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ABSTRACT 

For current generation aircraft, airframe noise is considered to have a significant contribution to the aircraft 

noise levels, especially during the landing phase. In this paper, a noise breakdown of landing aircraft is 

presented to investigate this airframe noise contribution. Use is made of data acquired with an acoustic array. 

The flyover measurements have been taken for a number of aircraft types in the landing phase. In addition, a 

model for predicting airframe noise is employed. 

Conventional beamforming is applied for two frequency bands separately, i.e., 1500-4500 Hz and 4500-9500 

Hz. From the resulting beamform source maps, and also from the spectrograms of the flyover data, engine 

noise is found to be clearly present in both frequency bands. Additionally, by comparing the measured overall 

sound pressure levels with the airframe noise model predictions, the engine noise is found to be dominant. 

In agreement with the model predictions, the source plots reveal airframe noise to be present only in the lower 

frequency band. From the source plots it is found that there are clear differences between the different 

components (main landing gear, nose landing gear, flaps, slats) contributing to the airframe noise for the 

different aircraft types. These differences are partly in agreement with the model predictions, but 

discrepancies between model and data exist. Especially the nose landing gear is often clearly visible in the 

source plots, which is not expected from the model predictions. These differences can be considered to be a 

source of input to efforts for the further improvement of aircraft noise source models. 

 

Keywords: aircraft flyover noise, microphone array measurements, beamforming, airframe noise modelling, 

model-data comparison, breakdown of aircraft noise sources  I-INCE Classification of Subjects Number(s): 

T3.6 

1. INTRODUCTION 

Aircraft noise is a source of disturbance to the public, especially around airports. Apart from 

being annoying, noise pollution can also lead to health problems. With global air traffic growing at an 

average rate per year of about 5%, aircraft noise pollution is one of the main issues the aerospace 

industry is facing. Today aircraft noise levels are typically around 20 dB lower than they were 40 years 

ago, representing a significant reduction in the perceived noise level. However, over this period the 

number of air traffic movements has significantly increased, and will continue to grow [1]. Both 

technological and operational improvements are necessary to compensate for the impact of this 

growth. 

To evaluate the noise impact on residents around airports, noise contours are determined, mostly 

based on model calculations. Hence, the corresponding noise regulations, with the purp ose to balance 

aircraft operations and noise annoyance, are also based on these model calculations. These models 

provide noise levels given the distance, aircraft type and flight procedure. These predictions, which are 

partly based on information provided by aircraft manufacturers, e.g. gathered during certification, 

result in approximate and averaged values only [2], [3]. Moreover, earlier studies have shown that the 

observed noise levels for a certain fixed aircraft type, flight phase and location can vary considerably, 

even up to 12 dB [4]. In [5] it was shown that a measured variability of 8 dB is mainly due to the 

varying engine settings, in this case the fan rotational speed of the turbofan engines. Hence, it was 

concluded that it is necessary to incorporate engine setting into models for regulatory purposes around 

airports. 



 

 

In the present research, noise assessment around an airport is performed experimentally by 

measuring noise from aircraft flyovers [5], [6], [7], [8], [9]. Such a study is obviously limited. We only 

study aircraft in the final landing phase (at a single location) with flaps and slats fully extended and 

landing gear deployed. However, a significant variety of aircraft types, ranging from small (Fokker 70) 

and medium size (Boeing 737, McDonnell Douglas 81, Airbus 321) to large (Boeing 747, Airbus 380) 

is considered.  

The main sources of aircraft noise are the aircraft's engines and airframe (flaps, slats, landing 

gear). It is generally believed that airframe noise is important (sometimes  even dominant), particularly 

during landing. The objective of this research is, therefore, to identify, for each of the six aircraft 

flyovers considered, the dominant noise sources and how this depends on aircraft type and frequency 

band. To this end, beamforming was applied using a small microphone array to a selection of the data 

from the aircraft flyovers described in detail in [10]. For each aircraft flyover considered, the 

measured power spectral density, i.e. the spectrum, is compared with predictions based on a 

semi-empirical airframe noise model with the purpose to determine the frequency bands where either 

engine noise is dominant or airframe noise contributes significantly. Subsequently, conventional 

beamforming [11] (in the frequency domain) is applied in these bands and the beamformed results at 

individual frequencies are incoherently added to suppress side lobes. From these resulting source plots 

the dominant noise sources for each landing aircraft can be deduced. The findings are of high 

importance for improving aircraft noise prediction models. Further, this paper can also be seen as 

complementary step compared to [5] where, as mentioned above, the aim was to identify causes of 

variability in the received aircraft noise. 

The paper is organized as follows: Section 2 describes the experimental setup and the microphone 

array equipment. It also discusses the choice for the time snapshot (determining frequency resolution) 

and the spatial resolution of the microphone array. In addition, the aircraft geometrical data needed to 

run the airframe noise model is presented. Section 3 briefly presents the beamforming method applied. 

Also, the two frequency bands for incoherent processing are discussed and the effect of the chosen 

snapshot time on the resulting source plots is assessed. Section 4 presents the results. In section 4.1 the 

spectrograms of the entire flyovers are given, whereas section 4.2 presents the comparison of the 

spectrum predicted by the semi-empirical airframe noise model with that of the spectrum obtained for 

the 50 ms data when the aircraft is just above the microphone array. In section 4.2 more justification is 

given for the frequency bands of interest chosen. In section 4.3 a further model-data comparison is 

made, i.e., comparing the measured overall sound pressure level (OSPL) with that predicted by the  

airframe noise model. Section 4.4 presents the source plots for the six types of landing aircraft and the 

two frequency bands. From these plots the dominant noise sources for each landing aircraft can be 

deduced. Finally, section 5 contains the conclusions. 

2. EXPERIMENTAL SETUP AND AIRCRAFT DATA 

Flyover measurements were recorded at Amsterdam Airport Schiphol using a relatively small 

microphone array consisting of 32 microphones in a spiral  distribution with an array aperture of 1.7 

m, see figure 1 [12]. 

The microphone array was located 1,240 m to the South of the threshold of the Aalsmeerbaan 

runway, which is mainly used for landing. The microphone data are sampled at a frequency of 40 

kHz. The data is band filtered in the frequency range from 45 Hz to 11,200 Hz. An optical camera 

was integrated in the centre of the array at a fixed angle facing straight up from the ground. The 

aircraft trajectories could be accurately estimated from this optical camera. The average flight height 

and average aircraft velocity were 67 m and 75 m/s, respectively, when the aircraft is directly above 

the microphone array. The exact height and velocity for each aircraft considered in this study is 

given in table 1. The meteorological data valid for the days of data acquisition can be found in [13]. 

For the analysis as presented in this paper a 50 ms snapshot is taken when the aircraft is exactly 

overhead. This corresponds to a frequency resolution of 20 Hz. 

 



 

 

  
Figure 1: Microphone positions of the array 

used for the flyover measurements. 
Figure 2: The array’s spatial resolution as a function of 

frequency (solid line) calculated according to Rayleigh’s 

criterion. For zs we used 67 m, the average height of the 

aircraft considered. The horizontal dashed lines indicate 

the shortest distances between the engines and the main 

landing gear (MLG) for the six aircraft considered. 

 
One of the objectives of this study is to separate airframe noise from engine noise. Specifically, it 

is interesting to see if we can separate the noise from the engines and the noise from the main 

landing gear. For sufficiently high frequency (i.e. larger than say 300 Hz), the array’s theoretical  

spatial resolution according to Rayleigh’s criterion (in m) is given by 

1.22 sz c
x

Hf
        (1)                  

with f frequency (in Hz), c sound speed (in m/s) and zs the source (i.e. aircraft) height (in m). H is the 

aperture of the microphone array (1.7 m). x is plotted as a function of f in figure 2. Also indicated 

(horizontal dashed lines) are the shortest distances between the engines and the main landing gear 

for the six aircraft considered. From the figure we may conclude that for the  smaller aircraft (Boeing 

737, Fokker70 and Airbus 321) resolving main landing gear from the engine noise is problematic as 

landing gear noise is expected to be only present at low frequencies (say below approximately 4 

kHz). For the other aircraft we may expect to see the main landing gear noise to be separated from 

the engine noise in the beamform plots. 

For the predictions of the airframe noise, use is made of the semi-empirical airframe noise model 

of Fink [14], [15]. This model requires input on flight parameters and the aircraft geometry. The 

aircraft height and speed, determined from the optical camera data (and confirmed by the available 

ADS-B and ground radar ATC data, see [10]), and the wing geometrical data, are given in table 1 

below for all aircraft considered in this study. For the landing phase considered, both slats, flaps and 

landing gear are deployed. For the modelling we have assumed the flap angle to be 30 for all 

aircraft. In table 2 we have listed the landing gear data. The data listed in table 1 and 2 are used as 

input into the Fink model. 

 

Table 1: Aircraft height, speed and wing geometrical data. [16], [17], [18], [19], [20], [21], [22] 

Aircraft type Height 

(m) 

Speed 

(m/s) 

Wing area 

(m
2
) 

Wing span 

(m) 

Flap area 

(m
2
) 

Flap span 

(m) 

Fokker 70  63.5 68 81 28 6.5 16 

Airbus 321  64.5 75 98 34 10 22 

MD 81 63.1 75 97 33 15 18 

Boeing 737 70.4 81 130 34 18 17 

Boeing 747 68.1 86 451 60 49 34 

Airbus 380 64.9 72 753 80 103 42 

 



 

 

 

Table 2: Aircraft landing gear data. [16], [17], [18], [19], [20], [21], [22] 

 Main landing gear Nose landing gear 

Aircraft type Tire 

diameter 

(m) 

Number of 

wheels/boggie 

Number 

of 

boggies 

Tire 

diameter 

(m) 

Number of 

wheels/ 

boggie 

Number 

of 

boggies 

Fokker 70 1.1 2 2 0.7 2 1 

Airbus 321 1.2 4 2 0.8 2 1 

MD 81 1.1 2 2 0.7 2 1 

Boeing 737 1.1 2 2 0.7 2 1 

Boeing 747 1.2 4 4 1.2 2 1 

Airbus 380 1.5 4 4 1.5 2 1 

3. DESCRIPTION OF THE BEAMFORMING METHOD 

We have applied conventional beamforming to the data in the frequency domain. The source plot or 

source map at frequency fk is then given by 
* *

2

( )
( , )j kA f 

g PP g
ξ

g
      (2) 

with * denoting the complex conjugate transpose. j is the position vector of grid point j in the defined 

scan plane. After Fourier transforming the acoustic time series data pm(t), the resulting Fourier 

coefficients ( )m kP f are put into the vector P (with index m referring to the microphone number). 

Vector g is the steering vector, the components of which are given as  

,

,

2
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g f
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 
 ξ

    (3) 

rm,j is the distance from source position j to microphone m, whereas rm,j /c is the corresponding time 

delay ( 1i   ). This steering vector implicitly assumes a monopole source model to describe the 

sound pressure field [8]. Also, the source is assumed to be non-moving, which is a valid approximation 

when the source is directly above the microphone array [23] (provided a small time interval is 

considered). 

Beamforming is applied for a series of consecutive frequencies  fk within a certain band with a 

frequency step of 20 Hz as set by the snapshot time of 50 ms (see section 2).  

For the conventional beamformer the spatial resolution at low frequencies is quite insufficient, 

whereas at high frequencies the source maps show many side and grating lobes. These two effects are 

counteracted by averaging the source plots calculated for the distinct frequencies fk within the band 

according to 

incoh

1

1
( ) ( , )

fN

j j k

kf

A A f
N 

 ξ ξ

     (4) 

with Nf the number of frequencies in the band considered. This so-called incoherent averaging over 

frequencies averages away side and grating lobes that are differently positioned in the source plots at 

the various frequencies while at the same time preserving the good resolution at the higher 

frequencies.  

The band-averaged source plots presented in section 4.4 have been obtained by taking the dB value 

of Aincoh, after correcting it for the aircraft distance zs and after carefully calibrating vector P. 

Source plots are shown for two bands: 1500 – 4500 Hz and 4500 – 9500 Hz. In the lower frequency 

band airframe noise is expected to be important, whereas in the high-frequency band engine noise is 

expected to be dominant. The choice for these two frequency bands is further discussed in section 4.3, 

which presents a comparison of the measured spectrum to that calcu lated with the airframe noise 

model. The somewhat arbitrary lower bound of 1500 Hz is determined by spatial resolution 

considerations (below 1500 Hz the array’s resolution becomes worse than 10 m, see figure 2).  



 

 

Within the 50 ms snapshot the aircraft have moved by a distance of approximately 3.8 m, which is 

virtually equal to the resolution of the array at 4500 Hz, i.e. the frequency separating the two bands 

chosen. The array´s resolution in the middle of the low frequency band amounts to 5.4 m (see figure 2) , 

i.e., significantly larger than the distance flown by the aircraft. Hence, for the low-frequency band the 

50 ms snapshot time is chosen short enough. For the high-frequency band, however, the movement of 

the aircraft may be visible to some extent in the source plots, since the resolution of the array in the mid 

of the high-frequency band (i.e. at 7000 Hz) is 2.3 m. 

4. EXPERIMENTAL RESULTS 

4.1 Spectrograms 

In figure 3 the spectrogram for each aircraft flyover is shown. These spectrograms were calculated 

with a FFT size of 2048, corresponding to a time window (or time resolution) of 0.05 s. The 

corresponding frequency resolution in the spectrogram is then 20 Hz. For all aircraft, fan tones are 

clearly visible, indicating a strong engine noise contribution. Also, there is a significant contribution at 

high frequencies (> 4 kHz) where no airframe noise is expected. Whether engine noise is dominant or 

not can only be determined from the beamformed data, see section 4.4. Also the effect of the ground 

reflection, giving rise to an interference pattern, can be observed in most of the spectrograms.  

For beamforming, a 50 ms snapshot of the data is selected close to the time at which the aircraft is 

directly above the microphone array, i.e. where the sound level is highest  (and also the highest 

frequencies are observable in the spectrogram). 

4.2 Model data comparison 

This section presents a comparison of the spectrum measured for the 50 ms data (when the aircraft 

is just above the microphone array) with that predicted by the airframe noise model [14], [15],[24]. In 

figure 4 the power spectral density in dB/Hz is given as a function of frequency for the six aircraft 

considered. The calculated noise due to the wing, slats, flaps and main and nose landing gear are 

separately indicated. Also indicated is the total calculated power spectral density.  

For all aircraft considered and for frequencies up to approximately 4500 Hz, the measured 

spectrum is only a few dB (less than 5 dB) higher than that calculated by the airframe noise model . 

From this it might be concluded that up to this frequency airframe noise is significantly contributing 

to the total noise of the aircraft. However, above 4500 Hz engine noise is dominant for all aircraft. 

This general observation justifies the two frequency bands chosen for beamforming, see section 3 

and 5.4. 

From the noise modelling of the individual airframe components also some specific observations can 

be made, see table 4. For the low frequency (LF) band chosen (1500 - 4500 Hz) this table gives the 

dominant airframe noise component for each aircraft type. For all aircraft noise from the clean wing 

and nose landing gear is negligible in this band. These aircraft type specific findings will be 

compared with the experimentally found dominant noise sources (see section 4.4). 

 

Table 4: The dominant airframe noise component for each aircraft type according to the model in the 

LF band. 

Aircraft type Dominant airframe noise component 

Fokker 70 Slats and flaps 

Airbus 321 Main landing gear (and slats and flaps) 

McDonnell Douglas 81 Slats and flaps 

Boeing 737 Slats and flaps 

Boeing 747 Main landing gear 

Airbus 380 Main landing gear 

 



 

 

  

 
 

  

Figure 3: Measured spectrogram for each aircraft flyover considered. 

 



 

 

  

  

  
Figure 4: Measured spectrum compared to calculated spectrum for all six aircraft considered in this study. 

Both the modelled total power spectral density (smooth black line) as well as those calculated for the wing, 

slats, flaps and nose and main landing gear separately are indicated. Below approximately 100 Hz 

background noise might significantly contribute to the measured data.  (a) Fokker 70 (b) Airbus 321 (c) 

McDonnell Douglas (d) Boeing 737 (e) Boeing 747 (f) Airbus A380.  

 

 



 

 

4.3 Overall Sound Pressure Level (OSPL) 

For each landing aircraft we determined the OSPL at overhead time according to 

2

0
10 2

1
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10 log

T

ref

p t dt
T

OSPL
p

 
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 
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     (11) 

with snapshot length T = 50 ms (see above), p(t) the pressure time series (of one of the array’s 

microphones) and pref = 2x10
-5

 Pa. Subsequently, we corrected the obtained OSPL values for spherical 

spreading (adding 1020 log ( )sz  dB), thereby getting the OSPL values at 1 m from the source. 

Atmospheric absorption is neglected. At the prevailing atmospheric conditions [10], [13] the 

absorption coefficients are  = 2x10
-2

 dB/m at 3000 Hz (center frequency of LF band) and 5x10
-2

 dB/m 

at 7000 Hz (center frequency of HF band). Hence, the absorption correction sz  amounts to 1 dB and 

3 dB at these frequencies, respectively. However, the contribution of high frequencies to the OSPL is 

about 20 dB less than that at the low frequencies, see figure 4. Neglecting absorption is thus resulting 

in an error considerably less than 1 dB. 

In figure 5 we have plotted these measured OSPL values (averaged over all 32 microphones) 

against the OSPL values as obtained from the airframe noise model, including a least -squares fit line. 

Also indicated is the situation for which the experimental OSPL is entirely caused by airframe noise 

(dashed line), at least according to the model. Hence, we observe that for all landing aircraft 

considered here, engine noise is dominant by 4 to 5 dB.  

 
Figure 5: Measured Overall Sound Pressure Level (OSPL) plotted against the OSPL obtained from the 

airframe noise model for each aircraft type (squares). The solid line represents a least -squares fit through 

these data. The dashed line indicates the situation for which the experimental OSPL is entirely due to 

airframe noise. The solid line and dashed line are virtually parallel, indicating that engine noise is dominant 

by a fixed amount of 4-5 dB, independent of aircraft type. 

 

4.4 Source plots 

Using the broadband beamforming algorithm described in section 3 two source plots are presented 

for each landing aircraft considered in this study, i.e. a source plot for the band 1500 – 4500 Hz 

(denoted LF) and that for the band 4500 – 9500 Hz (denoted HF). The results, given in figures 6a and 

6b, clearly show that aircraft noise sources, either the engines or airframe sources, can be identified. In 

each plot we have added the aircraft contour (black lines) on top of the beamform images, including 

the positions of the landing gear as indicated by the squares.  

In all source plots, both for the LF and HF band, engine noise is present. However, for the LF band 

airframe noise sources are also clearly seen. An overview of the noise sources as observed in the 

source plots for each aircraft is given in table 5. It is interesting to compare these findings with the 

model predictions of table 4 in section 4.2. Indeed, some agreement between the measurements and 



 

 

model outputs is observed. Further, the following specific observations are made for the LF band:  

(1) Main landing gear noise is observed for the larger aircraft Boeing 747 and Airbus 380, which is 

confirmed by the airframe noise model; (2) Nose landing gear is often present in the data, especially 

for the smaller aircraft, although this is not predicted by the airframe noise model; (3) Flaps and slats 

are possibly observed for the Boeing 737 and for the McDonnell Douglas 81, which is confirmed by 

the model. However, the model also predicts flaps and slats to be dominant for the Fokker 70 and 

Airbus 321 and this is not seen in the measurements. 

 
 

 

 
 

 

 
 

 

Figure 6a: Source plots for the LF band (left) and HF band (right) for the Fokker 70, Airbus 321 and 

McDonnell Douglas 81 flyover. The aircraft contour is indicated by a black line and the position of the main 

and nose landing gear is denoted by the black squares.  



 

 

 
 

 

 
 

 

 
 

 

Figure 6b: Source plots for the LF band (left) and HF band (right) for the Boeing 737, Boeing 747 and 

Airbus 380 flyover. The aircraft contour is indicated by a black line and the position of the main and nose 

landing gear is denoted by the black squares. 

 



 

 

Table 5: Dominant noise source in the source plots found for each aircraft. An ‘x’ denotes that a noise 

source is convincingly present, whereas (x) means ‘most probably present’. An ‘o’ indicates when an 

airframe noise source is dominant according to the model (see table 4). 

aircraft Engines 

(LF and HF) 

Main LG 

(only LF) 

Nose LG 

(only LF) 

Flaps/slats 

(only LF) 

Fokker 70 x  x o 

Airbus 321 x o x o 

McDonnell Douglas 81 x x x (x)o 

Boeing 737 x (x)  (x)o 

Boeing 747 x xo   

Airbus 380 x xo x  

 

5. CONCLUSIONS 

In this work an aircraft noise assessment was performed by measuring noise from aircraft flyovers 

at Schiphol airport. We have studied aircraft in the final landing phase with flaps and slats fully 

extended and landing gear deployed. Such an experimental study is necessarily limited. Still, a 

significant variety of aircraft types, ranging from small (Fokker 70) and medium size (Boeing 737, 

McDonnell Douglas 81, Airbus 321) to large (Boeing 747, Airbus 380) was considered.  

The objective of this research is to identify, for each of the six aircraft flyovers considered, the 

dominant noise sources and how this depends on aircraft type and frequency band. To this end, 

conventional beamforming was applied to the aircraft noise data using a small microphone array. To 

suppress side lobes, the source plots obtained at individual frequencies were incoherently averaged 

over a band of frequencies. Source plots were calculated for two bands: 1500 - 4500 Hz and 4500 – 

9500 Hz, denoted LF and HF band, respectively. The lower bound of the LF band was determined by 

spatial resolution considerations of the microphone array (i.e. worse than 10 m below 1500 Hz). These 

two frequency bands were basically determined from a comparison of the measured spectrum with 

predictions based on the semi-empirical airframe noise model of [14],[15]. From this comparison it 

was found that, for frequencies up to approximately 4500 Hz, the measured spectra are less than 5 dB 

higher than those calculated by the airframe noise model. This holds for all six aircraft flyovers and it 

was concluded that up to this frequency airframe noise is significantly contributing to the total noise of 

the aircraft. Above 4500 Hz engine noise is dominant for all aircraft.  

In all source plots, both for the LF and HF band, engine noise is present. Actually, for the HF band 

only engine noise was seen, whereas for the LF band also airframe noise sources were clearly observed. 

Further, the following specific conclusions were made: 

(1) Often airframe noise due to nose landing gear is observed experimentally (except for the Boeing 

aircraft), which is not sufficiently captured in the modelling; (2) Main landing gear noise is observed 

for the larger aircraft Boeing 747 and Airbus 380, which agrees well with the model predictions; (3) 

The model predicts flaps and slats to be an important noise source for the smaller aircraft, which is (to 

some extent) only confirmed experimentally for the McDonnell Douglas 81 and Boeing 737.  

Finally, the measured overall sound pressure level (OSPL) as obtained from the pressure time series 

(and averaged over all 32 microphones) was compared with the OSPL values as obtained from the 

airframe noise model. From this it was observed that for all landing aircraft considered, engine noise is 

dominant by 4 to 5 dB. This engine noise dominance is in agreement with the observations made from 

the beamformed data. 

The results presented in this contribution can also be seen as a step complementary to wind tunnel 

tests when the aim is to improve aircraft noise models. Wind tunnel measurements allow for controlled 

conditions, but are limited in their capability to represent operational conditions. The measurements 

described here are carried out under less controlled conditions, but do reflect these operational 

circumstances. When improving aircraft noise models, we believe that both approaches are needed. 
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