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Abstract
With an expectation of 8.3 trillion photos stored
in 2021 [1], convolutional neural networks (CNN)
are beginning to be preeminent in the field of im-
age recognition. However, with this deep neural
network (DNN) still being seen as a black box, it
is hard to fully employ its capabilities. A need
to tune hyperparameters is required to have a ro-
bust CNN that can more accurately do its task. In
this study, the batch size, being one of the most
important hyperparameters, is our main concern.
The batch size is the number of samples that will
be propagated through the network before updat-
ing the weights. Moreover, we show how the batch
affects the performance of Regression CNNs to the
following regression tasks: the mean, median, stan-
dard deviation (std) and variance of the pixel inten-
sities of a grey-scale MNIST[2] input image. This
will be analyzed by how well regression CNNs con-
verge, given different batch sizes and a fixed learn-
ing rate. Additionally, we will also be comparing
the final mean squared error given by all different
batch sizes. At the end of the research, our findings
concluded that a higher batch size leads to a higher
Mean Squared Error (MSE) and a slower conver-
gence. Additionally, the best performance obtained
was for batch sizes of size 8 to 32, with slight differ-
ences between the four different regressions tasks.

Keywords— Deep Learning, Convolutional Neural Network, Re-
gression, Sensitivity Analysis, Batch Size

1 Introduction
A Convolutional Neural Network (CNN) is a ”deep learning neural
network designed for processing structured arrays of data such as
images”[3]. The breakthrough of CNNs [4] was mostly seen in the
field of image recognition. Its benefit and innovation come from the
fact that it can efficiently learn features that are not constructed by
human experts. Whilst CNNs have first been discussed in the 1980s
[3], the arrival of autonomous cars and much more makes it the pre-
eminence in its favourable field. However, while this method is very
helpful, it is yet treated as a black box: studying its structure will
not give any judgment on the task being approximated. Although
some scientists such as Zeiler and Fergus [5] came up with solutions
to visualize the work of a CNN, various sections of it are still not

fully understood. Furthermore, image recognition is a subject that
can be treated in two different ways: classification and regression
tasks. Recent interest has been growing in the classification alterna-
tive, such as Ye Zhang and Byron Wallace [6] where they evaluate
the sensitivity of a CNN to its ”input vector representations; filter
region size(s); the number of feature maps; the activation functions;
the pooling strategy; and regularization terms”. However, until now,
there have been only a few amounts of studies on the sensitivity of
CNNs in a regression task [7].

With, for example, the AlexNet [8] containing over 60 million
parameters in total, a significant amount of research is being pro-
duced around the optimization of hyperparameters [9]. However,
before diving into the optimization, there is a need to first improve
our knowledge of the network’s sensitivity to specific hyperparam-
eters. The aim of this work is therefore to get a better understand-
ing of how sensitive CNNs are to the batch size. Sensitivity, as de-
scribed by Maosen Cao, Nizar F. Alkayem, Lixia Pan and Drahomir
Novak [10], is how a slight variation in the input parameters shows
a significant response to the results of the model. More precisely,
the analysis will be made over CNNs training on a regression task,
namely: the mean, median, standard deviation (std) and variance
of the pixel intensities of a grey-scale MNIST[2] input image. All
experiments will be conducted on a baseline model with fixed hy-
perparameters, except for the batch size and the learning rate. The
learning rate is being fine-tuned for every regression task, on a batch
size of 32 samples.

2 Problem Description
This section develops to a greater extent the problem we are trying
to answer, namely, if the batch size affects the performance of re-
gression CNNs. To fully understand the design and context there is
first a need to have a more in-depth explanation of a Convolutional
Neural Network. Then, the section ends with a description of the
main hyperparameters related to the training of the baseline model.

2.1 Convolutional Neural Network
A Convolutional Neural Network (CNN) is a class of Deep Learn-
ing Methods. While a Multilayer Perceptron (MLP) would need to
flatten the data – being an image in our research context – and feed
it in a network of the same size as the vector, a CNN can learn, and
extract patterns present in an image by running a filter on an im-
age. This gives the advantage of it being able to detect features hav-
ing pixel dependencies. Moreover, CNNs are composed of multi-
ple blocks, namely: convolution layers, pooling and fully connected
layers. Their respective role can be found below:

• Convolution Layer: extracts features of a picture by applying
filters, also known as a kernel.
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• Pooling Layer: used to reduce the spatial size given by the
convolutional layer. With a vast amount of different pooling
layers, it should be noted that we use the max-pooling function
in our research.

• Fully Connected Layer (FC): the flattened results are fed to
the FC and then mapped to final outputs, which in our situation
is the computed mean, median, standard deviation, or variance.

A more profound explanation of CNNs can be found in the paper
of Yamashita, Nishio, Do and Togashi [11].

2.2 Hyperparameters
To correctly train the model, many hyperparameters need to be ad-
justed. A hyperparameter is a value set before the learning process
that is internal to the model. A correct adjustment of hyperparam-
eters enables the model to reach its best performance, and reduce
the time to convergence. The main hyperparameters related to the
training are the following: the learning rate, momentum, number of
epochs, and batch size.

The learning rate is a hyperparameter that defines the rate at
which a CNN updates its weights during training. It is a crucial
parameter to tune since a too small learning rate leads to a longer
training phase and it might get stuck in a local minima, while a larger
learning rate might lead to an unstable training process. An explana-
tion of how this hyperparameter is tuned can be found in the Results
section.

The number of epochs is defined as the number of times the whole
train set will be fed to the network. This hyperparameter is important
since a lack of epochs will result in an underfitting problem, while
on the other hand, too many epochs will lead to overfitting. The
number of epochs for our research and every experiment is set to 10,
as seen in the Results section.

The batch size, one of the main and most important parameter
that need to be tuned, is the central problem in the research. The
batch size is the number of samples that will be propagated through
the network before updating the weights. As said by Ibrahem Kan-
del [12], “setting this hyperparameter too high can make the net-
work take too long to achieve convergence [. . . ]; however, if it is too
low, it will make the network bounce back and forth without achiev-
ing acceptable performance”. While this comment gives us already
some clarity on the sensitivity of the model to the batch size, it is,
unfortunately, being stated on a classification task. In this research
paper, we will then confront this statement on different regression
tasks, as seen in section 4.2. In addition to the faster convergence of
the model it should be noted that, for some datasets, we are unable
to fit the entire model at once in the memory. This is then another
advantage given by the batch size.

3 Related Work
With the AlexNet architecture containing over 60 million parame-
ters in total [13], a vast amount of parameters needs to be set up
and adjusted. With the batch size being one of the most dominant
ones [14], it is already known that a smaller batch size reduces the
time of convergence with the disadvantage of getting stuck in a local
minima and that a larger batch size might make the model take too
long to converge. Yet, only a few research papers are being produced
on the topic. Below is a research paper that investigates the effect
of batch size on the performance of CNNs for image classification,
therefore being a close subject to our research question.

In 2020, Ibrahem Kandel and Mauro Castelli published a paper
named “The effect of batch size on the generalizability of the con-
volutional neural networks on the histopathology dataset”. In this
paper, the authors investigated the accuracy of other researchers’
claims.

Firstly, the authors state the paper of Radiuk [15], which goal is to
“find an impact of training set batch size on the performance”. The
use of the MNIST and CIFAR-10 datasets are both used for consis-
tent results, as well as different CNN architectures. The experiments
were all produced on powers of 2 varying from 24 to 210, as well as
the following batch sizes: [50, 100, 150, 200, 250]. With the SGD
optimizer, and a learning rate of 0.001 and 0.0001 for the MNIST
and CIFAR-10 dataset, respectively, the results concluded that “the
greater the parameter value, the higher the image recognition accu-
racy”. More specifically, it is claimed that the optimal batch size is
of 200 samples or greater.

Then, the authors consider the results found in the work of Mas-
ters and Luschi [16]. Their research is concentrated on comparing
the test performance of different batch sizes through various exper-
iments. Specifically, their experiments were all performed on three
different datasets, namely the CIFAR-10, CIFAR-100 and ImageNet
dataset. With the use of different CNN architectures (AlexNet,
ResNet and ResNet-50), learning rates in the range [2−12; 20], the
SGD optimizer, and the same number of epochs for all experiments,
it was concluded that the models were all performing better when
operating on batches between 2 and 32 samples. Moreover, the au-
thors claim that their results “contrast with recent work advocating
the use of mini-batch sizes in the thousands”. It was also stated that
increasing the batch size leads to a lower “range of learning rates
that provide stable convergence and acceptable test performance”.

4 Methods
Following a more profound description of the research problem,
there is now a need to get a more detailed description of the method.
This section will therefore get more in depth with what was the ex-
perimental environment of the research, followed by a description of
the datasets used. Then, a more detailed description of the model is
given, with explanations on why such a custom model was created.
In section 4.4, details on parameters that are kept constant for the
whole research process is given. And finally, to end the section, an
explanation of how the network is evaluated is explained.

4.1 Experimental Environment
In order to be able to fully replicate all experiments, there is a need
to detail the experimental environment. Then, it should be noted that
all experiments have been conducted on Windows 10 installed on a
machine with an Intel Core i5-10400F 2.90GHz and 16GB RAM.
In order to significantly improve the speed of training, a single
RTX2060 GPU is used in our experiments, with the use of CUDA.

Considering the implementation of the CNN, the whole network
is created using the python package named PyTorch. PyTorch is
one of the strongest Deep Learning libraries, with Tensorflow on its
side. With its support for C, C++ and Tensor computing, it permits
to have a much faster model while still being easy to use [17]. All
experiments are publicly available in the following GitHub reposi-
tory: github.com/Jlamon/sensitivity batch size regression cnn.

4.2 Dataset
All experiments will be operated on the MNIST dataset [2], being a
collection of images representing handwritten digits. This specific
dataset contains 60,000 training images, with an additional 10,000
images for the test set. All images have already been preprocessed
by these researchers [2], resulting in size-normalized and centred
28x28 images.

Since the project is focussing on the computation of regression
tasks, labels given with the MNIST dataset are of no help to us.
Therefore, a need to preprocess the dataset by ourselves was needed.
To approximate the mean, median, standard deviation or variance,
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Figure 1: Distribution of computing the mean, median and standard
deviation of the image pixel intensities of the train MNIST dataset.

these values were computed for all images. To facilitate the under-
standing of what regression task is being approximated, a various
number of abbreviations will be used, as listed below:

• MeanMNIST: this abbreviation is used when the model is
approximating the mean of the pixel intensities of a grey-
scaled MNIST input image. The formula is as follows:
Sum of all pixel values
Number of pixel values

• MedianMNIST: this abbreviation is used when the model is
approximating the median of the pixel intensities of a grey-
scaled MNIST input image. The median is the middle value of
the set of ordered pixel values. In other words, it is the n+1

2

th

value.

• StdMNIST: this abbreviation is used when the model is ap-
proximating the standard deviation of the pixel intensities
of a grey-scaled MNIST input image. The formula is as

follows:
√

1
N−1

∑N
i=1(xi − x)2. Where xi is the ith pixel

value in the image, x is the mean value of the pixel intensi-
ties of the image, and N is the number of pixel values.

• VarMNIST: this abbreviation is used when the model is ap-
proximating the variance of the pixel intensities of a grey-
scaled MNIST input image. The formula is as follows:∑N

i=1(xi−x)2

N
.

An observation should be made on the various distribution of
these preprocessed datasets. It can be seen in figure 1 that the dis-
tribution of the MeanMNIST and StdMNIST dataset are quite re-
semblant. However, for the MedianMNIST dataset, we can see that
the distribution is almost null, therefore showing us that the experi-
ments conducted on this dataset might not give us helpful results for
our research question due to its inaccuracy. Then, as seen in figure 2
the distribution of the VarMNIST dataset needs to be set apart from
the others due to its large difference in the MSE loss.

4.3 Baseline Model
A baseline model was implemented following a tutorial called
“MNIST Handwritten Digit Recognition in PyTorch”[18]. A mod-
ification in the code was needed to fit our needs. The adjustments
made concerned the removal of the dropout layer, but most impor-
tantly the need to adapt the model to regression tasks.

The model is constructed out of two sequential layers and then
a set of fully connected layers (FC), as seen in figure 3. The two
sequential layers are similar; that is, they both have one 2D Con-
volutional Layer with a kernel size of 5x5, following by a 2D max-

Figure 2: Distribution of computing the variance of the image pixel
intensities of the train MNIST dataset.

pooling layer with a 2x2 sized kernel, and then a ReLu activation
function. The only difference between the two sequential layers are
the input and output channels: the first layer has one input and 10
output channels while the second layer has 10 input and 20 output
channels. The first input channel is of size one because the MNIST
dataset is gray scaled. Finally, a set of fully-connected layers is cre-
ated. This set is comprised of two FC: the first contains 320 nodes
and is connected to the second layer, which has 50 nodes and fin-
ished with only one, being the mean or std or, lastly, the median. It
should be noted that right after the two sequential layers, the output
is first flattened in order to be fed to the set of fully connected layer.

Figure 3: Outline of CNN model

4.4 Training
With the help of PyTorch, discussed in the earlier “Experimental En-
vironment” section, most of the hyperparameters are kept as default.
In other words, the number of hyperparameters being set is kept to
a minimum to concentrate the most on the research question, and
not the fine-tuning of the model. As an example, the 2D Convolu-
tional Layer class provided by PyTorch [19] requires the following
parameters:

torch.nn.Conv2d(in channels, out channels, kernel size,
stride=1, padding=0, dilation=1, groups=1, bias=True,

padding mode=’zeros’)

However, we are only modifying the first three parameters, the
rest is kept as default, as seen in the class above. This also applies to
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Figure 4: The testing accuracy of two different optimizers (SGD and
Adam) over a fixed number of epochs 1

the pooling layers, fully connected layers, ReLu activation function,
and the optimizer used.

Concerning the optimizer, the choice was being considered be-
tween the Stochastic Gradient Descent (SGD) and the Adaptive Mo-
ment Estimation (Adam). In figure 4 we see that the Adam optimizer
is achieving a lower MSE than the SGD. The Adam optimizer is then
chosen for the rest of the experiments.

It should be noted that no validation set has been used in the train-
ing of the model. The reason is that the use of a validation set is to
evaluate different models on it to choose the best performing one.
However, due to our research question a baseline model is needed
to have its performance differing only due to the parameters manu-
ally changed. Therefore, since the model is decided beforehand, a
validation set is not needed.

4.5 Performance Evaluation
A regression loss function should be picked to evaluate if the pre-
dicted labels correspond to the targeted label. With a vast choice of
regression loss functions such as the Mean Squared Error (MSE),
Mean Absolute Error (MAE) or Smooth Mean Absolute Error, it is
chosen to continue our experiments with the most commonly used
regression loss function, namely the MSE.

5 Results
In the interest of answering the research question, we executed sev-
eral experiments. It is in this section that we present the multiple
evaluations performed to determine how the batch sizes affect the
performance of Regression CNNs. All results given in this section
are created using the methods described in section 4.

For each regression task (mean, median, std and variance), the
learning rate of the baseline model is tuned considering a batch size
of 32. The learning rates first tested are on the log-scale curve:

[0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1]

Then, considering the best result found on the log-scale, values
around it are tested as well. As an example, if the model trains better
with an initial learning rate of 0.01, these following values are then
tested:

[0.0025, 0.005, 0.0075, 0.01, 0.015, 0.0175, 0.02]

Graphs displaying the results of these different learning rates can be
found in Appendix A.

As in the paper of Pavlo M. Radiuk [15], the different batch sizes that
will be tested are all on the power of 2. However, to have a broader
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view of the sensitivity, the number of batch sizes being tested is
augmented, resulting in the following array:

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]

For each one of them, the model is trained from scratch and the
accuracy is tested at the end of each epoch, as well as before any
prior training. It should be noted that we mostly added smaller batch
sizes, namely the values 2, 4 and 8 since it was noted in the early
experiments that the higher the batch size, the higher the MSE loss.
We, therefore, wanted to try and observe an increase in the MSE loss
for smaller batch sizes.

In the end, a total amount of four experiments will be performed,
with each of them being conducted on the four regression tasks. For
each experiment, a different set of graphs is given to compare the
results. For each experiment and batch size, the baseline model is
trained for 10 epochs. A higher number of epochs would result in
the model overfitting.

5.1 Experiment 1: How well do they converge ?
In this experiment, graphs are created to see if there are any poor
fluctuations in the test loss. This experiment is conducted because
the sensitivity of a model to different batch sizes can be noticed by
how the model converges. Then, if there are any significant differ-
ences between the batch sizes, some hypothesis can be deducted.

Figure 5 visualizes the trend of different batch size on the
four constructed datasets, namely the MeanMNIST, MedianMNIST,
StdMNIST and VarMNIST datasets. Therefore, each graph in fig-
ure 5 represents the results of the baseline model approximating the
mean, median, standard deviation or variance of the pixel intensities
of its input images. It should be noted that the curves - representing
the MSE at the end of each epoch - are computed on the test set.
Additionally, the baseline model applies the best performing learn-
ing rate found for each regression dataset, with a batch size of 32, as
seen in appendix A.

For our experiments, it can be observed that there are two differ-
ent trends in the performance of the four datasets. It can be seen that
the convergence in the mean and variance is converging normally,
with still the highest batch sizes (such as the batch size with 1024
samples) having an inferior performance to the small batch sizes,
such as a batch size of 64 samples.

Considering the second trend, being observed on the StdMNIST
and MedianMNIST datasets, we can see that the curves are not as
smooth as for the MeanMNIST and VarMNIST dataset. Again, just
as for the first trend, the larger the batch size value, the higher the
MSE result. It is apparent that for both figures 5(b) and 5(c), the
noisiest batch size value is 512 samples, followed by 1024 samples.

The main difference between the two trends is therefore not in the
results but its global convergence. To these specific experiments, we
can state that the StdMNIST and MedianMNIST are being complex
to compute for the baseline model. Conclusions can be drawn from
the distribution of the synthetic datasets, as seen in figures 1 and 2.
But this will all be discussed in the Discussion section.

5.2 Experiment 2: The time it takes to converge
The second experiment that is performed concerns the effect of the
batch size on the time the model takes to train. As seen in fig-
ure 6, the graph only represents results computed on the MeanM-
NIST dataset. That is because the convergence of the time is similar
for all regression tasks, therefore making it counterproductive to dis-
play the results of all task. Then, as seen in figure 6, the bar charts
visible in red represents the results of the MSE computed at the very
end of the training phase. On the other hand, the bar charts visible in
blue represents the convergence of the time the model takes to train,
in seconds.
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(a) The convergences of different batch sizes on the
MeanMNIST dataset. The best performing batch size is
of 64 samples

(b) The convergences of different batch sizes on the Me-
dianMNIST dataset. The best performing batch size is of
32 samples.

(c) The convergences of different batch sizes on the StdM-
NIST dataset. The best performing batch size is of 16
samples

(d) The convergences of different batch sizes on the
VarMNIST dataset. The best performing batch size is of
256 samples

Figure 5: The convergence of testing different batch sizes on the four regression tasks. Figure 5(a) represents the results of testing one the
MeanMNIST dataset, following with figure 5(b) on the top right corner, testing on the MedianMNIST dataset. On the bottom-left corner,
figure 5(c) is picturing the results on the StdMNIST dataset. Finally, figure 5(d) displays the results on the VarMNIST dataset.

What can be observed from the figure is that the time greatly con-
verges as the batch size is growing. The first batch size – a batch size
of 2 samples – takes almost 600 seconds, being 10 minutes while
the largest batch size – a batch size of 2048 samples – takes less
than 100 seconds, being a minute. This, therefore, shows a differ-
ence by a factor of 10, which should not be negligible. However,
as we can see, as the batch size is larger, the MSE is growing up as
well, therefore stipulating that the model might need more time to
converge.

5.3 Experiment 3: Sensitivity of CNN to different
batch sizes

The third experiment, being the most important one, represents the
last MSE loss registered for each different batch size. Then, as seen
in figure 7, it can be observed that a slight increase in the error can
be seen for smaller batch sizes. A significant increase in the error
rate for larger batch sizes can be noticed. It should be noted that the
computation of the variance is separated from the computation of the
mean, median and standard deviation due to the notable difference in

the MSE. While the maximum value in figure 7(a) is 4, the maximum
value in figure 7(b) is over 80.000. This then means that compiling
the two graphs would result in an inability to compare the results.

As a first look, it can be seen that, globally, the MSE loss is de-
creasing while going from a batch size of 2 to a batch size of 4,
before it gradually increases, except for the median. Again, the me-
dian might behave this way due to its distribution, as seen in figures 1
and 2. The computation on the StdMNIST and MeanMNIST do also
continue to decrease while going from a batch size of 4 to 16, but
the decrease is only by a difference of 0.1 in the MSE loss.

5.4 Experiment 4: Error difference in 10 different
runs

Sensitivity can also be measured by how different results are on mul-
tiple runs. That is, the bar charts seen in figure 8 are representing the
mean results given by the last epoch of the model, while the error
bars indicate the standard deviation. Moreover, the baseline model
is being trained ten times from scratch, and only the MSE of the last
layer is kept. Then, the mean and standard deviation of each batch
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Figure 6: Results from the computation on the MeanMNIST dataset.
The MSE is represented in red while the time it takes to train the
model is represented in blue. The time is represented in seconds.

size is computed and represented on the graph. It should be noted
that for each run, a new random seed is being created. The digit used
to set the random seed is computed as follows: current batch size +
current run index.

From the graphs, it can be seen that there are similarities to the
graphs in figure 6, such as the fact that the larger the batch size
value, the higher the MSE loss. But, also, we can observe some clear
differences, such as in figure 8(a) with a standard deviation around
0.5 while the maximum mean value is about 0.9. This clearly shows
some sensitivity to this specific batch size.

Again, as for the other figures (figures 7(a) and 5(b)), the com-
putation on the MedianMNIST dataset shows some severely small
results, therefore making us question if figure 8(b) is accurate. It
can be observed that the results on the small batch sizes (batch sizes
from 16 to 64) gives results of 0.0 due to a too-small number that a
float datatype is unable to handle. We also indicate a relative differ-
ence in the following batch sizes, with the standard deviation being
mostly higher than the mean, therefore suggesting an inability to
interpret the results.

As for the two other graphs (figure 8(c) and 8(d)), we can see less
noise in the results than in figure 8(a) and 8(b). We can however wit-
ness a high standard deviation for the batch size of value 64 and 128
in figure 8(c). It can also be indicated that with the high MSE loss
of the VarMNIST in figure 8(d) the standard deviation is much more
important than for the other figures, such as a standard deviation of
approximately 10.000 for a batch size of 32 samples.

6 Discussion
This research paper answers the question of whether CNNs are af-
fected by the batch size hyperparameter or not. Various experiments
have been conducted to answer this question, as seen in the Results
section. These results, all being conducted on the very same baseline
model but having its learning rate and batch size hyperparameters
changed, indicate that smaller batch sizes do give better results than
the larger ones. Except for the time to convergence, where time is
steadily decreasing before stagnating after a batch size of 64 as seen
in figure 6, it can be seen that batch sizes in the interval [2; 64] give
considerably better results before starting to increase. Moreover, in
the interval stated before, it must be observed that the batch sizes
2, 4 and 8 are generally giving the least favourable results in the 6

batch sizes studied in the interval. However, the change is signifi-
cantly smaller than the differences in the MSE loss found between
batch sizes [2; 64] and [128; 2048]. As an example, for the std in fig-
ure 7(a), the worst MSE in the first interval is only around 0.7, while
the worst result in the second interval is almost 4. The difference is
then by a factor of around 0.57. This difference is even bigger for
the variance (as seen in figure 7(b)), where the factor is 4, consid-
ering that the maximum error loss in the first interval is 20.000 and
the second interval is over 90.000.

Concerning the noise found in the standard deviation in figure 8,
it can be seen that the distribution is quite different for all regression
tasks. A hypothesis as to why such noise appears can be explained
by their distribution. As it can be seen, when the distribution is
dense, as for the MedianMNIST in figure 1, the noise is much higher
than for the VarMNIST dataset, which, a contrary, has a much more
sparse distribution, as seen in figure 2, where the variance of the
pixel intensities of the input image is between around 1000 and
14000.

With previous research papers discussed in the related work section
focusing on classification tasks, it is then natural to try and find cor-
relations between CNNs performing classification tasks, and regres-
sion tasks. Then, it can be seen that our results do not agree with the
conclusions declared by Radiuk [15], stating that the optimal batch
sizes are of 200 samples or greater. It should however be noted that
this statement is accompanied by the fact that the author does also
increase the learning rate, and that it requires more computational
power. This is therefore an issue that should be resolved in future
research, being the fact that the learning rate used by each regres-
sion task is fine-tuned only on a batch size of 32, being suggested
by Bengio [20] as a good default value. With a fine-tuned learning
rate and more epochs, the MSE loss might be lower than the results
found with a fixed learning rate, as done in our research.

Then, concerning the paper of Masters and Luschi [16], it can be
seen that our research results relate more to this paper. However,
our results yet do not agree completely with each other. As the
authors are stating, the optimal results are obtained when training
the model with a batch size of 32 samples or lower, with the batch
sizes of 2 and 4 being usually performing better than the rest. This
is therefore not applying to us; as seen in figure 7(a) and 7(b), our
optimal batch sizes are between 8 and 32, with this interval differing
fairly between the four different regression tasks.

Concerning the limitations, the generalizability of the results is lim-
ited by the fact that only the MNIST dataset is used for our exper-
iments. The main issue with this dataset is the fact that all digits
are greyscaled, therefore greatly limiting the differences in the pixel
intensities of the input image. While a pixel value in a grayscaled
image is only represented by a single number, serving as the bright-
ness of the pixel, a coloured image, on the other hand, needs to be
represented by a vector of three number, if the RGB format is used.
This would then increase the complexity of the task given to the
baseline model, which might have some effect on the performance,
as well as its rapidity to convergence. A further improvement for the
research would then be to test our model on coloured images from
the CIFAR-10 dataset, for example.

Another improvement would be to test our model on a synthetic
dataset created entirely for this research. That specific dataset would
not be representing any object or digit, but would only be containing
randomly chosen pixel intensities. This would then show the limita-
tions in the model approximating any of the regression tasks used in
this research.

Nonetheless, the results found in this research paper are yet valid
for answering our research question, being rather or not the batch
size is affecting the performance of Regression CNNs.
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(a) The results of the baseline model approximating the Mean-
MNIST, MedianMNIST and StdMNIST datasets, with different
batch size on a base 2 logarithmic scale

(b) The results of the baseline model approximating the VarM-
NIST dataset, with different batch sizes on a base 2 logarithmic
scale.

Figure 7: The results of testing different batch sizes on the baseline model. Figure 7(a) is representing the results of the baseline model
computing the MeanMNIST, MedianMNIST and StdMNIST datasets. The results are being computed with a learning rate of 0.0015, 0.1
and 0.001, respectively. The results computed on the VarMNIST dataset are displayed in figure 7(b) due to the considerable gaps in the
results.

7 Responsible Research
In addition to the time taken to represent and discuss the results
found during the research, an appropriate amount of time was taken
to represent the truth to its fullest, and to cite the work and code
established by others. That is, all information is given to prove that
results and representations can be reproducible on any other machine
if the conditions are met.

Concerning the code, it was already noted that the code was taken
from a blog, namely “MNIST Handwritten Digit Recognition in Py-
Torch” [18]. It was then changed, with the help of Julian Biesheuvel,
Remco den Heijer and Ratish Thakoersingh, the teammates with
whom I indirectly worked during the whole research project. As
the baseline was created, each teammate forked from it, and work
on his specific research question. It is then that the code, followed
with its experiments, plots and saved states of the model, can be
publicly found in a GitHub repository [source], all sorted by dif-
ferent weeks. Additionally, a profound explanation of experiments,
with the hyperparameters used and why can be found in the previous
sections 4.

Concerning the main python package, PyTorch, with its strong
community behind it, makes the source code easy to learn and un-
derstand. This advantage, therefore, enables anybody to reproduce
the results if they have a powerful enough machine.

With all the conditions met, this is research can be fully repro-
duced with similar results. A minor difference in the results can
be found if another GPU is used, with mostly a change in the time
taken to train the model. Also, due to rounding errors, minor differ-
ences can be found in the MSE/MAE results, but yet having a global
similarity to the results shown in this research paper. Finally, some
results might also change due to the random seeds.

Furthermore, the experiment does not involve human subjects,
thus unethical human research cannot occur.

8 Conclusion
This research paper presented a study on whether or not the batch
size affects the performance of Regression CNNs. With our ex-

periments, we then reviewed the correlations found with the related
work, being performed on classification tasks.

The current results demonstrated that the batch size has a signif-
icant effect on the performance of CNNs. It was observed that the
optimal batch sizes were generally found in the interval of [8; 32],
with this interval differing fairly between the four different regres-
sion tasks. On the other hand, it should be noted that the MSE is
higher for batch sizes of 2 and 4 samples before decreasing, there-
fore contradicting the findings of Masters and Luschi [16], stating
that the optimal batch sizes are of size 32 or lower, and more often
as small as 2 or 4.

While our results highlight the fact that larger batch sizes do not
perform well, due to the significant difference in the MSE loss, it
should yet be taken as a grain of salt. It should therefore be noted
that the learning rate, being with the batch size one of the main hy-
perparameters, was fine-tuned on a batch size of 32, instead of fine-
tuning it for all batch sizes. This might then result in a learning rate
not being set right for higher batch sizes.
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(a) Results of testing different batch sizes - on the MeanMNIST
dataset - on a base 2 logarithmic scale.

(b) Results of testing different batch sizes - on the MedianM-
NIST dataset - on a base 2 logarithmic scale.

(c) Results of testing different batch sizes - on the StdMNIST
dataset - on a base 2 logarithmic scale.

(d) Results of testing different batch sizes - on the VarMNIST
dataset - on a base 2 logarithmic scale.

Figure 8: The testing accuracy of different batch sizes tested 10 times with different random seeds. The bar charts represent the mean results,
with the error bar displaying the standard deviation. Figure 8(a) represents the results of the baseline model computing the MeanMNIST
dataset, following with figure 8(b) on the top right corner, testing on the MedianMNIST dataset. On the bottom-left corner, figure 8(c) is
picturing the results on the StdMNIST dataset. Finally, figure 8(d) displays the results on the VarMNIST dataset.
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(a) The results of testing the learning rates around the best per-
forming learning on the log-curve (0.001) on the MeanMNIST
dataset. The best performing learning rate is found to be 0.0015

(b) The results of testing the learning rates around the best per-
forming learning on the log-curve (0.1) on the MedianMNIST
dataset. This graph is log-scaled due to the sparse differences
between all learning rates. The best performing learning rate is
found to be 0.1. The learning rates 0.175, 0.15 and 0.2 is not
chosen due to the rounding error leading to a MSE of 0.0

(c) The results of testing the learning rates around the best per-
forming learning on the log-curve (0.001) on the StdMNIST
dataset. The best performing learning rate is found to be 0.001

(d) The results of testing the learning rates around the best per-
forming learning on the log-curve (0.001) on the VarMNIST
dataset. The best performing learning rate is found to be 0.0015

Figure 9: The results of testing the learning rates on the four regression tasks. Figure 9(a) represents the results of testing on the MeanMNIST
dataset, following with figure 9(b) on the top right corner, testing on the MedianMNIST dataset. On the bottom-left corner, figure 9(c) is
picturing the results on the StdMNIST dataset. Finally, figure 9(d) displays the results on the VarMNIST dataset.
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