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Executive summary

Recent developments in technology innovations show that huge efficiency improvements can be made
in the manufacturing industry. Moreover, companies that adopt the new innovations, associated with
Industry 4.0, can create a huge competitive advantage. However, these rather conservative busi-
nesses are slow adopters and usually wait for proof-of-concept before actual implementation. Since
this industrial revolution, Industry 4.0, is still in its infancy, more research is required to get to full
adoption. Although the industry still awaits proof-of-concepts, many different case studies have been
performed, and with success! These clearly exhibit the versatility of the Industry 4.0-philosophy, mak-
ing widespread adoption just a matter of time.

One of the identified reasons for this lag in adoption is the lack of clear implementation guides de-
spite the thorough research and redundancy of technology. Due to the holistic Industry 4.0-concept,
many practitioners lose sight on how and what to implement. Various researches proposed the creation
of a widely applicable implementation model, but this is yet to be developed. One of the prominent
issues related to creation such model is the all-encompassing nature of Industry 4.0; it includes novel
innovation in supply chains, in factories, and even in the products manufactured. Since there are clear
differences between these ‘applications’, a generic overarching model seems unreasonable considering
the immense amount of variables to consider. This thesis depicts the first ever-made implementation
model specifically aimed at improving raw material supply & planning in complex manufacturing com-
panies.

Supply & planning processes are the closest connections between a manufacturers’ own operations
and its closest neighbours in the supply chain; i.e. suppliers and customers. Tapping into this specific
field of operations enhances the utilization of Industry 4.0 both on the supply chain and manufactur-
ing aspects. Through answering the main question, and several subquestions, relevant information
is gained that enable the construction of an implementation model. The design of such implementa-
tion model includes a step-by-step approach for practitioners of manufacturing companies, and a clear
description on what to consider at each step. Creation of the artefact (i.e. implementation model)
happens by explaining the research question:

How can Industry 4.0 be implemented into supply and planning departments of complex
manufacturing companies using an implementation framework?

By means of a design science research methodology (DSRM) the Industry 4.0 supply & planning im-
plementation framework is designed. Through 6 pre-determined steps; (i) problem identification, (ii)
objective definition, (iii) design & development, (iv) demonstration, (v) evaluation, and (vii) commu-
nication, it ensured that all relevant stages are included to construct a scientific substantiate artefact.
Three of these elements in particular were considered to be main constructs of the thesis report.
Through the objective definition stage, qualitative research in the form of interviews and literature
review imposed what had to be included in the implementation model. In the design & development
stage this information was casted into a mold, thereby being the first result to the thesis’ ultimate goal.
The demonstration phase was assigned to check the applicability and effectiveness of the model by
putting it into practice. Altogether a significant base of information was collected, obtaining the first
conceptual implementation model for Industry 4.0.

In the existing tight markets in which various manufacturers operate, the utilization of improvement
technologies is high. Techniques derived from methods like Lean, Agile and Six Sigma are used on
a daily basis. Because companies are familiar with the use of these models, the adoption of newer
versions becomes straightforward. Consequently, the implementation model is a derivative of such
method, namely the DMAIC (Define, Measure, Analyze, Improve, and Control). Since these overarch-
ing steps do not provide sufficient information for actual implementation, extra delineation is applied
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vi Executive summary

through a combination of the Continuous Quality Improvement model and practitioners’ experiences.
Via combination of the two, a first model consisting of 11 steps (i.e. within the 5 DMAIC stages) was
constructed.

The implementation model starts with goal identification, in which the companies’ digital transfor-
mation (i.e. Industry 4.0-adoption) strategies are adapted to local needs. Subsequently, the business
processes are investigated thoroughly. By clever maodification of an existing model called RAMI (Ref-
erence Architecture Model Industrie 4.0), a standardized approach for identifying the key aspects of
the business processes was obtained. Using the results of this business process modelling allows to
diagnose the so-called key variables that have a considerable effect on the performance of operations.
The top five of these key variables provide the focus for the execution of the consecutive steps. Data
and information about these 5 variables is gathered through a process of replacing paper forms by dig-
ital forms and through connection of existing Operational Technology (OT) systems with Information
Technology (IT) systems. Once all the relevant data for the five variables is obtained, a data analysis
follows. Examining the inconsistencies in this data pinpoint the location where data enhancement (i.e.
Industry 4.0-adoption) will significantly improve the process. Defining the performance indicators then
help to know the business’ existing performance and allow comparison with future results, but also
help users to monitor real-time process-efficiency by means of a dashboard. According to the Key
Performance Indicators (KPI's) chosen, technology introduction can finally happen. Thirteen different
enabling technologies were identified during the literature research, providing practitioners a wide port-
folio of options in their Industry 4.0-implementation. Shortly after implementation follows continuous
monitoring according to the aforementioned KPI's. By carefully assessing the business process’ perfor-
mance, improvement studies can be performed and actual improvement of the system can take place.
In the final stage it is evaluated whether the implementation was effective and what lessons-learned
should be brought to the next technology-implementation.

To test whether the implementation model indeed fulfil its vows, a test run is performed at an agri-
culture fertilizer manufacturing facility that definitely classifies as a complex factory according to the
definition of this thesis (i.e. large portfolio of products and raw materials). The first few stages were
quite obvious in their execution, mainly because of the clear instructions given. Especially the modified
RAMI model gave useful insights and abandoned the requirement of complete Business Process Map-
ping which is very time consuming. Various key variables were obtained using a quality team. Since
the majority of data -for these key variables- was already available, it was only a minor effort to obtain
the rest using either OT-IT merger or digital reporting. In the case study, the data analysis stage was
the most demanding task in both time and extra investigation. After describing the KPI's related to
the data analysis and describing the technology introduction stage, the real version of the case study
had come to an end due to time and resource limitations. Continuous monitoring, improvement, and
evaluation were further concluded through the sense of ‘modelling’, where providing examples and
describing the expected outcomes served as enclosure of the first trial.

Although the model was designed with extra care and the input from both the literature review and
the interviews were significant, some limitations still apply. It was observed that some of the stages
were not definitive enough, making the actual goal of each step rather vague. As a result, some stages
could take considerably more time than necessary, diminishing the model’s effectiveness. Moreover,
the power of the data analysis, as described before, was truly reliant on my experience in statistical
and data analytics. Therefore, the current data analysis-description requires more attention to advance
the usefulness of this stage regardless of the users’ experience. Finally, the effectiveness and gener-
alizability of the model were only touched upon briefly and require more in-depth investigation before
claiming its novelty.
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Introduction

In recent years there has been a considerable shift in thinking with regard to digital transformation
inside manufacturing companies. This shift is a clear consequence of rapid innovation and applying it
creatively inside the manufacturing industry. As a result, companies become more flexible and also
efficient in doing so. Competitive advantage awaits those who swiftly adopt their way of operations
to this new digitized era. Simultaneously, a former hellion for business became the today’s goldmine;
data. It is this data that can significantly improve existing operations when being applied in a smart
manner, creating the smart factory of the future.

Many researchers explore the realm of ‘'SMART’ by applying the same principles on concepts like supply
chain, maintenance and production in general. However, smart can even be interpreted in the widest
sense of it. Indicating that particular processes, other than transportation and manufacturing, could
benefit from these new smart principles as well. Consequently, businesses can improve their existing
operations by applying the same digital transformation philosophy to a multitude of processes.

Reading my thesis should help you to understand the critical layers of this ambiguous concept called
digital transformation. The report will outline what aspects contribute to effectiveness of successful
implementation and provide an overview of all contributing conditions.

1.1. A changing industry

2012 was for most companies the first year in which they were faced to the new industrial trend; digital
manufacturing (Hozdi¢, 2015). Due to the holistic nature and the failure of many other technologies,
many companies abandoned the concept as soon as they became aware of it. As a result, only the
companies that stood out, willing to take an extra risk, invested heavily into this new business oppor-
tunity. Subsequently, these firms obtained a competitive advantage in the years to come, obligating
the competition to follow soon after. Nowadays many companies understand the need for such trans-
formation, but simply do not have the competences to do so, making Industry 4.0 one of the biggest
challenges lying ahead for the manufacturing industry.

1.1.1. Industry 4.0

In order to keep up with the flexible demands of today’s society, a shift in the way of working for man-
ufacturing companies is mandatory. The Third industrial revolution, also known for its programmable
logic controllers (PLC's), originates from the 1960's (Hozdi¢, 2015). Ever since, the manufacturing
industry remained quiet and only minor innovations found its way towards a more efficient way of
producing, e.g. micro-processors, Genetically Modified Organisms (GMQO’s) for the food industry and
recently, the 3D-printers. Compared to the shift from analogue to digital mailing, the internet and
mobile phones, the manufacturing industry kept utterly conservative.

A new industrial revolution, industry 4.0, lies ahead and awaits it widespread introduction to the manu-
facturing industry. This industrial revolution is supposedly focused on the implementation of tomorrow’s
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2 1. Introduction

innovations into today’s manufacturing facilities. Because the industry did not evolve as rapidly as the
‘outside world’, it faces a galore of burdens for full implementation (Heritage, 2019). To avoid unneces-
sary capital being spend, it is of upmost importance that these challenges are being addressed before
actual implementation. This requires a full plan and architectural structure tailored to the factory of
interest.

Several approaches to industry 4.0 are taken, with a variety of interpretations by multiple researchers.
"Integration of complex machinery and devices, with sensor and software networks, used to predict,
control and improve plan business and results in society.” (Saucedo-Martinez et al., 2018) and "The
smart factory, key concept of Industry 4.0, depicts a future state of a fully connected manufacturing
system, mainly operating without human force by generating, transferring, receiving and processing
the necessary data to conduct all required tasks for producing all kinds of goods.” (Osterrieder et al.,
2019) are just a few of the many different concepts derived by researchers. In order to describe and
elaborate on the Industry 4.0 meant throughout this research, another view is defined in this report:

Industry 4.0 is the fourth manufacturing revolution that evolves by companies implementing novel
technologies in a smart way to improve current operations in the realm of autonomy, efficiency and
social responsibility.

Autonomous in this case refers to the applied pre-programmed smart technologies that make deci-
sions and also perform them by assessing data without human interference. Social responsibility infer
the trade-offs made by the company that opt for more social-favorable options, e.g. less energy con-
sumption, rather than choosing for the most profitable option only. Obviously, both drivers of industry
4.0 can only be applied to some extent, depending on the current state of development in techno-
logical innovations. The industry 4.0-portfolio, according to the definition in this report, include all
technologies that enable quick, autonomous and automatic processing of data and technical actions,
e.g. sensors that convert physical appearance into ‘digital’ data, Internet of Things (IoT) architectures
that manage that data, Artificial Intelligence (AI) that converts data into preferred actions, and Cyber-
Physical systems that perform the operations (Belli et al., 2019). This even includes the utilization of
existing dull technologies by shaping them to fulfil a role within the Industry 4.0-network. The full
portfolio offers various technologies that enable companies to make significant improvements in terms
of efficiency and effectiveness.

Within the Industry 4.0 era, a lot of factories will alter the way of operations, because the improved
efficiencies allow to increase the profit margins. Factories that currently face little efficiency, due to
the increasing demand for flexibility, can be found as complex factories. Complex factories, as intro-
duced in this report, are characterized by their large amount of different raw materials, products, and
very stiff production processes that have to process this wide variety of products. These factories can
experience the most powerful shifts in their way of operation by implementation of Industry 4.0.

Since factories comprises many different departments and countless business processes, like storage,
transportation, and maintenance, it is apparent that an instant introduction of smart manufacturing is
absurd. To push towards smooth adoption of Industry 4.0, it must be identified what processes are
sub-optimal and ready for improvement. Experience in numerous complex factories demonstrated that
raw material supply and planning is generally one of the major bottlenecks for fluid run-through in
production processes.

1.1.2. Competitive advantage

Previous section already hinted upon the possibilities associated with the Industry 4.0-portfolio. In-
creasing the efficiency is just one of the many drivers for this innovation. Efficiency is something that
can relate to the production time, costs or maybe to the amount of faulty products running out of the
factory (Wang et al., 2016a). In the end, efficiency is all about the money, i.e. reducing the costs per
produced unit. Being able to produce at lower costs opens multiple business opportunities, ranging
from reinvestment, taking higher profit margins or reducing the price per unit to increase the output.
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Over the last years profit margins have been diminishing due to the increase of global supply chains
and the rise of the cheap Asian production supply (Manavalan and Jayakrishna, 2019). Bal and Erkan
(2019) specifically focused on the competitive power of industry 4.0 within the increasing degree of
globalisation. Bal and Erkan (2019) describe this competitive power using the model by Porter (Porter,
2008). Porter’s Five Forces Model distinguishes between the following five business forces:

1. Existing competition;

2. Potential of new entrants;

3. Bargaining power of suppliers;

4. Bargaining power of customers;

5. Threat of substitutes.

So for every company the degree of competition can be determined by assessing to what extent items
2 to 5 are present. For example the model demonstrates that companies producing ‘simple” and cheap
products, like smartphone cases, face a high degree of competition, because of the high risk of substi-
tutes, new entrants, and the bargaining powers of suppliers and customers. Contrary, the production
of specialty products, like a recently invented medicine, display a lack of competitiveness.

Within this competitive field, Porter implies three key concepts that enhance the competitive advantage;
cost leadership, differentiation and focus (Porter, 2008). In every degree of competition, competitive
advantage aids future progress of the company, but is not a mandatory prerequisite. However, it is
especially important that companies operating in a highly competitive landscape, should apply at least
one of the three key concepts. Fortunately for the manufacturers going through digital transformation,
all these three concepts can be found in the Industry 4.0-philosophy:

Cost leadership infers the economies of scale, meaning that a company can produce a high vol-
ume of goods that are distributed at a relatively low cost (Bal and Erkan, 2019). As mentioned in
the introduction of this chapter, Industry 4.0 is characterized by its ability to significantly improve the
efficiency. Consequently, the costs are reduced and/or the productivity increases, both indicating that
cost leadership is the foremost trait of the new manufacturing trend.

Differentiation refers to a firm’s ability to create a business model that is difficult to replicate (Bal and
Erkan, 2019). This includes strategies like aiming for niche markets or simply be evolving the existing
product or service and make it better than the product of its competitors. Industry 4.0 covers a wide
range of topics, of which smart products is a prominent one. By processing sensors and other smart
devices into a product, one could not only generate data for itself, but also use that data to help the
customer, therefore adding an extra feature to its product. A good example of this could be found at
the HP instant ink product, which is a simple ink cartridge equipped with a small level sensor. As a
customer, you simply put the cartridge into your printer and just before the ink is about to run out,
you are supplied with a new cartridge to ensure that you will always have a sufficient amount of ink.
This is an Industry 4.0-related technology that creates a huge competitive advantage in the realm of
differentiation.

The final aspect, focus or market segmentation, is a combined efforts of cost leadership and dif-
ferentiation (Porter, 2008). Every company has some sort of strategy that relates to penetrating a
certain market or concentrating on customer groups with specific needs. By focusing on the groups
of interest, one is able to outperform competitors who do not adapt their product or services to the
specific needs. The former example of the ink cartridge also exemplifies this concept well. Some bigger
customers, like printing business, may need many cartridges a week, while home users only need one
every month. HP reduced the costs enough that it is able to supply both customer segments on the
right time, with the right amount, allowing them to reap the benefits of both markets, rather than have
to force a customer to take a minimum amount a week.

Altogether, there is a significant impact to be made on the existing industrial markets. Regardless
of the product or service, any company willingly to adapt to the new manufacturing standards is able
to make its business more agile, thus obtaining a competitive advantage. Even though the competition
might take the same step towards an efficient future, the business opportunities following Industry 4.0
are countless and the competitive advantage awaits those who can utilize the technology the best.
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1.2. Problem description

It is quite remarkable that in an era of technological development, increasing opportunities and also
the rapid growth of emerging markets (i.e. competition), relatively few companies take the dive into
digital transformation. As of 2016, only 16% of the global industry assigned an overall Industry 4.0
strategy (McKinsey Digital, 2016). This rate is utterly alarming, considering that about 100% of the
companies will benefit from such strategy. why is this rate so low, and what must change to get more
manufacturing businesses into the Industry 4.0-movement?

1.2.1. Practical situation

One of the answers to aforementioned question can be found in the complexity described in subsec-
tion 1.1.1 (Lee et al., 2012). Introducing a rather immature technology into a complex environment
can cause more harm than it provides opportunities, making the risk not worthwhile. This immaturity
evolves mainly from the lack of dedicated information. Many of the Industry 4.0-related technologies
are tailored to the context in which the company operates. Consequently, plain businesses can effec-
tively copy these ideas and adapt them effortlessly. Complex businesses, on the other hand, have to
reinvent the wheel to even touch upon a few of the opportunities.

As indicated in the introduction of this chapter, a lot of factories become increasingly complex to
fulfil the demands of customers. Faster delivery rates, larger product portfolio’s and also huge market
fluctuations diminished the overall efficiency increase of factories in the past centuries (\Wang et al.,
2016a). One of the most prominent issues lies within production planning efficiency. Products are the
main source of income for the manufacturing business, which makes every percent of production ca-
pacity that remains untouched (e.g. due to turn-over time or the lack of raw materials) highly valuable.

As second comes the spatial limitations that factories face. With the increasing demand for tailored
products also came the increase in different raw materials and new equipment, all occupying more
space than before. In order to keep a healthy balance between products and raw materials, planners
have to adjust the numbers constantly depending on the market. The skill to do this sufficiently comes
with experience and makes it, therefore, one of the hardest competencies to retain in the company
(Kumar et al., 2019; Trstenjak and Cosic, 2017), making this the third challenge.

Finally, the availability of raw materials seems to be a never ending issue. Some materials can be
ordered on one day and received on the other, while others require more than 3 months between
order and delivery. Add huge market fluctuations, i.e. raw material supply and demand, to the mix
and the chaos is complete. Since the data about average delivery times is often fluctuating on many
different variables, like market demands, close contact with the supplier is necessary in order to know
the actual delivery dates. This personal contact drains a lot of the available time.

In conclusion, the complications coming from raw material supply & planning within complex facto-
ries provide a favorable circumstance for Industry 4.0 adoption. However, it is the lack of guidance
and mature examples withholding companies from innovating (Oztemel and Gursev, 2020). Besides
practical maturity, academic research is one of key drivers for designing the factory of the future.

1.2.2. Academic situation

It is already known that within the Industry 4.0-domain, smart factories will contribute vastly to prob-
lems faced in the practical environment, like envisaged in subsection 1.2.1 (Lee et al.,, 2012; Kumar
et al.,, 2019). The current progress by academic researchers is widespread and covers an immense
amount of solutions, usually deeply rooted to the context and origin of a particular problem. This
reduces applicability to other cases, because generalization is often left open for future research.

The other specific research approach established, is one that focuses on capturing the concept Industry
4.0. Several articles mention all the building blocks (Mittal et al., 2019), research pillars (Osterrieder
et al., 2019) or enabling technologies (Tjahjono et al., 2017) that have been proposed by the academic
audience so far. Others try to define which processes need to be touched upon, before full implemen-
tation can take place. Altogether, the academic world tries to structure the large amount of information
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by providing an comprehensive analysis.

However, despite the efforts to create a clear overview of possibilities together with the many spe-
cific case studies, a consistent overview of how to implement Industry 4.0 still remains untouched.
The bridge, required for practical implementation with the use of academic research, is yet bodiless.
The need for an implementation plan, that incorporates practical features and available research on
Industry 4.0-technologies, is still awaiting its introduction, even though its urgency is high in this com-
petitive capitalistic world (Yang et al., 2019).

Especially the cooperation between the practical situation; knowing the context and the corresponding
interdependencies, together with the academic progress; knowing the newest inventions and under-
standing the underlying context of organisations, should make the development of a workable Industry
4.0-philosophy much more convenient. However, such connection has only be made to fit the needs
of particular businesses. A generic model is yet to be made.

1.3. Research objectives

This research will focus on the currently existing, identified gap between academic research and the
manufacturing practice for complex factories; actual implementation. With help of an outline, specified
by research questions (Table 1.1), an implementation plan is developed. This implementation frame-
work should be fed with company-specific information, process this data by well-defined questions
and finally produce an Industry 4.0-architecture that fits to the company-defined input and aids the
treatment of Supply & Planning challenges in complex factories. Although the goal of this thesis is
clear, a main research question is settled to provide a straightforward outline for the research. The
main research question is as follows: "How can industry 4.0 be implemented into supply and planning
departments of complex manufacturing companies using an implementation framework?”

In order to address this question, we need to subdivide it into more sizeable bits, using sub-questions.
The first sub-question raised should provide the mold and boundaries of the framework, in which the
implementation plan will be developed. The first sub-question is as follows: “What steps exist in an
implementation process and framework?”, and aims particularly to find the right framework that sup-
ports an implementation model. This framework provides the overlay in which separate implementation
stages are defined.

A second sub-question is raised to address the input parameters and necessary information for the
decision process throughout the processing stage. By answering "How are the key characteristics of a
supply & planning environment that are required to construct an Industry 4.0-architecture found?”, one
should be able to define what important aspects can alter the effectiveness of the implementation plan.
With this information, a starting point (e.g. key parameters) is defined that allows discrimination be-
tween different options throughout the decision process. With other words, it is important for the user
of the implementation framework to know how his/her raw material purchase and production planning
department operates, because when choosing for a particular option during the decision process, the
way of operations of that particular company can be harmed. For that reason, it must be carefully
examined what the company specific parameters are.

The third sub-question focuses on the current stage of research within the academic domain. Many
different technologies have been developed and applied to very specific situations. This sub-question
targets all these technologies by answering: "What are the available Industry 4.0 technologies that
aid supply & planning processes?”. The answer should fit precisely into the mold created with the
first sub-question. The characteristics should hint upon the previous question and indicate whether a
technology, or option, harms or improves the raw material supply & planning tasks.

A final sub-question covers the managerial aspect of implementation. It is of upmost importance to
ensure a sustainable and enduring architecture that establishes continuous effectiveness and increas-
ing efficiencies. This topic is captured by applying a ‘check’-stage during the design science; "What
must be incorporated to develop a sustaining process that fits into the company’s culture?”.
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| Research Question
Main | How can industry 4.0 be implemented into supply and planning departments
of complex manufacturing companies using an implementation framework?
Sub.1 | What steps exist in an implementation process and framework?

Sub.2 | How are the key characteristics of a supply & planning environment that are
required to construct an Industry 4.0-architecture found?

Sub.3 | What are the available Industry 4.0 technologies that aid supply & planning
departments?

Sub.4 | What must be incorporated to develop a sustaining process that fits into the
company’s culture?

Table 1.1: Overview of the research (sub)-questions.

Current Industry 4.0-adoption, as conceptualized in subsection 1.1.1, still hampers because of the
lack of implementation knowledge. The main research question of this study addresses this problem
and has as goal to construct a full implementation framework. That makes the main research question
ambiguous, both a question that is slowly answered throughout the research and a research objective
that evolved after answering; a designed implementation model specifically tailored to supply & plan-
ning management in complex factories. This implementation model should help companies to consider
what technologies to implement (and how) for creating an efficient (automated) production planning
process as the basis for a shift towards Industry 4.0. Thereby also aiding further adoption of Industry
4.0 into the manufacturing industry.

The main justification of involving a practical mindset into this academic report, is the predicament
of novel developed technologies without actual applicability within the industry yet. On the other
hand, some practitioners integrate smart applications while not employing its full capabilities. In both
cases there is a uncovered space, which will be both addressed in the implementation model of this
thesis.

1.3.1. Practical goals

Multiple reasons for the absence of adoption of Industry 4.0 were already mentioned in previous sec-
tions. One of the major concerns is the lack of guidance and necessary talent (McKinsey Digital, 2016).
The goal of this research is to find the existing gaps between the existing practices of the manufacturing
industry and the readily available information in academic literature. By doing so, a multi-perspective
approach (i.e. practice and theory) is done and converted into one model that can be used by manu-
facturing companies to improve their current operations.

To dilute the content to a more manageable size within the time restrictions of this thesis, the main focus
is that of raw material supply & planning operations within a manufacturing environment. Within com-
plex factories it is known these supply & planning processes are difficult to improve and are often the
pain point in fluent operations (Manavalan and Jayakrishna, 2019). Targeting this business area with
the implementation model serves the foremost issue straight away and will simultaneously develop in-
house competences to further unfurl the industry 4.0-related opportunities in other business processes.

By only providing an overview using the implementation model, tailoring efforts are enhanced sig-
nificantly. Providing multiple options at each implementation stage enables the practitioner to apply
the most efficient technology/methodology for his/her case. Subsequently, the applicability of the
model evolves to become more effective, which on its turn reduces the risk associated with digital
transformation, thus removing one of the adoption barriers (Nilsen, 2015). Furthermore, this allows
the same model to be applicable at any degree of digital sophistication (e.g. no Industry 4.0 at all or
fully integrated Industry 4.0), implying that it could be used over and over again just to further enhance
the existing degree of digital transformation.
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Over the course of the implementation of several digital solutions, a company becomes aware of
the opportunities and starts to reap the benefits when doing so. This fragmented learning curve is
a valuable asset and is therefore incorporated into the implementation model. At first, a mere guid-
ance should help to set directions and pinpoint the low hanging fruits. With every incremental stage,
operations become more efficient and the required technologies get more sophisticated. In doing this,
the practical mindset is key, as it imposes simple solutions to difficult problems and not the other way
around. McKinsey Digital (2016) mentions after all: “Don‘t be afraid of ‘workarounds’ today, but start
laying the IT foundations for a more robust solution tomorrow”. With every step taken towards an
autonomous Industry 4.0-inspired smart factory, a new business opportunity is introduced.

Besides these model-related goals, there is a surplus of digital transformation-related goals. By aiding
the existing adoption rate through incentivizing easier and quicker implementation, a significant part
of the transformation-related goals are attained as well. Outcomes from full adoption of the smart
manufacturing principles along the wide range of the manufacturing supply chain vary from lowering
costs up to providing cheaper sensing solutions in the future (SMLC, 2011). The Smart Manufacturing
Leadership Coalition identified 6 overarching goals as a result of smart manufacturing:

Technology Innovation and Economic Health;

Agility;

Resource efficiency;

Safety and Confidence;

Maximizing talent and skills of the Next Generation Workforce;

Sustainability.

oUW

Altogether, the practical goal of this research is ambiguous, as in aiding practitioners to overcome
existing adoption barriers while contributing to the bigger picture illustrated by SMLC (2011). Inthe era
of intense global competition, exponential growth in information technology, and increasing business
performance, this implementation model awaits a welcome introduction.

1.3.2. Scientific relevance

Osterrieder et al. (2019) was one of the many researchers that focused on structuring the existing lit-
erature into sizeable sub-divisions in order to streamline the excess of information about industry 4.0.
In doing so, Osterrieder defines the key constructs of the ongoing innovation based on the widespread
terminology. This paper alone, already illustrates the existing difficulties with which the scientific world
has to deal. After identifying 8 ‘research pillars’ by examining over 100 articles, they conclude their
story with the claim that their study provide a solid basis for further development. Thereby presenting
a long awaited literature clarification model.

However, another paper by Mittal et al. (2019), shows the imbalance in the academic world of In-
dustry 4.0 by introducing 17 different building blocks compared to that of Osterrieder et al. (2019).
The urge for these descriptive models becomes higher as the amount of published articles scale loga-
rithmic and consensus on terminology is abandoned. Simultaneously, newer innovations find its way
into the incomprehensible concept Industry 4.0', deteriorate the fuzzy perception even further.

This thesis does not focus on clarifying the terminology nor arranging them into a structured model.
However, by assessment of the many different articles, insights into the core concepts of Industry 4.0
are gained. As a result, concepts can be derived and aligned with a proper practical example that allows
further clarification like that of Osterrieder et al. (2019) and Mittal et al. (2019), for one to comprehend
the underlying principles of Industry 4.0. Therefore providing a basis on which future research can
close the gap between academic and practical relevance.

Moreover, this thesis contributes from an academic perspective to the field of digital transformation
by providing insights on practitioner’s perceptions and traditions. Researchers on the topic of Industry
4.0 can add this valuable information to their research to better understand the core needs of suc-
cessful implementation. Information from the industry is seemingly vital to develop more relevant and
useful technologies, as is shown in the past few years.
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A final attribute of the scientific relevance of this thesis is prescribed to the relatively wide range
of applications that will be touched upon. The majority of present literature is solely describing the
employment of a particular technology, after which this is tested and analyzed. Research studies
like these offer valuable information within a particular context and are obviously incredibly limited in
terms of generalization. With the model, presented in this thesis, the description of these technologies
is combined to make it both simpler to comprehend and more applicable.

1.4. Research methodology

Just combining knowledge from practitioners and scientific literature into one large chapter is not suf-
ficient to be considered a model. Design science is the art of development of a model by going over a
multitude of steps that are required to sophisticate the model, thus increasing it relevance. Appendix A
Design science describes the establishment of a basic design science model, which postulates the out-
lines of the thesis research. The Design Science shall at minimum include three elements: “conceptual
principles to define what is meant by design science research, practice rules, and a process for carrying
out and presenting research” (Peffers et al., 2008).

Design Science research in this thesis is described as the development of a model, based on prac-
tical and scientific information/experience. The model itself shall be dedicated to practitioners of the
manufacturing industry, who are assigned with the difficult job of digital transformation. The model
should provide, and is not limited to, models, methods and constructs devoted to technical or social
advancements, solving the existing business problem of companies that find it difficult to effectively
implement Industry 4.0-related technologies. It's “utility, quality and efficacy” (Peffers et al., 2008)
shall be rigorously evaluated.

The research outline of this thesis will follow the Design Science Research Methodology (DSRM) ap-
proach as depicted in Appendix A Design science. This design science model enables full coverage of
all important aspects required during this thesis and follow the three key elements of design science
portrayed by Peffers et al. (2008). Since the model is rather rudimentary, a slight adjustment to fit this
research’ goals helps to delineate the separate topics to cover. A visualized, adopted, version can be
found in Figure 1.1.

Problem identification and motivation is covered in chapter 1, the introduction. Prior to the thesis
project, a research study was conducted to explore the current status of Industry 4.0 and smart manu-
facturing in the literature. This information led to the identification of the existing gap, namely the lack
of actual implementation within the industry and the significant irrelevance of scientific research. Sub-
sequently, a new research topic was born, resulting in this thesis project. Multiple data sources, e.qg.
Scopus, Google Scholar, were addressed to align personal experience with existing data. Altogether,
this information justifies the value of a solution, thus defines a clear problem and motivates the need
for such a model.

The second stage of this research focuses on the objectives of a solution, including the evaluation
what is possible and feasible. At first, it is essential to define the overlay of such implementation
model. The goal of Design Science is to create an artefact that includes all vital stages for which it is
made. Consequently, the first thing to consider is what steps are required to successfully implement
smart principles into a raw material supply & planning environment. This is discovered by performing
interviews on Industry 4.0-practitioners and doing a literature review to finally answer the first sub-
question: “"What steps exist in an implementation process and framework?”. In second comes the need
for examination of a typical supply & planning environment to effectively dedicate the model towards a
generic applicability. The corresponding sub-question: “How are the key characteristics of a supply &
planning environment that are required to construct an Industry 4.0-architecture found?” should hint
upon the boundaries of the supply & planning environment. Thirdly, one must collect the resources
required for the knowledge about the current situation. An important part of the objectives will be
the literature study. Investigation must indicate what technologies are available within the Industry
4.0-domain. This will hint upon the possible improvements that can be made, either quantitatively or
qualitatively. Next to the previous mentioned sub-question, this part of the research also addresses the
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third sub-question: "What are the available Industry 4.0 supply and planning technologies and what
are their characteristics?”.

A third stage comprises the design and development and will conclude the previous two stages into
practice. Through this phase the implementation model will evolve. The focal point of designing the
artefact is determining its desired functionality and its architecture. Using the implementation stages
identified in previous chapter already provides a basis in which multiple constructs, models and meth-
ods are developed. Moreover, the data obtained via interviews and the literature study are casted into
the defined mold. To attain rigor and efficacy, attention is paid to the examined case studies, in order
to align the existing research with the established outcomes to avoid known pitfalls from infiltrating the
implementation model.

Shortly after creating the model, it must be demonstrated how the model works and performs. A
case study, executed at a complex (agriculture) fertilizer factory, allows full testing of the framework
by following the implementation procedure. Because the required resources for actual implementation
are not in place, an artificial approach is taken. The implementation model consists mostly of analysis
and planning stages, which do not require actual implementation. However, the stages that do, are
demonstrated by explaining the procedure and assessing the possible outcomes, based on the exam-
ples (i.e. case studies) at hand.

A next stage, evaluation, focuses on analysing the results obtained during the demonstration phase.
With this analysis, iteration on the model can be performed, i.e. optimizing the malfunctioning steps.
Moreover, this step enables the answer to the final sub-question: “how to develop a sustaining process
that fits into the company’s culture?”. This part is already addressed during the literature review, but is
further specified when applying the case study, because it allows to pinpoint what issues could evolve
by implementation.

The final stage, communication, combines every part covered during the research. The iterated model
itself, including its abilities is showcased in the final part of the study. The utility, novelty and the rigor
of its design are exhibited in the communication phase, to instruct the effectiveness and usefulness
to researchers and practitioners of the manufacturing industry. Furthermore, the shortcomings and
recommendations for future research are provided in order to further develop the model and adapt it
to separate environments.

1.5. Report structure

The report is structured similar to the DSRM process by Peffers et al. (2008). Chapter 1 concludes the
problem identification stage and served as introduction to the thesis research. In chapter 2 we provide
a literature study that follows the details devoted to the objective definition stage by the DSRM model.
Simultaneously, sub-questions 1 to 3 are answered as they are required for design & development
stage. Chapter 2 also describes the methodology and results of the interviews that were used for the
construction of the practical background. The interviews and literature combined form the basis for
the framework design which evolves in Chapter 3. Concluding the design, a case study is executed at
an agriculture fertilizer manufacturer which is perfectly suited to the constraints given in this chapter
(i.e. complex supply & planning). Chapter 4 will elaborate upon the demonstration and evaluation
by performing the case study, and thus testing the model. To conclude the main concepts of this
thesis, chapter 5 offers the limitations and reliability regarding this research project. A final chapter,
chapter 6, is dedicated to conclusions, reflection, and recommendations in which the model’s outcome
is contemplated and concluded.



Literature review and background

In the objective definition phase, the literature review is considered to be essential for further de-
velopment. Literature studies help researchers to find present progress on a particular set of topics
throughout the scientific domain. Especially for a topic comprising Industry 4.0, collecting information
is a tedious job because of the large amount of interchangeable and fuzzy terms. Moreover, the broad
concept of Industry 4.0 involves many different streams, such as technology introduction, literature
structuring, and identification of its potential (i.e. people, planet, profit). Finding useful and applicable
work in this large pile of interrelated topics is difficult and requires a delicate research approach.

Two different selection approaches are used to acquire tenacity and efficacy in the article selection
process. First of all, a large information collection strategy is applied, which will grasp the broad sense
of the current research status, as well as introduce me to the topics at stake. This broad searching
strategy was employed during the research study before the thesis even started, however, is of upmost
importance to understand how articles were read and selected. The first conducted literature study is
further explained and described in Appendix B Literature study.

The second approach is dedicated to more specific cases to elaborate on the topics covered in the
session of Appendix B Literature study. Retrieval of a wide range of subjects is required to develop
the understandings on the go. Literature about statistics, design science, framework development,
Key Performance Indicators (KPI) selection, and quality improvements are collected whenever found
necessary as the need for it arises. More specific cases, derived from the initial literature study, in-
clude the search for case studies, research on procurement and warehousing, and Industry 4.0-related
challenges. All this literature is found on the spot and include similar terminology as described in Ap-
pendix B Literature study, however, is also reinforced with the aforementioned needs.

Equipped with the diverse selection of information, the literature study is conducted. The aim of
the literature study is to create a better understanding of the raw material supply & planning within
the context of the factory of the future. Simultaneously, research questions are addressed within this
context by forming an appropriate answer based on the provided literature. Finally the chapter is
concluded with a GAP analysis that briefly elaborates upon the indicated gap of section 1.2.

2.1. Supply chain & operations

Raw material supply & planning as introduced in chapter 1 is one company’s efforts to participate as a
small node in wider web of complex interconnected companies, called the supply chain. To understand
a company’s contribution to this sophisticated network of flows (i.e. cash, materials and information),
we must exemplify the bigger picture (Pundoor and Herrmann, 2006). Moreover, the basis for suc-
cessful participation in this gigantic system is one’s capability to efficiently plan the operations, making
supply & planning a good indicator for performance.

11
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A supply chain consists of many different processes and flows that are continuously shifting speed
and size. Therefore, careful examination of such complex network becomes hard and is difficult to
comprehend. Pundoor and Herrmann (2006) put a good effort into describing the supply chain with
a minimalist and straightforward approach by dividing three flows to consider: material, information,
and cash. These three flows of resources are collectively exchanged between a network of suppliers,
manufacturers, distributors and retailers (shown in Figure 2.1) that have the combined goal of turning
raw materials in products for customers. The distinction between these three flows is the value-adding
nature; materials become more valuable for the customer who is going to use it, making it flow down-
stream. Information flow, on the other hand, contains all the information that is needed throughout
the creation of a product, including fulfilment data. Finally, the cash flow, moves upstream, making

the customer pay for its gained value when buying the product.
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Figure 2.1: The key supply chain nodes visualized.

Every supply chain involve many stakeholders who are all adding their bit of value to a product. Al-
though the way of adding value to the product differs; e.g. transport, merging products, or mining raw
materials, the nature of operating these stakeholders is essentially the same (Pundoor and Herrmann,
2006). By means of simulation, (Jain et al., 2001) modelled a high-level supply chain by including fore-
casting, procurement, fulfilment and replenishment. In doing so, they identified four characteristics
that apply to each stakeholder within the supply chain process. Moreover, describing the effects of one
company onto another with high detail.

The focus of this literature review is the domain of supply chain together with that of smart facto-
ries. In order to generate a smart supply chain, one should adhere to the three integration levels
of Wang et al. (2016a), Tjahjono et al. (2017) and Saucedo-Martinez et al. (2018), visualized in Fig-
ure 2.2. The first integration level covers horizontal integration, meaning that different corporations
are connected to each other for fast product flows through the supply chain. The second level covers
vertical integration, meaning a full smart factory. Finally, the end-to-end digital integration of engi-
neering across the value chain. Difficulties that these integration levels should overcome are global
competitiveness, lack of adaptability and “go to market time” (Manavalan and Jayakrishna, 2019).

Supply Chain Management (SCM) covers a wide range of different business processes, namely ev-
ery step within a product life cycle, derived from the four main tasks (i.e. forecasting, procurement,
fulfilment and replenishment) (Jain et al., 2001). The stochastic nature of SCM becomes more apparent
when reading the work of Manavalan and Jayakrishna (2019), who identified what perspectives of the
word ‘supply chain management’ were used in the literature. Definitions ranging from “Organizational
behavior perspective” to “Optimization of value chain perspective” all fall under the broad concept of
supply chain management, but define a different scope. In order to further delineate the topic of this
study we introduce the “planning perspective”, which aligns a stakeholder’s approach of participating
in the total Supply Chain. Therefore, specifying the role of this research into a wider network of inter-
dependences.
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Figure 2.2: The integration levels, adapted from Chaopaisarn and Woschank (2019). ERP is the abbreviation for Enterprise
Resource Planning, a commonly used planning tool in large corporations.

The advancements of the supply & planning in smart factories can be enormous. Nowadays, plan-
ners have the daily task to plan the production process according to daily incoming manufacturing
orders, availability of raw materials, and availability of equipment and personnel. All these decisions
can be made quickly and in an efficient manner by applying smart algorithms when the data is available.
Useful planning software and tools are slowly finding their way into the market. However, increasing
resistance of older, non-technology-educated personnel and the lack of experience with big amounts
of data, become a burden for further development (Kumar et al., 2019; Trstenjak and Cosic, 2017).
Hence the need for an integrated autonomous system that connects supply chains on an end-to-end
basis.

2.1.1. Supply & planning

Operations in complex factories involve a multitude of tasks that have high momentum and require
careful alignment to avoid unnecessary inefficiencies. Separate departments work in close collabora-
tion to fulfil the demands of the organization; production and sales. Especially in light of the large
amount of supply chains at hand, the operations of one particular factory within this supply chain can
have a huge impact on society. Even stagnation at just one of the operation tasks, e.g. planning, can
snowball into the downstream chain with significant market effects.

To define this small, yet important, piece within the total supply chain, an operations process flow
for factories is designed. Figure 2.3 illustrates the six basic business processes performed at complex
factories. Note however, that these processes are not put into order. Every company within a particular
supply chain has its own unique specified version of this business process, but the overlay depicted in
Figure 2.3 describes the general business for complex factories. The contents of each stage are further
described below the picture.

Forecasting Orders Planning Purchase Production Storage

+Make to order +Many +Production raw +Available +Raw
«Make to stock products capacity materials production [UEICHETS
«Seasonal «Available Many raw hours *Products
fluctuations stocks materials
*Delivery
dates

Figure 2.3: Operations process for complex factories, including common restrictions related to the process step.

For most factories, a forecasting stage is required to start to purchase raw materials with long
lead times, but also to plan ahead depending on the intensity of seasonal fluctuations, e.g. preventive
maintenance. Multiple formats of manufacturing supply are commonly used; Make-to-Order (MTO),
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Make-to-Stock (MTS), Assembly-to-Order (ATO), and Engineering-to-Order (ETO) are just a few of the
available manufacturing systems (He et al., 2014). These different ways of manufacturing allow com-
panies to supply their customers in a flexible manner, but often at the cost of efficiency.

In the next step, sales occurs and production orders are placed. Regardless of the forecasting
method, orders can come at any time and will depend on the manufacturing system in play. If the
order contains the request for a customized item, the likelihood for it becoming a Make-to-order prod-
uct is high. As a result, the product is still to be made and must fit into the production planning. In
contrast, if the order requires a commonly sold product, it might be in stock and the consecutive steps
(i.e. planning, purchase, production, etc.) are less likely to be affected (Kumar et al., 2019).

According to these orders, and in compliance with the forecasting, a production planning is es-
tablished. This production planning combines former information and also determines what is possible
and what not (i.e. based on available resources and capacity). Adherent to the manufacturing sys-
tems, MTO and MTS products are scheduled into a pre-determined time period. Some plannings are
dedicated to just one week, while others cover a whole month of production orders. Consequently, the
orders can be placed up to a particular time to avoid regular alterations in the planning.

Raw materials are purchased; according to the forecasting for long lead time materials, and accord-
ing to the actual planning for short lead time products. A huge part contributing to the raw material
purchase is the process called procurement. To keep a strategic advantage, like the one described
in subsection 1.1.2 by Porters’ Five Forces model, a company can determine its suppliers’ bargaining
power by applying tactical procurement. Tactical procurement involve the sourcing of different vendors,
as well as setting the terms for the different agreements. In practice this means that manufacturers
buy the same resource from various suppliers to maintain a competitive price and avoid monopolies.
Consequently, raw material purchasing is no longer a straightforward job of just buying the required
materials, but must also to adhere to the constraints (i.e. agreements) from the different supplier
parties.

Storage of raw materials is a continuous process that evolves along the chain. During the forecasting
stage, a purchaser is already checking what the future stocks will be, depending on the forecasted
demand. Simultaneously, the production planner is assessing the incoming materials as well as the ex-
isting stocks to tighten the warehouse stocks while ensuring that enough materials are available when
necessary. Altogether the warehouse process is a result of other processes and has to work within
these constraints. However, the warehouse process is one of significant impact, as a slight delay in
internal warehousing can stagnate the production or transportation significantly Reaidy et al. (2015).

The one to last stage, in which the actual business value is established, comprises of production/
manufacturing. Production is the sole action of taking the raw materials, convert them into a prod-
uct according to the production planning and then put them into storage for transportation. In current
practices, the production process receives the most attention as managers see them often as the
only value-adding stage of the operations process (Rosin et al.,, 2020). This view caused that many
companies addressed the inconvenience of their manufacturing systems by adding newer and better
equipment and technologies. As a result, most of the factories are running close to their highest out-
put and become more dependent on external effects. Consequently, the manufacturing process gets
limited in its output due to externalities, but is not able to coope with the changing demand, thereby
making the managers’ view a self-fulfilling prophecy in which the manufacturing process is limiting the
others.

In line with the illustrated process of Figure 2.3 the produced goods are stored directly after pro-
duction before they are transported to the customers. This second storage process differs from the
first in the sense that its inflow is continuous and its outflow is transport-based, which is the opposite
for raw materials. Therefore stagnation in transportation or producing MTS products only will result in
an overflow of material coming into the warehouses. This is unfavorable as warehouses provide only
limited storage capacity.
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Industry 4.0-technologies are primarily focused on improving just one of the depicted business pro-
cesses rather than addressing the system as a whole. Some of the proposed Industry 4.0 technologies
can have a tremendous impact on the challenges that arise with the growing demand for flexibility
within the different departments. S&P is part of the supply chain management (SCM), which has al-
ready been investigated by various researchers, like Manavalan and Jayakrishna (2019); Chaopaisarn
and Woschank (2019); Do Chung et al. (2018). Therefore joining the best of both worlds, by con-
necting the smart supply chain methodology with the opportunities in the complex factory operations
process.

2.1.2. Improvements

Although the solutions and opportunities using Industry 4.0-related technologies into the raw material
supply & planning environment are promising, alternative ways of improving operations are plentiful
as well. Two well-known and widely applied methodologies for improving manufacturing operations
are lean and agile manufacturing (Soltan and Mostafa, 2015). Both concepts have shown their efficacy
in different corporations all over the world. By means of a systematic approach, many companies
benefit through assessing the existing performance by creating a structural overview. Consequently,
a significant part of the industry already adheres to the techniques employed in both agile and lean
methodologies. Subsequently, the need for alternative technologies seems less attractive, because of
the significant investments already made for agile and lean, and the perceived similarities (i.e. improv-
ing efficiency).

Although the two terms often come hand in hand, Agile and Lean indicate completely different ap-
proaches to process improvement. Lean is the process of developing a value stream, which can be
similar to the supply chain stream described in the introduction of this chapter, in which all waste is
eliminated (Soltan and Mostafa, 2015). Waste is perceived in the broadest sense, e.g. time, money,
and materials. Agile, on the other hand, is dedicated to using knowledge and virtual assets in a smart
way to exploit profitable opportunities. Both ways of perceiving the four supply chain processes; fore-
casting, procurement, fulfilment, and replenishment, can offer different insights and thus different
solutions (Jain et al., 2001).

In the lean philosophy, a company uses concept, quality, and lead time as market qualifiers, which on
their turn enable cost reduction. A variety of practices are available to achieve cost reduction through
conceptualization of waste barriers inside the business process, including Just-in-Time (JIT), Kaizen,
Total Quality Management (TQM), and equipment management. All these methods target a particular
piece within the supply chain and allows one to find a typical waste source, after which this waste can
be eliminated. The types of waste, specified for lean are (Soltan and Mostafa, 2015):
Overproduction;

Defects;

Unnecessary inventory;

Inappropriate processing;

Excessive transportation;

Waiting;

Unnecessary motion;

Underutilization of employees.
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The list clearly shows that waste can also be found in rather non-clear-cut stages. For instance, having
an unnecessary inventory clearly follows the ‘waste’-philosophy from the word ‘unnecessary’. How-
ever, many companies were unaware of the far-reaching costs associated to ‘unnecessary’ stocks. As
a result, stocks were never perceived as being ‘unnecessary’, but rather as a safe buffers. Since the
introduction of lean in 1991, a lot of corporations altered their inventory strategy to avoid ‘'unnecessary’
costs, and with success!

Agile working is the execution of improvement studies focused on making short and cyclic processes.
Other than the focus on production processes of Lean, Agile targets the existing business processes
and tries to embrace these into a dense version of it. Although Lean and Agile are considered to be
separate methodologies, their practices often show a lot of similarities. JIT, TQM and decision support
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systems are just a few of the interchangeably used methods (Soltan and Mostafa, 2015). As a result,
applying the Agile-philosophy on a company structure proceeds to eliminate unnecessary tasks, thus
reducing its waste. Multiple spin-offs of this methodology emerged over time, of which Scrum is the
most well-known, but also Kanban and DSDM are increasingly applied to the manufacturing industry
(Soltan and Mostafa, 2015).

Even a combination of the two strategies, called leagility, is a useful developed philosophy (Soltan
and Mostafa, 2015). Despite the methodologies providing a solid structure for development, the ex-
ecution still relies on own interpretation and application. Moreover, there are known cases where
applying the methodologies in a ‘wrong” manner caused even more harm to the organization. With
this in mind and including the growing knowledge about effective improvements, we must define a
clear-cut strategy for the digital transformation that utilizes the already existing knowledge.

2.1.3. Critical parameters

Especially when exercising improvement studies, and knowing its possible harm, attention must be
paid to the key enablers of the business’ process. In subsection 2.1.1 the essence of the raw ma-
terial supply & planning process was illustrated. Within a large complex network of interconnected
companies, this planning process is a key driver for organizational success as well as the main link
between internal operations and the surrounding supply chain. Therefore, a considerable humber of
companies addressed their supply chain and planning performance over the last decades. Applying
various tools, including Lean, Six Sigma and Agile derivatives, organizations have tried to improve their
current operations and established a competitive advantage in a prominent manner (Rosin et al., 2020).

Now the Industry 4.0-philosophy becomes eminent together with its perceived utility, we can apply
some of the lessons-learned from the decades of leagility implementation. Especially the performance
measurements evolved in the leagility-philosophy allow us to find critical parameters for successful and
effective implementation. Locating the performance parameters of a good supply chain planning help
to address the existing bottlenecks - by means of benchmarking - and also provides a way to measure
effectiveness of said implementation.

One of the applied analysis tools, Supply Chain Operations Reference (SCOR) model, is particularly
used to map, benchmark, and improve supply chain operations. The wide range of topics covered
in Supply Chain Management (SCM), e.g. flows of information, flows of cash, and different nodes in
a network, make it a difficult topic to comprehend. A model like SCOR helps to organize the differ-
ent subjects to cover and offers a systematic way to evaluate the performance. SCOR comprises of
three key parts; (I) modeling tool that standardizes business processes as building blocks, (II) a set of
Key Performance Indicators (KPI's), and (III) a tool to compare KPI's with other companies (Persson,
2011). Especially these metrics provide organizations a way to handle the situation by understanding
its operations, a particular important aspect for digital transformation.

At first, the SCOR model focuses on the existing business processes within a company. This first defin-
ing approach is used in a variety of models, but the SCOR model is particularly effective in explaining
the critical aspects of business process modelling by defining degrees of focus; i.e. levels. At level 1,
process definitions, the five process types, described below, are amplified. In level 2, process type,
the model is enriched with enabling processes as well, like maintenance, overhaul and HESQ (Health,
Environment, Safety and Quality). Moreover, the five core process types are further delineated by
defining sub-categories, like the difference between make-to-stock (MTS), make-to-order (MTO), and
engineer-to-order (ETO) products. The execution of each of these products can significantly differ from
one another. In the final level (3), process category, the underlying processes of level 2 are described.
Sub-processes such as receiving products, authorise payments and scheduling are specified to create
a full overview of all business process required in a supply chain participating operations company.

« Source/Procurement: meeting the demand of raw material, components and other services
needed in operations;

« Make/Manufacturing: actually adding value to the raw materials by crafting a new product;
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» Deliver/Distribute: ensure that the created product is delivered to the next node within a
supply chain;

* Return: receiving returned products from customers, due to several reasons, often captured in
a complaint commission;

e Planning: balancing all other processes by adequate planning.

The aim of the SCOR model differs slightly from the operations process illustrated in Figure 2.3. This
difference mainly evolves around the generalizability of the two processes. SCOR is generally appli-
cable, and therefore focuses on the processes that are similar in each every node of the supply chain
(Persson, 2011). The operations process, on the other hand, is merely describing the downstream op-
erations at a complex factory. Since the sole purpose of this research is dedicated to complex factories,
this alteration where "return’ becomes obsolete, is perceived more accurate than the generalized 'SCOR'.

With these different processes in mind and knowing how to create a full overview of the business
processes (i.e. level 1 to 3), we can dive into the next aspect of the SCOR model. Not only can we
now put numbers to each process, we can also define the performance of each of the processes . In
line with the lean - waste - methodology, processes can be measured in dimensions like time, costs
and unnecessary motion. Numbers like these are perfect for obtaining aforementioned performance by
calculating so-called Key Performance Indicators (KPI's). For example, one could calculate the amount
of raw material consumption, which is a simple number related to the process. Subsequently, you
could determine the average amount of that raw material being available inside the company. A simple
division of the two numbers returns the average inventory turnover - representing the time you can
produce without replenishment.

By calculating multiple KPI's within the 5 different sections (i.e. agility, responsiveness, reliability,
cost, and asset management), you create a better understandin of your process. Especially the cal-
culation of these KPI's, related to the supply chain, establish a benchmark for both the comparison
between internal operations versus external operations, as well as the performance increase pre- and
post-digital transformation. Targeting those KPI's that are currently under-performing helps a manager
to make effective and efficient decisions.

The KPI's related to the SCOR model are also called ‘metrics’ and are divided into the three levels
of abstraction as well. At the very top, level 1, only a few metrics are considered to measure the
company'’s performance effectively, as depicted in Table 2.1. However, the underlying levels 2 and 3
provide more than 4000 additional KPI's dedicated to each separate identified process (Gordon, 2011).
Finding the right KPI's for a company’s structure is based upon the applicable processes. For instance,
there is no need for a company to calculate its packaging reuse number when all products are shipped
in bulk trucks.

Performance attribute | Metric

Reliability Perfect Order Fulfillment
Responsiveness Order Fulfillment Cycle Time
Agility Upside Supply Chain Flexibility

Upside Supply Chain Adaptability
Downside Supply Chain Adapability
Overall Value At Risk

Cost Total Cost to Serve
Asset Management Cash-to-Cash Cycle Time
Efficiency Return on Supply Chain Fixed Assets

Return on Working Capital

Table 2.1: The SCOR level-1 Metrics, by Gordon (2011).
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Although SCOR is a useful method to determine a process’ critical parameters, it remains limited to
supply chain-related processes. Another view on a company’s performance is provided by the Bal-
anced Scorecard (BSC) approach (Diaz Curbelo and Marrero Delgado, 2014). The BSC methodology
concentrates on collecting and analyzing management systems. These systems were subdivided into
four perspectives to measure operational performance; (I) learning & growth, (II) customers, (III)
business process, and (IV) financial (Frederico et al., 2020). With help of the different dimensions
of operations a company can align its management properly, perform good communication through
the different communication channels within the company, and measure performance. The first per-
spective to be addressed is learning & growth which provides the basis for the other perspectives. In
this perspective it is checked how learning & growth are stimulated within the company. The second
dimension; customers, aims at the performance of a company’s sales, namely customer satisfaction
and customer-enhancing initiatives. Thirdly, the business processes is the intertwined terminology that
describes all interrelated tasks within a company. These processes allow a company to exist and to
provide its service to the market and society. A final dimension is dedicated to financial, which encom-
passes all former dimensions and is the result of company’s performance.

A company can use the four perspectives to categorize different ongoing processes, like financial and
strategic results, which fall under (IV) financial, or technologies which clearly constitute (I) Learning
& growth. Figure 2.4 clearly shows the interrelationship between the four perspectives that collabo-
ratively align the company’s strategy. In each perspective, one focuses on the objectives, measures,
targets and initiatives, thus both enhancing the existing effectiveness and measuring its performance.
A few approaches for measuring Industry 4.0 for instance can be found in the paper by Frederico et al.
(2020), who identified multiple supply chain related attributes that can be measured. For the financial
perspective they found among other things: shareholder value, level of cost reduction, and profitabil-
ity. Business processes, on the other hand, had identifiers like response time, level of flexibility and
level of waste reduction. One can clearly see the difference compared to the SCOR approach where
the numbers are often determined straightforwardly in the form of a KPI. In the BSC approach, the
identifiers become more abstract (i.e. level of flexibility) that cannot be measured, but is the result of
thorough investigation and an assessors’ own perspective.

Altogether, the two ways of measuring a company’s performance allow businesses to find existing
low hanging fruits, simply by comparing its own performance versus a benchmarked value. More-
over, it shows manufacturing companies what other processes can be improved other than just the
manufacturing process, thus broadening the scope and seeing the potential of Industry 4.0-related
technologies. A final benefit of the BSC and SCOR models is the employment within the digital trans-
formation, to assess performance of critical parameters pre- and post-implementation, obtaining the
digital transformation effectiveness.

2.2. Smart factory

Smart factory is a concept within the Industry 4.0-domain which is often used interchangeably Oster-
rieder et al. (2019). Though the words might infer similar meanings, this report strictly separates the
two. Industry 4.0 in the context of this thesis implies the use of novel technologies within the industry
in the broadest sense of the word, e.g. supply chain and logistics. Smart factory on the other hand,
indicates the integration of 'smart’ technologies into a factory for smooth and easy execution of the
manufacturing system.

The importance of implementing smart technologies into complex factories was portrayed in section 1.2.
With that in mind, we must identify what is included in a smart factory and how should the factory of
the future function. Moreover, the connection of one factory to another, including all steps in-between,
make this factory participate in a supply chain as a whole. Therefore we further delineate how the
smart factory-technologies integrate into the bigger picture by addressing “smart supply chains”. The
final two subsections of this section cover the existing adoption barriers and the elements to overcome
for companies to take the step towards effective manufacturing.
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Figure 2.4: Balanced scorecard approach for finding the right indicators in an operations environment to fulfil the company’s
strategy, adapted from Kaplan and Norton (2001).

2.2.1. Technologies

Technologies and technological innovation play a key role in digital transformation. Without the intro-
duction of novel technologies and their innovative applications, the industry would keep relying on their
existing knowledge which is based upon Programmable Logic Controllers (PLC) and a lot of experience
from decision-makers (e.g. planners and procurement) (Saucedo-Martinez et al., 2018). This way of
operations involve a lot of human communication and include a significant portion of planning to avoid
unnecessary waste.

In the new digital era, we are introducing ways to improve the existing processes by adapting tech-
nology to the needs of company. Previous efforts like lean, outlined in subsection 2.1.2, already
streamlined business processes significantly, but oftentimes by simply restructuring the process with-
out implementing actual technology. Nowadays, the paradigm shifts towards restructuring data rather
than business processes (Frederico et al.,, 2020). Data was already a key driver within multiple dis-
ciplines inside a manufacturing organization, but was never identified as such. Information about
customers, suppliers or the status of equipment can all be labeled as data and are continuously used
during decision-making processes. However, this data is often static and changes only when commu-
nicated correctly, e.g. the production capacity of a factory. Since the production capacity changes
continuously due to malfunctioning equipment or due to down-time, a production planner is always
reliant on the status information provided by the production department.

All sorts of data are required in various stages of the business processes and at various levels in
departments of a company. Streamlining these different data flows and letting them work effectively
mainly depends on the technologies used. A wide range of data-related technologies have found its
way to business in the past few years. Ever since the introduction of Industry 4.0, companies increas-
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ingly understood the importance of data and started to reap the benefits of the technologies associated
with it. Since data is a holistic concept, we will define the key enablers defined by various researchers
(Mittal et al., 2019; Tjahjono et al., 2017; Rosin et al., 2020; Frank et al., 2019; Dalenogare et al.,
2018), combined in 13 key technologies shown in Figure 2.5.
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Figure 2.5: The 13 overarching technologies enabling digital transformation in Industry 4.0.

Virtual and augmented reality are commonly associated with the consumer markets where subjects
like VR gaming have become immensely popular. Within the industry a similar technology is applied
where one could dive into a virtual version of a factory and test actions within this virtual environment
(Tjahjono et al.,, 2017). Augmented reality adds a few functions compared to virtual reality. In aug-
mented reality the actual environment is displayed, in which particular objects are modelled. These
tools are particularly valuable for training purposes, where new employees can learn real-time by per-
forming ‘virtual’ actions without harming the real process.

Additive manufacturing evolves from Computer Aided Design (CAD) model or a digital 3D-model
construction. 3D-printing, a synonym for additive manufacturing, is the art of solidifying liquid molecules
or powder grains into a pre-determined digital shape (Kumar et al., 2019). This is particularly effec-
tive for the manufacturing of prosthetics which are tailor-made to the patient. Consequently, in the
past few years many businesses emerged upon the 3D-technology because of the high flexibility for
custom-made products and the relatively simple technology used.

Miniaturization of electronics is not a technology on its own, but is considerably important in indus-
try 4.0 (Tjahjono et al., 2017). Moore’s law is one of the most prominent and well-known explanations
of the rapid reduction in size of chips. Due to the increase in number of transistors on circuit chips over
time (i.e. Moore’s law), the productivity of said transistors become more efficient and also decreasing
their size causing the chip’s final size to reduce as well. This reduction in size is notably useful to the
sensor-techniques employed in the industry, as they are readily integrated into the existing architecture.

Robotics, drones and nano technology follows right after. Innovations like unmanned air vehicles
(UAV), sensors and machine learning are effectively improving the production operations (Oztemel and
Gursev, 2020). Robotics can be employed with simple sensors, similar to those on a self-driving car.
These sensor collect data that help a robot to determine what actions to take. Add a self-learning
algorithm, i.e. machine-learning, and the machinery will work without any intervention.

Blockchain is an innovation on its own, which only recently got associated with the smart manufactur-
ing domain (Mittal et al., 2019). For that reason, the applications of blockchain are not clear-cut and its
utility is yet to determined. However, the smart contracts principle supported by the blockchain tech-
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nology enable a large pool of new business opportunities. Smart contracts are the pre-programming
of contracts, including its payments, using conditions which must be fulfilled before transaction takes
place, e.g. arriving at location B and delivering X tonnes of material. When all data is automatically
obtained through sensors, human interaction is no longer necessary as all administrative processes
occur through a pre-determined algorithm.

Simulation is already an established brand within the subset of industry 4.0-technologies. How-
ever with the emergence of the other technologies, simulation gets a new dimension and utility (Rosin
et al., 2020). Simulation based on real-time data help decision-makers with their operational decisions.
Analyzing the incoming data and tweaking it to preferred outcomes by simulation are far more accurate
than guessing or using limited historic data.

Big Data Analytics is one of the critical aspect in smart manufacturing. Data is collected through
several technologies; through others the data is processed, stored and/or forwarded and by the re-
maining technologies data is used. As can be derived from this explanation, a lot of data is flowing
through the interconnected systems, called big data. This large amount of data has to be processed
in order to make use of it, which is found in the art of big data analytics (Saucedo-Martinez et al., 2018).

Automatic Identification and Data Capture (AIDC) is the technique of automatically identify-
ing objects, converting it to data, and pushing them directly into a digital environment. Different AIDC
methods are present; radio frequency identification device (RFID), bar/QR codes, biometrics (e.g. face
recognition), and magnetic stripes Wang et al. (2016a). All methods have in common that they mea-
sure objects, however, identify based on a different principle, like chips (RFID) or an image (bar/QR
codes).

Machine to machine (M2M) communication is the direct communication between devices using
wired or wireless networks Oztemel and Gursev (2020). This type of communication is truly important
as it provides the basis for data exchange. M2M varies from simplistic forms, where an SMS was send
to a GSM when an alarm-system detects a thief, up to advanced methods where a piece of equipment
is using the combined data of 20 other devices to predict its future output, like a smart meter in your
home.

Cloud technology is at the very center of the data flow. Nowadays, companies do not prefer to
adhere to one place only, thus utilizing the full potential of the internet. Through internet connections,
data can be stored and retrieved from anywhere around the world. Moreover, outsourcing of data
reduces local overhead for the large server systems required to store all that data. Besides the storage
capacity of cloud systems, is the capability to install applications on the cloud sources, thereby reducing
the demand on local systems.

Cyber security is the immediate response to the increasing use of cloud services (Rosin et al., 2020).
Connecting local data to the internet, enables hackers to get access to valuable and confidential in-
formation without having to physically enter the production site. Moreover, with the increasing use
of robotics, which can be manually operated, the likelihood of dangerous situations due to criminal
activities increase significantly. Within the domain of cyber security, countermeasures to this digital
infringement are taken.

Business intelligence (BI) is often seen as the overarching employment of digital solutions. By
collection of business information and doing data analysis on them, a company can predict future
events and anticipate on them. For instance, a company might know that the beer consumption around
the Oktoberfest will increase threefold, therefore changing the regular strategy of make-to-order to a
make-to-stock to ensure sufficient stocks during this demanding period.

Internet of Things (IoT) is the final technology to be considered. IoT is a true buzzword that
encompasses many of the aforementioned technologies. The internet of things is a system of interre-
lated devices that communicate with each other without human interference Yang et al. (2019). This
system of devices include sensors, connectivity, and an architecture of interconnected devices. A per-
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fect example of IoT is found in new - technology-intensive - houses which have various devices like
lamps, air conditioners, and media devices connected to one smart phone on which the resident can
control everything or set it to automatic mode.

In order to implement a smart system using the 13 enabling technologies, it is important to con-
sider what must be taken into account. On a very general level, Yang et al. (2019) defined three key
backbones that should built towards the 4 layers of the Cyber Physical Systems (CPS) (i.e. smart sys-
tem) (Chaopaisarn and Woschank, 2019). First of all, data management, i.e. how is all incoming data
managed? Secondly, the information processing is addressed, i.e. how is the data, which is required,
collected? And finally, the decision-making, i.e. what is decided, depending on which data? Since the
three backbones of Yang et al. (2019) shows similarities with the 4 layers of Chaopaisarn and Woschank
(2019), but without one crucial layer, I will introduce a fourth backbone that needs to be addressed
during the implementation. This fourth backbone requires one to think beforehand what data needs
to be collected, by addressing the question: "what data is required to make the decisions we want to
make?”. The 4 CPS-layers and 4 corresponding backbones are summarized in Table 2.2.

Cyber Physical layer | Data management | Aim

Physical layer Information process | How is the data, which is required, collected?
Data layer Data management How is all incoming data managed?

Cloud & intelligence layer | Decision-making What is decided, depending on which data?
Control layer Required data What data is required for our decisions?

Table 2.2: Connection between Cyber Physical layers and data management processes.

These CPS layers are identical to every Industry 4.0-architecture and help to understand how different
technologies collaborate and what each technology contributes to the general architecture (Chaopais-
arn and Woschank, 2019). From Table 2.2 it should be apparent that smart systems include solutions
and require action at different levels of abstraction. For instance, data must be obtained, thus some
sort of physical system must ‘sense’ what is going on on the factory floor. Something that is being
done within the manufacturing for decades using PLC and DCS systems. However, the other 3 layers
are already less straightforward due to them being relatively new in the conservative world of man-
ufacturing. Now we know that these layer exist as well, we can dive into the technologies that drive
digital transformation and share the Industry 4.0-philosophy.

The very basis of the technologies can be derived from Frank et al. (2019) who distinguishes between
front-end technologies (i.e. smart supply chain, smart working, smart product and smart manufac-
turing) and the base/enabling technologies; Internet of Things (IoT), Cloud, Big Data and Analytics.
These four broad concepts of technology describe the Industry 4.0-domain in a generic way, leaving
out some important aspects. Chen et al. (2017) dives deeper into the topic by describing the enabling
technologies for each of the CPS-layers, identified in Table 2.2. For each layer, which has a slightly
different name, they identified what technologies exist and how these technologies are linked together.
Figure 2.6 shows the identified and related technologies for the four CPS-layers.

At the very basis of a Industry 4.0-architecture is the physical layer. In this layer, data is collected
and machinery is being operated. Manufacturing systems comprises of a lot of physical assets that
perform various tasks simultaneously and collaboratively. This continuous changing state is important
information in the overlaying decision-processes like maintenance and production planning. By captur-
ing the state of the equipment, e.g. pressure and frequencies, we can base our decisions on accurate
information rather than guessing the state using experience. Data capture is done via sensors specif-
ically designed for that purpose. This means that it must be known beforehand what data needs to
be captured, since a pressure sensor cannot measure temperature or vice versa. Typical technologies
that are included in the physical resource layer are RFID’s, Sensors, PLC's, smart meters and ZigBee
routers.
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Figure 2.6: The CPS-layers including the corresponding technologies and possible ways of interconnection, adapted from Chen
et al. (2017).
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After the data was collected and combined at a local node (e.g. PLC), the data must be forwarded
to a more useful location, like the cloud. This driveway of data is critical, because it can significantly
hamper the use and value of data. Similar to a highway; if too many cars join the road, a traffic jam will
happen and everyone on said road will reach their destination a bit later. The network layer performs
a similar task to the highways and ensures continuous data flow from physical assets to the storage
location and vice versa. Because autonomous processes cannot rely on ‘experience’, they need data to
do their decision-making processes. The increase of autonomous processes thus increases the need
for data thus requiring larger and efficient ‘highways’. Technologies found useful in this domain are
in the domain of enternet, wireless AP, industry switch, and access network that rely on the concepts
of Edge computing, OPC-UA interconnection, Software defined networks (SDN) and device to device
(D2D) communication.

The cloud application layer encompasses the storage section of the data, where data can be stored
locally on a server or on a particular database like MySQL or Oracle. Applications, which use the stored
data, are also located in this layer. Applications like ERP (Enterprise Resource Planning) and WMS
(Warehouse Management Systems) are often deployed in large organizations and aid employees in
their decision-making processes.

Finally, the terminal layer incorporates the other three layers as this is the key layer in which deci-
sions are made based upon the bottom layers. Between the terminal and cloud layer lies the service
application interface. Nowadays, decision makers can reach their digital information via various tools,
e.g. smart phones, tablets, and monitors. However, it is the service application layer that makes the
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terminal layer useful. Each application has its own user-interface and based upon this interface, a
decision-maker decides what subsequent actions must be made, therefore playing a critical role in the
process.

Although the lay out showcased in Figure 2.6 can be interpreted similar to existing industrial SCADA
(Supervisory Control and Data Acquisition) systems, their differences are significant. Figure 2.7 de-
picts the difference in a standard automation hierarchy, where consecutive layers of information are
involved in the manufacturing process, compared to a CPS-based automation system of intertwined
devices, applications, and systems.

management
level

Control
(PLC) level /F

Realtime
critical
- Field level ___\l/____

Hierarchy based automation CPS based automation

Figure 2.7: The classical automation hierarchy on the left versus the CPS-based interconnected automation as visualized in
Industry 4.0, figure adapted from Plattform Industrie 4.0 (2015).

2.2.2. Adoption rate

In subsection 2.1.2 it was argued how companies improve their performance for a few decades now.
Consequently, the effectiveness of said methodologies will increase at first because of the learning
curve associated with it. However, at some moment in time these techniques become obsolete and
their effectiveness diminishes. A complementary philosophy, found in Industry 4.0, will enhance the
existing systems and drive new initiatives to improve internal performance. But why is Industry 4.0-
implementation still limited as is described in section 1.2, while the concept exists since 2012?

McKinsey Digital (2016) identified multiple barriers at different levels of integration, depicted in Fig-
ure 2.8. The top 5 entry barriers; difficulty in coordinating actions, lack of courage, lack of necessary
talent, concerns about cybersecurity, and lack of a clear business case are all difficult to overcome,
hence the lack of widespread adoption. Especially when looking further into the future, data-related
challenges such as ownership, in- and outsourcing, and integration become a burden for fast develop-
ment.

Not only the 8 challenges depicted by McKinsey Digital (2016) are considered to be the adoption-
limiting factors, also the maturity of the different technologies is considered to affect the adoption
rate. Although Industry 4.0 presented itself in 2012 and the associated technologies were even known
before, a significant portion of the technologies are still in its intermediate stage (Pacchini et al., 2019).
For eight of the Industry 4.0-technologies, Pacchini et al. (2019) assessed the maturity levels for im-
plementation in manufacturing contexts. This study already left out 5 of the 13 drivers from Figure 2.5
(i.e. simulation, miniaturization of electronics, blockchain, AIDC and Cyber security), likely indicating
that these are even more lagging with regards to maturity.

Large corporations are often cumbersome and not able to quickly anticipate on changing markets.
Yet they are the ones with the least issues regarding industry 4.0-adoption shown in Figure 2.8, like
lack in talent or courage. Smaller businesses on the other hand have relatively low bureaucracy, thus
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making the adoption of new systems rather straightforward. Nonetheless, these companies do face the
lack of talent and courage, making them reluctant of adopting the new systems. Thereby explaining
the overall adoption a industry-wide issue.

Among the others, Yang et al. (2019) further increases this list of challenges by looking at the tech-
nology’s end. Latency, bandwidth and interference are affecting the flow and usability of data through
the entirety of smart systems. Latency refers to the time interval between actual recording and its
response. When employing autonomous systems, one would want at least a similar response time as
a human being, but preferably even faster. For example, if the latency for opening a door is 10 hours,
no one would ever use that door again. Bandwidth is the width of a particular connection, determining
the maximum rate of data that can flow through. The highway example of subsection 2.2.1 is a per-
fect illustration of bandwidth. Interference is, as the word suggests, the interference of multiple data
sources at the receiver side. Data is forwarded by various tools and on the receiving end; a tool must
decide which data to use and how to process the data.

So even though the technologies can be beneficial, companies are clearly reluctant to use the tech-
nologies due to the associated challenges. The need for new technologies is mandatory due to the
aging of the workforce, resulting in a significant experience loss in a few years from now. Add the loss
of your competitive advantage to the mix and the risk of holding onto existing practices becomes as
high as switching to the newer technologies.

2.2.3. Integration

Due to the increasing importance of industry 4.0-adoption, the integration of it becomes more im-
portant as well. Since implementation of Industry 4.0 is considered to be difficult, its employment
process should be kept simple and straightforward. Integrating implementation steps into existing
methodologies, like Six Sigma, could significantly increase the performance and adoption of the Indus-
try 4.0-technologies.

Dogan and Gurcan (2018) describe this resemblance between Six Sigma and Industry 4.0 by describing
both as a ‘quality-improvement’. The use of data plays a crucial role in both subjects. Through the
collection, analyzation, and utilization of data companies can make faster, more reliable, and satisfying
decisions, thereby increasing the quality. Although, the difference is huge (i.e. Six Sigma is an quality
improvement method and Industry 4.0 is the art of utilizing novel technologies to manufacture effec-
tively), the goal of both is similar in nature. By providing novel technologies to the solution-portfolio of

Top 5 barriers by manufactureres with no/limited progress in Industry 4.0

Additionalitop barriers mentioned by more advanced
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Figure 2.8: Top barriers prior to and during adoption, adapted from McKinsey Digital (2016).
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Six Sigma, one is already implementing the basics for the Industry 4.0-philosophy. On the other hand,
by looking at the existing data you can implement Industry 4.0 more effectively through addressing
quality-related challenges. These simple adjustments (i.e. perspectives) make the collusion of both
favorable, as you can use utilize the best of both worlds. Moreover, this combined way of improving
existing processes shift the attention from challenges to opportunities.

One methodology that is especially suitable for improvement studies and already widely enrolled across
the manufacturing industry, is the Six Sigma DMAIC method. The DMAIC-procedure, as shown in Fig-
ure 2.9, targets large or recurring problems within the organization. Effective industry 4.0 adoption
also involves the procedure of finding the bottlenecks and addressing them first (Liere-Netheler et al.,
2018), making it a good fit with the problem solving nature of the DMAIC.

» Define the problem

» Quantify the problem

« |dentify problem causes

« Implement and verify solutions

« Maintain the solution

Figure 2.9: The five stages of the DMAIC improvement process.

At first, the problem must be defined. In current practice, this refers to describing the problem.
For example, a customer files a complaint about a delivered product. The D-stage is then dedicated
to describing the malfunction reported. In the case of Industry 4.0-implemention this first step will
not only describe the problem, but also the intention of changing. As the problem is not a clear one,
the objective is. An organization might consider Industry 4.0 adoption to boost performance or just
to maintain its competitive advantage. This step is identical to the common ‘define’-stage, because it
focuses both on identifying the nature of the project.

The subsequent step is less straightforward in the case of Industry 4.0-implementation (Soltan and
Mostafa, 2015). In a regular employment, the measurement stage is solely focused on collecting
data and understanding the overlay. Something similar was identified in subsection 2.1.3, where the
initial focus lays on describing the overlay after which this overarching body is used to categorize
the different indicators. A similar approach can be applied to the Industry 4.0-context, where in the
'measurement’-stage, you describe in what context the technology is introduced.

Then the results are prone to evaluation (Soltan and Mostafa, 2015). Usually, one starts to assess
the data obtained or dives into the root causes of the earlier observed and reported problem. In the
context of Industry 4.0 this analyzing step is merely dedicated to finding the existing pain points in
operations. First of all, you want to know what causes inefficiency to find a technology that effectively
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targets that issue. Then you want to apply a digital driven solution to accurately capture what you
found artificially. Finally, data is obtained throughout the analyzing stage, allowing a thought-out im-
provement stage. The analyzing stage is, similar to the regular approach, the most time-intensive
stage for Industry 4.0 implementation.

Following the results from the analyzing-stage, is the actual improvement of the system through
implementation of a solution. With respect to Industry 4.0, this means that a data-driven technology
provided insights into ever-occurring inefficiencies, like the continuous lack of storage. With the data-
driven approach, one can look at multiple solutions now, like efficient storage planning using the data
or a more radical approach that involves capacity expansion.

With all the dedication put into a good solution, the final stage comprises of maintaining the so-
lution. (Soltan and Mostafa, 2015) is one of the key aspects in a solution-maintaining strategy. You
assess the applicability of a solution and try to improve its performance even further by continuously
assessing the effectiveness of the solution.

After careful execution of the implementation program, according to the DMAIC structure, substan-
tial improvements are made. Crnjac et al. (2017) describes describes the potential of this integration
by delineating differences between the existing industry (3.0) and the coming industry (4.0) using a
few keywords, depicted in Figure 2.10. Currently, manufacturers are mainly targeting their manufac-
turing process as their key drivers. With the introduction of smart products, i.e. products that collect
data, the context shifts towards the product lifetime as the product becomes an essential element for
further development. Also the shift from planning to acting will contribute to the reduction of waste,
enhancing the lean manufacturing philosophy to a smart manufacturing philosophy.

¢ Product lifetime

* Act

¢ Smart manufacturing

¢ Decide by information

¢ Create new revenue streams

¢ Manufacturing process
¢ Plan

¢ Lean manufacturing

¢ Decide by experience
* Save money

Figure 2.10: Most significant changes compared to existing manufacturing industry, inspired by Crnjac et al. (2017).

2.3. Actual implementation

Despite the majority of the industry does not follow the digital transformation trends as of yet, some
companies have made the shift and with success Manavalan and Jayakrishna (2019)! Regardless of the
success, a lot can be learned from those who took the jump from Industry 3.0 to Industry 4.0-based
manufacturing.

Especially the case studies described in the literature are of upmost value, because of the implemen-
tation challenges faced and the found applicability of particular technologies to particular situations.
For each case study it was checked what kind of technology was applied, in what context (i.e. type of
factory and business process), considerations, trade-offs and what benefits were obtained. This large
amount of information provides a solid basis for future Industry 4.0-adopters in their decision-making
process.

From these case studies, and including some theory-based articles, implementation stages are de-
rived. Each implementation process comprises of multiple subsequent actions which all add value to
the total. Identifying which stages were required help the development of an implementation frame-
work.
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Finally, a conceptualization of the holistic nature of Industry 4.0 is needed. Up to this point, a large
amount of different terms were introduced, sometimes overlapping each other, and sometimes contra-
dicting each other. To establish a common ground, practitioners developed a model, RAMI, to clarify
what technologies and layers exist in the Industry 4.0.

2.3.1. Case studies

Based on the literature study described at the start of this chapter, 14 distinctive case studies dedi-
cated to supply & planning were found. For each of these case studies it was noted what technology
or technologies were introduced through the case study. Besides the enabling technology (i.e. from
Figure 2.5), also the actual technology was mentioned to provide examples and options for businesses
to follow.

Only 1 of the case studies (7%) used simulation as an enabling technology for further development.
The main focus of Belli et al. (2019) was improving the production planning process by reducing errors.
SmartPlanner, the software which was deployed, had to cooperate with existing software, logic and
models. Thus the main consideration was modularity and connection with the existing Enterprise Re-
source Planning (ERP) system, which was found by obtaining most of the data by human observation
rather than automatic data collection. In a second stage, the introduction of IoT was able to overcome
the challenges associated with human observation. Essential benefits of this system are: up to date
visible data, digital traceability, and -above all- the error-reduction.

Another, relatively unused enabling technology is Business Intelligence along with Blockchain, with
only one mention (7%) in all case studies. Arumugam et al. (2018) describes the use of a business
intelligence-blockchain platform in the so-called ‘Architecture integrated smart logistics’, where the
supply & demand logistics of a food chain is controlled. In the case study -focused on end-to-end
integration- transparancy, traceability, and acountability are considered to be the Critical Success Fac-
tors (CSF’s) (i.e. goals). The major considerations taken in this case study relate to the smart contracts
of the blockchain technology for which it was hard to pre-define exceptions that could arise causing the
contract to not be fulfilled. The study’s applicability is limited due to the fact that it has not been tested.

The third technology found in case studies was the use of IoT, found in 3 separate case studies (20%).
In the first study, an IoT architecture was used to perform condition and quality control, increase plan-
ning and scheduling efficiency, and to improve information visibility (Yang et al., 2019). To test the
idea, a virtual machine network with many different technologies was created. Customization was one
of the biggest burdens when considering the topology of the IoT architecture. There were different
data segments (i.e. quality control and scheduling efficiency) which require a completely different IoT
sensors, therefore preferring sensors that are able to capture different types of data. In the end they
chose to just go for the ‘'measure-it-all’ approach and had to implement a large amount of sensors.
The large amount of incoming data required sophisticated data algorithms to effectively downsize the
data to meet the needs.

Lee (2019) targeted their key supply of an automotive batch process by introducing an IoT struc-
ture (called ECminer) to measure its cycle time, Work in Progress (WIP) and throughput (TH). Using
this structure, they established an end-to-end type of integration with their suppliers, increasing the
efficacy and efficiency of their supply. However, data sharing was found to be a major issue. Only
with a mutual contract, they agreed on providing data to the suppliers to avoid future problems.

The final IoT structure was introduced by Rezaei et al. (2017), who improved the production plan-
ning by using an IoT-based real time framework. The aim of this study was to minimize costs and
to maximize agility and reliability, but with cost effectiveness. The only way of keeping IoT relatively
cheap, was by addressing only 3 KPI's and leaving out the others for future plans. Eventually this
strategy based decision making increased the performance of the KPI's

Automatic Identification and data collection (AIDC) which involve technologies like bar codes, RFID's
and other ‘evolved’ sensors covered 27% (4) of all case studies. In the selection of case studies, Lee
et al. (2012) was the first to use RFID tags. In the Garment industry they faced problems with resource
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allocation due to the high amount of machinery that use the materials at a different time at a different
rate. By using RFID’s, Lee et al. (2012) reduced the variance between expected and actual resource
utilization, with the side benefit of standardizing the full resource process. Instead of enhancing the
existing Warehouse Management System (WMS), they introduced fuzzy logic to make sense of the
incoming RFID-data. By doing so, they enhanced the overall visibility of resources within the system.
However, it is considered hard to find what data must be measured, and the final topology was not an
efficient one, yet really promising.

Reaidy et al. (2015) targets the end-to-end integration with its AIDC strategy. Their negotiation proto-
col utilize a collaborative warehouse at its maximum by scheduling depending on dynamic changes (by
AIDC). The main goal of this negotiation protocol is to increase the responsiveness and agility of said
collaborative warehouse. Through development, the team found it had to make some major trade-offs
in order to get the system running; Return on Investment, manager trust and guaranteed performance
were the challenges they had to abandon in the developed system. However, the benefits of reducing
warehouse delays and costs were significant and a good indicator for future success.

One divergent case study is found in the smart logistics management system by Chong et al. (2018).
In their case study, the team tests a full architecture for logistics management, measuring ingoing and
outgoing materials by means of AIDC. The main purpose of this system is to obtain real-time data about
the status of stocks at the different companies involved in the supply chain. According to the VDMA
toolbox for industry 4.0, Chong et al. (2018) developed a system that is moderately sophisticated in
terms of Industry 4.0.

In a soap factory with multiple production lines and conveyor belts, Wang et al. (2016b) developed
an intelligent decision making and negotiation agent utilizing RFID. Increase of efficiency, profitability,
and transparency are just a few of the KPI's addressed throughout the implementation process. In
doing so, physical assets (i.e. RFID’s) must work together to establish the required ‘smart’ network.
However, having that many connected devices immediately results into the first implication; that of
bandwidth. So much data has to flow through the wireless sensor networks (WSN'’s) that only the ones
that process data at a high speed were suitable. Figure 2.11 provides an overview of the intercon-
nected system of Wang et al. (2016b) working collaboratively to select the most optimal production
order. Subsequently, one could see that such systems do not rely on just AIDC or IoT, but often some
cloud and terminal layer are required as well. Cloud technology, as one would expect, was used in
most of the case studies (8 resulting in 53%). Others like Yang et al. (2019); Reaidy et al. (2015);
Arumugam et al. (2018); Lee (2019); Chong et al. (2018) also had some sort of cloud technology in
place, but not as prominent as in the study by Wang et al. (2016a). In a batch factory for multiple
different products, Wang et al. (2016a) created a closed-loop conveying system by using algorithms
and a cloud. The main focus is the prevention of dead-locks inside the conveying system using smart
algorithms, rather than increasing the buffers. In the end, the study was concluded to be effective,
since the batch process changed to a semi-continuous process while maintaining the ability of product
customization.

Accorsi et al. (2018) developed a procurement and transport decision-support platform for the import
and export of food. The main purpose of this cloud solution was to reduce travelling (time, nhumber
of shipments, and costs) via the use of smart algorithms. One of the biggest challenges here was the
missing data from particular parties as the required degree of end-to-end integration was not obtained
yet. Consequently, the team had to use coding to ‘guess’ the missing data entries, thus decreasing
the reliability of the technology. However, using this technology as a simulation induced insights into
what needs to be improved in existing operations.

In the candy packaging line of Chen et al. (2017), a cloud system was developed for improving the
performance-, availability-, qualified-, and Overall Equipment Effectiveness (OEE)-ratios. New ‘intelli-
gent’ equipment was required to coope with the significant data flows, namely configurable controllers
and self-reconfigurable. With the new equipment, and in accordance with the developed cloud system,
the team increased the ratios significantly, of which OEE was the most considerable (from 42% to 82%).
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Figure 2.11: An example case study, adapted from Wang et al. (2016b).

The final and largest category of technologies found in the case studies, was (big) data analytics.
A vast 60% (9 cases) contained data processing techniques. The case studies treated so far, Belli et al.
(2019); Wang et al. (2016a); Lee et al. (2012); Chen et al. (2017); Lee (2019); Wang et al. (2016b);
Accorsi et al. (2018), do not require a second explanation. The remaining use cases are found in Zheng
et al. (2019) and Do Chung et al. (2018). Zheng et al. (2019) applied a two-stage supply algorithm to
define the production order for a batch process with different machines. Sharing demand information
with the suppliers was considered to be an essential part of the supply algorithm, thus requiring some
form of end-to-end integration and making internal business information public. Although it was not
preferred to share this information, the technology increased profits by 5 to 17%.

The case study of Do Chung et al. (2018) is investigated for its production order algorithm. They looked
into an additive manufacturing site where multiple 3D-printers are located that produce separately. To
make effective use of the 3D-printers in place, the algorithm determines the fastest production order.
Moreover, they introduced the collaboration between different companies, allowing different manu-
facturers to make use of the -otherwise stationary- 3D-printers. Although the complexity increased
significantly, the team enhanced the dynamics of the supply chain while remaining flexible regarding
changes and uncertainties.

2.3.2. Implementation stages

Different types of implementation articles were found through the strategy adopted. Some researchers
used older literature in order to combine ideas and technologies (Arnold and Voigt, 2019), while oth-
ers reiterate their findings in an actual case study (Chen et al., 2017). Also the application portfolio
is widespread, where one focuses solely on Small and Medium Enterprises (SME’s) (Chaopaisarn and
Woschank, 2019) and another on the domain of Just in Time (JIT) manufacturing (Xu and Hua, 2017).
Combining all this information gives an idea about the subjects covered so far.
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The literature captures a wide range of implementations, as shown with the variety of case studies
in subsection 2.3.1. Consequently, the literature tends to describe the implementation plan by using
three different structures. The first being the integration approach, shown in Figure 2.2 at the start of
this chapter. Three levels of integration (i.e. horizontal, vertical and end-to-end) are often buzz-words
to describe the degree of industry 4.0-implementation. A vertical integrated company controls its inner
manufacturing processes using digital solutions, but it is unclear to what degree they do this. Similarly,
the horizontal integrated companies are supposedly exchanging information through digital solution,
however, to what extent is unknown.

To know to which degree digital transformation was applied, a second implementation structure is
found in complexity level of implementation model by Frank et al. (2019). Figure 2.12 shows what
type of technologies are associated with what stage of industry 4.0 implementation. Moreover, this
model subdivides the front-end technologies (smart manufacturing, smart products, smart working and
smart supply-chain) that describe the technology’s purpose versus the base technologies that simply
provide the basis for innovation. Apparently the use of cloud services is perceived to be an absolute
minimum (stage 1) for companies to advance into the industry 4.0-philosophy. Implementation of some
IoT technology to increase traceability and energy monitoring is considered an absolute minimum to
advance in Industry 4.0. As soon as Big Data and analysis, like AI, M2M, and additive manufacturing,
are introduced, smart manufacturing reaches the sophisticated stage of Industry 4.0-adoption. How-
ever, this still does not indicate how the integration levels are aligned with technology introduction.
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Figure 2.12: The different technologies visualized by increasing complexity as well as the corresponding category, adapted from
Frank et al. (2019).

Through the implementation phase, Chaopaisarn and Woschank (2019) found the third implementa-
tion model by specifying three stages of implementation of Smart Supply Chain Management (SSCM),
shown in Figure 3.1. The Local Application Model (LAM) comes first and serves as a stage in which
the company uses smart sensors and RFID’s for the first time, with the sole purpose of saving costs.
Second comes the Isolated-system Application Model (IAM) where the first algorithms and a general ar-
chitecture are introduced. Finally, the Smart Supply-chain Application Model (SSAM) starts and focuses
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on smart supply chain integration and collaboration with other companies. All though Chaopaisarn and
Woschank (2019) mentions the specific use of SME's for his findings, supply chains for larger corpora-
tions are in essence similar.
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Figure 2.13: The implementation phases as adapted from Chaopaisarn and Woschank (2019).

Implementation of innovations like these will often take place on many different levels within the
company both in terms of tangible and intangible items. To streamline the implementation process,
Osterrieder et al. (2019) and Wang et al. (2016a) define 4 layers that will be touched upon during
the implementation process. The four layers are; physical layer, e.g. machinery and equipment, the
data layer, e.g. big data from all sensors, the cloud & intelligence layer, e.g. data analytics, and the
control layer where the decisions are made. This whole combination of layers is often referred to as a
Cyber-Physical System (CPS) (Karabegovic et al., 2020), as shown in Table 2.2.

Despite there are three different models that identify the implementation progress of a company,
there is no such thing as an implementation framework. The case studies from subsection 2.3.1 also
provide very limited information about the steps undertaken, other than the trade-offs and final results
shown. For a company to overcome the adoption barriers mentioned in subsection 2.2.2 more than
the overview of just a few technologies in subsequent order is needed. It became apparent using
the case studies that preliminary research is compulsory to find appropriate applications (i.e. business
process) in which the technologies can actually improve the business. If this preliminary research is
not executed, it is likely that technologies are put on random applications, thus creating an ineffective
industry 4.0-portfolio (Sjodin et al., 2018).

To understand what must be included into an implementation model, we take a look at the work by
Nilsen (2015). According to Nilsen (2015) early implementation research is empirically driven and does
not always pay attention to the theoretical underpinnings of implementation. This is clearly the case
for the case studies, while exactly the opposite holds true for aforementioned models. Nilsen (2015)
used three overarching aims to describe the applicability of a model: (I) describing and/or guiding the
process of translating research into practice, (II) Understanding or explaining what influences imple-
mentation outcomes, and (III) evaluating implementation. Perspectives II and III are widely covered in
the existing literature while I, knowing the bridge between practice and research, is a rather neglected
concept.
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Nilsen (2015) puts emphasis on the context in which the so-called process model (i.e. perspective
I) is developed. Thus, indicating that a process model must be clear about the context in which it ap-
plies, and in accordance with the used research. Moreover, planning is emphasized as a key enabler in
the whole implementation model, especially in the early stage of implementation. Many of the models
investigated by Nilsen (2015) have a dedicated planning process at the very start to proceed step-wise
in an orderly and linear fashion.

Someone particularly good at the development of an implementation model is Aitken et al. (2004).
In their handbook they describe the full employment of an improving quality model through analysis
of variables. In a model of just 10 steps, Aitken et al. (2004) reaches a plan for continuous quality
improvement. Figure 2.14 shows the consecutive steps for defining, identifying, analyzing, improving
and evaluating the issue in one compressed plan. By careful examination of the issues at hand, includ-
ing analyzing the key variables, issues related to ineffective measures are prevented. The subsequent
stages where an initial solution is reviewed allows to check whether the proposed interference actu-
ally does what it is supposed to do. Finally, the system is improved and subsequently the quality is
improved.
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Figure 2.14: A plan for Continuous Quality Improvement, adapted from Aitken et al. (2004).
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Overlap between the quality improvement model and the observed industry 4.0 implementation is
gigantic. In every stage of the quality improvement model, a similar approach (intentionally or not) is
taken according to the research assessed. Furthermore, the existing research provide a perfect frame-
work with solutions to be incorporated into the “system change”-stage of the quality improvement
model. Therefore serving as a perfect basis for further development of the implementation model.

2.3.3. RAMI

The four layers of CPS, indicated in Table 2.2, provided a solid basis to understand how different
technologies are interconnected within a smart factory. However, for actual implementation, this un-
derstanding is rather limited. CPS is limited to the ‘front’ technologies which provide the actual novelty
which the companies are after. Reference Architectural Model Industrie 4.0 (RAMI 4.0) provides, as
the name suggests, a structured model to understand the different layers responsible for the Industry
4.0-implementation. RAMI 4.0 is a 3-D model showing how to approach the issue of Industry 4.0 in a
structured manner (Schweichhart, 2019), shown in Figure 2.15.
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Figure 2.15: Reference Architectural Model Industrie 4.0 (RAMI 4.0) adapted from Schweichhart (2019).

The first dimension of the RAMI model is the "Hierarchy level”. This dimension differs significantly
compared to the classical ‘Industry 3.0" fashioned hierarchy. In the current situation, hardware like
field devices, control devices, and stations are operated in an hierarchical manner (Schweichhart, 2019).
This applies especially to factories that run on many different assets (e.g. valves, pumps, etc.). These
assets are all combined and connected in a PLC, which on its turn is connected with all other PLC'’s
to a SCADA system for that particular factory. The SCADA systems of the factories combined is then
integrated into a supervisory control for a plant manager, showing a truly hierarchical system (Uslar
and Hanna, 2018). However, in the case of Industry 4.0, these assets are all interconnected to differ-
ent pieces of hardware depending on its applicability. To understand how all assets are interconnected
while still maintaining an useful and clear overview, RAMI 4.0 subdivided the hardware into the existing
hierarchical levels which can then be used to draw the connections amongst them.
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"Life Cycle Value Stream” is the second dimension of the RAMI model and refers to the product’s
life cycle. A product is first developed (i.e. prototype, simulation, construction) before it is introduced
into the market (Schweichhart, 2019). Subsequently follows the preparation for production, meaning
that software is updated, instruction manuals are ready, and enabling processes like maintenance are
aligned accordingly. After defining "type”, “instance” starts where actual production takes place. Im-
portant aspects in this life cycle is the introduction of data, like type of product and serial number to
understand unique identifiers of the product. Similar to the "type” stage, enabling business processes

like service, maintenance and recycling are critical aspects of the product’s lifecycle.

A final dimension is found in the architectural layer, similar to that of the CPS. In the RAMI model,
6 distinctive layers for describing an Industry 4.0-architecture are identified (Schweichhart, 2019). At
the bottom, “assets” describe the physical things in the real world, like computer devices, valves and
raw materials. To collect data from the physical world and get it into a digital world, we need the in-
tegration layer, that enables transition from real to digital world. Communication follows directly after
and implies the access to information through connection. Information is the subsequent data layer
on which the necessary data is available, e.g. database or cloud system. Using this data, we enter the
functional layer on which algorithms and data analysis form the basis for decision making. At the very
top are the Business Processes related to the other two dimensions forming the connection between
data utilization in both the Life Cycle Value Stream and Hierarchy Levels.

2.4. Practical background

As indicated in chapter 1, the introduction of this thesis, research and practice do not connect well.
Within the literature study of this chapter it was investigated what kind of advancements the industry
can make by adopting industry 4.0 alike technologies, how these align with the existing business prac-
tices, and how to implement said technologies. However, the identified adoption barriers specify the
misfit between opportunity (i.e. research & innovation) and the imposed risk (practice). To better un-
derstand the difference between them and to reduce the gap between them, we must further evaluate
the practical background.

In the practical background we are after three major constructs for the implementation framework.
By interviewing different European practitioners, all in a different field, we can understand what ham-
pers real adoption complementary to the adoption barriers of subsection 2.2.2. With the results from
this interviewing session, a GAP analysis between the theoretical approach and practical approach is
obtained, thus strengthening the constructs of the implementation model.

2.4.1. Interviewing methodology

In total, 8 interviews were conducted from interviewees that exercise their job within the European
union, working at 6 different companies, and having completely different job descriptions ranging from
supply chain managers to Industry 4.0 implementation managers. Their names and companies are
known by the research team, but are kept secret in terms with the Code of Ethics of the TU Delft.

The wide variety of expertise and the high average working experience (>15 years) allowed to dive
deep into the subjects throughout the interview. The limited time (i.e. 40 minutes averagely) however,
required a particular interviewing strategy. Qualitative semi-structured questioning was the method to
persuit, because this facilitated an open discussion, where subsequent questions were asked depend-
ing on the interviewees’ answer. By semi-structuring the questions, it was ensured that all important
topics were addressed. Especially the difference in background, like supply chain (i.e. procurement,
operations), consultancy (i.e. implementation), and technology require an easy-going flow of ques-
tioning, simply because some terms had to be explained in the context of the practitioners’ expertise.

Although about 15 questions were prepared prior to the interview, only a few of them were consid-
ered critical and are required for the support of the implementation model. These essential questions
follow from the three main backbones of the interview. These three are: (I) Existing bottlenecks in
the manufacturing environment, (II) KPI's selection through implementation, and (III) Implementation
approach. The order of the questions was based on the interviewees’ expertise. Typically we start
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with the topic closely related to its expertise, e.g. existing bottlenecks for operations managers and
implementation approach for consultancy experts. From this starting question on, we work through
the other topics step-by-step.

Existing bottlenecks in factories are considered to be good indicators for what challenges to target
first. Practitioners have experienced many issues with regards to manufacturing throughout their ca-
reer, which empowers them to come up with a top 3 of operations-related bottlenecks. This is valuable
information through the development of the implementation model as it clearly shows in what kind of
environments and for what type of challenges the model will get used.

KPI's selection is the result of subsection 2.1.3, where critical parameters were selected through
models like SCOR and BSC. These models are identifiers for the existing business processes and pro-
vide valuable information about a company’s performance. Currently, there are over 4000 ‘official’
KPI's, making it nearly impossible for managers to monitor everything (Gordon, 2011). Knowing com-
monly used KPI's by the practitioners, increased with the applicability to the Industry 4.0-philosophy,
significantly helps to develop a framework in line with today’s standards aligned with tomorrow’s solu-
tions.

Implementation approach is obviously a key item in the construction of an implementation model.
Especially the consultants who have been implementing Industry 4.0-related technologies at multiple
companies, also being the main advisory organ for many governments, contributed significantly to the
establishment of the implementation stages. Moreover, the literature lacks good and practical-oriented
implementation model, thus making this item the main source of information in terms of implementa-
tion practices.

A final -yet less important- element that was addressed in the semi-structured interview is the topic
about implementation challenges. Although some articles already describe the adoption barriers, an
extra verification is obtained through the interviews. The identified adoption barriers are - amongst
others - the cause for this need of the implementation framework and serve an essential role in the
construction of it. When creating the implementation frameworks, we want to overcome barriers that
typically apply in the supply & planning domain.

2.4.2. Results

Seven completely different and interesting interviews were conducted between March 2020 and April
2020 amidst the global COVID-19 pandemic. Via digital telecommunication tools like Skype and Mi-
crosoft Teams it was possible to record all the interviews - with permission of the interviewee. Each
interview was transcribed manually to obtain a text-version of each interview. Subsequently the text-
versions were reviewed and all chatter was removed. Then the information regarding the main topics
from subsection 2.4.1 were extracted into a general file devoted to all interviews combined. After all
interviews were reviewed like this, the answers to each topic were subtracted and collected into a table
or roadmaps (i.e. in case of the implementation approach).

At first, the answers to existing bottlenecks (I) were collected in Table 2.3. In total, seven differ-
ent answers were given, of which 3 were mentioned multiple times. Especially the quality of raw
materials is considered to hamper current operations performance. Both procurement and production
need to know what quality of raw material is coming in and what quality must be purchased, howeuver,
this is not always the case. The lack of standardization and the large dependency on experience are
also considered as significant issues for further growth, where Industry 4.0 might tap into. The re-
maining 4; visibility of the supply chain, production planning, stock levels, and capacity are somewhat
interfering within the operations performance, but not as significant as the top 3.

Discussing element (II) KPI's selection with the interviewees resulted in interesting conversations.
One of the interviewees mentioned that there was a consistent misuse of KPI's within the industry.
Particular managers used reference levels adjusted to their own system, thus increasing their own KPI
performance (up to 90+%). While if they had used the right reference levels, KPI's dropped to 40-50
%, thereby hiding that significant improvements could have been made. This clearly indicated that us-
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| Rank | Existing bottlenecks | Freq. | Context
1 Knowing the minimum quality of raw materials 3 Procurement and production
2 Lack of common tools; no standardization 2 Production planning
2 Lot of experience required for efficient planning 2 Production planning
3 Visibility of the supply chain 1 Procurement and production planning
3 Production planning efficiency 1 Procurement
3 Keeping safe stock level versus flexibility 1 Procurement
3 Aligning capacity to customer demand 1 Production planning

Table 2.3: A list of recurring bottlenecks of a supply & planning environment.

ing KPI's as the basis for Industry 4.0-implementation (i.e. to effectively address the under-performing
processes) was not the right track. However, using KPI's throughout the Industry 4.0-implementation
will help managers to indicate how business has changed.

Useful KPI's according to the interviewees are shown in Table 2.4. Quite obvious is the first KPI
entry; efficiency. Within operations, and production planning in particular, it is efficiency that serves
a significant portion of the profit made. Quality, downtime and savings follow right after. Quality and
downtime are indicators that are also part of one’s operations efficiency. If the quality is incorrect;
new production runs are intercalated. For downtime this holds true as well; every minute that the op-
erations is not working accordingly reduces the overall efficiency. The remaining KPI's; environment,
perfect order rate, price over volume, cost avoidance and OEE are completely distinct indicators, but
all add a bit information in terms of how the process is performing.

| Rank | Key Performance Indicator | Freq. | Context \

1 Efficiency 3 Production planning
2 Quality 2 Production

2 Downtime; production capacity 2 Production planning
2 Savings 2 Procurement

3 Environmental (e.g. carbon footprint, energy efficiency) 1 Production planning
3 Perfect order rate 1 Production

3 Price over volume of raw materials 1 Procurement

3 Cost avoidance 1 Procurement

3 Overall equipment effectiveness (OEE) 1 Production planning

Table 2.4: A list of Key Performance Indicators that are generally adopted during digital transformation in a supply & planning
environment.

The third element (III) implementation approach was addressed with more care. On average, the
time spent running through the different implementation stages took over 60 % of the time. Subse-
quently, multiple implementation strategies were obtained that all had a different focus and different
steps. However, the order of the actions kept coming back in a similar fashion, therefore enabling the
construction of Figure 2.16 which combines the descriptions of all the interviewees. As can be seen in
Figure 2.16, only 6 strategies were obtained. Due to the lack of fundamental knowledge about Industry
4.0 and the corresponding innovations it was not possible to run through this process with two of the
interviewees.

The remaining six show that some practitioners follow a quite similar approach, while others clearly
differentiate themselves by performing different actions. For example, the second strategy starts with
a clear construct of an overview to define the existing infrastructure. Subsequently, he continuous in
digitizing the administrative tasks, rather than jumping straight into the pain points. Another notewor-
thy result is the consistent return of action 7; "set goals and determine KPI's” along with action 10;
"applying sensors to measure the data required”.
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Figure 2.16: The 6 different implementation strategies obtained through the interviews.
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One concern that arose during the interview analysis is the dominant nature of ‘sensors’ and the
lack of introduction of other technologies like Cloud, algorithms and robotics. The cause for this is
assumed to be two-fold. Most of the practitioners have established Industry 4.0-solutions based on
existing architectures, like cloud systems that were already used for the daily tasks (e.g. Office 365).
The second being the lack of maturity within the implementation cases, causing them to focus on the
very basis at first. Both causes can be supported in the actual implementation model where an iterative
process will consecutively mature the digital transformation process, thus disregarding the need for a
degree of maturity at very first implementation loop.

Altogether, the 13 steps shown in Figure 2.16 provide a solid basis for further development, as these
are continuously put into practice, and with success! However, we have put these steps together
based on the perception and context given in the interviews. When constructing the framework, this
context might change thus making particular steps overlap, such as the combination of the two steps
is considered more valuable than executing them separately.

The final side-element that was checked through the interviews is the list of challenges perceived
when performing digital transformation. The most prominent challenge, being mentioned in 75% of
the interviews is the term ‘people management’. Other than in subsection 2.2.2 which mentions the
difficulty in coordinating actions, the practitioners clearly observe the human dynamics within a com-
pany as one of the key challenges, therefore also being the largest burden for companies to advance
in the Industry 4.0-philosophy. Especially the aging population, who are not familiar with the use of
these fast changing technologies, have difficulties in adopting them.

Other significant challenges are found in the maturity of Industry 4.0, the chaos of data available
and the lack of a standardized (i.e. one-size-fits-all) approach. The combination of maturity and the
standardized approach indicate that a lot more research needs to be done in order to get more practi-
tioners in the field of Industry 4.0, as well as to increase the adoption rate of manufacturing businesses.
The chaos of data taps into a completely different world, expressing the huge existence of (historic)
data, but it being truly chaotic and difficult to use. In the ideal situation, the available historic data is
collected, organized and used to further enhance the capabilities of the digital transformation. How-
ever, currently a lot of this data remains untouched, simply because people do not see the value of it.

In rank 4 and 5 come a few challenges that are either really specific (e.g. asynchronous working
of data architectures and excel being outdated) or rather vague (e.g. hard to determine the future).
Both categories are useful to consider throughout the implementation model development, since they
indicate special cases in which implementation might fail, but are not acknowledged as being crucial.

| Rank | Key challenge | Freq. | Context \
1 People management 6 Aging, user satisfaction, resistance, expectations
2 Maturity of Industry 4.0 4 No advanced data capacity and algorithms
3 Chaos of data already available 3 Unstructured, old data
3 No standard option that fits all factories 3
4 Determining the future 2 We cannot predict the outcomes
4 Asynchronous working of architectures 2 Amazon to Azure, etc.
4 Radical change of business processes 2
5 Sharing data beyond borders 1 Related to end-to-end integration
5 Excel is outdated for large data entries 1 Yet the most used tool
5 Determine the right business needs 1 How to know what to improve?
5 Consistency in reporting 1 When employing Industry 4.0 in organizations

Table 2.5: A list of key challenges perceived at digital transformation in a supply & planning environment.
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2.5. GAP analysis

In the introduction, chapter 1, it was briefly mentioned how current adoption of the novel technologies
related to Industry 4.0 is remaining utterly quiet, while research and innovation is introduced at an
increasing pace. Consequently, the introduction proposes a solution to overcome this deviation by
making use of an implementation framework. Providing companies with a step-by-step model, reduces
the risks associated with the adaption barriers, while also increasing the rate of adoption through the
formation of solid and clear basis.

This chapter elaborated upon existing research in the field of available technologies, improvement
methods (i.e. lean and agile), implementation methods (i.e. continuous quality improvement and
DMAIC), and ways of assessing critical parameters and variables (i.e. SCOR and BSC). Moreover, a
practical view was added in which multiple case studies, adoption barriers, and practitioners’ perspec-
tives were assessed. Through the conduction of a qualitative research, in terms of interviews, the last
needed information was obtained to develop an effective digital transformation implementation model
for the supply & planning of complex manufacturing companies.

Through comparison between the practical and theoretical background, multiple GAPS were identified.
GAPS were identified as such, when a practical problem or challenge had no sustaining background
or information in the related literature. For example, the interviewees mentioned the development of
an overview showing the capacity and infrastructure. Many different approaches to this action can
be taken, but the literature about Industry 4.0 implementation is not explicit in doing so. However,
through a sophisticated literature review, solutions were raised to these GAPS, making them obso-
lete when incorporated correctly through the implementation framework. The found GAPS are the
following:

+ Unambiguous representative overview: multiple causes point out that the use of an overview
is necessary to describe the existing technology and to understand how future technologies fit in
the operations processes associated with supply & planning;

* A methodology to address the most important aspects first: effective implementation is
critical within Industry 4.0 to foster further development and innovation. A significant portion of
the implementations done so far are based on existing and known inefficiencies, which might not
be the best suit for digital transformation;

» A clear set of subsequent actions for actual digital transformation: case studies show
that the technologies related to Industry 4.0 are ready for implementation, however various
adoption barriers are yet preventing companies from making utilizing them;

« A framework in which these actions are structured: different models were identified in
subsection 2.3.2, however, none of them offered a descriptive implementation plan that ensures
full coverage;

¢ An evident overview of existing technologies and their applicability: through the exten-
sive list of digital transformation-related technologies it becomes difficult for layman to understand
the wide spectrum of technical solutions and their opportunities.

2.6. Summary

This chapter elaborated upon the different aspects relevant to create the artefact (i.e. implementation
framework). Up to this point 'Problem identification’ and 'Objective definition’ of the research method-
ology (Figure 1.1) have been addressed. These two stages mainly focused on the research relevance
and were to answer the first three sub-questions. chapter 2 provided an answer to these sub-questions
and already hinted upon the relevant attributes to sub-question 4. Other than answering the first sub-
questions, this chapter also clarified on the supply & planning and industry 4.0 domain introduced in
chapter 1.



2.6. Summary 41

The first sub-question “What steps exist in an implementation process and framework?” was ap-
proached from multiple angles. The lack of available use-cases that actually describe the full walk-
through of their implementation process rose the need for alternative options. One particularly well-
established improvement process utilized within the industry is the use of Six Sigma’s DMAIC. Using
this model as a foundation helps practitioners to easily comprehend the essence of each stage - while
looking for opportunities rather than problems. Moreover, inside each of these stages there is a multi-
tude of actual actions that need to be executed. With help of the interviews with practitioners and the
model by Aitken et al. (2004) these detailed stages were identified.

Key characteristics, as defined by sub-question two: “How are the key characteristics of a supply
& planning environment that are required to construct an Industry 4.0-architecture found?”, infers the
exploration of the supply & planning environment and its interdependencies. Figure 2.3 clearly shows
how the different planning processes relate to the entire production operations process. Knowing that
improvements mainly arise from identifying the lagging processes and focusing on them, we identified
two methods that are particularly effective in identifying these lagging processes by finding the lagging
(i.e. key) parameters. The BSC approach was especially effective in this, while the SCOR approach
enabled a lot of useful insights in the parameters to consider, including their possible KPI's.

To understand the basics of the factory of the future; or Industry 4.0 in particular, we have answered
sub-question three: “What are the available Industry 4.0 technologies that aid supply & planning de-
partments?”. For this sub-question our focus shifted initially to supply chains, since supply & planning
are the key chain between (external) supply chains and the (internal) operations. By doing so, thirteen
enabling technologies were identified. The variety of these technologies clearly indicate the significant
opportunity associated with the Industry 4.0-concept. Hence the need for an implementation frame-
work.

Finally, throughout the literature review small parts of sub-question 4 (“What must be incorporated
to develop a sustaining process that fits into the company’s culture?”) were already found. Challenges
denoted in Table 2.5 and Figure 2.8 clearly show what barriers need to be addressed in an implemen-
tation framework to enhance its full potential.



Framework design

In the year 2020 companies can find often more similarities in their way of operation than exceptions.
At the very basics, a company buys its resources: may it be human capital; raw materials or physical
objects, then converts this into a product or service, and finally sells it in order to exist. This general
view on a company’s business process allows to distinguish between the different tasks undertaken in
order to reach the overarching goal, e.g. buy, create and sell, regardless of the company of considera-
tion. Such strategy is applied to frameworks where a particular process is separated into recognizable
steps that are the same for each company within the scope. However, the strength of such framework
is where the contradictions in the way of operation are addressed and shaped.

The framework strategy of this work focuses on this simplification of business processes and realigns
them to generate a perfect fit to the existing technologies and future innovations. A generic batch
manufacturing supply & planning process is illustrated in subsection 2.1.1. This business process is
applied differently to each factory, e.g. use of particular (ERP) software or the way of planning (First
in First Out (FIFO), etc.), are just few of the many variations based on the available resources within
a company. It is this diversity that leads to a first challenge in the area of development; there is no
‘one-size-fits-all-solution. The framework should offer companies a strategy to reap the benefits of
technological innovation and to enhance their existing operations, by means of simplification.

By careful assessment of the literature and having meaningful discussions with experts in the field,
a design was made. At first, a company should have its input ready before any simplification can be
made. Subjects like data storage, way of working (WOW) and reasoning should be known in advance.
After these requirements are met, processing of the actual framework can take place. Through this
framework a set of existing challenges are avoided and key stages are carefully executed. Finally, a set
of actions were undertaken that have made the factory considerably more effective. However, there will
always be room for improvement, thus a final highlight of key actions at the end of this chapter is made.

This chapter will elaborate on the consecutive stages of the model, including a detailed explanation of
the required steps taken at each stage. Figure 3.1 with Figure 3.2 show the constructed model accord-
ing to the information obtained in chapter 2. At the very basis of this model lies the DMAIC (i.e. define,
measure, analyze, improve and control) approach from subsection 2.2.3. As indicated in said subsec-
tion, the DMAIC model suits well to the difficult and holistic nature of Industry 4.0-implementation.
Therefore providing a perfect backbone and overlay for the actions to be taken.

Inside the backbone of Six sigma DMAIC lies another supporting frame in the form of the Contin-
uous Quality Improvement plan of subsection 2.3.2. This model was found to perfectly describe the
required intentions to assess which process must be improved, including an actual improving approach.
Moreover, the results from the interviews shown in Figure 2.16 display a fair amount of similarities with
quality improvement model, making it relatively simple to combine the best of both worlds. As a re-
sult, the different digital transformation implementation stages were conducted. One major difference
between the implementation model and the quality improvement model is the distinct checking stage
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of the quality model, which is integrated into the separate steps of the implementation model.

Since understanding the nature of Industry 4.0 and its related technologies is rather difficult. Ex-
tra clarifications were added in line with the topology provided by the RAMI layers of subsection 2.3.3.
These green overlays hint upon the focus of the corresponding stage with regards to the RAMI model.
As one can clearly see, all functional layers of the RAMI model are addressed throughout the imple-
mentation model, allowing the full use of novel technologies and innovation from subsection 2.2.1. The
main connection between these overlays and the individual actions is the focus gained from the stage
‘business overview’. In this stage, RAMI is linked to the variety of opportunities allowing one to focus
at the right solutions and tools according to the business overview. To even further delineate between
the type of actions, two categories were made: focus on physical and focus on digital aspects. Hinting
the user upon the approach to be taken.

The model as shown in Figure 3.1 is designed such that it can be used by any organization involv-
ing complex manufacturing sites, regardless of the Industry 4.0-related maturity. Iteration, i.e. the
feedback loop between ‘evaluate’ and ‘analyze’, allows businesses to reuse the model over and over
again. In subsequent loops the focus is likely to shift due to a shift in operations opportunities as-
sociated with the increased technology usage. Moreover, the use of more novel and sophisticated
technologies will evolve over separate loops as well. For example a company might just introduce
simple sensors at the start, but will go over refined algorithms, autonomous manufacturing and end-
to-end integration in the loops to come. Especially this loop will aid the increasing adoption rates as
the managers become more effective and efficient in going through the whole process. Furthermore,
particular stages like digital reporting and OT & IT merger might drop out at some point, due to the
increased novelty.

3.1. Define

3.1.1. Objective identification

In early stages of the improvement implementation plan, a company should consider its full strategy
(Crnjac et al., 2017). Strategic planning is often performed in a professional centralized team, usually
consisting of established managers, senior consultants and experts. These teams develop a roadmap
that is deployed among the whole organisation. The focus of these centralized teams is to establish
a generic strategy that fits to the organisation as a whole, thus standardizing the way of operations.
Such strategy can involve multiple aspects ranging from collaborative business processes to specific
technology use-cases. After the mission has been refined, the task of these teams comprises resource
allocation of both physical and virtual objects as well as tacit knowledge and support.

Throughout the organizational road map multiple locations will adopt the new improvements which
leads to specific adjustment to fit local needs. The broader mission is still adhered to, by simply shap-
ing these organizational demands to local business and/or manufacturing processes. This stage is
crucial to allow innovation happen company-wide. Without tailoring, the structural changes are not
likely to be adopted nor will they achieve their full potential. For this reason it is important to pay extra
attention during the ‘define’-stage as this work focuses on plant-level implementation.

Through mergers, strategic advances and difference in maturity, plants within one company can differ
a lot from one another. Even manufacturing processes can have a completely different set-up due to
the difference in available resources at a particular moment in time, despite being the same in nature.
Such difference also alters the way of implementation for each factory. Imagine factory A to use VGA
connections for visual information transfer while factory B uses HDMI as visual information transfer.
An one-size-fits-all approach will not work here, unless some modifications in the strategy have been
applied. This strategy consists of a variety of options; all visual connections are replaced by the newest
version (HDMI), allowing future projects to be adopted more readily as well; a second one can be
found in the use of adapters, there are plenty of HDMI to VGA transfer possibilities; and many others.
However, each option has its implications.
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Industry 4.0 capabilities often show similar challenges as aforementioned example. Connectivity be-
tween separate modules, either being physical objects or software, is key in the operability of the
Industry 4.0-era. Moreover, the way how the business process is designed determines the applicability
of a particular technology. This demands local teams to know the very basics of the system in place.
Information like this can be utilized through the actual implementation stages, where the organization-
wide philosophy is intertwined with the plant specific operations.

Key aspects in this philosophy are the deeply rooted goals of the general organizational strategy.
Efficiency improvements, continuous monitoring or the bigger picture (competitive advantage) are just
a few of the many different explicit targets a company could have. However, all of these imply truly
different implementation plans for each factory. In the case of continuous monitoring one factory could
measure each of its variables inexpensively, while the other has to invest significantly to measure only
one variable. In the latter, it will be important to identify the major variables that contribute to the
performance, since continuous measurement of these would be sufficient.

To identify the right needs, a stage within the implementation process is dedicated to the development
of an overview in which all these aspects merge and solidify the implementation strategy. However,
before one could start this process, it must be known what exact objectives must be reached. For this,
a clear implementation vision has to be extracted. According to the literature, multiple reasons for
improvement plans introducing smart technologies, exist. A list formed by Liere-Netheler et al. (2018)
provides insight in the general drivers for companies to adopt digital improvement plans:

1. Process improvement;

2. Workplace improvement (safety, ergonomics or usefulness);
3. Vertical integration;

4. Management support;

5. Horizontal integration (information share along the business process);
6. Cost reduction;

7. Customer demands;

8. Integrated supply chain;

9. Innovation push;

10. Market pressure;

11. Laws/Government;

12. Employee support.

Each of these objectives differ the strategy throughout the implementation process as they require
a different focus. For example, when the improvement evolves from a technology push through the
company, the development of technology plays a central role. In the case that ‘customer demand’
is the fundamental reason, the focus switches to customer needs and, often, flexibility to which the
implementation must adhere to. In all four layers identified by Chaopaisarn and Woschank (2019)
(i.e. physical, data, cloud & Intelligence and control layers) various solutions can arise depending on
the characteristics of a goal. Fully using the potential of business intelligence is more likely to fit the
demands in a customer demand driven objective, while adopting key technologies like RFID and/or
bluetooth are prone to innovation pushes.

For these reasons, identification of critical goals and objectives is the first step to undertake. Align-
ment between the organizational objective and local demands is principal for successful implementation
(Liere-Netheler et al., 2018). Using the established foundation, more attention can be paid to the build-
ing blocks on top of this foundation. The consecutive stages of this implementation framework rely on
its foundation, as this defines the urgency of the project. When future decisions are taking too much
time, one should consider to go back to this stage and rethink its purpose. Identifying goals is an
iterative process because business needs can shift along the way.

Shortly after concluding the current digital transformation goals for the specific plant, a more careful
look into the business process is done. It is these processes that allow companies to go from market
demands, to manufacturing, and finally to the ultimate objective; making money. Many of these pro-
cesses evolved over time and have been shaped due to external influences such as customer needs
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and competition. Since these changes emerge around one market need, they are often inefficient to
others, encompassing an inarticulate system. To negate the effects of small process adjustments over
time, several improvement studies have developed. Lean and Agile have been adopted widespread
in the industry to streamline internal business processes. As a result, processes have become more
efficient in achieving the multiple objectives for which they were designed, e.g. invoice processing,
manufacturing or forecasting.

In digital transformation, these established processes provide the basis for development. With use
of the business flow, one could easily deduct the many sub-processes underlying the main task. Each
sub-process requires its own actions, such as sending an email, storing data in a file or interpreting
results. It is these sub-processes that are rusted in our way of working, since they have been done like
this for a long time. The focus of lean is to eliminate the sub-processes that contribute to a particular
type of waste (Mrugalska and Wyrwicka, 2017). However, the remaining actions are oftentimes kept
untouched, while specifically these activities rely on renewal. Digital transformation is one answer to
this renewal.

3.2. Measure

3.2.1. RAMI overview

In order to pinpoint the exact sub-processes that could improve by means of innovation, a model is
applied. This model originates from 2015 and is focused on the grouping of highly diverse aspects in
a general model. Multiple layers in a factory are affected by the digital transformation. All these layers
are addressed separately as they imply different effects on the process as a whole. Layers stretch firstly
between physical assets (e.g. sensors) and the business sub-process (e.g. performing an action), sec-
ondly they vary between the different sub-processes (e.g. from development to operations) and finally
it alters hierarchy within Information Technology (from product level to the connected world) (Schwe-
ichhart, 2019). Figure 2.15 shows the involved aspects of this reference architecture by visualizing the
three dimensions of integration. From this RAMI model, a two-dimensional structure can be extracted.
This structure, slightly adjusted to the implementation frameworks’ heeds, combines both the business
layers and business processes (former lifecycle) in order to create a comprehensive overview of the
current operations. Application of this model deduces the complexity of the problem by dividing it into
multiple small building blocks that are addressed separately throughout the implementation frame-
work. Such approach allows straightforward and effective elimination of sub-processes that are either
old-fashioned or just inefficient. Also, it ensures full coverage of the relevant business processes, as
the boundaries may fluctuate a lot. Moreover, this approach allows for various objectives to be real-
ized within one simple model. For example, developing autonomous production will go smooth when
each human decision is identified and portrayed against the necessary data. Similarly, cost reduction
becomes much more apparent when time consuming tasks, involving manual handling (e.g. writing
an email), are diagnosed.

This thesis is focused on the supply of raw materials and the production planning within factories.
This clear distinction between other side-activities such as transportation, maintenance, and financing,
requires a clear-cut use of the modified two-dimensional RAMI model which enables a streamlined
view on the business process from start to end. Figure 3.3 illustrates the distinct layers and processes
that are of interest within the scope of the implementation model. As indicated in subsection 2.1.1,
the main processes evolving around daily manufacturing are forecasting, procurement (strategic and
operational), order processing, production planning, storage and production. This major process is
similar in nature, but different in execution for each manufacturer. For the factory of interest, it is
important to describe each individual action, underlying the business process, and dismantle it to the
layers of interest (functions, data, communication, digitalization and physical things). To simplify the
analysis of all separate actions, one could make use of former Business Process Management Notations
(BPMN's) or ISO 9001 reports, for instance. After all individual actions are defined, more attention is
paid to the underlying functions. At each action, incentives for the action are important to monitor.
The complexity of these functions can range from "if condition A exists, action B is performed” up to 30
different preconditions with multiple outcomes. At first, it is sufficient to only mention the question to
be answered. For example, during procurement, functions of interest are “which supplier is cheap and
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Figure 3.3: The modified two-dimensional RAMI model specifically fitted to the digital transformation implementation plan.

can fulfil our specifications?”, "what are our minimal requirements?” and “How much of raw material X
do we need?”. The answer to these functions allow the overarching action to be undertaken. Both the
input and output of the outcomes of these functions are sources of data.

The data layer describes what kind of data is required for the execution of the function. Data from
various sources, e.g. databases, excel files, or reports is retrieved and fed into the functions. Identi-
fication of the data provides a significant layer of lists with parameters that vary over time. Examples
are quality data (i.e. to decide if a batch can be sold), warehouse stocks with capacity (i.e. to buy
raw materials) and maintenance planning (i.e. for production planning). After registering the data
required, the focus shifts to the location of this data. How and where is this data stored and how is it
retrieved. In other words: communication

Communication describes the type of flow between data providers (e.g. sensors) and the lists of
data. Various lists of data are required within the business processes and therefore, require multiple
variations of communication. Especially the non-registered communication like customer or supplier
emailing supply a significant amount of unstructured data, but is essential for the business process to
run. Other communication sources comprise internal servers and documentation or cloud applications.
A useful note, often used in business process management, is the registration of the type of commu-
nication. Both pull and push describe how the communication takes place, either by requesting the
data (pull) or by "automatically” receiving the data (push), which obviously depends on the person of
interest.

Everything up to communication is known by now. Now it is key to describe the layer between digital
communication and physical objects. How is data transformed from a physical state (i.e. being tangi-
ble) to a virtual state. Furthermore, the underlying application is of interest as well. Observations can
be written on paper and then be copied to a PDF-file or registered in an Excel file, which will influence
the way of communication in the layer above. Another option can be found in incoming orders from
customers. As their demand is unclear to the supplier, we consider the digitalization to occur via email.
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Or by other words: they know their demand and they write it down on an email (order) and send it
to the salesman. The salesman will, on his turn, put this order into a database like Excel. Spotting
these (manual) connections favor automated digital connection-solutions in future progression of the
implementation plan.

Finally, the physical assets providing the data are collected in the RAMI model. The focus of this
layer is to portray all physical elements that generate the data mentioned in the data layer. So market
demands evolve from physical usage at the market side, which can be found in warehouse/storage
stocks of a particular product. Data about production capacity emerge from the availability of machin-
ery inside the manufacturing process, thus requires machinery as physical asset.

Throughout the creation of this RAMI model, it becomes apparent that some of the data required
to perform the functions, is not flowing in via communication nor digitization. Data about production
capacities is often just a number (i.e. average capacity) that the practitioner knows by heart. There-
fore, he/she does not need to retrieve the number over and over again. Simultaneously, one could
observe what data can be considered static, which can either be made dynamic to enhance the effec-
tiveness, or remain static in the new digitized workflow.

The use of this RAMI model in contrast to other ‘business process’-measuring methods follows from
its useful connection between business processes and Industry 4.0. Moreover, it is particularly useful
to pinpoint the interdependencies of critical Industry 4.0 layers (e.g. communication) which no other
model delineates on such level of detail making it truly superior to other useful models.

3.3. Analyze

3.3.1. Key variables

Now it is clear what business processes are executed and what information and processing is required
to do so. The next stage is to decide which key variables are present in the data identified in the data
layer. Digital transformation involve numerous solutions to numerous challenges faced by companies.
To avoid lack of focus and inefficient progression, special attention is paid to the critical data. It is this
data that can significantly affect efficiency when either badly incorporated in the new digital model or
improve the process when applied correctly.

A key feature of a process variable is the fluctuating nature. According to Aitken et al. (2004) a
variable is described as “some characteristic that differs from subject to subject or from time to time”.
To discriminate between typical and key variables, one must determine its influence on critical function
characteristics (Aitken et al., 2004). For example, while deciding which suppliers to contract during
strategic procurement, multiple data sources are consulted. Data about minimum raw material spec-
ifications, required volumes, travel distance, and production prices could all be incorporated into the
decision-making process. If a company is located in a traffic central location (e.g. easily accessible
harbour), the decision is less dependent on travel distance or delivery time (i.e. these will all be simi-
lar), but still depend significantly on a certain grade of raw material.

Identification of these key variables allows delineation between important and irrelevant digital adop-
tion. Structural definition of the important variables allows scoping throughout the implementation
phase. Improvement of the business process is accomplished by leveling out the factors that have
significant effect on the outcomes and fluctuate a lot and leaving the ones with minor effect. When
a company succeeds in defining these key variables and is able to make them somewhat constant or
monitor them more accurately, they are able to respond quicker and more efficient in decision-making
processes. At a later stage, it is even possible to utilize this data in algorithms to make the decision-
making process autonomous.

The reason for key variable capture is quite obvious and so is the strategy to identify them. Besides
experience, multiple tools and analyses are useful to define these key variables. In the first stage one
should come up with the datasets that are known to be prone to fluctuations. A variable like delivery
time by boat can greatly depend on weather if the distance between supplier and customer is more
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than a few days, giving a fluctuation of several days. If this raw material is planned exactly on the
day after planned arrival, valuable production time is lost when delay occurs. This particular type of
information, and the likelihood of it taking place is a matter of experience. When this event occurs
more often than wanted, we will consider it to be a key variable.

Other tools, such as a Pareto diagrams, cause and effect diagrams, quality teams (Aitken et al., 2004)
and Design of Experiments are all effective in a different manner. This study does not focus on the par-
ticular description of when to use and how to use these tools, there are simply way better explanations
around that will do just that. However, a short introduction of each of these is given below:

¢ Pareto diagrams: A Pareto diagram is designed to organize all errors into one diagram by
descending order of occurrence. With the data available, this diagram is filled and allows to
divide the "important” errors from the “irrelevant” errors. By means of a cumulative expression,
the “important” errors can be found in the first 80%. The variables behind these errors are then
specified to be key variables;

« Cause and effect diagrams: Also known as fishbone or Ishikawa diagram and aims to identify
the underlying sources accountable for fluctuations, such as quality;

¢ Quality teams: A quality team can jointly determine the key variables by simply interviewing
the process owners of the business processes in consideration. Special attention can be paid to
sub-processes that provide extra value to the business;

« Design of experiments: A rather technical tool is the use of Design of Experiments (DoE).
DoE originates from laboratories where particular variables are kept constant, while others were
deliberately changed in order to see the effect on the outcome. Such tool can be useful for envi-
ronments where the parameters can be kept constant and allow for more precise determination
of key variables.

It could be the case that not all key variables were identified through the process, because they were
not known, did not present themselves in the tests or were just not considered to be relevant. This
will not lead to any issues in further progression of the implementation model, as they will reveal their
importance once the model is conducted once. In a future stage concerning determining goals and
setting KPI's, these left-over can be involved in a next sequence.

3.3.2. Digital reporting

Using the input as described in subsection 3.3.1 opens up the path to make the first minor improve-
ments. Some of these improvements have already been implemented by some companies when em-
ploying lean and/or agile manufacturing. Also in light of corporate responsibility, like people, planet,
profit, organizations have diminished the paper usage. That being said, this stage comprises often less
efforts than others. However, the main concern for this stage is the reason for digital reporting and the
way of storing, which can be different for other improvement tools like agile and lean. Thus requiring
a second examination on existing digital reporting.

During the manufacturing process, the workforce close to the installation (operators), can observe
the system carefully. Specific changes during operations are clear indicators for failure or inconvenient
fluctuations at a later stage, as was indicated during the key variables stage. Observation of these
changes is often written on a production paper held by the operators. At the end of the shift, these
pieces of paper are collected and stored elsewhere. With the development of Information Technology
(IT), different ways of filing these observations have evolved, for example in Excel templates. How-
ever, the same rules apply to these versions of storage, they are saved at the end of the shift and
are not accessible elsewhere in real-time. Observations that involve big impacts are communicated via
person-to-person contact and have a delay depending on the amount of people involved.

In case such observation has a small impact on subsequent processes within the company, it is not
likely to reach the salesman until the end of the shift. However, this small impact inside the company
can snowball outside the company with, for instance, missing its transport overseas. By the time the
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shift is over, the salesman will find out about this small delay and is not able to inform his customers in
time, resulting in a loss in sales. If it were possible for the salesman to find out about these observa-
tions in real-time, he would have been able to contact his customers and come up with a plan of action.

Former example illustrates the need for real-time observation (i.e. data) coverage. This is a key con-
cept to understand while digitizing reporting of separate organizational bodies. Tools like Office 365,
Google Drive or Dropbox enable companies to share different types of files across multiple business
units, in which changes and adjustments can be seen real-time by all parties. If something concerning
appears to one of the involved teams, they can simply communicate the details and adjust their process
to fit the new developed situation.

To specify where digital reporting is required, one should use both the used RAMI model of stage
2 and the characterized key variables of stage 3. The first step to undertake is to digitize the recording
of all key variables that are just written on paper as indicated in the RAMI model under “digitization”.
The first objective in this stage is to create a digital record of events to enable future data analysis.
Situations like malfunctioning equipment, lack of resources or quality issues can be relevant according
to the key variables and are relevant to understand the existing bottlenecks and their origin.

3.3.3. OT with IT

Provided with the new digital data entries at several stages of the business process already caters initial
data analyses. However, there is another set of data that is readily accessible for many manufacturers:
Operational Technology (OT). The third industrial revolution involved Programmable Logic Controllers
(PLC) that use incoming process data to make preprogrammed decisions in other parts of the process.
An example of this data is the temperature inside a reactor vessel which may trigger (via PLC) the
opening of a valve when exceeding a predefined limit. The response time of these sensors, PLC's and
actuators is generally fast in the span of milliseconds. Because this data is generated fast and often
(a few million entries within an hour), data logging and storing over a long period of time is often not
feasible. Therefore, this stage within the implementation process only focuses on obtaining a dataset
that is representative for the average operations. By capturing different variations, employment of
data analysis allows specification of the causes for these fluctuations.

It is considerably difficult to determine the background, usefulness and type of data when being used
for PLC programming. At the same time, it can cost significant efforts and money to retrieve and store
the data obtained from PLC's. Moreover, the bandwidth and processing power of and to PLC's face
issues when large amounts of data are forwarded to a secondary database. Here it is important to just
gather data relevant as key variable during stage 3 of the implementation framework. This selection
will reduce the drain of processing power on the PLC side, while making the data collection efficient
as well. In subsequent stages, after the first loop of the implementation model, deeper insights allow
useful extraction of other PLC-fed data.

Different approaches to collection of data can be taken. All depend on the maturity and arrange-
ment of the controller systems. Minor differences between vendors, DCS (Distributed Control System)
or PLC systems and the architecture of a Supervisory Control and Data Acquisition (SCADA) can favor
or oppose the data storage or logging onto an IT device. Mostly this is just a plug and play-principle
where one connection by cable, ethernet for instance, is sufficient. Moreover, it is important to note
that real-time data capture is not within the scope as of yet. Special care must be taken to avoid data
leaks or latency on the existing and running process, since PLC's are often employed to ensure safety
of the manufacturing unit.

By simply connecting with the existing manufacturing system (DCS/PLC) or via a PROFIBUS/PROFINET
connection, one could allocate a part of the data on to a digital time-series database like mySQL. In the
Industry 4.0-philosophy there are multiple ways to do this efficiently, like only logging changes, rather
than the actual output thereby reducing the load on the database. In case of this implementation
stage, this is not necessary. By capturing the data output for a certain amount of time (weeks-few
months) one would have enough data to understand the recurring inconsistencies while not leeching
too much of the processing power required for operating the factory.
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3.3.4. Data analysis

After five stages of careful mapping a significant load of information is established. This information
range from simplifications, e.g. RAMI model, to actual data capture by digitizing and a connection be-
tween OT and IT. Having this data is still far from full implementation of Industry 4.0 related principles.
In order to get to the state-of-the-art technology, assessments are mandatory. The first few elements
of concern, the key variables, enable insights in the general performance of the process. Thus, the
data collected amplifies inconsistencies and unwanted errors.

To understand what causes the inconsistencies requires data analysis on the data set. Event-based,
time-series data shows situations happening and enables comparison between different data sets of
separate key variables. For example, the arrival of raw materials by truck, is compared to the Ware-
house Management System (WMS) that tracks actual stocks of raw materials. By doing so, the manager
discovers that there is 2.5 day delay every weekend. After further research, he finds out that the WMS
operators leave early on Friday and leave the remainders for Monday. As a result, the buy-in of raw
materials on Monday is incorrect, because the stocks are not correct. In the case of high throughput
materials, like bulk products, this will have a minor effect. However, when the discrepancy concerns
the sporadic usage of a material that have a large Minimum Order Quantity (MOQ). A part of the stor-
age capacity will then be occupied by a materials that is just slowly consumed, eliminating valuable
storage space.

Data analysis exposes inconsistencies as described in previous example and aid for effective imple-
mentation of innovation. In order to analyse the available data in an efficient manner, an appropriate
understanding of data is required. The concept of the 6 Vs was introduced to establish a solid support
for Bigdata usage. Since Bigdata is data, but flexible, (often) real-time and highly scalable, the under-
lying principles of Bigdata allow for clear utilization of traditional data as well. The underlying 6 V's of
Bigdata involve Volume, Variety, Velocity, Value, Veracity, and Variability.

Data sets can extend to long lists, depending on the interval of data logging, as well as the vari-
ous dimensions of measurement, e.g. the amount of sensors. These factors contribute significantly
to the volume of the data set, thus requiring a different analysis approach. Statistics for large volume
datasets are generally superior to the sets with only small volumes, due to the large sample size (n for
statistics). However, the larger the data set, the more computational power is required.

The volume of data also relates to the variety of data. When more data sources are combined into
a dataset, the variety increases. Each row of data represents a different parameter and has a dif-
ferent meaning, e.g. temperature and pressure. While doing data analysis, this difference allows to
find inter-dependencies between multiple factors which will make pinpointing causes of inconsistencies
much more straightforward.

Velocity of data relates more to the real-time realm of Bigdata, that is the continuous flow of large
volumes of data. Since at this stage, just ‘old’ data is being used, the velocity characteristic is less
relevant and out of scope. However, acknowledgement of the velocity dimensions will make the data
analysis to adapt to future purposes as well. For instance, when looking at a large set of stock volumes
inside a warehouse, one will already imagine the possibilities when this data is collected real-time when
looking for deviations in the data.

The fourth dimension, value, describes the value BigData can bring. For instance, you can have data
about your order history containing information such as order size, location of customer, manufactur-
ing and delivery time. And if used separately, they provide insights into the strategic information such
as countries of interest and average shipping times. However, when combined altogether, one could
create more value by linking average manufacturing times to particular customers, as well as their
average order size, to predict future consumption as well. Knowing what value evolves from maximum
utilization of the data makes it easier to define the origin of particular inconsistencies.
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A fifth understanding of data lies within veracity. Perhaps, this is the single most critical dimension
in meaningful analysis, yet hard to measure. By means of previous steps, data is now collected by
a variety of sources. All these sources collect data in a different manner, e.g. human observation,
milliseconds measuring (sensors) or daily administrative tasks in a Enterprise Resource Planning (ERP)
tool. Combining this data allows substantial insights as was described by previous V's. However, to
ensure that these insights are correct, one must know the origin and quality of data. For instance, if
the manufacturing information is filled onto a paper and then, at a random time throughout the week,
entered in the ERP system, we will know that time of entry into the ERP system will not suffice for
comparison with other time-based datasets. Another burden could be the recording of the data by
human observation. An operator may opt to solve the problem straight away when recognizing a man-
ufacturing defect, rather than store this information digitally and then starting to repair the process. All
these minor details contribute to the accuracy of the data and therefore to the accuracy of the analysis.
Acknowledging these details during analysis prevents incorrect cause-effect deduction and will increase
the efficiency of the analysis.

“Garbage in = garbage out.”

Finally, there is a factor called variability. Data is eminently susceptible to variations, we want it to
change over time, after all. However, the threat lurks behind the unintended variations, like sensors
that switch places and thus measure the same bulk, but at a different location. In the case of tem-
perature sensors, this difference can make the data change structurally when applied on a distillation
column. At an uncontrolled atmospheric storage tank, the change of location of a sensor is less likely to
interfere with the data variability. Moreover, these variations can also occur due to non-human inter-
actions, like outside temperatures. Structural effects like these will affect the outcomes of an analysis
and must be known beforehand.

Now the underlying basics of data are known, a first step is to combine all information. Various
data sources were identified during the RAMI process, such as ERP systems, order data and quality
checks. On top of that, new ways of digital reporting and data sets concerning Operational Technology
(OT) were added. All these different data sources require different software to access or have different
formats. Generally, data is shown in rows (different variables) and columns (time/event-based entry)
which supports exportation to csv or excel-like files. On their turn, these files can be imported to
Excel, SPSS and countless other programs that can run a variety of statistics. When all historic data is
identified and converted to one general type of file, the analysis can start.

Data analysis can be performed on many different levels, ranging from simple average calculations
to full data mining. Regardless of the approach, a few factors play a key role during analysis. At first,
it is important to spot the inconsistencies. When is the data entry much different compared to the
general set. For instance, quality data is found to be important through the RAMI-process. Usually, the
quality is between 99 and 101%, but at two instances it was 95 and 105%. These two cases clearly
stand out and are noticeably interrupting an efficient flow, as the corresponding batches might require
re-production or are sold at a lower price. Knowing when this data was generated, gives a time span
(depending on the data about manufacturing time) to investigate what other deviations occurred, like
a change in raw material composition. This investigation leads to discovery of crucial variables which
can be monitored and controlled continuously when applying digital transformation.

The second critical step is to define the inter-dependencies. For instance, a company is likely to
know that the delivery time of raw materials might affect the transportation date of its own products.
Analyzing the data and looking for the dependencies provides values for the connections. Raw material
A could delay the production process by a few hours, while raw material B could delay the process for a
few days. Identification of these aid full-fledged customization in a later stage when applying separate
technologies. It also helps to understand the full business process and the underlying principles.

A final step consists of establishing performance indicators. These indicators give in a hindsight the
information a layman needs to understand the performance of the system. Data about raw material
stocks together with production planning information give information about emergency purchases. If
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a raw material stock is nearly zero and increases quickly before a production, using that material, was
planned, one could identify this as an emergency purchase. Add all these emergency purchases and
put them against ‘regular’ purchases and you know the rate of emergency purchases. Said number
comprises an indication of current performance and allows goal-setting during the next stage.

Although the data analysis stage involves multiple interesting characteristics and insights, there is
no requirement on the amount of data and a minimum on the extensiveness of the analysis. How-
ever, to provide a clue on the necessary amount of information, a rule of thumb is to find at least
5 performance indicators that are operating below a preferred level. If there are too many, apply
the Pareto-rule (Koch, 1999) where you aim for the biggest indicators that provide 80% of the ineffi-
ciencies. Since these indicators show 80% of your inconsistencies, they will provide the largest (and
fastest) improvements when upgraded.

3.3.5. Setting KPI's

In the previous step, separate performance indicators were found. With the data obtained thus far,
these performance indicators describe the past behavior of the business process. When applied over a
longer period of time, e.g. months, one could monitor the average performance of the current system.
Obviously, this performance determines the operational effectiveness (i.e. people, planet, profit) of the
company. The goal of digital transformation will differ from company to company, but they share all
one thing in common: improvement. This stage solely focuses on the improvements that can be made
by setting specific goals, depending on the discovered inconsistencies. The goals consist of targets for
the identified KPI's that are monitored and improved in the 'new situation’.

Through the interviews, several Key Performance Indicators (KPI's) were identified that are suscep-
tible for improvement when applying a digital transformation strategy. This list of indicators can help
one to identify which indicators provide valuable information and benefit the overall efficiency when
monitored and improved. Bench-marking with other, similar, manufacturing plants helps to set the
goals corresponding to the common KPI's as indicated in Table 2.4.

Through the implementation phases multiple objectives have already been addressed: process identifi-
cation, process simplification and process harmonization. During the data analysis it became apparent
what bottlenecks exist in the simplified processes. When eliminating these bottlenecks, the improve-
ments should be noticeable by means of KPI's. For instance, the downtime is consistently at 20%. By
data analysis it was found that 6% is caused by preventive maintenance and the remaining 14% is
caused by corrective maintenance. However, 14% is rather high when compared to other factories,
thus you want to reduce it at least by 50%. Since the origin of this high number is uncertain, after
all, it could have multiple causes (e.g. faulty predictive maintenance, incorrect definition of corrective
maintenance, incorrect use of the machinery), you want to uncover the data underlying this KPI. So
now you found the KPI's, know how much you want to improve them and have an idea what is causing
them to perform below preference.

3.3.6. Applying technologies

After setting goals, the actual implementation can start. In previous stages of the model, identification
and simplification of the business process were key. These steps gave insights about what to incorpo-
rate and what to leave to a later stage for efficient digital transformation. The goal of this stage is to
determine what technologies need to be used to suit the initial objectives of the organization as well as
the improvement of essential cores of the business process. Since this step is part of the feedback loop,
extra care is taken to digital transformation as a whole. When developing a solid basis for technologies
to connect, future implementations can readily hook up onto the existing architecture.

As indicated in subsection 2.2.1, a large variety of technologies exist in the Industry 4.0-realm. Core
to these technologies are data and connectivity. In order to have sufficient connectivity to transfer the
generated and processed data, a data architecture is employed. Data architectures come in all sizes
and forms, a Supervisory Control And Data Acquisition (SCADA) system consisting solely of PLC's or
an automated Warehouse Management Systems (WMS) that measures current stocks are just a few of
the many examples.
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However, when applying the RAMI model to divide the business process in small pieces, the exist-
ing data architecture was exposed. This existing architecture comes with limitations as was identified
during the data analysis, because some of the core elements were not measured real-time, hindering
adequate interference. At this point, it matters how the process variable can be measured. Is it a static
factor, like quality, then it can be measured at the same spot, using the same sensor or method. Is it a
dynamic factor, like the warehouse stocks of a particular raw material, then you need a sensing system
that is adapted to the shifting nature of the location of the raw material. For each of the separate key
factors that were identified during the stage "determine key variables” a way to measure (or digitize) it
real-time is determined. For example, the machinery down-time is found to be a key variable. Within
the PLC system it is already known whether a particular piece of machinery is running or not, thus a
continuous connection between OT and IT is sufficient for real-time monitoring. A second example is
the available stock levels of a particular raw material. One way to get real-time numbers is by applying
RFID trackers on the packages. However, this requires extra handling stages such as placing the RFID
tag and coding the tag (corresponding to the product) by the unloading operator. But at the same
time, it offers high scalability in future stages when other parameters need RFID tags as well. Another
option is the use of barcode scanning, which is less costly but decreases traceability. A third option is
found in adoption of HMI (Human Machine Interfaces), such as a screen on which the operator can fill
the data like amount of raw material added or removed. An easier solution compared to RFID tags,
but also more susceptible to errors.

All these options arise from the portrayed technologies in subsection 2.2.1. These technologies are
categorized per RAMI layer, to clarify their area of improvement as well as their application. Figure 3.4
visualizes the applicability of the separate technologies to each layer. Using this figure, one can identify
which options are present to the challenge ahead. For instance, when having limited communication
between devices, resulting in unnecessary human interaction, one could opt for Edge or Device to De-
vice (D2D) related technologies. The edge approach connects the sensors and actuators to one central
piece of equipment, that processes part of the data before sending it to the cloud. This allows for
fast decision-making and shifting of the actuators, since there is no obstruction of data speed due to
latency. The other option, a D2D approach allows for fast collection of all data which is then send to a
central database. There is nearly no latency, so real-time monitoring enables adequate interventions.
The clear difference in the two approaches is the connection, which can be wired for edge and wireless
for D2D.
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Figure 3.4: The smart factory technologies can be categorized among the separate RAMI layers. The showcased "red” technolo-
gies are found in smart factories and will aid digital transformation. The purple technologies can be intermediary technologies
during the Industry 4.0 transformation.

When the implementation model was run multiple times, the focus from data acquisition could shift
towards more autonomous operations. As a result, the functional layer becomes more extensive during
the “applying technologies”-stage. To improve the functional layer, technologies like simulation, virtual
reality and big data analytics are useful options, as indicated in Figure 3.4. Imagine the focus being
production planning and the key variables identified is raw material availability. In previous implemen-
tation cycles, the data concerning this variable has been digitized and real-time information is made
available by applying Internet of Things and cloud technology. To aid decision-making, depending
on this variable, simulation could show the process owner what would happen with the raw material
efficiency if the factory starts manufacturing product B rather than product A. Another technology, big
data analytics, allow for strategic decision-making, because of the predictive behavior of the system.
At full utilization, future raw material usage is predicted depending on all data collected and analyzed,
enabling a just-in-time purchase methodology.

For every implementation cycle, different types of technology become a better fit to the facing chal-
lenge. Choosing between the available options arises upon decision-making tools, such as cost benefit
analysis. By applying a monetary value to each of the aspects like usability, scalability and accuracy
one could define the total cost and benefit of each of the selected options Cellini and Kee (2015). When
these values are assigned, one could compare the costs and benefits and determine the most valuable
option. Such approach is simplistic and gives insights into the added value of each of the options.

Another widely used tool is the Analytical Hierarchy Process (AHP) as a multicriteria decision mecha-
nism. This tool has been used by various researchers to describe an uniform approach of selecting
useful Internet of Things (IoT) platforms, devices, cloud services and databases (Contreras-Masse
et al., 2020; Durao et al., 2018). The focus of this tool lies on the different criteria imperative to the
operation of the actual device. Subjects like cost, security, training, support and device management
are pre-determined criteria that are ascribed to each of the options either qualitatively or quantitatively.
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After deciding which technology would suffice, it must be determined how this technology is ap-
plied. Sensors can be employed for countless applications, e.g. humidity, optical, image, motion,
infrared, chemical, pressure and temperature measurements. Automatic Identification and Data Col-
lection (AIDC) include items like RFID’s, bar codes, and QR codes. Important in the selection process
is to adhere to the objectives and scope of the technology itself (Khan et al., 2017). For the case of
observation as a physical layer approach, it must be determined what and how accurately something
must be observed to aid the process. Similarly, when applying sensors or AIDC, an unit must be in-
stalled such that it accurately measures the data that is required further down the line at a functional
layer.

Implementation of the selected technology should follow right after selection. Depending on the tech-
nology, a variety of prerequisites must be met to complete the implementation. Requirements like
software packages, connection with existing servers/cloud systems and training systems need to be in
place before actual adoption is possible. A widely used tool in the industry, to ensure correct imple-
mentation, is the Management of Change (MoC) procedure. By following trivial pre-determined steps,
all necessary actions will be undertaken.

A new data architecture was created through this implementation stage. If performed correctly, the
RAMI model has changed and must showcase the new business process. Therefore, the RAMI model
developed earlier, needs to be adjusted in order to be recycled in the feedback loop of this implemen-
tation model. By redefining the RAMI model, it becomes apparent what new technologies need to be
implemented for a fluent and efficient business process.

3.3.7. Continuous monitoring

With the technologies in place and the goals defined, one could start to use the data obtained. The
real-time data flows through the set-up architecture and enables for process monitoring. Dashboards
equipped with KPI's allow for performance monitoring in a hindsight. In the mean time, data about
production is gathered that can be used for careful data analysis to find more inconsistencies that were
not observable before.

The continuous flow of data clear the road to new business opportunities. For example, a factory
diminishes the stock of a raw material by manufacturing of a certain product, called product X. Due to
an error in one of the manufacturing units that is required for production of product Y, the production of
upcoming products is advanced. As a result, the raw material of interest is fully consumed before new
supply arrives. In previous situation, this stock data was based upon production numbers as well as
delivery status, both processed once every 24 hours. Such latency causes a relatively late reaction on
the purchasers’ side which results in even more complications down the line. If the purchaser observes
this discrepancy within time, there are plenty of options, such as delaying particular products within
the production planning or accelerate the supply of raw materials.

Performance indicators are similar in usefulness, but require a different handling. Performance of
the process is related to the structural actions performed. If the performance is below par, special
attention to these actions is recommended. A following analysis could indicate the cause for this in-
consistency and allows the company to take measures accordingly. Training, a shift in operations or
technical adjustments are just a few of the many possibilities applicable in this scenario.

An example of a key performance indicator is the capacity utilization which indicates how well the
process is running, depending on its limiting factors. If product Z could run at 15 tonnes/hour, the
capacity utilization of product Z would be 67% when producing at a rate of 10 tonnes/hour. When
observing this reduction in capacity utilization, several causes could be thought of; there could have
been (un)planned downtime, a raw material that is out of spec and runs slower or there is insufficient
storage space. Depending on the other data at hand, one could investigate the origin while it is hap-
pening, allowing to rule out more causes than when relying on "historic data”. If a cause was found
to consistently interfere with the continuity of the business process, additional actions like process im-
provements can be developed.
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As indicated, this stage truly serves as an extension to the data analysis. Initial analysis allowed to find
possible pain points within the business process. As a follow-up, this stage focuses on continuous mon-
itoring to find these pain points on a real-time basis. In return, the faced dilemmas become (smoothly)
solvable as they just occurred, while improvement proposals can attack the recurring challenges.

3.4. [mprove

3.4.1. [mprove

In the first stage of data analysis it was found what huge and common inconsistencies occurred during
the manufacturing process. Through the second stage, continuous monitoring, a more refined and
in-depth analysis was developed. This analysis include continuous discovery of causes for ineffective
operations. With this information, lean manufacturing can take its turn. By elimination of waste, a
more sophisticated and efficient process is developed.

Key to this improvement stage is the adaptability within the existing and future business process.
By other words; it should not hamper future data integration. Common improvements such as on
the job training, changing the order of actions in a standard operating procedure or adding/removing
technical components to the manufacturing process are sufficient more often than not.

Since this stage is highly dependent on the faced challenge within a particular context (i.e. com-
pany), it is unfeasible to provide a particular list with options. Moreover, the steps undertaken up to
this stage already provided the information required to find the issues, monitor, and analyze them.
The actual improvement should follow from these initial actions and can be strengthened using ratio-
nal ideas for elimination of sources of problems, and by using creativity via brainstorming sessions or
adopting the TRIZ principle. In this TRIZ principle, a team is given 40 predetermined words that help
to look at the problem in a different manner. Examples are asymmetry, e.g. by making the product
asymmetric you can avoid unnecessary blockages, continuity, e.g. streamlining a batch process by
eliminating all delaying processes, and turn around, e.g. turn around the order of operations to get a
feel of irrelevant actions.

Together with logic and creativity, every inconsistency found can be eliminated. However, to remain
productive and efficient, the Pareto (80/20) rule of subsection 3.3.1 also applies to this stage. At first,
the focus was on the 80% of the important variables that affect the system. Now this 80 % applies
to the inconsistencies that contribute the most to the reduction of performance (i.e. low KPI's). It is
these issues that will improve the total efficiency a lot, when being solved with considerably low efforts.

A perfect examples of this stage, where the 40 TRIZ principles were applied is found in a solids factory.
The factory faced difficulties with maintaining the quality of their products. By continuous monitoring
of the quality together with the raw material intake, they found that one of their raw materials was
not entering the system at a steady rate. When observing the silo with that raw material it became
apparent that so-called dust bridges were hampering the flow. The previous tapered design of the
silo’s bottom was now changed to an asymmetric one, where one side was made completely vertical,
while the other was diagonal. Asymmetry according to TRIZ helped finding a solution to the consistent
appearance of dust bridges.

3.5. Control

3.5.1. Evaluation

Finally, after going through all implementation stages, a part of the business process was digitized,
analyzed and improved. If performed correctly, this part of the process is future proof, as it is con-
tinuously collecting data and is connected to the bigger system, as well as fitted to the organizational
picture adhering to the company’s objectives and goals. In this stage, it is key to define whether the
goals have been met and if the process indeed was improved. Moreover, the effectiveness of applied
technologies is measured by taking a look at the performance improvements. At the end of this stage,
the lessons learned enable smoother and effective when going back in the feedback loop. By perform-
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ing this loop, new key variables are defined and improved, thus developing the business process to a
new efficient standard.

By evaluation a list of recommendations for future implementation is generated. Recommendations
such as how to perform analysis and how to select the key variables are key to successful reuse. These
all follow from experience or via use cases such as other factories within a global organization. A
valuable tool could be the comparison of performance compared to other similar factories within the
organization, or in other words: a benchmark.

Another aspect of implementation effectiveness is user adoption. Digital transformation can imply
autonomous processing, removing human interference. However, most of the times it is about intro-
ducing digital tools to aid human decision-making. Especially in these cases, human adoption is crucial
to reap all benefits. User adoption is a factor which can be measured in itself, however, it does not
support explain the reason behind user adoption, or the lack of. For that reason, user satisfaction is far
more constructive in nature. By deploying an user satisfaction study, the team can find what should
be done differently in future implementations.

Furthermore, people management was perceived as one of the most difficult aspects in digital transfor-
mation. Continuous feedback by means of surveys and interviews allow for evaluation of this strenuous
condition. Motives for the adoption are different for each company and thus require a tailored imple-
mentation plan.

After the evaluation stage has been processed, the feedback loop starts. Every company has to im-
prove continuously to keep its competitive advantage. Especially digital transformation takes time to
happen. Multiple cycles of this implementation plan approve continuation in the bigger picture; moving
from having an easy overview, to perform actions based of predictive analytics, and finally to have a
completely autonomous business process.

3.6. Summary

This chapter illustrates the development of the artefact (i.e. the implementation model) and its func-
tioning following from the literature study and interviews of chapter 2. Throughout the literature review
it was already assessed what key steps must be undertaken for successful implementation (i.e. the
answer to sub-question two). These separate actions have been adopted and merged into the im-
plementation model in a logical and self-reinforcing manner. The very basis of the model follows a
well-known and convenient method in the sense of the DMAIC. Developing a framework on top of this
technique helps practitioners to easily grasp the essence of each stage.

The individual actions dedicated to each stage then explains what steps are undertaken for effec-
tive implementation. These actions are derived from a quality-improving model by Aitken et al. (2004)
that already proved its effectiveness, as well as the input from multiple practitioners. The combination
of both ensures that none of the essential steps are overlooked and simultaneously provides some sort
of reference in terms of sub-actions to take (i.e. searching for key variables using either quality teams
or the Pareto-tool). Finally, the individual steps were translated to the Industry 4.0-framework in the
Supply & Planning environment using the knowledge obtained in section 2.1.

For each of the eleven action, within the five stages, it was indicated what specific actions must be set
in motion. By explaining the final deliverable, e.g. a fully filled 2D-RAMI model or selecting up to 5
KPI's, it is depicted what the action should result to. Thereby maintaining the wide applicability of the
model while providing a detailed guidance.
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Previous chapter elaborated upon the implementation model crafted by information obtained via inter-
views with practitioners as well as existing literature dedicated to Industry 4.0, digital transformation
and business operations. The implementation model aids practitioners, specifically in the area of com-
plex manufacturing processes, to define the appropriate implementation strategy. Through a set of
step-wise actions, a digital transformation is obtained, which is both practical - fits the local needs -
and sufficient - provides helpful insights at any stage of a company’s digital readiness.

Although this model was developed depending on many years of experience as well as information
about state-of-the-art technologies, applicability and usefulness are still to be tested. By means of a
case study, the applicability of this study can be perfectly tested. The case study of choice is performed
in a company who’s name is known at the research team, but kept secret for confidential reasons. The
company is readily participating in digital transformation and follows the corresponding trends care-
fully. Minor advances towards digital manufacturing have been made, while the digitization on other
departments still lacks. Which makes it a perfect playground for thorough testing.

After employment of the implementation model through the case study, another tool is utilized. In
Appendix A Design science the model by Peffers et al. (2008) was shown to consist of a dedicated
demonstration and evaluation phase. Evaluation, based upon the performed demonstration must indi-
cate what contributions evolved from the model. In this evaluation stage it will be illustrated how the
company will benefit from the improvements established.

4.1. Methodology

Performing demonstration is an important part of the design science by Peffers et al. (2008). Through
the demonstration phase, one shows that the designed artifact actually does what its intended purpose
is. A case study is a tool to test this the designed artifact in an (un)conditioned environment. Case stud-
ies can all have different sizes and shapes, depending on the theory/model to be tested (Ridder, 2017).

The design of the implementation model was one established by gaps and holes, according to the
categorization of Ridder (2017). This case study research evolves from doing research into a topic and
defining the gaps and holes in existing theories, or even the lack of theory. Through this initial the-
ory, propositions or frameworks provide direction and guide the for relevant evidence. Ridder (2017)
emphasizes that interviews are the main sources of data collection, but mentions the use of other
sources of qualitative data as well. By pattern-matching and establishing relationships within the data,
a framework or theory is established.

Especially in the case of "gaps and holes” theory building, single cases (i.e. case study) can serve
as a test. It is of upmost importance for this single test to adhere to the clear set of propositions and
exact conditions under which the investigation can confirm or challenge the theory (Ridder, 2017). For
the gaps and holes-type of theory building case study design is required.
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Case study design happens prior the actual case study (Yin, 1981). The design should include the
main topics to be covered, the individuals (or roles) from whom information might be obtained and the
unit of analysis (Yin, 1981). Furthermore, the collection of data for the use in the case study is also
considered within this design. Since this case study follows from a design science (i.e. Peffers et al.
(2008)), the utility of explaining all steps again is limited. In the practical environment, explanatory
case studies are dedicated to the construction and testing of an explanation. Multiple models of uti-
lization to do just this exist, of which "the problem-solving model” is applicable to this study, in which
problem identification happens prior to the commissioning of specific research. Subsequently, the case
study will test a complex sequence of events, and not merely the testing of a narrow hypothesis (Yin,
1981).

Knowing the origin of the case study (i.e. gaps and holes, and problem-solving) helps to define the
execution of the case study. The implementation model, Figure 3.1 already provides a clear overview
of the steps to commence. For each of these stages, data is collected to proceed with the remaining
stages. Yin (1981) defines several data collection procedures of which face-to-face interviews with key
informants’, ‘project documents and memoranda’, and ‘on-site observations’ will be the most prominent
in this study. Moreover, in light of the data-based implementation of Industry 4.0, another data source
in the sense of ‘digitally stored data’ like time-series databases, is collected.

Within the practical environment (company) where the case study is conducted, multiple departments
coexist. Data retrieval and face-to-face interviewing happens by focusing on the appropriate mem-
bers of said departments. Throughout the case study, at least the following roles are included via
face-to-face contact (at minimum):

Supply & planning manager;
Warehouse manager;
Operations manager;
Maintenance manager;
Laboratory manager;

Raw material purchaser;
Production planner;

Market coordinator;

Factory operator;
Warehouse operator.
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4.2, Case study

The company is an international player in the agriculture fertilizer market that produces various fertiliz-
ers, such as solid (water-solubles) and liquid fertilizers. With a yearly production of 30.500 kilotonnes,
with over 1000s of different products and production in 50 countries, the company is considered to be
a top league player in the agricultural market. Flagships of the company comprises specialty fertilizers
that are sold as premium water-soluble fertilizers. At the basis of these flagships lies the plant in the
Netherlands, one of the devoted specialty manufactures within the global organization.

The company’s Dutch plant consists of two separate factories that both operate in a different man-
ner. At first, there is the liquids factory, called Substrafeed. This factory comprises of storage tanks,
pipelines and a few reactors. The raw materials (mainly liquid) are directed into the storage tanks
after which it can be pumped towards the reactors. The final product is then directed to its dedi-
cated storage tank and awaits loading to go to the customer. Since the system is rather optimized
and digitized, customers can get their products whenever they want, by simply starting the unloading
procedure themselves. The digital system will process the amount of product taken and the invoice
will automatically follow.

However, the second factory, meant for solids production, is outdated and comprises over 50 dif-
ferent raw materials and more than 350 products. A large amount of different raw materials find their
way to the production site each day. This variety of materials are transported either by ship or by truck,
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bagged in 15, 25, 600-1000 (Big bag) kg bags or as bulk product. The usage of these raw materials
can also range from a few grams up to hundreds of tonnes per day. All this together, create significant
fluctuations of in- and out-flow of raw materials and makes it difficult to pinpoint actual and future
stocks.

As indicated in previous sections, most of the production inefficiencies can come from various sources.
However, raw material supply and production planning are mostly responsible for aforementioned fluc-
tuations in materials. This specifically applies to the solids factory of the company. For that reason, it
would be optimal to implement digital solutions into the supply and planning department of the com-
pany’s Dutch solids factory. By applying the model it becomes apparent how the current process is
operating, what inefficiencies exist and what solutions should overcome the present challenges.

In order to keep the competitive advantage, the company already composed a global team of IT
experts to address future challenges with regards to Industry 4.0. Now the model is available, we can
test its effectiveness by simply using the company’s Dutch plant as a case study. After the implementa-
tion, the solids factory should incorporate more digital solutions, allowing easier operations and higher
efficiencies.

4.2.1. Define

Goal objectives

The focus of the first stage of the model lies on the input steps. These steps provide the basic infor-
mation required to perform the consecutive steps. The goal of this ‘define’ stage is to know where to
concentrate the efforts initially, to perform the digital incremental steps as efficiently as possible.

The first step in the define stage is to define the goals of the company. As mentioned in the in-
troduction of this chapter, the Dutch plant is part of the international label. This means that the global
strategy and objectives also apply to the much smaller Dutch plant. As a result, local initiatives must
be shaped towards the global imperatives. However, to enable efficient and effective implementation,
local needs are the foremost drivers throughout decision-making.

At first, we study the global goals and planning set by the international organization. This ensures
that, on a local level, we adhere to the general vision of the company. As is apparent from the evolve
of this thesis, the company is really looking into the opportunities related to the development of In-
dustry 4.0. Organization-wide, data is treated as the new oil and gold, being the world’s most valuable
resource. Local data is enhanced through the use of clouds, machine learning and IoT architectures
to a more global level, thus enhancing the overall competitive advantage of the company.

Not only does the company view these data technologies as potential improvers of existing business,
they also perceive the value of data in the sense of new business models and opportunities. Oppor-
tunities which they want to grasp through a three-stage journey; (I) shared awareness, (II) predictive
analytics, and finally (III) autonomy. These increasing stages of sophistication are driven by applying
them to five separate value streams:

1. Plant steering: stabilize and optimize;

2. Digital operations: increase efficiency and safety;

3. Digital reliability: minimize downtime;

4. Mining & robotics: improve recovery;

5. Engineering: digitize engineering processes.

Looking at the general drivers by Liere-Netheler et al. (2018), two of the drivers are particularly ap-
plicable to the key purposes of the company. Process improvement is the foremost incentive for the
company to make the switch by digital transformation. Through the smart application of several tech-
nologies, the global organization sees huge business opportunities by making the existing processes
more efficient. Another driver, which is less apparent, is the ‘innovation push’. At a higher level in the
global organization, directors realize the importance of innovating along with the rest of the industry,
preferably at a higher pace. This incentive evolves mainly around picking the low hanging fruits using
newer technologies.
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As was described in subsection 2.2.2, large corporations behave rather cumbersome. Similar to this
description, this company also faces the challenges related to aligning all internal businesses in an
identical manner. Consequently, forming the company’s global strategy already takes 2.5 years, while
still being in the stage of ‘proof of concept’. At some of the larger factories, a few small technologies
were introduced to test whether the applicability was sufficient for other factories to follow. However,
this global approach does align the company’s individual business with each other, but does not support
a straightforward tailor-made local digital solution. Within the implementation model, the approach is
focused on local needs dedicated to the overall -global- strategy.

Therefore, the focus of this case study is to improve the existing local processes (specified to sup-
ply & planning) as well as introducing new novel technologies that enhance operations. Equipped with
this knowledge, we can continue with the remaining stages of the digital transformation implementation
model.

4.2.2. Measure

Business overview

So with the goals and objectives in mind, we can start creating an overview of the current business
layout. As in many companies, this company also has multiple departments dedicated to their own
task. We can distinguish between supply & planning, production, procurement and warehousing as
the four most relevant departments for this case study. Especially the supply & planning department
plays a significant role, since they are responsible for the production planning, the raw material supply
and a significant part of the order processing.

At first, BPMN'’s (Business Process Model and Notation) are created of each and every business process
occurring within the Dutch plant. The collection of all business flowcharts is a tedious process and
requires careful examination and interviewing of the stakeholders inside the company. Oftentimes,
companies are adhering to certain standard, like ISO 9001, and have the business processes already
mapped as such. All forms of Business Process mapping, like EPC (Event Driven Process Chain) and
BPMN, are sufficient starting points to develop the 2D-RAMI model.

Equipped with relatively detailed information, the 2D-rami model can be readily filled. The first fo-
cus is to divide sub-processes from the main topic. In subsection 3.2.1 it was already identified that
the main processes are forecast (if applicable), assigning suppliers, order processing, production plan-
ning, raw material purchasing, storage and production. Each of these main processes consist of various
consecutive steps that can confuse one when reading a filled RAMI model. Therefore, subdivision of
separate sub-processes help to align the relevant information (i.e. functions, data, communication,
etc.) with the respective action taken.

In the case of the company, this subdivision is only required in the case of procurement, where as-
signing new vendors differs significantly from assessing and negotiating with existing vendors. This
distinction, including the rest of the 2D-RAMI model is showcased in Figure 4.1 and Figure 4.2. The
model as a whole was extracted from the BPMN flowcharts and finally verified with the corresponding
business owners.

With the sub-processes in mind, the second stage focuses on defining the functions. Generally, deci-
sions are indicated in a flowchart by a diamond figure. These crucial decision-making steps, like "how
much raw material is required” are all filled in the business process where the decision is made. As
a result, the table contains all valuable decisions and already hints upon the information required to
make this decision. Since the focus of this case study lies upon supply & planning within the Dutch
plant, the majority of the decisions is about raw material inflow, production planning and the decisions
hindering these.



What products do we need to make for our
customers?

Where do we need to ship our products to?

What is the strategic amount we will buy from the
particular vendor?

What is the maximum price we will pay?

Who is the cheapest?
Who can fulfil our demands in a short timeframe
(delivery times)?

Does the supplier meet our specifications?

Do we have the remaining capacity?

Was it forecasted or not?
What products are required and where
do they need to be shipped to?

Market demands based on history (including
fluctuations)

Customer requests

Upcoming events to country specific (e.g.
Chinese new year)

Available/existing product types

Required amount (estimated) of raw materials
Histarical and running complaints about raw
materials - Vendorrating

Delivery capacity of supplier

Price/volume
Raw material specifications

List of amounts of raw materials required

List of available vendors for particular raw material
Delivery capacity of supplier

Raw material specification test

Remaining capacity
The order itself - customer specs.

Forecasts
Existing orders

Pull market demands from historical data (MS
Excel sheets)

Pull/Push of customer requests via personal
contact (mail/phone)

List of available product types and their
characteristics (MS Excel via mail)

Pull required amounts from greensheet (MS Excel
sheet via mail)

Pull vendorrating from sheet (MS Excel sheet)
Pull average prices from suppliers/imarkets
(mailiphonefinternet)

Pull prices, capacity & specffications from suppliers
(email}

Pull specifications from material specialist (email)
Pull required amounts from greensheet (MS Excel
sheet via mail)

Push of raw material specification test results (email)

Push of order (specs) from customer
(phone/email)

Pull of remaining capacity (MS Excel
sheets via email)

Push of forecasts (MS Excel sheet)
Pull existing orders (SAP)

Push of orders to tools SAP and Excel
(MS Excel)

Personal interaction (mail/phone) to M3 Excel

Personal interaction (mail/phone) to MS Excel

Personal interaction (mail/phone) to MS Excel

Personal interaction (mail/phone) to MS
Excel

Personal interaction (mail/phone) to SAP

Customers stocks

Material usage

Material usage
Product/Production facility limitations

Factory facility limitations (capacity)
Customer stocks

Figure 4.1: The company’s Business Process information visualized in the 2D-RAMI model part 1 of 2.
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When do we need to make the product?

What is the best production order?

When do we have downtime?

What is the capacity?

What prerequisites are in place?

What products need to be made (MTS/MTO)?

What are the volumes we need?

How much can we store?

VWhen do we need it?

Where do | buy it?

What time does it take till delivery?

Where do we place the products?
|s the assigned location according to the law for that
product?

How is it booked in the software?

Does it fit into the warehouse?

Is there a priority location (fast production usage)?
Unloading or loading priority?

Are all raw materials available?

What extra's do | need (e.g. bags, stickers)?

Is there enough workforce?

Did | use the nght/enough materials?

Do | have enough materials to finish production?
Is production on schedule?

Is the product within specs for the customer?
What has already been produced and consumed?

Capacity per process

Maintenance planning

List of orders (MTCQ/MTS) and required delivery dates
(MTC)

Delivery time of raw materials

Stocks of raw materials and products

Prerequisites required for production (stickers, bags,
etc.)

Required delivery dates of orders

Demand for planned production (short lead tme
materials)

Stock levels

Availability of supplier

Demand of forecasts (long lead time materials)
Recipes

Safety stocks
List of assigned vendors

Storage locations
Warehouse stocks

Amount of delivered raw material/required product

Material storage locations and stock
Raw maternal demand depending on current production
Recipes

Effective available time of machinery
Quiality data test results

Pull maintenance planning (email)

Pull orders (Excel)

Pull delivery time of raw materials (MS Excel sheet via
email)

Pull existing stocks/prerequisites and future usage
(SAP)

Pull raw material demand (PPA)
Pull stock levels (SAP+PPA)

Push of availability and capacity of supplier (MS Excel)
Pull forecasts raw materials (MS Excel sheet (history
and Greensheet))

Push location to truck driver (SAP)
Push of storage locations (SAP)

Push of amounts of product (paper)

Push recipes and required amounts (MS Excel)
Pull effective available time of machinery (Evocon)

Push quality results from lab data (Ms Excel)

MS Excel to PPA (production planning application)

SAP to PPA (production planning application)
PPA to MS Excel sheet (weekly/daily planning)

SAP to personal interaction (mail/phone)

Paper to SAP (adminstrative task)
SAP to paper (instructions/locations/amounts
expected)

ERP/SAP to paper (instructions/locations/amounts
expected)

PLC to Evocon
MS Excel to paper (quality results)

Product/Production facility limitations

Material usage

Factory facility imitations (availability - maintenance)
Stocks

Material usage
Warehouse storage
Stocks

Warehouse stocks
Warehouse layout
Truck arrival

Manufacturing equipment
Warehouse stock
Laboratory equipment

Figure 4.2: The company’s Business Process information visualized in the 2D-RAMI model part 2 of 2.
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The information necessary for the functions can be found in the data assessed by the process owner.
Particular sets of data, like warehouse stocks, provide the basis allow the business owner to determine
the consecutive actions, like purchase of extra materials. Again, BPMN flowcharts clearly indicate what
information is retrieved throughout the process. It is these data sets that are shown in the 2D-RAMI
model at the data-layer. Within the company various sources are consulted to obtain the required
data, which results in a large list of data sets. Examples of data sets are warehouse stocks, production
capacities, raw material requirements and recipes of the many products.

With the data sets being known, the focus shift towards the origin from this data. Similar to ac-
tual RAMI model, it must be known where the data is obtained and how it reaches the function-stage.
However, within the RAMI model, the communication layer refers to the different digital communication
protocols that allow data flow by converting from one digital formatting to another. In this 2D-RAMI
model, the communication layer presents a similar philosophy; one raw data set, e.g. warehouse stocks
in PPA, is retrieved by the raw material purchaser and then converted by experience to an useful data
set which is used for the eventual decision-making.

In this communication phase, explicit notes are added. First of all, the information about pulling
or pushing is added to indicate whether the process owner has to actively retrieve the data, or is
prompted with the data at a particular moment in time. This difference helps to define the working
of the algorithm when making the system autonomous at a later stage. A second note is found in the
software used. Software is a significant contributor to the efficiency of the communication stage. A lot
of software is incompatible with each other which hampers a fluent “copy-paste” mentality and requires
additional actions for it to be useful. Finally the entry is colored in either red (digital/database inter-
action) or green (physical/personal) interaction. This clearly indicates gaps for the current digitization
process and also hints upon which data sets can be made more efficient by introducing digital reporting.

In the digitization phase it becomes more apparent from where the data was created. This stage
does not refer as much to the OT and IT interaction (PLC, SCADA, sensor networks) as is the case
with the actual RAMI model, but more to physical things like human observation of human interaction
are translated into digital software. For example, a customer determine its needs by observing its own
stocks and needs. This is essential data for the company, but is not readily obtained since there is no
end-to-end integration yet. Therefore, human interaction takes place between sales departments and
customers. This sales department then enters the wanted amounts of products into an order system
which is directed towards the production planning for scheduling. These translations from a physical
source (paper, human, sensoring equipment) to a digital one (MS Excel, SAP) allows data to flow to-
wards the decision-making processes. Especially this layer indicates the speed of the data flow, since
human interaction and paper require someone to enter the data manually into a system, which is both
susceptible to error and time consuming, making real-time data flow impossible.

Finally, the physical things-layer is filled. This layer is rather confusion in the light of the actual RAMI-
model. It is important to define the objects that can be either measured/observed by the human eye
or some sort of sensor. With this in mind, you will work towards the ideal situation, where physical
objects are measured and detected using electronic devices thus generating real-time data.

As expected, the physical things are hard define outside of the production process. The Dutch plant
relies on multiple physical data sources, like customer stocks, production facility limitations and ware-
house storage capacities. All could be monitored one way or the other, but are hard to define and
capture in a consistent manner. Uncovering these physical objects already helps in describing the
digital opportunities in the near future.

4.2.3. Analyze

Key variables

Throughout the overview stage a significant list of data sets was obtained. By combining all these data
sets into one list and assigning them to the corresponding business process, a full overview of data is
created. As a result, the origin and goal of the data is easily tracked. The full data overview, including
all relevant columns, such as category (i.e. main process) and origin is shown in Table 4.2.
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Next to the origin (i.e. initially obtained via and verified via) and the goal (i.e. required for), the
volatility is noted. This volatility indicates whether the data can change fast or slow, i.e. significantly
change within a day. Denominators as dynamic and static describe the pace in which the data set
changes. Because the initial focus in on obtaining real-time data, static data is rather trivial when pro-
cessed in real-time. However, dynamic data can have significant impact on the operations performance
and thus require careful, continuous, observation and processing. This means that the extensive list
with data sets already reduces to a list with dynamic data sets.

Further delineation is performed by assessing the data sets with a quality team. The objective of
this step is to determine the key variables (data) that affect the process performance. Since the model
focuses on multiple business processes (e.g. forecast, raw material purchase, production), all should
be considered when extracting key variables.

To effectively estimate the effects of each variable, a ranking system is introduced. Table 4.1 presents
the 5 categories with which the severity of a slight change in data would cause an effect on the busi-
ness processes. Each category has an indicative benchmark in both delay and monetary value to allow
easier comparison. The delay benchmark specifically helps in the case of time-dependent processes
like transportation. The monetary value, on the other hand, expresses the production delay in terms
of lost sales. Or in other words: every production hour yields around 10.000€.

Consequence | Category | Delay | Monetary effects
Minimal 1 Few minutes <5k €

Minor 2 0.5 - 5 hours 5k - 50k €
Moderate 3 5 - 24 hours 50k - 240k €
Major 4 24 - 72 hours 240k - 720k €
Severe 5 >72 hours >720k €

Table 4.1: Ranking system to find key variables

The relevant business processes for continuous operations are raw material purchase, production plan-
ning, storage (raw materials), production, storage (products) and transportation, respectively. For
every data set it was imagined that a small change would occur, e.g. remaining capacity reduces with
1%. With this small change in mind it was perceived what effect it would have on all the other pro-
cesses. In the case of a small change in remaining capacity, this effect would only result in a minimal
delay for raw material purchasing and minor delay in production planning, because the production
order has to be stretched out or shrunken.

The results of this assessments can be found in Table 4.3. The table is sorted on total effect points,
which is easily derived by the sum of all effects. This calculation suffices due to spread importance of
each of these business processes. After careful examination, 5 key variables were obtained. Running
the model for the first time requires total focus on these 5 key variables. When performing the imple-
mentation model a second time, this focus can shift. Assessed effects can either reduce through digital
technologies or the variable cannot be improved anymore within the existing system.

Throughout the assessment, it became apparent that the foremost challenge lies within stocks of
raw materials and products. This dataset is used for determining the production planning, for raw
material purchase, for storage processes and also within the production process. Subsequently, the ef-
fects are immediately visible through the whole internal process chain when this data is incorrect and/or
changed. Within the company, there is already a database containing the current stocks. However,
this SAP database requires manual inputs and is only updated once a day depending on the production
data. Since this production data is also physically provided (i.e. by paper) to the SAP administrator
or not written at all, the administrator has to guess what has been used and errors are quickly made.
This results in a discrepancy between actual stocks and digital stocks, which requires periodic physical
counting to align the digital stocks with actual stocks.



Data required | Nature | Required for | Initially obtained via | Verified via
Stocks of raw materials and products Dynamic Determine needs Excel/PPA* Physical counting
Demand on forecasts Dynamic Production planning Greensheet Forecasting Excel sheets
Maintenance planning Dynamic | Determine uptime and availability Internal contact -
Prerequisites required for production Dynamic Determine needs Greensheet Forecasting Excel sheets
Quality data test results Dynamic Customer requirements Laboratory equipment internal contact
Effective available time of raw materials Dynamic Daily planning purposes Evocon (via PLC) Physical observation
Demand for planned production Dynamic Production planning PPA* calculations -

Delivery time of raw materials Dynamic Determine production order Supplier interaction SAP

Material demand depending on operations | Dynamic Check production schedule Personal calculations -

Amount of delivered/required materials Dynamic Determine storage location Supplier interaction Observation unloading operator
List of orders and required delivery dates | Dynamic Determine production order Excel sheet SAP
Remaining capacity Dynamic Determine if new orders fit Personal calculations -

Forecasts Dynamic | Buying long lead time materials Customer interaction List of forecasts by markets
List of amounts of raw materials required | Dynamic Raw material purchase Internal contact Excel calculation sheets
Required delivery dates of orders Dynamic Production order Excel sheet SAP
Customer requests Dynamic | Determine forecasts per country Customer interaction -

Existing orders Dynamic Production Customer interaction List of orders
Market demands based on history Dynamic Accurate forecasting Personal database -

The order itself - customer specs. Dynamic Determine product spec. Customer interaction -
Vendorrating Dynamic Strategic procurement Complaints forms List of vendors & ratings
Price/volume Dynamic Strategic procurement Supplier interaction -

Raw material specification test Dynamic Check suppliers capabilities Laboratory equipment Internal contact
Availability of supplier Static Determine lead times Global procurement Supplier interaction
Existing product types Static Determine forecast per type SAP Loose Excel sheet
Capacity per process Static Determine production order Average historic numbers -

Delivery capacity of supplier Static Strategic procurement Supplier interaction -

List of available vendors Static Strategic procurement Sourcing -

List of assigned vendors Static Raw material purchase Global procurement -

Raw material specs Static Select available vendors Laboratory data Internal contact
Recipes Static Determine required materials SAP Bill of materials
Safety stocks Static Determine min/max stocks Excel sheet -

Storage locations Static (un)loading of particular material SAP Internal contact
Upcoming events per country Static Market fluctuations Sourcing -

Table 4.2: All identified data sets (variables) used throughout the business process. *PPA is the production planning application.
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Data required

Category*

RM*
purchase

Production
planning

Storage
(RM*)

Production

Storage
(products)

Transportation

Total

Stocks of raw materials and products
Demand on forecasts

Maintenance planning

Prerequisites required for production
Quiality data test results

Effective available time of raw materials
Demand for planned production

Delivery time of raw materials

Raw material demand depending on operations
Amount of delivered/required materials
List of orders and required delivery dates
Remaining capacity

Forecasts

List of amounts of raw materials required
Required delivery dates of orders
Customer requests

Existing orders

Market demands based on history

The order itself - customer specs.
Vendorrating

Price/volume

Raw material specification test

PP, RMP, PROD & STOR
RM supply
PP
PP
PP
PROD
PROD
RM supply
PP
PROD
STOR
PP
opP
opP
PROC
FC
opP
FC
opP
PROC
PROC
PROC
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OO OMNFFHFFOOFNNOOOKFKNEFFWNEF

OO0 O0OO0O0OO0OO0OOHOOOHHFH,HOFOOOOW

OO OO0 OO0ODO0OOOCOOONHKFEFNWNWNW

OO OO0 OO O0ODO0OO0ODOCO0OOHOHOONOOON

O OO0 O0OCOOWOOOOHHNONNWUIW,AMW

OHRLRNNNNWWWADRNDIDUIUIO N WO WOLOOTG,

Table 4.3: Ranking of all variables. ¥*RM = Raw materials, PROD = Production, PP = Production Planning, FC = Forecast, PROC = Procurement, STOR = Storage, OP = Order Processing
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The second till fifth ranked key variables are demand on forecasts, Maintenance planning, Pre-
requisites required for production (sticker, bags, etc.) and quality data test results. Except
for the last, they all have in common that they can significantly affect the production and transportation
speed. If the raw material demand is slightly too low because of an inadequate forecast, the produc-
tion of a particular order cannot occur and is delayed to a later stage. To solve the issue, production
planning has to cooperate with production to create a new planning or to find a solution using other
materials.

This also applies to prerequisites, who also have a relatively long lead time. The period between
ordering bags and the arrival of bags spans around 6 weeks. Since the bags are dedicated to their
product group, it can readily happen that the wrong bag type was ordered. Many of the product groups
are planned after each other to allow smooth and consistent production capacity. If one of the key
components misses in this production, the whole batch must be canceled and delayed to a later mo-
ment in time. With speed delivery, it still takes about 1-2 weeks to get the new bags, which makes
transportation delay way over 72 hours (highest category).

Quality data results and maintenance planning speak for themselves. The maintenance planning de-
termines the actual downtime of the manufacturing process and thus delineates the limitations for
production planning. At the moment, this planning is shared by physical communications once every
week. However, throughout the week the planning can change and as a result, only the production
department is updated. Similarly with laboratory results. Every batch requires a few tests before it
can be shipped to the customer. These quality tests are performed at the lab, who are the only ones
in control of their data. After approval of the quality test results, these are taken to the production
department by paper, who can then start to transport the products to the customers.

As can be seen in the explanation of the 5 key variables, they share all one thing in common; some sort
of physical interaction. For stocks, they are counted physically, for planning and results it is a phys-
ical form of communication and for demands and prerequisites it is a time variable that is unknown
until physical interaction happens. Altogether, these first three stages of the implementation model
highlight the focal points for the company. Even without further, step-wise, processing, a company
might have an idea how to improve with this information, not including digital tools. However, the
strength of Industry 4.0 lies within data and connectivity, which serves the highest value when being
digital because of its fast nature. Equipped with this critical information, we will move forward to the
data gathering stage, in order to standardize the way of working and to find solutions for effective
production improvements, which is the organization’s goal after all.

It is these key variables that you need to guarantee continuous and fluent production. It can be
the case that, with ongoing improvement studies, a part of these key variables already have been
manipulated over time. However, during analysis such events would show up by the lack of inconsis-
tencies. The starting point of this exercise is ensuring that at least the very basis of the operations
is steady and in control. When operating the model continuously, via the feedback loop, new topics
will be covered and ways to improve the identified parameters are found. As a result, the incremental
process will help development towards a fully data integrated smart factory.

Digital reporting

Digital reporting and OT and IT merger are the two actions to undertake after the variable step. In
digital reporting, it is important to convert physical communicated data to a digital format. One of the
key solutions for this step is Office 365. Within the company, Office 365 and the accessory Onedrive
are widely employed. The tools coming with this are file sharing with a real-time change tracker. In
other words; if someone changes something in the file, another person at a different computer would
see the change happening immediately. This allows someone to always have the most recent data
available when performing his/her task with the corresponding data.
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In order to obtain data about the key variables, we must check how we can retrieve the data. In
the case of factory-related parameters, like pressure and temperature, this is obviously derived from
the OT and IT-side. But observation data (e.g. monitoring the visual representation of the product) and
semi-continuous flowing data (e.g. watch transfer on paper) cannot be obtained via OT-connections.
Therefore some sort of digital reporting is required.

Within the case study, almost all key variables are already digitally reported. Stocks of raw mate-
rials and products is monitored within a digital system called SAP. Every day, someone enters the
production numbers of the day before, allowing the system to calculate the used materials. Simultane-
ously, this person enters the deliveries of new raw materials and subsequently the system determines
the remaining stocks. Since this administrative process does not include any forms of waste, digital
and actual stocks might become different over time, simply because some deliveries were incomplete
or too much of a particular material was put into production, without reporting it. Since this change is
only minor, and well-known within the organization, it was considered not to be a major inconsistency
- therefore it was not monitored. The digitally available data is accurate enough for performing data
analysis, so this set of data was collected through the SAP system. In future implementation loops, it
might occur that this deviation between real and digital reported data becomes more prominent - thus
requiring to make a digital reporting form in which the warehouse operators enter the incoming and
outgoing material flows.

The second variable, demand of forecasts, was also easily obtained via the existing digital tools. Via
Excel-sheets and a tool called ‘Greensheet’, forecasts are made and the according raw material input
is calculated using the BOM (Bill of Materials). Since this process is performed solely on a digital basis
(i.e. on computers), the collection of this data was fairly simple. Via the production planner, a set of
past calculations was obtained, showing the raw material demand based on forecasts for over half a
year.

Maintenance planning was a rather difficult one. On the one hand, the maintenance planning was
already put into a digital tool; Excel. But on the other, it was just stored locally, making it unavail-
able for a significant portion of the business. Especially this planning contains valuable information for
other departments to aid in their own planning and decision-making. By converting this planning to
an Office 365 format, and adding an extra column of information (down-time related to the performed
maintenance), other colleagues could use the tool as well, making it more valuable. However, this
adjustment did not result in a lot of valuable data within the short amount of time. Therefore, extra
data regarding the down time (related to maintenance) was collected via OT and IT merger, which is
further explained in the next subsection.

The fourth variable is related to the second one; where forecasts determine the raw material de-
mand. In the case of prerequisites, the same holds true. According to the forecasts, the raw material
purchaser purchases materials like pallets, bags, and stickers. In SAP, the planner can find what
prerequisites are required to fulfil the demand forecasted. Subsequently, the existing and remaining
capacity is calculated via dedicated Excel sheets. When doing the calculations every month, the Excel
sheet gets saved and is no longer used. When obtaining the data from the raw materials demand of
the last year, we also obtained the prerequisites demand.

Laboratory results, regarding the quality of the product, are the final variable to collect data from.
Although this variable lies close to OT and IT merger; you can develop a database in which laboratory
equipment automatically enters its results, the current input of laboratory data is a digital reporting
one. Laboratory personnel perform the experiment, obtain the data through equipment, assess it, and
finally put it into the laboratory database which is stored locally. Similar to the maintenance planning,
other departments rely on the information given through this laboratory database. Due to it being
stored locally, others cannot obtain the results themselves, therefore opting for a database stored on
the cloud (e.g. Office 365). In this case study, the data from this database was obtained via the
laboratory manager.
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OT and IT merger

In subsection 3.3.3 an overview was made on how to connect Operational Technology (OT) with In-
formation Technology (IT). This section was mainly focused on connecting PLC's of the factory with
internal computer systems to allow free data flowing from an unusable source to a useful one. OT and
IT merger also works for various other sources which do not involve a PLC or DCS system. There are
various stand-alone sensors or equipment found in and around factories that only monitor/measure
one parameter which is relies only on human interaction to be taken into account.

At the Dutch plant, there are multiple PLC systems that run continuously with various data sets. All this
data is related to the performance of the factory and give useful insights into the operation kinetics.
However, the 5 key variables indicated during the input stage did not involve any data about factory
performance. Eventually, this data might become relevant when the implementation model enters its
second loop, but for now there is no need to retrieve data from the PLC's.

Diving deeper into the 5 key variables, we observe that only maintenance planning is somehow re-
lated to the factory’s performance. By means of predictive maintenance, this data set can be enriched
and also be performed more effectively. However, this is already diving into technical solutions, for
which the infrastructure is not in place at all. Therefore, it is not sensible to collect this data yet.

However, production data collected through PLC’s is already available within the Dutch plant. In the
past, a project was initiated for the collection of process availability data. This was stimulated by
the corporate movement towards lean manufacturing. Available data about the performance of the
machinery allows to do dedicated data analysis to whatever the need might be, e.g. maintenance
down-time, OEE (Overall Equipment Efficiency) or other production related errors.

Ever since the introduction of this system, relatively minor attention was paid to the wide employ-
ment of such application. The maintenance and production departments are the foremost users of
this novel technology, while other departments like Production planning and Warehouse storage could
benefit as much. For that reason, the main focus in this stage is rather aligning the data about the 5
key variables with this data, to see what inconsistencies have affected the production efficiency, and
as a result, the production planning and warehouse storage effectiveness.

Since the OT and IT merger can be skipped in this case study does not mean that it is not impor-
tant in any other scenario. Connection with the PLC and running times of pumps, valves (to specific
storage tanks) or other equipment provide very relevant information. When anomalies were found in
the larger set of data, e.g. warehouse stocks, raw material demand, etc., something should be com-
pared with it, to know its actual effect.

As example we use the manufacturing of a product in a reactor vessel. Three raw materials are supplied
to the vessel in a predetermined order. The first raw material is empty and arrival of replenishment is
scheduled soon. With the OT data you can see how long the valves remained closed and how much
efficient production time was taken by the truck delay. When this happens multiple times a year, you
might want to carefully track these trucks to avoid unnecessary production losses like these. However,
if it was a raw materials of which the dosing order could be altered manually, the need for such system
becomes much less. In both cases, data extracted from the PLC provide useful information that aid a
developed data analysis.

The OT and IT merger in the Dutch plant was established by connecting the PLC to an external server.
A bit indicating the operation mode simply send a signal to a set-reset kind of node. As soon as the
batch is started this node provides a binary output (i.e. 1) and when stopped this is set to 0. Subse-
quently, this data is stored in a time-series database which is then converted to a visual representation
on a Human-machine interface (HMI). In the solids factory the output (i.e. bags) is measured, since
this gives a more refined overview of the status.
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In other factories a similar set of data can be acquired. By simply connecting the plc via ethernet,
using an adapater if necessary, one could extract information about particular valves if opened, about
pumps when activated or any alike data. Storing this data onto a time-series database allows further
analysis as was described in subsection 3.3.4. Moreover, this will already give a feeling about the
operation performance of a particular module within the factory. Thus, simply adding value to the
operations analysis as a whole.

Data analysis

Data analysis in the implementation model can be considered as one of the key steps to take. The
first analysis, as in this stage, helps to evaluate the current performance as well as find the obvious
existing bottlenecks. A second analysis during the continuous monitoring stage is more dedicated to
ongoing practices. The main difference is the inclusion of details. This data analysis stage focuses
on the general process data, e.g. daily stocks, and daily deliveries. Insights obtained from this data
allows to find common and relatively large fluctuations in yearly operations. Continuous monitoring,
on the other hand, applies data analysis to continuous difference at the seconds/minutes scale which
enables active intervention and when enough data is acquired, even predictive interaction.

The data obtained in the previous steps is often unconditioned and highly chaotic. As a result, the
data becomes unclear and interpretation is highly dependent on the skills of the examiner. Moreover,
the cause of particular deviations becomes obscure due to lack of comparison. Initial data conditioning
is required to allow comparison between different data sets, and to help smooth data analysis. By
adding useful data (i.e. timestamps) and by manipulation of data (i.e. looking for particular raw ma-
terials), one could significantly increase the value of data.

With all the collected data, the first step is to align it to a similar output. All the data considered
is time-based, which allows for time dependent analysis. Data of the past 6 months (January 2020 till
June 2020) was collected and sorted by date. Aligning the data as such helps to combine and compare
the different data sources with each other. As a result, the data becomes easier to interpret and causes
and consequences can be found more quickly.

Data analysis: Warehouse stocks

After data conditioning a descriptive analysis was done. This analysis targets analysis on complete
numerical data sets. It shows mean and deviation, enhanced with statistical information about outliers
as well. Conditional formatting is used to mark the outliers on the large data sets. Since most of the
data sets contained information dedicated to a specific product group or raw material, it was decided to
assess the outliers based on the product/raw material group. By doing so, a clear distinction between
different materials was obtained. The distinction uncovered a significant difference in a materials’ fluc-
tuation. For instance, one raw material by the code PA165K was consistently fluctuating between zero
stock and 48 tonnes. Since it regards a critical component in most of the products, it is concerning
that there were days with 0 stock available.

For other materials this fluctuation was on the high side, indicating that too much of the material
was present inside the warehouses. Subsequently, an overload of materials is present inside the ware-
houses, with congestion as a consequence. When finding such a high deviation for a consistent amount
of time, one should wonder whether the timing on the material was appropriate. For warehouses with
overcapacity, these variations do not precede implications for the process as a whole. However, for a
manufacturing site with limited space, these can seriously harm the total performance.

Within the Dutch plant the stocks of 105 different materials were tracked for the first half of 2020.
With a data entry every 2-3 days, it becomes hard to efficiently check the stock levels for each material
individually. Following the outliers it can already be assessed which materials do not have a consis-
tent stock. This information is ambiguous, because on one hand it offers insights to which materials
occupy a significant amount of storage space. On the other hand, it indicates what materials come
in large waves. After assessing each material with outliers, both high and low, it is known that the
remaining materials have a fairly consistent stock. For these materials it must be checked whether the
base stock is not too high, i.e. there is way more material present than required for production. A
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simple calculation to check the performance is the inventory turnover. By dividing the average demand
of each week by the current warehouse stock, one calculates the amount of weeks that production
can continue without replenishment. In an ideal world, this number should match the delivery time.
That would allow one to purchase the materials as soon as it hits that level. However, to account for
delays and other external factors, a safety margin should be applied which differs for each material,
depending on its origin. Market shifts occur all the time, possibly resulting in a global shortage of
some materials. If one material is prone to these type of fluctuations, larger safety stocks are a wise
investment Packowski (2013).

The two values provided the information wanted in this first screening stage. If the inventory turnover
was higher than 4 weeks (based on average long lead time) and the average inventory was higher than
20 tonnes (based on 1 truck of supply), the raw material code was highlighted. Finding these materi-
als in a first screening is valuable as they occupy more space than necessary. The second screening
is dedicated to the materials with really low inventory turnovers. Some materials had an inventory
turnover of less than 0.4 weeks, but also had an average stock of more than 170 tonnes. These are
all bulk products and are delivered on a daily basis. Since the turnaround of these materials is high,
the safety margins become much higher. Bulk products can often be bought from different suppliers
allowing for quick intervention when stocks drain faster than being replenished. For these products as
well, it is useful to know current stocks and assess them versus the planned consumption.

The materials of interest are P3215K, P3217K, PA502K, PL597W, PZ001K and PZ015W. These products
occupy way more storage space than necessary for guaranteed production. Contrary to these products
there are materials that have both a very low inventory turnover rate (< 1 week) and a low average
inventory (<20 tonnes). For these products it would be preferred to have a larger safety stock, simply
to avoid problems with delivery. The products of concern for this second category are PA134K and
PA165K. The final category consists of large stocks (>100 tonnes) with low turnover (<1 week), ob-
taining PD015K. The average stock values and average inventory turnovers over the past half year are
shown in Table 4.4.

Product | Inventory turnover | Average stock
(weeks)
High storage space occupancy
PZ015W 5 67.8
P3215K 7.1 45.5
P3217K 7.1 28.9
PA502K 8.9 25.2
PL597W 17.1 20.2
PZ001K 49.4 30.7
High shortage risk
PA165K 0.1 3
PA134K 0.3 17.9
High dependency risk
PD0O15K \ 0.4 \ 173.1

Table 4.4: Storage stock levels performance indicated by inventory turnover and average stock levels.

Data analysis: Forecasted demands

The second data set indicated in Table 4.1, demand of forecasts, was investigated directly after. The
long-term demand of raw materials is determined by assessing both historic data and forecasts made
by the respective market developers. A raw material purchaser applies her experience to estimate the
required amount of material when both historic data and forecast deviate a lot. When doing this, mul-
tiple other sources of data are consulted such as current stocks, consumption year to date (YTD) and
expected growth compared to historic data. Since the efficiency is highly dependent on experience, a
more standardized approach ensures future consistency.
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Because it is known that in practice, the raw material purchase is quite accurate compared to the
raw material demand, not much production efficiency improvements can be made. However, when
doing the descriptive data analysis, it was found that both historic data and forecasts fluctuate a lot.
By dividing the demand based on forecast by the average historic consumption you will obtain a factor
representing the expected increase in raw material consumption versus historic data. Preferably, this
number is close, but slightly higher than 1, indicating that there is a slight increase in demand, thus
a higher production is planned. However, due to the nature of the fertilizer specialties market, the
demand alters a lot.

At first, the large differences between forecasted demand and historic demand were noticed. To
further exemplify the difference it is checked whether such significant changes also applies in historic
data, i.e. whether the changing factors for year 2019/2018 are similar to 2020(forecasted)/2019. If
the forecast is as accurate as the difference in history, we can conclude that the forecasting is done
correctly. Since the system involves many different products that adhere to seasonal consumption, the
forecast inaccuracy is known to be high. However, if the differences in actual consumption (based on
historic data) is much less compared to the forecasted differences, a part of the inconsistencies can be
ascribed to inaccurate forecasts.

A standard deviation taken from the consumption factors represents the significance of the fluctua-
tions in differences each year. For example, in year 2018 there was 2 times more of raw material A
required than in year 2017, for raw material B this was 0.95 times and for raw material C this was
1.1 times. The standard deviation of this example is 0.57, indicating how much it fluctuates. A high
number indicates that the actual consumption of the raw materials differed a lot from previous year.
This difference occurs naturally, due to the shift in sales and by shifting from product portfolio. The
average YTD standard deviation from 2017 to 2020 is found to be 0.53. When looking at the forecasted
values for 2020 versus the actual consumption in 2019, this standard deviation becomes 0.64. This
significant increase could evolve from a large shift in operations (production portfolio) or a new market
demand - which are neither the case - or is the result of a inaccurate forecasting.

To test the hypothesis, that current forecasting is inaccurate, can be tested by looking at the forecasted
values versus actual consumption. Forecast accuracy can be determined by different approaches ac-
cording to (Hyndman and Koehler, 2005). One of these methods involve the MAPE (Mean Absolute
Percentage Error) which is weighed based on the actual tonnes of production. For each of the raw ma-
terials this MAPE number is calculated over the first 4 months of 2020. The absolute error in forecasting
ranges from 15% to 405%, as shown in Figure 4.3, indicating that some products are quite accurately
forecasted (at 15%) while other are completely out of range (at 405% error). Lewis (1982) mention
grades for accurate forecasting. Above 50% forecasting is considered inaccurate, which applies to
25 of the 47 raw materials. These categories apply specifically to the environment that Lewis (1982)
investigated, likely very different compared to the fertilizer industry. However, these values provide a
perfect initial benchmark to check current performance.
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Figure 4.3: Graph containing the MAPE values for all raw materials taken into consideration, i.e. of the solids factory.
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With this data analysis it was found that the current forecasts are not in line with the actual con-
sumption numbers. Since it is known that this raw material forecast follows from the sales forecast,
extra attention should be directed towards this forecasting procedure. Obviously, forecasting is a te-
dious process prone to errors, however, more attention is required simply because it affects the rest
of the business process significantly. Digital transformation offers various possibilities in this stage,
mainly allowing flow of data coming from the customers and integrate it with existing tools.

Data analysis: Maintenance planning

Maintenance planning was the third key variable based on its effects on production planning and produc-
tion. In the current situation, only maintenance with a big impact is communicated to the production
planning department every week. This planning is already providing the frame in which production
planning should do its job. However, the remainders of the production planning follows from an aver-
age production capacity. When there is limited (small) maintenance required, the production capacity
increases and the production will keep ahead of schedule, with raw material issues as result. When a
larger amount of maintenance is required than average, the production will fall behind schedule with
the transportation issues as a result.

In a digital architecture, such capacities can be determined much more accurately, by using actual
average values of typical maintenance actions. By collection of maintenance data (i.e. duration, type
of issue, date) one could build an accurate history of down-time. Connecting this maintenance data to
the maintenance planning, a more accurate prediction of future downtime is obtained. Subsequently,
the production planning can be adjusted as such, diminishing the fluctuations between actual produc-
tion and planned production.

Since the maintenance planning only includes duration of down-time for a few weeks now, there is
not a large database available. However, the monitoring system ‘Evocon’ described in subsection 4.2.3
can already give valuable insights in the total time required per type of action. Average values can be
derived from this data and designated to particular maintenance actions. If this data is also combined
with the maintenance planning, it is straightforward to accurately estimate the required downtime for
coming weeks when making the production planning. From the existing data set, the delays as shown
in Table 4.5 were identified.

Cause Time YTD* | Percentage | Percentage
(hours) of total of category

Mandatory downtime

Machinery transition 166 19% 36%

Breaks and holidays 291 33% 64%
Unforeseen downtime

Quality issues 19 2% 5%

Inadequate materials 23 3% 6%

Maintenance by tech. service 69 8% 16%

First line maintenance 303 35% 73%

Total 871 35% Downtime

Table 4.5: Common reasons for down-time based on continuous monitoring via Evocon system, divided into categories. *YTD
= Year to date.

The values found when doing data analysis clearly show that there is a large amount of mandatory
downtime, 52% to be precise. This downtime consists mainly of breaks (e.g. lunch or specific holidays)
which will be insurmountable for reduction. However, the other category, product and machinery tran-
sition can be slightly reduced by a more efficient production planning. Having longer runs of the same
product will decrease the amount of transitions, thus decreasing transition times.

Unforeseen downtime, taking 48%, is the category in which improvements can achieve the highest
effectiveness. Within this category, 4 sub-divisions were identified; product quality issues, inadequate
materials, maintenance by technical service personnel and first line maintenance by the operators. For
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each of these sub divisions, a multitude of reasons was provided which had caused the downtime to
occur. The analysis was performed up to machinery level where first line maintenance was further de-
lineated into the different equipment required for production. This helps technical personnel to identify
the bottlenecks in the current preventive maintenance planning, which will then further improve the
maintenance planning.

In an ideal case, the preventive-corrective ratio for hours is 6 to 1 respectively (Life Cycle Engineering,
2020). As can be deducted from Table 4.5 this is 1 to 4.4 at the moment (i.e. first line maintenance
being corrective and technical service being oftentimes preventive). Note that calculating this ratio
using the down time reports do not include preventive maintenance hours when the process is up and
running, thus slightly magnifying the actual preventive-corrective ratio. When the technical department
is provided with information, up to equipment level, provided with its preventive-corrective ratio, they
can already dedicate more time to do preventive maintenance, rather than corrective. However, this
is hugely dependent on the type of equipment, which will require a more in-depth analysis during the
‘continuous monitoring’ stage. For instance, some bolt in the production process might break every
100 hours due to its high load. This was known when purchasing the equipment and there is no other
solution. If you would add preventive maintenance to this bolt, you might increase the total downtime,
just to get a better corrective-preventive ratio. For this reason, the actual downtime of the two com-
bined should also be added.

Adding this information to the maintenance planning helps the planner to give adequate predictions
of downtime for the upcoming few weeks. As a result, the production planner is provided with more
accurate information, allowing for a production planning that is easier to adhere to. This makes the
maintenance planning a more valuable tool and increases the incentive to share it with multiple de-
partments. Simple tools, such as Microsoft Office 365 and Google drive, allow sharing of documents
and can be viewed all over the world even though they are being worked in.

The remaining categories, product quality issues and inadequate materials, do not provide any help to
the maintenance planners. However, this information does help the production team and raw material
purchaser to assess their effectiveness. If these values drastically change, they should interfere with
the process and check what effective measure they could undertake. However, that is not part of the
current run-through of this model.

Data analysis: Prerequisites

Analysis on prerequisites was found to be much harder. In contrast to the 50 different raw materials,
there are about 300 different products. All of these products have their own prerequisites; type of bag,
size of bag (15 or 25 kq), stickers, and pallet. Most of these prerequisites must be purchased about a
month prior to the planned production. Subsequently, the forecast data is thus even more important
than was the case for raw material purchasing.

With raw material purchase, the purchase of excess materials is easily leveled out with the manu-
facture of other products. However, the bags and stickers are often dedicated to a certain product,
which makes relying on a forecast risky. To avoid issues related to these prerequisites, a lot of them
are held on stock. This results in a significant storage capacity occupancy purely by the different pre-
requisites. When looking at the total stock of bags, which is 1.5 million, and the average consumption,
40.600 bags per week, one could derive the average inventory turnover being 38 weeks. Since this
high number is mainly dependent on the inaccuracy of the forecast, effective reduction can only be
achieved by having a more accurate forecast.

Data analysis: Laboratory tests

Laboratory data turned out to be a tough topic. Thorough analysis of the laboratory data did only result
in the analysis of the speed of the quality measurements. At the end of specific production batches,
a part of the product is delivered at the laboratory. The lab analyses this batch and checks whether
the product adheres to the quality standards of the customers. The time between making the batch
and delivery to the lab can take up to one day, but is not monitored. The time between arrival of the
samples and analyzing the batch is registered by the analysis database. As a result, we derived that
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on average it takes 0.64 days to analyze a batch. Subsequently, this means that on average a batch
must wait 0.64 days (plus the 1 day delay between production and arrival at the lab) before it can be
transported towards the customer. This time infers the time that valuable storage space is occupied
by a product that is sold anyway.

Other laboratory data, like typical nutrient contents of some of the fertilizers, was analyzed as well
and compared to the raw material data. A likely deviation in nutrient values could occur from picking
the wrong material. Such deviation would both affect the warehouse storage data, because another
material is missing, and the quality data, since the manufactured product is out of specifications. Nei-
ther of the two were found to be consistent with each other, ruling out the likelihood of this deviation.
The found deviations (off-spec products) only comprises 6% of all performed quality measurements
and were devoted to human errors of which no data was collected. This insight can be addressed by
introducing novel technologies, but does not allow us to implement a dedicated technology as of yet.

KPI specification

Concluding the data analysis, it is found that multiple processes are not operating optimally. Forecasts,
existing stocks of particular materials and the preventive maintenance planning are current predicates
to the inefficiency of the system. For each of these inconsistencies it must be examined what KPI
would clearly indicate the systems’ inefficiency and aid adequate intervention when being found. Also,
it must be noted that the progress of the KPI's is measured over time, which allows for an effective
improvement plan at the ‘improvement’-stage. All together, KPI's should be selected with care.

The first KPI's are dedicated to the biggest identified thread; forecasts. forecasts are particularly
inaccurate and can cause significant issues when the experienced personnel retires or switches from
job. During the data analysis, it was already found that one measurement type clearly indicates the
systems’ performance; MAPE (Mean Absolute Percentage Error). However, this number requires actual
intake, depending on existing orders to be calculated. Subsequently, one could derive this number with
historic data and historic data only. Having a dashboard with these nhumbers projected on it would not
help anyone to intervene adequately, but only request more accurate numbers at the market forecast-
ers.

Even though this KPI does not enable direct intervention, it does allow future intervention. If the
performance decreases this month, the raw material purchaser could immediately check whether the
forecast was too optimistic or too pessimistic compared to the actual usage. This could be incorporated
for the next month, because there is already a feel for which material might be inaccurately forecasted;
thus effectively increasing the safety stock. If necessary, an extra analysis can be done to find which
products were forecasted inaccurately, thus increasing awareness at the forecast department as well.

Table 4.4 immediately shows the consideration to be made by the raw material planner. She has
to decide whether enough stock is available versus how inaccurate the forecast is, to determine how
much needs to be purchased. This immediately infers the KPI that must be measured secondly: in-
ventory turnover. Since most of the raw materials do not have the urgency to be measured, a partition
can be made; important and non-important materials. This distinction mainly prioritizes the technology
introduction stage. Preferably, one would collect all the data available, thus measuring the KPI for all
raw materials. However, sometimes this might not be feasible or financially viable, having to select the
one with highest priorities.

The bottom 3 materials indicated in Table 4.4 (PA165K, PA134K and PD015K) are the most impor-
tant, as these are already low in inventory turnover and thus can infer serious issues in the production
process. Having a constant sight on their turnover, based on production planning and actual stock,
helps the purchaser to adequately interact with the most volatile products. If the inventory turnover
gets below a certain number, a supplier with short lead times can provide the outcome. To avoid unnec-
essary emergency purchases, one should also add the estimated time of arrival for incoming products.
This would mean that two KPI's are established. Inventory turnover and on-time delivery. The first
being a good indicator whether there is sufficient material for coming days. The other indicating what
safety stock must be used. If a particular raw material arrives late on a consistent basis, you should
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either increase the safety stock to avoid future problems or demand more more accurate deliveries on
the supplier side. Together, the KPI's help the raw material purchaser to make decisions for the coming
weeks and allow reaction within sufficient time.

A third KPI is related to the laboratory-quality results. Every company strives for the highest qual-
ity standards within its own boundaries. However, this is usually measured by looking at the per-
fect order performance which represents the amount of orders that have been shipped without com-
plains/damages versus the total orders. By doing so, the company does not critically assess its internal
performance. For example, a particular order could have been produced 5 times, because the initial 4
times it did not adhere to the quality standards. Consequently, the manufacturing performance is poor,
yet the perfect order performance is excellent (100%) just because the customer has not faced any of
the issues. A KPI that actually represents the quality-related performance of the factory is by dividing
the amount of samples that turned out to be within specifications through the total amount of sam-
ples tested. This KPI aids the operations personnel to be more careful when going below the ideal level.

The final KPI's are dedicated to the maintenance planning. The goal of this maintenance planning
is that the production and production planning departments can readily assess the available capacity
and act accordingly. At the moment, the amount of preventive maintenance is limited and commu-
nication about outstanding maintenance work is minimal. As a result, the required improvement is
twofold. Firstly the ratio between preventive and corrective maintenance must be improved to allow
for better planning. Secondly the existing preventive maintenance planning must be communicated
with the production planning department for more accurate decision-making. However, this second
criteria is not measured by means of a KPI and should be incorporated into the technology introduction
stage via another route.

In conclusion, four KPI's were identified as useful indicators for the existing process which enable
immediate interference with the system. Already moving from the current reaction (i.e. acting upon
past issues) to taking action (i.e. acting upon occurring issues). Eventually, after looping through the
model multiple times, one will start to implement machine learning and alike, which moves the system
to pro-action (i.e. acting upon predicted issues). The intention behind these four initial KPI's, however,
is just carefully examining the production process and improving the action-taking to inconsistencies.
The four KPI's and their formula are summarized in Table 4.6. For each of the KPI's a typical value was
chosen dependent on a benchmark Gordon (2011); Lewis (1982); Life Cycle Engineering (2020).

KPI | Formula | Goal | Unit
MAPE Z(w* |A—F|)/Z(W*A) <10 | %
Inventory turnover* Actual stock/planned consumption (week) 1-4** | weeks
On-time delivery*** Arrival of truck in-time/total of truck deliveries > 95 %
Quality Samples tested on spec/total tested samples > 90 %
Preventive-corrective ratio | Hours on preventive maint./Hours on corrective maint. 6 -

Table 4.6: KPI selection for identified key variables. w = weight dependent on average usage divided by total usage, A =
actual value and F = Forecast *inventory turnover is firstly dedicated to the important raw materials. **Benchmark is product
dependent and derived from calculated safety stocks. ***On-time delivery is determined per raw material, but has more focus
on the important raw materials.

Technology introduction

Equipped with the information retrieved from data analysis and knowing useful KPI's are the indicators
for starting with the technology introduction stage. In this stage, actual technologies, mainly derived
from the Industry 4.0 philosophy (i.e. Figure 3.4), are implemented in order to improve the system
as was intended in the goal definition stage. The subsequent stages helped to identify critical aspects
within the business processes for which technology introduction is key.

Oftentimes, particular technologies are already in place, e.g. PLC and SCADA systems or some cloud
technology like the Sharepoint. In the factory of the future, all these are connected and share data
accordingly. Depending on the required KPI's, this interconnection must be dominant throughout the
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technology introduction stage. That being said, the best technology solutions are those that allow easy
connection with other modules.

Provided with all information of subsection 2.2.1, one should first identify what technologies are re-
quired in order to continuously measure the KPI's indicated in the previous stages. These technologies
can be rather rudimentary, like applying a simple sensor on static place that simply communicates via
some wireless sensor network. Another example can be found in the communication layer, where some
advanced information is shared via an online Office 365 spreadsheet rather than sharing information
on a paper. More advanced technologies, such as a machine learning algorithm could also follow from
these KPI's, where the decision-making process is made autonomous.

Technology introduction: Forecasted demands

The first key variable to consider is the demand based on forecasting. It is already identified that
the current forecasting is providing more questions than clarity. Improving forecasting would mainly
involve the data sharing between companies, as the customers can most accurately determine their
own consumption. However, data sharing (i.e. end-to-end integration) is out of scope, simply because
of the maturity of industry 4.0 at the suppliers and customers-side.

Another option is collecting own data of the customers demand. The agricultural company has a
joint venture which is specialized in image capturing of the large fields by means of satellites. With
a image capturing algorithm, the farmers can accurately detect what part of the field requires more
attention and/or fertilizer. This valuable information has the sole purpose of helping the farmers with
their business. However, now it was found that the current way of forecasting is insufficient, a logi-
cal link between existing information and inefficient processes can be made. By combining the image
capturing technology with the order history of these farmers, one could derive a new algorithm that ac-
curately predicts the future usage (thus orders) of these farmers. Such technology introduction opens
up many more business opportunities than initially portrayed, like offering free subscriptions which
ensures that the farmer always gets the right materials in time depending on the status of their crops.

So one way to improve the efficiency by means of technology would be the image capturing using
satellites. Other ways involve end-to-end integration which is out of scope right now. However, the
technology introduction must also be assessed for continuous KPI monitoring. The two datasets re-
quired for this calculation are already statically provided digitally, meaning that the physical and digitiza-
tion layer only need to be considered when continuous monitoring is required. Since actual continuous
monitoring does not add any useful information, the KPI itself is lagging after all, the physical layer
and digitization layer can be easily disregarded when looking at costs (more than zero) and benefits
(zero).

The communication layer on the other hand is an important one considering it is all about having
the right data available. Within the company, a forecasting program called Greensheet is available
to all market forecasters and the production planner/raw materials purchaser which enables careful
examination of the forecast development throughout the month. All that needs to be added is an
calculation file (e.g. Excel) that calculates the raw material consumption depending on the forecast
extracted from Greensheet. Add to this the importation of SAP data containing the actual raw material
consumption and the file is able to show the much wanted MAPE values. Again, some IT architecture
could be tailored to automatize this process, but the benefits will be rather low compared to the costs,
simply because it does not add any effectiveness to possible interference.

Technology introduction: Warehouse stocks

The second key variable to consider is the warehouse stock. Current warehouse stocks are determined
on existing stocks subtracting the consumption (the day after) and adding incoming materials (the day
after). All mutations are dependent on paperwork. Therefore, if a wrong material was taken, nobody
would find out until the stock is zero while the system indicates some stock. Another issue would be the
amounts mentioned on the paper; perhaps less material is delivered than mentioned on the shipping
documents. In the current situation, every few months, all materials located on site are physically
counted, in order to align the digital environment with the physical environment again.
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Technology solutions should mainly be found in the physical/digitization layer, as this is the clear im-
balance causing the inconsistencies. Using paperwork to communicate between separate departments
should be avoided at all costs, and simple solutions such as the Microsoft Office 365 package could
already avoid unnecessary handwriting mistakes. Add a Human Machine Interface in the form of a
tablet and one can easily indicate how much was added or withdrawn from a particular material.

However, such technology introduction is still rather old-fashioned, and newer technologies like bar
codes and RFID tags can offer good alternatives. Most of the bags have barcodes printed on them,
which allows easy adoption of bar code scanners. All bags are transported using the forklifts on site.
Add a bar code scanner to each forklift with the simple button '+’ and " and a more sophisticated
warehousing system is reached. The third option, RFID tags, will be more tedious, as the RFID tags
are manually applied to every bag/pallet on site. For incoming materials this is unfeasible as of now,
simply because the suppliers do not add the tags themselves yet. For our own products this can be a
good option, but this does not relate to the key variable at stake.

So two serious options can be considered when identifying the warehouse stocks. Bringing the third
KPI into play, on-time delivery, two KPI's can be measured at once when designing the technology in
a clever manner. Since both an HMI system as a barcode system can aid the on-time delivery mea-
surement, no such distinction can be made. Other trade-offs were identified using the information
provided in subsection 2.2.1 and in-house experience about current way of operations. The pros and
cons for both options are shown in Table 4.7. Since the basis of these two KPI's rely on continuous

HMI | Barcodes
Pros
Only a few tablets with internet connection required | Convenient to operate
Easy to maintain (Office 365 software) SAP already aligned with multiple bar code systems

Opportunity to switch programs (Acces, Excel, etc.) | Enhanced accuracy

Cons
Not able to continuously import Excel into SAP Barcode equipment must be installed on forklifts
Still sensitive to errors Install barcode operating system
Sensitive to break down Barcodes not available on all raw materials

Table 4.7: Pros and cons for the two options to consider for continuous monitoring of warehouse stocks as well as delivery times.

monitoring, and the once option requires a completely new system to be tailor-made (Excel importation
to the existing SAP modules), the choice can be made without inferring any costs. The Barcode system
is simply more convenient to use and install and is the only option to keep continuous track of the
KPI's. Moreover, such system is also viable organization-wide, which enables other locations to reap
the benefits of such sophisticated system.

In this case, the barcode scanners eliminate the paper work, manual importation of mutations, and the
redundancy of communication. Therefore, replacing the existing physical, digitization and communi-
cation layer with one envisaged in the Industry 4.0-philosophy, able to cope with future demands and
flexibility.

Technology introduction: Maintenance planning

Maintenance planning is the final key variable to consider in the technology introduction stage. As
indicated in Table 4.6, an important KPI is the preventive-corrective maintenance ratio. Preferably, this
ratio fluctuates around 6, suggesting that most of the down-time is dedicated to preventive mainte-
nance. Which on its turn, illustrates that most of the maintenance was planned. This KPI, however, is
already fully digitized, since the data can be gathered from two different sources already. One being
the spent hours which are filed in the SAP maintenance system. This number clearly indicates all the
time spent by the maintenance personnel, which also includes so-called ‘uptime’ hours, i.e. when the
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factory is running. It is obvious that the number including uptime hours is the one that must be close
to 6, because preventive maintenance does not always include downtime, but corrective maintenance
does.

That being said makes the second option for KPI monitoring less relevant. Which is the Evocon system
that measures whether the manufacturing process is running or not. Consequently, the Evocon data
enables to look at the preventive maintenance from another perspective. It helps to capture when a
particular downtime starts and when it stops. Such information is very valuable when having a higher
preventive maintenance ratio, simply because it allows for better planning. By taking the average
of some preventive maintenance action, one could already align the production planning accordingly,
rather than making an insufficient planning.

In the previous stage it was mentioned how important sharing of the maintenance planning is. Cur-
rently, the maintenance planning is documented in an Excel sheet, which is printed every two weeks
and discussed with the production planning department. For most of the preventive maintenance it
is not known how much time they take, nor how long the factory will be out of order. Capturing
these values from the collected data helps to further enhance the maintenance planning. Simultane-
ously, the maintenance planning can be communicated in a better manner. In line with the Industry
4.0-philosophy, one could use cloud solutions to easily spread the planning without any further impli-
cations. As a result, the production planner can see the current outstanding maintenance activities and
act accordingly. A simple cloud solution, which is already in place, is the Office 365 software package.
Converting the existing Excel sheet into one on a cloud environment, allows easy adoption by the other
departments as well.

Technology introduction: Laboratory tests

The laboratory tests can be a crucial part of the manufacturing operations. Some of the products must
be examined for their quality (according to specifications) before they are shipped to the customer.
Having an adequate and accurate measurement is key in these cases. For that reason, a laboratory
on site has the sole purpose of analyzing these samples for their specifications. After a sample of a
particular batch is handed over, the laboratory technician is carefully withdrawing a certain amount and
puts it into pre-defined analyzing equipment. After the sample was analyzed, the laboratory technician
examines the values and checks whether these are according to the wanted specifications. Finally, he
enters these values into a database to ensure that they are retrievable at a later stage.

An initial improvement in this process would be the introduction of IoT specifically for laboratory equip-
ment. Currently a human interacts with the laboratory equipment after which he interacts with a
computer. This could be completely removed by using IoT laboratory devices that connect in real-time
with aforementioned database. As soon as the analysis is finished, the laboratory equipment sends the
data to the database (automatically) and is then shown in real-time on the computer screen. Using
a few extra rules, depending on the pre-defined specifications, and the system clearly shows whether
the product is according to specifications or needs to be reworked. Not only does this reduce the
human-intensive operations, it also enables a future in-line quality measurement which utilize in-line
sensors or laboratory equipment rather than the manual collection of samples.

Continuous monitoring

Since the actual implementation of said technologies did not take place within the time constraints
of this case study, no actual data was collected through this period. However, to showcase the pro-
ceedings of this case study, if enough time and resources were available, the remainder (continuous
monitoring, improve and evaluate) are described superficially using examples from the previous stages.
Moreover, these descriptions are discussed with the practitioners to ensure careful and accurate ex-
amination of the remaining 3 steps.

As was indicated in chapter 3, the continuous monitoring stage is focused on using technologies imple-
mented and carefully examine the corresponding results. Since the use of technologies is widespread;
with the implementation of Machine Learning (ML) you are monitoring the effectiveness of said technol-
ogy by checking whether the decisions made are in accordance with the intended purpose, where IoT
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introduction is more focused on monitoring whether the right data is flowing in, as well as monitoring
that data to use in the decision-making processes.

During the technology introduction stage, three major technologies should find its way into the manu-
facturing practices to improve performance and to aid innovation push, as was the goal of the company.
The three technologies considered are: (I) image capturing, (II) bar code scanners for measuring ware-
house stocks, and (III) preventive maintenance-based maintenance plans. All three serve a completely
different purpose, but address the corresponding underperforming KPI's in the right manner.

The image capturing technology is already available with in-house knowledge. By enhancing this
technology using a similar machine learning type of coding, we could derive a farmer’s needs in terms
of fertilizer agents. By sorting this ‘demand’ data per country or per product type, allows the forecast-
ers to determine how much their customers need based on actual representative data, rather than ‘a
gut feeling’. Moreover, these algorithms can even extend such that, on the long run, the algorithms
determine the forecasts themselves.

It is known that not all customers are apparent, some of the customers buy their products at dis-
tribution locations (i.e. small amounts), others work with inside a building (greenhouses) which makes
image capturing less applicable. However, even though it applies only to a part of the customers, fore-
casters will become more aware of future consumption by just keeping track of the major consumers.
As a result, the production planner will obtain more accurate forecasts, therefore seeing the MAPE val-
ues drop. Steering the forecasters’ perception also becomes much easier, because these MAPE values
provide helpful insights for the forecasters showing that their job is done correctly or not. Especially
the fluctuations of these values, driven by the image capturing technology, help to improve the process
over time and making it less reliant on the experience of local personnel.

The bar code scanners cover a completely different field of technology. Since these scanners can
be considered to be on the ‘primative side’ of Industry 4.0, due to being just basic sensors, their
continuous monitoring stage is much more straightforward. By accurately capturing the ingoing and
outgoing flow of raw materials and products in the warehouses, production planning and raw material
purchasers can make far better decisions through the real-time nature associated with it. Accurately
knowing how much of material X is available for the coming weeks helps in choosing whether the mate-
rial has to be purchased from a distant location or via a quick, often expensive, near location. Knowing
the average delivery times and on-time delivery of said supplier, supports the production planner in
choosing what products are produced in what week.

Other than actually using the continuous inflow of data, also comes the monitoring of the KPI's re-
lated to warehouse management. The goal of this continuous monitoring stage is to see how the
business process can be improved (or introducing new business opportunities) by assessing the per-
formance using novel technologies. Through careful evaluation of the KPI's over time, one can detect
anomalies and avoid these exceptions from happening again. For example, the production of product
Y requires raw material Z. Raw material Z has a similar neighbour called raw material Zi, which is
nearly the same in composition. Due to inattention, the operator takes raw material Zi for product Y,
but reports that he took the right raw material Z. Since the raw materials are similar in nature, the
laboratory results do not discover that a different material was added. No one finds out about this
misunderstanding up until the production planner scheduled a production using material Zi, thinking
there would be enough, but just finding out that the storage location of said material is empty. In
the case of bar code scanning, the production planner would have noticed this reduction much earlier,
since the inventory turnovers of said product diminishes in a much faster rate than anticipated. Not
only can she interfere at that moment; to avoid unnecessary quality problems, she can also propose a
plan for the improvement stage where materials Z and Zi are no longer next to each other.

The preventive maintenance planning is the third 'technology’ to consider in the continuous moni-
toring stage. Although the tool is not novel itself, the use of appropriate cloud platforms is. By sharing
the data throughout the business processes, different stakeholders are aware of the ongoing and up-
coming maintenance and act accordingly. Particularly the production planning benefits from knowing
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the real-time maintenance schedule, including having an estimate on the duration of it. Nowadays, a
lot of the maintenance happens either corrective - when the factory cannot run due to an error - or
when the production is ahead of schedule and allows the technicians to do their job. However, this
way of working might cause the moment of interference - by the technician - to be inefficiently chosen.
For instance, if the production planner is aware that a particular piece of equipment must be replaced,
she can effectively dedicate some time in the production planning to this, by scheduling other tasks
or production not using that particular equipment. As a result, the production planning becomes more
accurate. A part of the maintenance is actually planned and the preventive maintenance increases,
because enough time is dedicated to preventive maintenance thereby reducing the corrective mainte-
nance. The continuous flow of data altering the KPI also helps the planner to see how effective the
maintenance is planned and whether she has to adjust the time specific for maintenance.

With regards to the laboratory IoT introduction, a significant part of the operations are automatized.
The direct connection between laboratory equipment and the database allows multiple people to know
the current conditions. For example, the shift supervisor can see that one of the products being made
is not within its specifications. Consequently, he can directly stop the manufacturing process and check
for problems and solutions without interference. The multiple human layers (interpretation of results,
entering results into database, etc.) currently hamper quick interactions like this.

4.2.4. [mprove

Improve

According to the information and data collected through the continuous monitoring stage, business
processes are improved. Especially in this business case, where operations improvement was consid-
ered to be one of the major goals, the improvement stage is considered to be a major contribution
to the implementation process. Since actual implementation of different technologies cover diverse
time paths, the improvement stage has the most obscure time path. As soon as the implementation
is realized, data is being used to interfere with occurring inconsistencies, already participating in the
improvement process.

Depending on the interventions that were performed, consistent improvements might find their way
to introduction as well. If a particular deviation happens frequently with a significant down time as
result, managers will address these underlying causes using the clear information obtained through
the interconnected digital technologies. Solutions introduced in the improvement stage are generally
pragmatic in nature, like the assigning distinct storage locations for alike looking raw materials.

Especially the use-case of the image capturing technology enhanced for forecasting purposes could
infer multiple improvements. Forecasters will have more data to base their ‘guesses’ on, typically im-
proving the forecasting processes. Simultaneously, data converted to MAPE-values for products help
them to identify what products are currently over- or underestimated. If a diminishing trend was found
in Product X, they can take countermeasures by either communicating with the customers why their
demand decreases or increase the power on sales to counteract the fall. When the reason for the
fall of a particular product is the result of continuous delay in delivery, forecasters can emphasize
the importance of in-time delivery thereby improving the business processes. These MAPE values are
much likelier to provide these insights, simply because personnel is pointed at a high inaccuracy, while
diminishing sales of a particular product does not say anything about the expected reduction of said
product. In the case of MAPE, the expectations are included through the forecasting behavior.

For warehouse stocks the improvement-stage shall be considerably shorter compared to the fore-
casting variable. As was indicated in the ‘analyze’-stage, warehouse stocks are on point and do not
cause a lot of issues at the moment. In the near future, things might change due to changing markets
and shortage of particular materials. In this case, knowing the actual stocks and inventory turnovers
help the purchaser to make considered decisions in utilizing the best of the warehouse capacities.

Another improvement can be found in the HP ink delivery example. If the warehouse stocks are
measured accurately - by the means of bar code scanners - this data can be shared with the different
suppliers. Based on the strategic procurement agreements that were made, suppliers can see our
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inventory turnover and remaining stocks. When the stock levels get into the ‘dangerous’ zone, a pop-
up on the suppliers side causes an automatic replenishment of said stock, significantly improving the
process by eliminating the time spent on raw material purchase.

For maintenance planning the improvement options seem unlimited. Currently, the preventive-corrective
maintenance ratio is far of ‘good’. By just planning accurately and assigning the right description to the
performed maintenance (i.e. preventive or corrective) already significantly improves the existing main-
tenance process. However, to further evolve the maintenance capabilities, a technology like predictive
maintenance can be introduced. Predictive maintenance is the use of sensors that measure things like
vibrations of equipment, which can - with use of historic data - notify users when particular equipment
is about to break down. When knowing this in time, the preventive maintenance can be planned on
time eliminating nearly all corrective maintenance.

4.2.5. Control

Evaluate

The evaluation stage comes at the end serves two purposes: firstly, it describes the lessons learned
throughout the implementation process to avoid them from happening in a second loop, and secondly
it is a controlling stage in which the implemented technologies are evaluated and it is checked whether
they are used correctly and serve the right purpose. Due to the elastic time span of the improvement
stage, this evaluation can be performed while improvements are still being introduced.

As explained before, in this case study there was no actual implementation or improvement made.
However, the steps towards implementation were performed and these are considered to be the main
contribution of this thesis. The remaining steps, of which evaluation is one, are supporting the Industry
4.0 implementation and can be seen as enabling processes. With this in mind, a few remarks can be
made about the evaluation/controlling stage that can be included in a possible second loop.

First of all, some interviewees mentioned user satisfaction as being one of the major pillars for suc-
cessful adoption. Everyone mentioned a different way of evaluating their implementation performance.
However, one clearly stood out among the others. One interviewee mentioned the use of satisfaction
buttons, similar to those which you see at toilets in the airport, where users can grade the product
with 4 (or more) buttons ranging from really satisfied to dissatisfied. By simply prompting the grading
system at random times and at random pages/software/technology, they were able to see what was
working properly and what not. When seeing multiple dissatisfied users, they entered the conversation
and found out what was not working in line with their expectations and improved it.

A second pillar is found in learning and growth. Training the users to use the system is a critical
step for useful implementation. As soon as the product or technology is launched, all users should
know about it and be ready to use it. A particular good habit is the use of beta-testing, where potential
users are involved in the development process. In return, the developers get useful insights in how the
users ‘use’ the system and users can express their specific needs which might have been overlooked
by the development team. Through this type of beta-testing users are already trained in using the
new system and can suffice with a little follow-up training. A well established methodology within the
industry; Management Of Change (MOC), is particularly good at tackling this issue of training. By using
a stage-gate process, the implementation cannot be finished, nor used, without the enclosement of
proper training.

Although the evaluation phase focuses most on the technology implementation, other stages can be
reviewed as well. In this case study, the ‘quality team’-approach was used to define the key variables.
After defining all data sets being used, we looked at their respective effects on the rest of the process.
The ones with the highest effects on the resulting down-time were considered to be the key variables.
Despite this being true, we also found that some of the found variables were performing really well.
Both the raw material purchase and warehouse stocks variables were quite constant on average. This
positive result is the result of the efforts of the people responsible for this job, due to their immense
experience in the field. Through the key variables, this trait was acknowledged, but also reflected
upon the existing business. If one of the colleagues responsible for this job would retire or drop-out,
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the experience will no longer cover the lack of information and the results will drop immediately. If
looking at this, the key variables were chosen effectively, as the resulting picture turned out to be really
valuable. However, the aim of the model, according to stage 1 'define’, was to improve efficiency which
is not really the result of this. For that reason, the next loop might include a new way of finding the
key variables; based upon the continuously occurring errors, via the Pareto principle, simply to target
the largest efficiency drains.

4.3. Summary

This chapter described the utilization of the implementation framework by performing a case study at
an agriculture fertilizer manufacturer. Each of the stages defined in chapter 3 were executed either
physically or by means of simulation/explanation. Through the initial stages of define and measure it
was assessed which part of the supply & planning process are open for improvement according to the
Industry 4.0-scope. The company-wide scope on digital transformation was delineated by using key
phrases, thereby aligning it with the local needs. A 2D-RAMI model provided the outlay for dividing a
complex interrelated business process into smaller comprehensible pieces.

The 'Analyze’ stage dove into the particular RAMI layers obtained at the ‘Measure’ stage. Analyz-
ing the key variables showed where to focus diminishing one of the identified barriers, having a clear
business case. Knowing the key variables initiated the collection of data from multiple sources. The
data was then conditioned for a deeper data analysis. Various ‘concerning’ deviations were found in
the data, indicating that improvements are still to be made. According to the discovered inconsisten-
cies a few KPI's were assembled that enable quick and effective insights into the performance of the
operations as a whole. An Industry 4.0-related technology was then assigned to provide the data or
information for the KPI of interest after which continuous monitoring could happen.

Depending on the insights obtained from the new incoming data and the continuous monitoring of
the KPI's, it was time to actually improve the operations process by eliminating recurring inconsisten-
cies. Since the technology introduction was just simulated/explained, it was only possible to describe
the improvement and evaluation stages using the experience of the interviewees.



Discussion

In this chapter we discuss the relevant outcomes of the study by looking at the development of the
model (i.e. chapter 3) through the literature review and interviews (i.e. chapter 2), and the subsequent
utilization of said model through the case study (i.e chapter 4). This chapter serves as the evaluation
stage in the model depicted in section 1.4 by Peffers et al. (2008) and will have a critical look on the
performed case study, its implications and other shortcomings.

5.1. Industry 4.0

The first discussion is dedicated to the Industry 4.0-aspects of the implementation model. This model
was constructed with the intention to increase the adoption rate of Industry 4.0 and to aid practition-
ers with a straightforward Industry 4.0-implementation model. The model turned out to be useful and
capable of the implementation of the Industry 4.0-concept as was described in chapter 1. However,
even though the model fulfils its intended purpose, one could argue that the opposite does not hold
true anymore. In other words; does the implemented solution require the Industry 4.0-concept or can
you perform the same improvement without using Industry 4.0-concepts? The latter would make the
implementation model more widely applicable, but abandons its intended origin.

Such question arises from the foundation of this model; namely the DMAIC and quality improvement
model by Aitken et al. (2004). Both are widely employed within the manufacturing industry and are
already serving their purpose for decades, even without Industry 4.0. Subsequently, going through
these models does not require any novelty or sophistication similar to the Industry 4.0-concepts. This
indeed means that these two concepts cannot be labeled as Industry 4.0-implementation models, nor
can the collaboration of the two.

However, in this thesis special care is taken by interviewing multiple practitioners. These practitioners
had their own way of working, shaped through years of experience. Casting this experience into a
mold, a standard procedure to improve processes (i.e. DMAIC), does actually change the context and
applicability of the resulting model. By applying a different nature and approach alters the result sig-
nificantly. For example the 2D-RAMI model is clearly different to the standard DMAIC-measuring stage
where one is investigating a problem superficially. In case of the 2D-RAMI model multiple aspects
related to the Industry 4.0-concept (connectivity, communication, and physical things) are distinctly
mentioned to decrease the complexity of the system, thereby uncovering opportunities. Without this
Industry 4.0-concept approach (i.e. the actual RAMI model follows from the emerging Industry 4.0-
philosophy) a completely different solution - likely not future-proof - would have been proposed.

Also during the technology introduction-action this delineation between a regular quality improve-
ment model and this Industry 4.0-implementation framework becomes visible. A set of 13 enabling
technologies were identified that all infer different subsets of technologies (i.e. AIDC with bar codes
and RFID). By showing what technologies could aid the operations process at what layers of the RAMI
model, we are not just introducing just the Industry 4.0-related technologies, but we also provide a
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portfolio that is future-proof and aligns with subsequent industry 4.0-related technologies.

Nonetheless, as was described in chapter 1, the concept Industry 4.0 is ambiguous. A clear - and
globally accepted - definition of the term is still to be defined. Our definition of Industry 4.0: “Industry
4.0 is the fourth manufacturing revolution that evolves by companies implementing novel technologies
in a smart way to improve current operations in the realm of autonomy, efficiency and social responsi-
bility” (cited from subsection 1.1.1) describes the expected implementation philosophy, which is in line
with the implementation framework.

5.2. Model construction

Through the conduction of a desk research, i.e. literature review, and a qualitative research, i.e.
interviews, an implementation model was developed. Despite the fact that Industry 4.0 and digital
transformation are widely used topics within the industry, their applications are rather focused. Very
few articles mention the use of Industry 4.0-related technologies in the sense of raw material supply &
planning. Topics like smart supply chain, smart factory and predictive maintenance are far more pop-
ular, but therefore limit the scope applications significantly. Through the development of this model,
aforementioned topics get submerged into one by addressing the boundaries of every manufactur-
ing businesses; the interaction between suppliers and customers, including the operations process in
between. This not only provides an useful use-case for businesses yet to digital transform, it also
combines the complexity of intertwined business processes and the utilization of novel technologies;
capturing its full potential. However, constructing such model does not come without limitations, as-
sumptions and constraints.

In the first chapter, chapter 1, it is explained how this model should aid complex factories in their digital
transformation process. Complex factories, in this thesis, is a label put on manufacturing businesses
that involve a significant amount of different raw materials and products. This notion already elimi-
nates a huge category of bulk manufacturers. The main difference between the two is the complexity
of the supply & planning process. For bulk manufacturers the production planning is already known
for upcoming year, because there are generally just a few products being manufactured. Complex
factories (commonly known as specialty manufacturers), on the other hand, have to deal with multiple
orders coming in, requesting different products, therefore requiring specific raw materials, and all of
that on a continuous basis. As a result, they have to deal with forecasts and predictions, which makes
the whole operations more tedious. Minor fluctuations in orders can already cause the production of
products that will not be sold, resulting in high losses in terms of costs. Thereby indicating the need
for more accurate data and decision-making assistance. Thus making this digital transformation model
only applicable to a distinct set of businesses.

Since a substantial amount of businesses utilize the lean, six sigma and agile-philosophy to improve
their processes, the introduction of a new ‘methodology’ that is yet to be thoroughly proven, is not a
welcome one. Many of these businesses still struggle with taking advantage of the techniques incor-
porated with lean, six sigma and agile. Therefore, the link between Industry 4.0 and lean must be
strong to aid smooth and straightforward adoption. Multiple researchers described the different ways
of how to connect lean and Industry 4.0 (Rosin et al., 2020; Mrugalska and Wyrwicka, 2017), but all of
them tap into how the technologies impact the lean principles, and not the other way around. In this
study it is proposed to use a Six Sigma method; the DMAIC structure, to implement the technologies
related to Industry 4.0. This controversy view on the topic should bridge between the business’ current
practices and show how these can result into future practices (i.e. digital transformation). However,
this proposal is based upon careful alignment between existing research and current practices, and
identifying a gap in between. Therefore basing it just on empirical evidence, with no records of actual
utilization in this way. The reason to opt for Six Sigma rather than lean and agile on this matter is the
focus of an actual improvement process, which both Lean and Agile lack (i.e. waste elimination and
making existing processes smoothly connected, respectively).

In both the literature approach and the qualitative practical research emphasis was put onto the param-
eters side. This perspective was twofold; first the parameters are good indicators of the performance
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of business processes, and secondly the investigation of the parameters help to understand the inter-
relation and execution of different business processes. With this in mind, two existing methods for
business performance management were found: SCOR and BSC. Since both of these management
models address the topic of this research raw material supply & planning’, their application is partic-
ularly useful. However, since these methods are complex and sophisticated models themselves, they
were not incorporated completely. Only core aspects, like the business model identification and the KPI
selection, were taken from these two models. Consequently, the interrelationship established in these
models is breached which makes them function differently. Using the implementation model should
therefore not be considered similar or substitutiary to the SCOR and BSC approach, but more like a
complementary model.

Probably the biggest limitation of this study is related to technology research. This study is conducted
in 2020, and is therefore limited to the technologies and innovation available at that time. Since Indus-
try 4.0 is a hot topic at the moment, and new technologies and innovation might get introduced at any
time, the technology study could become obsolete really fast. Though the technology list is considered
extensive at this time; it includes all aspects of Industry 4.0 according to the literature investigated, it
could be only a minor fraction of the final Industry 4.0-technologies list. For this reason, it is recom-
mended for practitioners to look out and actively examine the ongoing research into new technologies,
to keep in touch with the growing capabilities of innovation.

In two different studies, i.e. interviews and literature study, it was investigated what kind of adoption
barriers are currently preventing businesses from reaping the benefits related to digital transformation.
Through these studies, a multitude of causes were identified, comprising reasons like lack of courage,
lack of talent, and people management. Through the design of the implementation model, solutions
to a multitude of barriers were developed, like the evaluation part to cover people management, and
the lack of standard options for factories by providing a guideline how to employ modularity in order
to decrease the needs for ‘a standardized approach’. However, some of the barriers have not been
addressed through the implementation model, due to them being unsolvable (yet), or because of its
applicability to very specific cases. The barriers that were not addressed, and need further investigation
in future research are the following:

Chaos of available data;

Asynchronous working of architectures;

Contractual issues with sharing data beyond the companies’ boundaries;
Software related issues, like Excel being outdated for Bigdata;
Horizontal integration (information share along the business process);
Cybersecurity;

Concerns about data ownership.

NOUAWN =

Obviously, a lot of stories and research evolve from the successful implementations of Industry 4.0.
Consequently, the majority of case studies and interviews provide insightful information about how to
correctly implement Industry 4.0. However, a lot of lessons learned - being the unsuccessful stories
- are kept quiet and were hard to discover. The implementation model includes a loop and evalua-
tion stage, thereby providing practitioners grip on the situation and allowing them to improve by their
own lessons learned. Nonetheless, knowing more implications from predecessors help to shape the
model around these pitfalls preventing the same mistakes from happening over and over again. Future
research should dedicate substantial efforts in identifying these pitfalls and expressing them at the
corresponding stages.

Multiple researchers focused on the different stages of Industry 4.0 adoption, mainly identifying three
stages: (I) Simple implementation (e.g. cloud-based working and implementing a few sensors), (II)
Advanced implementation (e.g. automation and Artificial technology), and (III) Smart manufacturing
(e.g. autonomous manufacturing and end-to-end integration). Although this is valuable information
for a company to understand the future steps to take, it does not provide a road map to actually
get to these stages. By looking into models that describe the improving nature of manufacturers by
incrementally progressing through different stages, we created a solid foundation for the digital trans-
formation implementation model. The continuous quality improvement model (Aitken et al., 2004) had
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a significant amount of similarities with the implementation process described by experienced practi-
tioners. As a result, the link between the two was made fairly straightforward. However, the initial
aim of the improvement model is quality improvement, while the Industry 4.0 implementation covers -
along with quality improvement - a wide range of other goals as well. By applying minor adjustments,
like the goal definition stage, we taper the implementation model to the spacious dimension of needs
but thereby introducing another variable that could increase the complexity of the implementation pro-
cess. In future studies, the perception of this complexity and its possible side-effects must be evaluated.

A huge advancement in aligning existing literature with practical use-cases was the introduction of
RAMI. By describing the novelty of several technologies using a structured reference architecture helps
both researched and practitioners understanding each others’ world. Since the current RAMI model
does include, but does not describe, the relevant business processes, we made an adjusted 2D-RAMI
model. This 2D-version enables users to effectively draw their current business structure without having
to dedicate too much time to details (on the third dimension; hierarchy). This modification is consid-
ered to be one of the major attributions in this implementation model by creating a clear framework in
which the existing and possible future business is described. Without diving into too much detail, as
is the case for BPMN (Business Process Management Notation), this modified model characterizes the
main features of the business.

The data analysis description is one that deserves more attention in future work. In the current set-up
data analysis is a descriptive one, aiming majorly for the average, standard deviation, and outliers. As
a result, these simple analytics will provide the user a sense of understanding how the processes and
data relate to each other. However, the subsequent stages where attention shifts to correlation, causa-
tion, and alike demands a far more intensive background and experience with data analysis. Therefore,
in the current set-up, the far-fetched data analysis which yields the best results, is only devoted to the
ones with substantial experience in the field. It is recommended that future work includes specific data
analysis strategies dedicated to the specific type o data sets possible (i.e. nominal, ordinal, interval
and ratio).

A final shortcoming is ascribed to execution of the model. Timing is an important aspect of effective-
ness, one of the model’'s prominent characteristics. Only a few of the stages have a clear end-point,
like only obtaining 5 key variables or sticking to a maximum of 5 KPI's. However, the remaining steps
can continue endlessly, depending on the level of detail the user wants to include. For example, the
'data analysis’ stage can differ from capturing a few averages up to a full statistical analysis including
all sorts of correlations and causation. Similarly, the ‘business overview’ can dive into full detail, de-
scribing what data is stored in what cell of a spreadsheet, while providing a general overview of what
kind of data is used would suffice as well. Through the execution of the case study, a general feel of
the intended purpose and time duration of the model should be given. However, future studies can
enhance the existing model significantly by clarifying the intended result of each stage.

5.3. Case study

Not only the development of an implementation model comes with limitations, also the subsequent
case study can only test the model up to some degree. Especially the stages that involve input from
different stakeholders turned out to be difficult. During the progress of this study, a global pandemic
called COVID-19 evolved. This pandemic hampered internal communication significantly and resulted
in a lot of phone- and digital telecommunication-calls rather than having free-flowing face-to-face con-
tact. Although the impact of the pandemic on this study is perceived to be limited, it must be noted
that it did alter the - otherwise fluent - communication channels.

The first implication around the conduction of the case study lies in the participating nature of the
company’s location. The case study was executed at one of the smallest factories (in terms of pro-
duction output) of the large international operating organization, making it one of the least attractive
players for Industry 4.0-implementation. Although this can be considered a good thing, if the imple-
mentation framework improves the margins over here, it will definitely improve it in the larger factories,
it is also a burden in terms of resources and available knowledge regarding Industry 4.0. Resources like
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money and time were the foremost drivers which hampered full execution of the case study. Through
the use of examples and by including perspectives, the case study still provided valuable information,
and its intended purpose - showing how the model should look like - was fulfilled. However, actual
implementation and its testing, still awaits.

Also, within this large organization incorporating multiple factories, it was valuable to observe how
such a small factory could benefit significantly from a digital transformation. The factory of interest
has, although its limited output, a key role in the supply of specialty fertilizers. In the near future,
customers are likely to demand more customization and flexibility, thus increasing the market sizes of
specialty products. As a result, the organization’s view will shift slightly from bulk to specialty produc-
tion to coope with the changing market needs. With this implementation model, the organization is
able to quickly adapt to its new environment, without losing productivity due to the increasing com-
plexity. This also clearly showed during the case study where the wide range of improvements on the
various processes, indicated the immense applicability of this model.

Through the initial step, ‘goal definition’, it was clear that a direct connection with the strategic man-
agement was mandatory. In order to accurately obtain the global organization’s needs an interview
with the digital transformation director is required. Although many different internal reports and pre-
sentations provide a general feeling for the general objective, they do not describe it as accurate as the
central team themselves do. Especially because the aim of this model is to redirect some of the central
execution to a more local level, communication between the two is inevitable. This collaboration was
not established at the very start of the case study, making it unnecessarily difficult to align to the global
organization’ intentions.

In the second stage ‘business overview’ it was key to describe a rather complex process by splitting it
into multiple 'simple’ ones. It was found that the 2D-RAMI model is particularly effective in describing
the interconnected business processes and the associated communication channels and data trans-
fer. Although this step was completely conducted in accordance with the separate departments, the
availability of BPMN'’s (Flowcharts via Business Process Mapping) was exceptionally useful. If available,
using these BPMN's to further construct the 2D-RAMI model is truly effective. However, it was found
that some BPMN's do not describe the communication channels and the type of data very well, there-
fore requiring collaboration with the different departments as a bare minimum.

The consecutive stage of identifying the key variables is also considered to be a really successful one.
The different data sets from the business overview provided a large list of data sets, i.e. variables,
that are consistently used in the business processes. Through the participation in a quality team, each
of these variables were assessed and together we concluded that five of them can harm the rest of
the process considerably. However, due to nature of this set-up, i.e. a quality team, the results might
differ from time to time. Subjectivity was limited by involving different people into the quality team and
also by defining a relatively clear ranking system. Nonetheless, little bias in this selection procedure is
inevitable and must be considered when analyzing the results. Having another team composition or
performing this study at another moment in time (i.e. due to the ever changing nature of business
processes) will infer different results.

Data collection, through both OT and IT merger and digital reporting, was probably the simplest stage
of the case study. By clearly identifying the data and knowing where this data comes from (i.e. via
the 2D-RAMI) enabled quick communication and transfer of said data. A positive attribute was the
already large amount of data available, making actual OT-IT merger and digital reporting less relevant.
Subsequently, the difficulties related to digital reporting and OT-IT merger were tested differently by
retrieving historic information. OT and IT merger is considered as one of the major additions in In-
dustry 4.0 as it allows manufacturers to reap the benefits of already existing and collected data. Since
the company already had performed a similar approach recently, this step was analyzed and provided
in this thesis to shed light on the critical aspects of it. The key elements of these two data collection
stages are careful selection of what to measure (i.e. reduce chaos) and ensure that you measure what
you want to measure (i.e. causality).
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After the different data sets were collected, data analysis was performed. Similar to the description of
section 5.2, the data analysis was just a free-flowing journey of trying different types of analysis to look
for useful correlations and inconsistencies within the data. When said outlier was found, more attention
was paid to the origin of it through further data investigation and by interviewing the responsible data
owner. This unstructured data analysis approach allowed for deeper insight dedicated to specific needs
of the particular data sets. For example, connecting the temperature data from a reactor vessel has
nothing to do with the warehouse stocks of raw materials, therefore requiring a completely different
analysis. However, due to the unstructured nature of data analysis, and due to immense knowledge
base about the business processes that others might not possess, the results of the analysis heavily
depend upon the one performing the analysis. Therefore, sequel research should pay attention to a
more standardized way of doing data analysis.

Subsequently, the KPI selection stage relies on the output of the data analysis, and thus favors a
structured way of doing analysis. However, the use of the SCOR model, and its KPI's, during the KPI
selection stage was considered to be useful. Obtaining fruitful KPI's that can monitor the actual im-
provement of Industry 4.0 implementation.

The technology introduction stage was one which required the highest degree of creativity. Though
Figure 2.5 provide a good overview of what and where to improve and implement, the overview only
serves as a technology-portfolio without further depth about the actual vendors and type of tech-
nologies. To further enhance the practicability of this stage, Figure 2.5 should be upgraded with a
vendor-portfolio. Within the company, such portfolio was already available, showing multiple vendors
of different technologies that were already bound to the organization through contractual agreements.
Other large corporations would benefit as well by creating an overview (i.e. portfolio) that contains
available suppliers to support the local implementation teams.

At the end, the evaluation stage is one that might be skipped by some companies (mainly due to
its predecessor’s time path), but is fairly useful for future implementations. By assessing user satisfac-
tion and the actual effectiveness the implemented technologies, the implementation team will gather
valuable insights. Especially in the early stages of adoption, iteration of the implementation approach
will happen continuously, therefore making the ‘lessons-learned’ the single most valuable support for
future success.

The case study has shown that implementing the Industry 4.0-concept was straightforward. In just
under a month we were able to pinpoint the critical aspects of the operations process by simply di-
viding into much smaller pieces. Also, the general understanding about the Industry 4.0-concept and
its possibilities became much clearer by using the model. By carefully following the implementation
models, companies could increase their adoption speed significantly as well as increase its adoption ef-
fectiveness through prioritizing the critical aspects. However, the model does not fulfil its full potential
because some of the adoption barriers are still to be addressed (e.g.. cyber security and uncertainty
about in- vs. outsourcing).



Conclusion & recommendations

This chapter involves the end of this research study by answering the research questions briefly. Fol-
lowing the conclusion on the research questions, and thus the elaboration of the model, come the
recommendations for future research. The final comprises of a personal reflection in which I will as-
sess the lessons learned throughout this intensive thesis project.

6.1. Conclusions

The main research question, which was more a design goal than an actual question, was subdivided
into multiple sub-questions to clearly identify the separate topics to be covered in the thesis research.
Through the design science model shown in section 1.4, each of these questions was addressed in
the appropriate stage of the research, thereby aligning the created artefact (i.e. the implementation
model) with the corresponding requirements (i.e. answers to sub-questions) belonging to the artifact.

Sub question 1: What steps exist in an implementation process and framework?

An initial answer to this question is formed by analyzing routine methods widely employed in the
manufacturing industry. Six sigma turned out to the leading philosophy with regards to process im-
provements. One of these six sigma techniques; DMAIC focuses on problem solving by implementing
new practices. Industry 4.0-adoption has - among many others - the goal of improving the existing
processes by implementing new business opportunities. Therefore making these DMAIC process steps
a perfect initial foundation for further construction of the detailed implementation steps.

In our analysis regarding Industry 4.0 we found that there are multiple ways to look at implementation
processes. Current research stipulated the use of three major implementation categories encompass-
ing the use of a certain degree of novelty in terms of technology: (I) using cloud technology and
a few sensors to enhance existing data flow, (II) Automated processes and advanced analytics, and
(II1) Smart manufacturing with full scale flexibility. All three categories allow us to define the stage of
novelty for companies that already implemented some Industry 4.0-related technologies. Moreover,
it aids organizations to define the future plans in what to consider in the next implementation stage.
However, these implementation stages do not infer what actions must be made prior to a successful
implementation. For this, we had to review other research dedicated to implementation practices.

Since the aforementioned adoption stages do describe actual implementation, we defined the ac-
tual implementation stages in subsection 2.3.2. Using an existing model by Aitken et al. (2004) and
aligning it with common practice within the industry, a new set of implementation stages was created
that fit into the DMAIC model of the Six Sigma-philosophy. The final, inclusive, answer to the
sub-question comprises the following 8 implementation steps:

1. Set the goal definition;

2. Create a business overview;

3. Identify key variables;

4. Gather data through: (I) OT-IT merger, and (II) Digital reporting;

92



6.1. Conclusions 93

Perform data analysis;
Specify KPI's;
Introduce technology;
Monitor continuously;
Improve;

Evaluate.

LN U
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Sub question 2: How are the key characteristics of a supply & planning environment that
are required to construct and Industry 4.0-architecture found?

At the very start of this research thesis it was perceived that industry 4.0-related technologies are
introduced on a basic set of pre-determined parameters, like budgets, constraints, and minimum re-
quirements. This perception was based upon a preliminary study which only focused on understanding
the ambiguous concept Tndustry 4.0". Although it was found that these pre-determined parameters are
not used as such, their application became immensely valuable when developing the implementation
model. At the point of selecting key variables, data analysis, and selecting KPI’'s, knowledge about how
the different supply & planning characteristics are interconnected was the major source of information.
Therefore making the second research question relevant again, but with a different intended use.

As a result, the answer slightly differs from the question asked, yet significantly contributing to the
progression of the implementation model, i.e. main research question. The answer to the second sub
question is twofold; where one is similar for each implementation and the other is context-dependent.
For every implementation, regardless of the context, holds that KPI's are easily derived
from the SCOR approach. These standardized performance indicators shed light on the efficiency of
the different processes from multiple angles. By applying benchmarks on each of these pre-determined
KPI's it becomes possible to compare results with the competition to see how well the company per-
forms and how well it should perform.

Prior to the KPI selection is the key variable selection, which encompasses the context-depended draft.
Through the creation of the business overview a list of commonly used variables (i.e. characteristics)
is obtained. After careful elimination, only the key characteristics, applicable to that particular supply
& planning environment remains.

Sub question 3: What are the available Industry 4.0 technologies that aid supply & plan-
ning departments?

Various views on the technologies-side of Industry 4.0 have been considered and investigated. Due to
the concept being so vague, Industry 4.0 includes many different streams and practices, all involving
different technologies and different terminology. Terms like Cyber Physical Systems (CPS) and Internet
of Things (IoT) were used interchangeably in one paper, while they were mentioned contradictory in
another. By answering this sub-question, and keeping its intended purpose in mind (i.e. implementa-
tion model), a set of 13 distinctive technologies were identified.

These 13 technologies can all be deployed in the supply & planning environment considered, described
in subsection 2.1.1. Although some of them still overlap; e.g. Miniaturization of electronics and IoT,
their enabling nature is completely different, i.e. allowing small sensors and interconnected sensor
systems. A more practical approach was taken in Figure 3.4, where practically applicable
technologies were taken on the basis of the 13 enabling technologies:

Virtual and augmented reality;

Additive manufacturing (3D);

Miniaturization of electronics;

Robotics, drones and nano-technology;

Blockchain;

Simulation;

Big Data analytics;

Automatic Identification and Data Collection (AIDC);
Machine to Machine communication (M2M);

Cloud technology;
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11. Cyber security;
12. Business intelligence;
13. Internet of Things (IoT).

Sub question 4: What must be incorporated to develop a sustaining process that fits into
the company’s culture?

The final sub question was one that was supposed to evolve from the case study research. By go-
ing through the model once, it should be observed what kind of implications one would run into and
subsequently what kind of countermeasures should be taken. However, the answer to this question
developed quite early, as many of the case studies and practitioners mentioned several implications
and challenges faced during their implementation process. The expression says ‘do not reinvent the
wheel’, which also holds true for the pitfalls that someone else already experienced, and learned from.

Therefore, we were able to learn from the challenges faced and adjusted the model accordingly. As
was discussed in chapter 5, not all of the challenges were solvable yet, however, multiple of them were.
The solutions that this implementation model offers to maintain a sustainable and useful process, which
is adapted to a company’s culture are the following:

* People management: One of the most critical issues regarding Industry 4.0-adoption is the
user adoption and satisfaction. Through the implementation stage of the model, training
and user feedback are included, thereby decreasing the change of a misfit between
users and technology. Moreover, the evaluation step dedicates its efforts to reviewing user
satisfaction to generate feedback on the implemented systems;

* No standardized option for all factories: A lot of organizations see standardization as a
key element for improving efficiency. However, standardized products are often a misfit with the
majority of the users, reducing its effectiveness significantly. To remain effectiveness and
increase efficiency, the standardization is found in the implementation model, and
no longer in the technology, allowing all factories to perform digital transformation
in an unambiguously manner;

» Determine the right business needs: For several practitioners it was considered the most
difficult task of the implementation process. Due to its context-dependent nature, a structured
approach of finding the right spot for implementation was necessary. By means of a 2D-
RAMI model and a subsequent stage of identifying the key variables, this structured
approach was made.

Main question: How can Industry 4.0 be implemented into supply and planning depart-
ments of complex manufacturing companies using an implementation framework?

The answer to the main element of this thesis; constructing the implementation framework, is the
combination of all aforementioned answers and is captured all in one large figure; Figure 3.1. Through
a set of incremental implementation stages, all incorporating different actions, digital transformation
in a supply & planning environment of a complex factory is realized.

6.2. Recommendations & future work

The incentive for this thesis research was to clarify and simplify the introduction of Industry 4.0 into
complex factories. To delineate the broad concept of Industry 4.0, the focus was directed towards
raw material supply & planning, incorporating all important business processes for the operations of a
manufacturing company. Although the goal of the thesis is reached; providing an useful and effective
implementation model for complex factories, the research is not finished and is still open for future
research. chapter 5 elaborated upon the limitations of this study, and this section will subsequently
derive the research yet to be covered. The substantial recommendations for future research are the
following:

» Defining clearer deliverables: As was indicated in the discussions, there are no clear bound-
aries between some of the implementation stages. Because the level of detail is not apparent in
the actual model, only the case study is providing some sort of delineation on what is expected
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at each stage. In future iterations of this model, such boundaries must be much clearer to grant
the user of the model a better idea on what is expected and how much time is required;

» General technology portfolio: This research made significant efforts in clarifying and specify-
ing the broad landscape of different technologies. By visualizing them into a RAMI architecture,
the applicability and objective of each technology becomes more apparent. However, in future
work, more attention is required on further clarifying all available options through some sort of
technology portfolio;

« Data analysis: Data analysis was the most fuzzy and unclear stage of the process. Because of
previous experience in data analysis and by knowing the businesses processes on a very detailed
level, the execution of this stage was relatively simple. However, for other practitioners this might
become a major burden because of the unstructured nature. Therefore, more attention should
be paid to descriptive data analytics and data statistics to provide a structured data analysis
approach;

 Effectiveness: Due to the lack of similar implementation models and due to the limited output
of the case study, the model’s effectiveness was measured poorly. Currently, the effectiveness is
the perceived utility by internal stakeholders. In future studies this utility must be examined by
external practitioners to increase the study’s rigor;

¢ Generalizability: The final recommendation focuses on the applicability of the implementation
model on other factories. The model was tested only once, on a complex factory in the agricul-
ture fertilizer industry mainly producing solid fertilizers. Production of solid fertilizers involve the
storage of raw materials in warehouses rather than in storage tanks, which is the case for liquid
raw materials. Such difference can have a significant impact on the application of the model due
to the importance of completely different key variables. Also, the model should be applicable
to markets other than agriculture fertilizers, requiring more case studies in different markets to
verify its generalizability.

Not only the academic world would prosper from future work and recommendations, but the environ-
ment of the performed case study would as well. Throughout the case study a wide variety of topics
have been touched upon, one more useful than the other. As a result, we developed a deep understand-
ing about the operations process within the company connected to the Industry 4.0-implementation.
To enhance future progression and existing operations performance the following activities are recom-
mended:

¢ General technology portfolio: Similar to that of the academic recommendations, is the de-
velopment of a general technology portfolio. Within the global organization a catalogue of digital
solutions was available. However, this catalogue included only digital opportunities (i.e. soft-
ware), but still lacks solutions like physical things (e.g. RFID), digitization (e.g. ZigBee), and
communication (e.g. Edge) which have significant benefits as well. Enhancing the existing port-
folio/catalogue with these technologies allows local units to quickly find the best possible solution
and grants the central unit to procure these technologies at larger scale thus lowering the price;

¢ Actual technology implementation: During the case study it was not possible to actually
implement some of the new Industry 4.0-technologies due to the lack of resources. Utilizing this
model supports the generation of clear and viable business cases, which on their turn can release
investment at the central organization to start actual implementation;

* Perform a second implementation loop: This first implementation loop already included a
lot of useful insights and helped to reduce the complexity of intertwined business processes. By
doing this again, now including new stakeholders from the different departments, would increase
the general understanding of the interdependencies. Moreover, addressing new variables and
finding appropriate technology solutions will increase the company’s competitive advantage;

¢ RAMLI utilization: One major goal of the RAMI-model is providing a basic framework with which
companies can model the internal architecture of the different technologies operating together.
The implementation framework of this model did not emphasize the use of RAMI beyond the 2D-
version of it. Yet the use of its original form can certainly be beneficial to show how the different
technologies are connected to one another and how these connect to the rest of the company;
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o Start data sharing: The simplest, yet the most crucial, recommendation is related to internal
data sharing. Many departments hold their data for themselves, simply because they do not see
the value of data sharing. However, in many cases knowing that the data exists and being able
to access it, would already reduce the amount of incorrect actions.

6.3. Reflection

During the past period of 6 months this thesis research was conducted in partial fulfilment of the masters
degree of Management of Technology (MoT). Through this lengthy period, a lot of different challenges
crossed my road that contributed to my personal development. The most prominent challenge was the
emerge of the COVID-19 pandemic, which both eliminated face-to-face contact and forbid traveling to
the TU Delft and the company. This major burden resulted in the delay of many tasks, like interviewing
and retrieving data, which required the fast development of a new skill; flexibility. Due to the time
being limited, and the high dependence on input of others, particular actions had to be postponed,
while others had to be accelerated.

Another trait that evolved under the scope of this research is the ability to effectively connect dif-
ferent constructs. Especially the development of the 2D-RAMI model and its connection with the key
variable-selection is seen as an useful and novel addition. Moreover, the use of the quality improve-
ment model within DMAIC clearly helps practitioners to understand the implementation process.

Contrary to the improved characteristics are the habits that still need attention in the future. One
of the major concerns during this thesis was found in procrastination. Especially the writing of the
thesis was taken to the last moment, which can infer issues in the future. Also, the size of tasks un-
dertaken can overwhelm me over time. At the very start of this thesis, I had a concise plan in what to
include and how to shape the thesis over time. Eventually, this plan was considered to be too ambitious
and items like the technology-portfolio were abandoned for future research.

Not only did I learn how to implement technologies in an effective manner, I also developed a deeper
understanding about the effectiveness and applicability of the several technologies within the supply
& planning domain of complex factories. Some of the technologies suit the supply & planning environ-
ment much better than others. Therefore I will describe my view about the usefulness of three top
categories of technologies in complex factories using the information and knowledge gained.

Especially the use of Internet of Things and the different options of Automatic Identification and Data
Collection (AIDC) were found to be important. The old-fashioned factories use quite some software like
SAP and databases to store their information and to retrieve it in an easy manner. However, it is the
collection and storing of data that still requires a lot of attention. Small fluctuations, for instance with
picking the wrong material from the warehouse, can happen quite frequently. These small changes
diminish the accuracy of the data stored inside the databases and software, thereby reducing the effec-
tiveness. To cut out the middleman, you should use methodologies like RFID, bar codes or IoT sensor
networks to simply feed the databases and software with the data required. Although the use of bar
codes is already dated, its implementation is much more easy compared to RFID tags. If a multitude
of your suppliers already applied RFID tags to their products (i.e. for their own convenience), adoption
of RFID tags becomes straightforward and offers more possibilities compared to bar codes.

Increasing the use of sensor networks simultaneously increases the required bandwidth and connec-
tivity in and around the factory. As a result, the use of Edge systems (i.e. processing power on site)
and installing various routers is a must-have. That makes enabling technologies like miniaturization of
electronics, but also cyber security, more important. These technologies determine the limitations of
an Industry 4.0-environment and require careful examination as soon as the adoption of IoT and AIDC
increases.

The third category of useful technologies is found in software and storage. Many companies already
switched to cloud services, Microsoft Office 365, and utilize data analytical- or simulation-related soft-
ware. These technologies can already handle a good amount of data and were likely a capital-intensive
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investment. This makes the introduction of these technologies a lower priority until the limitations of
said technologies have been reached. An additional benefit of this ‘delay’ in improvement is the in-
crease in available data. Current software is based upon a minimal amount of data and only uses a
part of the new incoming 'big’ data flow of the IoT and AIDC systems. By the time new software is
required, the significant inflow of data allows for more and sophisticated functionalities.

A final note is dedicated to the Business Intelligence and machine learning/artificial intelligence form
of Industry 4.0. The increase in incoming data also allows to redirect the majority of decision-making
towards processing units rather than humans. In the functions-layer of the 2D-RAMI model we already
shown how some decisions are made. By knowing exactly what boundaries apply and how the data is
interpreted, we can define an algorithm that can do this itself.



Design science

Now we know the current status of Industry 4.0, we have to identify ways to design the model. In
the past, scientists focused on the way of information system research being conducted in order to
improve the research process. Throughout this process, Nunamaker et al. (1991) identified 5 differ-
ent ways of research, each of them having a different purpose. The list by Nunamaker et al. (1991)
comprises (1) basic and applied research, (2) scientific and engineering research, (3) evaluative and
developmental research, (4) research and development, and (5) formulative and verificational research.

In order to structure all different streams of research, Nunamaker et al. (1991) develops a research
methodology that involves processes, methods and tools which can be applied to each of the basic
research categories. Such model further improves the effectiveness of research by incorporating every
important aspect necessary. This comes in very useful for developmental research, as this is often
lacking vigor, because of the uncertainty of completeness. Since this study focuses on the develop-
ment of a framework, research methodologies that enhance the credibility by applying structure are
really useful.

The basis of the methodology by Nunamaker et al. (1991) consists of 4 building blocks: theory build-
ing, experimentation, observation and system development. All steps are intertwined and can evolve
throughout the research process. Theory building targets conceptual frameworks, mathematical mod-
els, and methods. Experimentation comprises all experiments, laboratory or field, and simulations that
have as sole purpose to test different hypotheses. The observation, on its turn, aims to understand the
theory by doing case, survey, or field studies. Finally comes the system development which involves
prototyping, product development and technology transfer.
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Nunamaker et al. (1991) captures these four essential building blocks in their systems development
research process:

1. Construct a conceptual framework, i.e. produce a meaningful research question and understand
the context of the issue;

2. Develop a system architecture, i.e. define system components, their interrelationships and mod-
ularity;

3. Analyze & design the system;

4. Build the (prototype) system;

5. Observe & evaluate the system.

Though the model by Nunamaker et al. (1991) focuses on the design of a model, their approach is
rather theoretical (Peffers et al., 2008). Since this study targets a practical and theoretical dilemma,
the applicability of the multimethodological system by Nunamaker et al. (1991) becomes obsolete. To
cover both theoretical and practical information strategies, Peffers et al. (2008) proposes the Design
Science Research Methodology (DSRM). The goal of their DSRM is “to help researchers with presenting
research having a commonly understood framework, rather than justifying the research paradigm on
an ad hoc basis” (Peffers et al., 2008). This model, mainly differs in the separation of the first step
the process by Nunamaker et al. (1991) into problem identification and solution objectives. This clear
distinction enables researchers to approach the problem both practically, like feasibility, and theoreti-
cally, the underlying explanation. The full DSRM model is shown in Figure A.1.
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Figure A.1: The Design Science Research Methodology (DSRM) proposed by Peffers et al. (2008).

In order to streamline the research process and the design of the implementation framework during
this study, the DSRM model is taken as basis. The identification of the problem and the motivation of
it, is part of this kick-off proposal. Also the objectives of the solution is shortly touched upon through
this proposal, which is part of the conceptual design. Further design, demonstration, evaluation and
communication are topics of the final thesis.



Literature study

In order to gain the right information and to develop a research based on useful performed studies, the
need for proper search and selection criteria is high. Throughout the exploration of helpful material, it
was recorded what kind of search was done. This literature study obtained information via 4 different
literature review strategies that developed on top of each other.

1. Initial search for known topics, such as “Smart factory” and “Industry 4.0”. These topics were
directly inserted into regular search engines; e.g. Google Scholar and Sciencedirect. The focus
of this strategy lies within the ‘exploratory’, discarding any literature concentrating on specific
technologies, algorithms or anything other than the interest of this review.

2. From these initial documents a significant amount of similar, yet more specific, definitions were
found, like "Internet of things”, “intelligent ...” and “"Computer-aided Manufacturing (CAM)”. In-
creased with the AND-function and words as “factory” and “industry”, these definitions were used
to further narrow the focus and the amount of available documents. Mainly “factory” seemed to

be an important term, due to the widespread application of internet of things.

3. After scrolling briefly through a part of the large amount of sources a more refined search term
was introduced, coupling the two different fields of interest, smart factory and raw material
planning. Because there are a lot of areas in which raw material planning takes place, it was
chosen to identify this space with words like “logistics” and “process planning”. At this stage,
only the more sophisticated search engine, Scopus was used.

4. In the final stage some documents were found that mentioned production resource planning,
which tightly describes the aim and purpose of this literature review. Such search terms were
also specifically used, however, without any luck. It appeared to be a dead end.

These four strategies provided a multitude of literature material that enables insights on many fronts;
from a managerial perspective to a step-by-step approach for a legion of metrics (Columbus, 2019).
Each strategy was further fine-tuned or broadened to facilitate full exploration in the used search en-
gines. The development of the first two exploratory strategies is presented in Table B.1. These are
articles which have not been fully read, but provide a solid basis of information if necessary in the
future research regarding specifically smart factory.

During application of the first two strategies, it was found that some search descriptions were too
broad and gave room to too many articles, that only the most relevant ones were withdrawn. Rel-
evance was determined on three attributes; whether the article indeed described a manufacturing
environment, whether the article was recently published (i.e. articles originating from 2007 were the
first to define strategies and topics relevant for Industry 4.0 (Saucedo-Martinez et al., 2018; Osterrieder
et al., 2019), everything before is considered to be part of Industry 3.0, with advanced Progamming
Logic Controllers (PLC) that are already widespread in the manufacturing industry), and if the article
added new information on top of the traditional manufacturing. A significant amount of articles have
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Strategy Engine Term(s) Useful Remarks
hits*
1 Google Scholar Smart factory 13 Lot of irrelevant articles
1.1 Google Scholar | Smart factory/Industry 4.0 AND review 8
1 Sciencedirect Smart factory - Too broad - no good hits
1.1 Sciencedirect Smart factory AND review/analysis 1 Leads to repetitive results
2 Google Scholar | Factory/industry AND IoT/CAM/intell. 6 CAM was irrelevant
2 Sciencedirect Factory/industry AND IoT/CAM/intell. 2 IIoT introduced
2.1 Sciencedirect IIoT 3
2.2 Scopus SF/14.0 AND implem/side-ef/etc. 3
2.2 Sciencedirect SF/14.0 AND implem/side-ef/etc. 2

Table B.1: Search and description development (*) only retrievable ("TU Delft free”) articles were considered, doubles were
disregarded as well.

been discarded, due to the broad search. However, this exploratory search generated interesting ex-
amination strategies.

Initial relevant terms turned out to be obsolete due to their insignificant correlation to the subject
of this review, like Computer-aided manufacturing (CAM). Moreover, a new search term, IIoT, was
introduced and enabled the find of multiple articles. The terms as shown in Table B.1 provide the
current obtained articles, but are not limited to future finds.

After finishing the exploring stage about smart factories, it was chosen to develop further on the
combination of the two topics, i.e. strategies 3-4. The results of these strategies are in chronological
order shown in Table B.2. All the hits were found in Scopus in the "Article title, Abstract, Keywords"-
area.

Terminology Hits
smart AND factory AND internet AND things AND supply AND chain 40
smart AND factory AND internet AND things AND logistics AND raw AND Material AND planning 0
smart AND factory AND internet AND things AND raw AND Material AND planning 1
smart AND factory AND internet AND things AND logistics AND planning 4
factory OR industry AND “internet of things” OR IoT AND Logistics OR “Smart logistics” 342
factory OR industry AND “internet of things” OR IoT AND logistics OR "Smart logistics” AND planning | 99
factory OR industry AND “internet of things” OR IoT AND supply AND planning 52
factory OR industry AND “internet of things” OR IoT AND supply AND planning AND warehouse 7
factory OR industry AND “internet of things” OR IoT AND “production resources planning” 1
*F ORI AND “IoT” OR IoT AND "enterprise resources planning” OR "ERP” 74
*F OR I AND “IoT” OR IoT AND “enterprise resources planning” OR “ERP” AND “production process” 5

Table B.2: Search and description development in @ more dedicated search area. All bold numbers are the articles used for
further development. (*) the last two rows wield the same first 4 terms as rows 5 to 9, but for the sake of lay-out, these have
been abbreviated to the first character.

As shown in Table B.2, strategy 4 was used twice. During the full reading session, it was found that En-
terprise Resource Planning (ERP) was a widely used term to refer to the planning systems of a factory.
In order to capture these specific, and likely useful, articles an extra search term was introduced “En-
terprise resources planning”. This term revealed many irrelevant articles that described the particular
handling of IT models, which is yet too specific. For this reason, the majority was cut out by applying
the term “production process”, which enabled the articles that connect production and planning to
smart factory/Industry 4.0.

All reviewed articles have been read thoroughly and specified into several subcategories as shown
in Table B.3. First of all, it was of significant value to define whether the paper was having a broad or
focused approach. The main characteristic for a broad paper would be the explanation of various top-
ics, including a well-defined search strategy. Focused articles, on the other hand, mentioned specific
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cases and dived into one of the main characteristics within Smart factory research.

After the approach was defined, the specification, aim and data were determined. For the specifi-
cation it was important to distinguish between a practical and theoretical article, as this will help to
construct future arguments that require either practical or theoretical approaches. The aim of the arti-
cle was captured within: Verification, Exploratory and Explanation. Such terms only indicate the state
of the research. The lack of verification articles can be described by the early stage of research we are
in Mittal et al. (2019). Finally, the data used was defined by either: Literature, Case study, Interviews
and Surveys. Again, the lack of interviews is likely to be caused by the current stage of research, as
only few experts exist within the Smart Factory landscape.

In the final stage, it was specified in which research pillar, opted in Osterrieder et al. (2019), a par-
ticular paper was placed. Also the relevance (i.e. importance) of each article was decided. When an
article was considered to be not relevant at all, e.g. score 0, it was left out of Table B.3.



# | Reference Approach Spec* Aim Data Focus (topic) | Imp” | Future research | Remarks
Ft B? PP T+ | V> E® Ex”|L® C° I'© S| Research pillar? | (1-10)
1 | Osterrieder et al. (2019) X X X X 8 7 -
2 | Zheng et al. (2019) X X X X 3 2 Verification
3 | Belli et al. (2019) X X X X 56 9 Generalizability
4 | Do Chung et al. (2018) X X X X 3 4 - Only theory was used
5 | Lee etal (2017) X X X X 2,4 9 Generalizability
6 | Wang et al. (2016a) X X X X X 8 7 Verification
7 | Saucedo-Martinez et al. (2018) X X X X 8 6 -
8 | Accorsi et al. (2018) X X X X X | X X 3,4 3 Generalizability Focused into one company
9 | Manavalan and Jayakrishna (2019) X X X X 3,5 4 Green SCM
Trstenjak and Cosic (2017) X X X | X 1,3 4 Product relevance | Some intersting topics
Tjahjono et al. (2017) X X X X 3 5 Which KPI's
Karabegovic et al. (2020) X X X | X 8 4 -
Kumar et al. (2019) X X X | X 8 4 -
Douaioui et al. (2018) X X X X 8 2 - Irrelevant
Chaopaisarn and Woschank (2019) | X X X X X 8 8 Emperical research | Focus on SME's
Yang et al. (2019) X X X X X X 8 10 Plug and play
Xu and Hua (2017) X X X X 1 5 Verification
Arnold and Voigt (2019) X X X X 8 2 Other factors Gives additional insights
Chong et al. (2018) X X X X 56 1 Integration Far too focused
Arumugam et al. (2018) X X X X 3 2 Scale-up
Lee (2019) X X X X 2,3 2 Generalizability
Chen et al. (2017) X X X X X 2,3 3 Generalizability Step-by-step approach
Mittal et al. (2019) X X X X 8 8 Verification
Reaidy et al. (2015) X X X X 7 3 Generizability
Rezaei et al. (2017) X X X X 3,8 7 Evaluation SSCM on a broad level
Frank et al. (2019) X X X X 8 7 -
Moktadir et al. (2018) X X X X 4 5 Verification
Crnjac et al. (2017) X X X X | X 3 4 Environment Business models
Oztemel and Gursev (2020) X X X X 8 9 Practicability
SMLC (2011) X X X X - 4 - Industry-wide challenges
Wang et al. (2016b) X X X X 5 4 Optimization

Table B.3: All reviewed articles that were considered to be somehow relevant during the literature study. In order to align the table accordingly several abbreviations were made: * Focused, 2 Broad, 3 Practical, *
Theoretical, 5 Verification, ¢ Exploratory, 7 Explanation, & Literature, ° Case study, 1° Interviews, ' Survey, * Specification, ¥ Importance with regards to the topic of this review. And finally Z, the research pillars by
Osterrieder et al. (2019): 1. Al manufacturing, 2. Data handling, 3. Supply Chain Management, 4. Decision making, 5. IoT, 6. Digital transformation, 7. IT Infrastructure and 8. Theoretical contributions.
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