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The effect of disordered interfaces and bulk impurities on perpendicular transport in metallic
multilayers is considered in an effective-mass semiclassical approximation. The transmission matrix
is obtained by diagrammatic perturbation theory in terms of the effective-mass and conduction-
band profiles at the interface. In the weak-scattering limit specular and diffuse scattering give
equally important contributions to the conductance. Predictions for the transport properties of
interfaces with low concentrations of strongly scattering defects should be accessible to verification
by experiments. The transition from fully ballistic (Sharvin) to diffuse transport (Drude) is described
analytically both in two- and three-dimensional systems, where the former case is of relevance for
transport in the two-dimensional electron gas in semiconductor heterostructures. The theory is
applied to the spin-valve effect in magnetic multilayers. The magnetoconductance is described by a
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simple formula in terms of the mean free path for the majority- and minority-spin electrons.

I. INTRODUCTION

Magnetic multilayers with a layer width down to a few
Angstrgms can be prepared by epitaxial growth tech-
niques. Magnetic layers separated by a nonmagnetic
metal layer are coupled into parallel, antiparallel, or 90°
configurations, depending on the width of the spacer,
the scattering properties of the bulk, and the interface
roughness between the layers.! The coupling is similar
to the oscillating indirect exchange Ruderman-Kittel-
Kasuya-Yosida interaction between magnetic moments.?
Under an applied external magnetic field, a “giant” neg-
ative magnetoresistance has been found for antiparallel
multilayers.® The effect is caused by the reorientation
of the spins under an applied external magnetic field
from an antiparallel to a parallel configuration. Spin-
dependent scattering at magnet/nonmagnet heterointer-
faces is generally believed to be responsible for this “spin-
valve” effect. Most experiments are carried out in a con-
figuration where the current runs parallel to the inter-
faces [current in plane (CIP)]. The perpendicular trans-
port configuration where the current runs perpendicular
to the interfaces [current perpendicular to plane (CPP)]
is attractive because of a larger magnetoresistance.? 19
Furthermore, the theoretical description becomes more
transparent due to the higher symmetry. The consid-
erable experimental difficulties caused by the very low
resistance of CPP samples have been overcome by su-
perconducting electronics* or by using microstructured
samples.® The latter solution allows the study of the per-
pendicular transport at higher temperatures and, at least
in principle, in the mesoscopic regime.
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The present paper is devoted to the theory of per-
pendicular transport in magnetic multilayers. The aim
is to describe the effects of interface roughness scatter-
ing, bulk impurity scattering, and discontinuities in the
conduction-band profile and effective masses. The im-
portance of interface roughness scattering in many areas
of metal and semiconductor physics is reflected by nu-
merous papers since the seminal work by Fuchs,!! e.g., in
the two-dimensional electron gas.!? The relation between
diffuse and specular scattering at an interface is usually
described by introducing a factor p which is determined
empirically or derived from a microscopic model of the in-
terface roughness.!'3 Qur semiclassical approach based
on the Landauer-Biittiker formalism!* gives a simple for-
mula for the specularity parameter for transmission and
reflection. The diffuse and specular contributions to the
interface roughness are shown to be equally important
in the weak-scattering limit.'® The semiclassical calcula-
tion also gives analytical results for the transition from
the ballistic regime (Sharvin) to the Ohmic limit (Drude)
for both two-dimensional (2D) and 3D systems. Prelim-
inary results of the present paper have been published
in Refs. 15-17. The paper is organized as follows. The
ballistic regime is treated in Sec. II. A theoretical de-
scription of interface roughness and bulk impurity scat-
tering is presented in Sec. III. Approximations have to
be made. In Sec. IV approximate expressions are de-
rived for transmission through a single disordered inter-
face which becomes exact in the weak-scattering limit.
A semiclassical generalization to multilayers is given in
Sec. V and applied to the spin-valve effect in magnetic
multilayers. Finally, the conclusions are summarized in
Sec. VL

14 684 ©1994 The American Physical Society



49 SEMICLASSICAL THEORY OF PERPENDICULAR TRANSPORT ...

II. THE BALLISTIC REGIME

A model of the multilayer system is shown in Fig. 1.
Np; bilayers of normal/ferromagnetic metals are inserted
between the contacts. If the contacts are in thermody-
namic equilibrium, the Landauer-Biittiker formalism is
suitable to describe the transport process. In the two-
current model the conductance is given by

2
_ ¢ 2
G="3 ltamal?, 1)

nm,s

where ¢, 5 is the transmission amplitude from mode m
to mode n for electrons with spin s. Inelastic scatter-
ing and spin-flip processes are disregarded, since at low
temperature the spin-flip relaxation length due to spin-
orbit effects and by scattering by magnetic impurities is
normally much larger than the mean free path. Spin-flip
scattering due to excited magnons becomes important
at higher temperatures, where the present theory is not
valid anymore.

Even mesoscopic sample dimensions of ~ 1 um are
much larger than the typical Fermi wavelength (~ 5 A).
The incoming and outgoing states may therefore be mod-
eled by Bloch waves, which will be approximated by plane
waves.” For magnetic multilayers our model corresponds
to the Stoner description of itinerant ferromagnetism.!®
In the ferromagnetic metal, the density is different for
majority and minority spins, which leads to a spin-
dependent shift of the band edges when the Fermi en-
ergies align. Band structure and electron-density effects
are included by means of a constant, metal- and spin-
dependent potential and an isotropic effective mass for
each spin in each layer. The ballistic regime will be
treated first.” Semiclassically, the Sharvin conductance
in a 3D point contact is!®

2e?2 k%A

GO - h  4n ’ (2)

where kg is the Fermi wave vector and A is the sample
cross section. For an ideal multilayer structure, the to-
tal conductance is equal to the contact conductance. If
treated semiclassically, the conductance is

Geon = Go [1 - 4”’“{5’ 20, (3)
F
where AU is the conduction-band shift. This result is
a good approximation to the fully quantum mechanical
expressions.® The conduction-band shift, as seen by the
majority and minority spins in the parallel and antipar-
allel configurations, are shown in Fig. 2. For the an-
tiparallel configuration, the conduction-band profile has
the same form for the majority spin and the minority
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FIG. 1. A model of a magnetic multilayer structure.
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FIG. 2. The conduction-band profile as seen by the mi-
nority-spin electrons and the majority-spin electrons in the
parallel and the antiparallel configurations.

spin. The transmission probabilities for the majority-
and minority-spin electrons are different for the paral-
lel configuration. The conductance is therefore larger
in the parallel configuration than in the antiparallel
configuration. The result for the magnetoconductance,
AGeon = GE  — GAP | can be found by using Eq. (3) for

the parallel and the antiparallel case. The magnetocon-
ductance is

AGeon _ max{0, AUpin} — max{0, AUpn,;}
Go 2Ef '

(4)

where AUpaj (AUmin) is the conduction-band shift for
majority (minority) spins in the ferromagnetic material.
In the semiclassical approximation only the first bilayer
contributes to the conductance, so the magnetoconduc-
tance is independent of the number of layers. In this
model a sizable effect may be expected for the Cu/Co
system: The electronic structure of the Co majority-
spin system is similar to that of copper, causing a small
AUpaj, while the density of the minority-spin electrons
is smaller, i.e., AUpi, > 0. Using the parameters of
Inoue, Oguri, and Maekawa?? for the Co/Cu system
(AUpin =~ 0.65 €V, AUpa; = 0 €V) and assuming that
transport is carried mainly by s electrons (Er =~ 9.4 eV),
AGcon/Go =~ 0.04 is obtained. It is clear that this simple
theory cannot explain the large experimental magneto-
conductances, especially in materials such as the Cr/Fe
system where the shift in the conduction band is negative
and Eq. (4) vanishes.

A semiclassical approximation has been made. It is
possible to calculate the transmission probabilities ex-
actly for a Kronig-Penney potential.?! Although quan-
tum effects partly average out in the sum over differ-
ent modes contributing to the total conductance, in a
tight-binding approximation significant effects have been
predicted for thin layers with relatively large potential
steps.!® Whether or not a step in the conduction-band
profile can explain the giant magnetoresistance also de-
pends on the detailed band structure.!” In the next sec-
tions, spin-dependent scattering due to interface rough-
ness or bulk impurities will be included, which is seen to
enhance the magnetoconductance.

III. INTERFACE ROUGHNESS
AND IMPURITY SCATTERING

Interface roughness is due to lattice mismatch or lat-
tice defects that destroy the periodicity. The interface is
not perfectly sharp, so that the different materials will
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be mixed at an interface sheet. The effect of interface
scattering will be modeled by short-range scatterers in a
plane, which can be motivated by the strong screening
in high-density metals. These results will be general-
ized to treat bulk impurity scattering and interdiffused
interfaces. The impurity positions are not known. The
transmission properties of present interest are therefore
the average over all relevant ensembles. The transmis-
sion process may be visualized by Feynman diagrams. In
order to obtain closed formulas, approximations will be
made by only including diagrams that are most impor-
tant in terms of a scattering parameter.

A. Scattering by é potentials in a plane

In the effective-mass approximation, scattering of elec-
trons by short-range scattering centers can be treated
exactly.?1?? The single-electron state is described by the
Schrédinger equation

(_%Vm%(x)v +Uc(z) + V(x,y,Z)) Y(z,y,2)

= Ew(m’yv‘z)v ('5)

with an arbitrary conduction-band profile Us(z). The
effective mass m*(z) may be metal and spin dependent.
Interface roughness gives rise to the scattering potential
V(z,y,z). The wave function can be expanded in the
complete set of eigenstates,

(z,p) = Z ckw ¢kn 6)

ky

where § = (y, z). The transverse parts of the wave func-
tion are plane waves given by

ﬂ

where A is the area of the interface. In this way, the
transverse wave functions are normalized to unity in the
transverse directions. Impurity scattering gives rise to
mixing between different transverse modes. Using the
orthogonality of the transverse wave functions, a one-
dimensional equation can be obtained for the longitudinal
wave functions,

w@) () e (ds) 5,0+ K 0o, @

—Z B

(ﬁ)—

(7)

Jeg, (), (8)

where the perpendicular wave vector is

2m*(z)

K (2) = T B ~ Uo(e)] - K, (9)

and the scattering coefficients V Ry are defined by
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2m
Ve iy (@) = T [ dgsy IV (@200, (9. (10
The conduction-band profile is a Kronig-Penney poten-
tial for magnetic multilayers. Now we consider only a
single interface. The conduction-band profile and the ef-
fective mass are then step functions at the interface:

Up <0
UC(E):{U; x>0 (11)
and
,‘ m} <0
w0 ={ k750 (12)

For simplicity, the scattering potentials are modeled by
é-impurity scatterers

:E yY, 2 Z'Ya poz)a (13)

where g, gives the transverse position of the scattering
center, and v, gives the strength of the scatterer. It will
be shown below that a zero-range potential leads to di-
vergences, which means that the § functions should rep-
resent hard spheres with small but finite diameter. If all
disorder is at the interface, the strength of the scatterers
can be simply estimated by |va| =~ ((|[Ur—UL|)/2)(a/2)3,
where a is the lattice constant. Inserting the scattering
potential Eq. (13) into Eq. (8), the one-dimensional equa-
tion can be written as
2

()i (E)er 52

dr ) m*(z) \ dz I m*(z)

where an averaged effective mass, m* = \/mpm}, is de-
fined. The transverse part of the ¢ function is integrated
out, and a scattering matrix is defined,

f’;n &) = Z 2 e d)k”( )¢k’( o) (15)

Integrating across the () function we get

Vmpmy, dc’;n ()

m} dr m* dx
R =07+ L z=0"

mypmy chn ()

We assume that the particles are incident with parallel
momentum k|'|. The incoming wave gives rise to an infi-

nite set of modes, propagating for real k| , and evanescent
for imaginary k. The transmission (reflection) matrix

is t’“u 7 (r TR, R ) The conductance is given by the sum-

mation over all propagating modes in both indices. The
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wave function is

[ 7L 5. ikie
AlRL] ‘Sk“,k' €
(z) =

I [k ik?
Ak tkn,k' e,

for propagating and evanescent states, where evanescent
states are exponentially localized at the interface. The
longitudinal parts of the wave function ci (z) are nor-

malized to carry unit flux. The continuity relation for
the wave function is

[mplkY
TRE T mZ[kf|t’;”*’;ﬂ —ékll‘kﬂ' (18)

The maximum transverse wave vectors corresponding to
propagating modes are

Hfomer = | o (E — UR) (19)

to the right of the interface and

L sz

||,max — (E UL) (20)
to the left of the interface.
sume that k#f > kL

|l,;max = ™||,max"
ki max < Kif max-) Current conservation dictates that

In the following, we as-
(The results are similar for

1By 1<kF max (B 1<k max

Z ch'” & + Z

k k)

Ry g =1, (1)

where the summations are only over propagating modes.
The continuity relation for the wave function and cur-
rent conservation give a relation between the transmis-
sion probabilities, T«H 7 ]t,;” R |2, and the transmission

coefficients tié” E

I i R
1B <K max - + [RIISE max

k_)_ 1 my,
2 AT Yy > Tig

Ry |y | >kE

Il,max

k'
=4/ —=Re(tz ), (22
kB o kn‘ku) (22)

where an intermediate perpendicular wave vector is in-
troduced as
Fy = MRAL 4 mikE (23)
2/
This identity can be considered as a special case of the

optical theorem.?® In the symmetric case, the relation
Zié“ TE” Bo= Re(tg i ) holds. These identities will be
k) (R

used to check if our approximations are consistent and
in a semiclassical approximation it relates specular and
diffuse scattering for perpendicular transport through an
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interface. It will also drastically simplify semiclassical
calculations of the multilayer conductance. Green func-
tions are introduced in the next subsection, where it is
shown that Eq. (22) relates two-particle Green functions
to a single-particle Green function.

Combining Egs. (16), (17), and (18), we find that the
transmission coefficients are solutions to the equation

kB 1
2 Lo,y + T, gy |k~R|2kL] Rk
kil
VIELIEE
Y T

This can be written in matrix notation as (a matrix is
indicated by double bars) (I + i) - = A, where

NS
E(S,—c‘ (e — (25)

A’zuv’;h -k k.,
and
_ . kR|
Ye I 1 g 1 R
T - = = PR Pex 1P 26
k) k) Xa: AR? Ky BB (26)
1

= i (—iT)NA. (27)

The transmission coefficient is given as a series expansion
in the scattering matrix.

By Egs. (24)-(27) the transmission coefficients are
now, in principle, known. However, the impurities are
randomly located. It is not trivial to find the configu-
rational average. Physical motivated arguments have to
be found. Green functions are introduced in the next
subsection in order to understand the physical processes.

B. Green functions

The series expansion can be visualized using stan-
dard diagrammatic techniques. A subset of all dia-
grams can then be summed to approximate the trans-
mission probability. In this subsection the relation be-
tween transmission coefficients and Green functions will
be explained.?4726 Although the procedure is well known
in principle,?” to the best of our knowledge a thorough
discussion in the context of the Landauer-Biittiker for-
malism does not exist.
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The Green operator is defined as G* = (E — H +in)~!
where 7 is a positive infinitesimal. At low temperature,
the transport is governed by the electrons at the Fermi
level. The energy E of the Green function will henceforth
be taken to be Er and will be suppressed. In coordinate
space, the Green function is G=(7,7') = (F]G=|r'). In
our problem, the interesting Green function is the one
where propagation from left to right is considered. This
Green function can be expanded in the set of eigenstates
on both sides of the interface,

§ : 1kRa: iky 5,
TR’TL) - le‘ kl . Re 1er
k) ki
—ik't ez, —ik!pL
xe N LTLe T PL (28)

where 7'r, = (zr,L,Pr,L) and zg > 0, 2y < 0. The sum-
mation includes both propagating and evanescent states.
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G+ o s related to the transmission matrix by24 26
ki ok
EIRE]
I 29
ki oKy mem} kn»k (29)
The (diagonal) unperturbed Green function is
GTO _ _ T_L (30)
ky "2 k.

Note that following Refs. 24-26, the dimension of G R

is [Jm]~! and not [J]™! as for conventional Green func-
tions. The series expansion for the transmission coeffi-
cients will now give a similar expansion for the Green
function. The relation between the transmission coeffi-
cients and the transmission probabilities, Eq. (22), gives
for the Green function

|
ky|<kE ky|<kR + 2
1y | <F max 'G] EH 1 +1FII<E max kR ‘GEH,E;,l .
()) 5 m* k_LW =1 m( k‘l‘ vk’ ) (31)
K K k) |>kE i

This is a relation between two-particle (particle-hole)
Green functions and a single-particle Green function. We
will show that this identity gives the connection between
the self-energy and the vertex function for the particle-
hole propagator.

The evaluation of the configurational average of the
series for the Green functions is considered in the next
subsection, where the different diagrams are shown, and
the Feynman rules are outlined.

C. Feynman diagrams

The positions of the impurity scatterers are not known
in a real material. The transmission probabilities of
present interest are, therefore, the ensemble average of
all possible configurations for the impurities. The con-
figurational average of a quantity is the average over all

||, max

The Green functions can be organized into a diagram-
matic visualization using Feynman diagrams. We will
now explain the relation between the algebraic and the
diagrammatic representation of the Green function. In
Sec. III A it was shown that the transmission coefficient
could be expressed as a series expansion in the scattering
matrix I'. The electron Green function is related to the
transmission coefficient by a normalization factor. From

Egs. (27) and (29), the electron Green function reads
m* 1
G 5) =
K h?
o N

VIELIIRE

A\N
impurity positions, x Z (=il );;”,;;;, o (33)
N=0 L
N iz
a=1 Similarly, the electron-hole Green function is
J
<G+ +(*)>"|—Z'mf*'2 1 <{§:(‘—if‘)N} {i(lf\*)M} > ' Hkl | (34)
] e - 72 :
Fuoky Rk | L N=0 ki Ky \M=0 ki ki (kL)

In order to evaluate these expressions the ensemble average ((—il')N (if‘*)M ) has to be known for all N and M. We
will now show for the first three terms that the series expansion of the electron Green function can be expressed as a
series in the unperturbed Green function and scattering vertices. The zeroth order term gives

VIRLIRE il

.m* 1 =
—imy ———A(=0)") o % 2 OF
h /ka”k,jll IRl k' “h kL k]
+(0
- GkH éknx’;ﬁ’ (35)
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which is simply the unperturbed diagonal Green function. Without scattering, only this term survives. For the next

term in the series, we find

LR
m* 1 L | L

ity — e (=D )g g
A2 k) ,k k'
VALALSA Lo

- ( Z kl) (A E”") (_ 7 i) % i

+(0) +(0)
= E = . 36
Gkn (A > T (36)

This is a description of a single scattering by a single impurity. The third and last term we discuss is

_ii‘:____l_«_if‘)z)‘ - __.___Vlkl'li”k,fl = _im*
2
2 JIRRIRE |

P W
%) k')

R kLR,

1m*y\? 1 1
[((—D)* )k” J - kn»k' Nir (Z ﬁz’y) kL o k”
ki

+0 (1 +(0) ctOs.
Gkn (A;fya) G’;u (AZ ) k) H"‘\'I

G+(0)
Ky

where Nig is the number of impurities. Now there are
two possibilities. The electron can be scattered by two
different scatterers once or by a single scatterer twice.
Each factor I‘EH 7 describes a single scattering process.
For higher order terms, the electron may scatter several
times with the same impurity. These terms can be repre-
sented by Feynman diagrams, where the cross represents
an impurity, the dashed line represents scattering, and
the plain line represent free electron or hole propagation.
Electrons propagate forward in time, from the left to the
right and holes in the opposite direction. The first three
terms in the electron Green function, Eq. (35), Eq. (36),
and Eq. (37) are shown in Fig. 3. The first diagram (a)
is simply the unperturbed single-electron Green function.
Diagrams of types (b), (c), and (d) modify separately the

FIG. 3. Diagrams for the single-electron propagator.

(Z(% )Z(GZ'EO) :n(O) k) k) (37)

kll

[

propagation of electrons. The complex conjugate of these
terms will give diagrams that modify the propagation of
holes.

Similarly, we get an expansion series for the electron-
hole propagator. This series should include the correla-
tion between the scattering potential seen by electrons
and holes. The first terms in the series expansion of
the electron-hole Green functions are shown in Fig. 4.
Diagram (a) describes a scattering without correlation.
Diagrams of type (b) describe the correlated scattering
of electrons and holes. It turns out that these diagrams
describe diffuse scattering at the interface.

On averaging over random positions of impurities, one

®
|
1

I
|
®

(a)

6

|
|
1
b

(b)

FIG. 4. Diagrams for the electron-hole propagator.
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finds that electron momentum is conserved. When evalu-
ating the different diagrams, the following Feynman rules
can be found by inspection of the ensemble average.

(1) For each electron line, introduce —im*/A%k .

(2) For each hole line, introduce im*/h%k .

(3) For each scattering vertex, introduce (y,/A) where
a labels the scattering center.

(4) Momentum conservation at each vertex.

(5) Sum over all impurities, .

(6) Sum over all intermediate states.

The single propagator is a sum over all kinds of di-
agrams that describe impurity scattering. These can
be partially summed by introducing the irreducible self-
energy. An irreducible diagram is defined as a diagram
that cannot be divided into two subdiagrams joined only
by a single electron or hole line. All other diagrams are
called reducible. The self-energy has units [Jm] in our
problem because of the chosen normalization factor as
discussed in Sec. IIIB. The single propagator can be
written in terms of the self-energy by using the Dyson
equation, Fig. 5. In terms of the self-energy and the un-
perturbed Green function, the single-particle Green func-
tion is, in matrix notation,

G =6""+6"9%EM, (38)

where ¥ is the configurationally averaged irreducible self-
energy. The lowest order terms in the irreducible self-
energy are shown in Fig. 6.

The electron-hole Green function consists of both sin-
gle diagrams for electrons and holes and correlation di-
agrams between electrons and holes. The uncorrelated
term is simply the squared amplitude of the single elec-
tron Green function. The two-particle Green function
can be written as

Gr . =Gt )
167 ) = GE 2]

Gi— e 2W"11 Lt Gj— = 2’
+ ~2 ,( k”,k?">l k“ 'kH |< k"”,k‘/i >,
R

(39)

where W,—c-‘ z is the reducible vertex function. This func-
R
tion describes the correlation between electrons and holes

and is given by the Bethe-Salpeter integral equation

— - I + W= -
WEH:I_C“'] - Uk\\skil + Z Uk:”,kh' |<G’;{JI’;‘I‘!I>| Wk"!",k;‘ ) (40)
Ry |

FIG. 5. The electron Green function is given in terms of the
unperturbed Green function and the irreducible self-energy in
the Feynman-Dyson expansion.
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+ eee

FIG. 6. The irreducible self-energy consists of all irre-
ducible diagrams.

where Tk R is the irreducible vertex function (Fig. 7).

The irreducible vertex function consists of all irreducible
correlation terms between electrons and holes (Fig. 8).
It has terms with and without crossed interaction lines.
For all diagrams that are not crossed, a particular sim-
ple form of the Bethe-Salpeter integral equation can be
obtained. The correlation terms between electrons and
holes are referred to as vertex corrections.

In order to find the transmission probability, the self-
energy has to be calculated and the Bethe-Salpeter inte-
gral equation has to be solved. In the following section
this is done.

IV. SINGLE INTERFACE TRANSMISSION

The probability for transmission through a single in-
terface will be found by using the perturbation theory
described in the last section. Electrons are scattered

7

N

FIG. 7. The Bethe-Salpeter integral equation is a relation
between the reducible and irreducible vertex functions.
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FIG. 8. The irreducible vertex function consists of all ir-
reducible correlation diagrams between electrons and holes.

specularly at the interface if the parallel wave vector is
conserved. Diffuse scattering causes a redistribution of
transverse and longitudinal momentum at the interface.
This nomenclature is a straightforward generalization of
the diffuse vs specular reflection at impenetrable rough
interfaces as introduced by Fuchs.!! Specular and diffuse
scattering for perpendicular transmission through a sin-
gle interface is shown in Fig. 9.

The vertex function gives the correlation between elec-
trons and holes. We will show that the diffuse scattering
is uniquely connected to the vertex function. The optical
theorem, Eq. (31), is actually a relation between specular
and diffuse scattering. In order to find the two-particle
Green function, the self-energy has to be calculated. We
will show that the reducible vertex function can be found
from the self-energy by using a semiclassical approxima-
tion. It is therefore not necessary to solve the Bethe-
Salpeter integral equation directly. The self-energy is
calculated in the following subsection.

A. Irreducible self-energy

The irreducible self-energy determines the single-
electron propagator. In Fig. 3 a diagrammatic repre-
sentation of the self-energy is shown. Conservation of
momentum simplifies the calculations of the diagrams.

wave

specular | specular |
reflection | transmission
|
|
|
|
K ) | diffuse
incoming | scattering
|

FIG. 9. Specular and diffuse scattering at a single interface.
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First, translational symmetry requires that the ensem-
ble averaged self-energy is diagonal. Second, the short-
range nature of the impurity potential gives a “white”
Fourier spectrum. The different terms in the self-energy
will therefore only consist of summations of unperturbed
Green functions times a factor. The self-energy is there-
fore not only diagonal, but also independent of the in-
coming and outgoing states, which represents a major

simplification, ¥ PR

: = 25,;“,,;, ,

Il
+ >__

Rk (41)

(G;(o))—l _ 26’;»1:’%'
I

Now we see from Egs. (29), (39), and (41) that by ne-
glecting vertex corrections, the transmission probability
is diagonal. This gives rise to specular scattering only.
The diffuse part of the scattering comes exclusively from
vertex corrections.

In the Born approximation the lowest two terms in the
series of the irreducible self-energy are included; that is,
first and second order scattering by an impurity (Fig. 10).
This approximation is valid for low impurity densities
nir = Njr/A and weak-scattering strength. Phase
coherent scattering between different impurities can be
shown to contribute only to order O(n%g) and is dis-
regarded here. By using the Feynman rules for the dia-
grams, the self-energy in the Born approximation is given
by the equation

® K
! / N
| /s N
:i+_ﬁ¢
/®\
-~ ~
— | ~
- ~
— | ~
- | ~
R
- 7 N7 <
P s AN oo

(c)

FIG. 10. The self-energy in (a) the Born approximation,
(b) the self-consistent Born approximation, and (c) the sin-
gle-site approximation.
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2= G (42)

K

2
:nIR'“y—l-nIR% thH(O) (43)
EH

The average strength of the scatterers is ¥ = > vo/N
and the mean square value is 2 = 3°_ 42 /N. By neglect-
ing the effect of the conduction-band step and effective-
mass mismatch in the intermediate wave-vector summa-
tion over the unperturbed Green function, we find that
(see Appendix C)

$8 = nipy — im—nl—:’yzkp[l —ivar—1].  (44)

Here, an ultraviolet divergence in the summation over
intermediate evanescent states has been cut off at a wave
vector akp to account for the finite range of the potential.
a > 1, but not much larger than unity, since the range
cannot be shorter than a d orbital radius. We will show
that the evanescent states are not important in the low-
density /weak-scattering limit. The Born approximation
is valid when nrg(m*y/A?)? < 1.

More diagrams can be included in the self-energy if the
unperturbed single propagator in the Born approxima-
tion is substituted by the renormalized one. This is the
self-consistent Born approximation.?® The diagrams are
shown in Fig. 10. The self-consistent equation to solve is

2
1
=58 = nypy + nir L -
A ; (ka((’))ﬂ _ySB
I i

(45)

The self-energy appears on both sides of the equation,
and therefore cannot become infinitely large. In the low-
density /weak-scattering limit the self-consistent Born ap-
proximation reduces to the Born approximation, ¥58 =
$B. In the strong scattering limit, nyg(m*y/h?)% > 1,
the self-energy in the self-consistent Born approximation
is

22
a?k%

g8 _ TIRY ~ \/(TIIR’)’)Z —niry?=;
a 2

(46)

In the zero average scatterer case (¥ = 0), this reduces
to

k
¥SB = —igz—F "”7’2.72. (47)

The cutoff factor now plays an important role in deter-
mining the self-energy. This is reasonable since, as the
scattering strength increases, the evanescent states be-
come more important; a localized mode may build up at

the interface.
|
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We will now study the situation where all scatterers
have equal strength, v, = t7. The self-energy is calcu-
lated in the so-called single-site approximation where the
exact cross section for isolated defects is taken into ac-
count (Fig. 10). As mentioned above, crossed diagrams
that stand for quantum interference between different de-
fects are disregarded, which is allowed for small nyg. The
irreducible self-energy can be written as a geometric se-
ries which is summed to be

nrry + nm%z Z,;” (GE )
S _ : - il . (48)
= (% T, (G} )2

Consider now the case when the self-energy is small,
|(m*/R?kp)E| < 1. If the effect of the conduction-band
step is neglected in the intermediate wave-vector summa-
tion, the self-energy becomes

NIRY — INIR 7;:; 72%(1 —iva? —1)

14 (m25e) (1 - iva? —1)2

27

v = (49)

In the weak-scattering limit, m*vkr/(mh2?) < 1; this re-
sult reduces to the result from the Born approximation.
If the scattering strength is sufficiently strong, but the
density of impurities low, the self-energy is

R 2r1+iva2—1

m* kg a?

¥% = —insg (50)
In this strong-scattering limit, not the scattering strength
but the spatial extent (o< 1/a) of the potential becomes
the important parameter. The self-energy now vanishes
for zero-range potentials, as it should. We will show
that Eq. (50) has interesting consequences for the con-
ductance.

Using the self-energies, we may now find the electron
Green function in different approximations. In order to
find the transmission probabilities, the vertex corrections
also have to be found. This is done in the next sub-
section, where we will use a semiclassical approximation
consistent with the single-site approximation for the self-
energy.

B. Semiclassical approximation

In a semiclassical approximation, the optical theorem
may be used to find a simple relation between the self-
energy and the vertex function. The self-energy is only
a constant, which represents a major simplification. The
optical theorem, Eq. (31), can be written in terms of the
unperturbed Green function, the irreducible self-energy,
and the reducible vertex function,

Bl <k GO Rk fimex GO
I L I ;
S A W p s Y o Wj = —ilm, (51)
4 —GgtO xRk T2 kij1r—Gi@xp kk
K, Il GEH Rl L | ky |

il ,max

by using Egs. (39) and (41). This is actually a relation between the reducible vertex function and the irreducible
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self-energy. In quantum field theory similar relations are referred to as Ward identities,?” which are often employed
as tests of the consistency of approximate theories. In the presence of disorder it is never consistent to neglect the
vertex function in perpendicular transport, except for the ballistic regime where the self-energy vanishes.2?

The reducible vertex function can be found directly using the irreducible vertex function from the Bethe-Salpeter
integral equation, Eq. (40). The diagrams contributing to the irreducible vertex function can be classified as crossing
or noncrossing. The crossing diagrams describe phase coherence and are, e.g., responsible for weak (Anderson)
localization of the wave function.3°~32 In the generalized ladder approximation all crossing diagrams are disregarded
in the calculation of the irreducible vertex function. Since the crossed terms contribute only to higher order in the
impurity density, this is strictly allowed for sufficiently small nygr . The “diamond” is considered as the irreducible
vertex function as shown in Fig. 11, and is calculated in Appendix A. An important feature of this diamond is
its independence of the outgoing and incoming state labels. The irreducible and the reducible vertex functions are
therefore independent of the indices for noncrossing diagrams. Therefore, by neglecting crossing diagrams, i.e., phase
coherent scattering between different impurities, Eq. (51) is easily inverted to give the reducible vertex function in
terms of the irreducible self-energy,

—i1ImY
W= T L G 2 R Gt ’ (52)
1By <Kl ax £ 41 Zlkuls"n.mu ER R
k| -G @ T 2 &k 12kE ., kL 1-6F @52
I ’ Il

By calculating the self-energy in a given semiclassical approximation, we obtain the reducible vertex function, and
the two-particle Green function without additional effort. By using the relation between the Green function and the
transmission coefficient Eq. (29) and inserting Eq. (52) into Eq. (39), we find that the transmission probability is

kREL kR m*\? %
<it,; pa |2) = 5,—5 BT 'L,"J;. 2 + = ,'Lm. 2 <T> (W) TR LTy ,'i'n. - (53)
(R e kL + 1% X k1 +i% 3| 13 |k +i%r X

The self-energy determines both the specular and diffuse
parts of the scattering. In specular scattering the trans-
verse wave vector is conserved, which is the first term
of Eq. (53). Diffuse scattering causes a redistribution
of transverse and longitudinal momenta at the interface,
which is the second term in Eq. (53). The ladder approxi-
mation and this consistency argument must give the same
result, which is demonstrated explicitly in Appendix A
for the weak-scattering limit. Diffuse and specular scat-
tering are equally important in the weak-scattering limit.
For strong scattering, the diffuse term dominates. Equa-
tion (53) completes our treatment of the single interface.
It can be calculated readily for arbitrary model parame-
ters.

Since  for  transition metal heterostructures
AUc/Er < 1 (for Co/Cu AUc/Er = 0.07, Ref. 20),
it appears a reasonable assumption to set AUc = 0 (but
Yo # 0). Furthermore, we put Am = 0, which is approx-
imately true for the s bands in transition metals. These
assumptions make an exact analytical treatment possi-
ble. It is interesting to make contact with the traditional
treatment of interface roughness in terms of a specular-
ity factor p. Let us introduce a specularity factor for
transmitted electrons defined by

Dt = propyL, L\
E’:n <T’°H”°h)
which is found to be
cos(0)
0) = — =) 55
Pi(6) n1R + cos(0) (55)
where n7p = —m*Im(X)/A%kF is a scattering parame-

-
ter and @ is the angle of incidence of an electron wave
vector measured from the surface normal. This result is
valid in both the 2D and 3D cases. Note that the scat-
tering parameter is independent of the real part of the
self-energy. From Eq. (43) it is seen that the specular-
ity parameter for transmission does not depend on the
average of scatters, i.e., 4. A similar relation can be de-
rived for the ratio of specularly reflected electrons. It is
found that p,(8) + p+(6) = 1 in the semiclassical approx-
imation. In Fig. 12, the specularity factor p; is shown
as a function of the angle of incidence for nyg = 0.05
and nrg = 0.5. Diffuse scattering increases for larger
incoming angles and for increasing values of the scatter-
ing parameter nrg. Note, however, that the transmission
probability itself vanishes when 6 — 7 /2.

N ————
: | N ;
| N /
| 7 AN
| | 7/ AN
| | ————
| ﬁ
| N /
| AN /
&R + W o+ eee
7/ N |
7/ N |
——— |

FIG. 11. All noncrossing diagrams in the irreducible vertex
function give the diamond term.
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FIG. 12. Fraction of electrons transmitted specularly as a
function of incoming angle to the relative interface normal.

Let us consider now the limit |m*X/A?| < kp, and use
the single-site approximation for the self-energy Eq. (49).
The transmission probability is then

(Ti =)= ﬂ*& .
ik (ko + nrrkp)? kK
ki nirkp
+(kl+1713kp)2 Lo K
Zkh’ (k' +n1rkF)?
k'
N
(k' +nirkr)? (56)

The contribution from the real part of the self-energy
is not important in this limit. In the Born approxima-
tion {[(m*~vkr/(h?m)]?> < 1} the scattering parameter is
nir = (nrr/(27))(m*vy/A?)2. When the Born approxi-
mation holds, evanescent modes are not important, but
they play a significant role in the strong-scattering limit
{[m*vkr/(BFm)P > 1}.

The conductance can now be found by inserting the
transmission probability, Eq. (56), into the Landauer-
Biittiker formula, Eq. (1). To first order in the scattering
parameter 7nrg, the conductance is

2e? Ak%

G ==

1—4 2 . 57
5 47T[ NI + 2n1R) (57)

The first term is the Sharvin conductance,'® which is
proportional to the sample cross section A. The sec-
ond term reduces the conductance due to specular scat-
tering. The third, diffusive term increases the conduc-
tance by opening additional channels for electron trans-
port. In the single-site approximation for strong scatter-
ing [(m*vkp/h?m)% > 1], but to lowest order in nrg, we
obtain the interesting result that

2e2 Ak%—. Nir
GzT(4—w—a2 | (58)

The conductance is reduced by a factor proportional to
the number of defects Nyg = Anjg, which can be also
derived from a direct solution of the Schrédinger equation
(see Appendix B). Each scatterer effectively blocks one
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channel and the conductance becomes independent of the
scattering strength. This blocking is somewhat reduced
by a factor 1/a? via a “leak” of evanescent states. Alter-
natively, we can interpret the second term as a finite size
effect; the conductance is reduced by a term proportional
to the finite spatial cross section of the scatterers. An ex-
periment is proposed to check this expression: Insert a
layer (or multilayer, see the next section) with strong
short-range scatterers between two perfect leads. Such a
structure could be realized by the technique of § doping,
which is routinely employed in semiconductor technol-
ogy. By measuring the conductance and the number of
impurities the theory can be checked and the “leaking
factor” a determined, which provides information about
the scattering potential. Note that a nonzero average of
scatterers has negligible effect on the conductance. A
similar result is valid in the 2D electron gas case, with a
leaking factor as a function of a.

V. GENERALIZATION TO A MULTILAYER

In the preceding section the scattering properties of a
single interface have been investigated. In the present
section we will show that we can get semiclassical results
for a system of N interfaces, and that bulk impurity scat-
tering can be consistently taken into account. Results for
a single interface can be generalized to a multilayer sit-
uation with interface and bulk impurity scattering. In
principle it is possible to find the transmission coefficient
for two or more interfaces if the transmission coefficient
for one interface is known, but the calculation is very
cumbersome in general. The interferences due to mul-
tiple reflections at the interface potential steps can be
disregarded if (AU/Er < 1) which is the case for s
electrons in transition metal systems, or if the phase-
coherence length or mean free path are smaller than the
layer widths. Interfering multiple reflections at defects on
different interfaces are also suppressed by phase break-
ing scattering, but can be also disregarded for small de-
fect densities. Semiclassical concatenation?! is consis-
tent with the single-site approximation for single inter-
face scattering. In order to get an exact concatenation of
the transmission coefficient, the ensemble average has to
be taken after the concatenation, which seems to make
an analytical treatment complicated, even in a semiclas-
sical approximation. We will show here that the problem
is greatly simplified by using the optical theorem.

Consider two scattering events where T) (R;) is the
transmission (reflection) probability for the first inter-
face, and Ty (R,) is the transmission (reflection) proba-
bility for the second interface for propagation from left
to right. Similarly, a prime on the matrices will denote
propagation from right to left. Semiclassically, two scat-
tering events can be concatenated as?!

=

2T - 1_‘2,1 27T (59)

Ll

7:112 =

and

!

= = =/ = .=
Rlz = R1 + Tl - Rle]Tl, (60)

~il

Rs[
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where T2 (R;2) is the transmission (reflection) proba-
bility for transport from left to right through the whole
system. This is easily seen as a geometric series of multi-
ple reflections between the two interfaces. For simplicity,
only the symmetric case will be considered in the follow-
ing, i.e., AUc/Er <« land |(mp—m})/(mr+mi)| < 1.
The scattering at the interface due to interface roughness
is taken into account, but the effect of a finite AUc/Ep
on the transmission probability is disregarded.

Let us now consider the simple case where the trans-
mission probability is diagonal,

T,

Ty = .
2=5T

(61)

The transmission probability for transport through N
interfaces is

T

W) — 1
N—(N-1)T}’

(62)

which may be verified by induction from Egs. (59) and
(60). For the general nondiagonal case we have not been
able to find such a simple relation.

Semiclassical concatenation of the diagonal part of the
transmission probability, Eq. (56), gives

ky

oy — 63
k) k1 +2Nnrrkr ( )

(N)specy __ ¢
<T’:1r»’;f| )—ék”’

in the small 7;r regime. Here only the specular part
of the scattering is included, which is not consistent
with the Ward identity as stated in the preceding sec-
tion. However, the result for the N-layer specular case
will form an important reference frame. Inserting the
transmission probabilities, Eq. (63), into the Landauer-
Biittiker formula, Eq. (1), we find that the conductance
is

——( )spec—1—22N + 2(2N 2In(1+4 1
G = 1
Go ( nIR) ( nIR) Il( 2N7]IR)’

(64)

when only specular scattering is taken into account. We
will now include contributions from diffuse scattering to
the conductance.

The transmission properties do not depend on the dis-
tance between the interfaces in a semiclassical approxi-
mation. By allowing the interfaces to be infinitesimally
close to each other, one can convince oneself that the
relation between the transmission probabilities and the
transmission coefficients, Eq. (22), still holds for the N-
interfaces configuration,

Z Te iy

Ky

= Re(tg,

ki ) (65)

The diagonal transmission coefficient is given by the elec-
tron Green function, i.e., the specular part of the scat-
tering. From Eq. (56) we find that the transmission co-
efficient is
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ki +nirkr

{tz, &) 0%, &y (66)

(
Il

in the weak-scattering limit. It is important that the
weak-scattering limit be taken before concatenation.
Otherwise all defects placed at the same interface would
be incorrectly equivalent to a single strong-scattering in-
terface. Concatenation of the diagonal transmission co-
efficients, Eq. (66), is straightforward. By using Eq. (65)
after the concatenation, the conductance for transport
through N interfaces is

G\N)

I =1- 2(N'I]IR) + Z(NT]IR)ZIH
0

(67)

1
14+ —/|.
Nnrr

The scattering parameter is decreased by a factor of 2
compared to the purely specular case.

The results for N interfaces can be generalized to treat
the bulk system. A bulk system is modeled by V inter-
faces with an interface scattering parameter n%). The
conductance for the bulk system may be found by letting
N — oo and 72} — 0, but keeping Nn?2 = Lng, where
L is the length of the bulk material and, npy is the scat-
tering parameter for the bulk system. The conductance
for a multilayer is

GW)
Go

1
=1—2xN+2z§,1n1+—1, (68)
TN

where zy = N/(2N) = L/(2l), N is the mean free
number of traversed interfaces given by N = [2nir +
2Lnpr]~1, and ! is the mean free path. This relation
agrees with Eq. (11) in Ref. 7 for AU¢c = 0. The results
are easily generalized to arbitrary impurity distributions,
which represent, e.g., interdiffused interfaces. The semi-
classical expression for the self-energy X, (or the scat-
tering parameter 7¢) for the whole sample reads

St = NE1g + / drZp1(z), (69)

where X p(z) is the position dependent self-energy de-
termined by the local impurity density and scattering
strength. For a small number of layers, the conductance
decreases in proportion to the ratio of the number of lay-
ers to the mean free number of traversed layers. In the
large NV limit a Drude-like (Ohm’s law) expression is ob-
tained for the conductivity of a thick multilayer

0oo = lim NLGW) /A= 2—82’—@1 (70)
= N ~h 3r
which agrees with the results of Zhang and Levy.®33 The
conductivity is proportional to the mean free number of
traversed interfaces. The conductance of a nonmagnetic
multilayer is plotted in Fig. 13. The Drude result is ap-
proached rather slowly.”

The two-dimensional equivalent of this expression is
of interest in quasiballistic transport in semiconductor
nanostructures343%
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where G9, = (2e%/h)(Wkp/m) is the two-dimensional
Sharvin conductance, proportional to the channel width.
In the Drude limit, we find

. NL,GY, 2e?kp
= _ e = —l‘
oo th W P (72)

De Jong solved the Boltzmann equation to obtain results
which are very similar, but not identical to the expres-
sions Egs. (68) and (71).3°* We must therefore conclude
that the present semiclassical approximation is not equiv-
alent to the solution of the Boltzmann equation. One of
the qualitative differences is the back reflection of graz-
ing incidence electrons in the present approach, which
are transmitted with finite probability in the Boltzmann
approach.3® The reason is the wave character of electron
states even in our semiclassical approximation.

The effect of the conduction-band step on the con-
ductance can be found by concatenation of Eq. (53), for
which Eq. (12) in Ref. 7 is only an approximation. This
has to be done numerically, since the expression for the
N-layer conductance is very complicated. In our model
the quantum interference effects between the interfaces
are neglected. The calculation based on a tight-binding
model by Asano, Oguri, and Maekawa,'® however, sug-
gests that the semiclassical approximation breaks down
when the step height is sufficiently large. We therefore
refrain from carrying out the computation here.

For a magnetic multilayer it is now straightforward to
find the conductance by including spin-dependent inter-
face scattering and bulk scattering. Let ]\_/maj (Npmin) be
the mean free number of traversed interfaces for the ma-
jority (minority) spins in the parallel configuration. The
difference in mean free path between both spin chan-
nels is AN and the spin-averaged number is N. The
conductance for the parallel configuration, GF, and the
conductance for the antiparallel configuration, GAF are
straightforward generalizations of Eq. (68). In Fig. 14

G/Go 0.1

T

Drude E

0.1 1 10 100

N/N

FIG. 13. Conductance of a spinless multilayer as a function
of the number of layers N relative to the mean free number
N. The dashed line is the Drude result.

1
\/z—?v-_—larccos (mN) , TN >1,

the relative magnetoconductance of the antiparallel con-
figuration AG/GF is shown, where AG = G¥ — GAP.
The relative magnetoconductance depends on the ratios
AN/N and MNy;/N, where Ny; is the number of bilay-
ers. In the present approximation each layer contributes
independently to the CPP magnetoresistance and the re-
sults do not require an ordered antiparallel alignment as
long as the number of up and down spin interfaces re-
mains the same. The spin valve saturates at the Drude
limit for Np; > N. In this superlattice limit the relative
magnetoconductance is

& Drude‘ lAN 2 (73)
GP \2 N/~
For AN = 0 the magnetoconductance vanishes, and it
becomes unity for AN = 2N (i.e., the minority-spin
channel is totally blocked, Npmin = 0). The spin filter im-

proves with increasing thickness by the scattering from
imperfections.

VI. CONCLUSIONS

We have derived expressions for semiclassical perpen-
dicular transport in metallic multilayers, which are ex-
act for the present model. An experiment to check the
theory is proposed, which might lead to a deeper under-
standing of the scattering process and the microscopic
structure of disordered interfaces. The transition from
ballistic to diffuse transport in 2D and 3D systems is
given by an exact analytical expression (within our semi-
classical approximation). A simple semiclassical formula
for the giant magnetoconductance of antiparallel coupled
magnetic multilayers in terms of the mean free number

AN/N =18

AN/N =13

AG/Gp 0.5

0.25

0 1 2 3 4 5 6 7 8 9 10

Nyi/N
FIG. 14. Magnetoconductance for an antiparallel coupled
magnetic multilayer. The solid curves illustrate the effect of
spin-dependent mean free number of traversed interfaces.
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of traversed interfaces (or mean free path) for majority
and minority spins is derived. The parameters of the
theory are as yet phenomenological, but the formalism
can be extended to include the CIP geometry,3® spin-
flip scattering,3® quantum interference including realistic
band structure effects,!”>37 and more realistic models of
impurity and interface roughness scattering.
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by using the Feynman rules from Sec. IIIC. It is seen
that the irreducible vertex function is independent of the

wave vectors of outgoing and incoming states, O, R =
i
This simplifies the calculation considerably. It is the basis

for the semiclassical approximation in Sec. IV B, where
the reducible vertex function is found in terms of the self-
energy. Here we choose a different approach and calculate
the reducible vertex function directly from the irreducible
vertex function.

The reducible vertex function is related to the irre-
ducible vertex function by the Bethe-Salpeter integral
equation,

_ 2y
W’;n”;h = T T Z ki, k"|<Gk”>| kil k) (A2)
kl’

Just like the irreducible vertex function, the reducible
one does not depend on the indices. The Bethe-Salpeter
integral equation is then easily solved,

g

T 1o % (G

(A3)

Let us consider the low-density, weak-scattering limit.
In this limit the reducible vertex function and the irre-
ducible vertex function are equal. To the lowest order in
¥ we see from Eq. (A1) that the reducible vertex function
is simply

W = nIR'yZ/A. (A4)

The self-energy is calculated in the Born approximation,
Eq. (43). By inserting Eq. (A4) into the expression for
the two-particle Green function, Eq. (39), and using the
relation between the Green function and the transmis-
sion coefficient, Eq. (29), we find that the transmission
probability is
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APPENDIX A: GENERALIZED LADDER
APPROXIMATION

In this appendix we will calculate the total vertex func-
tion directly from the irreducible vertex function in the
generalized ladder approximation. In a semiclassical ap-
proximation, the phase coherence between scattering at
different impurities described by crossing diagrams is ne-
glected. The irreducible vertex function is the diamond
term in Fig. 11,

N M

TG | X | EeE | (A1)

M=0 g\’|”

k2
(T’;u ,’;ﬁ) (k1 + nrr)? 5’°n !
k, 27TNIR K\
+ A5
(kr +mr)> A (K| +mr)? (45)

in this approximation. Here nrg = [nrr/(2m)](m*y/k%)2.
This result agrees with the transmission probability
found from the Ward identity, Eq. (56), in the Born ap-
proximation.

APPENDIX B: SINGLE SHORT-RANGE
SCATTERER

In this appendix we consider scattering from a single
scatterer in the channel. The scattering matrix as defined
in Eq. (15) is, for a single scatterer located at g, = 0 with
scattering strength -y,

_m'y 1
Rk = “p2 [d-1’

(B1)

where d is the dimension of the channel. The matrix

equation to solve is given in Eq. (24):

/Ik | 1
Z[Jkn Ejf +i kn Ik"RIZk ]k &)
k”

R
_ R

k. Rk

In the symmetric case (k%
written as

L] _
try . iy Ta % E VT Erten g, = O, &> (B3)

= k%) this equation may be
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where
P [
I 2R2LA 1k |

Solving this equation exactly, we find

i
Il

kel VTR

) n Il

- - = e "l - K L. 1+45- T~ B
tk, B = 0K, & Z\/—FTH ki 1+i3; Ty ®9)

By using the optical theorem, Eq. (22), the conductance
in the limit of strong scattering (y — oo) is found to be

prop 1 \2
2e2 |2 (ZEH H)
G= T (1) - prop 1 2 evan 1 2
£ (Zp ) + (S )
(B6)
For a 3D channel, we find
2e? Ak%‘ 1

G—T(ig‘ﬁ)’ (B7)

which is consistent with Eq. (58) for one single impurity.
A similar result can be obtained for a 2D channel.

APPENDIX C: SUMMATION
OF GREEN FUNCTIONS

The expression for the Dyson equation involves sum-
mations of the unperturbed Green functions which are
carried out in this appendix. The effect of the discon-
tinuities in the conduction-band profile and the effective
mass in the intermediate wave-vector summation are dis-
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regarded. The electron Green function is given by the
unperturbed Green function and the self-energy,

(Gt = ! . (1)

ki me 1\ _y
(a)

The summation over the electron Green function is

+y = _'T: _l_ﬁ C2
;<G;H> z ﬁz EZ kJ. +i7}ri;,2-27 ( )
I Il

where k| = [k% — kﬁ]l/z. Carrying out the integral,

* Ak im*% k
4}? R e R GRS
i

il ™2
kph?

ahn (H_V——_lkm

L)X
(C3)

Here an ultraviolet divergence in the summation over in-
termediate evanescent states has been cut off at a wave
vector akp to account for the finite range of the poten-
tial. Similarly, the summation of the unperturbed Green
function gives

m* Ak 4
ka”“” = —zﬁﬂ’iu —ivaz —1]. (C4)

k)

These results are used in the calculation of the self-energy
in Sec. IV A.
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FIG. 1. A model of a magnetic multilayer structure.




