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Abstract 
 

Asphalt concrete is the most used material in road construction. Analysing the behaviour 

and properties of this material is vital for modern day society. Currently, this is mostly 

done in labs using actual asphalt mixtures. However, this is a very expensive and time 

consuming process. An upcoming alternative approach is the use of computational 

models. The finite (FEM) and discrete element methods (DEM) have been used in the past, 

but both of these have shown significant disadvantages regarding the modelling of 

discrete particle movement and shape, respectively. An upcoming alternative is the use of 

physics engines, such as Bullet Physics, to model porous media. This method can have 

substantial benefits in terms of costs and research time. Also, phenomena can be 

visualised that cannot easily be observed in experiments.  

 

This research focusses on the utility of Bullet Physics for modelling hot asphalt 

compaction. Therefore, a complex contact model is implemented which can describe the 

contact forces of the bituminous mixture. The superpave gyratory compaction process is 

digitally modelled. The model has been programmed in PyBullet, an open source physics 

engine, programmable in Python. A parametric study has been performed, which reveals 

the significance of certain properties, which cannot easily be investigated during 

laboratory compaction.  

 

Bullet Physics was not initially designed for scientific research in the field of structural 

engineering. Therefore, alterations are needed to make the software usable. The 

implementation of a complex contact model is challenging. Although the Burgers’ contact 

forces can be correctly described, it proves difficult to implement custom contact forces 

directly in PyBullet. Two attempts have been made. In the case of a custom integration 

scheme, the computation time proved too long to be applicable for large scale simulations. 

In case of a direct implementation in Bullet Physics with the application of external forces, 

instability occurs. The only correct way to implement a custom contact model is by 

altering the source code.  

 

During the simulations with a simpler contact model, substantial improvements of digital 

simulations over actual experiments are presented. The consistency proves far better 

than the prescribed minimum. The influence of inertia and friction can be assessed. It 

turns out that inertia, as well as the friction of the mould, can be disregarded. Another 

phenomenon that can be clearly illustrated is the revolving of aggregates inside the 

mould. Further analysis has shown that the average contact area depends on degradation, 

but in a typical asphalt mixture does not depend on the size of the individual elements, 

and could rather be treated as a constant. Further analysis shows that Bullet Physics is 

incredibly efficient, thus yielding the possibility of performing large scale simulations 

within reasonable time. 
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1 Introduction 
 

1.1 Relevance 

Compaction is an essential part of the pavement quality [1]. Mixture characteristics are 

performance based on the air voids content [2]. If the compaction is insufficient, this leads 

to lower strength and a higher air void percentage, in which moisture can penetrate, 

leading to damage during winter [1]. To study asphalt compaction, various laboratory 

experiments exist [3]. One of these is the superpave gyratory compaction method [2]. 

During this process, the degradation and temperature are well maintained, whereas in the 

field this can vary greatly over time as well as over the volume [4].  

 

In order to better understand the compaction process and save valuable resources, many 

researchers have attempted to digitally model this process [5, 6, 7, 8]. Some researchers 

used the finite element method, which is an efficient method for analysing continuous 

materials [9, 10, 11, 12]. However, asphalt mixtures consist of discrete construction 

aggregate elements, coated in bitumen, and are therefore not continuous. The discrete 

element method on the other hand generally simulates simple spheres, which can 

accurately model aggregate movement, but not its shape. Both the finite and discrete 

element method are known to be useful, but also computationally expensive methods. 

Very powerful computers are employed, which can still require considerable computation 

time, thus defeating its purpose. A new and upcoming alternative is the use of physics 

engines. These can best be compared with the discrete element method, but with custom 

shapes for the particles. They are also known to be very computationally efficient, and are 

already used to investigate the behaviour of granular material [13, 14, 15]. Therefore, it 

might prove useful to investigate the utility of physics tools for analysing hot asphalt 

compaction.  

 

Previous research shows promising results regarding digital simulations [5–12]. Al 

Khateeb et al. [8] simulated the micromechanical behaviour of asphalt mixtures using the 

discrete element method, and incorporated a new contact model. This was applied to 

simulate and validate the overall process of the superpave gyratory compaction 

laboratory tests, as well as field compaction. The model was employed to assess the air 

voids distribution showing mixed agreement. Komaragiri et al. [16] simulated laboratory 

compaction using Bullet Physics [17]. Viscous damping and cohesive forces were added 

manually to the model. PyBullet [18], the Python implementation of Bullet Physics [17], 

does not assess the contact area of two colliding elements [18]. Therefore Komaragiri et 

al. [16] estimated the contact area based on the surface area of the smallest particle. 

Although the results were not validated, this shows that also physics engines have great 

potential.  

 

Based on literature studies, it could that the ideal simulation tool has not yet been 

developed. The finite element method is unable to accurately model particle movement. 

On the other hand, most discrete element tools suffer from simplicity in particle shape [7, 

8]. Both DEM and FEM are often carried out with commercial packages, which could be 

financially expensive, requiring the user to limit the size and time of the simulation. 
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Physics Engines seem to be a viable alternative (some of them are freeware), however, 

these are mostly developed for simple animations in video games.  

 

1.2 Research goal 

The main research goal of this report is to assess the utility of Bullet Physics for analysing 

hot asphalt compaction, and more specifically, for analysing the superpave gyratory 

compaction process. In order to describe the contact behaviour of the bituminous 

mixture, Burgers’ contact model is implemented. Furthermore, a geometrical model of the 

superpave gyratory compaction process is created, and the advantages of a simulation are 

mapped out. This research focusses on the laboratory compaction, and may serve as a 

basis for field compaction for future research. 

 

1.3 Research questions 

Keeping the research goal as described above in view, the following research questions 

were created.  

 

1. Can a complex contact model, such as the Burgers’ contact model, be implemented 

directly in PyBullet?  

2. Is Bullet Physics able to simulate the gyratory compaction process, and hot asphalt 

compaction in general?  

3. Does Bullet Physics hold potential for future research when analysing hot asphalt 

compaction?  

 

1.4 Structure 

These research questions will be investigated, and the outcomes will be presented in the 

different chapters of the report. The structure of the report is as follows.  

 

Chapter 2 performs a literature review. This chapter introduces the subject, and the field, 

in depth. Also, a table is presented with the definitions of physical quantities used 

throughout the report. This chapter further studies the gyratory compaction process, 

reviews previous research, explores the utilities of Bullet Physics, and presents some 

technical details supporting the research.  

 

Chapter 3 explores Burgers’ contact model. Also, an analytical and numerical solution are 

presented. A novelty is also presented: a semi-analytical solution, where the contact 

forces are analytically solved over a small time step. A detailed guide on how to implement 

these models is also presented.  

 

Chapter 4 describes the digital model. Not only does it describe the geometry of the 

aggregates, mortar layer, and digital mould, but it also presents a workable 

implementation, as well as detailed descriptions of the aggregate placement and post-

processing.  

 

Chapter 5 verifies the contact model by comparison of the numerical solution with the 

analytical one in a simple experiment, and shows that the model is correct. This chapter 

also suggests an improvement for Burgers’ contact model.  
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Chapter 6 presents the results and possible applications of the digital gyratory 

compaction model. Also, substantial benefits of simulations are presented. Phenomena 

that cannot easily be seen or investigated in actual experiments are presented in this 

chapter.  

 

Chapter 7 briefly presents the conclusions by answering the research questions, and 

elaborates on opportunities for further research.  

 

Appendix A presents an exercise for the reader to program the discrete element method 

in Python.  

 

Appendix B presents a part of the programming code by which the reader can perform 

the numerical simulations.  

 

Appendices C, D and E present technical details for further implementation.  

 

Appendix F presents the derivation for the equation of motion for an improved contact 

model.  

 

It is highlighted that for easier understanding of the reader, some material related to 

different phases of the research are presented as videos [19].  

 

  

https://www.youtube.com/channel/UCH4-3f95zA7ZDmM4Or6rBmw
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2 Literature review 
 

This chapter gives a comprehensive overview of all relevant information that can be found 

on computationally modelling the superpave gyratory compaction process in Bullet 

Physics.  

 

2.1 Definitions 

This section gives an overview of all definitions used in this report. Numerous physical 

quantities are consistently used throughout the report (see Table 2.1). Also, a mechanical 

scheme is employed in this report (see Table 2.2).  

 
Table 2.1: Applied quantities 

Quantity Symbol Unit 

acceleration tensor 𝒂 𝑚𝑚 𝑠⁄
2

 
air void content 𝑣 - 
angle of gyration 𝜙 𝑑𝑒𝑔 
area (contact area) of two colliding elements 𝐴𝑐 𝑚𝑚2 

area (surface area) of the aggregate 𝐴𝑎𝑔𝑔 𝑚𝑚2 

area (surface area) of the mould 𝐴𝑚𝑙𝑑 𝑚𝑚2 
damper – Kelvin-Voigt component 𝑐𝐾 𝑁𝑠 𝑚𝑚⁄  
damper – Maxwell component 𝑐𝑀 𝑁𝑠 𝑚𝑚⁄  
damping – critical 𝑐𝑐𝑟 𝑁𝑠 𝑚𝑚⁄  
damping ratio Burgers’ contact force  - 
deformation – elastic  𝑢𝑒 𝑚𝑚 

deformation – plastic 𝑢𝑝 𝑚𝑚 

deformation – total 𝑢 𝑚𝑚 
deformation – viscoelastic 𝑢𝑣𝑒 𝑚𝑚 

delta factors semi-analytical solution 
𝛿𝐹0 , 𝛿𝐹1 ,  

𝛿𝑢1 , 𝛿𝑢2  
- 

diameter of the mould 𝑑𝑚𝑙𝑑 𝑚𝑚 
distance between two rays Δ𝑟 𝑚𝑚 
eigen frequency Burgers’ contact force  𝜔 (𝑟𝑎𝑑 𝑠⁄ )2 
factor – computation time factor 𝑓𝑡  - 
factor – element factor 𝑓𝑒 - 
force – Kelvin-Voigt component 𝐹𝐾 𝑁 
force – Maxwell component 𝐹𝑀 𝑁 
friction coefficient 𝜇 - 

gamma factors semi-analytical solution 
𝛾𝐹0 , 𝛾𝐹1 ,  

𝛾𝑢1 , 𝛾𝑢2  
- 

height of the fully compacted specimen ℎmin 𝑚𝑚 
height of the specimen ℎ 𝑚𝑚 
identity tensor 𝑰 - 
inertia tensor 𝑱  
Lambert W function 𝑊 - 
length of a ray 𝑟𝑖 𝑚𝑚 
moment tensor 𝑴 𝑁 𝑚𝑚 
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normal tensor 𝒏 - 
number of elements 𝑛𝑒𝑙 - 

number of gyrations 𝑛𝑔 - 

number of mould lamellae 𝑛𝑚𝑙𝑑 - 
number of rays 𝑛𝑟 - 
order – time order 𝑂 - 
Period of rotation of the mould  𝑇𝑚𝑙𝑑 𝑠 
position tensor 𝒑 𝑚𝑚 
quaternion 𝒒 - 
relative damping – largest term 𝒵+ 𝑟𝑎𝑑 𝑠⁄  
relative damping – omega term 𝒵𝜔 𝑟𝑎𝑑 𝑠⁄  
relative damping – smallest term 𝒵− 𝑟𝑎𝑑 𝑠⁄  
rotation around the global 𝑥, 𝑦, 𝑧-axis 𝛼, 𝛽, 𝛾 𝑑𝑒𝑔 
rotation tensor 𝑹 - 
rotational acceleration tensor 𝜶 𝑟𝑎𝑑 𝑠2⁄  
rotational velocity tensor 𝝎 𝑟𝑎𝑑 𝑠⁄  
spring stiffness – Kelvin-Voigt component 𝑘𝐾 𝑁 𝑚𝑚⁄  
spring stiffness – Maxwell component 𝑘𝑀 𝑁 𝑚𝑚⁄  
temperature of compaction 𝑇 °𝐶 
thickness of the mortar layer 𝜏𝑚𝑜𝑟 𝑚𝑚 
time – simulation time 𝑡 𝑠 
time – computation time 𝑡𝑐 ℎ 
time step Δt 𝑠 
velocity tensor 𝒗 𝑚𝑚 𝑠⁄  

volume of the aggregates 𝑉𝑎𝑔𝑔 𝑚𝑚3 

volume of the mortar 𝑉𝑚𝑜𝑟 𝑚𝑚3 
 

Table 2.2: Applied mechanical symbols 

Name Symbol Mechanical symbol 

mass 𝑚 

 

 
 

damper 𝑐 

 

 
 

spring 𝑘 

 

 
 

 

2.2 Tensor notation 

Throughout the report, first and second order tensors are used. These are represented in 

bold. First order tensor are presented in lower case, whereas the second order tensors 
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are presented with capital letters. With the exception of the first order force and moment 

tensor. In the text it is always clarified whether a tensor is of the first or second order. 

Furthermore, it is assumed common knowledge that a rotation matrix is orthogonal, and 

therefore its transpose equals its inverse. Equation 2.1 shows the second order rotation 

tensor from global to local coordinates.  

 

𝑹𝑇 = 𝑹−1  (2.1) 
 

2.3 Superpave gyratory compaction 

This paragraph specifies the superpave gyratory compaction process, which is a 

standardized tool for determining the void curve of an asphalt mixture, according to NEN-

EN 12697-31, 35 [2, 20] and NEN-EN 13108-1 [21]. This information is essential, as this 

forms the basis for all simulations. Also, some differences between lab and field 

compaction are mentioned. 

 

Superpave gyratory compaction (SGC) is achieved by combining a rotary shearing action 

and a vertical resultant force applied by a mechanical head. This method can be used for 

the determination of the density, or air void content of a mixture versus the number of 

gyrations. Figure 2.1 shows the 3D motion diagram of the specimen. The bituminous 

mixture is contained within a cylindrical mould and kept at a constant temperature 

throughout the whole duration of the test. Compaction is achieved by the simultaneous 

action of a low static compression 𝐹, and of the shearing action resulting from the motion 

of the axis of the mould. The ends of the specimen remain perpendicular to the axis of the 

conical surface. The mould is lubricated with a coating of glycerised soda oleate or silicon 

grease to reduce friction between the mould and the specimen [2]. 

 

 
Figure 2.1: Specimen 3D motion diagram [2] 

 

A preload is applied between 150 and 3000 𝑁. During testing, a pressure of 600 𝑘𝑃𝑎 is 

applied. The angle of gyration, 𝜙, is usually 0.82°, but may vary. The rotational frequency 

equals 1 2⁄  𝐻𝑧. The mould diameter could be taken as 100, 150, or 160 𝑚𝑚. The first of 

which may only contain aggregates with a diameter less than 16 𝑚𝑚, whereas the latter 
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two may contain aggregates with a diameter up to 31.5 𝑚𝑚. The height of the mould is 

not specified, but must be compatible with the volume of the material under test [2]. 

 

Equation 2.2 shows how to determine the mean air void fraction 𝑣, as a function of the 

number of gyrations 𝑛𝑔, and height of the fully compressed specimen ℎ𝑚𝑖𝑛. The number 

of gyrations usually varies between 0 and 100, but may go up to 500, for determining the 

density curve. The height of the fully compressed specimen represents the situation 

where the specimen does not contain any air void content [2]. 

 

𝑣(𝑛𝑔) = 1 −
ℎ𝑚𝑖𝑛

ℎ(𝑛𝑔)
 (2.2) 

 
𝑤𝑖𝑡ℎ 

ℎ𝑚𝑖𝑛 =
𝑉𝑎𝑔𝑔 + 𝑉𝑚𝑜𝑟

𝐴𝑚𝑙𝑑
   ;    0.66 𝑑𝑚𝑙𝑑 ≤ ℎ𝑚𝑖𝑛 ≤ 1.05 𝑑𝑚𝑙𝑑 

 

 

The mean of at least three test results are used. For the test to be successful, the coefficient 

of variation of the heights of the specimens must be lower than 1.5% after 20 gyrations 

[2]. 

 

The result of the SGC contains the following:  

➢ Identification of the mixture, and method of manufacture of the mixture. 

➢ Type and model of gyratory compactor.  

➢ Internal diameter, minimal height of specimen, speed of rotation, temperature of the 

test, the angle of inclination, force, and method of calibration.  

➢ Void content for the prescribed numbers of gyrations.  

➢ The operational details, and anomalies, if any, which might have affected the results. 

 

This process is used to simulate the field compaction process. However, there are a few 

differences between the two, which impacts performance and test results. These factors 

are to be considered in case field compaction is digitally simulated. 

 

1. Lab compaction happens in a very controlled environment, where the degradation, 

temperature and moisture content are carefully chosen. Whereas in the field, these 

parameters might differ.  

2. The mixing process takes longer in the field compaction, leading to aged binder, which 

significantly increases its stiffness.  

3. The compaction process in the field is done by rollers, and takes much longer. This has 

a significant impact on the compaction temperature, which varies much more than in 

laboratory compaction [4].  

 

2.4 Literature review 

Much research has been done on the simulation of hot asphalt compaction [5–12]. Two 

studies that are particularly relevant are the ones of Al Khateeb et al. [8] and Komaragiri 

et al. [16]. This paragraph explorers and discusses the results of these papers.  
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Al Khateeb et al. [8] developed a computational model of asphalt using the commercial 

EDEM software. Coated aggregates were simulated using clusters of spheres of different 

sizes. Burgers’ model was used for the contact between the particles. The parameters 

were determined based on dynamic shear rheometer tests. Subsequently, the results 

were compared with an SGC test to validate the model. Also, an X-ray CT scan was 

conducted to assess the air void fraction at different locations in the sample. Aggregates 

were modelled slightly bigger than their actual size to represent the mortar, a continuous 

glue layer around the aggregates, as well. Different contact conditions were applied when 

there was a mortar–mortar , mortar–aggregate, or aggregate–aggregate contact. Al 

Khateeb et al. [8] determined the macroscale parameters of Burgers’ model for different 

compaction temperatures. Also, the influence of temperature drop during pavement 

construction was analysed. The result of the simulation was in agreement with a 

laboratory test. It was clearly shown that the DEM model gives accurate results and can 

be used additionally to laboratory testing. Also, this paper showed that the DEM has great 

benefits in terms of deriving properties of the specimen that in some cases cannot be seen 

in a laboratory test, such as the tracking of elements.  

Al Khateeb et al. [8] also showed some limitations of their model. Elements smaller than 

2 𝑚𝑚 were neglected due to limitations in computational power. Instead, these were 

included in the mortar layer. Furthermore, they did not adhere to the minimum amount 

of specimen required for SGC testing, as described in NEN-EN 12697-31 [2], which might 

have influenced the results [16]. Also, the system specifications and computation time 

were not mentioned, making it unclear whether this method is applicable on a regular pc. 

What is more, the X-ray CT scan showed air void content over the height of the specimen, 

which was compared to the air void content in the DEM model. It showed that the air void 

content on the top was overestimated. This was likely to be caused by the fact that the 

smaller particles were mostly to be found in bottom half of the specimen, resulting in 

larger gaps in the top. A recommendation for further research is to incorporate the 

complex morphological characteristics, shapes and angularities of aggregates more 

realistically. In this, a physics engine, such as Bullet Physics can be useful.  

 

Also Komaragiri et al. [16] created a computation model for analysing gyratory 

compaction using a physics engine, and validate the correctness of this model by means 

of parametric study. They used the open source Bullet Physics engine [17], which allows 

for the implementation of realistic particle shapes using triangular face tessellations. 

Therefore, a number of aggregates were 3D laser-scanned, and included in their model. In 

order to accurately model the contact forces between the elements, Komaragiri et al. [16] 

made two additions to the software: cohesive forces normal to the contact, and viscous 

damping tangential to the contact. These were implemented using a Python script, and 

were applied as external forces on all interacting objects at the beginning of each time 

step. In order to validate the results of their model, three parametric studies have been 

performed, where the angle of gyration, compaction pressure and height of the specimen 

were varied, showing mixed agreements with laboratory experiments. Nonetheless, they 

concluded that that the developed model can reasonably be used for simulation hot 

asphalt compaction. Another useful finding is that the simulation resulted in a very 

resonable computation time, allowing for the digital analysis on a regular deskop pc.  
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Komaragiri et al. [16] identified some limitations to their model. In order to achieve a 

reasonable computation time, any element smaller than 4.75 𝑚𝑚 was not explicitly 

modelled. Instead, this was considered as part of the mortar layer. Furthermore, all 

elements were assumed to be rigid bodies, not allowing for the breakage of particles in 

the digital model. What is more, to simulate the gyration of the specimen, instead of 

rotating the mould, Komaragiri et al. [16] gyrated the top end plate, while keeping the 

mould steady. This did not sufficiently match the laboratory procedure, as the aggregates 

did not experience a revolving motion inside the mould. Also, PyBullet does not assess the 

contact area of two colliding elements. Therefore Komaragiri et al. [16] estimated the 

contact area as half the surface area of the smallest particle for determining viscous and 

cohesive forces. The latter assumption is further examined in Paragraph 6.5. Further 

recommendations are the creation of a digial library of scanned aggregates, with different 

shapes and sizes, and the addition of friction.  

 

2.5 Bullet Physics and its utilities 

This paragraph elaborates on Bullet Physics, its advantages and disadvantages, and 

possible utility for modelling hot asphalt compaction.  

 

As opposed to most commercial software, Bullet Physics is an open source, free-to-use, 

and cross-platform tool [18]. Bullet utilizes the CPU, as well as the GPU to shorten 

computation time [17]. Also, the Python wrapper PyBullet makes it easily accessible for 

most researchers. Running a simulation requires 3D objects, which can be created using 

any 3D drawing tool, such as SketchUp [22] or Blender [23]. A library with simple objects 

is also available for the user. This includes a simple sphere, cube, robot, and ground 

surface, among others. An elaborate and easy to understand quickstart guide can be found 

on the official PyBullet website [18].  

 

Bullet Physics is widely used in simulations, video games, and movies [18]. In 2015, the 

main authors won the Academy Awards for their significant contributions to the 

development of motion pictures [24]. Since then, a few researchers have investigated the 

use of this software for the simulation of granular materials [13, 14, 15]. The physics 

engine is also very popular in the field of robotics [25, 26, 27]. As opposed to video games 

and animations, scientific research in the field of pavement engineering requires high 

levels of accuracy. The main focus of Bullet is currently on applications that do not require 

such accuracy.  

 

Another interesting feature of Bullet Physics is that it doesn’t have the classical ‘truncation 

error’, where the precision of the simulation increases with a smaller step size. Instead, 

the projected Gauss Seidel solver [28, 29] is implemented, where multiple iterations are 

used per time step to ensure the precision of the simulation, regardless of the step size. A 

standard step size of 1/240 seconds in combination with 50 iterations were carefully set 

by the developers to ensure reasonable stability and accuracy of the simulation, while 

significantly reducing computation time [18]. 

 

A shortcoming of Bullet Physics for the field of engineering is its focus on simplicity. To 

give a few examples: Bullet determines dynamical properties, such as the friction 
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coefficient of two colliding elements, by multiplying the user defined friction coefficients 

of the two individual objects. Whereas in reality, this dynamical property is determined 

based on both materials and cannot be determined based on solely the individual friction 

coefficients. Also, complex contact models to describe the behaviour of viscoelastic 

material are not (yet) supported. Since Bullet is open source, improvements in this regard 

are possible [17]. 

 

2.6 An introduction to quaternions 

 

Euler rotation and gimbal locking 

Since a custom integration method is being implemented, a method of describing an 

object’s orientation is required. The most common description of a rotation in 3D space is 

Euler rotation. Extrinsic Euler rotation could be described as the consequent rotation 

about the 𝑥, 𝑦, and 𝑧-axes. This way, the orientation of an object in 3D space can be fully 

described [30]. Figure 2.2 gives a visual representation [31].  

 

There are however a few downsides to this method. First of all, due to the order of 

rotation, an additional rotation cannot easily be added. Secondly, it is not always possible 

to continuously describe an object’s orientation under a certain angular velocity. The 

latter phenomenon is called ‘gimbal locking’ [30]. Gimbal locking is the loss of one angular 

degree of freedom, and occurs when the second successive rotation nears ±90°, or 𝜋 2⁄  

𝑟𝑎𝑑. The two other axes are then aligned, and the third rotation yields the same result as 

the first one. Thus, effectively losing a degree of freedom [30]. 

 

There are several ways to avoid gimbal locking. Resetting the gimbals under certain 

conditions, as well as adding a fourth gimbal are viable solutions [30]. In this report, the 

use of gimbals to describe an object’s orientation is disregarded completely. Instead the 

use of quaternions was chosen, which is depicted in Figure 2.3 [32]. 

 

 

 

Figure 2.2: Euler rotation [31] Figure 2.3: Quaternion rotation [32] 
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Definition of a quaternion 

The use of quaternions is a more modern approach in describing the orientation of an 

object in 3D space. A quaternion describes a single rotation around a vector. Not only can 

the orientation of an object be fully described, but this method can also describe a 

continuous rotational velocity under any orientation [30]. 

 

A quaternion is a first order tensor, consisting of four scalars. Equation 2.3 shows a 

quaternion, where 𝜔 is a scalar value that represents an angle of rotation, and 𝑥, 𝑦, 𝑧 

correspond to an axis of rotation about which the angle of rotation is performed. In 

literature, the position of 𝜔 can be in the first or last entry [30]. 

 

𝒒 = (

𝑥
𝑦
𝑧
𝜔

) (2.3) 

 

In this report, the rotational scalar is always presented in the last entry of the quaternion. 

Also, quaternions are always assumed to be unit quaternions, meaning that the magnitude 

of this vector equals 1. Not only is the quaternion more convenient to work with than 

Euler rotation, but this method is also computationally more efficient [30]. 

 

Euler to quaternion conversion 

Since angular velocities and accelerations are not dependent on the orientation of an 

object and thus do not suffer from gimbal locking, these can still be described using Euler 

rotation. These can easily be converted into quaternions. Let 𝛼, 𝛽, and 𝛾 be the consecutive 

rotation about the global 𝑥, 𝑦, and 𝑧-axes, respectively. Equation 2.4 shows the conversion 

between the Euler angles and quaternion representation [30]. 

 

𝒒(𝛼, 𝛽, 𝛾) =

(

 
 
 
 
 
 
sin (

𝛼

2
) cos (

𝛽

2
) cos (

𝛾

2
) − cos (

𝛼

2
) sin (

𝛽

2
) sin (

𝛾

2
)

sin (
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2
) cos (

𝛽

2
) sin (

𝛾

2
) + cos (

𝛼

2
) sin (

𝛽

2
) cos (

𝛾

2
)

cos (
𝛼

2
) cos (

𝛽

2
) sin (

𝛾

2
) − sin (

𝛼

2
) sin (

𝛽

2
) cos (

𝛾

2
)

sin (
𝛼

2
) sin (

𝛽

2
) sin (

𝛾

2
) + cos (

𝛼

2
) cos (

𝛽

2
) cos (

𝛾

2
))

 
 
 
 
 
 

 (2.4)  

 

Rotation matrix 

In order to determine the locations of an object’s vertices, or the inertia tensor in global 

coordinates, a rotation matrix is required. Equation 2.5 shows how to determine the 

rotation matrix for an element from global to local coordinate system, making use of a unit 

quaternion [30]. Since the rotation matrix is orthogonal, its transpose can be used for the 

opposite operation. It is noted that this is the same as substituting −𝜔 for 𝜔.  
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𝑹 = 2(

𝑥2 + 𝜔2 𝑥𝑦 − 𝑧𝜔 𝑥𝑧 + 𝑦𝜔

𝑥𝑦 + 𝑧𝜔 𝑦2 +𝜔2 𝑦𝑧 − 𝑥𝜔

𝑥𝑧 − 𝑦𝜔 𝑦𝑧 + 𝑥𝜔 𝑧2 + 𝜔2
) − 𝑰  (2.5)  

 
𝑤𝑖𝑡ℎ 𝑰 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑡𝑒𝑛𝑠𝑜𝑟 

 

 

Quaternion multiplication 

If an additional rotation is desired to an existing orientation, the new orientation can be 

found using ‘quaternion multiplication’. Let 𝒒 be the orientation of an object, and 𝚫𝒒 the 

additional rotation. Equation 2.6 shows how the new orientation can be found [30]. 

 

𝒒 ⋅ 𝚫𝒒 = (

𝑥
𝑦
𝑧
𝜔

) ⋅ (

Δ𝑥
Δ𝑦
Δ𝑧
Δ𝜔

) = (

+𝜔 ⋅ Δ𝑥 + 𝑧 ⋅ Δ𝑦 − 𝑦 ⋅ Δ𝑧 + 𝑥 ⋅ Δ𝜔
−𝑧 ⋅ Δ𝑥 + 𝜔 ⋅ Δ𝑦 + 𝑥 ⋅ Δ𝑧 + 𝑦 ⋅ Δ𝜔
+𝑦 ⋅ Δ𝑥 − 𝑥 ⋅ Δ𝑦 + 𝜔 ⋅ Δ𝑧 + 𝑧 ⋅ Δ𝜔
−𝑥 ⋅ Δ𝑥 − 𝑦 ⋅ Δ𝑦 − 𝑧 ⋅ Δ𝑧 + 𝜔 ⋅ Δ𝜔

)  (2.6)  

 

As can be seen from the result above, adding two quaternion rotations is remarkably 

simple, and avoids singularities such as gimbal locking. It is noted that quaternion 

multiplication is noncommutative, thus the order of multiplication matters [30]. 

 

2.7 Relevance of inertia in overdamped systems 

In most numerical integration techniques, the computation time and stability heavily 

depend on the inertia terms. In case of asphalt compaction, the mass of the aggregates is 

extremely low in comparison to the viscosity of the binder. Thus, this might lead to very 

long computation times and instability. A possible work around method is to increase the 

mass, such that it does not influence the results too much, which leads to a reasonable 

computation time. However, this solution is not ideal. Bullet Physics [17] is an impulse 

based engine, where this effect is reasonably mitigated, but could still lead to instability 

in case of large external forces. A possible way to overcome this, is by neglecting the 

inertia term in the differential equation.  

 

Steven H. Strogatz [33] used a dimensionless analysis to suggest that in case of an 

overdamped system, a second order differential equation can very well be approximated 

by a much simpler first order one. This means that in case of an extremely viscous 

environment, where the system is supercritically damped, the inertia term could in some 

cases be neglected. What is of importance here, is the time scale. Rapid oscillations over 

short periods of time will be neglected. Furthermore, reducing the order of the system has 

the inevitable consequence that not all initial conditions can be satisfied. The theory only 

holds in case initial velocities are close to zero.  

 

To demonstrate the potential application in a classical numerical integrator or physics 

engine, Equation 2.7 gives the governing equation of a classical system. Equation 2.8 gives 

an approximation of the differential equation for a supercritically damped system. Both 

of these solve for the highest order derivative, allowing for numerical integration.  
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𝑚𝑢̈ + 𝑐𝑢̇ + 𝑘𝑢 = 𝐹𝑒𝑥𝑡 ↔ 𝑢̈ =
𝐹𝑒𝑥𝑡 − 𝑐𝑢̇ − 𝑘𝑢

𝑚
 (2.7) 

 

𝑐𝑢̇ + 𝑘𝑢 ≈ 𝐹𝑒𝑥𝑡 ↔ 𝑢̇ ≈
𝐹𝑒𝑥𝑡 − 𝑘𝑢

𝑐
 (2.8) 

 
𝑤ℎ𝑒𝑟𝑒 
𝑣0 ≈ 0 
𝑐 ≫ 𝑚 

 

 

It is noted that neglecting the inertia does not necessarily mean neglecting gravity. This 

can still be considered in the equation of motion.  

 

To further investigate the validity of this theory, two tests have been performed using a 

damped mass-spring system with an initial displacement, and external force. A first and 

second order systems are compared with each other. Figure 2.4 shows the displacement 

of three dynamical systems with an initial displacement. Figure 2.5 shows the 

displacement of another three systems with a constant external force. Both Figures vary 

the damping-mass ratio of the second order systems, and compare these with a first order 

equation, where the inertia term is neglected. Table 2.3 presents a comparison of the 

results and shows the relative error at 𝑡 = 5 𝑠. 

 

  
Figure 2.4: Comparison of a first and second order systems with an initial displacement 
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Figure 2.5: Comparison of a first and second order systems with an external force 

 
Table 2.3: relative error of the different tests at 𝑡 = 5 𝑠 

𝒄/𝒎-value Initial displacement test (%) External force test (%) 
2,  1 50.4 % 20.0 % 
10 7.2 % 2.0 % 

100 0.0 % 0.2 % 
 

Figures 2.4, 2.5, and Table 2.3 show that a first order system can very well approximate a 

second order system for supercritically damped systems. The higher the damping/mass 

ratio, the better the second order system approaches the first order system. Based on the 

above observations, it could be concluded that the inertia term can indeed be neglected 

in some cases. In chapter 6 this is further investigated.  
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3 Implementation of Burgers’ contact model 
 

Burgers’ contact model could be considered as the core of this research, as this is the main 

addition to the physics engine. In the proposed model, Burgers’ contact model enables 

researchers to compute contact forces between colliding elements. A detailed explanation 

of the contact model is described in this chapter. The following paragraphs describe the 

proposed contact model, as well as a derivation of the equation of motion, and shows 

numerical solutions as well as an analytical solution.  

 

3.1 Equation of motion 

As shown in Figure 3.1, Burgers’ contact model consists of a Maxwell and a Kelvin-Voigt 

part. The Maxwell part consists of a spring 𝑘𝑀, and damper 𝑐𝑀, in series, which represents 

the elastic 𝑢𝑒 , and viscous deformation 𝑢𝑣, respectively. The Kelvin-Voigt part consists of 

a parallel spring 𝑘𝐾, and damper 𝑐𝐾, which represents the viscoelastic deformation 𝑢𝑣𝑒 . 

The total deformation is denoted as 𝑢.  

 

 
Figure 3.1: Mechanical scheme of Burgers’ contact model (Kelvin representation) 

 

Table 3.1 presents the values for the mortar as obtained elsewhere [8]. Following the 

equation for the axial stiffness of a rod, all parameters should be multiplied with the 

contact area, and divided by the thickness of the mortar layer, before these can be 

implemented in a discrete element method or physics engine [8].  

 
Table 3.1: Burgers’ parameters at different temperatures [8] 

T [°C] 100 125 150 
𝑘𝑀  [𝑀𝑃𝑎] 40.27 23.45 15.12 
𝑐𝑀  [𝑀𝑃𝑎 𝑠] 613.50 558.73 530.09 
𝑘𝐾  [𝑀𝑃𝑎] 15.02 11.63 10.52 
𝑐𝐾  [𝑀𝑃𝑎 𝑠] 3.33 2.43 2.05 

 

In order to implement this custom contact model in a physics engine, its equation of 

motion is derived. It is noted that in the derivation, inertia of the elements is neglected. 

Equations 3.1 and 3.2 give the constitutive relations between the forces in the Maxwell 

and Kelvin-Voigt part, 𝐹𝑀 and 𝐹𝐾 respectively, and the displacements, 𝑢𝑒 , 𝑢𝑣, and 𝑢𝑣𝑒 for 

this model.  

 
𝐹𝑀 = 𝑘𝑀 𝑢𝑒 = 𝑐𝑀 𝑢̇𝑣  (3.1) 
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𝐹𝐾 = 𝑘𝐾 𝑢𝑣𝑒 + 𝑐𝐾 𝑢̇𝑣𝑒 (3.2) 

 

Equations 3.3 and 3.4 describe the equilibrium and kinematic relations, respectively. 

Since the springs and dampers are massless, the contact force in each element is equal. 

Also, the sum of the deformations of the individual parts forms the total deformation.  

 
𝐹 = 𝐹𝑀 = 𝐹𝐾 (3.3) 

 
𝑢 = 𝑢𝑒 + 𝑢𝑣 + 𝑢𝑣𝑒 (3.4) 

 

This leads to the derivation of the equation of motion. Equation 3.5 presents the 

substitution of the viscoelastic deformation 𝑢𝑣𝑒 in Equation 3.2, using Equation 3.4.  

 

𝐹 = 𝑘𝐾(𝑢 − 𝑢𝑒 − 𝑢𝑣) + 𝑐𝐾(𝑢̇ − 𝑢̇𝑒 − 𝑢̇𝑣) (3.5) 
 

Equation 3.6 presents the derivation with respect to time, which allows for the 

substitution of the elastic and viscous deformation.  

 

𝐹̇ = 𝑘𝐾(𝑢̇ − 𝑢̇𝑒 − 𝑢̇𝑣) + 𝑐𝐾(𝑢̈ − 𝑢̈𝑒 − 𝑢̈𝑣)  (3.6) 
 

Equation 3.7 shows how the elastic and viscous deformation, 𝑢𝑒 and 𝑢𝑣 respectively, are 

substituted, using Equation 3.1.  

 

𝐹̇ = 𝑘𝐾 (𝑢̇ −
𝐹̇

𝑘𝑀
−
𝐹

𝑐𝑀
) + 𝑐𝐾 (𝑢̈ −

𝐹̈

𝑘𝑀
−
𝐹̇

𝑐𝑀
) (3.7) 

 

The contact force and displacement are separated in Equation 3.8, resulting in the 

differential equation.  

 
𝑐𝐾𝑐𝑀
𝑘𝐾𝑘𝑀

𝐹̈ +
𝑐𝐾𝑘𝑀 + 𝑐𝑀𝑘𝐾 + 𝑐𝑀𝑘𝑀

𝑘𝐾𝑘𝑀
𝐹̇ + 𝐹 =

𝑐𝐾𝑐𝑀
𝑘𝐾

𝑢̈ + 𝑐𝑀𝑢̇ (3.8) 

 

The differential equation is rewritten in Equation 3.9, resulting in the general form. 

 

𝐹̈ + 2𝜔𝐹̇ + 𝜔2𝐹 = 𝜅𝑢̈ + 𝑠𝑢̇ (3.9) 
 
𝑤𝑖𝑡ℎ 

𝜔2 =
𝑘𝐾𝑘𝑀
𝑐𝐾𝑐𝑀

 

 

2𝜔 =
𝑘𝑀
𝑐𝑀

+
𝑘𝐾 + 𝑘𝑀
𝑐𝐾

 

 

 =
𝑐𝐾𝑘𝑀 + 𝑐𝑀(𝑘𝐾 + 𝑘𝑀)

2√𝑐𝐾𝑐𝑀𝑘𝐾𝑘𝑀
 

 

 
𝜅 = 𝑘𝑀 

 

𝑠 =
𝑘𝐾𝑘𝑀
𝑐𝐾
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3.2 Numerical solution 

This paragraph describes the theoretical implementation of Burgers’ contact model in a 

physics engine. Since the numerical model consists of many interacting discrete elements, 

a numerical solution is required. Various numerical integration methods exist for solving 

initial value problems.  

 

Since the forces, as well as the displacements, are present in Equation 3.9, it is a partial 

differential equation, which can be solved numerically. The following approach has been 

taken to obtain the solution: 

 

1. In every discretised time step, the Burgers’ contact force and displacements, as well 

as its first derivatives are known. The accelerations are then obtained using Newton’s 

second law of motion.  

2. The second derivatives of the Burgers’ contact force in that same time step are 

determined using Equation 3.9.  

3. A numerical integration method is then applied for determining the contact forces and 

the displacements in the next time step.  

 

This process is repeated until predefined iterations.  

 

Equation 3.10 gives the acceleration of an element under a force at a discrete time step 𝑛. 

It is noted that in 3D with multiple elements, the sum of the forces should be considered. 

Equation 3.11 presents the second derivative of Burgers’ contact force at the 𝑛th time step.  

 

𝑢̈𝑛 =
𝐹𝑛
𝑚

 (3.10) 

 

𝐹̈𝑛 = −2𝜔𝐹̇𝑛 −𝜔
2𝐹𝑛 + 𝜅𝑢̈𝑛 + 𝑠𝑢̇𝑛 (3.11) 

 

Euler Forward 

A possible way to numerically integrate is the Euler Forward method [34]. This will also 

form the basis for the Newmark-beta integration method [35] as explained on the next 

page. Equation 3.12 shows a way to numerically integrate the displacements for the next 

time step, using Euler Forward. Equation 3.13 numerically integrates Burgers’ contact 

forces. 

 

𝑢̇𝑛+1 = 𝑢̇𝑛 + Δ𝑡 𝑢̈𝑛 

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 𝑢̇𝑛 +
1

2
Δ𝑡2 𝑢̈𝑛 

(3.12) 

 

𝐹̇𝑛+1 = 𝐹̇𝑛 + Δ𝑡 𝐹̈𝑛 

𝐹𝑛+1 = 𝐹𝑛 + Δ𝑡 𝐹̇𝑛 +
1

2
Δ𝑡2 𝐹̈𝑛 

(3.13) 

 

From the resulting quantities in Equations 3.12 and 3.13, the acceleration is obtained at 

the next time step, and the process repeats itself.  
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Newmark-beta 

Newmark-beta is a widely used second order implicit numerical integration technique 

[35], which might be an improvement over the previously discussed method. The key 

element of this method is that it uses the accelerations of the new time step as well. It is 

highlighted that since the accelerations in the next time step are unknown, these have to 

be initially estimated using Euler Forward as described above, which can then be 

reiterated.  

 

Equation 3.14 presents the Newmark-beta integration method for determining the 

positions and velocities in the next time step. Equation 3.15 shows how to numerically 

integrate the Burgers’ contact forces.  

 

𝑢̇𝑛+1 = 𝑢̇𝑛 + Δ𝑡 𝑢̈𝛾 

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡 𝑢̇𝑛 +
1

2
Δ𝑡2 𝑢̈𝛽 

(3.14) 

 

𝐹̇𝑛+1 = 𝐹̇𝑛 + Δ𝑡 𝐹̈𝛾 

𝐹𝑛+1 = 𝐹𝑛 + Δ𝑡 𝐹̇𝑛 +
1

2
Δ𝑡2 𝐹̈𝛽 

(3.15) 

 
𝑤𝑖𝑡ℎ 
𝑢̈𝛾 = (1 − 𝛾) 𝑢̈𝑛 + 𝛾 𝑢̈𝑛+1 

𝐹̈𝛾 = (1 − 𝛾) 𝐹̈𝑛 + 𝛾 𝐹̈𝑛+1 

𝑢̈𝛽 = (1 − 2𝛽) 𝑢̈𝑛 + 2𝛽 𝑢̈𝑛+1 

𝐹̈𝛽 = (1 − 2𝛽) 𝐹̈𝑛 + 2𝛽 𝐹̈𝑛+1 

 

 

The boundaries for 𝛾 and 𝛽 are presented in Equation 3.16. This equation also presents 

the values in which the middle point rule applies, where the integration method is indeed 

of the second order [35].  

 
0 ≤   𝛾 ≤ 1 → 𝛾 = 1 2⁄

0 ≤ 2𝛽 ≤ 1 → 𝛽 = 1 4⁄
  (3.16) 

 

Since the accelerations in the next time step are both in the input and output, a more 

precise answer, or better approximation, is generally found after multiple iterations.  

 

Runge Kutta 

A third alternative is the use of the Runge Kutta integration method [36], which is 

implemented in the standard SciPy [37] package, and can thus be used. This fourth order 

method is not explained here in detail, as it exceeds the scope of this research. A detailed 

description can be found elsewhere [36]. 
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3.3 Analytical solution 

In order to verify the accuracy of the numerical model, an analytical solution can be used. 

Burgers’ differential equation (Equation 3.9) can be solved analytically for either a 

described force, or velocity. In the present study, SymPy [38] was used to obtain the 

solution.  

 

Using Equation 3.9, the initial value problem is obtained under a constant external force, 

as presented in Equation 3.17. The initial displacement follows from a static analysis, 

where only the undamped spring is activated. The initial velocity is calculated likewise, 

where the effective damping of the two dampers in series is determined. The analytical 

solution is presented in Equation 3.18.  

 

𝜅𝑢̈ + 𝑠𝑢̇ = 𝜔2𝐹 (3.17) 
 
𝑤𝑖𝑡ℎ 

𝑢(0) =
𝐹

𝑘𝑀
 

𝑢̇(0) = 𝐹 (
1

𝑐𝑀
+
1

𝑐𝐾
) 

 

 

𝑢(𝑡) = 𝐹 (
1

𝑘𝑀
+
𝑡

𝑐𝑀
+
1

𝑘𝐾
(1 − 𝑒

− 
𝑘𝐾
𝑐𝐾
𝑡
)) (3.18) 

 

Using Equation 3.9, the initial value problem could also be obtained with a constant 

velocity, which is presented in Equation 3.19. The initial conditions can be chosen 

arbitrarily. Equation 3.20 presents the analytical solution for the supercritically damped 

system.  

 

𝐹̈ + 2𝜔𝐹̇ + 𝜔2𝐹 = 𝑠𝑢̇ (3.19) 
 
𝑤𝑖𝑡ℎ 
𝐹(0) = 𝐹0 
𝐹̇(0) = 𝐹̇0 
 > 1 

 

 

𝐹(𝑡) = 𝑐𝑀𝑢̇ −
𝐹̇0 + 𝒵

−(𝐹0 − 𝑐𝑀𝑢̇)

𝒵𝜔
𝑒−𝒵

+𝑡 +
𝐹̇0 + 𝒵

+(𝐹0 − 𝑐𝑀𝑢̇)

𝒵𝜔
𝑒−𝒵

−𝑡 (3.20) 

 
𝑤𝑖𝑡ℎ 

𝒵+ = 𝜔 ( +√ 2 − 1) 

𝒵− = 𝜔 ( −√ 2 − 1) 

𝒵𝜔 = 2𝜔√ 2 − 1 

 

 

To verify the numerical models with the analytical solution, a simple experiment was 

conducted. Two coated aggregates are compressed with a constant external force 𝐹0. After 



Implementation of Burgers’ contact model 
 

20 
 
 

 

the aggregates come into contact, they are pulled apart with a constant velocity −𝑢̇3. This 

case is derived as shown in Equations 3.21. At first, due to the non-penetration condition 

of the aggregates, the time at which the aggregates come into contact 𝑡1, is determined. 

Equation 3.22 presents the solution, where 𝑊 represents the Lambert 𝑊 function.  

 

𝑢(𝑡1) = 𝐹0 (
1

𝑘𝑀
+
𝑡1
𝑐𝑀
+
1

𝑘𝐾
(1 − 𝑒

−
𝑘𝐾
𝑐𝐾
𝑡1)) = 2𝜏𝑚𝑜𝑟 (3.21) 

 

𝑡1 =
𝑐𝐾
𝑘𝐾
𝑊 −

𝑐𝑀
𝑘𝑀

−
𝑐𝑀
𝑘𝐾
+
2𝑐𝑀𝜏𝑚𝑜𝑟
𝐹0

 (3.22) 

 
𝑤𝑖𝑡ℎ 

𝑊 = 𝑊0 (
𝑐𝑀
𝑐𝐾
exp (

𝑐𝑀𝑘𝐾
𝑐𝐾𝑘𝑀

+
𝑐𝑀
𝑐𝐾
−
2𝑐𝑀𝑘𝐾𝜏𝑚𝑜𝑟

𝑐𝐾𝐹0
)) 

 

 

Following Equation 3.18, Equation 3.23 presents the analytical solution for the 

displacements for the experiment as described above. In the first step (𝑡 < 𝑡1), the 

elements are subjected to the contact force. In the second and third step, the solution is 

obtained in a velocity controlled mode. It is noted that a few conditions must be met: the 

initial elastic deformation may not exceed the mortar thickness, and the simulation is 

terminated before the elements completely separate.  

 

𝑢(𝑡) =

{
 
 

 
 𝐹0 (

1

𝑘𝑀
+
𝑡

𝑐𝑀
+
1

𝑘𝐾
(1 − 𝑒

−
𝑘𝐾
𝑐𝐾
𝑡
)) 𝑓𝑜𝑟 𝑡 ≤ 𝑡1

2𝜏𝑚𝑜𝑟 𝑓𝑜𝑟 𝑡1 < 𝑡 ≤ 𝑡2
2𝜏𝑚𝑜𝑟 + 𝑢̇3(𝑡 − 𝑡2) 𝑓𝑜𝑟 𝑡2 < 𝑡 ≤ 𝑡3

 (3.23) 

 
𝑤𝑖𝑡ℎ 
𝑡1 < 𝑡2 < 𝑡3 < 𝑡2 − 2𝜏𝑚𝑜𝑟 𝑢̇3⁄  
𝐹0 𝑘𝑀⁄ < 2𝜏𝑚𝑜𝑟  
𝑢̇3 < 0 

 

 

Following Equation 3.20, Equation 3.24 presents the analytical solution for the Burgers’ 

contact forces in the same situation. The boundary conditions at the start of last step 

follow the results from the previous step.  
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𝐹(𝑡) =

{
 
 
 

 
 
 

𝐹0 𝑓𝑜𝑟 𝑡 ≤ 𝑡1
𝐹0
𝒵𝜔

(𝒵−𝑒−𝒵
+(𝑡−𝑡1) + 𝒵+𝑒−𝒵

−(𝑡−𝑡1)) 𝑓𝑜𝑟 𝑡1 < 𝑡 ≤ 𝑡2

𝑐𝑀𝑢̇3 −
𝐹̇2 +𝒵

−(𝐹2 − 𝑐𝑀𝑢̇3)

𝒵𝜔
𝑒−𝒵

+(𝑡−𝑡2)

+
𝐹̇2 +𝒵

+(𝐹2 − 𝑐𝑀𝑢̇3)

𝒵𝜔
𝑒−𝒵

−(𝑡−𝑡2)

𝑓𝑜𝑟 𝑡2 < 𝑡 ≤ 𝑡3

 (3.24) 

 
𝑤𝑖𝑡ℎ 

𝐹2 = 𝐹0
𝒵+𝑒−𝒵

−(𝑡2−𝑡1) − 𝒵−𝑒−𝒵
+(𝑡2−𝑡1)

𝒵𝜔
 

𝐹̇2 = 𝐹0𝜔
𝑒−𝒵

+(𝑡2−𝑡1) − 𝑒−𝒵
−(𝑡2−𝑡1)

𝒵𝜔
 

 

𝒵+ = 𝜔 ( +√ 2 − 1) 

𝒵− = 𝜔 ( −√ 2 − 1) 

𝒵𝜔 = 2𝜔√ 2 − 1 

 

 

3.4 Semi-analytical solution 

Alternatively to the numerical solution, the contact forces can also be solved analytically 

over a small time step. The advantage being that this method might be more precise. 

Therefore, the analytical method is explored in the research work.  

 

Following Equation 3.9, Equations 3.25 and 3.26 give the semi-analytical solution for the 

Burgers’ contact force over a small time step Δ𝑡, assuming a near constant velocity and 

acceleration. It is noted that under the assumption of a constant velocity, the particular 

solution is the same as the right-hand side of Equation 3.8. The velocity and acceleration 

are determined using the finite difference method, as these are not determined by 

PyBullet [18]. The solutions were obtained using SymPy [38]. 

  



Implementation of Burgers’ contact model 
 

22 
 
 

 

𝐹𝑛 = 𝛾𝐹0𝐹𝑛−1 + 𝛾𝐹1𝐹̇𝑛−1 + 𝛾𝑢1𝑢̇𝑛−1 + 𝛾𝑢2𝑢̈𝑛−1 (3.25) 

 

𝐹̇𝑛 = 𝛿𝐹0𝐹𝑛−1 + 𝛿𝐹1𝐹̇𝑛−1 + 𝛿𝑢1𝑢̇𝑛−1 + 𝛿𝑢2𝑢̈𝑛−1 (3.26) 

 
𝑤𝑖𝑡ℎ 

𝛾𝐹0 =
𝒵+𝑒−𝒵

−𝑡 − 𝒵−𝑒−𝒵
+𝑡

𝒵𝜔
 𝛿𝐹0 = 𝜔2

𝑒−𝒵
+𝑡 − 𝑒−𝒵

−𝑡

𝒵𝜔
 

𝛾𝐹1 =
𝑒−𝒵

−𝑡 − 𝑒−𝒵
+𝑡

𝒵𝜔
 𝛿𝐹1 =

𝒵+𝑒−𝒵
+𝑡 − 𝒵−𝑒−𝒵

−𝑡

𝒵𝜔
 

𝛾𝑢1 = 𝑐𝑀 ( 1 − 𝛾𝐹0)

𝛾𝑢2 = 
𝑐𝐾𝑐𝑀
𝑘𝐾

 ( 1 − 𝛾𝐹0)
 

𝛿𝑢1 = −𝑐𝑀 𝛿𝐹0

𝛿𝑢2 = −
𝑐𝐾𝑐𝑀
𝑘𝐾

 𝛿𝐹0
 

  

𝑢̇𝑛−1 =
𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
 𝑢̈𝑛−1 =

𝑢𝑛 − 2𝑢𝑛−1 + 𝑢𝑛−2
Δ𝑡2

 

 

𝒵+ = 𝜔 ( +√ 2 − 1) 

𝒵− = 𝜔 ( −√ 2 − 1) 

𝒵𝜔 = 2𝜔√ 2 − 1 

 

 

The 𝛾 and 𝛿 factors from Equations 3.25 and 3.26 respectively, are determined from the 

Burgers’ quantities at specific temperatures from Table 3.1 [8]. Table 3.2 gives the 

obtained values for a time step of 1 240⁄ 𝑠, which is the predefined step size for Bullet 

Physics [17].  

 
Table 3.2: Geometrical properties of aggregates (unit size) 

Factor T = 100 °C T = 125 °C T = 150 °C 
𝛾𝐹0  0.999997 0.999998 0.999999 

𝛾𝐹1  0.004025 0.004043 0.004060 

𝛾𝑢1  0.001541 0.000955 0.000662 

𝛾𝑢2  0.000342 0.000200 0.000129 

𝛿𝐹0  -0.001192 -0.000812 -0.000594 

𝛿𝐹1  0.932899 0.941456 0.949107 

𝛿𝑢1  0.731141 0.453807 0.314999 

𝛿𝑢2  0.162097 0.094819 0.061383 

 
Table 3.2 shows that 𝛾𝐹0  and 𝛿𝐹1  are very close to 1, and 𝛾𝐹1  approaches Δ𝑡, which is in line 

with the Euler Forward theory [34]. It is noted that since this is an analytical solution, 
these values are assumed to be more precise, which could be an improvement over 
conventional numerical time integration methods. The negative values of 𝛿𝐹0  indicates 

that the contact force tends to go to zero over time, which is expected due to the Maxwell 
damper from Figure 3.1. Furthermore, 𝛾𝑢1 > 𝛾𝑢2  and 𝛿𝑢1 > 𝛿𝑢2  indicate that the velocity 

has a larger influence than the accelerations on the Burgers’ contact force.  
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3.5 Implementation in Bullet Physics 

 

Semi-analytical model 

A way of implementing the Burgers’ contact forces in PyBullet, is by applying these as 

external forces at the beginning of each time step. As shown in Figure 3.2, a 3-step 

iterative procedure was followed to implement the semi-analytical model in Bullet 

Physics. For every element, velocities and accelerations were calculated at different 

positions using the finite difference method (see Section 3.4). Whereas, Burgers’ contact 

forces (Equation 3.25) were determined using the semi-analytical solution. Subsequently, 

the obtained contact forces were applied on the elements. The element positions in the 

next step are determined using Bullet’s projected Gauss Seidel solver [28, 29].  

 

 
Figure 3.2: Simulation flow chart 

 

It is highlighted that the displacements and contact forces between elements in the 

previous time steps are stored in arrays. Using the finite difference method, the relative 

velocity and acceleration are determined. Since Bullet Physics is conservative with its 

collision detection, the contact distance is also determined when two elements are close, 

but not touching. This provides an opportunity to determine the relative velocity and 

acceleration at the first moment of contact. The contact forces, as well as their derivatives 

are known from the previous time step, allowing for the determination of the forces in the 

current time step.  

 

Numerical model 

Alternatively to the method described above, numerical integration could be performed 

separately. It is noted that the collision directions are still calculated using Bullet Physics. 

This procedure allows for the implementation of complex contact models. This method is 

slightly more challenging, as rotational accelerations and orientations have to be 

computed as well.  

Element 
positions

Semi-analytical 
solution

Burgers’ 
contact 
forces

Velocities and  
accelerations 
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𝑭 Burgers’ contact force 

𝑭̇, 𝑭̈ time derivatives to BCF 

𝒑 position 
𝒒 orientation 
𝒗 velocity 
𝝎 rotational velocity 
𝒂 acceleration 
𝜶 angular acceleration 

 

 

As shown in Figure 3.2, a 3-step iterative procedure was followed to implement the 

numerical model in Bullet Physics. For every element, positions and velocities were 

determined by Bullet itself. Whereas, Burgers’ contact forces (Equation 3.15) were 

determined using a numerical solution. Subsequently, the accelerations and second 

derivatives of the Burgers’ contact forces were determined using the second law of 

Newton and the equation of motion (Equation 3.9) respectively. The element positions in 

the next step are determined using a numerical integration method.  

 

  
Figure 3.3: Simulation flow chart 

 

The Equation of motion is presented in state space representation [39], meaning that it 

inputs the locations 𝑥 and velocities 𝑣 of the particles as well as the current time step 𝑡, 

and outputs the derivatives with respect to time. It is noted that the accelerations and 

second derivatives to the contact forces are the key quantities, as these follow from the 

equation of motion and the numerical solution, respectively. Using state space 

representation allows for the initial value problem to be solved numerically. Equation 

3.27 shows a typical state space function. For ease of understanding, an example of the 

numerical implementation process in Python is presented in Appendix A.  

 

input:   𝑡, 𝑥, 𝑣 
 

𝑎 =
1

𝑚
 ∑𝐹(𝑡, 𝑥, 𝑣) 

 
output:   𝑣, 𝑎 

(3.27) 

 

It is highlighted that in 3 dimensions with multiple elements, the function for 𝐹 can be 

complex, and rotational accelerations should also be considered. The equation of motion 

is captured by the following steps:  

𝐹, 𝑝, 𝑞

𝐹̇, 𝑣, 𝜔

𝑎, 𝛼numerical    
solution

𝐹̈
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1. Positions and rotations of  all the elements were prescribed in Bullet Physics. It is 

noted that the collision could be detected from the physics engine.  

2. Bullet Physics returns the collision information, such as interacting elements, contact 

distance, contact normal and position of contact.  

3. Based on the information as described above, contact forces and moments can be 

determined. Usually this is done automatically in PyBullet. However, here it is done 

manually, such that a complex contact model can be implemented.  

 

Considering 𝚫𝒑𝐴 and 𝚫𝒑𝐵 as the contact position tensor with respect to their centres of 

masses for element A and B, respectively. Considering 𝒗𝐴 and 𝒗𝐵 as the first order linear 

velocities tensors of both elements. Considering 𝝎𝐴 and 𝝎𝐵 as the first order angular 

velocity tensors. Equation 3.28 shows how to determine the first order relative velocity 

tensor at the position of contact.  

 

𝚫𝒗 = 𝒗𝐵 +𝝎𝐵 × 𝚫𝒑𝐵 − 𝒗𝐴 −𝝎𝐴 × 𝚫𝒑𝐴 (3.28) 
 

Considering 𝒏 as the first order contact normal tensor between the elements. Equation 

3.29 shows how to determine the relative normal velocity scalar between element 𝐴 and 

𝐵, positive for compression.  

 
Δ𝑣𝑛 =  𝚫𝒗 ⋅ 𝒏 (3.29) 

 

Equation 3.30 shows how to determine the normalized first order velocity tensor, 

perpendicular to the normal, in the direction of the relative velocity.  

 

𝚫𝒗𝒑 =
𝚫𝒗 − Δ𝑣𝑛 𝒏

|𝚫𝒗 − Δ𝑣𝑛 𝒏|
 (3.30) 

 

Considering 𝑘 and 𝑐 respectively as the stiffness and damping between the elements. 

Equation 3.31 shows how to determine the normal force scalar between the elements. It 

is noted that a more complex function can be implemented here, and is described in 

Paragraph 3.2.  

 

𝐹𝑁 = 𝑘 𝑑 + 𝑐 Δ𝑣𝑛  (3.31) 
 

Considering 𝜇 as the friction coefficient between element 𝐴 and 𝐵. Equation 3.32 shows 

how to determine the frictional force scalar between the elements.  

 

𝐹𝑓 = 𝜇 𝐹𝑁  (3.32) 
 

Equation 3.33 shows how to determine the first order total force tensors, working on 

elements 𝐴 and 𝐵.  

 
𝑭𝐴 = 𝐹𝑁 𝒏 − 𝐹𝑓  𝜟𝒗𝒑 

𝑭𝐵 = −𝑭𝐴 
(3.33) 
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Equation 3.34 shows how to determine the first order moments tensor, applied on 

elements 𝐴 and 𝐵.  

 

𝑴𝐴 =  𝚫𝒑𝐴 × 𝑭𝐴 
𝑴𝐵 =  𝚫𝒑𝐵 × 𝑭𝐵 

(3.34) 

 

Considering 𝑚𝐴 and 𝑚𝐵 as the masses of elements 𝐴 and 𝐵 respectively. Equation 3.35 

shows how to determine the linear accelerations, following from the force tensor. Since 

multiple elements may interact with the element of interest, it is noted that the prime 

symbol ′ has been used to indicate that this variable is being updated, instead of assigned.  

 

𝒂𝐴
′ = 𝑭𝐴 𝑚𝐴⁄  

𝒂𝐵
′ = 𝑭𝐵 𝑚𝐵⁄  

(3.35) 

 

Considering 𝑱𝐴 and 𝑱𝐵 as the second order rotational inertia tensor in global coordinates 

for elements A and B, respectively. Equation 3.36 shows how to determine the angular 

accelerations for this object in local coordinate system. Since multiple elements may 

interact with the element of interest, the prime symbol ′ has been used to indicate that 

this variable is being updated, instead of being assigned. 

 

𝜶𝐴
′ = 𝑱𝐴

−1 ⋅ 𝑴𝐴 

𝜶𝐵
′ = 𝑱𝐵

−1 ⋅ 𝑴𝐵  
(3.36) 

 

With the known derivatives of input varies, the state space representation of the equation 

of motion can be used for numerical integration in Python. Additional considerations for 

regulating the stability for the friction and non-penetration condition of the aggregates, 

as well as the determination of the inertia tensor in global coordinates, can be found in 

appendices C, D and E.  
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4 Model description 
 

4.1 Aggregates 

This chapter describes the geometrical model, such that the superpave gyratory 

compaction process can be digitally analysed. In order to accurately describe the shape of 

the elements, ten different aggregates have been 3D scanned. The resulting meshes were 

imported in Bullet Physics [17]. Figure 4.1 shows the ten different aggregate shapes which 

have been used in the model. A video is also presented which shows the aggregates from 

all angles.  

 

 

 
  

 

  
 

  

 

Figure 4.1: Aggregate shapes  
(a video is also available [19]) 

 

The aggregate volume ranges from 0.6 to 1.0 𝑚𝑚3 for a unit size element with sieve of 

size 1 𝑚𝑚. The surface area ranges from 3.8 to 5.8 𝑚𝑚2. The masses can easily be 

calculated using the density of aggregates and mortar, which is 2400 to 2900 𝑘𝑔 𝑚3⁄  [40], 

and 1030 to 1040 𝑘𝑔 𝑚3⁄  [41], respectively. Although it is noted that due to the high 

viscosity of the bitumen and the relatively low mass of the coarse aggregates, the inertia 

terms might be neglectable. The centre of gravity, as well as the surface area, volume and 

inertia tensor were determined using MeshLab [42]. A rock texture was applied to make 

the aggregates visually more appealing. 

 

The sieve size of the scanned aggregates was initially unknown. Therefore, these were to 

be determined. This way, the digital shapes can be rescaled to a unit sieve size, and can 

later be implemented with a custom size, such that any degradation can be chosen. In 

order to determine the sieve size of a digital aggregate, it is loaded in PyBullet multiple 

times at different sizes. A digital sieve is loaded as well. The aggregates are then subjected 

to gravity. The maximum object size that passes through is determined to be the sieve 

size. Multiple iterations have been performed per aggregate, where the range of the 

element sizes was reduced such that the actual sieve size can be determined with great 

accuracy. This method has been verified using a unit size sphere, which resulted in a mesh 

https://youtu.be/TLW4m_aNSSo
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size very close to 1. Figure 4.2 shows the sieve size determination for each mesh in 

PyBullet. A video is also presented.  

 

 
Figure 4.2: Sieve size analysis in Bullet Physics  

(a video of this simulation is also available [19]) 

 

4.2 Mortar layer 

Asphalt consists of aggregates, coated with a bituminous layer. In order to determine the 

thickness of the mortar layer, Al Khateeb et al. [8] regarded a sample mixture and 

multiplied the size all aggregates with a factor of 1.087. In this research, a constant value 

was chosen for all sieve sizes using their sample data. The total volume of the mortar was 

divided by the total surface area of the aggregates, resulting in a uniform thickness for the 

mortar layer of 0.44 𝑚𝑚. 

 

Table 4.1 presents the sample data [8] of a lab mixture, as well as the number of elements 

needed to approximate this volume. It is noted that since the aggregate shapes differ from 

Al Khateeb’s research, the number of elements per sieve size also differs. The number of 

elements per sieve size was chosen such that the volume accurately matches the given 

data. Equation 4.1 shows how the average thickness of the mortar layer is determined.  

  

https://youtu.be/A5aAu_hbEQc
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Table 4.1: Example data of a lab mixture 

Sieve Size (mm) 
Min Max 

 

Aggregates 
Volume (𝐜𝐦𝟑)  

Number of 
elements 

Elements 
Volume (𝒄𝒎𝟑) 

Surface  
Area (𝒄𝒎𝟐) 

2.0 5.6 46.37 870 46.41 663.49 
5.6 8.0 141.88 552 142.05 1267.11 
8.0 11.2 218.35 303 218.70 1384.74 

11.2 16.0 136.48 67 138.05 615.36 
16.0 22.4 11.05 2 12.17 37.23 

Mortar 174.83 - - - 

Total 728.95 1794 557.38 3967.93 
 

𝜏𝑚𝑜𝑟 =
𝑉𝑚𝑜𝑟
∑𝐴𝑎𝑔𝑔

=
174 830

396 793
≈ 0.44 𝑚𝑚 (4.1) 

 

Although this gives an indication of the average mortar thickness, it is noted that this value 

cannot be interpreted as a standard value, but needs to be determined per mixture and 

differs with degradation, aggregate shape and amount of bituminous binder.  

 

In order to accommodate for the different properties for the mortar and the aggregates, 

it was chosen to work with a so called ‘multibody’. First, the aggregate shape was 

implemented with the desired sieve size. Second, a slightly bigger element was 

implemented, and rigidly connected, to represent the mortar layer. This allows for 

mortar–mortar interactions to be modelled with Burgers’ contact model, and aggregate–

aggregate interactions using a non-penetration condition. Figure 4.3 shows an example of 

the implementation of the mortar coating on an aggregate. 

 

 
Figure 4.3: Implementation of the mortar layer (transparent) on an aggregate 

 

One might argue that this does not lead to a uniform mortar thickness for non-spherical 

shapes, which is indeed the case. In fact, the mortar layer thickness is overestimated at 

the elongated parts. This effect is somewhat mitigated by the relatively small contact area 

at these places.  
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For consistency it was chosen to let aggregates and the mortar layers of different elements 

never interact with each other. So, mortar – mortar leads to Burgers’ forces, and aggregate 

– aggregate leads to a non-penetration condition. Any mortar – aggregate collision was 

ignored. This could easily be changed with more complex contact conditions.  

 

4.3 Degradation 

Al Khateeb’s [8] degradation has been used for this research as well. With the only 

difference being that the maximum aggregate size was chosen to be 16 𝑚𝑚. The volume 

of the aggregates larger than that is added to the 11.2–16.0 𝑚𝑚 sieve size. This is done to 

avoid a small number of elements in the largest sieve size, and so create a more accurate 

volume percentage in all groups. Also, there was chosen for a mould diameter of 100 𝑚𝑚, 

which does not allow for aggregates larger than 16 mm [2]. A linear element size 

distribution was chosen for the sieves. Table 4.2 gives the degradation of the digital 

specimen used during the simulations. 

 
Table 4.2: Degradation digital specimen 

Sieve Size (mm) 
Min Max 

 

Aggregates volume  
(%) 

Number of elements 
 

2.0 5.6 8.4 726 
5.6 8.0 25.6 461 
8.0 11.2 39.3 253 

11.2 16.0 26.7 60 

Total 100 1500 
 

A mould diameter of 100 𝑚𝑚, together with 1500 elements, allows for reasonable 

computation time and meets the requirements for ℎ𝑚𝑖𝑛 [2], as described in Equation 2.2. 

The actual volume per sieve changes slightly with the randomly selected aggregates. Since 

the number of elements per sieve is large, the volume remains considerably consistent.  

 

4.4 Contact area 

Burgers’ contact forces depend on the contact area, and since PyBullet does not assess the 

contact area or volume, this has to be done manually. Both can be accurately determined 

using ray tracing, a technique for modelling light transport.  

 

Figure 4.4a shows an example of an aggregate, which interacts with another element 

during the simulation. Figure 4.4b removes the part of the aggregate which overlaps, 

revealing the contact area in white. The black dot represents the contact point, which is 

the point where the overlap is the largest. Figure 4.4c shows how the contact area can be 

estimated using ray tracing. Eight rays have been casted in different directions from the 

contact point. The distance of these rays can be measured. The lower limit for the contact 

area is presented in blue.  
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Figure 3.4a: Aggregate Figure 3.4b: Aggregate with contact area (white 

pattern), and contact point (black dot) 

  

  
Figure 3.4c: Estimated contact area (blue),  

using perpendicular ray tracing (red) 
Figure 3.4d: Estimated contact volume,  
using parallel ray tracing (black dots) 

 
Figure 4.4: Determining the contact area and volume 

 

Since all elements in PyBullet are convex, any concave shape cannot exist in the contact 

surface. Therefore, Equation 4.2 gives the lower limit for the contact area 𝐴𝑐, based on the 

number of rays 𝑛𝑟 , and length of the rays 𝑟𝑖.  

 

𝐴𝑐 ≥
1

2
sin (

2𝜋

𝑛𝑟
)∑𝑟𝑖 𝑟𝑖+1

𝑛

𝑖=1

 (4.2) 

 

In the case of two colliding elements, the contact area of both are to be determined, and 

the lowest value should be chosen. To enhance precision, more rays could be casted. Also, 

the shape of the contact area could be more accurately described by utilizing the angle of 

contact. The latter involving some more advanced mathematics. Both would come at the 

cost of additional computation time. However, this method does demonstrate the 

possibility of determining the contact area.  

 

Ray tracing also allows for determining the contact volume, which is useful for 

determining the total volume loss. Figure 3.4d presents the same aggregate, where again 

the part of the aggregate which overlaps has been removed for visibility. The black dots 

represent rays parallel to the contact normal. These rays give the height of the particle at 

every location. This allows for the calculation of the contact volume. Equation 4.3 gives 
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the total contact volume, as a function of the distance between rays, Δ𝑟, and the length of 

the rays 𝑟𝑖.  

 

𝑉𝑐 ≈ Δ𝑟
2∑𝑟𝑖

𝑛𝑟

𝑖=1

 (4.3) 

 

Alternatively, more sophisticated numerical integration techniques can be used [43]. Also, 

by taking into consideration the angle at which the rays are reflected, the contact volume 

could be determined very precisely. Since many rays are casted, determining the volume 

does come at the price of additional computation time. Therefore, this method is only 

useful for post-processing in case volume losses are to be determined.  

 

4.5 Boundary conditions 

As described in Paragraph 2.3, the asphalt specimen is subjected to specific boundary 

conditions during gyratory compaction. The key properties are: the gyratory motion of 

the cylindrical mould, and the compressive force on the top end plate, which must remain 

horizontal [2]. This is achieved by the the implementation of specific objects in the Bullet 

Physcis engine, and carefully setting the correct position, orientation, and velocity for 

each element in time.  

 

Implementation of the mould 

The mould restricts the elements from sideways motion, and causes the gyration of the 

asphalt specimen. The mould is velocity controlled, meaning that it is not influenced by 

other objects or gravity. Instead, the position and velocity in each time step are fully 

determined by the programming code. For every time step the correct position and 

velocity needs to be determined in order to let Bullet correctly assess the contact forces 

and friction.  

 

The mould consists of lamellae, just like a circle can be built up from multiple linear 

segments. These lamellae can be rotated in any orientation to simulate the angle of 

gyration and rotational velocity. In order to correctly implement these segments, three 

sequential operations have to be performed. This is done using quaternion multiplication. 

One lamella consists of a vertical panel at location [1 2⁄ , 0, 0]. The diameter of the mould 

can easily be changed by resizing the object. By implementing multiple panels at different 

orientations, the entire mould is created. Considering 𝑛𝑚𝑙𝑑 as the number of mould 

lamellae. Equation 4.4 shows the rotation of all segments 𝑖 over the 𝑧-axis to form the 

cylinder itself.  

 

𝒒𝟏,𝒊 (𝛼 = 0 ;  𝛽 = 0 ;  𝛾 = 2𝜋
𝑖

𝑛𝑚𝑙𝑑
) (4.4) 

 
𝑤𝑖𝑡ℎ   𝑖 = 0, 1, 2, … , 𝑛𝑚𝑙𝑑 − 1 

 

 

Next, the segments are rotated, such that the angle of gyration 𝜙, is satisfied. Equation 4.5 

presents the rotation over the 𝑥-axis.  
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𝒒𝟐(𝛼 = 𝜙 ;  𝛽 = 0 ;  𝛾 = 0)  (4.5) 
 

The rotations also need to be correctly described over time. Equation 4.6 presents the 

rotation over a time segment 𝑗 over the 𝑧-axis.  

 

𝒒𝟑,𝒋 (𝛼 = 0 ;  𝛽 = 0 ;  𝛾 =
2𝜋 𝑗

𝑇𝑚𝑙𝑑 Δ𝑡⁄
) (4.6) 

 
𝑤𝑖𝑡ℎ   𝑗 = 0, 1, 2, … , 𝑇𝑚𝑙𝑑 Δ𝑡⁄ − 1 

 

 

In order to convert Euler rotations to quaternions, Equation 2.4 can be used. Alternatively, 

PyBullet offers a built-in function ‘getQuaternionFromEuler’. It is noted that the number 

of time steps 𝑗 is not limited, but simply continues at 0 after the last value is reached. 

 

In order to get the final orientations, Equation 4.7 quaternion multiplies the three 

rotations to get the correct rotation for every segment 𝑖, at every time step 𝑗.  

 
𝒒𝒊𝒋 = 𝒒𝟏,𝒊 ⋅ 𝒒𝟐 ⋅ 𝒒𝟑,𝒋  (4.7) 

 

This way, the correct orientation at every discretised time step is determined. It is noted 

that only the orientation is described, which does not lead to a velocity in the simulation. 

In order the ensure the correct direction for the friction, the velocity of the mould is 

determined as well. Equation 4.8 gives the rotational velocity of the mould around the 𝑧-

axis.  

 

𝜔𝑧 =
2𝜋

𝑇𝑚𝑙𝑑
 (4.8) 

 

Equation 4.9 gives the velocity of the mould at a point with height ℎ. 

 

𝑣 = 𝜔𝑧ℎ sin(𝜙)  (4.9) 
 

Equation 4.10 shows how to separate the velocity in 𝑥 and 𝑦 direction. Where 𝜙 is the 

angle of gyration, and 𝛾 is the current rotation around the 𝑧-axis.  

 

𝑣𝑥 = 𝑣 sin(𝛾) = 2𝜋
ℎ

𝑇𝑚𝑙𝑑
sin(𝜙) sin(𝛾) 

𝑣𝑦 = 𝑣 cos(𝛾) = 2𝜋
ℎ

𝑇𝑚𝑙𝑑
sin(𝜙) cos(𝛾) 

(4.10) 

 

Equation 4.11 show how the rotational velocity around the 𝑥 and 𝑦 axes is determined.  

 

𝜔𝑥 = −
𝑣𝑦

ℎ
= −

2𝜋

𝑇𝑚𝑙𝑑
sin(𝜙) sin(𝛾) 

𝜔𝑦 =
𝑣𝑥
ℎ
=

2𝜋

𝑇𝑚𝑙𝑑
sin(𝜙) cos(𝛾) 

(4.11) 
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This final rotational velocity is implemented in every discretised time step for the mould, 

such that is accurately describes the linear velocity at every point of the mould. 

Alternatively to the lamellae, the mould could be created using a single concave cylindrical 

element. This improves the computation time, but runs the risk of losing elements in case 

of relatively large overlaps, which might happen in the case of very small elements or at 

relatively large angles of gyration.  

 

Implementation of the end plates 

The end plates on top and the bottom refrain the particles from up- and downward 

motion. The compressive force is applied on the top end plate. Preferably, the end plates 

remains horizontally [2]. The bottom end plate is a static object. The top end plate needs 

to receive the correct position and velocity. This object also exerts the compressive force 

on top. Two methods exist for modelling the end plate, where the end plate’s horizontal 

position is velocity controlled, and the height is unrestrained. This could be achieved by 

creating a contact link between the dynamic and a static object, or by implementing 

velocity controlled objects around the end plate. The latter was chosen. The end plate is 

modelled as an unrestrained octagonal prism, which is wider than the mould such that 

there are no gaps. The horizontal location, as well as its rotation are restricted by place 

controlled tetrahedrons. This way, the only degree of freedom is the height of the end 

plate. Figure 4.5 gives a visual representation of the collision shape, where the bottom of 

the object functions as the top end plate.  

 

  
Figure 4.5: End plate’s collision shape Figure 4.6: Mould’s visual shape 
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The horizontal motion has to be precisely described in order to make the simulation valid, 

so that friction can be correctly modelled. Equation 4.10 from gives the correct horizontal 

velocities. The bottom end plate was modelled as a static element, which does not move.  

 

Of course, the word ‘plate’ does not accurately describe this object. However, at the 

bottom it acts as a horizontal plate with horizontal locations prescribed, and free vertical 

motion. During post-processing, these objects are replaced by a visually more appealing 

end plate. Figure 4.6 shows what the final mould looks like. 

 

4.6 Simulation processes 

The simulation consists of three phases: placement, compaction, and analysis. It is useful 

to separate the placement and the gyratory compaction process, as the initial positions 

are re-used many times for parametric study. The analysis can only take place after the 

simulation is completed, as the simulation time is well beyond the compaction time. The 

latter also allowing for the creation of a video.  

 

Placement process 

An important aspect of performing a simulation with granular material is the placement 

of particles. The elements must be arranged in a realistic manner, lie still, and may not 

overlap. Also, in the case of hot asphalt mixtures, the top surface of the specimen must be 

relatively flat before compaction.  

 

Although this is a study in itself, a simple tool has been developed to meet these 

requirements. Figures 4.7, on the next page, gives a visual representation of the placement 

process. A video is also presented. Figures 4.7a shows how all elements are first placed in 

circles with sufficient spacing between them such that these do not overlap. Figures 4.7b-

d show how they are then subjected to gravity only, so that the particles can arrange 

themselves. Figures 4.7e shows how the mould is consecutively rotated slightly such that 

the angle of gyration is satisfied. Figures 4.7f shows how the elements are finally pre-

compressed resulting in a relatively flat surface of the specimen. Finally, the initial 

positions, orientations, sizes and shapes are stored in text files, such that the elements can 

easily be loaded during the simulation. During this positioning, the mortar layer is treated 

as impenetrable, as to avoid initial overlaps.  
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Figure 4.7a: Pre-placing  
with sufficient spacing 

Figure 4.7b: Elements are  
subject to gravity (1) 

Figure 4.7c: Elements are  
subject to gravity (2) 

   

   
Figure 4.7d: All elements  

are stationary 
Figure 4.7e: Rotation of the mould 

to the desired angle of gyration 
Figure 4.7f: Pre-compression  

of the specimen 
   

Figure 4.7: Particle placement process  
(a video of this simulation is also available [19]) 

 

  

https://youtu.be/3Ut6rITNJsQ
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The NEN norms do not specify specific criteria for pre-compression. Therefore it is chosen 

to compress the specimen until the top end plate is semi-static. In practice, this means 

until it reaches a certain velocity. A practical value is 0.25 𝑚𝑚 𝑠⁄ . This results in a 

specimen which is relatively flat on the top, and gives an acceptable initial compression 

rate during the simulation.  

 

Gyratory compaction process 

The gyratory compaction process forms the main body of the simulation. The process is 

described in Paragraphs 2.3 and 4.5. The initial positions of the elements follow from the 

placement process, as described above. The number of gyrations is set to 100 for all 

simulations. With 1500 aggregates and mortar shapes this results in a computation time 

of 12 to 14 hours on an i5 desktop processor. Multiple simulations can be run in parallel 

simply by creating multiple instances. Memory usage is well below 2 GB for a simulation. 

This means that it can easily be run on any desktop pc. Parametric study can be performed 

by changing specific properties, while all other properties remain identical, including 

initial positions and exact degradation of the aggregates. Finally, the positions, and 

orientations over time, as well as the height of the top end plate, are stored to a text file, 

such that these can be used during the post-processing analysis. 

 

Post-processing 

The main goal of post-processing is the analysis of the results. This includes creating the 

void curve, a video of the simulation, and visualizing trajectories of the aggregates inside 

the mould. The height of the end plate over time allows for the determination of the mean 

air void content over time. Screen shots and videos are made visually more appealing by 

adding rock textures, and creating attractive visual shapes for the mould and end plates 

as described in Paragraph 4.5. When analysing aggregate trajectories, this initially 

resulted in oscillatory movement, as the mould is gyrating. An easy method to overcome 

this is by only presenting the data at one specific orientation of the mould, or positioning 

the aggregates relatively to the centre of the mould.  
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5 Verification of the model 
 

5.1 Verification questions 

This section verifies the numerical contact model as described in chapter 3. In order to 

verify Burgers’ equation of motion, the numerical model is compared with the analytical 

solution. The four research questions are as follows.  

1. Are the displacements over time determined correctly during compression under a 

constant external force?  

2. Is the non-penetration condition in order for the aggregates?  

3. Is the contact force over time determined correctly in the case of a constant velocity?  

4. What is the influence of the mass on the results?  

 

5.2 Experiment to verify the numerical model 

To answer these verification questions, a simple experiment is performed. The 

experiment runs as follows: two unit-size elements with a mortar layer of 0.44 𝑚𝑚 are 1) 

compressed using a constant external force, 2) held into place by the non-penetration 

condition of the aggregates, and 3) pulled apart from each other with a constant velocity. 

The process is repeated with a different mass for the aggregates. Figure 5.1 gives a visual 

representation of the simulation. Table 5.1 gives the properties of the simulation.  

 

 
Figure 5.1: Verification experiment 

 
Table 5.1: Properties of the verification experiment 

Variable Symbol Value Unit 
Thickness of the mortar layer 𝜏𝑚𝑜𝑟 0.44 𝑚𝑚 
Temperature 𝑇 150 °𝐶 
Contact area (constant) 𝐴𝑐 0.88 𝑚𝑚2 
Force (phase 1 & 2) 𝐹0 1.0 𝑁 
Velocity (phase 3) 𝑢3 −2.0 ⋅ 10−3 𝑚𝑚 𝑠⁄  

effective mass aggregates 𝑚𝑒𝑓𝑓 0.1 ↔ 10 𝑘𝑔 

effective stiffness aggregates 𝑘𝑒𝑓𝑓 1.0 ⋅ 103 𝑁 𝑚𝑚⁄  

Critical damping aggregates 𝑐𝑐𝑟 2√𝑘𝑒𝑓𝑓𝑚𝑒𝑓𝑓  𝑁𝑠 𝑚𝑚⁄  
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Equation 5.1 shows how the effective mass of the aggregates is calculated. The equation 

is comparable to the effective stiffness of two springs in series.  

 

𝑚𝑒𝑓𝑓 =
𝑚𝐴𝑚𝐵

𝑚𝐴 +𝑚𝐵
 (5.1) 

 

5.3 Comparison between the numerical and analytical results 

First, the two particles with an effective mass of 0.1 𝑘𝑔 are being analysed. Figure 5.2 gives 

the displacement of the particles over time. Both the analytical and numerical solution are 

presented. Three segments are distinguished. In the first segment, the simulation is force 

controlled while the elements are drawing nearer. In the second segment, the aggregates 

touch and the non-penetration condition is activated, while the compressive forces are 

still being active. In the third segment, the simulation is velocity controlled while the 

elements move apart from each other.  

 

Figure 5.2: Displacements over time 

 

Figure 5.3 shows the Burgers’ contact force over time. In the first segment, the simulation 

is force-driven, resulting in a constant force. In the second segment, the displacement 

remains constant, resulting in the Burgers’ forces going to zero over time. It is noted that 

in the second segment, the actual contact forces are bigger due to the non-penetration 

condition. In the third part, where the elements separate, the contact forces become 

negative, meaning a tensional force is present between the elements.  
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Figure 5.3: Burgers’ contact forces over time 

 

The first three validation questions can be answered in the affirmative, as Figures 5.2 and 

5.3 show that the numerical and analytical solution are well in agreement with each other. 

However, also a few differences can be observed. Figure 5.2 shows that at the start of the 

simulation, the numerical solution starts with zero initial overlap, whereas the analytical 

solution starts with an initial elastic deformation. Figure 5.3 shows that the same 

phenomenon occurs in case of the Burgers’ contact force. This is caused by neglecting 

inertia in the theoretical model, such that instantaneous deformations can occur. What is 

more, the numerical solution seems to make oscillations at the start, which is discussed 

further in this paragraph. Despite the initial differences, the solutions are well in 

agreement with each other.  

 

To investigate this issue further, two particles with an effective mass of 10 𝑘𝑔 are being 

analysed. Figure 5.4 gives the relative displacement of the particles. Figure 5.5 compares 

the Burgers’ contact force.  

 

Figure 5.4: Displacements over time 
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Figure 5.5: Burgers’ contact forces over time 

 

Figures 5.4 and 5.5 show an increase in the oscillatory motion. Thus, it becomes clear that 

the initial oscillations are indeed caused by the inertia of the elements, and become more 

pronounced in the case of larger masses. After some time, the oscillations die out, and the 

numerical solution converges towards the analytical one. After that, the results are 

correct.  

 

This allows for the answering of the fourth validation question. When comparing the 

results with the two different masses, it becomes clear that the initial oscillations die out 

more quickly with a smaller mass. What is more, the magnitude of the oscillations in the 

displacement are smaller in case of the smaller mass, whereas the magnitude of the 

oscillations in the Burgers’ contact forces is roughly the same. The oscillations in the 

displacement are of much greater importance, since two interacting elements may lose 

contact too early in case of an external pulling force.  

 

This experiment shows that there is a maximum value for the mass, for which the 

numerical solution can be considered correct. A realistic mass would be in the order of 

milligrams, instead of kilograms. It is useful to know that a much larger mass can still lead 

to correct results. However, the problem with implementing realistic masses with this 

method is that the computation time increases drastically, and so becomes impractical.  

 

5.4 Verification of the semi-analytical solution 

The implementation of the semi-analytical solution in a stand alone tool gave very similar 

results as displayed in Paragraph 5.3, and the method itself is therefore verified. There is 

no need to present these almost identical graphs here again.  

 

However, after implementing this method in PyBullet, instability was observed, where 

rapid motion occurs. These oscillations are much bigger and more rapid than what was 

seen in Figure 5.4. The cause for this is in the integration method, where Bullet makes use 

multiple iterations per time step to ensure stability. When applying Burgers’ contact force 

as an external force, these are determined only once per time step, and are not considered 

during the iterative process. Thus, this can quickly lead to instability. Therefore, it proves 

impractical to directly implement a custom contact model in PyBullet.  
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5.5 Improved Burgers’ contact model 

During the simulations with Burgers’ contact model, oscillations were observed, as is 

shown in Figure 5.4. This does not accurately describe the material behaviour. Since the 

magnitude of the oscillations depends on the mass, this is likely to be caused by the 

neglected inertia terms. Therefore this paragraph proposes two improved contact 

models.  

 

Figure 3.1 presented the currently existing Burgers’ contact model. It showed that the 

Maxwell spring is undamped, which is likely to cause the oscillations. This spring was 

intended for instantaneous elastic deformation, but unfortunately resulted in unrealistic 

oscillations. Therefore, two improved models are proposed: one where this spring 

receives an additional damper, and one where it is removed altogether. The values for the 

springs and dampers change as well.  

 

Figure 5.6 presents the first proposal for an improved contact model. Parallel to the 

Maxwell spring on the left side, a critical damper is added. Equation 5.2 presents the value 

for the added Maxwell damper. Also the Kelvin-Voigt damper on the right side must be 

critically or supercritically damped. Equation 5.3 gives the new value for this damper. 

Equation 5.4 presents the equation of motion. A derivation can be found in appendix F.  

 

 

 
Figure 5.6: Improved Burgers’ contact model – expanded version 

 

𝑐̂𝑀 = 2√𝑘𝑀𝑚𝑒𝑓𝑓  (5.2) 

 

𝑐̂𝐾 = max(𝑐𝐾 ;  2√𝑘𝐾𝑚𝑒𝑓𝑓)  (5.3) 

 
𝑤𝑖𝑡ℎ 

𝑚𝑒𝑓𝑓 =
𝑚𝐴𝑚𝐵

𝑚𝐴 +𝑚𝐵
 

 

 

(𝑐𝑀𝑐̂𝐾 + 𝑐𝑀𝑐̂𝑀 + 𝑐̂𝐾𝑐̂𝑀)𝐹̈ + (𝑐𝑀𝑘𝐾 + 𝑐𝑀𝑘𝑀 + 𝑐̂𝑀𝑘𝐾 + 𝑐̂𝐾𝑘𝑀)𝐹̇ + 𝑘𝐾𝑘𝑀 𝐹
= 𝑐𝑀𝑐̂𝐾𝑐̂𝑀 𝑢̇̈ + (𝑐𝑀𝑐̂𝐾𝑘𝑀 + 𝑐𝑀𝑐̂𝑀𝑘𝐾)𝑢̈ + 𝑐𝑀𝑘𝐾𝑘𝑀 𝑢̇ 

(5.4) 

 

It is noted that this model can only be applied if long term deformations are of interest, as 

the instantaneous elastic deformations are replaced by short term deformations.  
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To further improve and simplify the model, the Maxwell and Kelvin-Voigt springs could 

also be merged into a single spring, combined with critical damping. This way, the 

Maxwell part is only left with its damper. This significantly simplifies the contact model, 

but robs the user of adding supercritical damping to the Kelvin-Voigt part, and can thus 

only be used in case the viscoelastic and elastic displacements are considered short-term 

and only the long-term deformations are of importance. Figure 5.7 presents this improved 

model. Equations 5.5 and 5.6 present the values for the Kelvin-Voigt components. 

Equation 5.7 gives the equation of motion for this contact model, which can simply be 

obtained by setting 𝑘𝑀 → ∞ in Equation 3.8. 

 

 
Figure 5.7: Improved Burgers’ contact model – reduced version 

 

𝑘𝑒𝑓𝑓 =
𝑘𝐾𝑘𝑀
𝑘𝐾 + 𝑘𝑀

 (5.5) 

 

𝑐𝑐𝑟 = 2√𝑘𝑒𝑓𝑓𝑚𝑒𝑓𝑓  (5.6) 

 
𝑐𝑐𝑟 + 𝑐𝑀
𝑘𝑒𝑓𝑓

𝐹̇ + 𝐹 =
𝑐𝑐𝑟𝑐𝑀
𝑘𝑒𝑓𝑓

 𝑢̈ + 𝑐𝑀𝑢̇ (5.7) 

 

So, the first proposed contact model still contains elastic, viscous, as well as viscoelastic 

deformation. The second model only contains two: the short term and long term 

deformation, where the short term deformation contains both the elastic and viscoelastic 

part, and the long term deformation contains the viscous part. A downside to these new 

contact models is the additional energy dissipation for the elastic part. Therefore, in case 

a new material is being analysed, the values for the springs and dampers could be 

obtained by means of fitting an analytical solution on a test experiment using the least 

squares method. 

 

In order to analyse the effects of the improved models, the same two experiments have 

been done, where again the masses of the elements differ. First, Figure 5.8 presents the 

deformation with a relatively large mass. Second, Figure 5.9 shows the deformation for a 

relatively small mass. All three numerical models, as well as the analytical solution are 

presented. Since the oscillations only occur in the beginning of the verification 

experiment, only this part is considered here. 

 



Verification of the model 
 

44 
 
 

 

 
Figure 5.8: Behaviour of the improved Burgers’ contact models with a relatively large mass 

 

  
Figure 5.9: Behaviour of the improved Burgers’ contact models with a relatively small mass 

 

Although all three numerical solutions are correct on the long term under constant 

pressure, it becomes clear that both the improved models approximate the analytical 

solution better on the short term. Therefore, it is recommended to use one of these. In 

case the viscoelastic deformation is considered short term and only long term behaviour 

is of importance, the simplified method is to be preferred, as this one is the easiest to 

implement in a numerical model. 
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6 Results and applications 
 

6.1 Compaction process 

It proved impractical to implement Burgers’ contact model in PyBullet. Still, it is useful to 

know if the software itself is capable of running large scale simulations. To illustrate that 

Bullet Physics is a viable physics engine for performing digital superpave gyratory 

compaction, this chapter describes various simulations, where the mortar layer was 

modelled with a damper, such that it reasonably resembles the mortar dynamics. This 

way, the non-penetration condition of the aggregates and the viscous deformation of the 

mortar layer can be modelled. The elastic and viscoelastic deformation are not present. 

Thus, the results could be interpreted as an upper bound for the air void content of the 

specimen under a constant pressure. Figure 6.1 gives a visual representation of the digital 

superpave gyratory compaction process. A video is also presented.  

 

   
Figure 6.1a: Initial positions Figure 6.1b: Positions  

after 7 gyrations 
Figure 6.1c: Positions  

after 100 gyrations 
 

Figure 6.1: Superpave gyratory compaction simulation in Bullet Physics  
(a video of this simulation is also available [19]) 

 

First of all, it is important to research the consistency of the simulations. Therefore, three 

tests have been performed with the same target degradation, but different initial positions 

and randomly selected shapes for the aggregates. Figure 6.2 presents the mean air void 

content over the number of gyrations for three different simulations. Figure 6.3 shows the 

coefficient of variation over time, and the 1.5% threshold which may not be exceeded after 

20 gyrations [2].  

 

https://youtu.be/VfCSJ1ONd8o
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Figure 6.2: Consistency test of three simulations 

 

Figure 6.3: Coefficient of variation of the three simulations 

 

Figures 6.2 and 6.3 show that the simulations in Bullet Physics are very consistent. The 

initial positions, and randomly selected shapes of the aggregates do not significantly 

influence the result and are well within the norms. The coefficient of variation is well 

below the threshold, even before 20 gyrations. 
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6.2 Relevance of inertia 

A useful advantage of a simulation versus an experiment is that specific properties can be 

changed, which cannot easily be altered during a laboratory test, while all other 

conditions can remain identical. This way, the influence of these specific properties can 

be investigated. For example, inertia is a variable that could potentially be influenced 

during an experiment by varying materials, but this does not nearly give the range or 

precision of parameterized simulations, as is demonstrated in this paragraph.  

 

Strogatz [33] has stated that in highly viscous environments, inertia could in some cases 

be neglected. In order to validate whether that is true in the case of asphalt compaction, 

Figure 6.4 shows the results of three different simulations: one where the mass was 

lowered, and one where the mass was increased. These two are compared to an earlier 

obtained compaction result. Figure 6.5 presents the coefficient of variation for these 

samples. In order to ensure that all other parameters are the same, gravity was turned off 

for this simulation.  

 

 
Figure 6.4: Void graph with different inertial properties 
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Figure 6.5: Comparison of the coefficient of variation 

 

Figures 6.4 and 6.5 show that the compaction results with varying masses are 

indistinguishable compared to the noise caused by varying initial conditions. The 

coefficient of variation is of the same order of magnitude and does not exceed the 1.5% 

threshold. Therefore, it can be concluded that inertia can indeed be neglected in the case 

of hot asphalt compaction. Only the viscosity of the binder, and stiffness of the aggregates 

are of real importance.  

 

6.3 Revolving aggregates 

Another advantage of simulations over experiments is the possibility to better analyse 

and understand the behaviour of the aggregates within the mould. Not only can the 

sample be observed from all possible angles, and can elements be tracked, but the 

simulation can also be sped up or slowed down, resulting in observations that cannot 

easily be seen in real experiments.  

 

During the compaction simulations, it was observed that the aggregates revolve around 

the vertical axis within the mould, in the opposite direction of the rotation of the mould. 

These revolutionary velocities of the aggregates increases with the height. The 

phenomenon of aggregate revolution inside the gyrating mould has been observed before 

[16]. Figure 6.6 gives a top view of the mould, and shows the trajectories of the aggregates 

during the gyratory compaction. Figure 6.7 presents the revolution of the aggregates over 

the height of the mould. Negative values correspond with clockwise rotation, whereas the 

mould rotates counter-clockwise. A video is also presented. 
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Figure 6.6: Aggregate revolution after 100 gyrations of the top 75 elements  

 

 
Figure 6.7: Aggregate revolution over the height 

(a video of this phenomenon is also available [19]) 

https://youtu.be/X7umQmvduOA
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Figure 6.7 shows a couple of remarkable things: the aggregates barely revolve at the 

bottom half of the mould. At the top half, the aggregate’s velocity depends on the height. 

The higher an aggregate is located, the faster it moves. Also, at the bottom of the graph a 

relatively dense agglomeration of aggregates can be found. At the top, the opposite can be 

observed. This indicates that the smaller particles have the tendency to be in lower 

locations. Due to gravity, smaller elements tend to fill up the voids.  

 

6.4 Influence of friction 

Another property that can be well investigated by a simulation, is the influence of the 

friction parameters. During a simulation, any value can be chosen, or friction can be 

completely turned off. Completely identical initial positions were selected to further rule 

out any noise caused by this. Figure 6.8 gives the mean air void content over the number 

of gyrations for different frictional properties. Friction has been set to zero for both the 

aggregates and the mould, to better understand the influence of both of these on the 

results. 

 

 
Figure 6.8: Mean air void graph with different friction parameters 

 

Figure 6.8 shows that friction is of great importance when it comes to asphalt compaction.  

Larger values for the friction lead to a slowing down of the compaction process. It also 

shows that the friction between the aggregates is most important. The friction between 

the aggregates and the mould seems to have no significant role in the density curve.  

 

Also the influence of friction on the revolution of the aggregates can be investigated. 

Figure 6.9 presents the revolution of the aggregates over the height of the mould, and 

compares the influence of the different friction parameters.  
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Figure 6.9: Aggregate revolution over the height with different friction parameters 

 

Figure 6.9 shows that the revolutionary motion of the aggregates is not only caused by the 

gyration of the mould, but also by the lateral contact model. Especially the friction 

between the aggregates is of importance. In case the friction of the mould is set to zero, 

the aggregates rotate in the same direction as the mould at the bottom half.  

 

6.5 Contact Area 

In earlier research [16] it was estimated that the average contact area of two colliding 

elements equals half the surface area of the smallest of the two. However, this does not 

accurately reflect the true contact area. To illustrate this, Figure 6.10 shows the calculated 

contact area using ray tracing (see Section 4.4) versus the element size for a typical 

asphalt sample (see Table 4.2). For every collision, two dots are presented: one for each 

element size.  
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Figure 6.10: Contact area vs. element size for a compacted specimen 

 

Figure 6.10 shows that the average contact area remains somewhat constant over the 

element size. Also, a large variance can be found. Due to the large number of smaller 

elements in the degradation, it is hypothesised that most of the contacts are with these 

smaller elements which could explain the constant average value. Figure 6.11 shows the 

same graph, but with Komaragiri’s [16] estimation added in red. This shows that the 

contact area is estimated correctly for small particles, but is hugely overestimated for 

larger elements. 

 

Figure 6.11: Validation of the contact area assumption 
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In conclusion, if the contact area is to be estimated, it is recommended to determine this 

once for a compacted specimen using ray tracing. This average contact area will most 

likely depend on the degradation, aggregate shape and thickness of the mortar layer. In 

the case of the sample’s properties as described in this report (see Paragraphs 4.1-3), the 

average contact area could be estimated as 15 𝑚𝑚2. 

 

6.6 Computation time and memory usage 

Since research time and resources are limited, computation time is of importance in order 

to assess the utility of a simulation. Therefore, additionally to the previous experiments, 

an additional simulation has been performed by adding four times the number of 

elements to the simulation. This way, results regarding computation time and memory 

usage can be compared and extrapolated for any number of particles.  

 

All simulations were performed on a desktop pc with an i5 6600K processor, clocked at 

4.2 GHz. All relevant specifications of the simulation can be found in Table 6.1. The 

processor is the main factor which determines the computational speed [44]. The amount 

of memory should be sufficient to perform the simulation. Since the mortar layers are 

implemented as separate elements, the number of dynamic elements is twice the number 

of aggregates. It is noted that PyBullet does not allow for multithreading, and the number 

of cores of a CPU is only relevant for running parallel simulations. Python does allow for 

running multiple simulations at the same time by initializing multiple instances, which 

can simply be done by opening multiple Notebooks. This can be useful for parametrical 

study or stochastic analysis. Multithreaded simulations are however implemented in the 

C++ module of Bullet Physics, allowing for marginal performance improvements [44].  

 
Table 6.1: Simulation properties 

Variable Simulation 1 Simulation 2 
simulation time (seconds) 200 
step size (seconds) 1/240 
iterations per step 50 
number of dynamic elements 2 × 1500 2 × 6000 
memory usage (GB) 1.2 3.6 
computation time (hours) 14.14 63.06 

 

Table 6.1 shows that with four times as many elements, both the computation time and 

memory usage increase. For further research, it is beneficial to know what number of 

elements leads to a reasonable computation time and memory usage. Therefore, the 

influence of the number of elements on computation time and memory usage is 

investigated. It is assumed that the computation time grows exponentially with the 

number of elements. The exponent may differ per simulation. Equation 6.1 shows how 

this time order can be determined. This number gives information about the efficiency of 

the physics engine. So, if there are twice as many elements, the computation time takes 

2𝑂 as long. 𝑓𝑡  is the increase factor in calculation time, and 𝑓𝑒 is the increase in number of 

elements.  

  



Results and applications 
 

54 
 
 

 

𝑂 = log𝑓𝑒(𝑓𝑡) = 1.078 (6.1) 
 
𝑤𝑖𝑡ℎ 

𝑓𝑡 =
𝑡𝑐2
𝑡𝑐1

=
63.06

14.14
= 4.46 

𝑓𝑒 =
𝑛𝑒𝑙2
𝑛𝑒𝑙1

=
6000

1500
= 4 

 

 

The time order is very close to 1, meaning that it manages collisions very efficiently. This 

opens the door for simulations with an extraordinary large number of elements. Equation 

6.2 shows how to determine the estimated computation time for a simulation of 100 

gyrations with 100 000 coated aggregates.  

 

𝑡𝑐3 = (
100 000

𝑛𝑒𝑙1
)

𝑂

⋅ 𝑡𝑐1 = 55 𝑑𝑎𝑦𝑠 (6.2) 

 

This shows that a very large number of elements can still be modelled within a reasonable 

amount of time, assuming that Bullet Physics can manage the number of elements. It is 

noted that these calculations are simulation specific, and could vary based on the 

degradation of the specimen, complexity of the contact model and aggregate shapes. This 

is therefore a rough estimate. If one takes into consideration that this is an older CPU 

model from 2015, and that the C++ version of Bullet Physics is faster in itself, which also 

allows for multithreading, the computation time might decrease drastically.  

 

Further, it can be observed that Bullet Physics requires a very low amount of memory. 

Only 1.2 GB for 1500 elements, and 3.6 GB for 6000 elements. Using linear interpolation, 

this would result in 52 GB for a simulation with 100 000 elements. In case collision shapes 

are re-used, this number might be significantly reduced. However, during the simulations 

it was observed that Bullet suffers from memory leakage. Meaning that over time, more 

and more memory is being used, which might become problematic in case of a long term 

simulation.  
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7 Conclusions and future research recommendations 
 

7.1 Answers to the research questions 

The main research goal of this report is to assess the utility of Bullet Physics for analysing 

hot asphalt compaction, and more specifically, for analysing the superpave gyratory 

compaction process. In order to describe the contact behaviour of the bituminous 

mixture, Burgers’ contact model has been implemented. Furthermore, a geometrical 

model of the superpave gyratory compaction process has been created, and the 

advantages of a simulation are mapped out. This allows for the answering of the research 

questions as follows. 

 

1. Can a complex contact model, such as the Burgers’ contact model, be implemented 
directly in PyBullet?  

 

PyBullet is a free-to-use open source physics engine with great potential. It was, however, 

not initially designed for simulations with a complex contact model. It proved 

cumbersome to implement a custom contact model in PyBullet. Two attempts have been 

made. In the first model, Bullet Physics was used for collision detection only, which was 

numerically integrated by a custom Python code, allowing for the implementation of any 

contact model. This accurately described the motion of the aggregates, but resulted in a 

computation time that do not allow for large scale simulations. A second model was 

therefore created, where the Burgers’ contact forces were implemented as external 

forces, and the numerical integration was done by Bullet itself. Also this model proves 

impractical, as the simulation becomes unstable, resulting in rapid oscillations. A 

standalone tool has shown that the model itself is correct, however. In conclusion, it 

proves impractical to implement a custom contact model in PyBullet. The only way to 

achieve this, is by altering the source code of Bullet Physics itself.  

 

2. Is Bullet Physics able to simulate the gyratory compaction process, and hot asphalt 
compaction in general?  

 

Despite this limitation, Bullet Physics has shown great capability for modelling the 

superpave gyratory compaction process. Aggregate shapes could easily be implemented, 

sieve sizes could be determined using a digital sieve, and the mortar layer could be 

modelled by slightly increasing the size of the aggregate meshes, and rigidly connecting it 

to the aggregate elements. The latter allows for a different contact model for the mortar 

layers and a non-penetration condition for the aggregates. By means of rescaling the 

elements, a precise degradation could be chosen. The shape of the mould, and end plates 

accurately resemble the actual situation. Furthermore, it proves possible to apply a large 

compressive force on the top end plate, while maintaining its correct position and 

orientation. This demonstrates the ability of Bullet Physics to model the gyratory 

compaction process, and provides a sold basis for field compaction as well.  
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3. Does Bullet Physics hold potential for future research when analysing hot asphalt 
compaction?  

 

It certainly does, and advantages of simulations are many. The simulations prove to be far 

more consistent than the requirements. It is demonstrated that inertia of the aggregates 

can be neglected. It is also observed that the aggregates revolve inside the mould during 

compaction, in opposite direction as the rotation of the mould. It can be demonstrated 

that the friction of the mould is of marginal influence, and the behaviour of the aggregates 

inside the mould strongly depends on friction between the aggregates themselves. Also, 

the contact area remains roughly constant over the element size. Most of these 

conclusions could not have been made using an actual gyratory compactor. An analysis of 

the computation time has shown that large scale simulations are possible within a 

reasonable amount of time. Apart from that, if a reliable model could be developed, this 

would be very cost-effective. These findings demonstrate the utility and advantages of 

Bullet Physics. 

 

7.2 Recommendations for future work 

Following these conclusions, in combination with the results and other experiences with 

Bullet Physics, this leads to recommendations and opportunities for future research.  

 

Implementing the custom contact model 

What cannot be done in PyBullet, is possible in Bullet Physics. Implementing Burgers’ 

contact model using Python proved possible, but very cumbersome. The only correct way 

of handling a custom contact model is by implementing it directly into the C++ version of 

Bullet Physics. This way the contact forces are not only determined at the beginning of 

each time step, but can be considered during the iterative process as well. This allows for 

more stability and faster computation.  

 

Mortar layer 

The mortar layer was modelled as a single element, slightly bigger than the aggregate, 

thus restricting the mortar from moving relatively to its aggregate. Whereas in reality, the 

mortar can deform, as well as relocate to any other position within the mould. This has 

four mayor consequences: first, deformation of the mortar layer might fill up air voids, 

resulting in higher contact forces at specific locations. Second, in the case of crushing, the 

digital layer simply overlapped with the other object, resulting in a volume loss, which 

might potentially lead to a negative air void content. Third, the deformation of the mortar 

layer leads to a higher contact area. Fourth, due to the possible displacement, an 

additional degree of freedom is added, and the contact forces might in reality be 

significantly lower compared to the rod model. In fact, due to the low thickness, it is 

doubtful whether the mortar layer plays a role at all when calculating the normal forces 

between aggregates. The instantaneous crushing of a mortar layer between two 

compressed aggregates is therefore not unlikely. Instead, the mortar layer might act like 

a glue or viscous liquid, resulting in viscous lateral damping and the elimination of 

friction. The properties of which depends on the temperature, allowing the aggregates to 

position themselves. The exact behaviour of the mortar layer during the compaction of a 

hot asphalt mixture is to be further investigated.  
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Furthermore, after initial contact and later separation between two elements, in reality 

the bitumen elongates holding the two elements together. During the simulation this was 

not considered, and after separation of the mortar layers, there was no force present 

anymore. To enhance the model, pulling forces could be added which are still active even 

after two elements have separated. A practical way to achieve this is by implementing an 

additional thicker mortar layer, which is only activated in case of initial contact, thus 

allowing for contact forces over longer distances.  

 

Aggregate shapes 

In this model, ten different aggregate shapes have been 3D scanned. These shapes have 

been used for all sieve sizes. As the shapes might differ per sieve size, it is advised to scan 

individual aggregates per sieve size.  

 

Furthermore, during the verification of the numerical model, a larger mass was chosen 

such that acceptable computation times were achieved. In reality, the mass of the 

elements is in the range of milligrams, instead of kilograms. It has been clearly 

demonstrated that inertia can be neglected. This might significantly improve the 

performance and stability of hot asphalt simulations. Further study might prove the 

validity and utility of this concept.  

 

Placement process 

The results of the gyratory compaction process strongly depends on the packing 

arrangements. During this research, a simple tool has been created to facilitate decent 

initial positioning of the aggregates. However, during simulation it shows that smaller 

particles tend to place themselves in lower positions, in between the larger elements. This 

has the effect of lowering the air void content in this section of the specimen. The air void 

content in the upper half increases this way, which did not match earlier test results either 

[8]. Therefore, developing a tool to model aggregate packing could be extremely helpful 

in facilitating further studies. 

 

Contact model 

Contact forces contain damping components that reflect the kinetic energy dissipated 

through microscopic actions such as the wave scattering and internal friction, and bring 

the simulation, if necessary, to a quasi-static state. In addition to viscous local damping 

acting at each contact, damping vectors should be proposed to consider the energy 

dissipation. 

 

This research focussed on laboratory compaction, where the environment is carefully 

controlled. For further research it is recommended to simulate and validate field 

compaction as well. This leads to increasing complexity in the contact model, since 

temperature and viscosity of the binder might vary greatly over the compaction time and 

volume.  
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A useful finding is the semi-analytical solution of Burgers’ contact model. Which solves 

the contact forces analytically over a small time step, instead of numerically. This might 

lead to enhanced precision, and is therefore recommended for further research. 

 

Improvements for Bullet Physics 

Bullet Physics proves to be a very efficient and reliable physics engine. The software was 

not initially designed for scientific research in the field of Pavement Engineering. 

Therefore, a few adaptations to the source code might prove to be useful.  

 

To enhance the accuracy and realism of the Bullet Physics engine, it is recommended to 

give the user the possibility of setting the dynamical properties for specific pairs of 

objects, instead of setting the properties for only the individual elements. This includes: 

contact stiffness and damping, friction coefficient, lateral viscous damping and restitution. 

Another valuable addition to Bullet Physics is to let contact forces depend on the contact 

area. Whereas the contact forces can currently only be modelled with a spring and 

damper, having these values multiplied with the contact area would yield more realistic 

contact forces. Furthermore, to specialize in the field of engineering, Bullet Physics could 

give the user the possibility to determine the contact forces between objects, based on a 

user-defined function. Making these changes would require the cooperation of the Bullet 

Physics developers, or advanced C++ programmers.  

 

It is also strongly recommended that researchers and Bullet Physics developers establish 

a better line of connection, since both suffer from a lack of knowledge. Researchers on the 

field of mechanics and material science lack full knowledge and potential of the Bullet 

software, resulting in sometimes clumsy models or lack of resources available already 

implemented in the Bullet software of which they are simply unaware. Also, useful 

modifications to the software are currently not always communicated. The same is true 

for Bullet developers. Some approximations and errors exist within the Bullet software 

that an expert in the field of physics could easily point out. A cooperation between the two 

would therefore be of mutual benefit.  

 

Furthermore, in Bullet Physics, interacting concave elements do not exist, which greatly 

simplifies the aggregate’s shape and limits the researcher’s ability to research aggregate 

interlocking. This is mainly due to the emphasis on computational speed. This could 

potentially be solved by rigidly connecting multiple convex parts to create concavity, but 

this workaround method can be cumbersome. A tool in Bullet physics could be developed 

to give the user the possibility of creating concave elements.  

 

Also, the mortar layer has been implemented by slightly increasing the aggregate’s shape. 

This does not lead to a uniform thickness in case of a non-spherical elements. Bullet 

Physics might add the possibility of creating a layer around an object with a constant 

thickness. 

 

Improvement for the NEN norms 

NEN-EN 12697-31 [2] describes the superpave gyratory compaction process in detail, 

which is a standardized tool for determining the void curve. One of the instructions is to 
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precompress the sample. However, this process leaves room for interpretation, which is 

disadvantageous for performing a standardized digital simulation. Therefore it is 

recommended that this subprocess is specifically described.  

 

Computation time 

Bullet Physics provides the possibility of running simulations with many elements while 

maintaining a reasonable computation time. For example, 100 000 coated aggregates 

could be modelled for 50 gyrations within 4 weeks. This gives researchers the possibility 

of better studying hot asphalt compaction, as this allows for the smallest of aggregates to 

be modelled. Alternatively, the bitumen could be modelled as separate elements, thus 

allowing for better studying the displacement and behaviour of this part of the mixture.  

 

Beauty of simplicity 

Although it is more accurate to model the behaviour of the mortar layer with Burgers’ 

contact model and viscous lateral damping, this report has shown that it is also possible 

to model superpave gyratory compaction using a damper and friction, which can easily be 

implemented. Herein lies the beauty of simplicity, which does not require further 

adaptations of the Bullet Physics software. It has been demonstrated that the compaction 

strongly depends on the friction, among other things. Perhaps an accurate description of 

the compaction process could be achieved by carefully tweaking the currently existing 

parameters. This would significantly reduce the amount of work required to perform 

simulations.  
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Appendix A: DEM exercise in Python 
 

What is fun about the Discrete Element Method (DEM), is that you can easily program it 

yourself in Python. In the link below, an example code for a DEM simulation in Python is 

presented. This could be interpreted as a bunch of ping pong balls in a box. Study it, then 

try to answer the questions, and see if you can obtain the objectives.  

 

The Python Notebook can be found here. It imports all relevant packages, sets the 

parameters, and makes a plot of the initial conditions. Also, the equation of motion is 

defined, and the initial value problem is numerically solved. Finally, an animation is 

created which can be stored as an mp4 file. 

 

Questions: 

1. Why are the contact forces in the equation of motion divided by 2? 

2. In what way could the equation of motion be optimized in terms of computation time?  

3. Imagine that, after the initial value problem has been solved, the accelerations over 

time are required. How can these best be obtained?  

 

Objectives: 

a. Add contact damping to the 1D DEM model.  

b. Add a custom force on an element as a function of time.  

c. Create elements with varying masses / sizes / contact stiffnesses (choose one). 

d. Create your own 2D DEM model.  

Tip: use atan2 for determining the contact force in both directions.  

e. Add gravity to the 2D model.  

f. Add varying masses / sizes / contact stiffnesses to the 2D model (choose one). 

 

 

 

 

  

https://drive.google.com/drive/folders/1UnAhR3yWKcFXgVmzxTgzRxd-AgH5snoS?usp=sharing
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Appendix B: Gyratory compaction in PyBullet 
 

This appendix shows how the reader can simulate the gyratory compaction process in 

PyBullet. First, follow the three steps below to install the software.  

 

1. Install Anaconda Navigator with Jupiter Notebook, most Python 3.X versions should 

work.  
2. Install PyBullet using !pip install PyBullet.  

3. Download all the files from here. 

 

Three files in this link are of importance: 1. Placing, 2. Simulation and 3. Video. These are 

the files the reader will be using. Also a PyBullet Quickstart guide is added for those who 

are interested in the software. It is assumed that the reader is familiar with the superpave 

gyratory compaction process. If not, a NEN norm file is added, which explains the process 

in detail in chapter 4. Furthermore, the aggregate and environment folders contain files 

that are needed to run the simulation. The results of the simulations are stored in the text 

files folder.  

 

The gyratory compaction process consists of three steps: first, placing the aggregates in 

their initial positions. Second, the compacting the sample. Third, analysing the results. The 

three files are described.  

 

Placing 

First, open the Placing file. This file places the aggregates in their initial positions before 

compacting. In the second cell, after importing the packages, all variables can be found. 

These are explained here step-by-step. It is recommended to experiment with these to 

become more familiar with them. When the simulation becomes visible, the user can use 

the ‘s’ and ‘g’ keys to change the way it is visualized. The ‘alt’ key in combination with the 

mouse can be used to change the camera position and angle. Table B.1 shows and explains 

all variables in the placement file.  

 
Table B.1: Placement variables 

VISIBLE This parameter determines whether the simulation is visible or 
not. For setting the parameters it is best to set this to 1, for 
running simulations in the background it is best to set this to 0.  

g Gravitational constant 
n_dynamic  Number of dynamic elements. It is noted that this has a huge 

impact on computational speed.  
t_mor Thickness of the mortar layer 
d_mould Diameter of the mould 
angle_of_gyration Angle of the mould 
pressure pre-pressure during placing process 
spacing Spacing in between the aggregates, relative to their size. This 

parameter allows the user to avoid initial overlaps.  
n_mould Number of mould lamella, comparable with segments of a circle. 
f_elel Friction parameter element-element 

https://drive.google.com/drive/folders/1gPAeIyYlTWgUPZRQJ1_RIFnw1YUL-42O?usp=sharing
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f_elmo Friction parameter element-mould 
f_roll Rolling friction parameter aggregates 
f_spin Spinning friction parameter aggregates 
sieve_size sieve sizes of the aggregates (see example how to use it) 
volume_per_sieve volume percentage per sieve (see example how to use it) 

 

The rest of the cells perform the calculations, and run the simulation. The end of cell 4 

prints the h_min/d_mould ratio. This value depends on the size, and number of elements, 

as well as the diameter of the mould. This value should ideally be between 0.66 and 1.05. 

The user may change the variables to their liking, and then run the simulation.  

 

The simulation finishes by storing initial positions of the aggregates to text files. These 

can later be loaded in the Simulation file. It is noted that certain parameters have to be the 

same in this file in order to work properly.  

 

Compaction 

When the placing is finished, the user can start working with the Simulation file. Like in 

the previous file, it consists of variables which the user can change, and calculations which 

should be left into place. Table B.2 shows and explains all variables in the compaction file.  

 
Table B.2: Compaction variables 

VISIBLE This parameter determines whether the simulation is visible or 
not. For setting the parameters it is best to set this to 1, for 
running simulations in the background it is best to set this to 0.  

g Gravitational constant 
t_max Simulation time in seconds 
angle_of_gyration* Angle of the mould 
d_mould* Diameter of the mould 
n_mould* Number of mould lamella, comparable with segments of a circle. 
t_mor* Thickness of the mortar layer 
c_mor Damping term of the mortar 
k_mor Stiffness term of the mortar 
pressure Pre-pressure during placing process 
f_elel Friction parameter element-element 
f_elmo Friction parameter element-mould 
f_roll Rolling friction parameter aggregates 
f_spin Spinning friction parameter aggregates 

 

*These variables must be the same as the placing file.  

 

Again, it is recommended to experiment with the variables to see what effect this has on 

the results. It is noted that the compaction process might take more time than the placing 

process.  

 

Once this process finishes, the positions and orientations of the aggregates over time, as 

well as the height of the end plate are stored in text files. These can later be used in the 

video file.  
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Video 

The third file allows the user to see the results in real time. Only three initial parameters 

exist in this file, all of which must be the same as previously chosen. Table B.3 shows and 

explains all variables in the video file.  

 
Table B.3: Analysing variables 

t_mor* Thickness of the mortar layer 
d_mould* Diameter of the mould 
angle_of_gyration* Angle of the mould 
pace Speed of the simulation, standard is 1 

 

A fourth parameter is the pace, this value can be chosen later. This parameter lets the user 

speed up or slow down the simulation.  

 

It is noted that in case the user are working with thousands of elements, they might want 

to remove or rename the texture file in the aggregate folder to reduce memory usage. Also, 

when more than 2000 elements are being analysed, some computers aren’t able to 

produce real time videos. A way to overcome this is by setting the pace to a value lower 

than 1, and recording the delayed simulation. Later, it can be sped up using video editing 

software.  
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Appendix C: Determining the inverse of the global inertia tensor 
 

This section derives the inverse of the global inertia tensor, making use of the local inertia 

tensor 𝑱𝐿 , and the rotation matrix 𝑹, from global to local coordinate system. It shows that 

the inverse of the local inertia tensor can directly be rotated to form the inverse of the 

inertia tensor in global coordinates. The advantage of this is that the inertia tensor has to 

be inverted only once.  

 

Considering 𝑴𝐿 as the first order external moment tensor acting on a rigid body in local 

coordinates. Considering 𝜶𝐿 as the first order angular acceleration, also in local 

coordinates. Equation C. 1 shows the relation between the two.  

 
𝑴𝐿 = 𝑱𝐿 ⋅ 𝜶𝐿 (C.1) 

 

Equation C. 2 shows how to convert the local quantities to global quantities, making use 

of the second order rotation tensor.  

 
(𝑹 ⋅ 𝑴𝐺) = 𝑱𝐿 ⋅ (𝑹 ⋅ 𝜶𝐺)  (C.2) 
 
𝑤𝑖𝑡ℎ 
𝑴𝐿 =  𝑹 ⋅ 𝑴𝐺  
𝜶𝐿 = 𝑹 ⋅ 𝜶𝐺 

 

 

Equation C. 3 shows the result after pre-multiplying with 𝑹𝑇. 

 

𝑴𝐺 = (𝑹
𝑇 ⋅ 𝑱𝐿 ⋅ 𝑹) ⋅ 𝜶𝐺  (C.3) 

 

Equation C. 4 gives the relation between the moments and angular accelerations in global 

coordinates.  

 

𝑴𝐺 = 𝑱𝐺 ⋅ 𝜶𝐺  (C.4) 
 

following Equations C. 3 and C. 4, Equation C. 5 gives the relation between the second 

order inertia tensor in global and local coordinates. 

 

𝑱𝐺 = 𝑹𝑇 ⋅ 𝑱𝐿 ⋅ 𝑹 (C.5) 
 

Since the accelerations are to be determined, and the external moments are known, the 

Equation is rewritten for the accelerations. Equation C. 6 gives the relation between the 

accelerations in global coordinates, and external moments in global coordinates. Since the 

rotation matrix is orthogonal, it’s transpose equals the inverse.  

 

𝑱𝐺
−1 = (𝑹𝑇 ⋅ 𝑱𝐿 ⋅ 𝑹)

−1 = 𝑹𝑇 ⋅ 𝑱𝐿
−1 ⋅ 𝑹  (C.6) 

 

It becomes clear that the local inertia tensor has to be inverted only once, and can be used 

in every time step, reducing the computation time.   
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Appendix D: Frictional stability 
 

This appendix derives a stability requirement for the friction. Equation D.1 gives the 

equation for the friction force at the point of contact.  

 
𝐹𝑓 ≤ 𝜇𝐹𝑁  (D.1) 

 

In numerical simulations this value correctly describes the motion. However, in the case 

of low velocities the friction might ‘overshoot’, and thus result in unrealistic oscillating 

movement. This paragraph aims to mitigate that effect.  

 

Consider the sliding element on a surface in Figure D.1 with relative orthogonal contact 

velocity Δ𝑣 ≪ 1 at the point of contact. This object has mass 𝑚 and rotational inertia 𝐽. A 

frictional force 𝐹𝑓 acts on the object over a time span Δ𝑡. In order to avoid oscillations, the 

frictional force must be reduced to ensure that the relative contact velocity remains 

positive semi-definite.  

 

 

 

 

 

 

 

 

         𝑣 

 

 

 

 

 

 

 
Figure D.1: Sliding/rotating element over a surface 

 

Equation D.2 gives the difference in linear velocity at the contact position, Δ𝑣𝑙 , due to the 

friction over a single time step.  

 

𝐹𝑓 = 𝑚𝑎 ⟷  Δ𝑣𝑙 =
Δ𝑡

𝑚
𝐹𝑓 (D.2) 

 

𝑤𝑖𝑡ℎ   𝑎 =
Δ𝑣𝑙
Δ𝑡

 
 

 

Equation D.3 gives the difference in velocity at the contact position, Δ𝑣𝑎, due to the 

frictional torque over a single time step. 
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𝑀𝑓 = 𝐽𝛼 ⟷  Δ𝑣𝑎 =
Δ𝑝2Δ𝑡

𝐽
𝐹𝑓 (D.3) 

 
𝑤𝑖𝑡ℎ 
𝑀𝑓 = Δ𝑝𝐹𝑓 

𝛼 =
Δ𝜔

Δ𝑡
 

Δ𝑣𝑎 = Δ𝜔 Δ𝑝 

 

 

Equation D.4 gives the stability condition. Which results in the maximum frictional force, 

where the relative velocity becomes zero in a single time step.  

 

Δ𝑣 ≥ Δ𝑣𝑙 + Δ𝑣𝑎 = (
1

𝑚
+
Δ𝑝2

𝐽
)Δ𝑡 𝐹𝑓  ⟷  𝐹𝑓 ≤

𝑚𝐽

Δ𝑝2𝑚 + 𝐽

Δ𝑣

Δ𝑡
 (D.4) 

 

Equation D.5 gives the final solution for the frictional force, which concludes the 

derivation of the maximum friction acting on a single element in 1D.  

 

𝐹𝑓 = min (𝜇𝐹𝑁 ;  
𝑚𝐽

Δ𝑝2𝑚+ 𝐽

Δ𝑣

Δ𝑡
) (D.5) 

 

In 3D, the same derivation can be done, making use of tensors. Considering the same 

element in Figure D.1, Equation D.6 gives the first order linear velocity tensor at the 

contact position, 𝚫𝒗𝒍, due to the friction over a single time step. 

 

𝑭𝒇 = 𝑚𝒂 ⟷  𝚫𝒗𝒍 =
Δ𝑡

𝑚
𝑭𝒇 (D.6) 

 

𝑤𝑖𝑡ℎ   𝒂 =
𝚫𝒗𝒍
Δ𝑡

 
 

 

Equation D.7 gives the first order velocity tensor at the contact position, 𝚫𝒗𝒂, due to the 

frictional torque over a single time step.  

 

𝑴𝒇 = 𝑱 ⋅ 𝜶 ⟷  𝚫𝒗𝒂 = Δ𝑡 𝑱
−1 ⋅ (𝚫𝒑 × 𝑭𝒇) × 𝚫𝒑 (D.7) 

 
𝑤𝑖𝑡ℎ 
𝑴𝒇 = 𝚫𝒑 × 𝑭𝒇 

𝜶 =
𝚫𝝎

Δ𝑡
 

𝚫𝒗𝒂 = 𝚫𝝎 × 𝚫𝒑 

 

 

Equation D.8 gives the first order critical velocity tensor, at which the contact velocity 

difference nullifies in a single time step.  

 

𝚫𝒗𝒄𝒓𝒊𝒕 = 𝚫𝒗𝒍 + 𝚫𝒗𝒂 = Δ𝑡 (
𝑭𝒇

𝑚
+ 𝑱−1 ⋅ (𝚫𝒑 × 𝑭𝒇) × 𝚫𝒑) (D.8) 
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Since the cross product does not know an inverse operation for two non-orthogonal 
vectors, this final equation cannot be solved analytically for 𝑭𝒇. However, since the 

equation is linear, the initial value, 𝜇𝐹𝑁 , can easily be reduced to satisfy the stability 

condition, as shown in Equation D.9. 

 

‖𝑭𝒇‖ = {
𝛾𝜇𝐹𝑁 𝑓𝑜𝑟 Δ𝑣 ≥ Δ𝑣𝑙𝑖𝑚
𝛾𝜇𝐹𝑁 𝑓𝑜𝑟 Δ𝑣 < Δ𝑣𝑙𝑖𝑚

 (D.9) 

 
𝑤𝑖𝑡ℎ    

𝛾 =
Δ𝑣

Δ𝑣𝑙𝑖𝑚
 

Δ𝑣𝑙𝑖𝑚 ≥ ‖𝚫𝒗𝒄𝒓𝒊𝒕‖ 

 

 

In case the friction is reduced more than 𝛾, the velocity difference is damped slowly, which 

is comparable with supercritical damping. In case the frictional force is reduced less, 

oscillations occur, which is comparable with subcritical damping. Therefore the term 

‘critical’ was chosen for this velocity. It is noted that to avoid oscillations, the limit velocity 

must be at least equal to the critical velocity.  

 

Next, let us consider two dynamic elements 𝐴 and 𝐵, which interact with each other and 

thus exert frictional forces. Equation D.10 gives the combined critical velocity in this case. 

The rest of the computations remain identical as shown above.  

 

𝚫𝒗𝒄𝒓𝒊𝒕 = (𝚫𝒗𝒍 + 𝚫𝒗𝒂)𝑨 + (𝚫𝒗𝒍 + 𝚫𝒗𝒂)𝑩 (D.10) 
 

When considering multiple objects, interacting with each other, one might argue that this 

method might still overestimate the friction, as multiple frictional forces might work in 

the same direction. However, this effect is mitigated by the fact that confined non-

spherical objects have severely restricted rotational freedom, effectively losing a degree 

of freedom and so compensating for this. To be conservative, the limit velocity could be 

set to Δ𝑣𝑙𝑖𝑚 = 3 ‖𝚫𝒗𝒄𝒓𝒊𝒕‖. It is noted that the time step must be small enough to minimize 

the error. In conclusion, the frictional forces are calculated correctly, while the 

‘overshooting’ effect is considerably mitigated.  
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Appendix E: Non-penetration condition 
 

This appendix provides a possible non-penetration condition for the aggregates. In 

reality, aggregates have an extremely high elastic modulus and sub-critical damping. 

Thus, in a discretized simulation, the non-deformable bodies should barely overlap. This 

would quickly lead to instability. Therefore, a more efficient method has been developed.  

 

In order to avoid large overlaps, the elements are modelled with a high stiffness and 

critical damping. Naturally, the contact stiffness of the aggregates should be chosen as 

high as the step size allows. In order to ensure stability, interacting elements may not 

increase their total kinetic energy. This is achieved by implementing critical damping 

when two elements diverge. In order for this damping term to come into effect, multiple 

time steps are required while the aggregates overlap. Therefore, the contact force may 

not lead to the separation of elements in a single time step. This leads to limitations for 

the contact force and the contact stiffness.  

 

Equation E.1 presents the impulse equation, which is integrated over a time step Δ𝑡. This 

results in the limit for the contact force 𝐹𝑙𝑖𝑚, at which the elements separate in a single 

time step, assuming a first order integration.  

 

∫ 𝐹𝑡 𝑑𝑡

Δ𝑡

0

= ∫ 𝑚𝑣 𝑑𝑡

Δ𝑡

0

 ↔
1

2
𝐹Δ𝑡2 = 𝑚𝑢 ↔ 𝐹𝑙𝑖𝑚 =

2𝑚𝑢

Δ𝑡2
 (E.1) 

 

Equation E.2 presents the equation for the spring force, which must be much lower than 

the limiting value. Solving this equation for the spring stiffness 𝑘 gives the limit value, for 

which the simulation is stable.  

 

𝐹 = 𝑘𝑢 ≪ 𝐹𝑙𝑖𝑚  ↔  𝑘 ≪
2𝑚

Δ𝑡2
 (E.2) 

 

Equation E.3 presents the value for the critical damping term.  

 

𝑐 = 2√𝑘𝑚  (E.3) 

 

It is noted that this method eliminates all restitution, which is not a huge issue for the 

purpose at hand.  
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Appendix F: Equation of motion for the expanded contact model  
 

This paragraph derives the equation of motion for the expanded Burgers’ contact model, 

where an additional damper is added parallel to the maxwell spring. Figure F.1 presents 

the mechanical scheme.  

 

 
Figure F.1: Improved Burgers’ contact model – expanded version 

 

Equation F.1 presents the elastic force in the left part. Equation F.2 presents the viscous 

force in the middle part. Equation F.3 presents the viscoelastic force in the right part. All 

three are solved for their relative displacements, where the time derivative is temporarily 

treated as a constant. This way, the equation of motion can easily be derived.  

 

𝐹𝑒 = 𝑘𝑀𝑢𝑒 + 𝑐̂𝑀𝑢̇𝑒 ↔ 𝑢𝑒 =
𝐹𝑒

𝑘𝑀 + 𝑐̂𝑀
𝑑
𝑑𝑡

𝐹𝑣 = 𝑐𝑀𝑢̇𝑣 ↔ 𝑢𝑣 =
𝐹𝑣

𝑐𝑀
𝑑
𝑑𝑡

𝐹𝑣𝑒 = 𝑘𝐾𝑢𝑣𝑒 + 𝑐̂𝐾𝑢̇𝑣𝑒 ↔ 𝑢𝑣𝑒 =
𝐹𝑣𝑒

𝑘𝐾 + 𝑐̂𝐾
𝑑
𝑑𝑡

 

 

(F.1) 
 
 
 

(F.2) 
 
 
 

(F.3) 

 

Equation F.4 shows how to determine the total displacement. Since all springs and 

dampers are massless, the contact force is the same in all three parts.  

 

𝑢 = 𝑢𝑒 + 𝑢𝑣 + 𝑢𝑣𝑒 =
𝐹

𝑘𝑀 + 𝑐̂𝑀
𝑑
𝑑𝑡

+
𝐹

𝑐𝑀
𝑑
𝑑𝑡

+
𝐹

𝑘𝐾 + 𝑐̂𝐾
𝑑
𝑑𝑡

 (F.4) 

 

The equation of motion is rewritten in Equation F.5. This is achieved by first rewriting the 

right hand side as a single fraction, and consecutively bringing the denominator to the left 

hand side, as to allow for the correct implementation of the time derivatives. This results 

in the following equation of motion for the system.  

 

(𝑐𝑀𝑐̂𝐾 + 𝑐𝑀𝑐̂𝑀 + 𝑐̂𝐾𝑐̂𝑀)𝐹̈ + (𝑐𝑀𝑘𝐾 + 𝑐𝑀𝑘𝑀 + 𝑐̂𝑀𝑘𝐾 + 𝑐̂𝐾𝑘𝑀)𝐹̇ + 𝑘𝐾𝑘𝑀 𝐹

= 𝑐𝑀𝑐̂𝐾𝑐̂𝑀 𝑢̇̈ + (𝑐𝑀𝑐̂𝐾𝑘𝑀 + 𝑐𝑀𝑐̂𝑀𝑘𝐾)𝑢̈ + 𝑐𝑀𝑘𝐾𝑘𝑀 𝑢̇ 
(F.5) 

 
 


