.34)

= 𝑛ℱ ⋅ (1 − 𝑝)𝑛
2 ⋅

𝑛ℬ
∑
𝐿=1

(𝐴 (𝐿, 𝑘 + 1, 𝑛ℬ + 𝑘
2 − 1) + 𝐴(𝐿, 𝑘, 𝑛ℬ + 𝑘

2 − 1)) ⋅ ( 𝑝
1 − 𝑝)

𝑛ℬ+𝑘
2

(10.35)

Having finally arrived at this equation, we can now compare it with our numerical approximations. We
do so in Figure 10.37 below.
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Figure 10.37: The logical error rate as a function of the physical error rate for the twisted toric code defined on a 4 by 8 lattice
with a twist of 𝑘 = 2, along with the analytically derived approximation for the logical error rate derived above. The minimum
distance of this code is 𝑑 = 6. These simulations were performed by determining the decoding success rate for a total of 500,000
randomly drawn samples at each of the physical error rates.

At first glance, the approximation seems to perform well for physical error rates 𝑝 < 0.5%, although it
always underestimates the logical error rate (as one would expect). We expect this approximation to
converge to the actual logical error rate as 𝑝 converges to zero. To test this, we can zoom in on the
domain 𝑝 < 0.5%. We plot these results on a logarithmic scale in Figure 10.38.
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Figure 10.38: The logical error rate as a function of the physical error rate for the twisted toric code defined on a 4 by 8 lattice with
a twist of 𝑘 = 2, along with the analytically derived approximation for the logical error rate derived above plotted on a logarithmic
scale. The minimum distance of this code is 𝑑 = 6. These simulations were performed by determining the decoding success
rate for a total of 5,000,000 randomly drawn samples at each of the physical error rates.

We see that our approximation seems to perform quite well in this regime, although we would need to
perform more simulations at a higher sampling rate to confirm this. Unfortunately, however, this too lies
beyond the possibilities with our current computational resources.

10.6. Reflection on the Analysis
Although we used our analytically derived approximations to explain the scaling of the twisted toric
code for our specific choice of parameters (𝑛ℬ = 4, 𝑛ℱ = 8, 𝑘 = 0, 2), these approximations hold in full
generality. We can thus use them to compare the relative asymptotic scaling of the logical error rate of
the twisted toric code and the untwisted toric code on an arbitrary lattice. To this end, let us consider
the relative scaling of the contributions of the minimum weight errors:

𝑃(𝑛ℱ , 𝑛ℬ, 𝑘, 𝑝)/𝑃(𝑛ℱ , 𝑛ℬ, 0, 𝑝) ≃
Ωℬ (

𝑛ℬ+𝑘
2

, 𝑘)

Ωℬ (
𝑛ℬ
2
, 0)

⋅ ( 𝑝
1 − 𝑝)

𝑘/2
= 𝒪 (( 𝑝

1 − 𝑝)
𝑘/2
) → 0 (10.36)

Hence, we conclude that, although the entropic term is larger for the twisted toric code than for the
untwisted one, this does not compensate for the energetic difference in the low 𝑝 limit. That is to say,
the twisted toric code on a non-square lattice always outperforms the untwisted toric code defined on
the same lattice as 𝑝 ↓ 0.

However, we note that the fact that the entropic contribution of the minimum weight error strings is
larger for the twisted toric code implies that there is some value for 𝑝 for which the entropic difference
become larger than the energetic difference, that is, for which the contribution to the logical error rate
due to the minimum weight strings is actually larger for the twisted toric code than for the untwisted
toric code. Yet, at or above this value for 𝑝, the contributions due to other, higher weight error strings
can no longer be neglected, and hence, we cannot draw any conclusions in full generality based on
our analysis alone. For future research, we suggest that this be explored by generalising the analytical
derivations presented here such that they can be used to quantify the contributions of higher weight
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error strings to the logical error rate as well. We note that a first step in this direction would be to find
an explicit expression for the number of minimum weight error strings that cannot be corrected by our
decoder.

Lastly, we recall that the threshold value of the regular toric code, i.e. the lowest value of the physical
error rate at which higher distance codes make more logical errors instead of fewer (see Figure 10.4), is
well-known: in [DKLP02], an analytical approach to the question of determining this threshold is taken
by interpreting the toric code in terms of a statistical mechanical model. In Figure 10.15, we see that our
twisted toric code, too, seems to admit some threshold value. Moreover, given that we can also map
the twisted toric code onto a statistical model, we speculate that the threshold can be determined by an
argument along the lines of the argument presented in [DKLP02], and leave this, too, as a suggestion
for future researchers to explore.



Discussion and Conclusion
Various product constructions for CSS codes have been defined and used in the search for a family of
good qLDPC codes. In this thesis, we presented an overview of various homology theories, and used
them to understand the different product code constructions in the literature and to analyse these. As
our work was divided into three parts, let us consider these parts one by one to discuss and conclude
our work and our findings.

In Part I, we provided an overview of the theory of singular homology and, more generally, of homology
of chain complexes over vector spaces, and of three product code constructions that can be interpreted
as the tensor product of two chain complexes: the hypergraph product from [TZ09], the EKZ product
from [EKZ20], and their generalisation as presented in [ZP19]. In contrast to the original paper [TZ09],
we determined an analytic expression for the number of encoded qubits 𝑘, the distance 𝑑 and the weight
𝑤 of the first two of these constructions without making any reference to their Tanner graph structure
but rather in purely linear algebraic terms.

In Part II of this thesis, we introduced the theory of homology over ring modules. Next, we introduced
the lifted product construction. While the authors took an algebraic approach to these constructions
in their work [PK22b, PK22a], we took a homological approach to these codes instead by interpreting
the construction as taking the tensor product of modules of a unital, associative and commutative 𝔽2-
algebra, ℛ. While the authors were unable to find a general expression for the number of encoded
qubits, 𝑘, of their construction, we derived a Künneth formula for the tensor product of these codes that
allowed us to relate the homology of the product code to the ℛ-tensor product of the homology groups
of the individual codes. Lastly, by restricting our attention to the case of a group algebra ℛ ∶= 𝔽2𝐺,
we were able to relate the ℛ-tensor product of ℛ-modules to their 𝔽2-tensor product, namely as the
𝐺-coinvariants of the latter. As such, we were able to provide an expression for the number of encoded
qubits in terms of the dimension of the codes that one would obtain by simply applying the regular
hypergraph product, and the dimension of the subspaces of the tensor product space on which the
𝐺-action is non-trivial.

In Part III of the thesis, we first introduced the theory of covering spaces, of fibre bundles, of the ho-
mology with local coefficients, and lastly, of spectral sequences. Afterwards, we posed the question
of how one could proceed with calculating the homology of fibre bundles. We gave an exposition of
three techniques and performed calculations for a generalisation of the Möbius strip: by considering
the tensor product complex of the base space and the fibre, but introducing a twist into the differential,
where the twist is derived from the transition functions or, if the base admits a universal cover, from
the action of the fundamental group of the base space on the fibre. Next, we saw how, using just the
transition functions, one could use the Mayer-Vietoris sequence to calculate the homology. Lastly, we
saw how one could use the Serre spectral sequence for this purpose as well.

From the discussion of the homology of fibre bundles, we could finally make the mathematical moti-
vation of the fibre bundle products and balanced product explicit: by taking the base space to be a
compact CW complex ℬ with just 0 and 1-cells admitting a universal cover ̃ℬ, the fibre bundle product
of the cellular complex associated to this code with the cellular complex of some other space ℱ could
be interpreted as determining a cellular complex for the fibre bundle with fibre ℱ and base space ℬ,
where the twist 𝜑 represented the 𝜋1(ℬ)-action on the fibre one obtains in the associated bundle. As
such, we see that this construction mirrors our first approach towards calculating the homology of the
fibre bundle, which was based on introducing a twist in the differential of the tensor product complex
of the base space and the fibre. In the same vein, we saw that we could interpret the balanced prod-
uct of the complex ̃𝐵 and ℱ as simply constructing the chain complex belonging to the total space of
the principal 𝜋1(ℬ)-bundle associated to the fibre bundle. These considerations allowed us to do two
things: firstly, they allowed us to determine the number of encoded qubits of the fibre bundle product of
two codes in a novel manner, given that they arise as cellulations of the base and fibre space that we
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considered hitherto. Secondly, this allowed us to relate these two product code constructions, again
given that the codes in consideration satisfy the properties outlined above. We note that this last result
was (somewhat) too strict: as one can bijectively associate a subgroup of the fundamental group of
the base space to each of its covers, the balanced product codes that derive from applying the Borel
construction to different covering spaces of the same base space correspond to the same fibre bundle
code.

Finally, we argued that all lifted product codes could be interpreted as balanced product codes, at least,
as long as one assumes that the abelian group forming the basis of the group algebra is of finite order.
Conversely, every balanced product construction with the action of an abelian group of finite order is
a lifted product code. As such, we see that we can use these results to relate fibre bundle products to
lifted product codes, and moreover, we see that this analysis implies that the balanced product code
construction is of interest only when considering non-abelian group actions or actions of infinite groups.

Having considered these constructions, we proceeded by comparing the performance of the twisted
toric code to that of the regular, untwisted toric code. While applying a twist does not alter the rate of
the code, we did see that the minimum distance of the twisted toric code was altered due to the twist,
provided that the code at hand was implemented on a non-square lattice. We determined an explicit
expression for the distance of the twisted toric code, and identified the domains where the twist max-
imised the minimum distance. We verified these results using numerical simulations.

Afterwards, we proceeded to analyse the scaling of the logical error rate of these twisted toric codes.
We implemented the PyMatching decoder for this code and used it to perform simulations that allowed
us to compare the scaling of logical error rates. We saw that, when implemented on a square lattice,
the twisted toric code performed better than the untwisted toric code. To understand why this is the
case, we turned to analytical methods. While for the untwisted toric code the scaling of the logical error
rate at low values of the physical error rate has already been explained in [BBKM19], we generalised
their results by deriving an exact expression for the number of minimum weight error strings that cause
a logical error to occur for the twisted toric code, and as such derived an approximation for the logical
error rate of such codes for low values of the physical error rate. We verified the validity of these results
by comparing them with our numerical study.

We suggested two possible avenues for further research. Firstly, we believe that it is worthwhile to
extend our analysis by taking into account the contributions of higher weight error strings to the logical
error rate as well, as this would allow us to better understand the scaling of the logical error rate of the
twisted toric codes. Due to computational limitations, we were unable to extend our numerical simula-
tions to larger toric codes, and as such, were also unable to study the scaling of the logical error rate
as a function of the twist numerically. With better analytical methods, however, one would hope to be
able to do so. A necessary step in this regard, however, is to find an explicit expression for the number
of uncorrectable minimum weight error strings, as the implicit expression that we have derived makes
it hard to analyse and compare the effects of increasing the twist.

Secondly, we pointed towards the fact that the twisted toric codes, much like the regular toric code, ap-
peared to possess a threshold value for the logical error rate. The threshold of the toric code has been
analysed by mapping the toric code to a statistical mechanical model [DKLP02]. As the twisted toric
code can be interpreted using a similar statistical model, we speculated that the arguments presented
in [DKLP02] could be extended in order to determine the critical behaviour of the twisted toric code.

Finally, we take a step back and make some more general comments on the state of affairs. Firstly,
we would like to raise the suggestion for another product code construction: one could choose to twist
not just the fibre complex, but also to twist the base complex. Doing so in the simple case of the toric
code, this approach seems to yield a different code than the twisted toric code we considered in our
work. It would be interesting to consider how such an additional twist would alter the performance of
the code even further, and we speculate whether this construction could be used to at least improve
upon the distance scaling of the codes constructed in [HHO21].
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Secondly, we note that although the families of codes that were constructed in the literature all have
the advantage of requiring a bounded number of checks per qubit and a bounded number of qubits
involved in each check, and, at least for asymptotically good codes constructed in [PK22a], they are
good in the sense of having a favourable scaling of the distance and the rate, one ought to consider other
factors as well to determine the usefulness of these codes. For example, three of the useful properties
of the surface code are the locality of the checks involved, the fact that the code can be embedded
on a planar surface, and the existence of an efficient decoder, e.g. decoders using minimum weight
perfect matching. In contrast, the asymptotically good codes constructed in [PK22a] have recently
been shown to be interpretable as part of a tessellation of an 11-dimensional manifold, and as such,
such codes are in no way guaranteed to be implementable on a planar surface. Next to that, although
the qLDPC constructed have low weight, it is also not at all guaranteed that the checks involved can
be implemented in a local manner. More generally, with all the constructions considered (with the
exception of the balanced product construction) we were able to obtain their results using random
code construction. It would therefore be interesting to consider whether these methods can be used to
devise an explicit class of (asymptotically) good qLDPC codes instead.



A
On Abelian Categories

In this section, we provide an overview of the theory of abelian categories, which is mostly based on
[Wei94, Rie16].

We work up towards the definition of abelian categories by slowly building up their defining structure.
To this end, we start off with a more primitive type of categories: Ab-category. Generalising our scope
to such categories ensures that we preserve the structure of the boundary maps (i.e. the ability to add
and compose them unambiguously).

Definition A.1 (Ab-category). A category 𝒜 is called an Ab-category if ∀𝐴, 𝐵 ∈ 𝒜: Hom𝒜(𝐴, 𝐵) pos-
sesses an abelian group structure such that composition distributes over addition.

Given that the Hom-sets of Ab-categories posses an abelian group structure, one is naturally inclined
to consider structure preserving maps between these Hom-sets. We therefore introduce the following
notion:

Definition A.2. A functor 𝐹 ∶ 𝒜 → ℬ between Ab-categories is called additive if the induced map
Hom𝒜(𝐴, 𝐵) → Homℬ(𝐹(𝐴), 𝐹(𝐵)) is a group homomorphism for all 𝐴, 𝐵 ∈ 𝒜.

Taking a small side track, we note that the concept of a Cartesian product of sets and a direct sum of
groups can be captured categorically in two dual notions:

Definition A.3 (product). Let 𝐴, 𝐵 ∈ 𝒜. The product of 𝐴 and 𝐵 is an object 𝐴×𝐵 ∈ 𝒜 together with two
projection maps 𝜋𝐴 ∶ 𝐴 × 𝐵 → 𝐴 and 𝜋𝐵 ∶ 𝐴 × 𝐵 → 𝐵 that possesses the following universal property:

𝐴

𝑇 𝐴 × 𝐵

𝐵

𝜋𝐴

𝜋𝐵

∃!

The coproduct is the categorical dual notion of a product. In the category of chain complexes over vector
spaces, direct product and the direct sum are the product and coproduct, respectively. We would like
to retain this structure (cf. the additivity Eilenberg-Steenrod axiom), and moreover, we would like these
two structures to coincide. To this end, we restrict our attention to additive categories:

Definition A.4 (additive category). An Ab-category 𝒜 is called an additive category if ∀𝐴, 𝐵 ∈ 𝒜, the
product 𝐴 × 𝐵 exists, moreover it possesses a zero object.

Lastly, in order to define a homology functor on such a category, we need to be able to speak of images
and kernels.
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Definition A.5. Given an additive category 𝒜, a kernel of a morphism 𝑓 ∶ 𝐵 → 𝐶,ker (𝑓), is a map
𝑖 ∶ 𝐴 → 𝐵 that is universal with respect to the property that 𝑓 ∘ 𝑖 = 0. A cokernel is the categorical dual
of a kernel. Furthermore, a map 𝑖 ∶ 𝐴 → 𝐵 is monic if for every map 𝑔 ∶ 𝐴 → 𝐴′: 𝑔 ∘ 𝑖 = 0 implies that
𝑔 = 0. An epi map is categorically dual to a monic map.

This, finally, brings us to the definition of an abelian category.

Definition A.6. A category 𝒜 is called an abelian category if it is an additive category and moreover
every map in 𝒜 has a kernel and a cokernel, while for every monic map 𝑖: 𝑖 = ker (coker(𝑖)) and for
every epi map 𝑒, we have 𝑒 = coker(ker (𝑒)).

One can now generalise the notions of a chain complex, of a chain complex morphism, and of an exact
sequence to abelian categories. Similarly, one can define a homology functor ℋ∗ ∶ Ch(Ab) → Ab in
precisely the same manner, that is, by defining:

ℋ𝑛(𝒞) = ker (𝜕𝑛) /Im (𝜕𝑛+1) (A.1)

An example of an abelian category is the category ℛ−Mod. Surprisingly enough, the converse state-
ment is also true — at least, for small abelian categories: every small abelian category can be embed-
ded in the category of ring modules in a sense that we will now make precise:

Theorem A.1 (Freyd-Mitchell Embedding Theorem). Let 𝒜 be a small abelian category. Then there
exists a ring ℛ along with a functor 𝐹 ∶ 𝒜 → ℛ − Mod that is fully faithful such that Hom𝒜(𝐴, 𝐵) ≃
Homℛ−Mod(𝐹(𝐴), 𝐹(𝐵)), i.e. that embeds 𝒜 as a full subcategory of ℛ −Mod.

The proof of this theorem follows from Yoneda’s lemma, but is somewhat involved and hence omitted.
Nevertheless, this theorem implies that it suffices to consider chain complexes of modules over rings
to understand chain complexes of (small) abelian categories.
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B
Python Scripts for Numerical Simulations
The Python scripts used to obtain the results in Chapter 10 are presented here.

B.1. Simulations and the Logical Error Rate
1 ”””
2 Author: Stephan M. Loor (QuTech/TU Delft)
3 Code partly based on the documentation on MWPM provided by Oscar Higgott, see: https://

pymatching.readthedocs.io/en/latest/toric-code-example.html.
4 ”””
5

6 import numpy as np
7 import math
8 import sys
9 np.set_printoptions(threshold=sys.maxsize)

10 import matplotlib
11 import itertools
12 import matplotlib.pyplot as plt
13 import os
14 from scipy.sparse import hstack, kron, eye, csr_matrix, block_diag, vstack
15 from pymatching import Matching
16

17 matplotlib.use(”pgf”)
18

19 plt.style.use(’plot_style.txt’)
20

21 matplotlib.rcParams.update({
22 ”pgf.texsystem”: ”pdflatex”,
23 ’font.family’: ’serif’,
24 ’text.usetex’: True,
25 ’pgf.rcfonts’: False,
26 })
27

28 matplotlib.rcParams[’mathtext.fontset’] = ’stix’
29 matplotlib.rcParams[’font.family’] = ’STIXGeneral’
30

31 def repetition_code(n):
32 ”””
33 INPUT: n, integer
34 OUTPUT: csr_matrix
35 Produces the parity check matrix of a repetition code mapping onto an n-bit space.
36 ”””
37 row_ind, col_ind = zip(*((i, j) for i in range(n) for j in (i, (i+1)%n)))
38 data = np.ones(2*n, dtype=np.uint8)
39 return csr_matrix((data, (row_ind, col_ind)))
40

41 def permutation_matrix(n,k):
42 ”””
43 n x n Permutation matrix for k-shifts.
44 ”””
45 row_ind, col_ind = zip(*((i, j) for i in range(n) for j in ((i-k)%n,)))
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46 data = np.ones(n, dtype=np.uint8)
47 return csr_matrix((data, (row_ind, col_ind)))
48

49 def toric_code_twisted_X_stabilisers(L1,L2,twist_shift):
50 ”””
51 Sparse check matrix for the X stabilisers of a toric code with
52 lattice size L1xL2, constructed as the hypergraph product of
53 two repetition codes.
54 ”””
55 Hr1 = repetition_code(L1)
56 Hr2 = repetition_code(L2)
57 upper_bdry = csr_matrix(([1],([Hr1.shape[0]-1],[0])),shape=(Hr1.shape[0],Hr1.shape[1]))
58 twisted_mat = (kron((Hr1+upper_bdry),eye(Hr2.shape[1])) + kron(upper_bdry,

permutation_matrix(Hr2.shape[1],twist_shift)))
59 H = hstack(
60 [twisted_mat, kron(eye(Hr1.shape[0]), Hr2.T)],
61 dtype=np.uint8
62 )
63 H.data = H.data % 2
64 H.eliminate_zeros()
65

66 return csr_matrix(H)
67

68 def toric_code_twisted_Z_stabilisers(L1,L2,twist_shift):
69 Hr1 = repetition_code(L1)
70 Hr2 = repetition_code(L2)
71 upper_bdry = csr_matrix(([1],([Hr1.shape[0]-1],[0])),shape=(Hr1.shape[0],Hr1.shape[1]))
72 twisted_mat = (kron((Hr1+upper_bdry),eye(Hr2.shape[1])) + kron(upper_bdry,

permutation_matrix(Hr2.shape[1],twist_shift)))
73 H = hstack(
74 [kron(eye(Hr1.shape[0]), Hr2.T).T,twisted_mat.T],
75 dtype=np.uint8
76 )
77 H.data = H.data % 2
78 H.eliminate_zeros()
79 return csr_matrix(H)
80

81 def toric_code_twisted_X_logicals(L1,L2,twist_shift):
82 ”””
83 Sparse binary matrix with each row corresponding to an X logical operator
84 of a toric code with lattice size L1 x L2.
85 ”””
86 H1_L1 = csr_matrix(([1], ([0],[1])), shape=(1,L1), dtype=np.uint8)
87 H1_L2 = csr_matrix(([1], ([0],[0])), shape=(1,L2), dtype=np.uint8)
88

89 H0_L1 = csr_matrix(np.ones((1, L1), dtype=np.uint8))
90 H0_L2 = csr_matrix(np.ones((1, L2), dtype=np.uint8))
91

92 if (twist_shift % L2) == 0:
93 H_twist_hor = np.zeros((1,L1*L2))
94 elif (twist_shift % L2) <= L2 - (twist_shift % L2):
95 row_ind_hor, col_ind_hor = zip(*((0, j) for j in (np.arange((L2-twist_shift+1)%L2,L2

+1) % L2)))
96 data_hor = np.ones(len(col_ind_hor))
97 H_twist_hor = csr_matrix((data_hor,(row_ind_hor,col_ind_hor)),shape = (1,L1*L2))
98 else:
99 row_ind_hor, col_ind_hor = zip(*((0, j) for j in np.arange(1,(L2-twist_shift+1)%L2) )

)
100 data_hor = np.ones(len(col_ind_hor))
101 H_twist_hor = csr_matrix((data_hor,(row_ind_hor,col_ind_hor)),shape = (1,L1*L2))
102

103 H_twist = hstack([H_twist_hor, kron(H0_L1, H1_L2)])
104

105 x_logicals = vstack([hstack([kron(H1_L1, H0_L2), csr_matrix(([0]),shape=(1,L1*L2))]),
H_twist])

106 x_logicals.data = x_logicals.data % 2
107 x_logicals.eliminate_zeros()
108

109 return csr_matrix(x_logicals)
110

111 def toric_code_twisted_Z_logicals(L1,L2,twist_shift):



B.1. Simulations and the Logical Error Rate 123

112

113 H1_L1 = csr_matrix(([1], ([0],[0])), shape=(1,L1), dtype=np.uint8)
114 H1_L2 = csr_matrix(([1], ([0],[0])), shape=(1,L2), dtype=np.uint8)
115

116 H0_L1 = csr_matrix(np.ones((1, L1), dtype=np.uint8))
117 H0_L2 = csr_matrix(np.ones((1, L2), dtype=np.uint8))
118

119 if (twist_shift % L2) == 0:
120 H_twist_hor = np.zeros((1,L1*L2))
121 elif (twist_shift % L2) <= L2 - (twist_shift % L2):
122 row_ind_hor, col_ind_hor = zip(*((0, j) for j in range(L1*L2 - L2,L1*L2 - L2 + (

twist_shift % L2))))
123 data_hor = np.ones(len(col_ind_hor))
124 H_twist_hor = csr_matrix((data_hor,(row_ind_hor,col_ind_hor)),shape = (1,L1*L2))
125 else:
126 row_ind_hor, col_ind_hor = zip(*((0, j) for j in range(L1*L2 - (L2 - (twist_shift %

L2)),L1*L2)))
127 data_hor = np.ones(len(col_ind_hor))
128 H_twist_hor = csr_matrix((data_hor,(row_ind_hor,col_ind_hor)),shape = (1,L1*L2))
129

130 H_twist = hstack([kron(H0_L1, H1_L2),H_twist_hor])
131 z_logicals = vstack([hstack([csr_matrix(([0]),shape=(1,L1*L2)),kron(H1_L1, H0_L2)]),

H_twist])
132

133 z_logicals.data = z_logicals.data % 2
134 z_logicals.eliminate_zeros()
135 return csr_matrix(z_logicals)
136

137

138 def num_decoding_failures(H, logicals, p, num_trials):
139 matching = Matching(H)
140 num_errors = 0
141 noise_list = []
142 for trial in range(num_trials):
143 noise = np.random.binomial(1, p, H.shape[1])
144 syndrome = H@noise % 2
145 correction = matching.decode(syndrome, num_neighbours=None)
146 error = (noise + correction) % 2
147 if np.any(H@error.T % 2): ##check wether we really end up back in code space
148 print(f”Decoding mapped outside of the code space: the noise term is {noise}.\n

The associated syndrome is {syndrome}. \n The induced error is {error}.”)
149 print((H@error.T).toarray() % 2)
150

151 if np.any(error@logicals.T % 2):
152 num_errors += 1
153 noise_list.append(np.sum(noise))
154 return num_errors
155

156

157 def A(l1,l2,w):
158 if l2 < 1 or l1 < 1:
159 return 0
160

161 if w > 1:
162 x = 0
163

164 ### Interior Points (Region I)
165 for i in range(1,l1):
166 for j in range(1,l2):
167 x+= 2*A(i,j,w-1)
168

169 ### Boundary Points
170 ### Region III
171 for i in range(1,l1):
172 x+= A(i,l2,w-1)
173

174 ### Region II
175 for j in range(1,l2):
176 x += A(l1,j,w-1)
177

178 return x
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179

180 if w == 1:
181 return 2*l1*l2 - l1 - l2
182

183 def N(L1,k):
184 w = int((L1 + k)/2)
185 N = 0
186 for i in range(1,L1+1):
187 N += A(i,k+1,w-1)
188 N += A(i,k,w-1)
189 return N
190

191 def probability_errors_twisted(L1,L2,p,twist):
192 n = 2*L1*L2
193 num_loops = 1/2*L2*N(L1,twist)
194 prob = ((1-p)**n) * num_loops * (p/(1-p))**((L1+twist)/2)
195 return prob
196

197 def probability_errors_untwisted(L1,L2,p):
198 n = 2*L1*L2
199 num_loops = 1/2*L2*math.comb(L1,int(L1/2))
200 prob = ((1-p)**n) * num_loops * (p/(1-p))**(L1/2)
201 return prob
202

203

204 def test_logicals(L1_range,L2_range):
205 no_Hx_errors = True
206 no_Hz_errors = True
207

208 for L1 in L1_range:
209 for L2 in L2_range:
210 for shift in np.arange(0,L1*L2):
211 print(f”Testing for for L1 = {L1} L2 = {L2} k = {shift} ”)
212

213 Hz = toric_code_twisted_Z_stabilisers(L1,L2,shift)
214 logX = toric_code_twisted_X_logicals(L1,L2,shift)
215

216 for i in range(0,logX.shape[0]):
217 row = logX.getrow(i)
218 synd = (Hz@row.T).toarray() % 2
219 if int(np.sum(synd)) != 0:
220 print(f”There is an imcompatibility between the X-logicals and Z-

stabilisers for L1 = {L1} L2 = {L2} k = {shift} ”)
221 no_Hz_errors = False
222 Hx = toric_code_twisted_X_stabilisers(L1,L2,shift)
223 logZ = toric_code_twisted_Z_logicals(L1,L2,shift)
224

225 for i in range(0,logZ.shape[0]):
226 row = logZ.getrow(i)
227 synd = (Hx@row.T).toarray() % 2
228 if int(np.sum(synd)) != 0:
229 print(f”There is an imcompatibility between the Z-logicals and X-

stabilisers for L1 = {L1} L2 = {L2} k = {shift} ”)
230 no_Hx_errors = False
231

232 if no_Hx_errors:
233 print(f”No incompatibility detected between the Z-logicals and X-stabilisers!”)
234 if no_Hz_errors:
235 print(f”No incompatibility detected between the X-logicals and Z-stabilisers!”)
236

237

238 def main_one_twist(num_trials,L_init,L_fin,L_step,L1_scale,L2_scale,p_init,p_fin,p_steps,
twist_shift):

239 ”””
240 INPUT:
241 OUTPUT:
242 ”””
243 Ls = range(L_init,L_fin,L_step)
244 ps = np.linspace(p_init,p_fin,p_steps)
245

246 np.random.seed(2)
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247 log_errors_all_L = []
248 for L in Ls:
249 L1 = L1_scale*L
250 L2 = L2_scale*L
251 print(f”Simulating L1={L1}, L2={L2}...”)
252 Hx = toric_code_twisted_X_stabilisers(L1,L2,twist_shift)
253 logX = toric_code_twisted_X_logicals(L1,L2,twist_shift)
254 log_errors = []
255 for p in ps:
256 print(f”Simulating p={p}...”)
257 num_errors = num_decoding_failures(Hx, logX, p, num_trials)
258 log_errors.append(num_errors/num_trials)
259 log_errors_all_L.append(np.array(log_errors))
260

261 plot_folder_name = f”./Plots{num_trials}”
262 if not os.path.isdir(plot_folder_name):
263 os.makedirs(plot_folder_name)
264

265 plt.figure()
266 for L, logical_errors in zip(Ls, log_errors_all_L):
267 L1 = L1_scale*L
268 L2 = L2_scale*L
269 std_err = (logical_errors*(1-logical_errors)/num_trials)**0.5
270 plt.errorbar(ps, logical_errors, yerr=std_err, label=r”$L_1$ = {}, $L_2$ = {}”.format

(L1,L2))
271 plt.title(f”Shift: $k = $ {twist_shift}”)
272 plt.xlabel(”Physical error rate”)
273 plt.ylabel(”Logical error rate”)
274 plt.legend(loc=2)
275 plt.savefig(f”{plot_folder_name}/L1init={L_init}Shift={twist_shift}L1scale={L1_scale}

L2scale={L2_scale}.pgf”)
276 plt.show()
277

278 def main_one_size(num_trials,L_lattice,L1_scale,L2_scale,p_init,p_fin,p_steps,shift_array,
FITS=False):

279 ps = np.linspace(p_init,p_fin,p_steps)
280 np.random.seed(2)
281 L1 = int(L1_scale*L_lattice)
282 L2 = int(L2_scale*L_lattice)
283 print(f”L1 = {L1}, L2 = {L2}...”)
284 log_errors_all_shifts = []
285 log_twists = []
286

287 for twist_shift in shift_array:
288 print(f”Simulating shift={twist_shift}...”)
289 Hx = toric_code_twisted_X_stabilisers(L1,L2,twist_shift)
290 logX = toric_code_twisted_X_logicals(L1,L2,twist_shift)
291 log_errors = []
292

293 for p in ps:
294 print(f”Simulating p={p}...”)
295 num_errors = num_decoding_failures(Hx, logX, p, num_trials)
296 log_errors.append(num_errors/num_trials)
297 log_errors_all_shifts.append(np.array(log_errors))
298 log_twists.append(twist_shift)
299

300

301 plot_folder_name = f”./Plots{num_trials}”
302 if not os.path.isdir(plot_folder_name):
303 os.makedirs(plot_folder_name)
304

305 plt.figure()
306 colors_lst = [”b”,”g”,”r”,”y”,”c”,”m”,”b”,”g”]
307 for twist_shift, logical_errors in zip(log_twists, log_errors_all_shifts):
308 std_err = (logical_errors*(1-logical_errors)/num_trials)**0.5
309 plt.errorbar(ps, logical_errors, yerr=std_err, label=r”$k = $ {}”.format(twist_shift)

,c=colors_lst[twist_shift])
310 if FITS:
311 analytic_error_base_term = probability_errors_twisted(L1,L2,ps,twist_shift)
312 plt.plot(ps,analytic_error_base_term,ls=”:”,label=r”fit for $k = $ {}”.format(

twist_shift),c=colors_lst[twist_shift+1])



B.1. Simulations and the Logical Error Rate 126

313 plt.title(r”$n_{{\mathcal{{B}}}}$ = {}, $n_{{\mathcal{{F}}}}$ = {}”.format(L1,L2))
314 plt.xlabel(”Physical error rate”)
315 plt.ylabel(”Logical error rate”)
316

317 if LOGLOG:
318 plt.loglog(nonposx=’clip’, nonposy=’clip’)
319 plt.xlabel(r’$\log(p_{phys]})$’)
320 plt.ylabel(r’$\log(p_{log})$’)
321

322 plt.legend(loc=2)
323 if FITS:
324 plt.savefig(f”{plot_folder_name}/Shiftarray={shift_array}L={L_lattice}L1={L1}L2={L2}

Fitted.pgf”)
325 else:
326 plt.savefig(f”{plot_folder_name}/Shiftarray={shift_array}L={L_lattice}L1={L1}L2={L2}.

pgf”)
327 plt.show()
328

329

330 def main_multiple_twists_and_sizes(L1_L2_twist_array,num_trials,p_init,p_fin,p_steps):
331 ps = np.linspace(p_init,p_fin,p_steps)
332 np.random.seed(2)
333 log_errors_all_diffs = []
334 triple_lst = []
335 for triple in L1_L2_twist_array:
336 L1,L2,twist = triple
337 triple_lst.append(np.array((L1,L2,twist)))
338 print(f”L1 = {L1}, L2 = {L2}, k = {twist}...”)
339 Hx = toric_code_twisted_X_stabilisers(L1,L2,twist)
340 logX = toric_code_twisted_X_logicals(L1,L2,twist)
341 log_errors = []
342 for p in ps:
343 print(f”Simulating p={p}...”)
344 num_errors = num_decoding_failures(Hx, logX, p, num_trials)
345 log_errors.append(num_errors/num_trials)
346 log_errors_all_diffs.append(np.array(log_errors))
347

348 plt.figure()
349 colors_lst = [”b”,”g”,”r”,”y”,”c”,”m”,”b”,”g”]
350 for triple, logical_errors in zip(triple_lst,log_errors_all_diffs):
351 std_err = (logical_errors*(1-logical_errors)/num_trials)**0.5
352 if triple[1] == 6:
353 plt.errorbar(ps, logical_errors, yerr=std_err, label=r”$n_{{\mathcal{{B}}}} = $

{}, $n_{{\mathcal{{F}}}} = {}, k = {}$”.format(triple[0],triple[1],triple[2]),ls=”--”)
354 else:
355 plt.errorbar(ps, logical_errors, yerr=std_err, label=r”$n_{{\mathcal{{B}}}} = $

{}, $n_{{\mathcal{{F}}}} = {}, k = {}$”.format(triple[0],triple[1],triple[2]))
356 plt.xlabel(”Physical error rate”)
357 plt.ylabel(”Logical error rate”)
358 plt.legend(loc=2)
359 plot_folder_name = f”./Plots{num_trials}”
360 if not os.path.isdir(plot_folder_name):
361 os.makedirs(plot_folder_name)
362

363 plt.savefig(f”{plot_folder_name}/multiplot_toric_code.pgf”)
364 plt.show()
365

366 if __name__ == ”__main__”:
367

368 CHECK_DEFINITIONS = False
369 ONE_SIZE = False
370 ONE_TWIST = False
371 FITS = False
372 MULTI_SIZES_TWIST = True
373 LOGLOG = False
374

375 num_trials = 10000
376 p_init = 0.0001
377 p_fin = 0.02
378 p_steps = 20
379
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380 L1_scale = 1
381 L2_scale = 2
382

383

384 if CHECK_DEFINITIONS:
385 L1_range = np.arange(4,12)
386 L2_range = np.arange(4,12)
387 test_logicals(L1_range,L2_range)
388

389 if ONE_SIZE:
390 L_lattice = 4
391 shift_array = np.array([0,])
392 main_one_size(num_trials,L_lattice,L1_scale,L2_scale,p_init,p_fin,p_steps,shift_array

,FITS)
393

394 if ONE_TWIST:
395 L_init = 4
396 L_fin = 9
397 L_step = 2
398 twist_shift = 0
399 main_one_twist(num_trials,L_init,L_fin,L_step,L1_scale,L2_scale,p_init,p_fin,p_steps,

twist_shift)
400

401 if MULTI_SIZES_TWIST:
402 L1_L2_twist_array = [np.array((8,16,0)),np.array((8,16,2)),np.array((8,16,4))]
403 main_multiple_twists_and_sizes(L1_L2_twist_array,num_trials,p_init,p_fin,p_steps)

B.2. Numerical Verification of the Distance
1 import sys
2 import networkx as nx
3 import numpy as np
4 import matplotlib
5 import matplotlib.pyplot as plt
6 import pyximport; pyximport.install()
7 from flinalg import *
8 from scipy import sparse
9 from scipy.sparse import hstack, kron, eye, csr_matrix

10

11

12 matplotlib.use(”pgf”)
13

14 plt.style.use(’plot_style.txt’)
15

16 matplotlib.rcParams.update({
17 ”pgf.texsystem”: ”pdflatex”,
18 ’font.family’: ’serif’,
19 ’text.usetex’: True,
20 ’pgf.rcfonts’: False,
21 })
22

23 matplotlib.rcParams[’mathtext.fontset’] = ’stix’
24 matplotlib.rcParams[’font.family’] = ’STIXGeneral’
25

26

27

28 def get_coh1_reps(b1,b2):
29 ”””find representatives of basis of H^1”””
30 coB1ker = kernel(np.asarray(b2.T.todense()))
31 coB0im = np.asarray(b1.T.todense())
32 Q, W = quotient_basis(coB1ker, coB0im)
33 return np.asarray(Q)
34

35

36 def doubled_graph(G,chain):
37 ”””takes G and cuts all edges in the chain”””
38 ”””then pastes in a copy of G called H”””
39 VG = [(v,’G’) for v in G.nodes()]
40 EG = [((e[0],’G’),(e[1],’G’)) for e in G.edges()]
41 VH = [(v,’H’) for v in G.nodes()]
42 EH = [((e[0],’H’),(e[1],’H’)) for e in G.edges()]
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43

44 D = nx.Graph()
45 D.add_nodes_from(VG)
46 D.add_nodes_from(VH)
47 D.add_edges_from(EG)
48 D.add_edges_from(EH)
49

50 for e in chain:
51 D.add_edge((e[0],’G’),(e[1],’H’))
52 D.add_edge((e[0],’H’),(e[1],’G’))
53 D.remove_edge((e[0],’G’),(e[1],’G’))
54 D.remove_edge((e[0],’H’),(e[1],’H’))
55

56 return D
57

58

59 def vertex_path_to_1chain(l,bound1):
60 ”””
61 INPUT: list of vertices
62 OUTPUT: numpy array with support on edges of path
63 ”””
64 res = np.zeros(bound1.shape[0],dtype=’uint8’)
65 for u,v in zip(l[:-1],np.roll(l[:-1],-1)):
66 for i in range(bound1.shape[0]):
67 if bound1[i,v] and bound1[i,u]:
68 res[i] = 1
69 break
70 return res
71

72

73 def shortest_crossing(G,chain):
74 ”””
75 returns the shortest cycle in G which has odd support on chain
76 G : NetworkX graph
77 chain : list of edges of G
78 ”””
79 D = doubled_graph(G,chain)
80 ret = sys.maxsize
81 for v in G.nodes():
82 try:
83 pathlength = nx.shortest_path_length(D,source=(v,’G’),target=(v,’H’))
84 if pathlength < ret:
85 ret = pathlength
86 rep = nx.shortest_path(D,source=(v,’G’),target=(v,’H’))
87 except:
88 pass
89 assert ret < sys.maxsize
90 rep = [x[0] for x in rep]
91 return ret, rep
92

93

94 def systoles(b0,b1,b2):
95 ”””
96 INPUT: boundary operators as scipy sparse matrices
97 OUTPUT: weight and minimal cycle
98 ”””
99 edges = []

100 for i in range(b1.shape[0]):
101 v,w = b1.getrow(i).nonzero()[1]
102 edges.append((v,w))
103 G = nx.Graph()
104 G.add_edges_from(edges)
105

106 coh1_reps = get_coh1_reps(b1,b2)
107

108 ret = []
109 for j,c in enumerate(coh1_reps):
110 chain = []
111 for i in range(len(edges)):
112 if c[i]==1:
113 chain.append(edges[i])
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114 weight, rep = shortest_crossing(G,chain)
115 ret.append((weight,rep))
116 return ret
117

118

119 def cosystoles(b0,b1,b2):
120 cob0 = b1.T
121 cob1 = b2.T
122 cob2 = sparse.csr_matrix(np.ones((b2.shape[0],1),dtype=’uint8’))
123 return systoles(cob2,cob1,cob0)
124

125

126 def systole_lengths(b0,b1,b2):
127 systo = systoles(b0,b1,b2)
128 return [w for w,r in systo]
129

130

131 def cosystole_lengths(b0,b1,b2):
132 systo = cosystoles(b0,b1,b2)
133 return [w for w,r in systo]
134

135

136 ###From here on: written by SML
137

138 def repetition_code(n):
139 ”””
140 Parity check matrix of a repetition code with length n.
141 ”””
142 row_ind, col_ind = zip(*((i, j) for i in range(n) for j in (i, (i+1)%n)))
143 data = np.ones(2*n, dtype=np.uint8)
144 return csr_matrix((data, (row_ind, col_ind)))
145

146 def permutation_matrix(n,k):
147 ”””
148 n x n Permutation matrix for k-shifts.
149 ”””
150 row_ind, col_ind = zip(*((i, j) for i in range(n) for j in ((i-k)%n,)))
151 data = np.ones(n, dtype=np.uint8)
152 return csr_matrix((data, (row_ind, col_ind)))
153

154 def HX(L1,L2,twist_shift):
155 Hr1 = repetition_code(L1)
156 Hr2 = repetition_code(L2)
157 upper_bdry = csr_matrix(([1],([Hr1.shape[0]-1],[0])),shape=(Hr1.shape[0],Hr1.shape[1]))
158 twisted_mat = (kron((Hr1+upper_bdry),eye(Hr2.shape[1])) + kron(upper_bdry,

permutation_matrix(Hr2.shape[1],twist_shift)))
159 H = hstack(
160 [twisted_mat, kron(eye(Hr1.shape[0]), Hr2.T)],
161 dtype=np.uint8
162 )
163 H.data = H.data % 2
164 H.eliminate_zeros()
165 return csr_matrix(H)
166

167 def HZ(L1,L2,twist_shift):
168 Hr1 = repetition_code(L1)
169 Hr2 = repetition_code(L2)
170 upper_bdry = csr_matrix(([1],([Hr1.shape[0]-1],[0])),shape=(Hr1.shape[0],Hr1.shape[1]))
171 twisted_mat = (kron((Hr1+upper_bdry),eye(Hr2.shape[1])) + kron(upper_bdry,

permutation_matrix(Hr2.shape[1],twist_shift)))
172 H = hstack(
173 [kron(eye(Hr1.shape[0]), Hr2.T).T,twisted_mat.T],
174 dtype=np.uint8
175 )
176 H.data = H.data % 2
177 H.eliminate_zeros()
178 return csr_matrix(H)
179

180 def Plotter(L1,L2,twist_array):
181 L1_vals = []
182 L2_vals = []
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183 for twist in twist_array:
184 Hx = HX(L1,L2,twist)
185 Hz = HZ(L1,L2,twist)
186 w = systole_lengths(None,Hx.T,Hz)
187 L1_vals.append(w[0])
188 L2_vals.append(w[1])
189 plt.figure()
190 plt.plot(twist_array,L2_vals,”ro--”,label=r”$d_1$”)
191 plt.plot(twist_array,L1_vals,”bo--”,label=r”$d_2$”)
192

193 plt.title(r”$n_{{\mathcal{{B}}}}$ = {}, $n_{{\mathcal{{F}}}}$ = {}”.format(L1,L2))
194 plt.xlabel(r”$k$”)
195 plt.ylabel(r”$d$”)
196 plt.legend(loc=0)
197 plt.savefig(f”./L1={L1}L2={L2}shift={twist_array[-1]}.pgf”)
198 plt.show()
199

200

201 if __name__ == ”__main__”:
202 L1 = 4
203 L2 = 8
204 twist_array = range(0,2*max(L1,L2)+1,1)
205 Plotter(L1,L2,twist_array)
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