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ABSTRACT

We determined that the electromagnetic vertical trans-
verse isotropic response in a layered earth can be obtained
by solving two equivalent scalar equations, which were for
the vertical electric field and for the vertical magnetic field,
involving only a scalar global reflection coefficient. Besides
the complete derivation of the full electromagnetic response,
we also developed the corresponding computer code called
EMmod, which models the full electromagnetic fields in-
cluding internal multiples in the frequency-wavenumber do-
main and obtains the frequency-space domain solutions
through a Hankel transformation by computing the Hankel
integral using a 61-point Gauss-Kronrod integration routine.
The code is able to model the 3D electromagnetic field in a 1D
earth for diffusive methods such as controlled source electro-
magnetics as well as for wave methods such as ground pen-
etrating radar. The user has complete freedom to place the
source and the receivers in any layer. The modeling is illus-
trated with three examples, which aim to present the different
capabilities of EMmod, while assessing its correctness.

INTRODUCTION

Solutions for waves and fields in layered earth models have been
published in many forms and over many years. Here, the develop-
ment of electromagnetic waves and fields is only briefly reviewed.
The first to give the procedure for the scalar global reflection co-
efficient of a layered medium is Airy (1833) who analyzes the for-
mation of Newton’s rings in a three-layered medium. For isotropic
layered media with a source in the upper half-space, early treat-
ments are given by Wait (1951, 1953) and for a horizontal electric

dipole over a layered anisotropic half-space by Wait (1966). These
results were obtained in the diffusive limit and for isotropic mag-
netic permeability. Redheffer (1961) introduces a linear fractional
transformation, later known as the Redheffer star product, and uses
it to formally solve the layered medium problem using the scattering
matrix for electromagnetic waves. Kong (1972) solves the layered
anisotropic half-space problem for arbitrary dipole sources in the
upper half-space and considers both electric and magnetic vertical
transverse isotropic (VTI) layers. He exploits the fact that the ver-
tical components of the electric and magnetic fields are independent
from each other. He still uses propagation matrices to derive the
solutions, by invoking continuity of the horizontal components
of the electric and magnetic field vectors. The problem with the
propagation matrices method is that in the computational scheme,
exponentially growing functions also occur, which makes it unus-
able for diffusive field models. Redheffer’s method uses the scatter-
ing matrix, which contains only exponentially damped functions
and can be used for both wave and diffusive models. Tsang et
al. (1975) solve the VTI-layered-earth problem in the high-fre-
quency limit for microwave passive remote sensing of the earth.
A solution for buried sources can be found in Ali and Mahmoud
(1979). An excellent review on layered media models is given
by Ursin (1983). Kwon and Wang (1986) solve the VTI-layered-
earth problem by splitting transverse electric (TE) and transverse
magnetic (TM) modes. Xiong (1989) uses vector potentials to solve
for the electromagnetic fields in a stratified anisotropic medium.
Michalski (2005) derives the Green’s tensor in layered VTI media
using the transmission-line analogue. The scattering matrix formu-
lation has been used recently to solve the forward problem for ar-
bitrary anisotropic layered media with sources and receivers located
in any layer of the model by Loseth and Ursin (2007). Zhong et al.
(2008) and Wang et al. (2009) publish algorithms for induction log-
ging tools. A code for forward and inverse modeling of isotropic
low frequency electromagnetic data with complete freedom of
placement of the source and receiver is published by Key (2009).
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In this paper, we show that the electromagnetic VTI response can
be obtained by solving two equivalent scalar equations involving
only a scalar global reflection coefficient. Unlike previous work fea-
turing similar derivations, a corresponding computer code written in
C and Fortran to model electromagnetic fields (EMmod) is attached
to this paper. The combination of a simple derivation and a corre-
sponding open-source code that is thoroughly tested (see the “Ex-
ample” section), opens many possibilities for research and for
benchmarking other codes. The code is able to model data for con-
trolled-source electromagnetic (CSEM) methods in the diffusive
limit as well as for ground-penetrating radar (GPR) methods for
waves in dissipative media. The code allows placement of the
source and the receiver anywhere in a stack of VTI layers for
any source-receiver component. It outputs the electromagnetic field
in the frequency-space domain.
Whenever convenient, the subscript notation is used and the sum-

mation convention applies to repeated lowercase subscripts. Latin
subscripts take on the values f1; 2; 3g, to represent vector directions
along the three coordinates in space fx1; x2; x3g. Greek subscripts
take on the values f1; 2g to denote vector directions along horizon-
tal coordinates only. The unit matrix is denoted δkr defined as δkr ¼
1 if k ¼ r and δkr ¼ 0 otherwise. To denote vector products the
Levi-Civita tensor of rank three is used, ϵklm ¼ −1 when the se-
quence fklmg is an odd permutation of f123g, ϵklm ¼ 1 when
the sequence fklmg is an even permutation of f123g, and ϵklm ¼
0 otherwise. The position vector is denoted x ¼ xmim ¼ x1i1 þ
x2i2 þ x3i3, where i1; i2; i3 denote the base vectors of the right-
handed Cartesian reference frame. Whenever convenient, the vector
x is written in subscript notation xk. Time invariance is exploited by
using a time-Laplace transformation defined on a space-time depen-
dent vector function Eðx; tÞ as

Êðx; sÞ ¼
Z

∞

t¼0

Eðx; tÞ expð−stÞdt; (1)

where s denotes the Laplace transformation variable, which can be
taken real and positive, or s ¼ iω, with ω ¼ 2πf, f being the natu-
ral frequency. Horizontal shift-invariance, as present in a 1D
medium, allows carrying out a 2D spatial Fourier transforma-
tion, and it is defined on a Laplace-transformed vector function
Êðx; sÞ as

~EðkT; z; sÞ ¼
Z

∞

xT¼−∞
Êðx; sÞ expð−ikαxαÞd2xT; (2)

where the subscript T is used to indicate the horizontal vector and kα
denotes the two components of the horizontal wavenumber vector.
The horizontal and vertical conductivities are denoted as η; ηðvÞ

and η ¼ σ þ sε, ηðvÞ ¼ σðvÞ þ sεðvÞ, where σ; σðvÞ are the horizontal
and vertical electric conductivity, ε; εðvÞ are the horizontal and ver-
tical electric permittivity. The horizontal and vertical transverse re-
sistivity functions are denoted as ζ; ζðvÞ and ζ ¼ sμ, ζðvÞ ¼ sμðvÞ,
with magnetic permeability μ. The wavenumbers related to the ver-
tical conductivity and to the transverse resistivity, are denoted γ; γ̄
with γ ¼

ffiffiffiffiffiffiffiffiffiffi
ζηðvÞ

p
and γ̄ ¼

ffiffiffiffiffiffiffiffiffiffi
ζðvÞη

p
.

The configuration has an electric or magnetic current type source
located in a layer of finite thickness that is embedded in two differ-
ent layered half-spaces. The medium is a stack of N layers of finite
thickness that is bounded at the top and bottom by homogeneous
half-spaces. For example, the upper half-space can act as a model

for air, and the lower half-space can be taken to lie outside the zone
of interest, such that it can act as a radiation boundary condition.
This stack of layers is a model for a 1D layered earth. Each layer is
VTI characterized by horizontal electric and magnetic parameters
that differ from the vertical ones. This type of anisotropy allows
complete splitting between TE and TM modes. The solution is ob-
tained in a form that requires the least amount of derivations and
the corresponding code requires the least amount of numerical
operations.
In a horizontally layered VTI earth model the vertical direction is

the only direction in which the medium parameters are piecewise
constant, while in both horizontal directions they are constant. The
vertical direction is therefore chosen as the direction of reference to
determine TE modes and TM modes. The TE mode has no vertical
electric field component and the TM mode has no vertical magnetic
field component. The TE mode and TM mode wave field equations
are therefore independently obtained for the vertical components of
the magnetic and electric field strengths, respectively. Here, all
electromagnetic Green’s functions are derived in the horizontal
wavenumber domain for the electric and magnetic fields generated
by an electric or magnetic point source somewhere in the layered
VTI medium. The receiver is also located somewhere in the VTI
medium. Once all Green’s functions are found, the electric field
generated by an electric dipole is derived in the space frequency
domain by means of an integral equation. Finally, we illustrate
the solution method using numerical examples.

PROPERTIES OF THE ELECTROMAGNETIC
FIELD AND THE REDUCTION OF WORK

Maxwell’s equations can be written in the space-Laplace trans-
formed domain as

−ϵkmp∂mĤpðx; sÞ þ ηkrðx; sÞÊrðx; sÞ ¼ −Ĵekðx; sÞ; (3)

ϵjnr∂nÊrðx; sÞ þ ζjpðx; sÞĤpðx; sÞ ¼ −Ĵmj ðx; sÞ; (4)

which are valid for arbitrary anisotropic media with relaxation and
losses. If we substitute Êðx; sÞ ¼ Ĥðx; sÞ, ηmnðx; sÞ ¼ −ζmnðx; sÞ,
and Ĵeðx; sÞ ¼ −Ĵmðx; sÞ, the same Maxwell equations are ob-
tained. This is known as the duality principle. This implies that
for any partial or full solution of a boundary value problem that
is found for the electric field vector Êðx; sÞ, or a component thereof,
the solution for the magnetic field vector Ĥðx; sÞ or the same com-
ponent thereof can be written down using these substitutions. To
reduce bookkeeping, source-receiver reciprocity can be used. Let
the Green’s tensor functions related to an electric current point di-
pole satisfy the following equations:

−ϵkmp∂mĜ
me
ps ðx; x 0; sÞ þ ηkrðx; sÞĜee

rs ðx; x 0; sÞ
¼ −δksðx − x 0Þ; (5)

ϵjnr∂nĜ
ee
rqðx; x 0; sÞ þ ζjpðx; sÞĜme

pq ðx; x 0; sÞ ¼ 0; (6)

−ϵkmp∂mĜ
mm
ps ðx; x 0; sÞ þ ηkrðx; sÞĜem

rs ðx; x 0; sÞ ¼ 0; (7)

F2 Hunziker et al.
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ϵjnr∂nĜ
em
rq ðx; x 0; sÞ þ ζjpðx; sÞĜmm

pq ðx; x 0; sÞ
¼ −δjqðx − x 0Þ; (8)

source-receiver reciprocity then states:

Ĝee
rs ðx; x 0; sÞ ¼ Ĝee

sr ðx 0; x; sÞ; (9)

Ĝem
rq ðx; x 0; sÞ ¼ −Ĝme

qr ðx 0; x; sÞ: (10)

In these equations the Green’s tensors have superscripts, in which
the first superscript denotes the field type and the second superscript
denotes the source type. Similarly, the first subscript denotes the
field vector component and the second subscript denotes the source
vector component. From the duality principle, it was already estab-
lished that

Ĝmm
pq ðx; x 0; s; ηkr; ζijÞ ¼ −Ĝee

pqðx; x 0; s;−ζkr;−ηijÞ; (11)

Ĝme
pq ðx; x 0; s; ηkr; ζijÞ ¼ −Ĝem

pq ðx; x 0; s;−ζkr;−ηijÞ: (12)

From these results, it is clear that the solution for the magnetic field
Green’s functions are known when those for the electric fields have
been found. Moreover, knowing six of the nine components of the
Green’s tensor representing the electric field generated by an elec-
tric current dipole suffices to know all components of the Green’s
tensor describing the electric field generated by an electric source
dipole and at the same time all components of the Green’s tensor
describing the magnetic field generated by a magnetic source
dipole.
To break down the problem, first, Maxwell’s equations are trans-

formed to the horizontal wavenumber domain. This simplifies the
analysis because Maxwell’s equations are reduced to one scalar
second-order differential equation for the vertical electric field com-
ponent and one for the vertical magnetic field component. This
leads to further reduction in work because the whole electromag-
netic field is known when the vertical component of the electric field
is known for all sources. This is demonstrated in the next section.

DECOMPOSITION OF THE ELECTROMAGNETIC
FIELD AND THE FREQUENCY WAVENUMBER

DOMAIN HOMOGENEOUS SPACE
GREEN’S FUNCTIONS

We start with the solution in a homogeneous space, but we use
the coupled Maxwell equations in the horizontal wavenumber do-
main to prepare for the layered medium treated afterward. They are
given by

ηðvÞ ~E3 ¼ − ~Je3 − ϵ3λβikλ ~Hβ; (13)

ζðvÞ ~H3 ¼ − ~Jm3 þ ϵ3λβikλ ~Eβ; (14)

η ~Eα ¼ − ~Jeα þ ϵα3β∂3 ~Hβ − ϵαλ3ikλ ~H3; (15)

ζ ~Hβ ¼ − ~Jmβ − ϵβ3α∂3 ~Eα þ ϵβλ3ikλ ~E3: (16)

The horizontal electric field components are eliminated by substi-
tuting the expression of equation 15 into 16:

½ηζ − ∂3∂3� ~Hα ¼ −η ~Jmα þ ϵα3β∂3 ~Jeβ þ ikα∂3 ~H3 þ ηϵαλ3ikλ ~E3;

(17)

and using equation 17 in equation 13, to obtain

ðηζ − ∂3∂3ÞηðvÞ ~E3 ¼ ð∂3∂3 − ηζÞ ~Je3 þ ηϵ3αβikα ~J
m
β

− ϵ3αβikαðϵβ3α∂3 ~Jeα þ ikβ∂3 ~H3 þ ηϵβλ3ikλ ~E3Þ; (18)

leading to the following equation for the vertical electric field com-
ponent

ð∂3∂3 − Γ2ÞηðvÞ ~E3 ¼ ηζ ~Je3 þ ∂3ðikα ~Jeα − ∂3 ~Je3Þ − ηϵ3αβikα ~J
m
β ;

(19)

with vertical wavenumber related to vertical conductivity given by
Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
η∕ηðvÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ γ2

p
, with κ ¼ ðk21 þ k22Þ1∕2 being the horizontal

radial wavenumber, and ℜfΓg ≥ 0. To arrive at equations 17 and
19, the epsilon-delta identity has been used,

ϵkmpϵpnr ¼ δknδmr − δkrδmn: (20)

Without loss of generality, we take the sources to be point sources,
defined by

f ~Jek; ~Jmk g ¼ fÎekðsÞ; Îmk ðsÞgδðx3 − xS3Þ; (21)

with the source position vector given by xS3 ¼ f0; 0; zSg and the fre-
quency spectrum of the source specified by Îe;mk ðsÞ. The two cor-
responding Green’s functions are solutions of modified Helmholtz
equations,

ð∂3∂3 − Γ2Þ ~G ¼ −δðx3 − xS3Þ: (22)

The solutions to these equations are well known, and given by

~Gðx3 − xS3Þ ¼
expð−ΓhÞ

2Γ
; (23)

where h ¼ jx3 − xS3 j. Equation 23 is the TM-mode Green’s func-
tion. In view of equations 19, 21, and 23, the vertical component
of the electric field is given by

ηðvÞ ~E3 ¼ ð−ηζĴe3 − ∂3½ikαĴeα − ∂3Ĵ
e
3�

þ ηϵ3αβikαĴ
m
β Þ ~Gðx3 − xS3Þ: (24)

Working out the derivatives gives

~E3 ¼ XTM
3

~Gðx3 − xS3Þ −
~Je3
ηðvÞ

; (25)

with the source factor given by

The EM response in a 1D VTI medium F3
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XTM
3 ¼ Γ

ηðvÞ
signðx3 − xS3ÞikαĴeα þ

ηκ2

ðηðvÞÞ2 Ĵ
e
3

þ η

ηðvÞ
ϵ3αβikαĴ

m
β ; (26)

where the sign function is defined as

signðx3 − x3 0Þ ¼
8<
:

−1 for x3 < xS3;
0 for x3 ¼ xS3;
1 for x3 > xS3:

The vertical component of the magnetic field is found by direct sub-
stitution as described above.
To obtain the horizontal electric field components from the ver-

tical electric and magnetic field components, first, both sides of
equation 15 are divided by η and multiplied by ikλikα

ikλikα ~Eα ¼ −η−1ikλ½ikα ~Jeα − ikαϵα3β∂3 ~Hβ�; (27)

and then equation 13 is used to eliminate the horizontal components
of the magnetic field

ikλikα ~Eα ¼ −η−1ikλ½ikα ~Jeα − ∂3ðηðvÞ ~E3 þ ~Je3Þ�: (28)

Then, both sides of equation 14 are multiplied by ϵαβ3ikβ to obtain

ikαikλ ~Eλ − ikλikλ ~Eα ¼ ϵαβ3ikβðζðvÞ ~H3 þ ~Jm3 Þ: (29)

Next, equation 28 is used to eliminate ikαikλ ~Eλ from equation 29:

~Eα ¼
ikα
ηκ2

½ikβ ~Jeβ − ∂3ðηðvÞ ~E3 þ ~Je3Þ�

þ ϵαβ3
ikβ
κ2

ðζðvÞ ~H3 þ ~Jm3 Þ: (30)

In equation 30, the TM mode and the TE mode are separated from
each other because ~E3 is a pure TM mode and ~H3 is a pure TE
mode. With the aid of equations 25 and 26, and the corresponding
equations for the vertical component of the magnetic field that are
obtained from the duality principle, the horizontal electric field
components of equation 30 can be written as

~Eα ¼ XETM
α

~Gþ XETE
α

~̄G; (31)

where the TE mode Green’s function is given by

~̄Gðx3 − xS3Þ ¼
expð−Γ̄hÞ

2Γ̄
; (32)

with the vertical wavenumber given by Γ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ∕ζðvÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ γ̄2

p
. The

electric-field-related TM mode and TE mode horizontal source
components are given by

XETM
α ¼ ikαikβΓ2Ĵeβ

ηκ2
þ ikαΓĴ

e
3 signðx3 − xS3Þ

ηðvÞ

þ ikαϵ3λβikλΓĴ
m
β signðx3 − xS3Þ
κ2

; (33)

XETE
α ¼ −ζ

ikαikβĴ
e
β þ κ2Ĵeα
κ2

þ ϵαλ3ikλikβΓ̄Ĵ
m
β signðx3 − xS3Þ
κ2

þ ζ

ζðvÞ
ϵαβ3ikβĴ

m
3 : (34)

With the above results the Green’s tensors are found as

~Gee
kr ¼

0
BBBB@

ðik1Þ2Γ2

ηκ2
ik1ik2Γ2

ηκ2
− ik1∂3

ηðvÞ

ik1ik2Γ2

ηκ2
ðik2Þ2Γ2

ηκ2
− ik2∂3

ηðvÞ

− ik1∂3
ηðvÞ − ik2∂3

ηðvÞ
∂3∂3−ηζ
ηðvÞ

1
CCCCA ~G

þ

0
BB@

ζðik2Þ2
κ2

− ζik1ik2
κ2

0

− ζik1ik2
κ2

ζðik1Þ2
κ2

0

0 0 0

1
CCA ~̄G; (35)

~Gem
kr ¼

0
BBB@

ik1ik2∂3
κ2

− ðik1Þ2∂3
κ2

0

ðik2Þ2∂3
κ2

− ik1ik2∂3
κ2

0

− ηik2
ηðvÞ

ηik1
ηðvÞ 0

1
CCCA ~G

þ

0
BB@

− ik1ik2∂3
κ2

− ðik2Þ2∂3
κ2

ζik2
ζðvÞ

ðik1Þ2∂3
κ2

ik1ik2∂3
κ2

− ζik1
ζðvÞ

0 0 0

1
CCA ~̄G: (36)

This decomposition demonstrates that once the vertical electric and
magnetic field components are known, the entire electromagnetic
field is known. From the duality principle, it is clear that if the ver-
tical electric field is known, the vertical magnetic field is also
known. The same applies to the horizontal components of the mag-
netic fields. Hence, finding the solution for the vertical electric field
in the layered earth model suffices to know the entire electromag-
netic field.

THE SPACE FREQUENCY DOMAIN
HOMOGENEOUS SPACE GREEN’S

FUNCTIONS

The elements of equations 35 and 36 correspond to homogeneous
space Green’s functions and can be transformed back to space-fre-
quency in closed form. This is done in this section and results in
similar expressions as, for example, found by Weiglhofer (1990)
or Abubakar and Habashy (2006).
In the first element of ~Gee

αβ, the factor Γ∕ðηκ2Þ is rewritten as

Γ
ηκ2

¼ 1

ηðvÞΓ
þ ζ

κ2Γ
: (37)

With this substitution the Green’s function corresponding to the
electric field generated by an electric current source in space domain
can be written as an inverse spatial Fourier-Bessel transformation

F4 Hunziker et al.
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Ĝee
αβðx; xS;ωÞ

¼ ∂α∂β
4πηðvÞ

Z
∞

κ¼0

expð−ΓhÞ
Γ

J0ðκrÞκdκ

þ ζ∂α∂β
4π

Z
∞

κ¼0

�
expð−ΓhÞ

Γ
−
expð−Γ̄hÞ

Γ̄

�
J0ðκrÞκ−1dκ

−
ζδαβ
4π

Z
∞

κ¼0

expð−Γ̄hÞ
Γ̄

J0ðκrÞκdκ; (38)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the horizontal distance between source and

receiver and J0 denotes the zero-order Bessel function. The first and
third integrals are standard Fourier-Bessel transforms, and the sec-
ond can be evaluated by first performing one derivative on the Bes-
sel function in the integrands. That leads to

Ĝðx; xSÞ ¼ 1

4π

Z
∞

κ¼0

expð−ΓhÞ
Γ

J0ðκrÞκdκ ¼
expð−γRÞ

4πR
ffiffiffiffiffiffiffiffiffiffiffiffi
η∕ηðvÞ

p ;

(39)

^̄Gðx; xSÞ ¼ 1

4π

Z
∞

κ¼0

expð−Γ̄hÞ
Γ̄

J0ðκrÞκdκ ¼
expð−γ̄ R̄Þ

4πR̄
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ∕ζðvÞ

p ;

(40)

∂β
Z

∞

κ¼0

expð−ΓhÞ
Γ

J0ðκrÞκ−1dκ¼−
xβ
r

Z
∞

κ¼0

expð−ΓhÞ
Γ

J1ðκrÞdκ;
(41)

where the scaled source-receiver distances are given by R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ηh2∕ηðvÞ

p
, R̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ζh2∕ζðvÞ

p
. The resulting integral is a

standard integral, see Gradshteyn and Ryzhik (1996) (p. 1098, for-
mula 6.637 1.), and can be written as (see Abramowitz and Stegun,
1972)

Z
∞

κ¼0

expð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ α2

p
hÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ α2
p J1ðκrÞdκ

¼ expð−αhÞ − expð−α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ h2

p
Þ

αr
: (42)

With these results, the horizontal components of the incident elec-
tric field can be written as

Ĝee
αβðx; xS; sÞ ¼

∂α∂β
ηðvÞ

Ĝðx; xS; sÞ − ζδαβ
^̄Gðx; xS; sÞ

þ
ffiffiffi
ζ

p
4π

ffiffiffi
η

p ∂α
�
xβ
r2

½expð−γRÞ − expð−γ̄ R̄Þ�
�
:

(43)

The vertical field components are written as

Ĝee
3kðx; xS; sÞ ¼

∂3∂k − ηζδ3k
ηðvÞ

Ĝðx; xS; sÞ: (44)

Carrying out the derivatives results in

Ĝee
αβðx;xSÞ ¼

��
3
xαxβ
R2

− δαβ

��
1

ηðvÞR2
þ γ

ηðvÞR

�
þ ζ

xαxβ
R2

�
Ĝðx;xSÞ

− ζδαβ
^̄Gðx;xSÞ− ζ

xαxβ
r2

½Ĝðx;xSÞ− ^̄Gðx;xSÞ�

−
ffiffiffi
ζ

p �
2
xαxβ
r2

− δαβ

��
expð−γRÞ− expð−γ̄ R̄Þ

4π
ffiffiffi
η

p
r2

�
;

where it can be seen that the last two terms vanish in isotropic me-
dia. When h ≠ 0 the Green’s function is a regular function of depth
in the limit of zero horizontal source-receiver distance, which is ob-
tained when the first three terms of the Taylor expansion of the ex-
ponential functions are taken for r ↓ 0 in the terms that are divided
by r2. This results in

−lim
r↓0

expð−γRÞ− expð−γ̄ R̄Þ
4π

ffiffiffiffiffi
ηζ

p
r2

¼
�
ηðvÞ

η
−
ζðvÞ

ζ

�
expð− ffiffiffiffiffi

ηζ
p

hÞ
8πh

;

(45)

and the Green’s function is given by

Ĝee
αβð0; 0; x3; xS3Þ ¼ −δαβ

��
ηðvÞ

ηh2
þ γ

h

ffiffiffiffiffiffiffi
ηðvÞ

η

s �
1

η

þ ζðvÞ

2
þ γ2

2η

� exp
�
−

ffiffiffiffiffi
ηζ

p
h
�

4πh
: (46)

The vertical components are given by

Ĝee
3αðx; xSÞ ¼

ηðx3 − xS3Þxα
ηðvÞR2

�
3

R2
þ 3γ

R
þ γ2

�
Ĝðx; xS; sÞ

ηðvÞ
;

(47)

Ĝee
33ðx; xSÞ ¼

��
3

�
ηðx3 − xS3Þ

ηðvÞR

�
2

−
η

ηðvÞ

��
1

R2
þ γ

R

�

þ
�ðx3 − xS3Þ2η

R2ηðvÞ
− 1

�
ηζ

�
Ĝðx; xSÞ
ηðvÞ

: (48)

Note that the latter equation is only valid for x ≠ xS if h ¼ 0. With
these results, the solutions for the components of the electric field
generated by magnetic point sources are readily obtained as

Ĝem
αβ ðx; xS; sÞ ¼

∂3ϵβν3∂ν
4π

ffiffiffiffiffi
ηζ

p xα
r2

expð−γRÞ

−
∂3ϵαν3∂ν
4π

ffiffiffiffiffi
ηζ

p xβ
r2

expð−γ̄ R̄Þ; (49)

Ĝem
α3 ðx; xS; sÞ ¼

ζ

ζðvÞ
ϵαν3∂ν ^̄Gðx; xS; sÞ; (50)

Ĝem
3β ðx; xS; sÞ ¼ −

η

ηðvÞ
ϵβν3∂νĜðx; xS; sÞ; (51)

Ĝem
33 ðx; xS; sÞ ¼ 0: (52)
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THE LAYERED EARTH RESPONSE

Because we use lowercase Latin subscripts to denote layer num-
bers, the subscript notation is abandoned and replaced by vector
notation in this section, to avoid confusion. The depth-coordinate
in space is now denoted as z ¼ x3. First, the layered earth model is
built. The upper half-space is a homogeneous medium occupying
the domainD0, which is the half-space defined by z < 0. Every layer
of finite thickness occupies a domain Dn and is defined by
zn−1 < z < zn, for n ¼ 1; 2; 3; : : : ; N. The lower half-space occu-
pies the domain DNþ1 defined by z > zN. In layer Dn, the medium
parameters are constant and given by ηn; η

ðvÞ
n ; ζn; ζ

ðvÞ
n . The source is

located in layer Ds. The vertical component of the electric field can
be written as

~Ez;n ¼ Aþ
n exp½−Γnðz − zn−1Þ�

þ A−
n exp½−Γnðzn − zÞ�; for 0 ≤ n < s; (53)

~Ez;s ¼ XTM expð−Γsjz − z 0jÞ − Ĵez

ηðvÞs

δðz − z 0Þ

þ Aþ
s exp½−Γsðz − zs−1Þ� þ A−

s exp½−Γsðzs − zÞ�;
(54)

~Ez;n ¼ Aþ
n exp½−Γnðz − zn−1Þ�

þ A−
n exp½−Γnðzn − zÞ�; for s < n ≤ N þ 1; (55)

where A�
n denote down-/upgoing electric fields. Then, Aþ

0 ¼ 0 and
A−
Nþ1 ¼ 0 because there are only upgoing fields in the upper half-

space and only downgoing fields in the lower half-space. The
source factor is XTM ¼ XTM

3 ∕ð2ΓÞ. For all layers D0 to Ds−1, an
up-down global reflection coefficient can be defined as

R−
n ¼ Aþ

n

A−
n

expðΓndnÞ: (56)

Note that the reflection coefficient R−
n is defined at depth level zn−1.

Hence, R−
1 is the global reflection coefficient at the reflector at depth

level z0. For all layers Dsþ1 to DNþ1, a down-up global reflection
coefficient can be defined as

Rþ
n ¼ A−

n

Aþ
n

expðΓndnÞ: (57)

The reflection coefficient Rþ
n is defined at depth level zn. Hence,

both global reflection coefficients have the subscript that belongs
to the domain where they are defined. In these expressions the thick-
ness of layer n is denoted as dn ¼ zn − zn−1. This means the vertical
component of the electric field can be written as

~Ez;n ¼ A−
n ðexp½−Γnðzn − zÞ� þR−

n exp½−Γnðdn þ z− zn−1Þ�Þ
(58)

for 0 ≤ n < s, and R−
0 ¼ 0. For layers below the source layer,

s < n ≤ N þ 1, the vertical electric field component can be
written as

~Ez;n ¼ Aþ
n ðexp½−Γnðz− zn−1Þ�þRþ

n exp½−Γnðdnþ zn − zÞ�Þ;
(59)

with Rþ
Nþ1 ¼ 0. Note that with the definitions of the global reflec-

tion coefficients, the down- and upgoing electric fields are zero-
phase at the boundary where they are generated. This leads in a
natural way to numerically stable algorithms.
The TM-mode source factor as given in equation 26 is signed for

horizontal electric dipole sources, whereas it is unsigned for all
other sources. This requires some care in solving for the up- and
downgoing field amplitudes in the source layer. To solve for these
two amplitude coefficients in the source layer, two boundary con-
ditions are required at interfaces zs−1 and zs. With two suitable con-
ditions, we can solve this scalar problem. We use the continuity of
the vertical electric current and the continuity of the scaled vertical
derivative of the vertical component of the electric current. The lat-
ter condition can be obtained from equation 30 because the hori-
zontal components of the electric field should be continuous
across an interface. These conditions can be written as

lim
z↑zn

ηðvÞn−1
~Ez;n−1ðkT; z; sÞ ¼ lim

z↓zn
ηðvÞn ~Ez;nðkT; z; sÞ; (60)

lim
z↑zn

ηðvÞn−1
ηn−1

∂z ~Ez;n−1ðkT; z; sÞ ¼ lim
z↓zn

ηðvÞn

ηn
∂z ~Ez;nðkT; z; sÞ: (61)

At z ¼ zs−1 the conditions allow us to eliminate the amplitude A−
s−1

to obtain

Aþ
s ¼ R−

s ðXTMðzs−1Þexp½−Γsðz 0 − zs−1Þ�þA−
s expð−ΓsdsÞÞ:

(62)

At z ¼ zs the conditions allow us to eliminate the amplitude Aþ
sþ1 to

obtain

A−
s ¼ Rþ

s ðXTMðzsÞ exp½−Γsðzs − z 0Þ� þ Aþ
s expð−ΓsdsÞÞ:

(63)

In these expressions, the global reflection coefficients R�
n are recur-

sively defined as

R�
n ¼ r�n þ R�

n�1 expð−2Γn�1dn�1Þ
1þ r�n R�

n�1 expð−2Γn�1dn�1Þ
; (64)

with local reflection coefficients

r�n ¼ ηn�1Γn − ηnΓn�1

ηn�1Γn þ ηnΓn�1

: (65)

Note that the global reflection coefficient R−
n contains reflection in-

formation about the layers at and above zn−1, and the global reflec-
tion coefficient Rþ

n contains information about the layers at and
below zn. In contrast, the local reflection coefficients only contain
information about one layer. Equations 62 and 63 can be solved for
the up- and downgoing field amplitudes in the source layer. They
are given by
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A−
s ¼

Rþ
s ðXTMðzsÞexpð−ΓsdþÞþR−

s XTMðzs−1Þexp½−Γsðdsþd−Þ�Þ
1−R−

s Rþ
s expð−2ΓsdsÞ

;

(66)

Aþ
s ¼R−

s ðXTMðzs−1Þexpð−Γsd−ÞþRþ
s XTMðzsÞexp½−ΓsðdsþdþÞ�Þ

1−R−
s Rþ

s expð−2ΓsdsÞ
;

(67)

where the distances from the interfaces to the source depth are given
by d− ¼ z 0 − zs−1 and dþ ¼ zs − z 0. If the receivers are in the
source layer, the electric field is now determined. If the receivers
are in any layer above the source layer, the field can be recursively
built by using the continuity of vertical electric current across each
interface as expressed in equation 60. The solution for A−

s−1 in the
layer just above the source is

A−
s−1¼

ηðvÞs

ηðvÞs−1

×
fXTMðzs−1Þexpð−Γsd−ÞþXTMðzsÞRþ

s exp½−ΓsðdsþdþÞ�gð1þR−
s Þ

½1−R−
s Rþ

s expð−2ΓsdsÞ�½1þR−
s−1 expð−2Γs−1ds−1Þ�

:

(68)

For all the other layers above the source layer, they can be found
recursively as

A−
n ¼ ηðvÞnþ1

ηðvÞn

A−
nþ1

ð1þ R−
nþ1Þ expð−Γnþ1dnþ1Þ

1þ R−
n expð−2ΓndnÞ

; (69)

for 0 ≤ n < s − 1. It can also be written explicitly as

A−
n ¼ ηðvÞs−1

ηðvÞn

A−
s−1

Ys−2
m¼n

ð1þ R−
mþ1Þ expð−Γmþ1dmþ1Þ

1þ R−
m expð−2ΓmdmÞ

; (70)

for 0 ≤ n < s − 1. In case the receivers are below the sources, the
electric field can be recursively obtained for layers below the source
in a similar way. The solution for the layer just below the source is
obtained as

Aþ
sþ1¼

ηðvÞs

ηðvÞsþ1

×
fXTMðzs−1ÞR−

s exp½−Γsðdsþd−Þ�þXTMðzsÞexpð−ΓsdþÞgð1þRþ
s Þ

½1−R−
s Rþ

s expð−2ΓsdsÞ�½1þRþ
sþ1 expð−2Γsþ1dsþ1Þ�

:

(71)

For all the other layers below the source layer, they can be found
recursively as

Aþ
n ¼ ηðvÞn−1

ηðvÞn

Aþ
n−1

ð1þ Rþ
n−1Þ expð−Γn−1dn−1Þ

1þ Rþ
n expð−2ΓndnÞ

; (72)

for sþ 2 ≤ n ≤ N þ 1. It can also be written explicitly as

Aþ
n ¼ ηðvÞsþ1

ηðvÞn

Aþ
sþ1

Yn
m¼sþ2

ð1þ Rþ
m−1Þ expð−Γm−1dm−1Þ

1þ Rþ
m expð−2ΓmdmÞ

; (73)

for sþ 2 ≤ n ≤ N þ 1. Note that all terms only contain damped ex-
ponentials and can be computed numerically without any difficulty.

Now the vertical electric field component is determined everywhere
in the model. This solves the electromagnetic problem in layered
VTI media. The construction of the full solution is a bookkeeping
task. We construct it in the next section using the Green’s functions.

THE GREEN’S FUNCTIONS FOR THE VERTICAL
ELECTRIC FIELD IN THE FREQUENCY

WAVENUMBER DOMAIN

The expressions for the electromagnetic fields can be written in
terms of the Green’s functions defined in equations 5–8. Here, they
are given in the horizontal wavenumber domain for receivers any-
where in the model. With the substitution of equation 26 divided by
2Γs into the solutions for the amplitude coefficients of equations 66
and 67 in equations 53–55, all Green’s function components related
to the vertical electric field component can be found. We introduce
field propagators inside each layer as

Wu
n ¼ exp½−Γnðzn − zÞ�; Wd

n ¼ exp½−Γnðz − zn−1Þ�;
(74)

with zn−1 ≤ z ≤ zn, for 0 ≤ n ≤ N þ 1.
The vertical electric field Green’s function components in the

source layer generated by electric point sources are obtained as

~Gee
zx;s ¼ ~Gee;i

zx;s þ
ikx

2ηðvÞs

fPu−
s Wu

s − Pd−
s Wd

sg; (75)

~Gee
zy;s ¼ ~Gee;i

zy;s þ
iky

2ηðvÞs

fPu−
s Wu

s − Pd−
s Wd

sg; (76)

~Gee
zz;s ¼ ~Gee;i

zz;s þ
ηsκ

2

2ðηðvÞs Þ2Γs

fPuþ
s Wu

s þ Pdþ
s Wd

sg; (77)

where the incident fields and the up- and downgoing fields are writ-
ten as

~Gee;i
zx;s ¼ −

ikx∂z
ηðvÞs

expð−Γsjz − z 0jÞ
2Γs

; (78)

~Gee;i
zy;s ¼ −

iky∂z
ηðvÞs

expð−Γsjz − z 0jÞ
2Γs

; (79)

~Gee;i
zz;s ¼

−ηsζs þ ∂z∂z
ηðvÞs

expð−Γsjz − z 0jÞ
2Γs

; (80)

Pu�
s ¼ Rþ

s

Ms
ðexpð−ΓsdþÞ � R−

s exp½−Γsðds þ d−Þ�Þ; (81)

Pd�
s ¼ R−

s

Ms
ðexpð−Γsd−Þ � Rþ

s exp½−Γsðds þ dþÞ�Þ: (82)

In these equations, the factor Ms is given by

Ms ¼ 1 − R−
s Rþ

s expð−2ΓsdsÞ: (83)
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The vertical electric field Green’s function components in the
source layer generated by magnetic point sources are given by

~Gem
zx;s ¼ ~Gem;i

zx;s −
ηsiky

2ηðvÞs Γs

fPuþ
s Wu

s þ Pdþ
s Wd

sg; (84)

~Gem
zy;s ¼ ~Gem;i

zy;s þ ηsikx

2ηðvÞs Γs

fPuþ
s Wu

s þ Pdþ
s Wd

sg; (85)

~Gem
zz;s ¼ 0: (86)

The incident fields are given by

~Gem;i
zx;s ¼ −

ηsiky

ηðvÞs

expð−Γsjz − z 0jÞ
2Γs

; (87)

~Gem;i
zy;s ¼ ηsikx

ηðvÞs

expð−Γsjz − z 0jÞ
2Γs

: (88)

In the layers above the source, we find

~Gee
zx;n ¼

ikx

2ηðvÞn

Pu−
n ðWu

n þ R−
n expð−ΓndnÞWd

nÞ; (89)

~Gee
zy;n ¼

iky

2ηðvÞn

Pu−
n ðWu

n þ R−
n expð−ΓndnÞWd

nÞ; (90)

~Gee
zz;n ¼

ηsκ
2

2ηðvÞs ηðvÞn Γs

Puþ
n ðWu

n þ R−
n expð−ΓndnÞWd

nÞ; (91)

and

~Gem
zx;n ¼ −

ηsiky

2ηðvÞn Γs

Puþ
n ðWu

n þ R−
n expð−ΓndnÞWd

nÞ; (92)

~Gem
zy;n ¼

ηsikx

2ηðvÞn Γs

Puþ
n ðWu

n þ R−
n expð−ΓndnÞWd

nÞ; (93)

~Gem
zz;n ¼ 0; (94)

for n ¼ s − 1 and 0 ≤ n < s − 1. The factors P�
n are given by

Pu�
s−1 ¼

ð1þR−
s Þf� expð−Γsd−Þ þRþ

s exp½−Γsðds þ dþÞ�g
Ms½1þR−

s−1 expð−2Γs−1ds−1Þ�
;

(95)

Pu�
n ¼ Pu�

s−1

Ys−2
m¼n

ð1þ R−
mþ1Þ expð−Γmþ1dmþ1Þ

1þ R−
m expð−2ΓmdmÞ

: (96)

In the layers below the source, we find

~Gee
zx;n ¼

ikx

2ηðvÞn

Pd−
n ðWd

n þ Rþ
n expð−ΓndnÞWu

nÞ; (97)

~Gee
zy;n ¼

iky

2ηðvÞn

Pd−
n ðWd

n þ Rþ
n expð−ΓndnÞWu

nÞ; (98)

~Gee
zz;n ¼

ηsκ
2

2ηðvÞs ηðvÞn Γs

Pdþ
n ðWd

n þ Rþ
n expð−ΓndnÞWu

nÞ; (99)

and

~Gem
zx;n ¼ −

ηsiky

2ηðvÞn Γs

Pdþ
n ðWd

n þ Rþ
n expð−ΓndnÞWu

nÞ; (100)

~Gem
zy;n ¼

ηsikx

2ηðvÞn Γs

Pdþ
n ðWd

n þ Rþ
n expð−ΓndnÞWu

nÞ; (101)

~Gem
zz;n ¼ 0; (102)

for n ¼ sþ 1 and sþ 1 < n ≤ N þ 1. The factors P�
n are given by

Pd�
sþ1 ¼

ð1þ Rþ
s Þfexpð−ΓsdþÞ � R−

s exp½−Γsðds þ d−Þ�g
Ms½1þ Rþ

sþ1 expð−2Γsþ1dsþ1Þ�
;

(103)

Pd�
n ¼ Pd�

sþ1

Yn
m¼sþ2

ð1þ Rþ
m−1Þ expð−Γm−1dm−1Þ

1þ Rþ
m expð−2ΓmdmÞ

: (104)

With these results, the VTI layered-earth problem has been solved.
The expression for the vertical component for the magnetic
field, the other required scalar differential equation, can be obtained
using the duality principle. Then, the horizontal components of the
electric field can be obtained from equation 30, and the horizontal
components of the magnetic field follow from duality. We list all
results in Appendices A and B.

COMPUTATION OF THE ELECTRIC FIELD
IN THE SPACE-FREQUENCY DOMAIN

Space-frequency-domain results are obtained by inverse spatial
Fourier transformation. If the receivers are in the source layer, direct
and scattered fields must be computed. The direct field is known in
explicit form, whereas the scattered field must be computed numeri-
cally. If the receivers are not in the source layer, the whole field must
be computed numerically. In the source layer, the components of the
electric field generated by an x-directed electric dipole can be writ-
ten in the space-frequency domain as
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Ĝee
xx;sðx;x 0;ωÞ ¼ Ĝee;i

xx;sðx− x 0;ωÞ

þ 1

8π

Z
∞

κ¼0

�Γs ~gtmhh;s
ηs

−
ζs ~gtezz;s
Γ̄s

�
J0ðκrÞκdκ

−
cosð2ϕÞ

8π

Z
∞

κ¼0

�Γs ~gtmhh;s
ηs

þ ζs ~gtezz;s
Γ̄s

�
J2ðκrÞκdκ;

(105)

Ĝee
yx;sðx;x 0;ωÞ ¼ Ĝee;i

yx;sðx− x 0;ωÞ

−
sinð2ϕÞ

8π

Z
∞

κ¼0

�Γs ~gtmhh;s
ηs

þ ζs ~gtezz;s
Γ̄s

�
J2ðκrÞκdκ;

(106)

Ĝee
zx;sðx; x 0;ωÞ ¼ Ĝee;i

zx;sðx − x 0;ωÞ

þ cosðϕÞ
4πηðvÞs

Z
∞

κ¼0

~gtmzh;sJ1ðκrÞκ2dκ; (107)

where the integrals containing J1; J2 vanish for r ¼ 0. The coeffi-
cients are given by

~gtmhh;s ¼ Pu−
s Wu

s þ Pd−
s Wd

s ; (108)

~gtezz;s ¼ P̄uþ
s W̄u

s þ P̄dþ
s W̄d

s ; (109)

~gtmzh;s ¼ Pu−
s Wu

s − Pd−
s Wd

s : (110)

The incident fields have already been determined. The electric field
components for a y-directed electric dipole can be written as

Ĝee
xy;sðx; x 0;ωÞ ¼ Ĝee

yx;sðx; x 0;ωÞ; (111)

Ĝee
yy;sðx;x 0;ωÞ¼ Ĝee;i

yy;sðx−x 0;ωÞ

þ 1

8π

Z
∞

κ¼0

�Γs ~gtmhh;s
ηs

−
ζs ~gtezz;s
Γ̄s

�
J0ðκrÞκdκ

þcosð2ϕÞ
8π

Z
∞

κ¼0

�Γs ~gtmhh;s
ηs

þζs ~gtezz;s
Γ̄s

�
J2ðκrÞκdκ;

(112)

Ĝee
zy;sðx; x 0;ωÞ ¼ Ĝee;i

zy;sðx − x 0;ωÞ

þ sinðϕÞ
4πηðvÞs

Z
∞

κ¼0

~gtmzh;sJ1ðκrÞκ2dκ: (113)

The vertical electric field generated by a z-directed electric dipole
can be written as

Ĝee
xz;sðx; x 0;ωÞ ¼ Ĝee;i

xz;sðx − x 0;ωÞ

−
cosðϕÞ
4πηðvÞs

Z
∞

κ¼0

~gtmhz;sJ1ðκrÞκ2dκ; (114)

Ĝee
yz;sðx; x 0;ωÞ ¼ Ĝee;i

yz;sðx − x 0;ωÞ

−
sinðϕÞ
4πηðvÞs

Z
∞

κ¼0

~gtmhz;sJ1ðκrÞκ2dκ; (115)

Ĝee
zz;sðx; x 0;ωÞ ¼ Ĝee;i

zz;sðx − x 0;ωÞ

þ ηs

4πðηðvÞs Þ2
Z

∞

κ¼0

~gtmzz;sJ0ðκrÞ
κ3

Γs
dκ; (116)

with the coefficients given by

~gtmhz;s ¼ ðPuþ
s Wu

s − Pdþ
s Wd

s Þ; (117)

~gtmzz;s ¼ ðPuþ
s Wu

s þ Pdþ
s Wd

s Þ: (118)

With these expressions, all components of the electric field Green’s
function generated by an electric dipole are determined in the source
layer. Five integrals need to be computed in a 2D plane containing
the vertical axis to obtain the field values everywhere in the
3D space.
The electric field generated by the x-component of a point source

of the magnetic current type is given by

Ĝem
xx;sðx;x 0;ωÞ¼ Ĝem;i

xx;s ðx−x 0;ωÞ

þ sinð2ϕÞ
4π

Z
∞

κ¼0

ð~gtmhz;sþ ~gtehh;sÞJ2ðκrÞκdκ; (119)

Ĝem
yx;sðx;x 0;ωÞ¼ Ĝem;i

yx;s ðx−x 0;ωÞ− 1

8π

Z
∞

κ¼0

ð~gtmhz;s− ~gtehh;sÞJ0ðκrÞκdκ

−
cosð2ϕÞ

8π

Z
∞

κ¼0

ð~gtmhz;sþ ~gtehh;sÞJ2ðκrÞκdκ; (120)

Ĝem
zx;sðx; x 0;ωÞ ¼ Ĝem;i

zx;s ðx − x 0;ωÞ

−
ηs sinðϕÞ
8πηðvÞs

Z
∞

κ¼0

~gtmzz;sJ1ðκrÞ
κ2

Γs
dκ; (121)

with the new coefficient given by

~gtehh;s ¼ P̄u−
s W̄u

s − P̄d−
s W̄d

s : (122)

The electric field generated by the y-component of a point source of
the magnetic current type is given by

Ĝem
xy;sðx; x 0;ωÞ ¼ Ĝem;i

xy;s ðx − x 0;ωÞ

þ 1

8π

Z
∞

κ¼0

ð ~gtmhz;s − ~gtehh;sÞJ0ðκrÞκdκ

−
cosð2ϕÞ

8π

Z
∞

κ¼0

ð ~gtmhz;s þ ~gtehh;sÞJ2ðκrÞκdκ;

(123)
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Figure 1. Comparison between the analytical half-space solution and EMmod with respect to the amplitude. Panels (a-c) show the half-space
solution, the solution computed with EMmod, and the relative error between the two for electric inline oriented receivers and an electric inline
oriented source (Ĝee

xx). Panels (d-f) show the same for Ĝee
yx, panels (g-i) for Ĝ

ee
zx, and panels (j-l) for Ĝee

zz .
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Figure 2. The same as Figure 1, but for the phase. Panels (a-c) show the phase of the half-space solution, the phase of the solution computed
with EMmod and the relative error between the two for electric inline oriented receivers and an electric inline oriented source (Ĝee

xx). Panels (d-f)
show the same for Ĝee

yx, panels (g-i) for Ĝ
ee
zx, and panels (j-l) for Ĝee

zz .
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Ĝem
yy;sðx; x 0;ωÞ ¼ Ĝem;i

yy;s ðx − x 0;ωÞ

−
sinð2ϕÞ

4π

Z
∞

κ¼0

ð ~gtmhz;s þ ~gtehh;sÞJ2ðκrÞκdκ;
(124)

Ĝem
zy;sðx; x 0;ωÞ ¼ Ĝem;i

zy;s ðx − x 0;ωÞ

þ ηs cosðϕÞ
8πηðvÞs

Z
∞

κ¼0

~gtmzz;sJ1ðκrÞ
κ2

Γs
dκ: (125)

The electric field generated by the z-component of a point source of
the magnetic current type is given by

Ĝem
xz;sðx; x 0;ωÞ ¼ Ĝem;i

xz;s ðx − x 0;ωÞ

þ ζs sinðϕÞ
8πζðvÞs

Z
∞

κ¼0

~gtezz;sJ1ðκrÞ
κ2

Γ̄s
dκ; (126)

Ĝem
yz;sðx; x 0;ωÞ ¼ Ĝem;i

yz;s ðx − x 0;ωÞ

−
ζs cosðϕÞ
8πζðvÞs

Z
∞

κ¼0

~gtezz;sJ1ðκrÞ
κ2

Γ̄s
dκ; (127)

Ĝem
zz;sðx; x 0;ωÞ ¼ 0: (128)

Using the duality principle, we have also found expressions for the
components of the magnetic field generated by electric and mag-
netic dipole sources. If the receivers are not located in the source
layer, the electromagnetic field can be computed with similar ex-
pressions but without the direct field terms.
The attached computer code evaluates these integrals with a 61-

point Gauss-Kronrod integration routine at one depth level. Note
that the line integral is not angle dependent. Once the integral is
evaluated for one line at one depth level, the electromagnetic field
for a 2D grid at that depth level can be computed by simply multi-
plying the result with the factor preceding the integral for the angles
ϕ corresponding to any grid points on the 2D grid. An alternative to
solving the integral with a quadrature method would be to use dig-
ital filters as proposed, for example, by Kong (2007). However, that
would limit the application of the code to problems in the diffusive
limit. Because we aimed at producing a computer code that can be

applied to diffusion problems as well as to wave problems, we chose
a quadrature method.

EXAMPLES

In this section, a set of examples is presented to illustrate the
equations derived above and to show the capabilities of EMmod,
the corresponding computer code. The first example compares
the electric field computed by EMmod with an analytical solution
in a medium of two homogeneous half-spaces. The analytical sol-
ution (Slob et al., 2010) neglects displacement currents, which is a
valid approximation at low frequencies such as 0.5 Hz as used in
this calculation. The upper half-space is nonconductive, whereas the
lower half-space consists of a VTI medium with a vertical conduc-
tivity of 0.3 S∕m and a horizontal conductivity of 3 S∕m. The rel-
ative electric permittivity is set to 80, and the magnetic permeability
is set to the value of free space. (Note that the effect of the relative
electric permittivity at this frequency is so small, that it cannot be
seen in the data. These values are given here because EMmod re-
quires a value for all input parameters.) The source and the receivers
are located 150 and 200 m below the interface between the two half-
spaces, respectively. Thus, the vertical distance between the source
and the receivers is 50 m. The upper limit of the integral of the
Hankel transformation is set to kmax ¼ 0.628625 m−1, which is
twice the Nyquist wavenumber for a spatial sampling rate of
10 m. All other parameter settings can be found in the file halfspa-
cemod.scr included with the code. The electric field has been mod-
eled for four different components in this setting: Ĝee

xx, Ĝ
ee
yx, Ĝ

ee
zx , and

Ĝee
zz . Figure 1 shows for each of these components, the amplitude

computed with the analytical half-space solution (Slob et al., 2010),
the amplitude computed with EMmod, and the relative error be-
tween the two. It can be seen that the relative error is clearly less
than 0.5% for all four situations. Slightly larger errors can appear at
or near singularities as can be observed, for example, in the xx-com-
ponent. Note that EMmod computes the Hankel integral only for a
limited set of locations in the space domain and interpolates linearly
or with pchip-interpolation to retrieve the fields at other locations.
By increasing the number of Hankel integral evaluations, the pre-
cision can be increased significantly. Figure 2 shows the phase for
the same components. For the phase, the relative error is mostly
smaller than 0.5%, except where the phase is close to zero. In that
case, the computation of the relative error contains a division with a
value that is almost zero, leading to higher relative error values.
The next example is a comparison of EMmod with a finite vol-

ume multigrid solver (Jönsthövel et al., 2006; Mulder, 2006, 2007).
Using this solver allows us to compare the solution of EMmod for a
more complicated model than just two homogeneous half-spaces.
For this example, we have chosen a model representing a marine
CSEM survey for hydrocarbon exploration (Figure 3). The source
is a horizontal inline-oriented electric source emitting a signal as in
the previous example at 0.5 Hz at a depth of 150 m. The horizontal
electric receivers are placed at the ocean bottom at a depth of 200 m.
The vertical electric receivers are at a depth of 175 m. This latter
choice was made because that is the location where the vertical
component in the multigrid solver is computed. Thus, interpolating
the vertical electric field across a layer interface, where it would not
be continuous, is avoided. The electric fields Ĝee

xx, Ĝ
ee
yx, and Ĝee

zx

computed with the multigrid solver and EMmod as well as the rel-
ative error between the two are plotted in Figure 4. The error is
again mostly small (i.e., around 0.5%), but there are areas of higher

0 m

200 m

1200 m

1000 m

σ = 0 S/m and ε
r
 = 1 (air)

σ = 3 S/m and ε
r
 = 80 (water)

σ = 1 S/m and ε
r
 = 17 (sediment)

σ = 1 S/m and ε
r
 = 17 (sediment)

σ = 0.02 S/m and ε
r
 = 2.1 (hydrocarbon reservoir)

150 m

Receiver
Source

Figure 3. Model used for the comparison with the finite volume
code. The layers of the medium are isotropic and characterized
by conductivities σ and relative electric permittivity εr. All layers
have the magnetic permeability of a vacuum.
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error toward the edges of the receiver array and close to the source.
The multigrid solver forces the field to zero at the model boundary,
which alters the solution. Furthermore, regularizing the stretched
grid used in the multigrid solver introduces another source of inac-

curacies. Discrepancies close to the source stem from the different
size of the source. In the multigrid solver, the source has the size of
the volume element where the source is located, and the source
is a point source with no extension in any direction in EMmod.
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Figure 4. Comparison between the solution of the multigrid finite volume code and EMmod with respect to the amplitude. Panels (a-c) show
the multigrid finite volume solution, the solution computed with EMmod and the relative error between the two for Ĝee

xx. Panels (d-f) show the
same for Ĝee

yx and panels (g-i) for Ĝee
zx.
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Therefore, the small differences encountered between the two codes
can be attributed to issues related to the multigrid solver.
The multigrid solver computes the electric field on a 3D grid,

which allows us to use equation 6 to compute the magnetic fields.
Those magnetic fields and the corresponding solution computed

with EMmod as well as the relative error between the two are shown
in Figure 5 for Ĝme

xx , Ĝ
me
yx , and Ĝme

zx . Again, the relative error is
mostly around 0.5% except close to the source and toward the edges
of the receiver array. Note that an additional source of error in the
magnetic field of the multigrid solution stems from the decreased
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Figure 5. Same as Figure 4 but for magnetic field receivers. Panels (a-c) show Ĝme
xx , panels (d-f) show Ĝme

yx , and panels (g-i) show Ĝme
zx .

F14 Hunziker et al.

D
ow

nl
oa

de
d 

04
/2

0/
15

 to
 1

31
.1

80
.1

31
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



precision due to using numerical derivatives in equation 6. This pos-
sibly leads to the large circular error observed for Ĝme

xx at approx-
imately 1 km offset.
The third example is a GPR application. Because GPR is a high-

frequency technology, the electromagnetic fields behave like waves.
The model consists of a layer sandwiched between two homo-
geneous half-spaces. The conductivity and the relative electric
permittivity of each material as well as the source and receiver
geometry are given in the left side of Figure 6. Note that unlike
in traditional GPR, the receivers are located 0.5 m below the source.
The reason for this choice lies in the nature of EMmod. If the source
and the receivers were both located at the surface with no vertical
distance between them, the specular reflection from the surface
would have an infinite bandwidth in the wavenumber domain,
which is difficult to cope with using a numerical integration scheme
for the Hankel transformation. The direct field does not pose a prob-
lem because it is computed in the space domain directly. The ver-
tical distance between the source and receivers can be minimized by
increasing the bandwidth of the integral. A rule of thumb for how to
choose the upper bound of the integral for a given vertical distance h
between the source and receivers is given by the following relation
(similar to the expression used in Lambot et al., 2007):

kmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
10

h

�
2

þ
�
ω

c

�
2

s
; (129)

with ω being the angular frequency and c the speed of light. The
factor 10 ensures that the signal has decayed to a magnitude of e−10

at the resulting kmax. We have chosen an upper bound for the in-
tegral of kmax ¼ 160 m−1, which is approximately 3.5 times larger
than indicated by equation 129 in order to be sure to avoid artifacts.
Tapering the response in the wavenumber domain before the inte-
gral is carried out may also help stabilize the solution. The resulting
data computed with EMmod for Ĝee

xx are shown on the right side of
Figure 6 The data are convolved with a Ricker wavelet with a cen-
tral frequency of 250 MHz, and a gain function (1þ jt3j with t
being the time in nanoseconds) is applied. The theoretical arrival
times of the direct wave (red), the wave that is refracted at the
surface (yellow), and the wave that is reflected at the subsurface
interface (green) are indicated with solid lines. In the left side of
the same figure, arrows correspondingly colored show the travel
path associated with these events. The theoretical traveltimes cor-

respond very well with the events in the data, confirming that EM-
mod also works in the high-frequency regime. All the other visible
events in the data are multiple reverberations of either the refracted
or the reflected wave as they typically occur in GPR. The signal that
is reflected at the surface coincides with the direct wave due to the
proximity of the source to the surface.

CONCLUSIONS

Starting with the Maxwell equations, we have shown in a VTI-
layered earth that if the vertical electric (TM-mode) and vertical
magnetic (TE-mode) field components are known, the whole
electromagnetic field can be derived from those two. Moreover,
through the duality principle, the vertical magnetic field is known
if the vertical electric field is known. Thus, by determining the ver-
tical electric field, we are able to derive the full 3D electromagnetic
response in a 1D medium consisting of VTI layers.
Our solution is accompanied by the computer code EMmod writ-

ten in C and Fortran, which uses our findings to model the 3D
electromagnetic field in a 1D earth for diffusive methods such as
CSEM as well as for wave methods such as GPR. The user can
freely choose between electric or magnetic dipole sources and
receivers and place them anywhere in the medium. The capabilities
and the correctness of the code are illustrated with three examples,
which show (1) the diffusive electric field in two homogeneous half-
spaces of which the lower one consists of a VTI medium, (2) the
diffusive electromagnetic field in an isotropic but otherwise more
complex medium, and (3) the response of an electromagnetic wave
in the high-frequency limit in an isotropic layer sandwiched by two
homogeneous isotropic half-spaces.
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APPENDIX A

THE VERTICAL COMPONENT OF THE
MAGNETIC FIELD

The vertical component of the magnetic field is obtained from
equations 75–104 as

~Gmm
zx;s ¼ ~Gmm;i

zx;s þ ikx

2ζðvÞs

fP̄u−
s W̄u

s − P̄d−
s W̄d

sg; (A-1)

~Gmm
zy;s ¼ ~Gmm;i

zy;s þ iky

2ζðvÞs

fP̄u−
s W̄u

s − P̄d−
s W̄d

sg; (A-2)

~Gmm
zz;s ¼ ~Gmm;i

zz;s þ ζsκ
2

2ðζðvÞs Þ2Γ̄s

fP̄uþ
s W̄u

s þ P̄dþ
s W̄d

sg; (A-3)

where the vertical wavenumber for the TE mode is given by

Γ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ζ∕ζðvÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ γ̄2

q
: (A-4)

The incident fields and the up- and downgoing fields are written as

~Gmm;i
zx;s ¼ −

ikx∂z
ζðvÞs

expð−Γ̄sjz − z 0jÞ
2Γ̄s

; (A-5)

~Gmm;i
zy;s ¼ −

iky∂z
ζðvÞs

expð−Γ̄sjz − z 0jÞ
2Γ̄s

; (A-6)

~Gmm;i
zz;s ¼ ∂z∂z − ηsζs

ζðvÞs

expð−Γ̄sjz − z 0jÞ
2Γ̄s

; (A-7)

P̄u�
s ¼ R̄þ

s

M̄s
ðexpð−Γ̄sdþÞ � R̄−

s exp½−Γ̄sðds þ d−Þ�Þ; (A-8)

P̄d�
s ¼ R̄−

s

M̄s
ðexpð−Γ̄sd−Þ � R̄þ

s exp½−Γ̄sðds þ dþÞ�Þ: (A-9)

In these equations, the factor M̄s and the TE-mode global reflection
coefficients are given by

M̄s ¼ 1 − R̄−
s R̄þ

s expð−2Γ̄sdsÞ; (A-10)

R̄�
n ¼ r̄�n þ R̄�

n�1 expð−2Γ̄n�1dn�1Þ
1þ r̄�n R̄�

n�1 expð−2Γ̄n�1dn�1Þ
; (A-11)

with local reflection coefficients

r̄�n ¼ ζn�1Γ̄n − ζnΓ̄n�1

ζn�1Γ̄n þ ζnΓ̄n�1

: (A-12)

The vertical magnetic field generated by electric point sources are
obtained as

~Gme
zx;s ¼ ~Gme;i

zx;s þ ζsiky

2ζðvÞs Γ̄s

ðP̄uþ
s W̄u

s þ P̄dþ
s W̄d

s Þ; (A-13)

~Gme
zy;s ¼ ~Gme;i

zy;s −
ζsikx

2ζðvÞs Γ̄s

ðP̄uþ
s W̄u

s þ P̄dþ
s W̄d

s Þ; (A-14)

~Gme
zz;s ¼ 0: (A-15)

The incident fields are given by

~Gme;i
zx;s ¼ ζsiky

ζðvÞs

expð−Γ̄sjz − z 0jÞ
2Γ̄s

; (A-16)

~Gme;i
zy;s ¼ −

ζsikx

ζðvÞs

expð−Γ̄sjz − z 0jÞ
2Γ̄s

: (A-17)

In the layers above the source, we find

~Gmm
zx;n ¼

ikx

2ζðvÞn

P̄u−
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (A-18)

~Gmm
zy;n ¼

iky

2ζðvÞn

P̄u−
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (A-19)

~Gmm
zz;n ¼

ζsκ
2

2ζðvÞs ζðvÞn Γ̄s

P̄uþ
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ;

(A-20)

and

~Gme
zx;n ¼

ζsiky

2ζðvÞn Γ̄s

P̄uþ
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (A-21)

~Gme
zy;n ¼ −

ζsikx

2ζðvÞn Γ̄s

P̄uþ
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (A-22)

~Gme
zz;n ¼ 0; (A-23)

for n ¼ s − 1 and 0 ≤ n < s − 1, and where the factors P̄�
n are

given by

P̄u�
s−1 ¼

ð1þ R̄−
s Þf�expð−Γ̄sd−Þþ R̄þ

s exp½−Γ̄sðdsþdþÞ�g
M̄s½1þ R̄−

s−1 expð−2Γ̄s−1ds−1Þ�
;

(A-24)

P̄u�
n ¼ P̄u�

s−1

Ys−2
m¼n

ð1þ R̄−
mþ1Þ expð−Γ̄mþ1dmþ1Þ

1þ R̄−
m expð−2Γ̄mdmÞ

: (A-25)
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In the layers below the source, we find

~Gmm
zx;n ¼

ikx

2ζðvÞn

P̄d−
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (A-26)

~Gmm
zy;n ¼

iky

2ζðvÞn

P̄d−
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (A-27)

~Gmm
zz;n ¼

ζsκ
2

2ζðvÞs ζðvÞn Γ̄s

P̄dþ
n ðW̄d

n þ R̄−
n expð−Γ̄ndnÞW̄u

nÞ;

(A-28)

and

~Gme
zx;n ¼

ζsiky

2ζðvÞn Γ̄s

P̄dþ
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (A-29)

~Gme
zy;n ¼ −

ζsikx

2ζðvÞn Γ̄s

P̄dþ
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (A-30)

~Gme
zz;n ¼ 0; (A-31)

for n ¼ sþ 1 and sþ 1 < n ≤ N þ 1 and the factors P̄�
n are

given by

P̄d�
sþ1 ¼

ð1þ R̄þ
s Þfexpð−Γ̄sdþÞ � R̄−

s exp½−Γ̄sðds þ d−Þ�g
M̄s½1þ R̄þ

sþ1 expð−2Γ̄sþ1dsþ1Þ�
;

(A-32)

P̄d�
n ¼ P̄d�

sþ1

Yn
m¼sþ2

ð1þ R̄þ
m−1Þ expð−Γ̄m−1dm−1Þ

1þ R̄þ
m expð−2Γ̄mdmÞ

: (A-33)

With these expressions, the horizontal components of the electric
and magnetic fields can be constructed.

APPENDIX B

THE HORIZONTAL ELECTRIC FIELD
COMPONENTS

The horizontal electric field generated by horizontal electric cur-
rent point sources and received in the source layer are obtained as

~Gee
xx;s ¼ ~Gee;i

xx;s −
ðikxÞ2Γs

2ηsκ
2

ðPu−
s Wu

s þ Pd−
s Wd

s Þ

þ ζsðikyÞ2
2κ2Γ̄s

ðP̄uþ
s W̄u

s þ P̄dþ
s W̄d

s Þ; (B-1)

~Gee
xy;s ¼ ~Gee;i

xy;s −
ikxikyΓs

2ηsκ
2

ðPu−
s Wu

s þ Pd−
s Wd

s Þ

−
ζsikxiky
2κ2Γ̄s

ðP̄uþ
s W̄u

s þ P̄dþ
s W̄d

s Þ; (B-2)

~Gee
xz;s ¼ ~Gee;i

xz;s −
ikx

2ηðvÞs

ðPuþ
s Wu

s − Pdþ
s Wd

s Þ: (B-3)

The function ~Gee
yx;n ¼ ~Gee

xy;n for any layer n, ~Gee
yy;n is equal to ~Gee

xx;n,
and ~Gee

yz;n is equal to ~Gee
xz;n, for any n when kx and ky are inter-

changed. The horizontal electric field components generated by ver-
tical electric dipoles can also be obtained from the vertical electric
field generated by horizontal electric dipoles through reciprocity, by
taking kx ¼ −kx, ky ¼ −ky and interchanging z and z 0. This will
lead to the same result. The incident fields are given by

~Gee;i
xx;s ¼

ðikxÞ2Γs

2ηsκ
2

expð−Γsjz − z 0jÞ

þ ζsðikyÞ2
2Γ̄sκ

2
expð−Γ̄sjz − z 0jÞ; (B-4)

~Gee;i
xy;s ¼

ikxikyΓs

2ηsκ
2

expð−Γsjz − z 0jÞ

−
ζsikxiky
2Γ̄sκ

2
expð−Γ̄sjz − z 0jÞ; (B-5)

~Gee;i
xz;s ¼ −

ikx∂z
2Γsη

ðvÞ
s

expð−Γsjz − z 0jÞ: (B-6)

The horizontal electric field in the source layer and generated by
magnetic dipoles is given by

~Gem
xx;s ¼ ~Gem;i

xx;s

þ ikxiky
2κ2

ðPuþ
s Wu

s − Pdþ
s Wd

s þ P̄u−
s W̄u

s − P̄d−
s W̄d

s Þ;
(B-7)

~Gem
xy;s ¼ ~Gem;i

xy;s −
ðikxÞ2
2κ2

ðPuþ
s Wu

s − Pdþ
s Wd

s Þ

þ ðikyÞ2
2κ2

ðP̄u−
s W̄u

s − P̄d−
s W̄d

s Þ; (B-8)

~Gem
xz;s ¼ ~Gem;i

xz;s þ ζs

ζðvÞs

iky
2Γ̄s

ðP̄uþ
s W̄u

s þ P̄dþ
s W̄d

s Þ: (B-9)

For any layer n, the function ~Gem
yx;n is equal to − ~Gem

xy;n and ~Gem
yz;n

is equal to − ~Gem
xz;n when kx and ky are interchanged, and ~Gem

yy;n ¼
− ~Gem

xx;n. The incident fields are given by

~Gem;i
xx;s ¼ ikxiky∂z

2κ2Γs
expð−Γsjz − zSjÞ

−
ikxiky∂z
2κ2Γ̄s

expð−Γ̄sjz − zSjÞ; (B-10)

~Gem;i
xy;s ¼ −

ðikxÞ2∂z
2κ2Γs

expð−Γsjz − zSjÞ

−
ðikyÞ2∂z
2κ2Γ̄s

expð−Γ̄sjz − zSjÞ; (B-11)
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~Gem;i
xz;s ¼ ζsiky

2ζðvÞs Γ̄s

expð−Γ̄sjz − zSjÞ: (B-12)

In the layers above the source, we find

~Gee
xx;n ¼ −

ðikxÞ2Γn

2ηnκ
2

Pu−
n ðWu

n − R−
n expð−ΓndnÞWd

nÞ

þ ζsðikyÞ2
2κ2Γ̄s

P̄uþ
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (B-13)

~Gee
xy;s ¼ −

ikxikyΓn

2ηnκ
2

Pu−
n ðWu

n − R−
n expð−ΓndnÞWd

nÞ

−
ζsikxiky
2κ2Γ̄s

P̄uþ
n ðW̄u

n þ R̄−
n expð−Γ̄ndnÞW̄d

nÞ; (B-14)

~Gee
xz;s¼−

ηsikxΓn

2ηnη
ðvÞ
s Γs

Puþ
n ðWu

n−R−
n expð−ΓndnÞWd

nÞ: (B-15)

In the layers below the source, we find

~Gee
xx;n ¼

ðikxÞ2Γn

2ηnκ
2

Pd−
n ðWd

n − Rþ
n expð−ΓndnÞWu

nÞ

þ ζsðikyÞ2
2κ2Γ̄s

P̄dþ
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (B-16)

~Gee
xy;s ¼

ikxikyΓn

2ηnκ
2

Pd−
n ðWd

n − Rþ
n expð−ΓndnÞWu

nÞ

−
ζsikxiky
2κ2Γ̄s

P̄dþ
n ðW̄d

n þ R̄þ
n expð−Γ̄ndnÞW̄u

nÞ; (B-17)

~Gee
xz;s ¼

ηsikxΓn

2ηnη
ðvÞ
s Γs

Pdþ
n ðWd

n − Rþ
n expð−ΓndnÞWu

nÞ: (B-18)
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