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Influence of initial film radius and film thickness on the rupture of foam films
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2629 HZ, Delft, The Netherlands

(Received 30 April 2020; accepted 24 November 2020; published 11 January 2021)

The initial thickness and radius of the film that forms upon close contact of two foam
bubbles are known to influence the thinning dynamics and lifetime of the film. Various
scalings of lifetime tr , with initial radius Rfilm and thickness ho, have been proposed in
literature. In this paper, we present a hydrodynamic thin-film model that includes both
surface tension, van der Waals forces, and drainage and that clarifies the various proposed
scalings of lifetime. Our model equations were solved numerically for a range of Rfilm

and ho as direct input parameters. Films with a large radius are found to thin locally at a
dimple, while films with a small radius thin across the entire film. The observed dynamics
and lifetime were interpreted by developing a simplified model that describes the early
stage dimpled drainage and the late stage van der Waals thinning, using known similarity
solutions. For large radii films, our simulations confirm earlier theoretical work on semi-
infinite films that predicts tr ∼ R0

filmh5/7
0 . For small radii films, our numerical simulations

show the opposite trend with lifetime being solely dependent on Rfilm, in fair agreement
with the simplified model that predicts tr ∼ R10/7

film h0
0.

DOI: 10.1103/PhysRevFluids.6.013603

I. INTRODUCTION

The stability of foams and emulsions is largely determined by the lifetime of the thin liquid film
that forms between two bubbles or droplets upon close contact. Thinning of this film is mediated by
drainage induced by the pressure difference between the film and the Plateau border. Once the film
gets thinner than O(100 nm), destabilizing van der Waals forces overtake the thinning process and
induce rupture of the film. Together, the early stage drainage and late stage rupture, which partially
overlap, determine the lifetime of the film.

Classical theory by Reynolds [1] describes the thinning of the film between the two bubbles by
considering a fluid between two plane-parallel rigid disks subjected to drainage. It teaches that the
approaching velocity of the discs is constant in time and depends on the imposed suction pressure
and disk radius. Vrij [2] extended Reynolds’ theory by postulating that the film thins uniformly
with the velocity predicted by Reynolds’ theory only down to a critical thickness. This critical
thickness marks the neutral stability of waves on the film due to the interplay between stabilizing
surface tension forces and destabilizing van der Waals forces. Upon further thinning, these waves,
which originate from thermal fluctuations, exhibit an exponential growth that outruns the Reynolds’
velocity, perturbing the interface until rupture occurs randomly at one of the troughs on the surface
of the film. However, earliest experiments in so-called Scheludko cells are at odds with this picture:
instead of uniform initial thinning, a local depression immediately develops near the Plateau border,
and this so-called “dimple” thins out more rapidly than the central part of the film [3–5]. The
formation of a dimple was first studied theoretically by Frankel and Mysels [6], who developed
scaling rules for film thinning at the center and at the periphery of the film. A criterion that describes
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whether and when a film primarily thins uniformly or locally through a dimple was developed by
Joye et al. [7] and Singh et al. [8] based on a comparison between the curvature in the dimple and
in the Plateau border. For many practical systems, this geometric criterion teaches us that films with
a radius larger than about 50 μm develop dimples in the film-thinning process. Taken altogether,
the film-thinning process comprises of an early drainage stage, that has been found to proceed via
the formation of a dimple, and a late rupture stage, where destabilizing van der Waals forces induce
rupture that may be enhanced through the amplification of perturbations on the interface.

A well-established theoretical description of film thinning is rooted in the thin-film equation,
which has been shown to accurately describe spatiotemporal profiles of the film and its lifetime
as reported for controlled drainage experiments between two bubbles or two droplets [9–12] and
between a bubble or droplet and a solid substrate [13–17]. Being a fourth-order nonlinear partial
differential equation, it is commonly solved numerically. An important aspect to be considered is
how to incorporate the approach of two initially spherical bubbles, and the resulting shape of the thin
film that subsequently forms between the flattened bubbles [18–20], into the thin-film description.
More specifically, the extent over which the film is flattened, referred to as the film radius, has been
shown to depend on the approach velocity in Atomic Force Microscopy (AFM) measurements [19]
and on the rate at which liquid is withdrawn between two bubbles in Scheludko cell experiments
[7,18]. A common way to incorporate these effects in the thin-film description is to introduce an
external force that drives the initially spherical interfaces together, which is switched off once a
flattened film has formed in order to study the thinning dynamics in the absence of this external
force [9]. In order to single out the effect of the initial features of the flattened film, i.e., its radius
and its thickness, we developed a simplified description that allows to immediately start from a
flattened film with prespecified radius and thickness. We use this approach to resolve the debated
question as to how initial film radius and thickness influence thinning dynamics and film lifetime.
This debate stems from the various simplifications to the classical thin-film equation that have been
used to answer the question using analytical techniques.

Assuming the film to be planar and to thin quasistatistically, Reynolds’ theory and later refine-
ments to the same analytically predict the lifetime to scale with film radius as tr ∼ R2

film [1,21].
Relaxing the quasisteady assumption to include the influence of drainage on the growth of waves in a
plane-parallel film, and using experimentally observed thinning rates, Sharma and Ruckenstein [22]
predicted tr ∼ R1

film. Malhotra and Wasan [23] performed numerical simulations using the thin-film
equation that solved exclusively for the flow in the Plateau border, while assuming that the film
remains essentially plane parallel, to find tr ∼ R4/5

film. Although this model is in reasonable agreement
with experimentally observed lifetimes, photographic techniques have shown that draining films are
not plane parallel [5,24,25]. This finding inspired the development of several theories that either take
into account quasistationary nonhomogeneities on a plane-parallel interface resulting in tr ∼ R4/5

film
(commonly referred as the after Manev, Tsekov, and Radoev (MTR) theory) [24–26], or assume the
translatory and oscillatory motion of hydrodynamic waves on a plane-parallel interface resulting in
tr ∼ R3/4

film [27]. With the inclusion of the aforementioned nonhomogeneities, these theories address
the notion that film thinning is not strictly plane parallel in nature. However, they fail to capture the
pronounced dimple shapes observed in the experiments [5,11,12,28]. Aside from the development of
steady and nonsteady plane-parallel models, with and without nonhomogeneities, models have been
developed on quasisteady nonplanar films featuring dimples. With the interface shape no longer
fixed, but freely deformable, an analysis of the spatiotemporal film profiles is significantly simplified
when assuming that the flow at the periphery of the film is independent of its radial location. Using
such a quasisteady approach, Frankel and Mysels [6] calculated the shape of a dimple close to
rupture. Aradian et al. [29] developed a comprehensive model for dimpling (referred as marginal
pinching in their work) that extended the model of Frankel and Mysels [6] for infinitely large films.
However, both of these works do not include van der Waals forces. Without their inclusion, films
do not rupture (i.e., reach a zero thickness asymptotically) such that the lifetime of the film and its
dependency on film radius and thickness cannot be predicted by these models.
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Rc

Rfilmr = 0 Rpb

FIG. 1. Schematic of an axisymmetric nonplanar thin liquid film between two gas bubbles with the film
thickness parameterized by h(r, t ). Since the geometry is mirror symmetric, we here display the upper half.
The initial film shows a flat part extending from 0 < r � Rfilm with the pressure primarily given by the van der
Waals component of the disjoining pressure p ∼ A/6πh3. This flat part is connected to a curved part extending
from Rfilm < r � Rfilm + Rpb with the pressure primarily given by the Laplace pressure p ∼ −2γ /Rc, with 2/Rc

as the curvature imposed at the edge. The dashed line at r = 0 signifies the second symmetry of the problem,
viz., the axisymmetry in the system.

In this work, we clarify the variety of scaling rules in the literature, stemming from various
applied simplifications, by numerically solving the thin-film equation without such simplifications,
using initial film radius and thickness as direct input parameters. To mechanistically explain the
numerically obtained dependency of the lifetime of the film on its initial radius and thickness, we
combined earlier-reported analytical models for dimpling in the early stage [6] and rupture through
van der Waals forces in the late stage [30]. While these models were obtained through simplification
of the full thin-film equation, the combined model presented here does corroborate the dependency
found in our simulations of the full thin-film equation.

II. PROBLEM FORMULATION

We study the evolution of an axisymmetric nonplanar thin liquid film with viscosity μ and surface
tension γ between two gas bubbles. The spatiotemporal thickness of the film is parameterized by
h(r, t ). Since the geometry of the problem is mirror symmetric, we consider only one half of the
film as shown in Fig. 1. Throughout this work, the term “thickness” is used to refer to the full film
thickness h(r, t ). The film comprises of a flat part between 0 < r � Rfilm of initial thickness ho,
connected to a curved part between Rfilm � r � Rfilm + Rpb, with a curvature 2/Rc corresponding to
a Plateau border. Considering the pressure in the gas phase to be uniform and setting it equal to zero,
the pressure p in the curved part of the liquid film, where intermolecular forces play an insignificant
role, is dictated primarily by the Laplace pressure and of order p = −2γ /Rc. Conversely, the
pressure in the thin flat part is dictated by intermolecular forces, which in this paper are considered
as attractive van der Waals forces, such that it is of order p = A/6πh3, with A being the Hamaker
constant. The difference in pressure drains the liquid from the flatter part of the film to the more
curved part.

The axisymmetric thin-film equation that describes the evolution of nonplanar thin films can
be derived by applying a long-wave approximation to the incompressible Navier-Stokes equations
[31,32]. We consider rigid interfaces which could be encountered in surfactant-rich systems or
even in systems with traces of impurities. These interfaces are described by commonly encountered
tangentially immobile boundary conditions [19], which then yields

∂h

∂t
= 1

12μ

1

r

∂

∂r

{
rh3 ∂

∂r

[
A

6πh3
− γ

2r

∂

∂r

(
r
∂h

∂r

)]}
, (1)
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with the first term on the right side arising from long-ranged attractive van der Waals forces and the
second term from surface tension forces. Since the problem we consider is axisymmetric around
r = 0, at the left boundary of our domain, gradients in thickness and pressure are zero, i.e.,

∂h

∂r
= 0,

∂ p

∂r
= 0, both at (r = 0). (2)

Using p = A/6πh3 − γ /2r(∂/∂r(r∂h/∂r)), the boundary condition for pressure becomes A
2πh4

∂h
∂r +

γ

2
∂
∂r ( 1

r
∂h
∂r + ∂2h

∂r2 ) = 0 at r = 0, which simplifies to ∂3h/∂r3(r = 0) = 0 when using the first bound-
ary condition ∂h/∂r(r = 0) = 0 together with the notion that the two principal curvatures are
the same at r = 0 due to axisymmetry. A Plateau border of constant curvature is obtained by
imposing its shape, i.e., curvature (2/Rc)1 and corresponding height, at the other domain boundary
(r = Rfilm + Rpb), i.e.,

1

2r

∂

∂r

(
r
∂h

∂r

)
= 2

Rc
, at (r = Rfilm + Rpb)

h = ho + (r2 − R2
film )

Rc
+ 2R2

film

Rc
ln

(
Rfilm

r

)
, at (r = Rfilm + Rpb)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (3)

This height is obtained by integrating the expression for constant curvature in the curved meniscus
and imposing that the height and its first derivative match the planar part of the film at r = Rfilm,
i.e., h(r = Rfilm ) = ho and ∂h/∂r(r = Rfilm ) = 0.

The initial film profile is described by a flat film connected to a Plateau border of constant
curvature, i.e.,

h = ho, at (0 < r � Rfilm, t = 0)

h = ho + (r2 − R2
film )

Rc
+ 2R2

film

Rc
ln

(
Rfilm

r

)
, at (Rfilm < r � Rfilm + Rpb, t = 0)

⎫⎪⎬
⎪⎭. (4)

While the height and its first derivative smoothly connect the flat and the curved parts, we note
that the second derivative is discontinuous. Although the corresponding pressure profile is discon-
tinuous at the connection, we confirm from checking the pressure profiles that this discontinuity
equilibrates very quickly, i.e., in less than 0.01% of the lifetime. Additionally, eliminating the
pressure discontinuity by using an initial condition that connects the flat part to the curved part
using a transition region [33], we see that the resulting profiles (see Fig. 2) overlap those without
the transition region soon after the start (for t � tr/8). Furthermore, the addition of a significant
perturbation representative of hydrodynamic nonhomogeneities in the initial condition, as indicated
by the red dashed curves in Fig. 2, also proves to be inconsequential in determining the lifetime
and the film profile at the instant of rupture. This initial condition independency study ensures that
the film dynamics during almost the entire process and the resulting lifetime are not affected by the
choice of our initial condition.

The governing equation, boundary, and initial conditions are provided in dimensional form
and show that the problem is governed by six parameters, which include three material prop-
erties, i.e., μ, γ , and A, and three geometric parameters, i.e., ho, Rc, and Rfilm. The solution
is insensitive to the chosen value of Rpb (see Fig. 1) as long as it lies between an upper and
a lower bound. The upper bound is dictated by the validity of lubrication approximation, i.e.,

1In experiments, the radius of the capillary Rc directly governs the curvature of the interface and thereby the
amount of capillary suction. In our numerical model, the capillary itself is not incorporated into the domain and
we specify a constant curvature 2/Rc, sufficiently far away from the flat part of the film such that the dynamics
and lifetime are independent of the location of this boundary, such that Rpb does not play a role.
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µ

FIG. 2. Evolution of a film with initial thickness ho = 300 nm and radius Rfilm = 50 μm, with three
different initial conditions. Blue solid lines correspond to the initial condition prescribed in Eq. (4). Red dashed
lines correspond to an initial condition where a small sinusoidal perturbation with an amplitude of 25 nm and
a wavelength of 16.7 μm is added to the flat part of the initial condition in Eq. (4). Yellow dashed-dotted lines
correspond to a film that has a transition region from the flat portion of the film to the curved portion, with
transition region as determined in Eq. (1) in the Supplemental Material. Aside from the initial profiles at t = 0,
profiles are shown for tr/2n with n = 5, . . . , 0, with the rupture times tr being 15.74, 15.74, and 15.69 s for
these three initial conditions, respectively.

Rpb � Rc/4(1 +
√

(1 + 16R2
film/R2

c )) − Rfilm, while the lower bound is dictated by the region where
curvature goes from practically zero in the flat part to 2/Rc in the curved part. This leads to
Rpb � √

hoRc, as discussed in more detail in Shah et al. [35].
We now perform a scaling analysis to demonstrate that the problem is governed by two dimen-

sionless parameters. Using a height scale h∗ = ho, a radial scale r∗ = √
hoRc/4 [obtained from the

constant curvature boundary condition at far right, i.e., Eq. (3)] and a timescale t∗ = 3μR2
c/2γ ho,

we obtain the dimensionless variables h̃ = h/h∗, r̃ = r/r∗, and t̃ = t/t∗ together with the following
dimensionless governing equation:

∂ h̃

∂ t̃
= 1

r̃

∂

∂ r̃

{
r̃h̃3 ∂

∂ r̃

[
1

12κ

1

h̃3
− 1

r̃

∂

∂ r̃

(
r̃
∂ h̃

∂ r̃

)]}
, (5)

where κ = πh3
oγ /ARc is the relative strength of drainage. It signifies the ratio of the Laplace

pressure and the initial van der Waals pressure. Additionally, we obtain the dimensionless boundary
conditions

∂ h̃

∂ r̃
= 0,

∂3h̃

∂ r̃3
= 0, both at (r̃ = 0)

1

r̃

∂

∂ r̃

(
r̃
∂ h̃

∂ r̃

)
= 1, at (r̃ = R̃film + R̃pb)

h̃ = 1 + (r̃2 − R̃2
film )

4
+ R̃2

film

2
ln

(
R̃film

r̃

)
, at (r̃ = R̃film + R̃pb)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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and dimensionless initial condition

h̃ = 1, at (0 < r̃ � R̃film, t̃ = 0)

h̃ = 1 + (r̃2 − R̃2
film )

4
+ R̃2

film

2
ln

(
R̃film

r̃

)
, at (R̃film < r̃ � R̃film + R̃pb, t̃ = 0)

⎫⎪⎬
⎪⎭ (7)

with Rfilm and Rpb made dimensionless using r∗. With R̃pb chosen such that the solution is insensitive
to its value, this scaling analysis shows that the problem is fully governed by two dimensionless
control parameters, i.e., the relative strength of drainage κ and the film radius R̃film.2 We explore
the parameter space by varying these two dimensionless parameters. As the main aim of this work
is to understand how film dynamics depend on the initial features of the film, i.e., the film radius
and its thickness, we translate the dimensionless representation back to the dimensional one. This
is done by fixing μ, γ , A, and Rc, as is for example the case when performing experiments with a
given set of working fluids in a capillary of given radius in a so-called Scheludko cell. Motivated by
the experimental parameter range (using different fluids in a single capillary) from Manev et al.
[25], we use μ = 0.000 89 Pa s, γ = 0.0445 N/m, A = 1.5 × 10−20 J, and Rc = 1.8 mm. The
dimensional parameter space is then spanned by the initial film thickness h0 from 300–2000 nm
and the film radius Rfilm from 40–4000 μm. Note that in our simulations, we are able to control
these parameters independently, while they are coupled in experiments through the flow rate at
which liquid is withdrawn between two bubbles prior to the start of the film rupture experiments
[7].

We conclude our problem formulation with a note on thermal fluctuations at the gas-liquid
interface. These fluctuations do significantly influence film dynamics and rupture time in case of
weak drainage (κ � 1), as shown in our previous work [18]. The focal point in this work is on
cases with κ � 1, such that we have not included thermal fluctuations in our problem description.
This is also further corroborated with the notion that films with a small radius are stable against
waves because the unstable ones have wavelengths that exceed the radius of the film [9,19].

III. NUMERICAL IMPLEMENTATION

We numerically solve3 the axisymmetric thin-film equation [Eq. (5)] along with its boundary
and initial conditions [Eqs. (6) and (7)] using a finite-difference scheme. We discretize the domain
into an equidistant mesh of size �r̃ using a second-order central differencing scheme for spatial
discretization. Time discretization is performed using an implicit-explicit scheme of a constant time-
step size �t̃ , wherein the fourth-order term describing capillary forces is discretized implicitly and
the second-order term describing the nonlinear van der Waals forces is discretized explicitly. The
mobility term (r̃h̃3) is discretized as per the positivity-preserving scheme discussed in Diez et al.
[34]. Based on our previous work [35], we use �r̃ = 0.05 and �t̃ = �r̃2.25, and confirm that the
presented simulation results for lifetimes are grid and time-step size independent.

IV. RESULTS

A. Characterization of the film evolution for the governing parameter space

We start by characterizing the thinning dynamics for the governing parameter space. As ex-
plained, we fix μ, γ , A, and Rc such that the parameter space is spanned by the initial film thickness

2The above set of dimensionless governing equations [Eq. (5)] along with dimensionless initial and boundary
conditions [Eqs. (7) and (6)] also apply to the case of surface bubbles, as long as we assume the bubble to
approach a rigid surface that remains flat and the film to drain by capillary suction. To turn to the dimensional
quantities, one should then use the following choices of scales: h∗ = ho, r∗ = √

hoRc/2, and t∗ = 3μR2
c/γ ho.

3MATLAB files used for simulations available at github, doi: 10.5281/zenodo.3653037.
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(c) (d)
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FIG. 3. Film evolution in space and time at the boundaries of our parameter space. Large films Rfilm =
4000 μm of h0 = 300 nm (a) and ho = 2000 nm (b) initial thickness. The abscissa were made discontinuous to
better illustrate the localized dimple for large film radius. Small films Rfilm = 40 μm of h0 = 300 nm (c) and
ho = 2000 nm (d) initial thickness. (c), (d) Film evolution in space and time for Rfilm = 40 μm at ho = 300 nm in
(c) and ho = 2000 nm in (d). Inset in (d): zoomed view of the film evolution at t = tr/2n with n = 5 . . . 0. Aside
from the initial profiles at t = 0, profiles are shown for tr/2n, with n = 6 . . . 0 in (a) and (c) and n = 11 . . . 0 in
(b) and (d), with tr = 22.87, 150.48, 12.91, and 11.12 s for (a), (b), (c), and (d), respectively.

h0 and film radius Rfilm. The lower limit of the film radius (40 μm) was chosen based on the
experimentally observed values [25,36], while the upper limit (4000 μm) was chosen to approach
the semi-infinite film asymptote [29,35,37]. The range of initial film thicknesses studied in this work
is representative of the drainage experiments reported in the literature [7,36].

We start with a description of films with the largest radius (Rfilm = 4000 μm) considered in this
work, connecting their behavior to the well-known behavior of semi-infinite films [29,35,37]. The
features of thinning of large films are the same for thin (h0 = 300 nm) and thick (h0 = 2000 nm)
films. They are characterized by the formation of a local depression, called a dimple, near the
connection between the flat and curved parts of the film, while the film at the center, i.e., at r = 0,
remains unaffected [see Figs. 3(a) and 3(b)]. With the thinning being a localized phenomenon,
the evolution of the film is insensitive to the film radius itself, given it is sufficiently large. Later
in this paper, we quantitatively show that the large film radius limit considered in this work indeed
approaches the behavior observed for semi-infinite films sometimes referred to as marginal pinching
[29]. Having confirmed the behavior for such large films, we now continue with the focal point of
the paper: the behavior of films with small radii.

The thinning behavior for the smallest film radius considered in this work (Rfilm = 40 μm)
is deliberately different from that for the largest films: film thinning initially occurs across the
entire film as evident for thin and thick films in Figs. 3(c) and 3(d), respectively. Shortly prior
to rupture, the films do develop a dimple. A prediction for the transition from uniform thinning to
dimpled thinning was first developed by Joye et al. [7], who evaluated the ratio between the order
of magnitude of the curvature at the center of the film 2h(t )/R2

film and at the bubble 1/Rc. Using
numerical simulations, they found that films develop a dimple when this ratio decreases below a

013603-7
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µfilm

film

FIG. 4. Lifetime of the film as a function of the initial film radius, for different initial film thicknesses.
Green and blue dashed lines correspond to the lifetimes calculated based on Reynolds’ [1] and MTR theory
[26], respectively. The red dashed line corresponds to lifetime calculated based on Eq. (19). The horizontal
solid lines at the right of the figure signify the plateauing values of film lifetimes at large radius. These values
are further used in Fig. 9 to compare with the mechanistic model developed for large films in Sec. IV D.

value of 0.7. For the here considered case with Rc = 1.8 mm and Rfilm at the time of rupture4 being
38 and 30 μm for ho = 300 and 2000 nm, respectively, Joye’s criterion predicts a transition around
h(t ) = 286 and 175 nm, respectively, which is in good agreement with those found in Figs. 3(c) and
3(d).

B. Influence of initial film radius and film thickness on film lifetime

Having studied the film evolution at the boundaries of our parameter space, we now study how
film lifetime depends on the initial film radius and film thickness. As anticipated, we observe two
regimes with distinctly different behavior for small and large radii films as shown in Fig. 4.

For large radii films, the lifetime of a film is independent of the initial film radius and depends
solely on the initial film thickness, confirming what is well established for semi-infinite films [37].
Briefly, the independence on film radius is explained by the thinning process being a localized
phenomena, such that the radius of the film plays no role. Lifetimes are well described by our earlier
developed model for semi-infinite two-dimensional (2D) films [37], after modification to account
for the radial geometry considered in this work leading to tr ∼ R0

filmh5/7
o , as detailed in Sec. IV D.

For small radii films, film lifetime solely depends on the initial film radius and not on the initial
film thickness, in qualitative agreement with the work by Malhotra and Wasan [23]. Our numerical
data show tr to scale with Rn

film, with the exponent n = 1.1 being smaller (≈81%) than 2 from
classical Reynolds’ theory [1] and larger (≈27%) than 4/5 from MTR theory [23,25]. The thin-film
simulations as done in this work with ho and Rfilm being direct input parameters hence clarify the

4The dimple does not necessarily remain at the location determined by the initial film radius during the film
evolution. Once the interface relaxes from the discontinuous initial condition, the dimple initially moves toward
the center, and then moves outward, with the final film radius at the instant of rupture in Figs. 3(c) and 3(d)
being 38.34 and 30.22 μm, respectively, as compared to the initial film radius Rfilm = 40 μm.
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FIG. 5. Film dynamics for a prototypical small film (Rfilm = 100 μm), with initial thickness ho = 1000 nm
illustrating how the dimensionless minimum film thickness extracted from the numerical simulations evolves
in time. The film evolution shows an early and a late stage, both governed by power-law dynamics (further
detailed in Secs. IV C 1 and IV C 2). The inset shows the same data in a log-lin plot. The red dashed line
shows an exponential fit from 0.03 < h̃min(t ) < 0.08 as used in Manev et al. [25]. When we recast the fitting
parameters ã and b̃ to their dimensional equivalents we find these parameters as a = 133 nm and b = 0.046 Hz.
While the value of a is not available to compare within the paper by Manev et al. [25], the value of b is within
15% of their experimentally determined values.

variety of different exponents reported in literature that were obtained under various simplifying
assumptions. In order to develop a better understanding on key simplifying assumptions and provide
mechanistic insights in the numerically obtained scaling relation between tr , Rfilm, and ho, we
combine two known analytical solutions [6,30]. Full details on this model are provided in Sec. IV C.
For the reader mainly interested in the outcome, the analytical description yields tr ∼ h0

oR10/7
film , with

the exponent for Rfilm in fair agreement (≈30% larger) with the numerical data, as shown in Fig. 4.
Although our mechanistic model does not give a better prediction than that provided by MTR theory,
the strength of our model lies on the one hand in its simplicity, following directly from the thin-film
formalism and, on the other hand, in its ability to capture the dynamics of dimple formation.

We close the discussion on Fig. 4 by briefly commenting on the observation that film lifetime
does not monotonically reach the plateauing value observed for large radii film. We observe that the
thinning behavior in the transition region is qualitatively different from that for the large radii films,
with the dimple shifting to the center of the film and growing beyond the initial film thickness (see
Appendix A, Fig. 10). Since the focal point of this paper has been to study small films, a deeper
analysis of this behavior is beyond the scope of this study. We next discuss the analytical models
used to explain the lifetimes of small and large radii films.

C. Mechanistic model for dynamics of films with small radius

In this section, we develop a mechanistic model that combines two known analytical solutions
that were obtained for the early and late stage dynamics through simplifications of the thin-film
equation. We start our analysis by (re)examining the two mechanisms in these two stages. In the
early stage, thinning is primarily governed by capillary drainage, while van der Waals forces govern
the late stage. These stages are clearly evident from a plot of the minimum film thickness as a
function of time, as shown for a prototypical small film (Rfilm = 100 μm) in Fig. 5. Some previous
works [12,13] captured the dynamics using a single exponential function, fitted to (and currently
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found to describe) only a part of the evolution (0.03 < h̃min < 0.08) as shown in the inset of Fig. 5.
Other works studied the early and late stages separately [6,29,30]. For films with small radius, films
thin initially across the entire radius and later locally at the dimple [Figs. 3(c) and 3(d)]. Analytical
models described for uniform and localized thinning due to van der Waals forces were developed
by Frankel and Mysels [6] and Zhang and Lister [30], respectively, such that we have chosen their
scaling rules for early and late stage dynamics. In Sec. IV C 3, we combine them to develop a
theoretical model that describes how the lifetime of films depends on their initial features.

1. Scaling rule for the early stage

Frankel and Mysels [6] developed scaling rules for the evolution of the film thickness at the
center hc and at the minimum of the dimple hmin. They arrived at these rules by first determining
the shape of a dimple close to rupture based on a self-similar solution of Eqs. (1)–(4) after applying
the following simplifying assumptions: (i) a quasisteady flow, (ii) hmin � hc [5], (iii) negligible
influence of van der Waals forces, (iv) inner far-field constant slope, and (v) outer far-field constant
curvature. They then connect the dimple to the central part of the film by assuming it to be
described by a parabola h(r, t ) = ar2 + br + c, and infer the dynamics of hc and hmin by solving
the continuity equation. On substituting the boundary conditions h(r = 0, t ) = hc, ∂h/∂r(r =
0, t ) = 0, and h(r = Rfilm, t ) = hmin in the aforementioned parabola, along with the assumption
of hmin � hc, results into a film profile h(t ) = hc(1 − r2/R2

film ). Using the two-dimensional flow
rate [Q = 1/(2πRfilm )d/dt (2π

∫ Rfilm

0 hr dr)] through the dimple, an inner far-field constant slope
−2hc/Rfilm and a constant far-field outer curvature 2/Rc, Frankel and Mysels [6] show5 that hc and
hmin scale as

hc =
(

3μR6
film

c124γ Rct

)1/4

(8)

and

hmin = 2c1c2h2
cRc

R2
film

, (9)

respectively. Here, c1 = 1.22 and c2 = 1.25 as determined by Frankel and Mysels [6] are the
numerical solutions for the asymptotic curvature at the far-right boundary of the dimple and the
minimum value of the film thickness at the dimple, respectively. On substituting for hc from Eq. (8),
in Eq. (9) we obtain

hmin =
(

3μc1c2
2R2

filmRc

24γ t

)1/2

. (10)

Nondimensionalizing Eq. (10), using R̃film = Rfilm/
√

hoRc/4, t̃ = t/(3μR2
c/2γ ho), and h̃min =

hmin/ho as discussed in Sec. II, we obtain

h̃min =
(

c1c2
2

25

R̃2
film

t̃

)1/2

. (11)

5The numerical factors in Eqs. (8) and (9) are adjusted to account for the difference in the definition of film
thicknesses between our work (see Sec. II) and Frankel and Mysels [6]. More specifically, the constant 24

instead of 28 in Eq. (8) and the constant 20 instead of 21 in Eq. (9) stem from considering the upper half of an
axisymmetric film between two bubbles in our work as compared to the full film thickness considered between
the gas-liquid interface and the solid substrate in Frankel and Mysels [6].
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FIG. 6. Dimensionless thinning rate as a function of the rescaled time axis [based on Eq. (12)] illustrating
early stage film dynamics for a fixed initial film thickness of ho = 2000 nm and different Rfilm = 50, 100,
200, and 400 μm in (a); and for a fixed film radius of Rfilm = 100 μm and different h0 = 300, 500, 1000, and
2000 nm in (b). The black solid lines correspond to Eq. (12).

We note that the starting point in the model derived by Frankel and Mysels [6] is the occurrence
of a dimple, such that this equation holds near rupture. We hence expect this relation to describe
the simulations, which start from a finite value of h̃min at t̃ = 0, after an initial transient. As
commonly done in literature [7,24], rather than considering h̃min in a comparison between theory
and simulations, we compare the thinning rate

∂ h̃min

∂ t̃
= −1

2

(
c1c2

2

25

)1/2(
R̃2

film

t̃3

)1/2

. (12)

This expression shows that the dimensionless thinning rate scales with time as t̃−3/2, with film radius
as R̃1

film, and with film thickness as h0
o. Comparing our simulations for different Rfilm and fixed ho,

we see a reasonable collapse of the curves when plotting the dimensionless rate against t̃3/R̃2
film

[Fig. 6(a)]. Furthermore, for different ho and fixed R̃film, we see that the early stage dynamics indeed
does not depend on the initial film thickness [Fig. 6(b)].

As mentioned earlier, van der Waals forces are not included in the model by Frankel and Mysels
[6]. Consequently, the film approaches rupture asymptotically, i.e., h̃min = 0 does not occur in a
finite time. Thus, Eq. (12) on its own could not be used to predict the lifetime of the film. In the next
section, we therefore consider the late stage governed by van der Waals forces separately.

2. Scaling rule for the late stage

Van der Waals forces induce a rapid rupture once the film is thinned sufficiently to a certain
critical thickness hcr . Considering the evolution of the dimple close to rupture where it is known to
be independent of initial and boundary conditions [38], Zhang and Lister [30] developed a similarity
solution for Eq. (1) to arrive at the following scaling:

h̃min = av

(
t̃r − t̃

144κ2

)1/5

, (13)
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(a) (b)
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film

FIG. 7. Dimensionless thinning rate as a function of the rescaled time axis [based on Eq. (14)] illustrating
late stage film dynamics for a fixed initial film thickness of ho = 2000 nm and different Rfilm = 50, 100, 200,
and 400 μm in (a); and for a fixed film radius of Rfilm = 100 μm and different h0 = 300, 500, 1000, and
2000 nm in (b). The black solid lines correspond to Eq. (14).

where av is an O(1) constant. Here, 144κ2 is a factor that relates t̃r and t̃ to a dimensionless time
relevant for this late stage [30].6 The thinning rate is then given by

∂ h̃min

∂ t̃
= −av

5

(
1

144κ2(t̃r − t̃ )4

)1/5

. (14)

Notably, the thinning rate in the late stage neither depends on the initial film thickness nor on the
initial film radius. Replotting the data set shown in Figs. 6(a) and 6(b), now using the rescaled time
axis 1/[144κ2(t̃r − t̃ )4] all curves indeed collapse close to rupture as shown on the right-hand sides
of Figs. 7(a) and 7(b).7 The O(1) constant is obtained by fitting the data to obtain av = 1.18.

3. Estimate of the film lifetime

To arrive at the total thinning rate, we consider the contribution of the early and the late stage
[Eqs. (12) and (14)] as additive [37], to arrive at

(
∂ h̃min

∂ t̃

)
total

= −1

2

(
c1c2

2

25

)1/2(
R̃2

film

t̃3

)1/2

− av

5

(
1

144κ2(t̃r − t̃ )4

)1/5

. (15)

On recasting t̃ and (t̃r − t̃ ) in the first and the second terms on the right-hand side in terms of h̃min

using Eqs. (11) and (13), respectively, we obtain the total thinning rate as

(
∂ h̃min

∂ t̃

)
total

=
( −24

c1c2
2R̃2

film

)
h̃3

min − a5
v

720h̃4
minκ

2
, (16)

6Note that the ratio (1/144κ2) arises from the translation from the timescale based on the growth of unstable
waves to the timescale based on drainage as used throughout this paper. More specifically, the length scale
pertaining to the unstable waves is h2

o

√
3πγ /A, which translates into a timescale 216π2γμh5

o/A2.
7We note that the nonsmooth connection between the early and late stage arises from a shift in the location

of the dimple (as for instance seen in Fig. 3). In our simulations, this shift occurs by one grid point such that it
appears as a noncontinuous jump.
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which is independent of time. An estimate for the lifetime can then be obtained as

t̃r =
∫ t̃r

0
∂ t̃ =

∫ 0

1

∂ h̃min(
−24

c1c2
2R̃2

film

)
h̃3

min − a5
v

720h̃4
minκ

2

. (17)

The solution of the above integral8 at the limit R̃film → 0, for any value of κ , gives

t̃r = 0.65 R̃10/7
film κ4/7, (18)

On substituting back the relevant length and timescales from Sec. II, we get

tr = 0.65
(Rfilm

r∗
)10/7(πh3

oγ

ARc

)4/7

t∗ = 5.05R10/7
film γ −3/7A−4/7R5/7

c . (19)

This analysis shows that the dimensional lifetime is independent of the initial thickness ho and
scales with the radius Rfilm with an exponent of 10/7. This result is plotted in Fig. 4 as the dashed
red line. Given the simplifying assumptions used to derive the similarity solutions for the early
and late stage, Eq. (19) fairly well describes the numerical data, as shown in Fig. 4. We note that
the timescale of the early stage is much larger than that of the late stage, such that an alternative
way to determine the total lifetime is to solely consider the early stage and determine the time
it takes to reach a critical thickness for which different empirical correlations are available in the
literature [2,22,24,39]. The strength of the here presented analytical model is that it does not require
empirical correlations. In fact, the model allows to determine a theoretical prediction of the critical
thickness. We end this section by demonstrating that we can obtain an estimate of critical film
thickness by following the approach developed by Vrij [2]. Vrij [2] proposed that the crossover
from the early stage to the late stage occurs via an inflection point, wherein both the film thickness
and its first derivative need to be continuous and identical. Equating film thicknesses for the two
stages as described in Eqs. (11) and (13), and the derivatives of the film thicknesses as described
in Eqs. (12) and (14), gives the time t̃cr = 0.55R̃10/7

film κ4/7 at which the crossover happens from the
early stage to the late stage. Substituting this estimate of t̃cr in Eq. (11), we obtain an estimate
of the critical film thickness h̃cr = 0.33(R̃film/κ )2/7, which on substituting the scales yield hcr =
0.29(R2

filmRcA2/γ 2)1/7. Depending on the correlations used to relate the film thinning velocity with
the film radius, the exponent for the film radius in hcr ∼ Rx

film obtained in the literature is in the
range 0.11–0.48 [22,24,39]. Our exponent of 2/7 is in agreement with that found by Vrij [2].

D. Mechanistic model for dynamics of films with large radius

In this section, we adapt our earlier model developed for semi-infinite films in a 2D Cartesian
geometry to the axisymmetric geometry considered in this paper. Film thinning for these films is
observed to proceed via the formation of a localized dimple at the edge of the film, as shown in
Figs. 3(a) and 3(b). Aradian et al. [29] extended the model developed by Frankel and Mysels [6] to
account for localized dimpling observed for large films. We therefore begin the model description
by studying the early stage dynamics that follows the scaling rule developed by Aradian et al. [29]:

h̃min = art̃
−1/2, (20)

which on taking the time derivative leads to

∂ h̃min

∂ t̃
= − ar

2t̃3/2
. (21)

8The exact solution is an impractically long solution and hence we solve it at limit Rfilm → 0 and Rfilm → ∞
to arrive at an approximate, but compact solution. The relative difference between the actual solution and the
approximate solution (18) is approximately 1%.
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FIG. 8. Dimensionless film thickness and thinning rate as a function of time illustrating the early stage in
(a) and (b), respectively, and the late stage film dynamics in (c) and (d), respectively, for a fixed film radius of
Rfilm = 4000 μm and different initial film thicknesses of ho = 300, 500, 1000, and 2000 nm. The black solid
lines in (a), (b), (c), and (d) correspond to Eqs. (20), (21), (13), and (14), respectively.

Figures 8(a) and 8(b) show how the early stage film dynamics from numerical simulations for these
large films compare for different initial film thicknesses for a fixed large Rfilm = 4000 μm. The data
are well described by the model, after a first initial transient. The O(1) constant obtained from a
fit of the data is ar = 1.2. To confirm that the scaling in Eq. (21) is independent of Rfilm, we also
analyzed the early stage dynamics for Rfilm = 1000, 2000, and 4000 μm. We confirm that those are
well described by Eq. (21) (model by Aradian et al. [29]), but not by Eq. (12) (model by Frankel
and Mysels [6]) (see Appendix B, Fig. 11).

The late stage evolution for these large axisymmetric films follows the model by Zhang and Lister
[30] presented in Eqs. (13) and (14), with the earlier reported O(1) constant av = 1.18. Figures 8(c)
and 8(d) show how our numerical simulations follow the late stage dynamics for different ho and
for Rfilm = 4000 μm.

Considering the contribution of the early and the late stages as additive and using the same
approach as presented in the main body of the paper, we arrive at the total thinning rate

(
∂ h̃min

∂ t̃

)
total

= − ar

2t̃3/2
− av

5

(
1

144κ2(t̃r − t̃ )4

)1/5

, (22)

which, when represented in terms of h̃min, reads as
(

∂ h̃min

∂ t̃

)
total

= − h̃3
min

2a2
r

− a5
v

720h̃4
minκ

2
. (23)
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FIG. 9. Dimensionless film rupture times as a function of dimensionless curvature for the large film
asymptotes at the extreme right in Fig. 4. The blue circles correspond to the numerical simulations whereas the
red line corresponds to the theoretical expression as described in Eq. (25).

An estimate for the film rupture time can then be obtained as

t̃r =
∫ t̃r

0
∂ t̃ = −

∫ 0

1

∂ h̃min

h̃3
min

2a2
r

+ a5
v

720h̃4
minκ

2

. (24)

The solution of the above integral at the limit κ → ∞ gives

t̃r = 6.32κ4/7. (25)

Figure 9 shows how large film asymptotes from Fig. 4 agree well with the theoretical model (25).
On substituting the scales in Eq. (25) to determine the dimensional lifetime, we obtain

tr = 18.2μR10/7
c γ −3/7A−4/7h5/7

o R0
film. (26)

For large film radii, we hence find that the dimensional lifetime of the film depends on the initial
film thickness and is independent of the film radius.

V. CONCLUSIONS

The aim of this work is to understand how the thinning dynamics and lifetime of films between
two bubbles depend on the extent to which the bubbles have deformed upon close contact, as
characterized by the initial radius and thickness of the flattened film. Numerical solutions of a
hydrodynamic thin-film model show that the thinning dynamics are distinctly different for films
of large and small initial radius. Large films thin locally through the formation of a dimple at the
edge of the film [29], while small films initially thin across the entire film, then develop a dimple,
and eventually rupture at the minimum of this dimple. For large films, our simulations confirm
earlier theoretical work on films of semi-infinite radius [37] that predicts that the lifetime tr scales
with initial film radius Rfilm and thickness h0 as tr ∼ R0

filmh5/7
0 . As opposed to this scaling for large

films, we found the lifetime of small films, which was the focus of this work, to be independent of
the initial film thickness and dependent on film radius. To understand the scaling for small films,
we combined earlier-reported analytical solutions for dimpled thinning in the early stage [6] and
van der Waals rupture in the late stage [30]. While these analytical solutions were obtained through
simplification of the full thin-film equation, the predicted scaling tr ∼ h0R10/7

film captures the trend in
the numerical data reasonably well.
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APPENDIX A: FILM EVOLUTION AT THE TRANSITION REGION

The thinning behavior at the transition region is illustrated for a thin (ho = 300 nm) and thick
(ho = 2000 nm) film in Fig. 10, for which the transition occurs around Rfilm = 80 and 600 μm,
respectively. As expected, the film thinning is observed to proceed via the formation of a dimple at
the connection between the planar and the curved portion of the film. Qualitatively, the difference in
the film thinning at this transition region from that at the large radii films is that the film thickness at
the center of the film increases beyond the initial film thickness. The physics behind film dynamics
for films in this transition region is beyond the scope of this work.

APPENDIX B: THINNING DYNAMICS FOR LARGE FILMS: DEPENDENCE ON Rfilm

Figure 11 shows thinning rates for large film radii films and how they compare with the thinning
rates obtained using the self-similar solutions of Frankel and Mysels [6] and Aradian et al. [29]. We
find that our numerical data show a significant deviation with the self-similar solution by Frankel
and Mysels [6], whereas it shows a reasonable fit the self-similar solution by Aradian et al. [29].
This further emphasizes that the thinning dynamics for large films is independent of the film radius
and forms a strong basis to choose the self-similar solution by Aradian et al. [29] to explain the
early stage dynamics for such films.

(b)(a)

µ µ

µµfilm film

FIG. 10. Film evolution in the transition regime for two examples: (a) a thin film (h0 = 300 nm), which
has the transition around Rfilm = 80 μm, and (b) a thick film (h0 = 2000 nm), with the transition around
Rfilm = 600 μm. Aside from the initial profiles at t = 0, profiles are shown for tr/2n, with n = 7 . . . 0 in (a) and
n = 11 . . . 0 in (b), with tr = 11.0 s and 220.4 s for (a) and (b), respectively.
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FIG. 11. Dimensionless thinning rate as a function of the rescaled time axis based on Eq. (12) (shown using
black solid line) in (a) and based on Eq. (21) (shown using black solid line) in (b) illustrating early stage film
dynamics for a fixed initial film thickness of ho = 2000 nm and different Rfilm = 1000, 2000, and 4000 μm.
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