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Abstract

This thesis explores the mathematical foundations of quantum measurements for relativistic particles, focusing
on the construction of positive operator-valued measures (POVMs) within the framework of functional analysis.
Motivated by recent developments in mathematical physics, particularly the construction of a POVM for a one-
dimensional relativistic massless particle, we develop an analogous POVM for a relativistic particle with mass.
The mathematical framework is firmly grounded in the Tomita-Takesaki modular theory, and its connection to
Connes-Rovelli thermal time is established.

A central component of the thesis is a detailed, self-contained proof of Tomita’s theorem, a cornerstone result
in the modular theory of von Neumann algebras. This theorem plays a critical role in understanding the struc-
ture of operator algebras associated with quantum systems and underpins the rigorous formulation of covariant
observables. Furthermore, it is of crucial importance to formulating Rovelli’s thermal time hypothesis.

Building upon this theoretical groundwork, we construct a POVM for a relativistic massive particle in one spatial
dimension. The resulting POVM satisfies temporal covariance relations and provides a mathematically consistent
description of time measurements for massive particles, addressing key challenges in quantum field theory. The
thesis concludes by relating the newly found time observable to Connes-Rovelli thermal time.
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1
Introduction

This master’s thesis aims to provide a formulation of the mathematical description of Carlo Rovelli’s thermal time,
including a detailed proof of Tomita’s theorem, the main result of Tomita-Takesaki theory. The mathematical
background of this thesis is largely based on Jan van Neerven’s book Functional Analysis[14], and the proof of
Tomita’s theorem is based on a 2024 paper by Jonathan Sorce[21]. The research and writing of this thesis were
conducted at the Delft Institute of Applied Mathematics from March 2024 until March 2025.

Chapter 2 gives the mathematical preliminaries needed to understand the rest of this thesis. It includes a short
introduction to Lie groups and Lie algebras. The majority of this chapter is devoted to a handful of fundamental
proofs in operator algebras.

Chapter 3 gives an outline of the physics framework for which the mathematics of this thesis is relevant. Specif-
ically, it introduces the mathematical formulation of quantum mechanics after recapping classical mechanics, as
given by the Dirac-von Neumann axioms. This includes the notions of states, observables, and symmetries.

Chapter 4 provides a rigorous mathematical construction of the framework introduced in Chapter 3. As in the
previous chapter, classical mechanics serves as an entryway to the formulation of quantum mechanics. A few
theorems essential to quantum mechanics are proved, including the Born rule and Wigner’s theorem.

Chapter 5 introduces the idea of thermal time, as formulated by Carlo Rovelli in 1993[19]. It is based on a 2013
paper by Pierre Martinetti[12] and highlights the difference between time in special relativity and in quantum
mechanics. It also describes the thermal time hypothesis, an attempt to account for this difference in formulation,
put forward by Alaines Connes and Carlo Rovelli in 1994[4].

Chapter 6 broadens the notion of what can be considered an observable in quantummechanics. While observables
are typically described by projection-valued measures, this chapter introduces positive operator-valued measures,
a generalization of the former. An example is provided to illustrate the relevance of this concept.

Chapter 7 introduces Tomita-Takesaki theory, a method of constructing modular automorphisms of von Neumann
algebras. Tomita-Takesaki theory plays an important role in the thermal time hypothesis. This chapter is largely
based on Section 2.5 in Operator Algebras and Quantum Statistical Mechanics I by Ola Bratelli and Derek W.
Robinson[18].

Chapter 8 proves Tomita’s theorem. This proof is based on a 2024 paper by Jonathan Sorce titled ”A short proof
of Tomita’s theorem.”[21] The proof is similar to the one given by Bratelli and Robinson in the case where the
modular operator is bounded.

Finally, Chapter 9 gives a proof of a positive operator-valued measure covariant with thermal time. A 2024
paper by Jan van Neerven and Pierre Portal[15] already proves the case for the free relativistic particle with no
mass. This thesis generalizes the proof to a time covariant positive operator-valued measure to the free relativistic
particle with mass, where it is shown that the defined time can be interpreted as thermal time.
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2
Mathematics Preliminaries

2.1. Lie Groups

In the early 1800s, the Frenchmathematician Éraviste Galois determined a necessary and sufficient condition for a
polynomial to be solvable by radicals. Essentially, his work classified polynomials in terms of group theory. Later
that century, the Norwegian mathematician Sophus Lie made it his life’s work to develop a theory of symmetries
for differential equations that would accomplish what Galois had done for algebraic equations (polynomials).

Lie’s main idea was to construct a theory of continuous groups, complementing the theory of discrete groups that
developed from Galois theory. Although Lie’s hope of unifying the entire field of ordinary differential equations
was never fulfilled, the continuous groups he introduced, now known as Lie groups, remain an important area
of study in mathematics. Roughly speaking, a Lie group is a group that is also a smooth manifold with group
operations that are smooth.

Definition 1 (Lie group). A Lie group is a smooth manifold G equipped with a group structure such that the
maps µ : G×G→ G, (x, y) 7→ xy and i : G→ G, x 7→ x−1 are smooth.

Some basic examples of Lie groups include (Rn,+), (Cn,+), (R⋆, ·), and (C⋆, ·). For all of these, it can easily
be seen that they are manifolds and groups. The most general example of a Lie group is the general linear group
GL(n,C), which is the set of n×nmatrices with complex coefficients and non-zero determinant, and the group
operation is matrix multiplication. This forms a group, as it consists precisely of the invertible matrices.

Definition 2 (One-parameter group). Let G be a Lie group with identity e. A continuous function
ϕ : R → G, t 7→ ϕt is a one-parameter group if:

1. ϕ0 = e

2. ϕs+t = ϕsϕt for all s, t ∈ R

In other words, a one-parameter group is a continuous group homomorphism ϕ : R → G, where R is viewed
as the additive group (R,+). For example, let x ∈ Mn(C). Then ϕ : R → GL(n,C), t 7→ exp(tx) is a one-
parameter group. Remarkably, it turns out that this is the only one-parameter subgroup of GL(n,C) (Theorem
4.3 in [7].)

Theorem 1. Let ϕ : R → GL(n,C) be a one-parameter group. Then there exists a unique x ∈ Mn(C) such
that ϕt = exp(tx).

Proof. Suppose that ϕ′0 = x. Then

ϕ′t = lim
h→0

ϕt+h − ϕt
h

=
ϕtϕh − ϕtϕ0

h
= ϕ′0ϕt = xϕt

So ϕ is a solution to the initial value problem y′(t) = xy(t), y(0) = I , the unique solution of which is ϕt =
exp(tx).

2



2.2. Lie Algebras 3

2.2. Lie Algebras

Interestingly, it turns out that every Lie group gives rise to a particular linear space that encodes many of the
properties of the Lie group. These spaces were introduced by Sophus Lie to study the concept of infinitesimal
transformations and were originally known as the algebra of infinitesimal transformations of a Lie group. After
Lie’s continuous groups were renamed as Lie groups, these algebras become known as Lie algebras.

Consider the Earth, a sphere-like object that can be thought of as a manifold. The surface of the Earth is, of
course, curved, but when imposed with a coordinate system (longitude and latitude), a map, which is flat, can be
created. A map naturally encodes many (but not all) of the properties of the Earth and is much easier to produce
than a globe. Lie wanted something similar for his continuous groups, attempting to encode the group structure
in their associated linear spaces. Roughly speaking, a Lie algebra is a linear space together with an operation that
measures the failure of commutativity for the associated Lie group.

Definition 3 (Lie algebra). A Lie algebra is a vector space L over a field F with an operation
L× L→ L, (x, y) 7→ [x, y], called the Lie bracket, that satisfies the following conditions: [9]

1. The Lie bracket operation is bilinear
2. [x, x] = 0 for all x ∈ L

3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

The third condition is known as the Jacobi identity, and arises from the associativity of the group operation in
groups. Indeed, it should be no surprise that the Lie bracket of a Lie algebra has something to do with the group
operation of its associated Lie group. In general, for all Lie algebras of interest in this thesis, the Lie bracket is
the commutator bracket [x, y] = xy − yx.

As mentioned above, Lie algebras represent infinitesimal transformations of Lie groups. As such, moving from a
Lie group to its Lie algebra is in some sense analogous to moving from a differentiable function to its derivative.
Consider the function f : R → R, x 7→ x2. Its tangent line at any point a ∈ R is given by y = 2ax − a2.
Although the tangent line is different at each point, it is always a line defined on the real numbers, and so it is
isomorphic to the real number line R. Therefore, R can be thought of as the linearization of the parabola y = x2,
or of any other differentiable curve, for that matter.

Lie algebras linearise Lie groups in a similar fashion. Let G be a Lie group. A differentiable path through
x ∈ G is a differentiable function γ : (−ε, ε) → G for some ε > 0, such that γ(0) = x. It can be thought of
as a differentiable function travelling through G (viewed as a manifold), with x at its origin. We say that two
differentiable paths γ1 and γ2 are equivalent if γ′1(0) = γ′2(0). That is to say, two such functions are equivalent
if their derivative at x is the same.

Definition 4 (Tangent space). LetG be a Lie group. The tangent space TxG toG at x is the set of all equivalence
classes of differentiable paths through x.

Physically, the tangent space at x ∈ G can be viewed as the space of possible velocities of a particle on the
manifold moving through x, just like the tangent line to a differentiable function at any point. Since group
multiplication is smooth, the tangent plane at any point x ∈ G is isomorphic to the tangent plane at the identity
e ∈ G, and therefore all tangent planes TxG, x ∈ G are isomorphic to each other. As such, the Lie algebra
associated with a Lie group G is the tangent space at the identity TeG.

Theorem 2. Let G ⊂ GL(n,C) be a Lie group. Then TeG with the Lie bracket [x, y] = xy − yx is a real Lie
algebra.

Proof. Let x, y ∈ TeG with respective differentiable paths γx and γy , and let α ∈ R. Then the map γ(t) :=
γx(αt)γy(t) is a differentiable path such that γ(0) = e and, by the product rule, γ′(0) = αx+ y. Thus, TeG is a
real subspace ofMn(C).
Now, since TeG is a real subspace ofMn(C), it is closed and so

[x, y] = xy − yx = γ′x(0)yγx(0) + γx(0)y(γ
−1
x )′(0) =

d

dt
γx(t)yγ

−1
x (t)

∣∣∣
t=0

= lim
h→0

γx(t)yγ
−1
x − y

h
∈ TeG.

It is easily checked that [x, y] satisfies the conditions of the Lie bracket.
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2.3. Operator Algebras

The theory of operator algebras originates from the late 1930s when John von Neumann proposed a new frame-
work for studying quantum mechanics using ”rings of operators,” mathematical objects which are now known
as von Neumann algebras. Soon after, Soviet-American mathematician Israel Gelfand developed the theory of
C∗-algebras, which are generalizations of von Neumann algebras. The theory of C∗-algebras and von Neumann
algebras form a single area that we call operator algebras, now considered a branch of functional analysis. In
a nutshell, operator algebras concerns the theory of algebras of bounded operators on a Hilbert space. That is to
say, it is the study of the mathematical space B(H) as an algebraic object (or generalizations of this space), where
the multiplication operation is given by the composition of operators.

Often, it will be desirable to study only a closed subspace of B(H), which is an operator algebra in its own right.
These subspaces are what we call C∗-algebras and von Neumann algebras, but in order to formally introduce
them, we first need some concepts from functional analysis.

Recall that a Banach algebra is a complete normed algebra and that a ⋆-algebra is an algebra A with an invo-
lution on A, that is, an antilinear map a 7→ a∗ on A, such that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.

Definition 5. A C⋆-algebra A is a Banach ⋆-algebra such that ‖a∗a‖ = ‖a‖2 for all a ∈ A.

It is not clear from the definition that C∗-algebras are subspaces of B(H). In fact, for any C∗-algebra A, there
could be multiple ways to represent it as bounded operators acting on a Hilbert space, each arising from some
linear functional τ : A → C. For any such τ , the representation associated with it is known as the Gelfand-
Naimark-Stark representation (commonly abbreviated to GNS representation).

Definition 6 (Positive linear functional). Let A be a C∗-algebra. An element a ∈ A is called positive if it is
self-adjoint and σ(a) ⊂ [0,∞). The set of positive elements of A is denoted by A+.
A linear functional τ : A→ C is called positive if τ(A+) ⊂ [0,∞), that is, τ maps positive elements to positive
elements.

We will now prove that for a C∗-algebra A, every positive linear functional τ : A → C gives rise to a ⋆-
homomorphism φτ : A→ B(H) for some Hilbert spaceHτ .

Theorem 3 (Gelfand-Naimark-Stark representation). Let A be a C∗-algebra A and let τ : A → C be a pos-
itive linear functional. Then there exists a Hilbert space Hτ and a map φτ : A → B(H) such that it is a
⋆-homomorphism.

Proof. Let Nτ = {a ∈ A | τ(a∗a) = 0}, which is a closed left ideal of A, and defineHτ := A/N .
The inner product A/Nτ ×A/Nτ → C, (a+Nτ , b+Nτ ) 7→ τ(b∗a) turnsHτ into a Hilbert space.
For a ∈ A, define φ(a) : A/Nτ → A/Nτ by φ(a)(b+Nτ ) = ab+Nτ .
Since ‖φ(a)(b+Nτ )‖2 = τ(b∗a∗ab) ≤ ‖a‖2τ(b∗b) = ‖a‖2‖b+Nτ‖2, we have ‖φ(a)‖ ≤ ‖a‖, and so φ(a) is
bounded on A/N . The operator φ(a) has a unique bounded extension to a bounded operator φτ (a) onHτ .
Thus, φτ : A→ B(Hτ ) is a well-defined ⋆-homomorphism.

The GNS representation has an additional property that makes it particularly attractive.

Definition 7 (Cyclic and separating vectors). Let A be a C∗-algebra acting on a Hilbert spaceH by some repre-
sentation φ : A→ B(H).

1. A vector x ∈ H is called cyclic for A if Ax = H, where Ax = {φ(a)x | a ∈ A}.
2. A vector x ∈ H is called separating for A if φ(a)x = 0 =⇒ φ(a) = 0 for a ∈ A.

One can keep the following intuitive approach in mind. If x ∈ H is cyclic for A, then the operator A→ H, a 7→
φ(a)x has dense range. If x ∈ H is separating for A, then the operator A→ H, a 7→ φ(a)x is injective.

It turns out that the GNS representation of a C∗-algebra A always admits a cyclic vector for A. Indeed, if A is
unital, that is, it has a multiplicative identity e ∈ A, then e + Nτ ∈ A/Nτ is easily seen to be cyclic for Hτ . It
can be shown that every non-unital C∗-algebra A admits a unitization Ã, that is strictly larger than A (Section
2.1 in [13]). It is a unital C∗-algebra and can be used to show that every non-unital C∗-algebra A admits a cyclic
vector as well (page 55 in [18]).
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We now turn to von Neumann algebras, which are a special type of C∗-algebra. They are defined more directly as
closed subspaces of B(H). Of course, to speak of being ”closed” requires that we endow B(H) with a topology.

Definition 8 (Strong and weak operator topologies). The strong operator topology on B(H) is the coarsest
topology on B(H) with the property that the linear mappings T 7→ Tx are continuous for all x ∈ H.
Theweak operator topology onB(H) is the coarsest topology onB(H)with the property that the linearmappings
T 7→ (Tx|y) are continuous for all x, y ∈ H.

To make these topologies explicit, the strong operator topology is generated by open sets of the form:

{T ∈ B(H) : ‖(T − S)x‖ < ε}

and the weak operator topology is generated by open sets of the form:

{T ∈ B(H) : ‖((T − S)x|y)‖ < ε},

with ε > 0, x, y ∈ H and S ∈ B(H).

Recall that a subalgebra of B(H) is a subspace of B(H) closed under composition. A ⋆-subalgebra of B(H) is
a subalgebra of B(H) closed under taking Hilbert space adjoints. A subalgebra is said to be unital if it contains
the identity operator. We can now define von Neumann algebras.

Definition 9 (Von Neumann algebra). A von Neumann algebra is a unital ⋆-subalgebra of B(H), that is closed
in the strong operator topology.

Equivalently, a von Neumann algebra is a ⋆-subalgebraM ⊂ B(H) with the following properties:

1. I := idH ∈ M
2. if {Ti}i∈N ⊂ M, T ∈ B(H), and ‖(Ti − T )x‖ → 0 for all x ∈ H, then T ∈ M.

A fundamental theorem in the study of operator algebras is that every abelian von Neumann algebra can be
represented as essentially bounded functions on some measure space, where the addition and multiplication of
these functions is defined pointwise. Formally, if M is an abelian von Neumann algebra, there is some second
countable compact Hausdorff spaceX and some positive measure µ ∈M(X), so thatM is unitarily equivalent
to L∞(X,µ). To prove this, it is useful to first prove another cornerstone theorem in this field, which gives a
similar result for C∗-algebras.

The corresponding theorem for C∗-algebras states that every abelian C∗-algebra can be represented as continuous
functions on a locally compact Hausdorff space X that vanish at infinity. Due to this analogy, the theory of
von Neumann algebras is sometimes called noncommutative measure theory, while the theory of C∗-algebras is
sometimes called noncommutative topology. This representation of abelian C∗-algebras is known as theGelfand
representation. Before we prove this theorem, we describe whatX and the continuous functions onX look like
for this C∗-algebra case.

Definition 10 (Character). Let A be an abelian algebra. A character on A is a non-zero homomorphism τ :
A→ C. The set of all characters on A, denoted by Ω(A), is called the character space of A.

Of course, in order to speak of the local compactness and Hausdorff property of X , it must be endowed with
some topology. Although we do not prove it here, it can be shown that for an abelian C∗-algebra A, the character
space Ω(A) is a compact Hausdorff space, with respect to the relative weak∗-topology (Theorem 1.3.5 in [13]).
Hence, when speaking of the character space Ω(A) as a topological space, we always mean the set of characters
Ω(A) endowed with the relative weak∗-topology, that is, the coarsest topology on the dual space A∗ (of which
Ω(A) is a subset) such that the linear mappings ϕ 7→ ϕ(a) are continuous for all a ∈ A.

The character space of a C∗-algebra is, in fact, the domain of the continuous functions used in the Gelfand rep-
resentation. So, we will see that every a ∈ A can be realized as some continuous function â : Ω(A) → C that
vanishes at infinity.

Now, given a ∈ A, we define:
â : Ω(A) → C, τ 7→ τ(a),

which we call the Gelfand transform of a. We now prove that the Gelfand transform is a continuous function
that vanishes at infinity, formalizing the Gelfand representation.
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Theorem 4 (Gelfand representation). If A is an abelian non-zero C∗-algebra, then

φ : A→ C0(Ω(A)), a 7→ â

is an isomorphism of C∗-algebras.

Proof. Let a ∈ A. Then â is continuous by the definition of the weak∗-topology. Also, for every ε > 0,
{τ ∈ Ω(A) : |τ(a)| ≥ ε} is weak∗ closed in the closed unit ball of A∗ and weak∗ compact by the Banach-
Alaoglu theorem. Thus, â vanishes at infinity, and so â ∈ C0(Ω(A)), so φ is well defined.
Next, let τ ∈ Ω(A). Since multiplication in C0(Ω(A)) is defined pointwise and φ(a∗)(τ) = τ(a∗) = ¯τ(a) =
φ(a)∗(τ), it follows that φ is a ⋆-homomorphism.
Now, since ‖φ(a)‖2 = ‖φ(a)∗φ(a)‖ = ‖φ(a∗a)‖ = r(a∗a) = ‖a∗a‖ = ‖a‖2, we know that φ is isometric and
therefore injective.
Finally, φ(A) is a closed ⋆-subalgebra of C0(Ω(A)). Since it separates points in Ω(A) and vanishes nowhere, by
Stone-Weierstrass, we have φ(A) = C0(Ω(A)). Hence φ is surjective.
We conclude that φ is a bijective ⋆-homomorphism, and hence, an isomorphism of C∗-algebras.

We are now in a position to prove that every abelian von Neumann algebra can be represented as L∞(X,µ)
functions for some second countable compact Hausdorff space X and some positive measure µ ∈ M(X). Let
M ⊂ B(H) be an abelian von Neumann algebra. Many aspects of the proof break down when M = {0} or
when MH 6= H. Of course, when M = {0}, 0 ∈ M can be represented as the zero function X → C, x 7→ 0,
which is clearly bounded, and so the assertion is trivial. For this reason, from this point onwards, we always
assume thatM is a non-zero von Neumann algebra. IfMH 6= H, there is some y ∈ H such that Tx 6= y for all
T ∈ M, x ∈ H. In some sense, this means that the Hilbert space is ”too big” for the von Neumann algebra, and it
truly only acts on some subspaceH′ ⊂ H. If this is the case, simply redefineM to be a subset of B(H′), and the
proof will provide the desired result. So, from this point onwards, we always assume that a von Neumann algebra
M acts nondegenerately on its underlying Hilbert space. In the proof, we will need the Riesz-Markov-Kakutani
representation theorem, which we give first.

Theorem 5 (Riesz-Markov-Kakutani representation theorem). Let Ω be a locally compact Hausdorff space and
τ a positive linear functional on C(Ω). There there exists a unique positive Borel measure µ on Ω such that

τ(f) =

∫
Ω

f dµ, f ∈ C(Ω).

Proof. See page 40 in [20].

Let M be an abelian von Neumann algebra. At this point, it should be no surprise that the second countable
compact Hausdorff space that serves as the domain of the L∞ functions is the character space Ω := Ω(M). The
basic idea behind the proof is to first show that H is isometrically isomorphic to the space of square-integrable
functions L2(Ω, µ) for some positive measure µ ∈ M(Ω), after which it can be shown that M is unitarily
equivalent to the von Neumann algebra of multiplication operatorsMφ acting onL2(Ω, µ), whereφ ∈ L∞(X,µ).

Theorem 6. LetM be an abelian von Neumann algebra. Then there exists a second countable Hausdorff space
Ω, a positive measure µ ∈M(Ω), and a unitary u : H → L2(Ω, µ), such that uMu∗ is the von Neumann algebra
of all multiplcation operatorsMφ on L2(Ω, µ), where φ ∈ L∞(Ω, µ).

Proof. Let x be a cyclic vector forM, so thatMx = H. The closed unit ball ofB(H) is metrisable and separable
for the strong topology (Remark 4.4.2 in [13]), so the same is true for the closed unit ball of M. It follows that
there is a separable C∗-subalgebra A of M that is strongly dense in M. We may assume I = idH ∈ A. Let
φ : A → C(Ω) be the Gelfand representation and note that the compact Hausdorff space Ω is second countable,
since mathcalM is countably generated (Remark 4.4.1 in [13]). We define a positive linear functional τ on
C(Ω) by setting τ(f) = (φ−1(f)(x)|x). By the Riesz-Markov-Kakutani theorem, there exists a positive measure
µ ∈M(Ω) such that τ(f) =

∫
fdµ for all f ∈ C(Ω). The map

π : A→ B(L2(Ω, µ)), v 7→Mφ(v),
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is an injective ⋆-homomorphism. If v ∈ A, then∫
|φ(v)|2dµ = τ(|φ(v)|2) = (φ−1φ(v∗v)(x)|x) = ‖v(x)‖2.

Hence, the map u : Ax → C(Ω), v(x) 7→ φ(v) is well-defined and isometric, since C(Ω) is L2-dense in
L2(Ω, µ), and it is clearly linear. Since Mx = H and A is strongly dense in M, we have Ax = H. We may
therefore extend u : Ax → C(Ω) to a unitary u : H → L2(Ω, µ). If v, w ∈ A then π(v)uw(x) = φ(vw) =
uvw(x). Hence π(v)u = uv for all v ∈ A. As a result, uAu∗ is the algebra of multiplication operators with
continuous symbol. Since A is strongly dense in M, and C(Ω) is L2-dense in L2(Ω, µ), uMu∗ is the von
Neumann algebra of all multiplication operators {Mφ | φ ∈ L∞(Ω, µ)} on L2(Ω, µ).

The above theorem establishes a representation of abelian von Neumann algebras as L∞(X,µ) functions using
the unitary equivalence ofM and {Mφ | φ ∈ L∞(Ω, µ)}.



3
Physics Preliminaries

In 1687, Isaac Newton published his book Philosophiæ Naturalis Principia Mathematica, often called the greatest
scientific work in history. It established the field of classical mechanics and introduced calculus to mathematically
formulate the theory. Classicalmechanics is typically concernedwith everyday conditions: speeds aremuch lower
than the speed of light, sizes are much larger than that of atoms, and energies are relatively small.

However, it turns out that when we are not confronted with everyday conditions, classical physics fails to accu-
rately explain many physical observations. Indeed, towards the end of the nineteenth century, scientists discov-
ered phenomena on both the macroscopic and microscopic scales that classical physics could not explain. The
desire to resolve these issues between observations and theory led to a paradigm shift in the study of physics.
The main theories that emerged from this revolution were quantum mechanics and relativity. The study of nature
at the atomic and subatomic scales developed into a theory now known as quantum mechanics. Albert Einstein
formulated relativity to describe nature at speeds close to the speed of light.

3.1. Classical Mechanics

We start by reviewing some classical physics, specifically mechanics, which is the study of motions of macro-
scopic bodies under the influence of certain specified forces.

A physical system generally consists of three basic ingredients [5]:

1. states, mathematical entities that embody the knowledge of a physical system;
2. observables, physical quantities that can be measured;
3. symmetries, state transformations that describe the passage of time.

In general, in a classical mechanical system, (pure) states are points in a state space formulated by a smooth
manifold, usually corresponding to the possible values of certain properties of that system. Examples include
R3n×R3n, the state space of n free moving point particles, and {(x, p) ∈ R×R : x2 + p2 = 1}, the state space
of the harmonic oscillator. In these examples, the state space corresponds to the possible combinations of position
and momentum the particles in these systems could attain. The state of a system gives us complete information
about the properties and evolution of that system.

We know that classical observables are single-valued, meaning that they only take on one value at any one time.
So, for example, a particle cannot be in two places at once and cannot have two different velocities. Given this
observation, it hopefully seems clear that the way to model these physical quantities is with a function. Observ-
ables are physical quantities that can be measured, meaning that we can infer their values from the state of the
system. Therefore, observables are formulated by functions on the state space. Thus, using mathematical nota-
tion, given some smooth manifold X , observables are functions of the form f : X → Ω, for some measurable
space Ω. In general, observables are real-valued, which means that they take values in the real number line R.
However, there are observables better described by another space, like C.

8
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Since the evolution of a classical mechanical system in time is deterministic, given some state x ∈ X (where X
is the state space), we can determine the state of the system after an amount of time t ∈ R has passed. So, for any
time t ∈ R, there is a bijective state transformation ϕt : X → X , where ϕt(x) is the state of the system in state x
after t time has passed. The passage of time is inherently a passive process, that is, it does not act directly on any
physical system. Symmetries are state transformations that describe the passage of time, and so they are functions
of the form ϕt that preserve the structure of the state space, specifically the smooth property it has. A bijective
transformation that preserves the structure between two mathematical objects is known as an isomorphism, and
an isomorphism from a mathematical object to itself is known as an automorphism of that object. Therefore,
symmetries are formulated by automorphisms of the state space.

Summarising, a classical mechanical system is generally described by:

1. states, points in state space formulated by a smooth manifold;
2. observables, real-valued functions on state space;
3. symmetries, automorphisms of the state space.

LetX be the state space of a physical system with its time evolution described by the symmetries ϕt, t ∈ R. An
isomorphism of smoothmanifolds is called a diffeomorphism, and hence the group of all diffeomorphisms fromX
to itself (equivalently, automorphisms ofX) is called the diffeomorphism group ofX and is denoted by Diff(X).
It forms an infinite-dimensional Lie group1, where the group operation is given by composition. Like B(H),
Diff(X) has two natural topologies: weak and strong, as defined in Definition 8. We know that physical quantities
do not change values suddenly, that is, they vary continuously in time. Therefore, ϕ(x) : R → X, t 7→ ϕt(x)
should be continuous for every x ∈ X . Thus, by definition, ϕ : R → Diff(X), t 7→ ϕt should be strongly
continuous.

Of course, after no time has passed, nothing has happened and so, ϕ0 = idX . Also, it makes no difference if we
determine the state of the system in state x after s amount of time and then t amount of time has passed, or if we
simply determine the state of the system in state x after t+ s time has passed. That is, the state transformations
must satisfy ϕt+s = ϕtϕs. According to Definition 2, we conclude that, with respect to the strong topology on
Diff(X), the time evolution of a physical system is given by a one-parameter group of symmetries. Usually, for
a specific physical system, symmetries take only values in a certain Lie subgroup G ⊂ Diff(X). We will see
shortly that every possible law of time evolution ϕ : R → G is uniquely generated by an element of the Lie
algebra TeG.

Mathematically, classical mechanics is formulated in terms of ordinary differential equations. These equations
can be presented in one of three general formulations: Newtonian, Hamiltonian, or Lagrangian. In this thesis, we
use the Hamiltonian formulation, which is most easily connected with quantum mechanics.

3.2. Single Particle

Let us turn to one of the most well-known examples of a classical mechanical system: a single particle in an
external field. In Hamiltonian mechanics, the state of a classical particle is generally specified by a point (x, p) ∈
P .

= R3 × R3, which describes its position and momentum. Thus, P is the state space of this physical system.

The states of this system completely describe the properties and behaviour of this particle. So, the particle’s
position and momentum are all the information we need to completely determine its properties (like its kinetic
energy) and its evolution through time. The state space embodies the possible states of this physical system.

Next, we know that a classical particle carries with it physical quantities such as position, momentum, and energy.
Any such quantity that can be measured is called an observable. For example, since the particle exists in an
external field, F : P → Rd is an observable, where F (x, p) is the total force acting on the particle in the state
(x, p). We know the internal forces of the field, and so the total force on the particle is something that can be
measured. Similarly, if we know the mass of the particlem, the kinetic energy of the particle is easily seen to be
an observable of this system as well.

1Lie groups are often defined to be finite-dimensional, but there are many groups that resemble Lie groups, except for being infinite-
dimensional. Some of the examples that have been studied include the diffeomorphism group of a smooth manifold and infinite-dimensional
analogues of general linear groups, unitary groups, etc. In this case, much of the basic theory is similar to that of finite-dimensional Lie
groups.
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Lastly, as this particle moves in space and interacts with objects, we know that these quantities may change
in time. For example, the total force acting on a classical particle due to the passage of time is described by
Newton’s second law: md2x

dt2 = F (x). The way in which the particle (the states) and consequently its properties
(the observables) change in time is closely related to the symmetries of the physical system.

For example, suppose that the particle is moving at a constant velocity v ∈ R3, such as an electron in absence
of potentials. This means that because of the passage of time, the position of the particle changes at a constant
rate, and the momentum does not change. Therefore, the symmetries of this system are translations. Clearly, a
translation by a ∈ R3 acts on P by Ta : P → P , (x, p) 7→ (x+ a, p). The set of all translations of X , denoted
T(X) ⊂ Diff(X), forms a Lie group. Hence, the time evolution of this particle is given by the one-parameter
group of symmetries T : R → T(P), t 7→ Ttv . Observe that every velocity v ∈ R3 uniquely generates a law
of time evolution and corresponds to an element of the Lie algebra T0T(X) ∼= R3. Also note that velocity is a
conserved (constant in time) observable of this system.

As a second example, suppose that the particle is in orbit around the axis e3 = (0, 0, 1), like an electron orbiting
a nucleus. In this case, as time passes, the particle’s position and momentum rotate at a constant rate. Therefore,
the symmetries of this system are rotations about the origin in R3, which are given by the Lie group SO(3) ⊂
GL(3,R). A rotation of θ ∈ R around e3 acts on P by R̂(e3, θ) : P → P , (x, p) 7→ (R(e3, θ)x,R(e3, θ)p),
where R(e3, θ) ∈ SO(3). Suppose that this particle rotates around e3 with an angular velocity ω ∈ R. Then, the
time evolution of this particle in orbit is given by the one-parameter group of symmetries R̂ : R → SO(3), t 7→
R̂(e3, tω). Each angular velocity ω ∈ R uniquely determines an orbit around e3, which, in turn, generates a
law of time evolution. An infinitesimal rotation around e3 is given by X3 := dR(e3,θ)

dt

∣∣∣
θ=0

and so every angular
velocity ω ∈ R corresponds to some element ωX3 of the Lie algebra TISO(3) ⊂ M3(R). The angular velocity
is a conserved observable of this system.

Symmetries of a physical system given rise to a conserved observable is a general principle established by
Noether’s theorem. It reveals the fundamental relation between the symmetries of a physical system and the
conservation laws.[16] It will play an important role in the next section, where we formulate the mathematics of
quantum mechanics.

It should be mentioned that this explanation of modelling a classical mechanical system is incomplete and skips a
lot of technical details, since this section aims to provide a brief and intuitive understanding of the subject matter.
The concepts of states and observables in classical mechanics are made mathematically rigorous in Chapter 4.

3.3. Quantum Mechanics

For quantummechanics, this model is not sufficient. This is due to the fundamental principle of quantummechan-
ics: that some attributes of a physical system cannot be specified exactly, but only by a probability density. The
theory of quantum mechanics is formulated in a specially developed mathematical formalism. This mathematical
formalism uses mainly a part of functional analysis, especially the theory of Hilbert spaces. In this section, we
provide a quick introduction to this formulation.

The description of a quantum physical system is often presented in terms of three axioms, corresponding to the
quantum mechanical formulation of states, observables, and symmetries, which can be traced back to the Dirac-
von Neumann axioms. [5] [10]

Axiom 1. The pure states of the system are described by vectors of norm one in a complex Hilbert spaceH.

We do not distinguish between states that are linearly dependent, that is, two states φ,ψ ∈ H are considered
equivalent if αφ = ψ for some α ∈ C. Thus, it is the equivalence classes of unit vectors which describe the
states of the system.

As a motivating example for a single particle, say an electron, the Hilbert space would beH = L2(R3), with the
domain R3 corresponding to either the particle’s position or its momentum. In quantum mechanics, position and
momentum are dual to each other (in the sense of Pontryagin duality), and so the state of its position completely
determines the state of its momentum and vice versa. For a detailed treatment, see Section 15.5 in [14]. A particle
in the stateψ ∈ H = L2(R, dx), withR3 corresponding to the position of the particle, is located with a probability
distribution |ψ(x)|2, where we refer toL2(R, dx) as position space. That is, the probability of finding the particle
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in B ⊂ R3 is
∫
B
|ψ(x)|2dx. Now we define the Fourier transform ψ̃ ∈ L2(R, dp) as the Fourier-Plancherel

transform (on L2(R)) of ψ. Then |ψ̃(p)|2 gives the probability distribution for the momentum, where we say
that the Fourier transform ψ̃(p) is the wave function in momentum space L2(R, dp). This interpretation of the
Fourier transform is not special to this example, but pervades quantum physics. In the Physics literature, this
’duality’ between the position and momentum observables is referred to as complementarity. Its most famous
consequence is the Heisenberg uncertainty principle, relating the standard deviation of position σx and the
standard deviation of momentum σp:

σxσp ≥
ℏ
2
,

showing that position and momentum cannot simultaneously be constrained arbitrarily sharply.

Due to this probabilistic nature, it now becomes clear that the state space should consist of functions relating to
probability density functions. As a consequence, these spaces will be infinite-dimensional. Also, for two states
φ,ψ ∈ H, we would like to be able to express the probability of finding the physical system in state φ, given
that it is in state ψ. Therefore, the state space should have some kind of inner product. Lastly, due to a quantum
mechanical phenomenon known as superposition, we would like (infinite) linear combinations of states, which
have norm one, to also be states. Hence, the state space should be complete. In conclusion, the state space of
a quantum mechanical system should be a complete infinite-dimensional inner product space, which is exactly
what a Hilbert space is.

Axiom 2. Properties of physical measurements of a system correspond to projection operators onH. Physically
measurable quantities for a system correspond to self-adjoint operators onH.

For example, suppose that we would like to knowwhether the momentum of the electron is some value inB ⊂ R3.
The axiom states that there is some projection P : H → H corresponding to this property, so that the probability
that the momentum of the electron is some value in B is

(ψ|Pψ) = ||Pψ||2.

Of course, we can do this for any (measurable) B ⊂ R3, so that {E(B)} is a family of projection operators
indexed by Borel sets B ⊂ R3, and the probability that the momentum of the electron is some value in B is

(ψ|E(B)ψ) = ||E(B)ψ||2.

By the spectral theorem, there is a self-adjoint operator A : H → H such that:

(ψ|Aψ) =
∫
λd(ψ|E

(
λ)ψ

)
where (ψ,Aψ) can be interpreted as the average value of the momentum after repeated measurements. This
operator A is the self-adjoint operator associated with momentum, according to the axiom.

Conversely, given some observable, the spectral theorem also states that every self-adjoint operator can be realised
as a projection-valued measure as well, where the projections correspond to properties of the observable.

The reason observables are described by operators, as opposed to functions, is due to the intrinsic non-commutative
nature of quantum mechanics. At the quantum scale, things are so small, that even measuring a physical quantity
impacts the physcial system. Therefore, observables (may) change the state of the system, which is why they are
formulated as operators. Self-adjoint operators, then, are a natural choice for observables, as they are, in some
sense, the operator-equivalent to real-valued functions, which described observables in classical mechanics. In
fact, ifA : H → H is self-adjoint, then (ψ|Aψ) is real for every ψ ∈ H. Since physical quantities are real-valued,
(ψ|Aψ) being a real number for every state ψ ∈ H is precisely the restriction that we would like for an observable
A.

Axiom 3. The time evolution of a system is given by a one-parameter group of unitary operators U(t) on H
such that if ψ ∈ H is the state of the system at time zero, then U(t)ψ is the state at time t.

Here, we have formulated time evolution so that states evolve in time and operators corresponding to observables
are fixed in time. So, the expectation of an observable given by a self-adjoint operator A in a state ψ at time t is
(U(t)ψ,AU(t)ψ). This is known as the Schrödinger picture. There is also the Heisenberg picture, in which
the operators evolve in time and the states are fixed.
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Although the time evolution in quantum mechanics closely resembles the classical case, it is not clear why sym-
metries should be unitary operators. The basic idea, similar to the classical case, is that we would like invertible
mappings that preserve the general structure of the state space H. To understand why unitary operators fit this
description, recall that for two states φ,ψ ∈ H, |(φ,ψ)|2 should be interpreted as the probability of finding the
physical system in state φ, given that it is in state ψ. So, if the physical system is in state U(t)ψ, the probability
of finding the system in state U(t)φ should also be |(φ,ψ)|2. Note that this does not imply that the probability
of measuring certain outcomes of measurable quantities cannot change over time. Indeed, for any observable A
and any symmetry U it need not be the case that (ψ|Aψ) = (Uψ|AUψ) for all ψ ∈ H. It simply means that the
passage of time cannot act directly on the state space. Thus, we must have |(U(t)φ,U(t)ψ)|2 = |(φ,ψ)|2 for
all t ∈ R. Since we arbitrarily chose φ,ψ ∈ H and U(t) must be be invertible for all t ∈ R, U(t) should be a
unitary operator for every t ∈ R. In this sense, unitary operators are to Hilbert spaces what diffeomorphisms are
to smooth manifolds, in that they are invertible mappings that preserve the structure of the spaces they operate
on.

The group of all unitary operators from a given Hilbert spaceH to itself is referred to as the Hilbert group, and
is denoted by U(H). It forms an infinite-dimensional Lie group, where the group operation is composition, and,
as a subset of B(H), has two natural topologies: weak and strong, as defined in Definition 8. Identical to the
classical case, U(ψ) : R → H, t 7→ U(t)ψ should be required to be continuous for all ψ ∈ H, to reflect the
continuous nature of physical quantities. Thus, by definition, the time evolution can be realised as some strongly
continuous function U : R → U(H), t 7→ U(t). Suppose, for a specific physical system, that its symmetries
{U(t)}t∈R lie in the Lie subgroupG ⊂ U(H). Of course, then, according to Definition 2, U : R → G, t 7→ U(t)
is precisely a one-parameter group of unitary operators. Again, all possible laws of time evolution are uniquely
generated by an element of the Lie algebra TeG.

We continue to build on this notion of generators of time evolution. Theorem 1 tells us that one-parameter
subgroups of GL(n,C) are uniquely determined by elements x ∈ Mn(C). Similarly, observe that if H = H∗

for some A : H → H, then exp(−itH) is unitary for all t ∈ R, and so ϕ : t → U(H), t 7→ exp(−itH) is a
well-defined one-parameter group of unitary operators onH. Conversely, if U : R → U(H), t 7→ U(t) is a one-
parameter group of unitary operators on H, it turns out that there is always a self-adjoint operator H : H → H
such that U(t) = exp(−itH) for all t ∈ R. This is due to Stone’s theorem on one-parameter unitary groups.
Thus, a law of time evolution in quantum mechanics is uniquely generated by a self-adjoint operator onH.

Whenever a system of physical laws admits a one-parameter group of symmetries, Noether’s theorem implies
there is a conserved observable, corresponding to the total energy of the system. In the examples in section
3.2, we saw that this conserved observable was a generator of time evolution of the physical system. Similarly,
as self-adjoint operators correspond to observables, time evolution is generated by an observable in quantum
mechanics as well. This observable is known as the Hamiltonian of a quantum mechanical system. To show
that the Hamiltonian is conserved, let U(t) = exp(−itH) be the time evolution for some quantum mechanical
system, so that H is the Hamiltonian. Then for any ψ ∈ H, differentiating both sides yields:

dU(t)ψ

dt
= −iH exp(−itH)ψ.

After rewriting and rescaling the Hamiltonian by a fundamental constant of nature ℏ, we are left with a landmark
discovery in the development of quantum mechanics, the Schrödinger equation:

iℏ
dU(t)ψ

dt
= HU(t)ψ.

The usual interpretation is that the Hamiltonian represents the total energy of the system, and its conservation
represents the law of conservation of energy.

Again, a lot of technical details are skipped in this introduction. The notions of states, observables, and time
evolution in quantum mechanics are made mathematically rigorous the next chapter.



4
States and Observables

4.1. States and Observables in Classical Mechanics

As we have seen in Chapter 2, any well-defined physical theory should have some notion of ”states” and ”observ-
ables”. In this chapter, we give a rigorous mathematical formulation of these terms, as is done in [14]. Consider
any physical system. Intuitively speaking, a state is a mathematical object that represents any given state the
physical system might find itself in. An observable, intuitively, is any physical quantity that can be measured by
an observer of the physical system.

For example, consider a free-moving massive point particle in space. This physical system can be described by
states given by vectors inR3×R3. Indeed, such a particle has 3 position coordinates and 3momentum coordinates
completely describing its state. We will later see that the definition of a state is actually much more general. Here,
R3 × R3 is called the state space of the physical system.

An observable of this systemmight be the velocity of the particle. Given any state, we can measure the velocity of
the particle by taking its givenmomentum and dividing coordinate-wise by themass of the particle. An observable,
then, is a function from the state space to some other measurable space. In this example, this measurable space
is R3, as velocities are described by vectors in R3.

Definition 11 (State). Let (X,X ) be a measurable space. A state is a probability measure ν on (X,X ).

Intuitively, for a measurable set B ∈ X , one should think of ν(B) as the probability that the state of the physical
system under consideration is described by a point in B. An extreme point of the set of probability measures on
(X,X ) is called a pure state.

Returning to the example of a free-moving particle, suppose that we know with certainty that the particle is at
rest and located at the origin. The state of this physical system is given by the probability measure:

ν(B) =

{
1 if {0, 0, 0} × {0, 0, 0} ∈ B

0 otherwise

Clearly, this is a pure state. Pure states are in one-to-one correspondence with points in the state space. This
definition of a state allows for so-called mixed states, where the position or momentum of the particle is not
known with certainty. Amixed state, then, is a state which is not a pure state.

Definition 12 (Observable). Let (X,X ) be a measurable space. An observable is a measurable function f :
X → Ω for some measurable space (Ω,F). In this case, we call f an Ω-valued observable.

Recall that an observable is any physical quantity that can be measured. Examples may include position, velocity,
energy, or angular momentum. Returning to our example, the velocity of the particle is an R3-valued observable
v : R3 × R3 → R3 given by:

v
(
(x1, x2, x3)× (p1, p2, p3)

)
=

1

m
(p1, p2, p3)

13
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An elementary observable is a {0, 1}-valued observable. For example, any indicator function 1B of a measur-
able set B ∈ X is an elementary observable. In fact, these are all the possible elementary observables.

Many popular descriptions of quantum mechanics imply that the concept of mixed states encapsulates the un-
certainty inherent to the theory. As an example, let us consider two pure states of a physical system x and y.
One could think of these states as two different positions for a free-moving particle in space. Now, let f be an
R-valued observable, which takes the value 1 in state x and the value 5 in state y. This observable could represent,
say, the particle’s speed.

We can now define the mixed state 1
3x+ 2

3y, describing an uncertain physical system which has a 1
3 probability

of actually being in state x, and a 2
3 probability of actually being in state y. Therefore, if we measure f in this

mixed state, we have a 1
3 chance of measuring the value 1, and a 2

3 chance of measuring the value 5.

Mixed states, however, are not nearly weird enough to capture what is commonly referred to as quantum behaviour.
Mixed states are not the same thing as quantum superposition. Mixed states are useful for studying large-scale
physical systems made up of an enormous number of particles, where there is no reason to assume that one would
have precise information on the state of each individual particle. The most obvious example of this situation is a
gas in a box. This idea is often called ”classical ignorance.”

4.2. States and Observables in Quantum Mechanics

To formulate the ideas of states and observables in quantum mechanics, let us first consider the state space of a
quantum mechanical system. Recall that the state space corresponds to all possible pure states. As we have seen
in Chapter 2, it turns out to be useful to characterise the state space of a quantummechanical system by a complex
Hilbert space.

AHilbert space, in short, is a Banach space in which the norm comes from an inner product. It allows themethods
of linear algebra and calculus to be generalised from finite-dimensional Euclidean vector spaces to spaces that
may be infinite-dimensional. One should then think of the pure states as the vectors in a Hilbert space, where we
do not distinguish between vectors that differ between a phase. That is, ifH is a Hilbert space and x, y ∈ H, then
x and y correspond to the same pure state if and only if x = αy for some α ∈ C.

Every Hilbert space in this thesis is assumed to be separable, unless stated otherwise. In mathematics, a topo-
logical space is called separable if contains a countable, dense set; that is, there exists a sequence {xn}∞n=1 of
elements of the space such that every nonempty open subset of the space contains at least one element of the
sequence. It can then be proven that a Hilbert is separable if and only if admits a countable orthonormal basis
(Theorem 3.22 in [14]). Separability is a mathematically convenient hypothesis, with the physical interpretation
that any state is uniquely determined by countably many observations.

Next, recall that in classical mechanics, an elementary observable is of the form 1B with B ∈ X . Its range is
{0, 1}, unlessB = ∅ orB = X , in which case 1∅ = 0 and 1X = 1. Orthogonal projections in a complex Hilbert
space enjoy similar properties. IfP is an orthogonal projection in a Hilbert spaceH, its spectrum is σ(P ) = {0, 1}
unless P = 0 or P = I , in which case σ(0) = {0} and σ(I) = {1}. The basic idea, then, that underlies the
mathematical formulation of QuantumMechanics is to replace elementary observables by orthogonal projections
in a complex Hilbert space. The set of all such projections is denoted by P(H).

We aim to define observables in the quantum setting. Recall that an Ω-valued observable, classically, is a mea-
surable function f : X → Ω, for some measurable space (Ω,F). By the definition of measurability, this induces
a mapping from F to X :

F 7→ f−1(F ), F ∈ F .

Identifying sets in X by their indicator functions and replacing them by orthogonal projections in a complex
Hilbert spaceH, we arrive at our definition of an observable in Quantum Mechanics.

Definition 13 (Observable). LetH be a Hilbert space. An observable is a countably additive mapping P : F →
P(H) satisfying P (Ω) = I for some measurable space (Ω,F). In this case, we call P an Ω-valued observable.

By countably additive, we mean that P (F1 ∪ F2) = P (F1) + P (F2) for any two disjoint F1, F2 ∈ F . We will
see later that this restriction is set in place to preserve the probabilistic nature of states and observables.
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Indeed, if ν is a classical state on (X,X ) and f : X → Ω is an observable for some measurable space (Ω,F),
then for F ∈ F

ν(f−1(F )) = ν({x ∈ X : f(x) ∈ F})

is the probability that measuring f results in a value in F when the physical system is in state ν. Equivalently,

F 7→ ν(f−1(F )), F ∈ F

defines a probability measure on (Ω,F).

We would like to preserve this structure when moving to the quantum setting. We have not yet defined a state
in the quantum mechanical setting, so for now, let ϕ denote a mathematical object associated to a state and let
P : F → P(H) be an Ω-valued observable. What we would then like to see is that

F 7→ ϕ(P (F )), F ∈ F

defines a probability measure on (Ω,F). From this observation, one can deduce that states should be something
close to the form ϕ : P(H) → [0, 1]. It turns out the definition can be made more general.

Definition 14. A (normal) state is a positive (normal) functional ϕ : B(H) → C satisfying ϕ(I) = 1.

Here,B(H) denotes the space of bounded operators on a Hilbert space. A functional is called positive if ϕ(T ) ≥ 0
for every positive operator T ∈ B(H), and normal if∑

n≥1

ϕ(Pn) = ϕ(P )

whenever (Pn)n≥1 is a sequence of disjoint orthogonal projections inH and P is their least upper bound.

We denote the set of all states by S(H). There are multiple equivalent definitions one could use for states, but this
one is the most common. Again, the restrictions of positiveness and normality serve to retain the probabilistic
structure of states and observables. This is the mathematical counterpart of the so-called ”Born rule” in quantum
mechanics.

Proposition 1 (Born rule). If ϕ : B(H) → C is a state and P : F → P(H) anΩ-valued observable, the mapping

F 7→ ϕ(P (F )), F ∈ F

defines a probability measure on (Ω,F).

Similarly to the definition in classical mechanics, a pure state is an extreme point of the convex set of states.
Also, like in the classical setting, we can characterise pure states by points in the state space.

Proposition 2. A state ϕ : B(H) → C is pure if and only if it is a vector state, that is, there exists a unit vector
h ∈ H such that

ϕ(S) = (Sh|h), S ∈ B(H)

This unit vector is unique up to a scalar of modulus one.

Note that a real-valued observable P is nothing more than a projection-valued measure on R, and hence, by the
spectral theorem, we can associate a unique self-adjoint operator A with P . The spectral theorem also asserts
the converse, that every self-adjoint operator arises from a projection-valued measure on R. This leads us to the
conclusion that real-valued observables are in one-to-one correspondence with self-adjoint operators on a Hilbert
space.

With this in mind, let P be a real-valued observable and A be its associated self-adjoint operator. Then, as
a projection-valued measure, P is supported on σ(A), and therefore, P can be thought of as a σ(A)-valued
observable. The physical interpretation here is that with probability 1, a measurement of P produces a value
belonging to σ(A).

In general, most observables will be real-valued, and so, in many cases, all observables of a physical system can
be identified by self-adjoint operators. These observables generate an operator algebra, either a C∗-aglebra or a
von Neumann algebra. This algebra is referred to as the algebra of observables and this concept will play an
important role in the rest of this thesis. We explain this concept in more detail in section 5.3.
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4.3. Symmetries

Now that we have a rigorous formulation of states and observables, we would like to describe how a physical
system evolves in time, that is, we would like to formulate a law of time evolution. As seen in Chapter 2, time
evolution in classical mechanics is described by a one-parameter group of diffeomorphisms of the state space,
while in quantum mechanics it is described by a one-parameter group of unitary operators acting on the state
space. However, these conclusions were drawn on the assumption that states are simply elements of the state
space. Now we have defined states as probability measures in classical mechanics and functionals on B(H) in
quantum mechanics, we also have a different law of time evolution. Whatever the mathematical object most
preferable to describe time evolution turns out to be, the broader concept of a transformation that does not change
the outcome of possible experiments formulated by an automorphism of the state space, like the passage of time,
is called a symmetry.

Returning briefly to the classical setting, let (X,X ) be a measurable space. Recall that the idea of a law of time
evolution encompassed invertible mappings on the state space ϕt : X → X that preserved its structure. Now,
given a state v on (X,X ), a symmetry must have the property that probabilities are left invariant under the passage
of time. That is to say, if there is a probability p ∈ [0, 1] that the state is in B ∈ X at time t = 0, there must
be a probability p that the state is in ϕ1(B) at time t = 1. This is more or less by the definition ϕt. It describes
exactly how the states evolve in time. With this in mind, we come to the following definition of symmetries in
the classical setting.

Definition 15. A symmetry of the measure space (Ω,F , µ) is a measurable bijective mapping
g : Ω → Ω with measurable inverse that leaves µ invariant, that is,

(g(µ))(F ) := µ(g−1(F )) = µ(F ), F ∈ F .

Now, coming back to the quantum setting, we recall that, in the Schrödinger picture, the idea of time evolution en-
compassed operators which preserve transition probabilities between pure states. This probability was expressed
using the inner product of the Hilbert space. However, given two states ϕ, ψ : B(H) → C, we have not yet given
a way to express their transition probability, that is, the probability of finding the system in state ϕ, given that it
is in state ψ. To circumvent this issue, we provide an equivalent way of defining the states of a physical system.

Definition 16. Let H be a separable Hilbert space and let E be an orthonormal basis of H. The trace of an
operator T ∈ B(H) is

Tr(T ) =
∑
x∈E

(Tx|x)

If Tr(|T |) <∞, we call T trace class.

Recall that an operator T ∈ B(H) is positive if it is self-adjoint and (Tx, x) ≥ 0 for all x ∈ H. We denote by
S(H) the set of all positive trace class operators with unit trace onH. We now show that this set is in one-to-one
correspondence with the set of all states.

Theorem 7. The following sets are in one-to-one correspondence:

1. positive trace class operators T on H satisfying Tr(T ) = 1

2. positive normal functionals ϕ : B(H) → C satisfying ϕ(I) = 1

Proof. For a proof, see Theorem 15.7 in [14].

In essence, the above theorem tells us that the states of a quantum mechanical system can be represented by
S(H), where the transition probability between S ∈ S(H) and T ∈ S(H) is given by Tr(TS) With this in
mind, it seems natural to define a symmetry in the quantum setting by a mapping U : S(H) → S(H) that
satisfies Tr(UT1UT2) = Tr(T1T2). Indeed, these are mappings sending states to states which preserve transition
probabilities between pure states. Remarkably, it turns out that for every such mapping, there is an operator
U ∈ B(H), which is either unitary or antiunitary, which is an antilinear operator T : H → H such that TT ∗ =
T ∗T = I . This is due to a celebrated theorem by Eugene Wigner, which is considered a cornerstone of the
mathematical formulation of quantum mechanics.
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Theorem 8 (Wigner). If U : S(H) → S(H) is a bijection with the property that

Tr(U(t)T1U(t)T2) = Tr(T1T2), T1, T2 ∈ S(H),

there exists a mapping U : H → H that is unitary or antiunitary such that

UT = UTU∗, T ∈ S(H).

This mapping is unique up to a complex scalar of modulus one.

Essentially, Wigner’s theorem tells us that symmetriesU of quantummechanical systems are given by operatorsU
acting on the underlying Hilbert spaceH that are either unitary or antiunitary. Of course, we are mainly interested
in one-parameter groups of symmetries indexed by time. Suppose {U(t)}t∈R is such a group, and let {U(t)}t∈R
be the associated group of operators. It need not necessarily be the case that all U(t) are unitary operators. Some
may be, and others may be antiunitary. However, a theorem of Bargmann implies the existence of a function
d : R → T, such that the operators V (t) := d(t)−1U(t) are all unitary and satisfy:

U(t)T = V (t)∗TV (t), V (t)V (s) = V (t+ s), V (0) = 1.

The map V : R → Hilb(H), t 7→ V (t) can be shown to be strongly continuous and, therefore, {U(t)}t∈R can
be realized as a one-parameter group of unitary operators {V (t)}t∈R ⊂ B(H). Thus, our original conception
of time evolution, as provided in Chapter 2, is sufficient in this framework as well, and so, by Stone’s theorem,
{V (t)}t∈R is generated by a self-adjoint operator, which we call the Hamiltonian associated with the family
{U(t)}t∈R. This motivates the following definitions.

Definition 17 (Symmetry, of a Hilbert space). A symmetry ofH is a unitary operator onH.

Definition 18 (Conservation and covariance). Let (Ω,F , µ) be a measure space and let U be a symmetry of the
Hilbert spaceH.

1. An observable P : F → P(H) is said to be conserved under U if UPFU∗ = PF for all F ∈ F .
2. An observable is said to be covariant under the pair (g, U), where g is a symmetry of (Ω,F , µ), if
UPFU

∗ = Pg(F ) for all F ∈ F , that is, if the following diagram commutes:

F F

P(H) P(F)

F 7→g(F )

P P

PF 7→UPFU
∗

The Hamiltonian is a conserved observable corresponding to the total energy of a physical system.

In conclusion, a quantum mechanical system is mathematically formulated by:

1. a state space given by a separable complex Hilbert space H and states, positive normal functionals ϕ :
B(H) → C satisfying ϕ(I) = 1;

2. an algebra of observables, countably additive mappings P : F → P(H) satisfying P (Ω) = I for some
measurable space (Ω,F);

3. a one-parameter group of symmetries, unitary operators on the state spaceH, generated by an observable
conserved under these symmetries.



5
Thermal time

One of the most important concepts in all of physical theory is the concept of time. Time, by the dictionary
definition, is the continued sequence of existence and events that occurs in an apparently irreversible succession
from the past, through the present, and into the future. It is one of the seven fundamental physical quantities in
the International System of Units (SI). Until Einstein’s reinterpretation of the physical concepts associated with
time and space in 1907, time was considered to be ”the same” everywhere in the universe, with all observers
measuring the same time interval for any event. Classical mechanics is based on this Newtonian idea of time,
where it is treated as a classical background parameter, external to the system itself.

Einstein, in his special theory of relativity, postulated the constancy and finiteness of the speed of light for all
observers. The theory of special relativity finds a convenient formulation in Minkowski spacetime, a mathemat-
ical structure that combines three dimensions of space with a single dimension of time. In relativity, time is a
geometrical flow in this space-time. Recall from chapter 3 that, in quantum mechanics, time is also something
that flows. However, unlike in relativity, it is a flow in an abstract mathematical space, preserving some kind of
algebraic structure.

The rest of this chapter is largely based in Pierre Martinetti’s 2013 paper ”Emergence of time in quantum gravity:
is time necessarily flowing?” [12]

5.1. The geometric time of relativity
In special relativity, time evolution has a clear geometrical interpretation: the movement of an observer, that is
the evolution of its position as time passes, is described by a worldline, namely a one-dimensional trajectory
in a mathematical space-time of dimension four. Consider a Minkowski space, which is the flat space-time of
special relativity in the absence of curvature, as given in figure 5.1. The temporal evolution of a static observer is
described by a line parallel to the T axis, and the surfaces of simultaneity are parallel to the X axis. Meanwhile,
for an observer whose speed is constant with respect to the static observer, the temporal evolution as well as the
surfaces of simultaneity are no longer parallel to any of the axes.

This means in relativity there is no absolute time, that is to say, there is no global object which flows everywhere
in the same way. However, although there is no unique absolute time, each observer along his worldline does
experience a single time, called his proper time. The proper time of a first observer may not be identical to the
proper time of a second observer, but one knows how to go from one to the other. As an analogy, there is no
absolute time on Earth: noon-bells do not ring simultaneously in Kuala Lumpur or Hong Kong. In figure 5.1, this
means that the origin of time on the worldline X = Kuala Lumpur is not on the same surface of simultaneity as
the origin of time on the worldlineX = Hong Kong. However, there is a universal time, divided into time zones,
and each observer knows how to regulate his clock according to it: noon bells should ring when the Sun is at the
highest point in the sky of Kuala Lumpur or Hong Kong.

Summarising, time in relativity can be considered as a geometrical flow where the time evolution of an observer
is a locally unique one-dimensional trajectory in Minkowski space.

18
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X

T

K H

Figure 5.1: The T axis is the worldline of an observer who stays at the same placeX = 0 at any time. In this space-time, being immobile
at a pointK orH in space corresponds to worldlines parallel to this T axis. On the left, the worldlines of two observers with the same

non-zero constant speed, and a third one with lower speed.[12]

5.2. The algebraic time of quantum mechanics
In quantum mechanics, time is not a geometrical flow. As we have seen in Chapters 3 and 4, time evolution
is characterised as a one-parameter group of symmetries. Most of the formulation was done in the Schrödinger
picture, where these symmetries were invertible state transformations that preserved the algebraic structure of
the state space, and observables were fixed in time. There is also the equivalent Heisenberg picture, in which
observables evolve in time and states remain fixed.

In this framework, symmetries are formulated as invertible transformations that preserve the algebraic relations
between physical observables. For example, suppose we have a free particle with state space R3 × R3, corre-
sponding to its position and momentum. Suppose that an observable of this system, say the particle’s angular
momentum L ∈ R, is defined as a combination of other observables, say its position (x1, x2, x3) ∈ R3 and its
momentum (p1, p2, p3) ∈ R3, so that

L = x1p2 + x2p1.

Since this relation is time independent, the symmetries in the Heisenberg picture must preserve the algebraic form
of this relation. That is, if α is some symmmetry of this physical system, we must have that

α(L) = α(x1)α(p2) + α(x2)α(p1).

Therefore, in this framework, symmetries are automorphisms of the algebra of observables.

As mentioned earlier, the Schrödinger and Heisenberg pictures are equivalent, which we show now. Indeed,
suppose we have a quantum system with state space H and algebra of observables M ⊂ B(H). Let {U(t) :
H → H}t∈R be its time evolution in the Schrödinger picture and let {αt : M → M}t∈R be its time evolution in
the Heisenberg picture. Then for any state ψ ∈ H and any observable A ∈ M we have

U(t)αt(A)ψ = AU(t)ψ
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Indeed, both sides of the equation evolve the system over a time t and measure the observableA after an evolution
of the same time t, they just do it in different orders. Hence, the expectation of A ∈ M in state ψ ∈ H at time
t ∈ R is (

ψ|αt(A)ψ
)
=
(
U(t)ψ|(t)AU(t)ψ

)
=
(
ψ|U−1(t)AU(t)ψ

)
where we have used the fact that U(t) is unitary.

Therefore, every one-parameter group of unitary operators {U(t)}t∈R corresponds to a one-parameter group of
automorphisms of the algebra of observables {αt}t∈R and vice versa by the relation

αt(A) = U−1(t)AU(t), A ∈ M, t ∈ R. (5.1)

Hence, the two pictures are equivalent as they produce the same expectation values.

In any case, time evolution in quantum mechanics is formulated by a one-parameter group of symmetries. It
can still be considered a flow, but not a geometrical flow as is the case in relativity. The group property of time
evolution in quantum mechanics implies that the evolution is additive. Indeed, if {Ut}t∈R is a one-parameter
group of symmetries, then U(t + t′) = U(t)U(t′), for any t, t′ ∈ R. Since this group is strongly continuous,
given any state ψ ∈ H, we can think of

U(s)U(t)ψ, s ∈ [0, t′]

as a trajectory from t to t′. In this sense, time is still something that flows, but in an abstract mathematical
space, rather than a four-dimensional space-time. In quantum mechanics, time has an algebraic interpretation:
the evolution of a system is described by one-parameter group of transformations that preserve the algebraic
relations between observables. Furthermore, the time flow is identical for every state, in that it is given by the
same one-parameter group. Unlike in relativity, time is universal and absolute; it is the same for all observers.

5.3. The thermal time hypothesis
One of the most important unsolved problems in physics is the formulation of a theory of everything, which would
unify the theories of general relativity and quantum mechanics. These are the theories upon which all of modern
physics rests. The two theories are considered incompatible in regions of extremely small scale, such as those
that exist within a black hole or the moment immediately following the Big Bang. In pursuit of resolving this
incompatibility, quantum gravity has become an area of active research.

One of the issues quantum gravity addresses is the problem of time, referring to the conceptual conflict between
general relativity and quantum mechanics in that quantum mechanics regards the flow of time as universal and
absolute, whereas general relativity regards the flow of time as malleable and relative. Before examining this con-
flict, we would like to emphasise that the problem that arises from this conflict is counter-intuitive. Whereas time
in quantum mechanics is a unique absolute parameter, the principle of superposition actually offers a multiplicity
of time evolutions. Meanwhile, even though there are as many proper times in relativity as there are observers to
the system, restricting a physical system to one perspective demands local uniqueness of the time evolution.

Quantum uncertainties appear when one measures an observable: the theory predicts the probability that an
observable A lies within some measurable set F (Proposition 1). Before the measurement process, a quantum
system is thus described by a state ψ, containing the statistical information of the observables. The state can be
thought of as a superposition of all the possible values of A (or any other observable).

In the same way, in quantum gravity, one expects the gravitational field to be described by a superposition of
all possible gravitational fields. In general relativity, the gravitational field determines the metric of space-time,
and this metric indicates how space can be separated from time. So, even for a single observer, a multiplicity
of gravitational fields leads to a multiplicity of time flows. However, we know that in general relativity, time is
locally unique. Therefore, a single observer must have a unique time flow.

As an analogy, this would be as if the Sun had no exact mass, but rather, the Solar System is in a superposition
of all possible Solar Systems, where each possibility has a Sun with a different mass. A different solar mass
produces a different orbital speed of the Earth, and so, there are a multiplicity of clocks (on Earth), with each
clock corresponding to a different possible solar mass. However, an observer on Earth with a sundial must have
a unique local time.
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One potential solution to this problem is known as the thermal time hypothesis, put forward by Carlo Rovelli
and Alain Connes in 1994[4], and first formulated as a thermodynamical origin of time by Rovelli in 1993[19].
To understand this formulation, we emphasize the difference between a physical system and its states. A famous
example of a quantum system is Schrödinger’s cat. In Schrödinger’s original formulation, a cat, a flask of poison
and a radioactive source are placed in a sealed box. If an internal radiation monitor detects radiation, the flask is
shattered releasing the poison which kills the cat. The physical system, in this case, is the sealed box containing
the cat, and some examples of states include a living cat, a dead cat, or even a superposition of both.

Describing a system by a state is typical of thermodynamics. For example, for a gas in a box, a state is a set of
values of the thermodynamical quantities which describe the system, like energy, temperature and pressure. An
equilibrium state is a state in which the values of the thermodynamical quantities are constant in time. Note
that this definition only makes sense with an a priori notion of time. Time defines equilibrium. The thermal time
hypothesis reverts this proposition: from the notion of equilibrium, one extracts time. More exactly, starting from
a (relativistic and quantum) physical system in a given state, one builds a time flow such that the state one has
started with is precisely an equilibrium state. There are two difficulties:

1. We need to characterise those states among all the possible states for which there exists a time flow turning
them into an equilibrium state.

2. For a state which can be turned into an equilibrium state, we need to be able to explicitly extract the time
flow from the knowledge of this state.

For the first point, a characterisation of the states that could be equilibrium states exists, and is mathematically
formulated by Kubo-Martin-Schwinger (KMS) states. They describe the properties of a system in thermal equilib-
rium, and can be identified as those states satisfying the so-calledKMS conditions. Consider a timeless quantum
mechanical system, that is, a state spaceH, an algebra of observablesM ⊂ B(H), and a group of automorphisms
Aut(M), from which we can build a time evolution. The group Aut(M) in the Heisenberg picture corresponds to
the Hilbert group in the Schrödinger picture, in that it represents the group of all possible symmetries of quantum
systems. If the KMS conditions are satisfied for a state Ω ∈ H, then this state has, with respect to Aut(M), the
same properties as an equilibrium state of a physical system whose quantum time evolution would be given by
some one-parameter group {αt}t∈R ⊂ Aut(M).

This brings us to the second point, which mathematics also takes care of. Indeed, given an algebra of observables
M and a stateΩ ∈ H (with both requiring some additional technical properties), Tomita-Takesaki theorymakes
it possible to extract a one-parameter group of automorphisms {αΩ

t }t∈R ⊂ Aut(M), such that Ω is a KMS state
with respect to this one-parameter group. Mathematically speaking, in the theory of von Neumann algebras,
Tomita-Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras.

Tomita-Takesaki theory lies at the heart of the thermal time hypothesis and was introduced by Minoru Tomita in
1967. Given some von Neumann algebra M ⊂ B(H) and some state Ω ∈ H statsifying certain properties, it
proves the existence of a positive operator∆, which is not necessarily bounded. The main result of the the theory
then states that:

∆−itM∆it = M, t ∈ R.

The operators {∆it}t∈R are well-defined by the functional calculus and form a one-parameter unitary group,
which induces a time flow corresponding to the Schrödinger picture. Alternatively, for every suitable state Ω,
there is a one-parameter group of modular automorphisms {αΩ

t }t∈R defined by αΩ
t (x) = ∆−itx∆it, which

corresponds to the time flow in the Heisenberg picture.

The beauty of this proposition should not be understated. Recall from Chapter 4 that all observables of a physical
system can be thought of as self-adjoint operators on the state space. These operators then generate a space
called the algebra of observables, which forms a von Neumann algebra. The formal construction of the algebra of
observables requires some work, as some observables may be unbounded. However, von Neumann algebras still
provide an adequte way of describing quantum systems. In fact, von Neumann algebras were originally developed
to study the algebras of observables of quantum systems. As a result, this piece of abstract mathematics, seemingly
unrelated to the problem of time in any way, gives us exactly the time flow we are looking for. This time is known
as the thermal time of the physical system.

It should be stressed that Tomita-Takesaki only produces a ”nice” time flow if we are dealing with a quantum
system. Indeed, suppose we are merely in a relativisic setting. Here, there is no superposition of gravitational
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fields, and hence no multiplicity of time flows. There should already be an apparent time flow, as without the
quantum influence, there is no problem of time.

Let us briefly clarify how the thermal time hypothesis proposes to solve the problem of time. In a relativistic
quantum system, we are dealing with a superposition of gravitational fields, encoded in some quantum state. If
we know the algebra of observables of this system and if this state is potentially an equilibrium state with respect
to some conception of time, the thermal time hypothesis associates a unique thermal time to this equilibrium state.
The hope, then, is that this thermal time coincides with a proper time in the relativistic formulation of the system.

For the moment, no theory within quantum gravity clearly proposes a definition of the algebra of observables,
and so the pertinence of the thermal time hypothesis cannot be tested in this context. However, there are some
physical situations where the one-parameter group of modular automorphisms is known, and its interpretation as
thermal time makes sense, that is, it corresponds to some relativistic proper time. In any case, the thermal time
hypothesis remains an active and promising area of research within the study of quantum gravity.



6
Positive Operator-Valued Measures

As we have seen in the previous chapter, the concept of ”time” at the intersection of quantum mechanics and
relativity offers many challenges. There is no quantum theory of time measurement, since relativity is both fun-
damental to time and difficult to include in quantummechanics. Although position and momentum are associated
with a single particle, time is commonly viewed as a system property. In fact, whereas position, momentum and
energy can be given firm mathematical footing in von Neumann’s mathematical foundations of quantum mechan-
ics as observables, this cannot be done for time.

Explicitly, it is a famous observation of Wolfgang Pauli[17] that if H is a semi-bounded Hamiltonian operator,
there exists no self-adjoint operator T covariant with the one-parameter unitary group generated by iH . That is,
it cannot be true that:

eitHTe−itH = T − t, t ∈ R.

This is a highly undesirable result as it suggests a fundamental difference between position and time as math-
ematical entities in quantum mechanics, while in relativity, position and time are just different dimensions of
spacetime. This notion of realising an ”observable time” remains a challenge for quantum theories. However,
some progress has been made using positive operator-valued measures, which are introduced in this chapter.

6.1. Effects

Throughout the rest of this chapter, the Banach space of all bounded measurable functions f : X → C, endowed
with the supremum norm ||f ||∞ = supx∈X |f(x)|, is denoted by Bb(X).

Recall from Chapter 4.2 that the fundamental idea behind the mathematical formulation of quantum mechanics
is to replace elementary observables (indicator functions) by orthogonal projections in a Hilbert space. With this
in mind, observe the following.

Proposition 3. Let (X,X ) be a measurable space. The closed convex hull Bb(X) of the set of elementary
observables {1B : B ∈ X} is

E(X) := {f ∈ Bb(X) : 0 ≤ f ≤ 1 pointwise}.

The extreme points of E(X) are precisely the elementary observables 1B , B ∈ X .

Proof. See Proposition 15.19 in [14].

In the quantum mechanical counterpart, we naturally characterise the closed convex hull of P(H) in B(H) for
some Hilbert spaceH. We write S ≤ T to express that T − S is a positive operator.

23
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Proposition 4. The closed convex hull in B(H) of P(H) is

E(H) := {E ∈ B(H) : 0 ≤ E ≤ I}.

The extreme points of E(H) are precisely the orthogonal projections.

Proof. See Proposition 15.20 in [14].

Elements of this set are known as effects.

Definition 19. An effect is an element of the set E(H).

Effects are self-adjoint, and it is not hard to show that a self-adjoint operator on H is an effect if and only if its
spectrum is contained in the unit interval [0, 1] (Theorem 8.11 in [14]). It can be shown that states are in one-to-
one correspondence with affine mappings ν : P(H) → [0, 1] satisfying ν(0) = 0 and ν(I) = 1 (Theorem 15.7
in [14]).

Similar to how we defined countable additivity for quantum observables in chapter 4.2, a mapping ν : E(H) →
[0, 1] is said to be finitely additive if

N∑
n=1

ν(En) = ν(E)

whenever E1, . . . , EN , E ∈ E(H) satisfy E1 + · · ·+ EN = E.

Theorem 9 (Busch). Every finitely additive mapping ν : E(H) → [0, 1] satisfying ν(I) = 1 restricts to an affine
mapping ν : P(H) → [0, 1] and hence defines a state.

Proof. See Theorem 15.22 in [14].

6.2. Positive operator-valued measures

The spectral theorem establishes a one-to-one correspondence between self-adjoint operators and projection-
valued measures on the real line. A natural generalization of the notion of a projection-valued measure is obtained
upon replacing orthogonal projections by effects. The mathematical theory of the resulting positive operator-
valued measure had already been developed in the 1940s by Naimark, and its usefulness in quantum mechanics
was first advocated by Ludwig[11].

Definition 20 (Positive operator-valued measure). A positive operator-valued measure (POVM) on a measur-
able space (Ω,F) is a mapping Q : F → E(H) satisfying the following conditions:

1. Q(Ω) = I

2. for all x ∈ H, the mapping
Qx := F 7→

(
Q(F )x|x

)
, F ∈ F

defines a measure on (Ω,F).

Every projection-valued measure is a POVM. In the converse direction, we have the following simple result.

Proposition 5. A POVMQ : F → E(H) is a projection-valued measure if and only ifQ(F )Q(F ′) = Q(F ∩F ′)
for all F, F ′ ∈ F .

Proof. See Proposition 15.24 in [14].

A POVM which is not a projection-valued measure is called an unsharp observable.

Recall the Born rule from Chapter 4.2 (Proposition 1). For every projection-valued measure P : F → P(H), it
sets up an affine mapping from S(H) to the convex setM+

1 (Ω) of probability measures on (Ω,F). However, the
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converse is not necessarily true. That is, if Φ : S(H) → M+
1 (Ω) is an affine mapping, it is not necessarily true

that there is a projection-valued measure P : F → P(H) such that for every state ϕ ∈ S(H),

F 7→ ϕ(P (F )), F ∈ F

defines a probability measure on (Ω,F). This is where POVMs come in.

Theorem 10 (POVMs as unsharp observables). Let (Ω,F) be a measurable space. If Φ : S(H) → M+
1 (Ω) is

an affine mapping, then there exists a unique POVM Q : F → E(H) such that for all T ∈ S(H) we have(
Φ(T )

)
(F ) = Tr

(
Q(F )T

)
, F ∈ F .

Proof. See Theorem 15.25 in [14].

POVMs are the most general kind of measurement in quantum mechanics, and it is for this reason that they are
sometimes considered as the ultimate observables.

The assumption that Φ should be affine in the above theorem is reasonable by the following argument. Suppose
that we have two quantum mechanical systems represented by the states T1, T2 ∈ S(H). We use a classical
coin to decide which state is going to be observed: if, with probability p, ’heads’ comes up, we observe the
system corresponding to T1; otherwise, we observe the system corresponding to T2. This experiment can be
described as observing the state corresponding to the convex combination pT1+(1−p)T2. IfΦ is the observable
to be measured, we expect the probability distribution of the outcomes Φ

(
pT1 + (1 − p)T2

)
to be given by

pΦ(T1) + (1− p)Φ(T2).

6.3. Naimark's theorem
In rough analogy, a POVM is to a projection-valued measure what a mixed state is to a pure state. Mixed states
are needed to specify the state of a subsystem of a larger system. For example, when considering a gas in a box,
the subsystem under consideration, giving values for pressure and temperature for each Borel subset in the state
space, approximates the actual larger system, which would describe the physical behaviour of each individual
particle in the box. Analogously, POVMs are necessary to describe the effect on a subsystem of a projective
measurement (coming from a PVM) performed on a larger system. Let us make this mathematically concrete.

If J is an isometry from H into another Hilbert space Ĥ and P̂ is an orthogonal projection in Ĥ, then J∗P̂ J is
an effect inH: for all x ∈ H we have

0 ≤ (P̂ Jx|Jx) = ‖P̂ Jx‖2 ≤ ‖x‖2 = (x|x)

and therefore 0 ≤ J∗P̂ J ≤ I . This gives a method of producing POVMs from projection-valued measures.

Proposition 6 (Compression). Let J is an isometry from H into another Hilbert space Ĥ. If P̂ : F → P(Ĥ) is
a projection-valued measure, then Q := J∗P̂ J : F → E(H) is a POVM.

Proof. By what we just observed, Q maps sets F ∈ F to elements of E(H). It is clear that Q(Ω) = J∗J = I .
To see that Q is a POVM, it remains to observe that for all x ∈ H and F ∈ F , we have

QxF =
(
Q(F )x|x

)
=
(
P̂ (F )Jx|Jx

)
= P̂ (Jx)F,

from which it follows that Qx is a finite measure on (Ω,F).

Conversely, every POVM arises in this way. This is known as Naimark’s theorem.

Theorem 11 (Naimark). Let (Ω,F) be a measurable space and let Q : F → E(H) be a POVM. Then there
exists a Hilbert space Ĥ, a projection-valued measure P̂ : F → P(Ĥ) and an isometry J : H → Ĥ such that

Q(F ) = J∗P̂ (F )J, F ∈ F .

Proof. See Theorem 15.29 in [14].
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6.4. Phase as an unsharp observable

It was quickly realized that, in contrast to projection-valued measures, covariant POVMs could be constructed
that are associated with various time measurements, such as arrival time, times of occurence, screen time, and
time of flight. In fact, for some of these, rigorous versions of time-energy uncertainty could be proved.[1][2][3]

Let us provide a concrete example of a POVM associated with time. In quantum mechanics, for systems where
the number of particles may not be preserved, the number operator N is the observable that counts the number
of particles. It can be given as a self-adjoint operator acting on the Hardy space H2(D) on the open unit disk.
Here, H2(D) is the Hilbert space of all holomorphic functions on D of the form f(z) =

∑∞
n=1 cnz

n with

‖f‖2 :=

∞∑
n=1

|cn|2 <∞.

Let zn(z) := zn and en(θ) := einθ. It can be shown (section 7.3.d in [14]) that the mapping

∞∑
n=1

cnzn 7→
∞∑
n=1

cnen

sets up an isometry fromH2(T) to L2(T). In particular, its range is the closed subspace of L2(T)whose negative
Fourier coefficients vanish. Therefore,H2(D) can be identified as the range of the Riesz projection

∑
n∈Z

cnzn 7→
∞∑
n=1

cnzn

on L2(T).

The number operator N in H2(D) is the unbounded self-adjoint operator given by

Nzn = nzn, n ∈ N.

Its domain is

D(N) =

{ ∞∑
n=1

cnzn ∈ H2(D) :
∞∑
n=1

n2|cn|2 <∞
}
.

We can then construct a POVM for phase (in the sense of waves), which is covariant with respect to the one-
parameter unitary group generated by the number operator, that is, phase can be defined as a T-valued unsharp
observable. To show this, let S be the ”left shift” operator onH2(D):

S

∞∑
n=1

cnzn := cn+1zn.

Now identifyingH2(D) as the range of the Riesz projection in L2(T) as before, we can similary define the ”left
shift” operator Ŝ on L2(T) by

Ŝ

∞∑
n=1

cnen := cn+1en.

It is then a relatively straightforward verification to show that the projection-valued measure P : B(T) →
P(L2(T)) associated with Ŝ is given by

P (B)f = 1Bf, B ∈ B(T), f ∈ L2(T). (6.1)

whereB(T) is the set of all Borel subsets ofT. The compression of this projection-valued measure toH2(D) then
defines a POVM Φ : T → E(H2(D)) which we call the phase observable. The following theorem establishes
the covariance property this POVM has with respect to the number operator N , in the sense of Definition 18.
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Theorem 12 (Covariance of phase). The phase observable Φ is covariant with respect to the one-parameter
unitary group generated by the number operator N . That is, for all Borel subsets B ⊂ T we have

e−itNΦ(B)eitN = Φ(eitB), t ∈ R

where eitB = {eitz : z ∈ B} is the rotation of B over t.

Proof. Since the POVM Φ is the compression of the projection-valued measure P given by equation 6.1, for all
m,n ∈ N we have

(Φ(B)eitNen|em) = (P (B)JeitNen|Jem) = eint(1Ben|em),

while at the same time, with A = {θ ∈ (−π, π] : eiθ ∈ B},

(eitNΦ(eitB)en|em) = (P (eitB)Jen|Je−itNem) = eimt(1eitBen|em) = eitm
1

2π

∫
A

ei(n−m)(η+t)dη

= eint
1

2π

∫
A

ei(n−m)ηdη = eint(1Ben|em).

Since the functions en, n ∈ N have dense span in H2(D), this completes the proof.

The number operator N can be viewed as the Hamiltonian of the quantum harmonic oscillator (section 15.6.e in
[14]). Therefore, we have essentially proven that POVMs admit a description of time in a way that projection-
valued measures cannot account for. Hence, when trying to define time as an observable, this suggests we should
be looking for covariant POVMs, rather than covariant projection-valued measures. We return to this idea in
Chapter 9, after providing a detailed proof of Tomita’s theorem.



7
Tomita-Takesaki theory

7.1. Introduction

In the previous chapter, we introduced the motivation for using Tomita-Takesaki theory to address the problem of
time. Indeed, when provided with a state spaceH and an algebra of observablesM of some quantum system, we
would like to construct a one-paramater group of symmetries corresponding to the time flow of this system. If the
algebra of observables is a von Neumann algebraM ⊂ B(H) andΩ ∈ H is a state satisfying the KMS conditions,
Tomita-Takesaki theory is precisely the mathematical tool that produces a one-parameter group of symmetries.
Mathematically, Tomita-Takesaki theory constructs modular automorphisms of von Neumann algebras.

Recall from Theorem 6 that ifM ⊂ B(H) is an abelian von Neumann algebra (with certain conditions), thenH is
identifiable as L2(X,µ) andM acts as multiplication operatorsMφ for some second countable Hausdorff space
X , and some positive measure µ ∈M(X), with φ ∈ L∞(X,µ). This has a satisfying physical interpretation. In
Section 3.3 we mentioned that we use generally noncommutative spaces for observables in quantum mechanics,
since measurements effect physical systems at the quantum scale. If we are an abelian setting, measuring observ-
ables has no impact on the physical system, and we should expect this to align with the mathematical formulation
of classical mechanics. In classical mechanics, observables were defined as measurable functions on the state
space. So, assuming that X is the state space, L∞(X,µ) are precisely the bounded observables.

Asmentioned in the previous chapter, Tomita-Takesaki is not helpful in the abelian setting. As there is no quantum
influence, there is no problem of time, and so the time-flow should already be apparent.

7.2. σ-Finite von Neumann algebras

Central to Tomita-Takesaki theory is the space of bounded operators that commute with all elements of a von
Neumann algebra, and a certain property that specifically vonNeumann algebras have relating to these commuting
elements.

Definition 21 (Commutant). Let C be a subset of an algebra A. The commutant of C, denoted by C ′, is the set
of elements in A that commute with every element in C, that is, C ′ = {y ∈ A | xy = yx ∀x ∈ C}.
The double commutant of C, denoted C ′′, is the commutant of C ′, that is, C ′′ = (C ′)′.

Interestingly, it turns out that every von Neumann algebra is equal to its double commutant. In fact, this property
completely characterises von Neumann algebras; it provides an alternative way to define them.

Theorem 13 (Von Neumann double commutant theorem). Let M be a unital ⋆-subalgebra of B(H). Then the
following are equivalent: [13]

1. M is closed in the strong operator topology,
2. M = M′′.

28
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Proof. 1. =⇒ 2. Suppose M is strongly closed. If y ∈ M, then xy = yx for all x ∈ M′. So certainly
y ∈ M′′ and therefore,M ⊂ M′′.
Now let y ∈ M′′, ψ ∈ H and letK = {xψ | x ∈ M}. ThenK is a closed subspace ofH, which is invariant for
all x ∈ M. Let p ∈ B(H) be the orthogonal projection onto K. Since I ∈ M, pψ = ψ. Suppose x ∈ M and
ϕ ∈ K, so that ϕ = limn→∞ xnψ, with xn ∈ M for all n ≥ 1. Then xϕ = limn→∞ xxnψ with xxn ∈ M for
all n ≥ 1, and therefore xϕ ∈ K. So K is invariant under all x ∈ M. Similarly, if x ∈ M and ϕ ∈ K⊥, then
(xϕ|ξ) = (ϕ|x∗ξ) = 0 for all ξ ∈ K, since x∗ ∈ M. So x∗ξ ∈ K for all ξ ∈ K, and therefore K⊥ is invariant
underM. As a result, for all x ∈ M and ϕ ∈ H, we have xpϕ ∈ K and x(I − p)ϕ ∈ K⊥, so that

xpϕ = pxpϕ = px(pϕ+ (I − p)ϕ) = pxϕ.

Thus, xp = px for all x ∈ M and we conclude that p ∈ M′. Therefore py = yp, and so yψ ∈ K. Since M is
strongly closed, there is a sequence (xn) inM such that yψ = limn→∞ xnψ. Fix an orthonormal basis (en) for
H and set H(n) := span{e1, . . . , en}. Then elements of B(H(n)) can be identified as n × n matrices. For each
n ∈ N define

φ : B(H) → B(H(n)), x 7→ (δijx),

where (δijx)(e1, . . . , en) := (xe1, . . . , xen). Thenφ is a unital ⋆-homomorphism, and soφ(M) is a ⋆-subalgebra
of B(H(n)) containing idH(n) . If z ∈ (φ(M))′ and x ∈ M, then φ(x)z = zφ(z) =⇒ xzij = zijx for all
1 ≤ i, j ≤ n. Thus, zij ∈ M′ and so yzij = zijy for all 1 ≤ i, j ≤ n. Therefore, φ(y)z = zφ(y). Now let
ψ(n) = (ψ1, . . . , ψn) ∈ H(n) be the projection of ψ onto H(n). Again, since M is strongly closed, there is a
sequence (xm) in M such that φ(y)ψ(n) = limm→∞ φ(xm)ψ(n). Thus, yψj = limm→∞ xmψj for 1 ≤ j ≤ n.
If Y ⊂ B(H) is a strong neighbourhood of y, then Y − y is a strong neighbourhood of 0 ∈ B(H). Therefore,
there exist ψ1, . . . , ψn ∈ H and ε > 0 such that

Y − y = {x ∈ B(H) | ‖xψj‖ < ε ∀1 ≤ j ≤ n}.

Hence, there is a sequence (xm) inM such that

yψj = lim
m→∞

xmψj ∀1 ≤ j ≤ n.

Consequently, there is someN ∈ N so that xN ∈ Y . Thus, Y ∩M 6= ∅ and therefore, we have shown that every
strong neighbourhood of y intersectsM. We conclude that y is in the strong closure ofM, which, by assumption,
isM itself. Hence,M′′ ⊂ M.
2. =⇒ 1. Suppose that M = M′′. Suppose that (xn) is a sequence in M′′ which converges strongly to
x ∈ B(H). Then xn commutes with all y ∈ M′ for all n ∈ N. Therefore, for any y ∈ M′ and any ψ ∈ H,

xyψ = lim
n→∞

xnyψ = lim
n→∞

yxnψ = yxψ,

and so x ∈ M′′. We conclude that M′′ is strongly closed, and since M = M′′, M is closed in the strong
operator topology.

In the previous chapter, wementioned that the states of a quantum system that could possibly be equilibrium states
are described by KMS states. We do not delve into the theory of KMS conditions, but it turns out there is a class
of states which are certainly KMS states (section 2.1 in [23]). It is this class of states for which Tomita-Takesaki
theory creates a time flow.

Definition 22. Let M ⊂ B(H) be a von Neumann algebra acting on a Hilbert spaceH. A state ϕ : B(H) → C
is called faithful onM if ϕ(x∗x) = 0 =⇒ x = 0 for all x ∈ M, that is, ϕ is injective on the positive operators
ofM.

In the next chapters, given a faithful state on a von Neummann algebra M, we will show that there is a one-
parameter unitary group of automorphisms of M. Of course, there is no guarantee that every von Neumann
algebra has a faithful state to begin with. Therefore, Tomita-Takesaki theory must be restricted to a class of von
Neumann algebras, namely those which act on a Hilbert space that admits a faithful state, which we introduce
now.

Definition 23 (σ-finite von Neumann algebra). A von Neumann algebra M is called σ-finite if all collections
of mutually orthogonal projections have at most a countable cardinality.
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All von Neumann algebras encountered in quantum field theory are σ-finite (section 2.5.1 in [18]). In particular,
recall from Section 4.2 that all Hilbert spaces in this thesis were taken to be separable. It can be shown that all
von Neumann algebras acting on separable Hilbert spaces are, in fact, σ-finite (page 85 in [18]). Our goal in the
rest of this section is to show that the σ-finite von Neumann algebras admit a faithful state and that any faithful
state can be realised as a vector state for some vector Ω ∈ H which is cyclic and separating forH.

Proposition 7. LetM ⊂ B(H) be a von Neumann algebra acting on a Hilbert spaceH.

1. IfM is σ-finite, thenH admits a faithful state.
2. If H admits a faithful state on M, then M is isomorphic with a von Neumann algebra π(M) ⊂ B(H′)

which admits a cyclic and separating vector Ω ∈ H′.

Proof. 1. Let {ψα} be a maximal family of vectors in H such that P (M′ψα) and P (M′ψα′) are orthogonal
projections whenever α 6= α′, whereM′ψα = {x′ψα : x′ ∈ M′}. Since P (M′ψα) is an orthogonal projection
inM, andM is σ-finite, {ψα} is a countable set. However, since {ψα} is maximal,∑

α

P (M′ψα) = idH.

Thus ∪αM′ψα = H. Take some x ∈ M′′ such that ∪α{xψα} = {0}. Then, for any y′ ∈ M′ and any α, we
have xy′ψα = y′xψα = 0. Hence xH = x∪αM′ψα = {0}, and so x = 0. Since {ψα} is countable, we can
index it instead by the naturals N and rescale the elements ψn := 2−n/2 ψα

‖ψα‖ such that
∑
n ‖ψn‖2 = 1. Define

ϕ : B(H) → C by
ϕ(x) =

∑
n

(ψn|xψn)

so that ϕ is a state. By von Neumann’s double commutant theorem, M′′ = M and so, if ϕ(x∗x) = 0 for some
x ∈ M, then 0 = (ψn|x∗xψn) = ‖xψn‖2 for all n, and therefore, x = 0. Hence, ϕ is faithful.
2. Let ϕ : B(H) → C be a faithful state on M, and let π : B(H) → B(H′) be the GNS representation as
constructed in Theorem 3, with cyclic vector Ω ∈ H′. Since ψ is faithful, π is an isomorphism of von Neumann
algebras. If π(x)Ω = 0 for some x ∈ M, then ψ(x∗x) = ‖π(x)Ω‖2 = 0, and so x∗x = 0, so that x = 0.
Therefore, Ω is separating forH′.

Crucially, for every separable Hilbert space, which are the only Hilbert spaces under consideration in this thesis,
every von Neumann algebra acting on such a Hilbert space can be realized as a von Neumann algebra which has
a cyclic and separating vector. It is this vector, which, as a vector state, corresponds to a KMS state, for which
Tomita-Takesaki constructs a time flow. Of course, such a vector need not be unique.

7.3. The modular operator

Throughout, letM ⊂ B(H) be a von Neumann algebra acting on a Hilbert spaceH with a cycling and separating
vector Ω ∈ H. The goal will be to construct an operator ∆ such that R → U(H), t 7→ ∆it is one-parameter
unitary group. Furthermore,

∆−itM∆it = M, t ∈ R,

which is known as Tomita’s theorem. Consequently, by equation 5.1, there is a one-parameter group of von
Neumann algebra automorphisms αt(x) = ∆−itx∆it.

In order to introduce this operator, we need a generalisation of the polar decomposition to unbounded operators,
factorising them into a compositions of partial isometries and positive self-adjoint operators.

Theorem 14 (Polar decomposition). Let H be a Hilbert space. Let A be a closed, densely defined unbounded
operator. Then it has a polar decomposition

A = U |A|,

where |A| = (A∗A)1/2 is a (possibly unbounded) positive self-adjoint operator with the same domain as A, and
U is a partial isometry vanishing on range(|A|)⊥.
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Proof. Since A is closed and densely defined, A∗A is self-adjoint with dense domain (see Theorem 10.46 in
[14]), which ensures that |A| = (A∗A)1/2 is well-defined by the functional calculus.
By Corollary 10.61 in [14], we have D(|A|) = D(A) and hence,

U0 : range(|A|) → H, |A|φ 7→ Aφ

is a well-defined isometric linear map. Therefore, it has a unique linear isometric extension to range(|A|). Define
U ∈ B(H) by

U =

{
U0 on range(|A|)
0 on range(|A|)

⊥ .

Then U is isometric on kerU⊥, because kerU = range(|A|)
⊥
. Thus, U is a partial isometry and U |A| = A, as

required.

By von Neumann’s double commutant theorem, it is easily seen that the commutant of a von Neumann algebra
is a von Neumann algebra itself. Further, the properties of being a cyclic or separating vector for a von Neumann
algebra are in some sense dual with regard to its commutant, in the following way.

Proposition 8. LetM ⊂ B(H) be a von Neumann algebra and Ω ∈ H. Then the following are equivalent:

1. Ω is cyclic forM.
2. Ω is separating forM′.

Proof. 1. =⇒ 2. Suppose Ω is cyclic for M and suppose for x′ ∈ M′ that x′Ω = 0. Then for any x ∈ M,
we have x′xΩ = xx′Ω = 0, and so x′H = x′MΩ = {0}. Hence x′ = 0, and so Ω is separating forM′.
2. =⇒ 1. Suppose Ω is separating for M′ and let p′ ∈ B(H) be the projection onto MΩ. Then p′ ∈ M′

and (idH − p′)Ω = 0 and so (idH − p′) = 0. Therefore, p′ = idH and we conclude thatMΩ = H. Hence, Ω is
cyclic forM.

Corollary 1. Let M ⊂ B(H) be a von Neumann algebra. If Ω ∈ H is cyclic and separating for M, then Ω is
also cyclic and separating forM′.

Proof. Suppose Ω ∈ H is cyclic and separating for M. By Proposition 8, Ω is separating for M′. By von
Neumann’s double commutant theorem, Ω is separating for M′′ and so, also by Proposition 8, Ω is cyclic for
M′.

Now we return to defining our desired operator∆.

Definition 24 (Antilinear operator). An antilinear operator T an a Hilbert space H is an operator satisfying
T (ψ + φ) = Tψ + Tφ and T (cψ) = cTψ for all ψ,φ ∈ D(T ) and c ∈ C.
The adjoint of an antilinear operator T is the unique antilinear operator T ∗ defined by T ∗φ = ξ whenever there
is a ξ ∈ H such that (ψ|ξ) = (Tψ|φ) for all ψ ∈ D(T ).

First, we define the antilinear operators S0 with D(S0) = MΩ and F0 with D(F0) = M′Ω by

S0(xΩ) = x∗Ω, x ∈ M, F0(x
′Ω) = x′∗Ω, x′ ∈ M′.

SinceΩ is separating forM and forM′, we have that xΩ = yΩ =⇒ x = y =⇒ x∗Ω = y∗Ω for all x, y ∈ M
and x′Ω = y′Ω =⇒ x′ = y′ =⇒ x′∗Ω = y′∗Ω for all x′, y′ ∈ M′. Thus, S0 and F0 are well-defined. Then,
for x ∈ M and x′ ∈ M′, we have

(x′Ω|S0xΩ) = (x′Ω|x∗Ω) = (Ω|x′∗x∗Ω) = (Ω|(xx′)∗Ω)
= (Ω|(x′x)∗Ω) = (Ω|x∗x′∗Ω) = (xΩ|x′∗Ω) = (xΩ|F0x

′Ω).

In particular, D(F0) ⊂ D(S∗
0 ). Since, F0 is densely defined, S∗

0 is densely defined, and so S0 is closable.

Definition 25 (Tomita operator). For a von Neumann algebraMwith cyclic and separating vectorΩ, the closure
of S0 as constructed above, denoted by S, is called the Tomita operator.
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Similarly, for x ∈ M and x′ ∈ M′,

(xΩ|F0x
′Ω) = (xΩ|x′∗Ω) = (x′Ω|x∗Ω) = (x′Ω|S0xΩ).

so that D(S0) ⊂ D(F ∗
0 ). As S0 is densely defined, so is F ∗

0 , and therefore, F0 is closable. Just like the Tomita
operator, let F denote the closure of F0.
Lemma 1. Let S0 and F0 be defined as above, and let S and F denote their closures respectively. Then

S∗
0 = F and F ∗

0 = S.

Proof. For a proof, see Proposition 2.5.9 in [18].

Note that when viewing M′ as a von Neumann algebra, F0 takes the role of S0, and by von Neumann’s double
commutant theorem, S0 takes the role of F0 as well. Therefore the same holds true for S and F respectively.
Hence, the Tomita operator forM′ can be identified as F = S∗.

The Tomita operator S is closed, and since S0 is densely defined, S is also densely defined. By Theorem 14, S
has a polar decomposition S = J∆1/2, where ∆ = S∗S is self-adjoint and positive (Theorem 10.46 in [14]).
Definition 26 (modular operator). For a von Neumann algebra M with cyclic and separating vector Ω, the
positive self-adjoint operator∆, as constructed above, is called themodular operator associated with {M,Ω}.

It is this operator which is used to prove Tomita’s theorem. An important property of the modular operator, which
is used in the proof, is that it is an invertible operator, in the sense that it is injective, and its inverse is the modular
operator associated with the commutant {M′,Ω}.
Proposition 9. For a von Neumann algebra M with cyclic and separating vector Ω, the modular operator
associated with {M,Ω} has trivial kernel. Furthermore, the inverse ∆−1 is the modular operator associated
with {M′,Ω}.

Proof. Next, observe that ∆ = S∗S = FS. Clearly S0(MΩ) = MΩ = D(S0), since M is closed under the
taking of adjoints, and S0(S0(xΩ)) = S0(x

∗Ω) = x∗∗Ω = xΩ for all x ∈ D(S0). Hence, S0S0 = I on D(S0)
and D(S−1

0 ) = S0D(S0) = S0(MΩ) = D(S0), so that S−1
0 = S0. Similarly, we have that F−1

0 = F0. Then,
by closure, S−1 = S−1

0 = S0 = S and F−1 = F−1
0 = F0 = F . Therefore,∆−1 = (FS)−1 = S−1F−1 = SF .

Now, note that F0 takes the role of S0 for M′, and by von Neumann’s double commutant theorem, S0 takes the
role of F0. So, similarly, S takes the role of F . Hence, the modular operator associated with {M′,Ω} is given
by SF = ∆−1.
Finally, since ∆−1 is the modular operator for M′, it is densely defined by Theorem 10.46 in [14]. Therefore,
∆ has dense range, so by Proposition 10.24 in [14] and by the fact that ∆ is self-adjoint, we conclude that ∆ is
injective.

Since the modular operator is self-adjoint, the operator ∆it is well-defined for all t ∈ R by the Borel functional
calculus. By Stone’s theorem on one-parameter unitary groups, R → U(H), t 7→ ∆it is a one-parameter unitary
group. The fundamental theorem of Tomita is that the time flow of any observable∆−itx∆it remains inM.
Theorem 15 (Tomita’s theorem). LetM be a von Neumann algebra with cyclic and separating vector Ω and let
∆ be the modular operator associated with {M,Ω}. Then for any x ∈ M and t ∈ R,

∆−itx∆it ∈ M.

Once we have proven Tomita’s theorem, we automatically have

M = ∆−it(∆itM∆−it)∆it ⊂ ∆−itM∆it.

This gives the reverse inclusion and allows us to conclude that

M = ∆−itM∆it.

It can be shown that if M is abelian, we have ∆ = I = idH (page 90 in [18]). The resulting unitary operators
∆it = Iit = I are trivial and so there is no physical time flow associated with abelian von Neumann algebras.
Therefore, Tomita-Takesaki is useful specifically to quantum mechanical systems.

In the next chapter, we provide a detailed proof of Tomita’s theorem.



8
A proof of Tomita's theorem

8.1. Background material
The Bochner integral extends the definition of the Lebesgue integral to functions that take values in a Banach
space. Given some measure space (Ω,F , µ), we explicitly define the Bochner integral for a class of functions
called µ-simple functions, and then extend the definition to limits of sequences of such functions as well.

Definition 27 (Simple functions, strong measurability). Let (Ω,F) be a measurable space and letX be a Banach
space. A function f : Ω → X is called simple if it is a finite linear combination of the form 1F ⊗x : ω 7→ f(ω)x
with F ∈ F and x ∈ X , and strongly measurable if it is the pointwise limit of a sequence of simple functions.

Definition 28 (µ-Simple functions). Let (Ω,F , µ) be a measure space, X be a Banach space, let N ∈ N, and
let Fn ∈ F and xn ∈ X for all 1 ≤ n ≤ N . A simple function f : Ω → X, ω 7→

∑N
n=1 1Fn

(ω)xn is called
µ-simple if µ(Fn) <∞ for all 1 ≤ n ≤ N . For such functions, we define∫

Ω

f dµ :=

N∑
n=1

µ(Fn)xn.

It is easily verified that
∫
Ω
f dµ is well-defined in the sense that it does not depend on the representation of f as

a linear combination of functions 1Fn
⊗ xn with µ(Fn) <∞.

Definition 29 (Bochner integrable). Let (Ω,F , µ) be a measure space and let X be a Banach space. A strongly
measurable function f : Ω → X is said to be Bochner integrable with respect to µ if there is a sequence of
µ-simple functions fn : Ω → X such that

lim
n→∞

∫
Ω

||f − fn|| dµ = 0.

In that case we define the Bochner integral of f by∫
Ω

fdµ := lim
n→∞

∫
Ω

fn dµ.

It is easily verified that
∫
Ω
f dµ is well-defined in the sense that it does not depend on the sequence of approxi-

mating functions fn.

It can be shown that the dominated convergence theorem applies to measurable functions with values in a Banach
space (Corolloary III.6.16 in [6]).

Theorem 16 (Dominated convergence). Let (Ω,F , µ) be a measure space, let X be a Banach space, and let
fn : Ω → X be a sequence of strongly measurable functions that converges in measure to a function f : Ω → X ,
that is,

lim
n→∞

µ({x ∈ X : ||f(x)− fn(x)|| ≥ ε}) = 0

33
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for every ε > 0. Moreover, assume that the sequence fn is dominated by some integrable function g : Ω → R in
the sense that

µ({x ∈ X : ||fn(x)|| > g(x)}) = 0

for all n ∈ N. Then fn, f are Bochner-integrable and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

lim
n→∞

fn dµ =

∫
Ω

f dµ.

Throughout, letH be a Hilbert space.

Definition 30 (Projection-valued measure). Let (Ω,F) be a measurable space. A projection-valued measure
on (Ω,F) is a mapping µ : F → P(H) satisfying the following conditions:

1. µ(Ω) = idH
2. for all ψ ∈ H, the mapping

F 7→ (µ(F )ψ|ψ), F ∈ F

defines a measure on (Ω,F).

For ψ ∈ H, the measure defined by 2. is denoted by µψ . Thus, for all F ∈ F ,

(µ(F )ψ|ψ) = µψ(F ) =

∫
Ω

1F dµψ.

From
µψ(Ω) = (µ(Ω)ψ|ψ) = (ψ|ψ) = ‖ψ‖2

we see that µψ is a finite meaure for each ψ ∈ H.
The µ-essential range of a measurable function f : Ω → C is the set Rµ(f) of all z ∈ C such that µ({x ∈
Ω | |f(x)− z| < r}) for all r > 0.

Let (Ω,F) be a measurable space. The Banach space of all bounded measurable functions f : Ω → C, endowed
with the supremum norm ||f ||∞ = supx∈Ω |f(x)|, is denoted by Bb(Ω).

Theorem 17 (Bounded functional calculus). Let µ : F → B(H) be a projection-valued measure. There exists a
unique linear mapping Φ : Bb(Ω) → B(H) with the following properties:

1. For all F ∈ F , we have Φ(1F ) = µ(F )

2. For all f, g ∈ Bb(Ω), we have Φ(fg) = Φ(f)Φ(g)

3. For all f ∈ Bb(Ω), we have Φ(f) = (Φ(f))∗

4. For all f ∈ Bb(Ω), we have ||Φ(f)|| ≤ ||f ||∞
5. For all fn, f ∈ Bb(Ω), if supn≥1 ||fn||∞ < ∞ and fn → f pointwise on Ω, then for all ψ ∈ H, we have

Φ(fn)ψ → Φ(f)ψ.

Moreover, for all ψ ∈ H and f ∈ Bb(Ω) we have(
Φ(f)ψ|ψ

)
=

∫
Ω

f dµψ

and
||Φ(f)ψ||2 =

∫
Ω

|f |2 dµψ.

The operators Φ(f) are normal, and if f is real-valued (respectively takes values in [0,∞)), they are self-adjoint
(respectively positive).

Proof. See Theorem 9.8 in [14].
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Theorem 18 (Spectral theorem for bounded normal operators). Let A ∈ B(H) be a normal operator. There
exists a unique projection-valued measure µ on σ(A) such that

(Aψ|ψ) =
∫
σ(A)

λ dµψ(λ), ψ ∈ H.

Proof. See Theorem 9.14 in [14].

For normal operators A ∈ B(H) and functions f ∈ Bb(σ(A)), the operator Φ(f) ∈ B(H) defined in terms of
the projection-valued measure µ of A by the calculus of Theorem 17 will be denoted by f(A):

f(A) := Φ(f).

Theorem 19 (Measurable functional calculus). Let (Ω,F) be a measurable space, let µ : F → B(H) be a
projection-valued measure, and let f : Ω → C be a measurable function. There exists a unique normal operator
Φ(f) onH satisfying

D
(
Φ(f)

)
=

{
ψ ∈ H :

∫
Ω

|f |2 dµψ <∞
}
,

(
Φ(f)ψ|ψ

)
=

∫
Ω

f dµψ, ψ ∈ D
(
Φ(f)

)
.

For all ψ ∈ D
(
Φ(f)

)
we have

||Φ(f)ψ||2 =

∫
Ω

|f |2 dµψ.

Furthermore, if fn, f, g : Ω → C are measurable functions, then:

1. Φ(f)Φ(g) ⊂ Φ(fg) with D
(
Φ(f)Φ(g)

)
⊂ D

(
Φ(fg)

)
∩D

(
Φ(g)

)
,

2. Φ(f)∗ = Φ(f̄),
3. if 0 ≤ |fn| ≤ |f |, and limn→∞ fn = f pointwise on Ω, then D

(
Φ(f)

)
⊂ D

(
Φ(fn)

)
and

lim
n→∞

Φ(fn)ψ = Φ(f)ψ, ψ ∈ D
(
Φ(f)

)
.

The operator Φ(f) is self-adjoint if and only if it is real-valued µψ-almost everywhere for all ψ ∈ H.

Proof. See Theorem 10.50 in [14].

It follows from 1. that
Φ(f)Φ(g) = Φ(fg) ⇐⇒ D

(
Φ(fg)

)
⊂ D

(
Φ(g)

)
. (8.1)

Corollary 2. Under the above assumptions, it follows that

Φ(fn) =
(
(Φ(f)

)n
, n ∈ N.

Proof. We prove by induction. The result is trivial for n = 1.
So suppose that Φ(fk) =

(
(Φ(f)

)k for some k ∈ N. If ψ ∈ D
(
Φ(fk+1)

)
, then

∫
Ω
|f |2k+2 dµψ <∞, and since

µψ is a finite measure, we therefore have
∫
Ω
|f |2k dµψ < ∞, so that ψ ∈

(
D(Φ(fk)

)
. Thus, D

(
Φ(fk+1)

)
⊂(

D(Φ(fk)
)
. By equation 8.1, we then have Φ(fk+1) =

(
Φ(f)

)k+1, proving the corollary.

Theorem 20 (Spectral theorem for normal operators). For every normal operator A, there exists a unique
projection-valued measure µ on σ(A) such that

(Aψ|ψ) =
∫
σ(A)

λ dµψ(λ), ψ ∈ D(A).

Proof. See Theorem 10.56 in [14].
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For normal operators A and measurable functions f : σ(A) → C, the operator Φ(f) defined in terms of the
projection-valued measure µ of A by the calculus of Theorem 19 will be denoted by f(A):

f(A) := Φ(f).

Theorem21 (Spectral mapping theorem). LetA be normal with projection-valuedmeasureµ, and let f : σ(A) →
C be measurable. Then

σ
(
f(A)

)
= Rµ(f) ⊂ f

(
σ(A)

)
.

If f is continuous, then
σ
(
f(A)

)
= f

(
σ(A)

)
.

Proof. See Theorem 10.57 in [14].

The following lemma tells us how to think of the domain of the Tomita operator S. Recall that the domain of S0

is expressed in terms of operators in M acting on Ω. Similarly, the domain of S can be expressed in terms of
operators affiliated toM acting on Ω.

Definition 31 (Affiliated operator). A closed, unbounded operator T is said to be affiliated toM if it commutes
with every operator x′ ∈ M′ on all vectors where both Tx′ and x′T are defined, that is, Tx′ψ = x′Tψ for all
ψ ∈ D(Tx′) ∩D(x′T ).

Definition 32 (Closure, closable operator). Given a linear operator A, not necessarily closed, if the closure of its
graph in H ⊕ H happens to be the graph of some operator, that operator is called the closure of A, and we say
that A is closable. Denote the closure of A by A. It follows that A = A|D(A).

Definition 33 (Core). A core of a closable operator A is a subset C ⊂ D(A) such that A|C = A.

Lemma 2. Let Ω be a cyclic and separating vector for a von Neumann algebra M, and let S be the Tomita
operator. Then D(S) consists of all vectors of the form TΩ, where T is a closed operator affiliated with M,
havingM′Ω as a core, and for which Ω ∈ D(T ) ∩D(T ∗). The operator S acts as

S(TΩ) = T ∗Ω.

Proof. See Lemma 1.10 in [24].

The following lemma tells us how to analytically continue a unitary group generated by a positive operator in the
complex plane. It will be needed to show that∆−itx∆it lies inM for large t ∈ R.

Lemma 3. Let P be a positive, invertible, self-adjoint operator on the Hilbert space H. Let w ∈ C such that
<(w) > 0 and fix x ∈ B(H).
If the operator P−wxPw is defined and bounded on a core for Pw, then for every z ∈ Z in the strip {z ∈ C | 0 ≤
<(z) ≤ <(w)}, the operator P−zxP z is bounded on its domain, so that it is closable with bounded closure. The
B(H)-valued function

z 7→ P−zxP z

is analytic in the strip with respect to the norm topology, and continuous on the boundaries of the strip with
respect to the strong operator topology.

Proof. See Section 9.24 in [27].

The following lemma is due to Takesaki, and appears in almost all general proofs of Tomita’s theorem. In this
proof, we study a class of operators x ∈ M for which the modular operator ∆ ”looks bounded”. Concretely,
this will mean that the vector xΩ lies in a spectral subspace of∆ with bounded spectral range. To produce these
vectors, we use operators of the form (λ − ∆) to truncate the spectral subspaces of ∆, and this lemma tells us
how to think of (z −∆), when z comes from the resolvent.
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Lemma 4. Let Ω be a cyclic and separating vector for a von Neumann algebra M and let ∆ be the associated
modular operator. Let z be in the resolvent set of ∆, so that (z − ∆) is invertible as a bounded operator. Fix
x′ ∈ M′.
Then there exists a unique operator x ∈ M satisfying

xΩ = (z −∆)−1x′Ω,

and it satisfies the bound

||x|| ≤ ||x′||√
2(|z| − <(z))

.

Proof. See Lemma 2.5.12 in [18].

The following lemma allows us to express analytic funtions of bounded operators as residue integrals.

Lemma 5. Let x ∈ B(H) be self-adjoint and let f be a function analytic in a neighbourhood of σ(x). Then the
operator f(x), defined by the Borel functional calculus, can be written in terms of the norm-convergent Bochner
integral

f(x) =
1

2πi

∫
γ

f(z)(z − x)−1 dz,

where γ is any simple, counter-clockwise oriented, closed contour in the domain of f encircling σ(x).

Proof. See Sections 2.25 and 2.29 in [27].

In complex analysis, the Phragmén-Lindelöf principle is a generalisation of the maximum modulus principle to
holomorphic functions on certain unbounded domains. The version of Phragmén-Lindelöf provided below is
specific to this particular proof.

Theorem 22 (Phragmén-Lindelöf). Let S = {z ∈ C | 0 ≤ <(z) ≤ n} be a vertical strip in the complex plane
and let f : S → B(H) be a function that is holomorphic on the interior of S and strongly continuous on the
boundary of S. Suppose that f is bounded on the boundary of the strip, that is, supz∈bd(S) ‖f(z)‖ < ∞, and
that it grows at most doubly exponentially in the imaginary direction, that is, there exist constants α, β, γ with
γ < π/n, such that

‖f(z)‖ ≤ αeβ exp(γ|=(z)|), z ∈ S.

Then f is bounded by its bound on the boundary of the strip, that is, supz∈bd(S) ‖f(z)‖ <∞.

In complex analysis, Carlson’s theorem roughly states that two different holomorphic functions which do not
grow very fast at infinity cannot coincide at the integers.

Theorem 23 (Carlson’s theorem). Let f be a function defined on the closed right half-plane satisfying the fol-
lowing three conditions:

1. f is holomorphic on the open right half-plane, strongly continuous on the imaginary axis, and

‖f(z)‖ ≤ αeβ|<(z)|, <(z) > 0

for some α, β ∈ R,
2.

‖f(iy)‖ ≤ αeγ|y|, y ∈ R

for some γ < π,
3. f(n) = 0 for all n ∈ N.

Then f = 0.
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8.2. Introduction

This chapter provides a proof of Tomita’s theorem based on a 2024 paper by Jonathan Sorce. [21]

Let Θ be the Heaviside theta function, defined by

Θ(x) =


1 x > 0
1
2 x = 0

0 x < 0

.

The main idea of this proof is to produce operators in M for which the modular operator ”looks bounded” by
starting with a vector x′Ω and acting on it with the operator Θ(λ−∆) for some λ > 0. We will be able to study
the vector Θ(λ−∆)x′Ω by approximating the function Θ(λ− x) with a sequence of sigmoid functions,

fk(z) =
1

1 + ek(z−λ)
.

Since fk is analytic in the complex plane, the operator fk(∆) (defined via the functional calculus from the spectral
theorem) can be studied using a contour integral of fk(z) multiplied by the resolvent (z − ∆)−1. After taking
the limit k → ∞, for any n ∈ N, we can introduce bounded operators xλ,n ∈ M satisfying

xλ,nΩ = gλ(∆)x′Ω.

A symmetric argument substituting the modular operator with∆−1 andM with its commutant (as in Proposition
9) shows that when starting with some vector xΩ there are operators satisfying

x′λ,nΩ = ∆nΘ(∆− λ)xΩ.

After some manipulation, we can then construct operators restricting the modular operator to acting on its spectral
subspace corresponding to the range [λ1, λ2] for any 0 < λ1 < λ2, that is, operators x[λ1,λ2],n satisfying

x[λ1,λ2],nΩ = gλ2(∆)Θ(∆− λ1)xΩ.

It is these operators, which we call tidy operators, for which the modular operator ”looks bounded”. The space of
all tidy operators forms a subspace ofM, which we denoteMtidy. Then it can be shown that for any tidy operator
x, ∆nx∆−n is well-defined and bounded on MtidyΩ, and that for any real number t, Mtidy is a core for ∆t. As
a result, we show that Tomita’s theorem holds for tidy operators.

The final part of the proof then poses that for any operator x, the operators∆itx∆−it commute with every operator
that is tidy for the commutantM′. This space can be shown to be equal to the commutantM′, and so∆itx∆−it is
in the double commutantM′′ for all t ∈ R. Therefore, by von Neumann’s double commutant theorem,∆itx∆−it

is inM for all t ∈ R, and so Tomita’s theorem holds in general.
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Figure 8.1: A sketch of the contour γ used in Proposition 10 and Theorem 24. The black dot denotes the origin of the complex plane, and
the jagged line is the positive real axis.

8.3. Tidy operators

Proposition 10. Fix λ > 0, and let fk : C → C be the sigmoid function

fk =
1

1 + ek(z−λ)

and let
f : [0,∞) → C, t 7→ tnfk(t)

. Let ∆ be an invertible, self-adjoint, positive operator on a Hilbert space H. Let γ be the counter-clockwise
contour in the complex plane surrounding the positive real axis, given by combining the half-lines {t±2πi, t ≥ 0}
with the half-circle of radius 2πi centered at the origin, as in figure 8.1.
Then for any n ∈ N, and any ψ ∈ H we have

f(∆)ψ =
1

2πi

∫
γ

znfk(z)(z −∆)−1ψ dz,

where f(∆) is defined by the Borel functional calculus and this integral converges as a Bochner integral.

Proof. Let m ∈ N. From the spectral theorem for ∆ (Theorem 20), there exists a unique projection-valued
measure µ on σ(∆) such that

∆ =

∫
σ(∆)

tdµ(t).

and let Πm be the spectral projection µ([0,m]).
By Theorem 10.58 in [14], ifΠmψ = ψ, thenΠmψ = ψ ∈ D(∆) and∆ψ = cψ, for some c ∈ [0,m]. Otherwise,
Πmψ = 0, so Πmψ = 0 ∈ D(∆) and ∆0 = 0. Hence, ∆(m) := ∆Πm is well-defined and it is precisely the
restriction of ∆ to the spectral range [0,m]. By construction, ‖∆(m)ψ‖ ≤ m‖ψ‖ for all ψ ∈ H, and so ∆(m) is
bounded bym.
We know that limt→∞ tnfk(t) = 0. Hence there is some c > 0 so that |tnfk(t)| < 1 for all t > c, and so f is
bounded on (c,∞). Now, since f is continuous on [0, c], we have that f is bounded on [0, c] as well, and so f is
bounded. By Corollary 9.18 in [14], since∆ is positive, σ(∆) ⊂ [0,∞), and by construction, σ(∆(m)) ⊂ [0,m].
Then, by the bounded functional calculus (17), there exist bounded operators f(∆) and f(∆(m)) such that(

f(∆)ψ|ψ
)
=

∫
σ(∆)

f dµψ,
(
f(∆(m))ψ|ψ

)
=

∫
σ(∆(m))

f dµψ

for all ψ ∈ H.
Now, consider the vector Πmψ. We have

f(∆)Πmψ = f(∆(m))Πmψ

by Corollary 10.59 in [14].
Each ∆(m) is bounded by m by construction, so we may express this equation in terms of a norm-convergent
Bochner integral as

f(∆)Πmψ =
1

2πi

∫
γm+vm

f(z)(z −∆(m))
−1Πmψ dz,
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where vm is the vertical segment passing through the real axis at m + 1/2, oriented in the positive imaginary
direction, and with endpoints on the contour γ, and γm is the portion of the contour γ lying to the left of this
vertical segment.
In fact, since the spectrum of∆(m) lies in the range [0,m], we may write this integral for anym′ ≥ m as

f(∆)Πmψ =
1

2πi

∫
γm′+vm′

f(z)(z −∆(m))
−1Πmψ dz,

where vm′ and γm′ are defined similarly.
For z ∈ C so that <(z) > m, we have

‖(z −∆(m))
−1‖ ≤ sup

∥∥σ((z −∆(m))
−1
)∥∥ ≤ sup

∥∥∥(z − σ(∆(m))
)−1
∥∥∥ ≤

∥∥(z −m)−1
∥∥ ≤ 1

<(z)−m

where we used the spectral mapping theorem (Theorem 20) in the second inequality. Also, we have ‖Πm‖ ≤ 1.
Hence, ∥∥∥∥ ∫

vm′

f(z)(z −∆(m))
−1Πmψ dz

∥∥∥∥ ≤
∫
vm′

znfk(z)

<(z)−m
‖ψ‖ dz → 0

asm′ → ∞, since fk is a sigmoid function. This gives the identity

f(∆)Πmψ =
1

2πi

∫
γ

f(z)(z −∆(m))
−1Πmψ dz

=
1

2πi

∫
γ

znfk(z)(z −∆)−1Πmψ dz.

So far we have shown that the proposition holds for any vector of the form Πmψ. However, by point 5. in
Theorem 17, the sequence Πm converges strongly to the identity operator, since 1[0,m] converges pointwise to
1[0,∞). Taking the limitm→ ∞ in the above expression gives

∆nfk(∆)ψ =
1

2πi
lim
m→∞

∫
γ

znfk(z)(z −∆)−1Πmψ dz.

Since Πm are projections, ‖Πmφ‖ ≤ ‖φ‖. Clearly, znfk(z)(z −∆)−1 is Bochner-integrable, and so the domi-
nated convergence theorem (Theorem 16) lets us move the limit inside the integral and proves the proposition:

∆nfk(∆)ψ =
1

2πi

∫
γ

lim
m→∞

znfk(z)(z −∆)−1Πmψ dz

=
1

2πi

∫
γ

znfk(z)(z −∆)−1ψ dz.

Figure 8.2: A sketch of the sigmoid function used in Proposition 10 and Proposition 11, restricted to the real number line, with λ = 0 and
k = 1. The parameters λ and k determine the center and the steepness of the function respectively .

Proposition 11. Fix λ > 0, and let Fk : C → C be the sigmoid function

fk(z) =
1

1 + ek(z−λ)
,
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let
f(k) : [0,∞) → C, t 7→ tnfk(t),

and let
gλ : [0,∞) → C. t 7→ tnΘ(λ− t).

Let ∆ be an invertible, self-adjoint, positive operator. Then for any ψ ∈ H and any nonnegative integer n, the
vector sequence f(k)(∆)ψ converges to gλ(∆)ψ in the limit k → ∞, where f(k)(∆) and gλ(∆) are defined by
the Borel functional calculus.

Proof. We aim to show the identity

lim
k→∞

‖(f(k)(∆)− gλ(∆)ψ‖ = 0.

From the spectral theorem for∆ (Theorem 20), there exists a unique projection-valued measure µ on σ(∆) such
that

∆ =

∫
σ(∆)

tdµ(t).

In the proof of Proposition 10, we proved that f(k) is bounded. Similarly, since gλ is continuous on [0, λ], it is
bounded on [0, λ]. As gλ = 0 on (λ,∞), it is clear that gλ is bounded.
Therefore, by the bounded functional calculus (Theorem 17), there are unique bounded operators f(k)(∆), gλ(∆)
such that (

f(k)(∆)ψ|ψ
)
=

∫
σ(∆)

f(k) dµψ,
(
gλ(∆)ψ|ψ

)
=

∫
σ(∆)

gλ dµψ.

Since the map Φ from the functional calculus is linear, we have that (f(k) − gλ)(∆) = f(k)(∆)− gλ(∆) and we
know that (f(k) − g)(∆) satisfies

‖(f(k) − g)(∆)ψ‖2 =

∫
σ(∆)

|(f(k) − g)(t)|2 dµψ(t).

Substituting, we find

‖
(
f(k)(∆)− gλ(∆)

)
ψ‖2 =

∫
σ(∆)

|f(k)(t)− gλ(t)|2 dµψ(t).

Since∆ is positive, σ(∆) ⊂ [0,∞), so as the integrand is nonnegative, we have∫
σ(∆)

|f(k)(t)− gλ(t)|2 dµψ(t) ≤
∫
[0,∞)

|tnfk(t)− tnΘ(λ− t)|2 dµψ(t).

We know that∫
(λ,∞)

|tnf1(t)| dµψ(t) <∞ and |tnfk(t)− tnΘ(λ− t)|2 ≤ |tnf1(t)− tnΘ(λ− t)|2

holds for all k ∈ N. Furthermore, we have the pointwise limit

lim
k→∞

fk(t) = Θ(λ− t), t ≥ 0.

Therefore

lim
k→∞

∫
[0,∞)

|tnfk(t)− tnΘ(λ− t)|2 dµψ(t) =
∫
[0,∞)

lim
k→∞

|tnfk(t)− tnΘ(λ− t)|2 dµψ(t) = 0
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Theorem 24. Fix λ > 0. Let ∆ be the modular operator associated with a cyclic and separating vector Ω for a
von Neumann algebraM. Let n ∈ N and fix x′ ∈ M′.
Let

gλ : [0,∞) → C. t 7→ tnΘ(λ− t).

There exists a bounded operator xλ,n ∈ M satisfying

xλ,nΩ = gλ(∆)x′Ω.

Proof. From the spectral theorem for ∆ (Theorem 20), there exists a unique projection-valued measure µ on
σ(∆).
Fix n ∈ N and consider the function

f : [0,∞) → [0,∞), t 7→ t1/2.

Clearly, (fgλ)(t) = tn+1/2Θ(λ − t) ≤ λn+1/2 for all 0 ≤ t < λ, and so fgλ is bounded. Therefore, by the
bounded functional calculus (Theorem 17), the operator (fgλ)(∆) is bounded.
In Proposition 11, we proved that gλ is bounded. Hence, by the bounded functional calculus, gλ(∆) is a bounded
operator. Lastly, by the unbounded functional calculus (Theorem 19), there is a normal operator f(∆).
Since gλ(∆) is bounded, D

(
gλ(∆)

)
= H, and so equation 8.1 implies that f(∆)gλ(∆) = (fg)(∆). Therefore,

gλ(∆)x′Ω ∈ D(f(∆)) = D(∆1/2). So by Lemma 2, there exists a closed operator xλ,n affiliated to M, with
M′Ω as a core, satisfying xλ,nΩ = gλ(∆)x′Ω. The goal is to show that xλ,n is bounded.
Since M′Ω is a core for xλ,n it suffices to show that xλ,n has bounded action on vectors of the form y′Ω for
y′ ∈ M′. Combining Propositions 10 and 11, and once again using fk to denote the sigmoid function from those
propositions, we have

xλ,ny
′Ω = y′xλ,nΩ

= y′gλ(∆)x′Ω

= y′ lim
k→∞

f(k)(∆)x′Ω

=
1

2πi
y′ lim
k→∞

∫
γ

znfk(z)(z −∆)−1x′Ω dz,

(8.2)

where γ is the contour from figure 8.2. By Lemma 4, there exist operators xz ∈ M satisfying

(z −∆)−1x′Ω = xzΩ and ‖xz‖ ≤ ‖x′‖√
2(|z| − <(z))

. (8.3)

Since y′ is a bounded operator, and since the integral in equation 8.2 converges as a Bochner integral, we may
move y′ through the limit and through the integral symbol to write

xλ,ny
′Ω = lim

k→∞

1

2πi

∫
γ

znfk(z)xzy
′Ω dz.

Taking norms on either side of the equation gives

‖xλ,ny′Ω‖ ≤ 1

2π
‖y′Ω‖ lim sup

k→∞

∫
γ

|z|n|fk(z)|‖xz‖ ds,

where s is an arclength parameter for the countour γ. Using the bound in (8.3), we may write the inequality

‖xλ,ny′Ω‖ ≤ ‖x′‖
2π

‖y′Ω‖ lim sup
k→∞

∫
γ

|z|n|fk(z)|√
2(|z| − <(z))

ds, (8.4)

Our goal is to give an upper bound for the limit in this inequality: lim supk→∞
∫
γ

|z|n|fk(z)|√
2(|z|−<(z))

. On either half-

line {t± 2πi, t ≥ 0}, we have

fk(t± 2πi) =
1

1 + ek(t±2πi−λ) =
1

1 + ek(t−λ)
,
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since e2kπi = 1 for all k ∈ N. We have the pointwise limit

lim
k→∞

fk(t) = Θ(λ− t), t ≥ 0.

Let s be an arclength parameter for the contour γ from figure 8.2. An application of the dominated convergence
theorem then gives

lim sup
k→∞

∫
half-line

|z|n|fk(z)|√
2(|z| − <(z))

ds =

∫ ∞

0

lim sup
k→∞

(t2 + 4π2)n/2Θ(λ− t)√
2((t2 + 4π2)1/2 − t)

dt

=

∫ λ

0

(t2 + 4π2)n/2√
2((t2 + 4π2)1/2 − t)

dt.

where, again, the half-line is give by {t± 2πi, t ≥ 0}.
The integrand is monotonically increasing in t, so the integral can be upper bounded by λ times the value of the
integrand at t = λ, giving

lim sup
k→∞

∫
half-line

|z|n|fk(z)|√
2(|z| − <(z))

ds ≤ λ
(λ2 + 4π2)n/2√

2((λ2 + 4π2)1/2 − λ)
. (8.5)

The other contribution to the contour integral in (8.4) is an integral over a half-circle
{
2πeiθ, π2 ≤ θ ≤ 3π

2

}
and

may be written as∫
half-circle

|z|n|fk(z)|√
2(|z| − <(z))

ds =

∫ 3π/2

π/2

2π
(2π)n|fk(2πeiθ)|√
2(2π − 2π cos(θ))

dθ =

∫ 3π/2

π/2

(2π)n+1|fk(2πeiθ)|√
4π(1− cos(θ))

dθ.

We have the pointwise limit

lim
k→∞

fk(2πe
iθ) = lim

k→∞
(1 + ek(2π cos(θ)−λ)eik(2π sin(θ)))−1 = 1,

since 2π cos(θ) − λ < 0 for all θ ∈ [π2 ,
3π
2 ] and λ > 0, and another application of the dominated convergence

theorem gives

lim sup
k→∞

∫
half-circle

|z|n|fk(z)|√
2(|z| − <(z))

ds =

∫ 3π/2

π/2

(2π)n+1√
4π(1− cos(θ))

dθ.

On the half-circle, cos(θ) ≤ 0, so the denominator is lower-bounded by
√
4π, which gives the simple approxima-

tion
lim sup
k→∞

∫
half-circle

|z|n|fk(z)|√
2(|z| − <(z))

ds ≤ (2π)n+1π√
4π

. (8.6)

Combining expressions 8.6 and 8.5 with the expression 8.4, we may bound each operator xλ,n by

‖xλ,n‖ ≤ ‖x′‖
2π

(
2λ

(λ2 + 4π2)n/2√
2((λ2 + 4π2)1/2 − λ)

+
(2π)n+1π√

4π

)
.

Clearly taking αλ = max{λ, π}‖x′‖ and βλ = logλ(λ+ 2π) + log(2π) satisfies ‖xλ,n‖ ≤ αλe
βλn.
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Corollary 3. Fix λ > 0. Let∆ be the modular operator of a cyclic-separating vector for a von Neumann algebra
M with commutantM′. Let n ∈ Z≤0 and fix x ∈ M.
There exists a bounded operator x′λ,n ∈ M′ satisfying

x′λ,nΩ = gλ−1(∆−1) = g−λ(−∆)xΩ.

Moreover, there exist n-independent constants α′
λ, β

′
λ > 0 with ‖x′λ,n‖ ≤ α′

λe
−β′

λn. In particular, one has the
concrete bound

‖x′λ,n‖ ≤ ‖x‖
2π

(
2λ−1 (λ−2 + 4π2)−n/2√

2((λ−2 + 4π2)1/2 − λ−1)
+

(2π)−n+1π√
4π

)
.

Proof. By von Neumann’s double commutant theorem (Theorem 16), we know that M = M′′. Recall from
Proposition 9 that ∆−1 is the modular operator associated with {M′,Ω}. Therefore, applying Theorem 24 with
the substitutions∆ ↔ ∆−1 andM ↔ M′ yields an operator x′λ,n ∈ M′ satisfying

x′λ,nΩ = gλ−1(∆−1) = g−λ(−∆)xΩ.

since λ−1 > t−1 if and only if −λ > −t.
Moreover, Theorem 24 yields n-indepenedent constants α′

λ, β
′
λ > 0 satisfying ‖x′λ,n‖ ≤ α′

λe
−β′

λn.

Theorem 25 (Construction of the tidy subspace). Fix λ1, λ2 ∈ R satisfying 0 < λ1 < λ2 and fix x ∈ M. Then,
for any n ∈ Z, there exist unique operators

x[λ1,λ2],n ∈ M, x′[λ1,λ2],n
∈ M′

satisfying
gλ2(∆)Θ(∆− λ1)xΩ = x[λ1,λ2],nΩ = x′[λ1,λ2],n

Ω.

Furthermore, there existn-independent constantsα[λ1,λ2], β[λ1,λ2], α
′
[λ1,λ2]

, β′
[λ1,λ2]

> 0 so that we have ‖x[λ1,λ2],n‖ ≤
αλe

−βλn and ‖x′[λ1,λ2],n
‖ ≤ α′

λe
−β′

λn.

Proof. Let n ≥ 0. By Corollary 3, there exists an operator x′λ1,0
∈ M′ such that

gλ2(∆)Θ(∆− λ1)xΩ = gλ2(∆)x′λ1,0Ω.

Now applying Theorem 24, there exists a bounded operator x[λ1,λ2],n ∈ M such that

gλ2(∆)Θ(∆− λ1)xΩ = x[λ1,λ2],nΩ.

Now let n < 0. First, we introduce a function hλ1,λ2 : [0,∞) → C given by t 7→ tnΘ(λ2− t)Θ(t−λ1). Clearly,
hλ1,λ2

is continuous on [λ1, λ2], and so it is bounded. Furthermore, we have gλ2
(t)Θ(t − λ1) = hλ1,λ2

(t) =
Θ(λ2 − t)g−λ(−t) for all t ∈ [0,∞). Hence, by point 2. in Theorem 17,

gλ2
(∆)Θ(∆− λ1)xΩ = hλ1,λ2

(∆)xΩ = Θ(λ2 −∆)g−λ1
(−∆)xΩ.

By Corollary 3, there exists an operator x′λ1,n
∈ M′ so that

gλ2
(∆)Θ(∆− λ1)xΩ = Θ(λ2 −∆)g−λ1

(−∆)xΩ = Θ(λ2 −∆)x′λ1,nΩ.

Now applying Theorem 24, there exists a bounded operator x[λ1,λ2],n ∈ M so that

gλ2
(∆)Θ(∆− λ1)xΩ = x[λ1,λ2],nΩ.

In both cases, there exist n-independent constants α[λ1,λ2], β[λ1,λ2] > 0 so that we have ‖x[λ1,λ2],n‖ ≤ αλe
−βλn.

In both cases, since Ω ∈ H is a cyclic and separating vector, there exists an operator x′[λ1,λ2],n
∈ M′ such that

x[λ1,λ2],nΩ = x′[λ1,λ2],n
= Ω.

Furthermore, there exist n-independent constants α′
[λ1,λ2]

, β′
[λ1,λ2]

> 0 such that ‖x′[λ1,λ2],n
‖ ≤ α′

λe
−β′

λn, prov-
ing the theorem.
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Definition 34 (Tidy operators). The space of operators x[λ1,λ2],0 ∈ M obtained as in Theorem 25 is called the
space of tidy operators inM, denoted byMtidy.
If x ∈ M is tidy, we denote by x′ ∈ M′ the operator satisfying

xΩ = x′Ω

and for any n ∈ Z we denote by xn ∈ M and x′n ∈ M′ the operators satisfying

xnΩ = ∆nxΩ = ∆nx′Ω = x′nΩ.

8.4. Tomita's theorem
The following lemma conceptualises the adjoints of tidy operators.
Lemma 6. Let x ∈ Mtidy and n ∈ Z. Then

(x′n+1)
∗Ω = (xn)

∗Ω.

Proof. Fix y ∈ M. Then

((x′n+1)
∗Ω|yΩ) = (y∗Ω|x′n+1Ω)

= (y∗Ω|∆xnΩ)
= (y∗Ω|S∗SxnΩ)

= (SxnΩ|Sy∗Ω)
= ((xn)

∗Ω|yΩ).

Since Ω ∈ H is cyclic,MΩ is dense inH, which proves the lemma.

Proposition 12. For any x ∈ Mtidy and n ∈ Z, the operator ∆nx∆−n is defined and bounded on MtidyΩ, and
on that subspace it is equal to xn.

Proof. Let x ∈ Mtidy and n ∈ Z, and fix y ∈ Mtidy. By construction of Mtidy, yΩ ∈ D(∆−n). Furthermore,
since

x∆−nyΩ = xy−nΩ,

and clearly xy−n ∈ M, we see that x∆−nyΩ ∈ MΩ ⊂ D(S). Applying Lemma 6 gives

Sx∆−nyΩ = Sxy−nΩ

= y∗−nx
∗Ω

= y∗−n(x
′
1)

∗Ω

= (x′1)
∗y∗−nΩ

= (x′1)
∗(y′−(n−1))

∗Ω.

So Sx∆−nyΩ is in the domain of the Tomita operator forM′, which is the adjoint of the Tomita operator forM.
Thus, Sx∆−nyΩ ∈ D(S∗), which means that x∆−nyΩ ∈ D(S∗S) = D(∆), since S∗S = ∆. Therefore,

∆x∆−nyΩ = S∗Sx∆−nyΩ

= S∗(x′1)
∗(y′−(n−1))

∗Ω

= y′−(n−1)x
′
1Ω

= y′−(n−1)x1Ω

= x1y
′
−(n−1)Ω

= x1y−(n−1)Ω.

Iterating this process n times gives
∆nx∆−nyΩ = xnyΩ

which means that yΩ ∈ D(∆nx∆−n).
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Proposition 13. For any t ∈ R, the spaceMtidyΩ is a core for ∆t.

Proof. Fix t ∈ R. To show that MtidyΩ is a core for ∆t, we must show that {xΩ⊕∆txΩ | x ∈ Mtidy} =
{ψ ⊕∆tψ | ψ ∈ D(∆t)}. Suppose that ψ ∈ D(∆t) such that ψ ⊕∆tψ is orthogonal to all vectors of the form
xΩ⊕∆txΩ, where x ∈ Mtidy. Then, for all x ∈ Mtidy, we have

0 = (ψ ⊕∆tψ | xΩ⊕∆txΩ)

= (ψ | xΩ) + (∆tψ | ∆txΩ)

= (ψ | xΩ) + (ψ | ∆2txΩ)

= (ψ | (1 + ∆2t)xΩ),

where the third equality is justified by Corollary 2. Our goal is to show that whenever this expression is satisfied,
ψ vanishes. Then, {xΩ ⊕ ∆txΩ | x ∈ Mtidy} must be dense in {ψ ⊕ ∆tψ | ψ ∈ D(∆t)}. It suffices to show
that (1 + ∆2t)MtidyΩ = H.
By construction, each x ∈ Mtidy satisfies an equation of the form

xΩ = Θ(λ2 −∆)Θ(∆− λ1)yΩ (8.7)

for some 0 < λ1 < λ2 and some y ∈ M.
By the spectral theorem for∆ (Theorem 20), let µ be the spectral measure of∆ on σ(∆).
Consider the function

f : [0,∞) → [0,∞), s 7→ (1 + s2t)Θ(λ2 − s)Θ(s− λ1)

Clearly we have f(s) ≤ max{1+λ2t1 , 1+λ2t2 } for all t ≥ 0, and so f is bounded on σ(∆) ⊂ [0,∞). Therefore,
by the bounded functional calculus (Theorem 17), there is a bounded normal operator Φ(f) = f(∆).
We know [λ1, λ2] is a Borel set in [0,∞) and note that f(s) 6= 0 for all s ∈ [λ1, λ2]. So

1/f : [0,∞) → [0,∞), s 7→

{
1/f(s) if s ∈ [λ1, λ2]

0 otherwise

is well-defined and clearly bounded by 1. Hence, by the bounded functional calculus, there is bounded normal
operator Φ(1/f). By point (4.) in Theorem 17, we have

Φ(1/f)Φ(f) = Φ(1[λ1,λ2]) = µ([λ1, λ2]).

which is an orthogonal projection on H. Therefore, its range µ([λ1, λ2])H is a subspace of H, and µ([λ1, λ2])
acts as the identity operator on this subspace. Hence, Φ(f) is invertible on its restriction to µ([λ1, λ2])H.
Since Φ(f) is invertible on the spectral subspace of∆ corresponding to the range [λ1, λ2], Φ(f) has dense range
on this subspace. Suppose that G is dense inH. Then, clearly G is dense in µ([λ1, λ2])H and so Φ(f)G is dense
in the range of Φ(f), which as we pointed out before, is dense in the spectral subspace of∆ corresponding to the
range [λ1, λ2]. Therefore, Φ(f)G itself is dense in this subspace.
In particular then, sinceMΩ is dense inH,

(1 + ∆2t)Θ(λ2 −∆)Θ(∆− λ1)MΩ

is dense in the spectral subspace of∆ corresponding to the range [λ1, λ2].
Fix x ∈ M, fix and 0 < λ1 < λ2. By Theorem 25, there is a tidy operator x[λ1,λ2] ∈ Mtidy, so that

x[λ1,λ2]Ω = xΘ(λ2 −∆)Θ(∆− λ1).

Therefore, (1 +∆2t)Θ(λ2 −∆)Θ(∆− λ1)MΩ is a subspace of (1 +∆2t)MtidyΩ, hence, (1 +∆2t)MtidyΩ is
dense in the spectral subspace of∆ corresponding to the range [λ1, λ2]. Note that this applies to any 0 < λ1 < λ2.
So, for all n ∈ N, (1 +∆2t)MtidyΩ is dense in the spectral subspace of∆ corresponding to the range [ 1n , n]. As
a result, (1 + ∆2t)MtidyΩ is dense in the spectral subspace of ∆ corresponding to the range (0,∞). Since ∆ is
positive, σ(∆) ⊂ [0,∞), and since 0 is not an eigenvalue of ∆, by Theorem 10.58 in [14], µ({0}) = 0. Hence
µ([0,∞)) = µ((0,∞)). Therefore, the spectral subspace of ∆ corresponding to the range (0,∞) is µ(σ(∆))H.
Since µ(σ(∆)) = idH, we have µ(σ(∆))H = H and we can now conclude that (1 +∆2t)MtidyΩ is dense inH,
which gives (1 + ∆2t)MtidyΩ = H.



8.4. Tomita's theorem 47

Theorem 26 (Tomita’s theorem for tidy operators). For any x ∈ Mtidy and t ∈ R, we have∆−itx∆it ∈ M.

Proof. Let x ∈ Mtidy and t ∈ R. Fix y′ ∈ M′ and z ∈ C such that <(z) ≥ 0. Pick n ∈ N so that n > <(z).
By Proposition 12, the operator ∆−nx∆n is defined on the dense subspace MtidyΩ and is equal to x−n on that
subspace. By proposition 13, MtidyΩ is a core for ∆n. Combining these observations with Lemma 3, we have
that the operator∆−zx∆z is bounded on its domain, so that it is closable with bounded closure, and the map

Fx : C → B(H), z 7→ ∆−zx∆z

is holomorphic on the interior of the strip {z ∈ C | 0 ≤ <(z) ≤ n} and strongly continuous on the strip’s
boundary. This map is holomorphic on the open right half-plane and strongly continuous on the imaginary axis.
Therefore, the function

Fxy′ : C → B(H), z 7→ ∆−zx∆zy′ − y′∆−zx∆z

is holomorphic on the open right half-plane and strongly continuous on the imaginary axis as well, as the compo-
sition of such functions. Furthermore, it is norm-bounded (in the operator norm) by

‖Fxy′(z)‖ ≤ 2
∥∥∆−zx∆z

∥∥ ‖y′‖.
Since ∆ib is unitary for any b ∈ R can write ∆z = ∆<(z)∆i=(z), where ∆i=(z) is unitary. This is justified by
equation 8.1, since∆i=(z) is bounded. Then,

‖Fxy′(z)‖ ≤ 2
∥∥∆−<(z)x∆<(z)

∥∥ ‖y′‖.
For any n ∈ N recall that∆−nx∆n = x−n ∈ M. Therefore, since y′ commutes with all ofM,

Fxy′(n) = ∆−nx∆ny′ − y′∆−nx∆n = xny
′ − y′xn = 0.

For any z in the right half-plane, pick n ∈ N so that <(z) ≤ n < <(z) + 1.
Since Fz is holomorphic on the interior of the strip {z ∈ C | 0 ≤ <(z) ≤ n} and strongly continuous on its
boundary, by the Phragmén-Lindelöf prinicple (Theorem 22), Fz is bounded by the supremum of its norm on the
boundary of the strip {z ∈ C | <(z) = 0∨<(z) = n}. Then, again using that∆z = ∆<(z)∆i=(z) and∆i=(z) is
unitary for all z ∈ C,∥∥∆−<(z)x∆<(z)

∥∥ =
∥∥∆−zx∆z

∥∥ ≤ sup
<(z)∈{0,n}

∥∥∆−zx∆z
∥∥ = sup

<(z)∈{0,n}

∥∥∆−<(z)x∆<(z)
∥∥

Therefore, ∆−<(z)x∆<(z) is upper-bounded by the maximum of
∥∥∆0x∆0

∥∥ =
∥∥x∥∥ and ∥∥∆−nx∆n

∥∥ =
∥∥x−n∥∥.

From Theorem 25, we know there exist constants α, β > 0 such that ‖x‖ ≤ α and ‖x−n‖ ≤ αeβn. Combining,
we obtain

‖Fxy′(z)‖ ≤ 2
∥∥∆−<(z)x∆<(z)

∥∥ ‖y′‖ ≤ 2max{‖x‖, ‖x−n‖} ‖y′‖ ≤ 2αemax{0,βn}‖y′‖ ≤ 2αeβn‖y′‖.

We have that n < <(z) + 1 < |z|+ 1, and so certainly

‖Fxy′(z)‖ ≤ 2αeβn‖y′‖ ≤ 2αeβ(|z|+1)‖y′‖ ≤ 2eβ‖y′‖αeβ|z|.

Note that since α and β are n-independent, this holds for all z in the right half-plane. Next, it is immediately
clear that for any z on the imaginary axis that <(z) = 0, and so

‖Fxy′(z)‖ ≤ 2‖∆−<(z)x∆<(z)‖ ‖y′‖ ≤ 2‖x‖ ‖y′‖ ≤ 2α‖y′‖.

Thus, Fxy′ is holomorphic in the open right half-plane, strongly continuous on the imaginary axis, bounded
by an exponential function in the right half-plane, bounded in the imaginary directions, and it vanishes on the
nonnegative integers. By Carlson’s theorem (Theorem 23), Fxy′ is identically zero on the complex plane. Hence,
taking z = it, we have

∆−itx∆ity′ − y′∆−itx∆it = xny
′ − y′xn = Fxy′(it) = 0.

As a result, ∆−itx∆ity′ = y′∆−itx∆it. Since we fixed y′ ∈ M′ arbitrarily, ∆−itx∆it commutes with all y′ ∈
M′, and so certainly ∆−itx∆it ∈ M′′. Since ∆it and ∆−it are unitary, we have ‖∆−itx∆it‖ = ‖x‖, and x is
bounded. Hence,∆−itx∆it = ∆−itx∆it, and by von Neumann’s double commutant theorem,∆−itx∆it ∈ M,
proving the theorem.
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Proposition 14. We haveM′
tidy = M′.

Proof. SinceMtidy is a subspace ofM, we naturally haveMtidy ⊂ M, and soM′ ⊂ M′
tidy, giving one inclusion.

As for the other inclusion, by Proposition 13, MtidyΩ is a core for ∆1/2. Hence, it is also a core for the Tomita
operator S, as D(∆1/2) = D(S). Consequently, for any x ∈ M, there exists a sequence of tidy operators
(xn) ⊂ Mtidy such that

lim
n→∞

xnΩ = xΩ and lim
n→∞

SxnΩ = SxΩ.

Writing out the second equality, we obtain

lim
n→∞

xnΩ = xΩ and lim
n→∞

x∗nΩ = x∗Ω.

Then, for any y′ ∈ M′, we have

lim
n→∞

xny
′Ω = lim

n→∞
y′xnΩ = y′xΩ = xy′Ω and lim

n→∞
x∗ny

′Ω = lim
n→∞

y′x∗nΩ = y′x∗Ω = x∗y′Ω. (8.8)

Now suppose that O ∈ M′
tidy, x ∈ M, and (xn) ⊂ Mtidy as constructed above. Fix y′, z′ ∈ M′

tidy, so that(
(Ox− xO)y′Ω | z′Ω

)
= (Oxy′Ω− xOy′Ω | z′Ω)
= (xy′Ω | O∗z′Ω)− (Oy′Ω | x∗z′Ω)
= lim
n→∞

(
(xny

′Ω | O∗z′Ω)− (Oy′Ω | x∗nz′Ω)
)

= lim
n→∞

(Oxny
′Ω− xnOy

′Ω | z′Ω)

= lim
n→∞

(
(Oxny

′ − xnOy
′)Ω | z′Ω

)
= 0.

Here the third equality is justified by equation 8.8.
Since M′Ω is dense in H, we have that Ox− xO = 0. Since x ∈ M was chosen arbitrarily, O commutes with
all x ∈ M, that is, O ∈ M′. Further, as O ∈ M′

tidy was also chosen arbitrarily, we have the second desitred
inclusionM′

tidy ⊂ M′.

Corollary 4 (Tomita’s theorem). For any x ∈ M and t ∈ R, we have∆−itx∆it ∈ M.

Proof. Let y′ be a tidy operator for the von Neumann algebra M′, and fix ψ, ξ ∈ H. Applying Theorem 26 to
tidy operators ofM′, we have that∆ity′∆−it ∈ M′. Therefore,(

(∆−itx∆ity′ − y′∆−itx∆it)ψ | ξ
)
= (∆−itx∆ity′ψ − y′∆−itx∆itψ | ξ)
= (x∆ity′ψ | ∆itξ)− (y′∆−itx∆itψ | ξ)
= (x∆ity′∆−it∆itψ | ∆itξ)− (∆ity′∆−itx∆itψ | ∆itξ)

= (x∆ity′∆−it∆itψ −∆ity′∆−itx∆itψ | ∆itξ)

=
(
(x∆ity′∆−it∆it −∆ity′∆−itx)∆itψ | ∆itξ

)
= 0.

Here, the second equality is justified by the fact that∆it is unitary, and unitary operators leave the inner product
invariant.
The third equality is also justified by the fact that∆it is unitary, and therefore∆−it∆it = idH.
As we chose ψ and ξ arbitrarily, we have that ∆−itx∆ity′ − y′∆−itx∆it = 0. Hence, as y′ ∈ M′ was also
chosen arbitrarily, ∆−itx∆it commutes with every tidy operator y′ ∈ M′. Thus, ∆−itx∆it ∈ (M′)′tidy, and
then by applying Proposition 14 to M′, ∆−itx∆it ∈ M′′. By von Neumann’s double commutant theorem,
∆−itx∆it ∈ M proving the theorem.



9
Thermal time as a POVM

At the end of chapter 6, we mentioned that a time observable could be better formulated by a POVM, rather than
a projection-valued measure. In 2024, Jan van Neerven and Pierre Portal released a paper ”Thermal Time as an
Unsharp Obeservable” proving the existence of POVM covariant with thermal time for the Hamiltonian of a free
relativistic particle without mass. In this chapter, we aim to produce a similar result for a free relativistic particle
with massm > 0. In order to do so, we first introduce some notions from special relativity.

9.1. Relativity

Since our goal is to solve a problem at the crossroads of quantum mechanics and relativity, we introduce special
relativity in a way that is compatible with the mathematical formulation of quantummechanics, and the following
is standard in the quantum field theory literature. The most important consequence of this is that massive particles
have energy simply due to their invariantmass, regardless of any kinetic energy theymay possess. Invariantmass
(or rest mass) is a fundamental physical property of matter, independent of velocity. This relationship between
mass and the energy is known asmass-energy equivalence and is described by Albert Einstein’s famous formula
E = mc2.

Suppose we think of one-dimensional space and time as a single entity called 1+1 dimensional spacetime and
modeled by R2. Here, 1+1 dimension refers to 1 time dimension and 1 space dimension, where 1+3 dimensions
would refer to 1 time dimension and 3 spatial dimensions. A point is labeled x = (x0, x1) with x0 = ct a scaled
time with units of distance. The basic postulate of special relativity is that 1+1 dimensional spacetime is to be
modeled by R2, equipped with a so-called Lorentzian metric. The main consequence of using this metric, is
that it determines an inner product given by

v · w = −v0w0 + v1w1

for v = (v0, v1), w = (w0, w1) ∈ R2. These notions, and all of the following, naturally extend to the 1+3
dimensional case.

Consider a free relativistic particle with mass m ≥ 0 and set ω(p) :=
√
p2 +m2 for p ∈ R. Its equations of

motion are given by:
dx

dt
=

cp

ω(p)
,

dp

dt
= 0.

This is a Hamiltonian systemwith Hamiltonian cω(p). It is interpreted as describing a particle of massm, position
x, momentum p, and energy

E = cω(p) =
√
p2c2 +m2c4,

where the term p2c2 is the contribution due to the particle’s kinetic energy, and the termm2c4 is the contribution
due to the particle’s invariant mass. The value of c, the speed of light, depends on the system of units we are
using. By convention, we choose units so that c = 1, so that the parameter c disappears from our equations.

49
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Consider the isometries (sometimes called symmetries) of the spacetime R2. These are maps y = κ(x) which
preserve the Lorentzian metric, or equivalently, preserve proper time intervals and distances. Thus, they satisfy

(κ(x1)− κ(x2)) · (κ(x1)− κ(x2)) = (x1 − x2) · (x1 − x2)

for all x1, x2 ∈ R2. Translations y = x + a are isometries and linear transformations y = Λx, also written
yk = Λkℓx

ℓ, k, ℓ ∈ {0, 1}, are isometries ifΛx ·Λx = x ·x. These (the latter) are called Lorentz transformations.
They form a group known as the Lorentz group. It turns out these are all the isometries. Thus, a general isometry
has the form

{a,Λ}x = Λx+ a.

The group of all such transformations is called the Poincaré group.

Elements of the Lorentz group satisfy detΛ = ±1 and this condition divides the group into disjoint sets denoted
L±. The set L+ contains the identity and is a subgroup. Furthermore, L+ is divided into disjoint sets with
±Λ0

0 > 1 and denoted L↑
+ (containing the elements with Λ0

0 > 1) and L↓
+ (containing the elements with

−Λ0
0 > 1) respectively. If −Λ0

0 > 1, then Λ swaps the sign of the time coordinate (the 0th coordinate), so
elements of L↓

+ involve time reversal. The set L↑
+ contains the identity and is a subgroup known as the proper

Lorentz group. Correspondingly, there is a proper Poincaré group containing all the isometries of spacetime
that involve proper Lorentz transformations. Since the proper Lorentz group contains the identity, the proper
Poincaré contains all translations. Again, these group properties are easily verified to be retained when extending
to 1+3 dimensional spacetime R4. Mathematically, special relativity is best understood as general relativity with
a special metric. For an exhaustive treatment, we refer the reader to Misner et al. (1973) [25] and Sachs and Wu
(1977) [26].

The Hamiltonian of the free relativistic particle is given by H(x, p) = ω(p) =
√
p2 +m2, where we have used

the convention c = 1. Recall from Section 3.3 that the Hilbert space of the free particle is L2(R), where we
have a choice of working in position space or momentum space. In this case, we choose for momentum space
L2(R, dp) with the HamiltonianH =

√
p2 +m2. The two constructions are unitarily equivalent via the Fourier

transform.

Further integrating special relativity into the framework of quantum mechanics, we would like to have a rep-
resentation u0 of the proper Poincaré group on momentum space (or position space) to be able to describe the
complete dynamics of the system. The issue that arises is that, while L2(R, dp) is invariant under translations, it
is not invariant under the proper Lorentz group. That is, there are Lorentz transformations that do not necessarily
send elements of L2(R, dp) to L2(R, dp). To address this, we introduce a new space fundamental to quantum
field theory.

Let V +
m = {p ∈ R2 : p · p = −m2, p0 > 0} be the mass shell in 1+1 dimensional momentum space R2, where

we write p = (p0, p1). The mass shell is invariant under the proper Lorentz group L↑
+ once we have equipped it

with a suitable measure. Then we can define a representation u of the proper Poincaré group P↑
+ on functions on

V +
m by

(u(a,Λ)ψ)(p) = e−ip·aψ(Λ−1p)

where p · a = −p0a0 + p1a1. Since time translation is included in the proper Poincaré group, the representa-
tion contains the time evolution of the system. There is an essentially unique (unique up to a constant multiple)
measure on V +

m that is invariant under the Lorentz group, which we denote µm. Then u(a,Λ) is a unitary repre-
sentation of the proper Poincaré group on L2(V +

m , µm), and it turns out to be irreducible.

We can be specific about what this measure looks like. First, note that the map ϕ : R → V +
m given by

ϕ(p) = (ω(p), p)

provides a global set of coordinates for V +
m . Then, for measurable B ⊂ R, the measure µm is given by:

µm(ϕ(B)) =

∫
B

dp

2ω(p)
.

Now, ψ → ψ ◦ϕ is a unitary map from L2(V +
m , µm) to L2(R, dp/2ω(p)) and, consequently, we have a represen-

tation of the proper Poincaré group on L2(R, dp/2ω(p)) given by

(u(a,Λ)ψ)(p) = e−iϕ(p)·aψ(ϕ−1Λ−1ϕ(p)).
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It is easily checked that the measure dp/2ω(p) on R is a Lorentz invariant measure. Furthermore, the space
L2(R, dp/2ω(p)) is equivalent to momentum space via the unitary operator V : L2(R, dp) → L2(R, dp/2ω(p))
defined by

(V ψ)(p) =
√

2ω(p)ψ(p).

If we want a representation of the proper Poincaré group on momentum space, we can simply define

u0(a,Λ) := V −1u(a,Λ)V.

Upon setting ω :=
√
p2 +m2 as an energy variable, this relation can be inverted (up to the sign of p) as

p = ±
√
ω2 −m2.

When restricting to positive momenta, we can perform a change of variables to obtain the measure

dµ(ω) =
dω

2
√
ω2 −m2

, ω ≥ m.

Now, we define the Hilbert space in the energy representation as

L2
(
[m,∞), dµ(ω)

)
with the inner product

(ψ|ξ) =
∫ ∞

m

ψ(ω)ξ(ω)
dω

2
√
ω2 −m2

which we call energy space.

9.2. Weighted Fourier transform

In the massless case [15], a time covariant positive operator-valued measure is constructed in the Hardy space on
the upper half-planeH2(U), where

U := {(u, v) ∈ R2 : u ∈ R, v > 0}.

This space is defined as the Hilbert space of all holomorphic functions f : U → C for which

‖f‖H2(U) := sup
v>0

‖f(·+ iv)‖L2(R)

is finite. Under convolution with the Poisson kernel for the upper half-plane, this space is isometric to the closed
subspace in L2(R) consisting of all functions whose Fourier-Plancherel transforms vanishes on the negative half-
line.

If we substitutem = 0 in energy space, we are left with the Hilbert space L2
(
[0,∞), dµ(ω)

)
, where the measure

reduces to
dµ(ω) =

dω

2
√
ω2 − 0

=
dω

2ω
.

Sinceω(p) =
√
p2 +m2 = |p|, energy space for the freemassless particle is described byL2

(
[0,∞), dp/2ω(p)

)
.

We know from the previous section that this space is equivalent to L2
(
[0,∞), dp

)
via the unitary operator V . So,

if we view L2
(
[0,∞), dp

)
as the image of the Fourier transform of some space, then this space is isometric to

H2(U). This is essentially the Paley-Wiener theorem.

Of course, this construction only works because L2
(
[0,∞), dp

)
is equipped with the Lebesgue measure. Ig-

noring the use of the map V for now, we will aim to construct a generalization of the Fourier transform for
L2
(
[m,∞), dµ(ω)

)
directly. Then, we construct a POVM and then show it is covariant with respect to the time

flow of the system, using a change of variables, just as in the massless case [15].
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When trying to define the Fourier transform for L2
(
[m,∞), dµ(ω)

)
, one might consider the map given by

(Fmψ)(t) =
∫ ∞

m

ψ(ω)e−itω dµ(ω), ψ ∈ L2
(
[m,∞), dµ(ω)

)
.

An issue that arises when trying to define such a map is that it does not necessarily map L2
(
[m,∞), dµ(ω)

)
to L2

(
[m,∞), dµ(ω)

)
. That is, given ψ ∈ L2

(
[m,∞), dµ(ω)

)
, it does not need to be the case that Fmψ ∈

L2
(
[m,∞), dµ(ω)

)
.

Furthermore, the Plancherel theorem proves that the Fourier transform is a unitary operator on L2(R). This is
fundamental to the mathematical formulation of quantum mechanics, as it establishes the Fourier transform as an
automorphism of L2(R), providing the framework of the duality of position and momentum.

To address these issues, first observe that C∞
c

(
(m,∞)

)
is a dense subspace of L2

(
[m,∞), dµ(ω)

)
, let S(R)

denote the Schwartz space, the space of smooth functions whose derivatives are rapidly decreasing, and define

ρ : [m,∞) → (0,∞), ρ(ω) =
1

2
√
ω2 −m2

.

We now define the weighted Fourier transform Fm : C∞
c

(
(m,∞)

)
→ S(R) by

(Fmψ)(t) =
1√
2π

∫ ∞

m

e−iωt
√
ρ(ω)ψ(ω) dω, t ∈ R.

This integral is well-defined for every t ∈ R, since ψ ∈ C∞
c

(
(m,∞)

)
has compact support in (m,∞).

To establish that Fm is an isometry, define for each ψ ∈ C∞
c

(
(m,∞)

)
the function

ψ̃(ω) =

{√
ρ(ω)ψ(ω), ω ≥ m

0 ω < m.

Then it is immediate that

‖ψ̃‖2L2(R) =

∫ ∞

−∞
|ψ̃(ω)|2 dω =

∫ ∞

m

|ψ(ω)|2ρ(ω) dω = ‖ψ‖2L2([m,∞),µ).

Moreover, note that
(Fmψ)(t) =

1√
2π

∫
R
e−iωtψ̃(ω) dω

so that Fmψ coincides with the classical Fourier transform of ψ̃.

By the classical Plancherel theorem for functions in L2(R), we know that

‖Fmψ‖2L2(R,dt) = ‖ψ̃‖2L2(R,dω) = ‖ψ‖2L2([m,∞),µ).

Since C∞
c

(
(m,∞)

)
is a dense subspace of L2

(
[m,∞), dµ(ω)

)
, the weighted Fourier transform Fm extends

uniquely by continuity to an isometry

Fm : L2
(
[m,∞), dµ(ω)

)
→ L2(R, dt),

where we refer to the range L2(R, dt) as time space.

9.3. Main result

In this section, we prove the existence of a time-covariant POVM for the free relativistic particle with massm > 0.
First, we introduce a proposition that enables us to extract bounded operators from a bounded sesquilinar form.
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Proposition 15. Let a : H × H → C be a sesquilinear mapping with the property that there exists a constant
C ≥ 0 such that

|a(ψ, ξ)| ≤ C‖ψ‖‖ξ‖, ψ, ξ ∈ H.

Then there exists a unique operator A ∈ B(H) such that

a(ψ, ξ) = (Aψ|ξ), ψ, ξ ∈ H.

Moreover, ‖A‖ ≤ C, where C is the boundedness constant of a.

Proof. See Proposition 9.15 in [14].

Let {U(t)}t∈R be the strongly continuous one-parameter unitary group defined by

(U(t)ψ)(ω) = e−itωψ(ω).

Theorem 27 (Existence and Uniqueness of a Time Covariant POVM for a Massive Particle). There exists a
unique (up to unitary equivalence) positive operator-valued measure (POVM)

E : B(R) → B(L2
(
[m,∞), dµ(ω)

)
)

with the covariance property

U(t)E(B)U(t)−1 = E(B + t) ∀t ∈ R, B ∈ B(R).

Proof. Define the weighted Fourier transform as in the previous section

Fm : C∞
c

(
(m,∞)

)
→ S(R), (Fmψ)(t) =

∫ ∞

m

√
ρ(ω) e−itωψ(ω) dµ(ω),

which can be extended by continuity to a map

Fm : L2
(
[m,∞), dµ(ω)

)
→ L2(R, dt).

For any Borel set B ⊂ R define

aB : L2
(
[m,∞), dµ(ω)

)
× L2

(
[m,∞), dµ(ω)

)
→ C, (ψ, ξ) 7→

∫
B

(Fmψ)(t) (Fmξ)(t) dt.

It is obvious that this prescription defines a positive sesquilinear form. Furthermore, using the positiveness of aB ,
the Cauchy-Schwarz inequality, and the isometric property of the Fourier transform, it is easily checked that

|aB(ψ, ξ)| =

∣∣∣∣∣
∫
B

(Fmψ)(t)(Fmξ)(t) dt

∣∣∣∣∣ = ∣∣(1BFmψ|Fmξ)∣∣ ≤ ‖Fmψ‖‖Fmξ‖ = ‖ψ‖‖ξ‖.

Hence, Proposition 15 implies the existence of a bounded operator E(B) ≥ 0 such that

(E(B)ψ)|ξ) =
∫
B

(Fmψ)(t)(Fmξ)(t) dt.

Furthermore,
(E(B)ψ|ψ) = (1BFmψ|Fmψ) = (1BFmψ|1BFmψ) = ‖1BFmψ‖2

and
0 ≤ ‖1BFmψ‖2 ≤ ‖Fmψ‖2 = ‖ψ‖2 = (ψ|ψ)

so that
0 ≤ (E(B)ψ|ψ) ≤ (ψ|ψ).

Thus 0 ≤ E(B) ≤ I .
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We claim thatE : B(R) → B(L2
(
[m,∞), dµ(ω)

))
is a positive operator-valued measure. First, by the isometric

property of Fm, we have that

(ψ|ξ) = (Fmψ|Fmξ) =
∫
R
(Fmψ)(t)(Fmξ)(t) dt.

So, by the uniqueness property of the operator in Proposition 15, we have that E(R) = I .
Next, countable additivity ofE follows from the countable additivity of the Lebesgue integral. Indeed, if {Bk}∞k=1

is a countable collection of pairwise disjoint subsets of R, then(
E

( ∞⋃
k=1

Bk

)
ψ

∣∣∣∣∣ξ
)

=

∫
∪∞

k=1 Bk

(Fmψ)(t)(Fmξ)(t) dt =
∞∑
k=1

∫
Bk

(Fmψ)(t)(Fmξ)(t) dt =
∞∑
k=1

(E(Bk)ψ)|ξ),

where in the second equalitywe have used the dominated convergence theorem. Hence, for allψ ∈ L2
(
[m,∞), dµ(ω)

)
,

the mapping
B 7→ (E(B)ψ|ψ), B ∈ B(R)

defines a measure.

Let us now check the covariance property. For any t′, t ∈ R and ψ ∈ C∞
c

(
(m,∞)

)
we have

(Fm(U(t′)ψ))(t) =

∫ ∞

m

√
ρ(ω) e−itω e−it

′ωψ(ω) dµ(ω)

=

∫ ∞

m

√
ρ(ω) e−i(t+t

′)ωψ(ω) dµ(ω) = (Fmψ)(t+ t′).

Thus, for any Borel set B ∈ B(R),

(E(B)U(t′)ψ|U(t′)ϕ) =

∫
B

(Fmψ)(t+ t′) (Fmϕ)(t+ t′) dt.

Perform the change of variable s = t+ t′ (with ds = dt) to obtain

(U(t′)ψ|E(B)U(t′)ϕ) =

∫
B

(Fmψ)(t+ t′) (Fmϕ)(t+ t′) dt

=

∫
B+t′

(Fmψ)(s) (Fmϕ)(s) ds = (ψ|E(B + t′)ϕ).

Since this holds for all ψ, ϕ ∈ C∞
c

(
(m,∞)

)
, and C∞

c

(
(m,∞)

)
is dense in L2

(
[m,∞), dµ(ω)

)
one concludes

by density that
U(t′)E(B)U(t′)−1 = E(B + t′),

as required.

Finally, a general result in the theory of covariant observables (see Section 4.8 in [8]) guarantees that any two
POVMs satisfying the covariant condition with respect to the unitary group U(t) are unitarily equivalent. Hence,
the POVM E constructed above is unique up to unitary equivalence.

9.4. Interpretation as thermal time

What remains to be shown is that the physical time evolution generated by the one-parameter unitary group

U(t) = eitH , t ∈ R

coincides with the time flow given by Tomita-Takesaki theory, interpreted as thermal time. Here, the Hamiltonian
H is the self-adjoint operator on L2

(
[m,∞), dµ(ω)

)
given by

(Hψ)(ω) = ωψ(ω).
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This requires suitable choices of von Neumann algebra and cyclic-separating vector to produce the desired one-
parameter group of modular automorphisms.

We recall from Chapter 5 that the thermal time hypothesis is two-fold. While it posits the one-parameter group
of modular automorphisms arising from Tomita-Takesaki theory as a suitable one-parameter unitary group of
time translations, it also identifies which states could conceivably be equilibrium states, the KMS states. The
precise definition of KMS states is unimportant for our purposes (for an exhaustive treatment, see [18]). What
matters is that this notion extends the notion of a Gibbs state, in that every Gibbs state is KMS; and the notions
are equivalent under suitable finiteness conditions. Furthermore, if H is a semibounded Hamiltonian operator
on a Hilbert spaceH with the property that the bounded operator e−βH is of trace class, then the Gibbs state at
inverse temperature β > 0 associated with H is the state φ on B(H) given by

φ(A) = tr(TβA),

where Tβ := e−βH/tr(e−βH). It is well-known that Gibbs states are faithful and normal. If this is the case,
taking the GNS representation of B(H) with the faithful state φ results in a von Neumann algebra with a cyclic-
separating vector that produces modular automorphisms coinciding with the physical time evolution generated
by H .

In the massless case [15], a POVM is constructed in the Hilbert space H2(U), and the Hamiltonian reduces to
H =

√
p2 + 0 = |p| in momentum space, or equivalently, H =

√
−∆+ 0 = |D|, where D = 1

i d/dx with
domain

D(|D|) := {f ∈ H2(U) : |D|f ∈ L2(R)}.

It is not hard to prove that the spectrum of this operator equals [0,∞). Therefore, tr(e−β|D|) diverges in infinite
dimensions, and so the bounded operator e−β|D| is not trace class for any β > 0.

Hence, in the massless case, the Gibbs state approach will not work. Instead of showing that the physical time
evolution of the free relativistic massless particle coincides with a thermal time, it is shown in [15] that the defined
POVM is covariant with respect to a so-calledmodular time. This notion of time relaxes the definition of thermal
time, while retaining the algebraic properties of the modular flow. Crucially, non-commutative spaces L2(M, τ)
are introduced, where M is a von Neumann algebra, and τ is a not necessarily normal trace. These spaces can
be thought of as a generalization of the GNS construction.

Let us return to the case of the free relativistic particle with mass m > 0. Recall that the Hilbert space is given
by

L2
(
[m,∞), dµ(ω)

)
, with dµ(ω) =

dω

2
√
ω2 −m2

,

and the HamiltonianH is the self-adjoint multiplication operator given by

(Hψ)(ω) = ωψ(ω), ψ ∈ L2
(
[m,∞), dµ(ω)

)
.

Let β > 0 and we will show that the bounded operator e−βH is trace class.

Proposition 16. The bounded operator e−βH is of trace class and its trace class norm is given by

‖e−βH‖1 =

∫ ∞

m

e−βω dµ(ω)

Proof. Writing out the definition of the measure, we have

‖e−βH‖1 =

∫ ∞

m

e−βω dµ(ω) =

∫ ∞

m

e−βm
dω

2
√
ω2 −m2

.

Perform the substitution
ω = m coshu, u ∈ [0,∞).

Then
dω = m sinhu du,

and note that √
ω2 −m2 =

√
m2 cosh2 u−m2 = m sinhu.
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Thus, the measure transforms as follows:

dω

2
√
ω2 −m2

=
m sinhu du

2m sinhu
=
du

2
.

Therefore,

‖e−βH‖1 =

∫ ∞

ω=m

e−βm
dω

2
√
ω2 −m2

=

∫ ∞

u=0

e−βm coshu du

2
=

1

2

∫ ∞

0

e−βm coshu du.

A standard result in analysis (Equation 9.6.24 in [22]) is that for any a > 0,∫ ∞

0

ea coshu du = K0(a),

where K0 is the modified Bessel function of the second kind. Relevant here is that K0(a) is finite for all a > 0,
withK0(a) approaching− ln(a) as a→ 0+ and decaying exponentially as a→ ∞. Therefore, we conclude that

‖e−βH‖1 =
1

2
K0(βm) <∞.

Thus, e−βH is indeed trace class. Note that it is crucial to the above proof thatm > 0. Otherwise, the integrals
would diverge logarithmically.

The following closely follows Section IV in [15].

Since e−βH is trace class, take the Gibbs state at inverse temperature β > 0 associated with H

φ(A) = tr(TβA), Tβ = e−βH/tr(e−βH).

The GNS representation of
(
B
(
L2
(
[m,∞), dµ(ω)

))
, φ
)
can be identified as (π,Hφ), where Hφ is the space of

Hilbert-Schmidt operators on L2
(
[m,∞), dµ(ω)

)
with inner product

(A|B) = tr(B∗A), A,B ∈ Hφ,

and π is given by left multiplication:

π(A)B = AB, A ∈ B
(
L2
(
[m,∞), dµ(ω)

))
, B ∈ Hφ.

A canonical choice for the cycling and separating vector is

Ω = T
1/2
β .

By the proposition above, Tβ is trace class, and so Ω is Hilbert-Schmidt. It is now immediate that

φ(A) = (π(A)Ω|Ω), A ∈ B
(
L2
(
[m,∞), dµ(ω)

))
.

Hence, Ω is cyclic and separating for π
(
B
(
L2
(
[m,∞), dµ(ω)

)))
.

In what follows, we suppress the notation of π, writing A and B for π(A) and π(B). On Hφ we consider the
unitary operators U(t), t ∈ R, defined by

U(t)S := eiβtNSe−iβtN , S ∈ Hφ.

The family (U(t))t∈R is easily seen to be a unitary C0-group on Hφ. By Stone’s theorem, the generator of this
group is of the from iH with H selfadjoint. By the functional calculus of unbounded selfadjoint operators, the
operator∆ := e−H is injective and selfadjoint (its domain being given by this calculus). By the composition rule
of the functional calculus, for t ∈ R we obtain

∆−it = (e−H)−it = eitH = U(t),
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where in the last step we used the fact that the unitary group generated by iH also arises through exponentiation
in the functional calculus. In particular, for all A,B ∈ B

(
L2
(
[m,∞), dµ(ω)

))
,

(∆−itAΩ|BΩ) = φ(B⋆eiβtNAe−iβtN ).

By spectral theory, for h ∈ D(∆1/2) the mapping z 7→ ∆−izh is continuous on the closed strip {=z ∈ [0, 12 ]}
and holomorphic on its interior. This, and standard properties of fractional powers, implies that for all A,B ∈
B
(
L2
(
[m,∞), dµ(ω)

))
, both sides of the identity

(∆−itAΩ|BΩ) = φ(B⋆eiβtNAe−iβtN ) = tr (B⋆eiβtNAe−β(it+1)N )

admit a continuous extension to the strip {=z ∈ [0, β]}which is analytic on the interior, and given by substituting
z for t. By the edge of the wedge theorem (Proposition 5.3.6 in [18]) these extensions agree. It follows that for
<z ∈ [0, 12 ] we have AΩ ∈ D(∆1/2) ⊆ D(∆−iz), and taking z = 1

2 i results in the identity

(∆1/2AΩ|BΩ) = (e−
1
2βHAΩ|BΩ) = tr (B⋆e−

1
2βNAe−

1
2βN ) = (ΩA|BΩ).

Since Ω is cyclic for π inHφ, this implies
∆1/2AΩ = ΩA.

Now, if J is the antiunitary operator that sends an operator inHφ to its adjoint, then

(J∆1/2)(AΩ) = J(ΩA) = A∗Ω.

Since the Tomita operator and the modular operator associated with a pair {M,Ω} are unique, we conclude that
∆ must be the modular operator associated to π

(
B
(
L2
(
[m,∞), dµ(ω)

)))
with cyclic-separating vector Ω. Now

recall that we had
∆−it = (e−H)−it = eitH = U(t)

for all t ∈ R, and so the physical time evolution generated byH coincides with a thermal time.
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Conclusion

A fundamental issue within quantum gravity is that of the problem of time. The principle of superposition offers
a multiplicity of time evolutions in quantum mechanics, whereas special relativity demands local uniqueness of
time evolution. One potential solution, the thermal time hypothesis, postulates that a law of time evolution in
quantum gravity can be obtained using Tomita-Takesaki theory.

The main result of Tomita-Takesaki theory is Tomita’s theorem. Given a von Neumann algebraM ⊂ B(H) and
a cyclic and separating vectorΩ ∈ H, one can construct a positive, self-adjoint operator∆ known as the modular
operator associated to (M,Ω). Tomita’s theorem then states that:

M = ∆−itM∆it, t ∈ R.

In words, Tomita-Takesaki theory constructs a one-parameter group of automorphisms of von Neumann algebras.
This one-parameter group is the thermal time associated to the quantum system described by (H,M). It can be
shown that the thermal time of some physical systems corresponds to a certain relativistic proper time.

Tommita’s theorem was originally proved by Minoru Tomita in 1967, but his work was hard to follow and mostly
unpublished. Since then, various proofs have been discovered. The most recent proof was given in a 2024 paper
by Jonathan Sorce.

Given a von Neumann algebra M ⊂ B(H) with a cyclic and separating vector Ω ∈ H, the main idea of the
proof is to produce operators inM for which the modular operator associated to (M,Ω) ”looks bounded.” These
operators are known as tidy operators, and they form a subspace of M known as the tidy subspace. Tomita’s
theorem is shown to hold for the tidy subspace, and by an argument using von Neumann’s double commutant
theorem, it is shown to hold for the entire von Neumann algebraM.

The proof as originally given in Jonathan Sorce’s paper skips many mathematical details. This thesis gives a
detailed extension of Sorce’s proof, carefully applying the spectral theorem for bounded and unbounded operators
in each proposition used in the proof. Furthermore, one small error in Sorce’s proof is corrected (this error has
been updated in the most recent version of Sorce’s paper).

The thermal time arising fromTomita-Takesaki theory can be formulated as a positive operator-valuedmeasure for
certain physical systems, as is shown in a 2024 paper by Jan vanNeervan and Pierre Portal. One such system is that
of the one-dimensional free moving massless particle. A similar result can be obtained for the one-dimensional
free moving massive particle, leveraging the Lorentz invariant measure on the mass shell from quantum field
theory.

The massless case uses the Fourier transform to switch from a momentum representation to an energy represen-
tation of a physical system. This can be replicated for the massive case, but the Fourier transform has to be
generalized somewhat. Time covariance of the defined positive operator-valued measure then still holds in the
general case using a density argument. Finally, it is shown that this time observable can be interpreted as a thermal
time.
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