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We have extended the circuit theory of Andreev conductance@Phys. Rev. Lett.73, 1420~1994!# to diffusive
superconducting hybrid structures that contain an Aharonov-Bohm ring. The electrostatic potential distribution
in the system is predicted to be flux dependent with a period of the superconducting flux quantum
F05h/2e. When at least one tunnel barrier is present, the conductance of the system oscillates with the same
period.@S0163-1829~96!51126-4#

Normal-metal or semiconductor structures with supercon-
ducting contacts have enjoyed an increasing amount of atten-
tion in recent years. Particularly devices known as Andreev
interferometers have been in the focus of interest.1–4 The
electrical transport in Andreev interferometers depends on
the phase difference of two connected superconductors,
which is a clear manifestation of the coherent nature of
multiple Andreev reflection.5 In two recent publications6,7

two possible mechanisms were discussed to explain the
experiments of Petrashovet al.4 One of them due to electron-
electron interaction in the normal-metal region and the other
related to finite temperatures. This thermal effect was dis-
cussed previously by Volkovet al.8 Both mechanisms
cause the resistance of such systems to be phase dependent
with a period of 2p, in contrast to weak localization correc-
tions to the resistance, which are predicted to display ap
periodicity.9

In the present work we address a different mechanism that
causes an oscillatory resistance in hybrid circuits. This effect
does not depend on the phase difference between two super-
conducting terminals but is due to the presence of a magnetic
field. If a ring in the normal-metal part of the structure is
present, the voltage distribution and resistance is affected by
a magnetic flux through the ring. Recently, several experi-
ments along these lines have been performed.10 To study this
phenomenon in more detail, we will use a recently devel-
oped, easy-to-use circuit theory of Andreev conductance.3

With this theory it is possible to calculate the zero-
temperature conductance of diffusive hybrid systems, pro-
vided their size is small enough and the voltages applied are
small compared to the magnitude of the superconducting
gap. In this paper we extend the circuit theory of Ref. 3 to
account for the presence of Aharonov-Bohm loops. We pro-
ceed by discussing an ‘‘electroflux’’ effect which is in principle
present in every network that includes an Aharonov-Bohm
ring, but is most pronounced in a circuit consisting solely of
diffusive resistors. Although the conductance is in this case
independent of the applied flux, the electrostatic potential
distribution changes periodically with periodF05h/2e. The
oscillatory flux dependence of the conductance is computed
for a few experimentally relevant geometries which include
tunnel junctions.

We consider a diffusive normal-metal structure~with dif-
fusion constantD) connected to one or more superconduct-
ing terminals. The circuit theory of Ref. 3 holds for suffi-

ciently small systems:L!j or, equivalently, sufficiently
small temperatures and voltages,T,V!D,D/L2. Here
j5AD/T is the coherence length in the normal metal and
D is the magnitude of the superconducting gap. Finally we
assume that all superconducting terminals are biased at the
same voltage, which allows us to disregard nonstationary
Josephson-like effects.

The theory of Ref. 3 was derived using the nonequilib-
rium Green function technique, originally due to Keldysh11

and further developed for superconductivity by Larkin and
Ovchinnikov.12 The basic elements of the theory are the ad-
vanced and retarded Green functions, which determine the
energy spectrum of the quasiparticles, and the Keldysh-
Green function, which describes the filling of the spectrum
by extra quasiparticles. At zero temperature, the retarded
Green functionĜ5sxŝx1syŝy1szŝz , where ŝ are Pauli
matrices, can be represented by a real spectral vector
s5(sx ,sy ,sz). Due to the normalization of the Green
function,12 the spectral vector is also normalized:s251. The
boundary conditions ons ares5(0,0,1) at all normal termi-
nals and s5(cosf,sinf,0) at all superconducting ones,
wheref equals the macroscopic phase of the superconduct-
ing reservoir. It is thus possible to map the spatial phase
distribution of an entire structure on the surface of a hemi-
sphere.

There are two different resistive elements, diffusive resis-
tors and tunnel junctions. The induced superconductivity in
the normal-metal region does not change the diffusive resis-
tance but it does renormalize the tunnel resistance. The ex-
pression for the spectral current~which is a vector in Pauli-
matrix space! through a resistive element are given by

RDI5
s13s2

A12~s1•s2!
2
arccos~s1•s2!, ~1!

for a diffusive resistor with resistanceRD and

RTI5s13s2 , ~2!

for a tunnel junction with resistanceRT . s1 and s2 are the
spectral vectors on either side of the resistive element. The
circuit-theory rules in terms of the spectral vectors are as
follows.

PHYSICAL REVIEW B 1 JULY 1996-IIVOLUME 54, NUMBER 2

540163-1829/96/54~2!/772~4!/$10.00 R772 © 1996 The American Physical Society



~i! The Andreev conductance of a system is the same as in
normal circuit theory except for the fact that the tunnel con-
ductivities are renormalized by a factors1•s2 .

~ii ! In a normal terminal the spectral vector is the north
pole of the hemisphere whereas in a superconducting one it
is located on the equator, where its longitudef indicates the
phase of the superconductor.

~iii ! The spectral current is perpendicular to both spectral
vectors on either side of the resistive element. For a diffusive
conductor the magnitude of the current isI5GDa and for a
tunnel junction it isI5GTsina. Herea5arccos(s1•s2) is the
angle between the two spectral vectors at both ends of the
element.

~iv! The vectorspectral current in all nodal points of the
network is conserved.

With these rules it is possible to compute the resistance of
a variety of networks. However, if one wants to include an
Aharonov-Bohm ring threaded by a fluxF into the circuit,
these four rules have to be augmented. To see how this
comes about we perform the standard gauge transformation
on the Green function to get rid of the explicit vector poten-
tial dependence:

G̃5exp~ ixŝz!Ĝ, exp~2 ixŝz!, ~3!

wherex5pF/F0 andF05h/2e is the superconducting flux
quantum. In terms of spectral vectors this gauge transforma-
tion is simply a rotation around thez axis of the original
vector by an angle of 2x. The rotated vector reduces to its
original if 2x52p and thus will be periodic in the super-
conducting flux quantumF0 . The spectral current vector is
rotated likewise.

Without gauge transformation~3! the equation forĜ
would be rather complicated.12 However, using~3!, the equa-
tion for the transformed Green functionG̃ reduces to that for
the originalĜ in the absence of flux. The flux through the
ring now appears in the boundary conditions onG̃ as fol-
lows: At an arbitrary pointP in the ring the Green function
G̃L in P andG̃R infinitesimally to the right ofP are related
by

G̃L5exp~ ixŝz!G̃Rexp~2 ixŝz!, ~4!

Hence the spectral vectors̃L is rotated 2x around thez axis
with respect to its ‘‘neighbor’’s̃R . Again the spectral current
is rotated in the same way. Hence the four rules remain un-
altered but now apply to the transformeds̃ and a fifth rule is
needed to prescribe the boundary condition in the ring:

~v! Going around once in an Aharonov-Bohm ring, the
spectral vector at the end of the loop is rotated by an angle
2x around thez axis with respect to the spectral vector at the
beginning of the loop. The same holds for the spectral cur-
rent.

We now have all the necessary ingredients to calculate
the conductance of the structures depicted in Fig. 1. Network
~a! consists of two diffusive wires that connect a normal
and a superconducting terminal to a diffusive Aharonov-
Bohm ring. Since a natural place for a tunnel barrier is at
theN-S interface, we also included it in the circuit. Figure
1~b! shows a superconducting quantum interference device
~SQUID!-like device, consisting of a ring with a tunnel junc-

tion in each branch that is connected to the reservoirs by two
diffusive wires. We consider here a geometry with a single
superconducting terminal only because we want to study the
effects caused by the applied flux rather than those due to
Andreev interference. In Fig. 1~c! we have mapped the cir-
cuits onto a hemisphere to indicate the position of the spec-
tral vectors. Because only one superconducting terminal is
present, its macroscopic phase is arbitrary and we choose it
to be zero. As can be seen from this picture we have chosen
the pointB in the ring as the point where the spectral vector
and current are discontinuous, indicated schematically by the
dashed line.

Since the spectral vectorssB andsC are related by Eq.~4!,
we need only compute the positions of the pointsA, C, and
D, which are determined by spectral current conservation in
the nodes@rule ~iv!#:

(
A

I5sA3S sNCAN

R1
1sC

CAC

R2
1sB

CAB

R3
D50, ~5!

(
C

I5sC3S sACCA

R2
1sD

CCD

R4
D1IBC50, ~6!

(
D

I5sD3S sCCDC

R4
1

sS
RT

D50, ~7!

where CIJ5arccos(sI•sJ)/A12(sI•sJ)
2 and the current

IBC5V(sB3sA)CBA /R3 , whereV is a matrix that rotates
the spectral current over an angle22x according to rule~v!.
The physical current, however, is conserved in every node
because a uniform rotation of the spectral current leaves the
physical current invariant. Note that the spectral current leav-
ing point A is not equal to the spectral current arriving in
C. This is a consequence of the gauge transformation we

FIG. 1. ~a! and ~b! The networks under consideration.RT is a
tunnel junction and all other elements are diffusive resistors.~c!
The circuits mapped onto a hemisphere.
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have used. Knowing the spectral vectors in the three points
we are able to compute the resistance of the structure:

Rtot5R11
R2R3

R21R3
1R41

RT

cosaDS
, ~8!

where cosaDS5sD•sS is the renormalization factor for tunnel
conductivities according to rule~i!.

Let us now first turn to a discussion of what we call the
electroflux effect. Consider the geometry of Fig. 1~a! without
the tunnel junction. In this case the total resistance of the
network is not affected by the applied flux since the resis-
tance of diffusive elements is not renormalized. However,
the electrostatic potential distribution in the structure is still
flux dependent. To see this we look at the zero-temperature
expression for the electrostatic potential:13

w~x,F!5
1

4e
TrĜK5z~x!cosu~x,F!, ~9!

whereĜK is the Keldysh component of the Green function
andz(x) is the quasiparticle distribution function that mea-
sures the deviation from equilibrium.3 At zero temperature,
z(x) is a linear function of position and its slope is propor-
tional to the voltage drop across a resistive element. The
factor cosu(x,F) in ~9! is just thez component of the spectral
vector, which at zero temperature is equal to the quasiparticle
density of states. From the fact that Eq.~9! involves the flux
dependentu(x,F) it is obvious that also the electrostatic
potential will depend on the flux through the ring.

Figure 2 shows this electroflux effect at different points in
the structure. Here we have considered a structure with a
total length of 3L and the wires have lengthsNA5AC
5CS5L. Figure 2 clearly shows that the electroflux effect

is largest in the middle of the structure and vanishes in the
end points of the structure. This effect is reminiscent of the
electrostatic Aharonov-Bohm effect, in which the phase of
an electron in a ring is influenced by an applied transverse
electric field.14 However, in a sense the electrostatic
Aharonov-Bohm effect is just the opposite of the electroflux
effect because in the latter case the electrostatic potential in
the ring is modified by changing the phase of the quasipar-
ticles with a magnetic field. Using a single electron tunneling
~SET! transistor it should in principle be possible to measure
the local electrostatic potential in a given point. One could
then measure the change in potential as a function of the
applied flux. For a more detailed description of such an ex-
periment see Ref. 7.

In the last part of this paper we discuss the flux-dependent
conductance of several circuits that may be experimentally
relevant. In Fig. 3 we have plotted the conductance of three
different systems as a function of the applied flux for differ-

FIG. 2. Electrostatic potential as a function of flux for different
points along the structure. Calculated forR15R45R and
R25R352R.

FIG. 3. Normalized conductance versus applied flux. Panels~a!
and ~b! correspond to the structure of Fig. 1~a!, panel ~c! to the
same circuit withR1 andRT interchanged, and~d! to the SQUID-
like device of Fig. 1~b!. From small to large amplitude the different
curves correspond to~a! RT /R51, 2, 3, 5, 10, 100;~b! RT /R51, 2,
3, 5, 10, 20, 100;~c! RT /R51, 3, 5, 10, 20, 50, 100;~d!
RT /R53, 5, 10, 20, 50, 100.

R774 54T. H. STOOF AND Yu. V. NAZAROV



ent values of the resistances in the circuit. The conductance
has been normalized to its zero-flux value. Panels~a! and~b!
show the results for the system of Fig. 1~a!. In panel ~a!
R15R25R35R45R and in panel~b! R25R35R45R and
R15RT . The different curves correspond to different values
of RT /R. Figure 3~c! shows the case in which the diffusive
resistorR1 and the tunnel barrierRT in Fig. 1~a! have been
interchanged and the remaining panel shows the conductance
of the SQUID-like device of Fig. 1~b! with R45R55R and
R15RT .

Let us first consider the circuit of Fig. 1~a!. The panels~a!
and ~b! show that, in this case, applying a flux through the
ring decreases the conductance. This is easily understood
with the aid of Fig. 1~c!. When a flux is applied, all points
A, C, andD are ‘‘pulled’’ towards the north pole of the
hemisphere, thus increasing the angleaDS between the spec-
tral vectorssD and sS . Equation ~8! then shows that this
increases the resistance relative to the zero-flux value.

It is also clear that an increase of the resistance of both the
tunnel junctionRT and the interface resistanceR1 causes a
bigger effect on the conductance. This is because in case~a!
pointD is much closer to the north pole of the structure than
in case~b!, where it is somewhere in the middle between
N andS. Applying a flux will have a much larger effect on
the renormalization factor cosaDS in case~b! than in case~a!.
Whereas the maximal reduction in conductance in case~a! is
less than a factor of 2, it is almost a factor of 30 in case~b!.
In the limit of largeR1 andRT our results agree with those
obtained in Ref. 2.

Although Figs. 3~a! and 3~b! might give the impression
that the conductance always decreases when a flux is present,
this is not generally the case. It is also possible to increase it,
e.g., in systems with a single tunnel barrier between the nor-
mal contact and the ring. When all diffusive resistors are

kept constant and only the tunnel resistance is varied, the
conductance is increased dramatically. As shown in Fig. 3~c!
the maximum increase is a factor of 40 for a tunnel barrier
that has a 100 times bigger resistance than the diffusive re-
sistors in the network.

In the SQUID-like structure of Fig. 1~b!, the results are
qualitatively the same as those shown in Fig. 3~b!. Similar
considerations as the ones used above show that the conduc-
tance reduction is largest when both the resistanceR1 and the
tunnel resistances in the ring are large. There is, however, a
striking difference in shape of the curves. Whereas in panel
3~b! the minimum becomes broader on increasing the resis-
tances, the opposite is occurring in panel 3~d! where a sharp
peak develops. The characteristic shapes of the curves dis-
played in Fig. 3 should be observable experimentally. The
flux induced by the current in the loop can be shown to be
proportional to the small parameter (jD /L)

2, where
jD5AD/D is the superconducting coherence length, and we
therefore disregarded this contribution.

In conclusion, we have generalized the circuit theory of
Andreev conductance of Ref. 3 to networks that include an
Aharonov-Bohm ring penetrated by a magnetic flux. We
have given the complete set of altered circuit-theory rules
and used them to calculate the flux-dependent resistance of
several experimentally relevant structures. Under the right
conditions these devices are very sensitive to the applied
flux. We have predicted an electroflux effect in these circuits,
which entails that the electrostatic potential distribution in
the structure can be altered by varying the applied magnetic
flux through the ring. It should be possible to observe this
effect experimentally.
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