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Abstract

This thesis considers the thin-film equation in partial wetting. The mobility in this equa-
tion is given by h3 + λ3−nhn, where h is the film height, λ is the slip length and n is the
mobility exponent. The partial wetting regime implies the boundary condition dh

dz > 0 at
the triple junction. The asymptotics as h ↓ 0 are investigated. This is done by using a
dynamical system for the error between the solution and the microscopic contact angle.
Using the linearized version of the dynamical system, values for n when resonances occur
are found. These resonances lead to a different behaviour for the solution as h ↓ 0, so the
asymptotics are found to be different for different values of n.

Together with the asymptotics for h → ∞ as found in [Giacomelli et al., 2016], the
solution to the thin-film equation in partial wetting can be characterized. Also, via this
solution, the relation between the microscopic and macroscopic contact angles can be an-
alyzed. From the main result of this thesis, it can be seen that the macroscopic Tanner
law for the contact angle depends smoothly on the microscopic contact angle.
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Chapter 1

Introduction

1.1 The problem

In this thesis the following thin-film equation with boundary conditions is studied:

∂h

∂t
+

∂

∂z

(
(h3 + λ3−nhn)

∂3h

∂z3

)
= 0 for t > 0 and z > Z(t) (1.1a)

h = 0 for t > 0 and z = Z(t) (1.1b)

∂h

∂z
= k > 0 for t > 0 and z = Z(t) (1.1c)

lim
z→Z(t)+

(h2 + λ3−nhn−1)
∂3h

∂z3
=
∂Z

∂t
(t) for t > 0. (1.1d)

Here, h(t, z) gives the height of a liquid thin-film on a flat surface at time t > 0 and
position z ∈ R. This is visualised in figure 1.1. The point where the liquid, gas and solid
meet is called the triple junction. Equation (1.1a) is a lubrication model, which means
that it describes the flow of the fluid of a thin and viscous film. It has the form of a
continuity equation

∂ρ

∂t
+

∂

∂z
(ρu) = 0.

Here, ρ is the fluid density and u is the velocity of the flow of the fluid. In the case of
equation (1.1a), the fluid density is equal to the film height h and the velocity of the

flow is given by (h2 +λ3−nhn−1)∂
3h
∂z3

. The equation can be derived from the Navier-Stokes
equations, which has been done in detail in [Oron et al., 1997, chapter 2 section B].

solid

liquid

gas

z

y

h

Figure 1.1: Example of a thin-film as described by (1.1)
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Chapter 1. Introduction

The exponent n is called the mobility exponent. We choose n ∈ [1, 3). This is because on
the one hand, if n ≤ 0 the speed of propagation of the film is infinite, and if n ∈ (0, 1)
the film height h can be negative, as demonstrated for instance in [Bowen and Witelski,
2019]. On the other hand, if n ≥ 3, the boundary of the film cannot move. This is also
the case if the slip length λ equals zero.

Translation invariance in the third space dimension is assumed, which is perpendicular
to y and z. Also, it is assumed that the film covers the interval (Z(t),∞) and that it has
a free boundary at z = Z(t). The function Z(t) depends on time and denotes the place
of the triple junction. Condition (1.1b) gives that the height of the thin-film at the triple
junction is zero. The next condition, (1.1c), says that the contact angle between the solid
and the film at the triple junction is equal to k > 0. This tells us that we are dealing
with a liquid thin-film in a partial wetting state, which will be explained in the following
section. Condition (1.1d) implies that the transport velocity (h2 +λ3−nhn)∂

3h
∂z3

of the flow

has to match the velocity dZ
dt of the free boundary, when approaching the contact line.

1.1.1 Partial and complete wetting

For a droplet on a surface, there are three surface tensions that will be looked into. The
tensions are shown in figure 1.2. In [Bonn et al., 2009], Young’s equation is stated, which
gives the relation between the contact angle θ and these surface tensions. This relation is
the following:

σgs = σls + cos(θ)σgl.

If σgs < σls + σgl, then the liquid thin-film is said to partially wet the solid. In this case,
the contact angle is a finite number greater than zero. If on the other hand σgs ≥ σls+σgl,
then the contact angle must be zero. The thin-film covers the entire solid, so this is called
complete wetting.

solid

liquid

gas

θ
σgs

σgl

σls

Figure 1.2: Example of a thin-film as described by (1.1)

1.1.2 Contact angles

Two different kinds of contact angles are distinguised, namely the microscopic contact
angle and the macroscopic contact angle. The macroscopic contact angle is the angle at
the triple junction that is fairly easy to measure optically, see figure 1.3a. This angle is
dynamic, so it depends on the velocity of the film. When we look near the triple junction
it can be seen that the fluid behaves differently there, see figure 1.3b. The microscopic
contact angle is determined by Young’s equation, as mentioned in the previous section.
Because of the microscopic scale, it is difficult to measure this angle. The main goal of
this thesis is to prove a theorem which gives a relation between the microscopic and the
macroscopic contact angle.
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Chapter 1. Introduction

solid

liquid

gas

K

(a) The macroscopic contact angle K

solid

liquid

gas

K

k

(b) The previous picture zoomed in near the triple
junction. The macroscopic contact angle K and
the microscopic contact angle k are shown.

Figure 1.3

1.2 Structure of this thesis

This thesis is mostly based on the paper “Rigorous asymptotics of traveling-wave solutions
to the thin-film equation and Tanner’s law” by [Giacomelli et al., 2016]. In this paper,
the authors look at problem (1.1) in the case of complete wetting. This means that the
boundary condition (1.1c) changes into ∂h

∂z = 0 for t > 0 and z = Z(t). Also, the mobility
exponent is taken in the interval n ∈

(
3
2 ,

7
3

)
. We will use some of the methods used in this

paper to look at problem (1.1), but the analysis at the triple junction is different. Because
the microscopic contact angle is nonzero, the dependence of the macroscopic angle on the
microscopic angle can be analyzed. This could not be done in the paper by [Giacomelli
et al., 2016], because the contact angle in that case is equal to zero.

In chapter 2 of this thesis, the prerequisite knowledge from linear algebra and analysis
is given for reference. Also, some theory of dynamical systems is introduced, which is
needed in chapter 4. After introducing the prerequisite knowledge, we proceed in a similar
manner as in section 1.1 of [Giacomelli et al., 2016] where the problem (1.1) is rewritten
as a third order ordinary differential equation. This is explained in chapter 3. Also, a
coordinate transformation is done and Tanner’s law is explained. At the end of this chap-
ter, the main theorem of this thesis is stated. This theorem will give a link between the
macroscopic and microscopic contact angle. It will take the rest of this thesis to prove this
theorem, which is done in chapter 7. This theorem is similar to [Giacomelli et al., 2016,
theorem 2.1], but the asymptotic behavior when H ↓ 0 changes.

In the next chapters, the necessary steps are taken to prove a proposition which is crucial
for proving the main theorem. In chapter 4, the ordinary differential equation obtained
in chapter 3 will be rewritten as a dynamical system. This system will be linearized and
in chapter 5, the parameterization of the unstable manifold will be analyzed. In the next
part of this chapter, we will look into the resonances of the system, that is when one
eigenvalue of the linearized system is a multiple of another eigenvalue. These resonances
occur because of the choice n ∈ [1, 3). This will be done in the same way as in section
4.3 of [Belgacem et al., 2016]. We will find that for certain values of n resonances occur.
This is why a ‘resonant’ and ‘non-resonant’ case will be distinguished for the propositions
hereafter.

In chapter 6, two differential equations for the resonant and non-resonant case will be
analyzed, which will both be rewritten as a fixed point problem. The fixed point theorem

8



Chapter 1. Introduction

of Banach can be used to show the existence and uniqueness of solutions to these differ-
ential equations. This will be followed by proposition 7.1 and 7.2, which will be crucial to
proving the main theorem. Using the solutions found in chapter 6, a proposition similar to
[Giacomelli et al., 2016, prop 3.2] will be proven in chapter 7. The above result combined
with lemma 7.3, lemma 7.4 and corollary 7.5 will lead to the proof of the main theorem.
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Chapter 2

Prerequisite knowledge

In this chapter the necessary knowledge on linear algebra, analysis and dynamical systems
is given. This is done by stating definitions and theorems, without giving the proofs. A
complete introduction and proofs to the theorems can be found in [Fraleigh and Beaure-
gard, 2014], [Sadun, 2008], [Carothers, 2000], [Teschl, 2012], and [de Pagter and Groen-
evelt, 2017].

2.1 Linear algebra

We start by looking into the necessary knowledge of linear algebra.

Definition 2.1. We say that λ is an eigenvalue of an n× n matrix A if

Av = λv

for a nonzero column vector v. We call v an eigenvalue of A.
The set Eλ which consists of the zero vector and all eigenvectors of λ is called the eigenspace
of λ. This is a subspace of Rn.
The algebraic multiplicity of an eigenvalue λ is the multiplicity of λ as a root of the
corresponding characteristic polynomial

det(λI −A).

The geometric multiplicity of an eigenvalue λ is the dimension of the eigenspace Eλ.

Theorem 2.2. An n× n matrix A is diagonalizable if and only if the algebraic and geo-
metric multiplicity of every eigenvalue are equal. That is, A = PDP−1 for an invertible
matrix P and a diagonal matrix D, where the ith column of P gives the eigenvector cor-
responding to the eigenvalue in the ith column of D.

Definition 2.3. The nonzero vector ξ is a generalized eigenvector corresponding to the
eigenvalue λ of the n× n matrix A if

(A− λI)pξ = 0

for some positive integer p. The generalized eigenspace Ẽλ is the subspace spanned by the
generalized eigenvectors of λ.

Theorem 2.4. For every n× n matrix A an invertible matrix T exists such that

T−1AT = J,

10



Chapter 2. Prerequisite knowledge

where J, the Jordan form, has a blockdiagonal structure

J =


J1 0 · · · 0
0 J2 · · · 0
...

. . .
. . .

. . .

0 · · · · · · Jk

 .

Each block Ji has the form

Ji =



λi 1 0 · · · 0

0 λi 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λi


,

where λi is an eigenvalue of A. The geometric multiplicity of eigenvalue λi gives the
number of blocks with λi on the diagonal. The algebraic multiplicity of λi gives the total
dimension of all blocks with this eigenvalue on the diagonal.

Theorem 2.5. (Neumann series) For an n× n matrix A it holds that

∞∑
n=0

An = (I −A)−1

if and only if ||A|| < 1, where || · || is the operator norm. This is the geometric series for
matrices.

2.2 Analysis

The following two definitions are useful for analysing the behaviour of a function if its
argument tends to some number in R or to infinity.

Definition 2.6. (Big-O notation). We write

f(x) = O
(
g(x)

)
as x→∞

if there exists an M > 0 and x1 ∈ R such that |f(x)| ≤M |g(x)| for all x ≥ x1.
Also,

f(x) = O
(
g(x)

)
as x→ 0

if there exist r > 0 and M <∞ such that |f(x)| ≤M |g(x)| for all x ∈ [−r, r].

Definition 2.7. (Little-o notation). We say that

f(x) = o(g(x)) as x→ a

if and only if limx→a
f(x)
g(x) = 0, when g(x) 6= 0.
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Chapter 2. Prerequisite knowledge

The following theorem is needed for proving the main theorem.

Theorem 2.8. (Implicit function theorem) Let U ⊆ Rn+k be open and f : U → Rn
continuously differentiable. Let a ∈ Rk and b ∈ Rn be such that (a,b) ∈ U and

f(a,b) = 0, det
∂f

y
(a,b) = det


∂f1
∂y1

· · · ∂f1
∂yn

...
...

∂fn
∂y1

· · · ∂fn
∂yn

 6= 0.

Then there exist open neighborhoods V of a and W of b and a continuously differentiable
map g : V →W such that

• f(x,g(x)) = 0 for all x ∈ V and g(a) = b,

• f(x,y) 6= 0 for all (x,y) ∈ V ×W with y 6= g(x).

The next theorem will be used to show the existence and uniqueness of a solution to an
ordinary differential equation.

Definition 2.9. Let (M,d) be a metric space. The map f : M →M is called a contraction
if there exists some constant 0 ≤ α < 1 such that d(f(x), f(y)) ≤ αd(x, y).

Theorem 2.10. (Banach’s fixed point theorem) Let (M,d) be a complete metric space.
If f : M →M is a contraction, then f has a unique fixed point.

2.3 Dynamical systems

In this section, some definitions from the theory of dynamical systems are given. These
will be referred to when necessary in the next chapters of this thesis.

Definition 2.11. A dynamical system is a semigroup G with an identity element e which
acts on a set M. That is, there exists a map

T : G×M →M

(g, x) 7→ Tg(x)

such that
Tg ◦ Th = Tg◦h.

Also, Te = I.

A dynamical system is continuous if G = R+ or G = R.

Definition 2.12. For the linear system ẋ = Ax we distinguish the following manifolds:

• The linear manifold E+(eA) is called the stable manifold, and is spanned by the
(generalized) eigenvectors that correspond to eigenvalues with negative real part.

• The linear manifold E−(eA) is called the unstable manifold, and is spanned by the
(generalized) eigenvectors that correspond to eigenvalues with positive real part.

• The linear manifold E0(eA) is called the center manifold, and is spanned by the
(generalized) eigenvectors that correspond to eigenvalues with zero real part.

Systems where all eigenvalues have nonzero real part are called hyperbolic systems.

12



Chapter 2. Prerequisite knowledge

Definition 2.13. The point x0 is a fixed point of the function f(x) if it holds that

f(x0) = x0.

A fixed point of an autonomous system

ẋ = f(x)

is called hyperbolic if the linearized system is hyperbolic. That is, no eigenvalue of A in
the linearized system ẋ = Ax is equal to zero.

Definition 2.14. For an autonomous system

ẋ = f(x), (2.1)

we say that a solution φ(t, x) of (2.1) converges exponentially to the fixed point x0 if there
exist constants α > 0, δ and C such that

|φ(t, x)− x0| ≤ Ce−αt|x− x0|, |x− x0| ≤ δ.

Also, manifolds of systems that are not necessarily linear around a fixed point can be
defined.

Definition 2.15. For an autonomous system

ẋ = f(x)

with fixed point x0, we define

• the local stable manifold M+(x0) as the set of all points that converge exponentially
to x0 as t→∞.

• the local unstable manifold M−(x0) as the set of all points that converge exponentially
to x0 as t→ −∞.

If the system is linear, then we have that M+(x0) = E+ and M−(x0) = E−.

13



Chapter 3

Coordinate transformation and
main theorem

In this chapter, the thin-film equation is rewritten into an ordinary differential equation.
Also, the obtained differential equation will be rescaled, so that it will become easier to
work with. After that, a coordinate transformation will be done and the main theorem of
this thesis will be stated.

3.1 Reformulation of the thin-film equation

The thin-film equation and its boundary conditions as explained in chapter 1 are given by

∂h

∂t
+

∂

∂z

(
(h3 + λ3−nhn)

∂3h

∂z3

)
= 0 for t > 0 and z > Z(t) (3.1a)

h = 0 for t > 0 and z = Z(t) (3.1b)

∂h

∂z
= k > 0 for t > 0 and z = Z(t) (3.1c)

lim
z→Z(t)+

(h2 + λ3−nhn−1)
∂3h

∂z3
=
∂Z

∂t
(t) for t > 0. (3.1d)

Letting h(z, t) = H(x) with x = z + V t, where V is the velocity of the film, the following
problem follows. Note that the problem is now an ordinary differential equation instead
of a partial differential equation.

Lemma 3.1. Problem (3.1) can be simplified to

(H2(x) + λ3−nHn−1(x))
d3H(x)

dx3
= −V for x > 0, (3.2a)

with boundary conditions

H(x) = 0 if x = 0 (3.2b)

dH(x)

dx
= k > 0 if x = 0 (3.2c)

d2H(x)

dx2
→ 0 as x→∞. (3.2d)

14



Chapter 3. Coordinate transformation and main theorem

Proof. We have that
∂H

∂t
=
dH

dx

∂x

∂t
,

and from x = z + V t it follows that ∂x
∂t = V . Also, by using the chain rule it is obtained

that
∂3H

∂z3
=
d3H

dx3

and
∂

∂z
(H3 + λ3−nHn) =

d

dx
(H3 + λ3−nHn).

The differential equation now becomes

dH

dx
· V +

d

dx

(
(H3 + λ3−nHn)

d3H

dx3

)
= 0.

When d
dx is taken out and the equation is integrated once,

H(x) · V + (H3(x) + λ3−nHn)
d3H(x)

dx3
= c for x > 0

follows, where c is constant. Because of the translation invariance in x of the above equa-
tion it follows that c = 0.

Now, since it is known that H 6= 0, equation (3.2a) follows. The first two boundary
conditions follow trivially from the boundary conditions (3.1b) and (3.1c). The third
boundary condition follows from theory in [Chiricotto and Giacomelli, 2011]. Here, the
authors show that for the differential equation (3.2a) a unique classical solution exists that
satisfies this condition.

3.2 Rescaling

The goal of this section is to get rid of the parameters V and λ of problem (3.2) by rescaling
x and H. The rescaling is motivated in the following lemma.

Lemma 3.2. Equation (3.2a) can be scaled so that λ = 1 and V = 1
3 , hence the differential

equation and boundary conditions become

(H2(x) +Hn−1(x))
d3H(x)

dx3
= −1

3
for x > 0 (3.3a)

H(x) = 0 for x = 0 (3.3b)

dH(x)

dx
= k (3V )−

1
3 =: k̃ > 0 (since V , k > 0) for x = 0 (3.3c)

d2H(x)

dx2
→ 0 as x→∞. (3.3d)

Proof. Let

H = λH̃ and x = (3V )
1
3 x̃λ. (3.4)

From this it follows that

dH

dx
=
dH̃

dx̃

dH

dH̃

dx̃

dx
=
dH̃

dx̃
(3V )

1
3

15



Chapter 3. Coordinate transformation and main theorem

and
d3H

dx3
=
d3H̃

dx̃3
dH

dH̃

(
dx̃

dx

)3

=
d3H̃

dx̃3
3V

λ2
.

Plugging these into equation (3.2a) we obtain(
λ2H̃2 + λ3−nλn−1H̃n−1

) 3V

λ2
d3H̃

dx̃3
= −V

and so equation (3.2a) becomes(
H̃2 + H̃n−1

) d3H̃
dx̃3

= −1

3
.

The boundary conditions follow directly from the definitions of H̃ and x̃ in (3.4).

3.2.1 Tanner’s law

Recall that we chose n ∈ [1, 3). So, when x tends to infinity, the term H2 dominates Hn−1

in equation (3.3a). This is why the expected behaviour of the differential equation (3.3a)
is determined by

H2d
3H

dx3
= −1

3
(3.5)

for large values of x. In section 1.2 from [Giacomelli et al., 2016] it is shown that

H = x(lnx)
1
3 (1 + o(1)) as x→∞

is a solution to the differential equation (3.5). Differentiating this equation with respect
to x, raising it to the power of three and undoing the normalization of the speed V gives(

dH

dx

)3

= 3V ln(x)(1 + o(1)). (3.6)

Equation (3.6) says that the cube of the macroscopic contact angle is, up to a logarithmic
correction, proportional to the speed of the contact line. This is referred to as Tanner’s
law.

3.3 Coordinate transformation

It can easily be seen that equation (3.3a) is invariant in x. For (3.3) we know that

• H > 0 for all x > 0

• d3H
dx3

< 0 for all x > 0 by (3.3a)

• d2H
dx2

> 0 for all x > 0 by (3.3d)

• dH
dx > 0 for all x > 0 by (3.3b). This is because

dH

dx

∣∣∣∣
x

=
dH

dx

∣∣∣∣
0︸ ︷︷ ︸

=k̃

+

∫ x

0

d2H

dx2

∣∣∣∣
x̃︸ ︷︷ ︸

>0 for x̃>0

dx̃ > k̃ > 0

for all x > 0.

16



Chapter 3. Coordinate transformation and main theorem

The above shows thatH is a strictly monotone function. Because of this property, equation
(3.3a) can be rewritten in terms of x as a function of H, getting rid of the translation
invariance in x. This will be changed slightly, as

ψ :=

(
dH

dx

)2

> 0 as a function of H (3.7)

will be used. This coordinate transformation is chosen because, as we will see in the next
lemma, the ordinary differential equation will change to be of order two instead of three.

Lemma 3.3. Using the coordinate transformation (3.7) the differential equation with
boundary conditions (3.3) turns into

d2ψ

dH2
+ ψ−

1
2φ(H) = 0 for H > 0 (3.8a)

where φ(H) =
2

3
(H2 +Hn−1)−1.

With boundary conditions

ψ = k̃2 at H = 0 (3.8b)

dψ

dH
→ 0 as H →∞. (3.8c)

Proof. Because of the definition of ψ(H) in equation (3.7), it can be seen that dψ
dx = dψ

dH
dH
dx .

Thus dψ
dH = dψ

dx

(
dH
dx

)−1
follows. It is easy to see that dψ

dx = 2 · dHdx
(
d2H
dx2

)
. Combining this

gives
dψ

dH
= 2 · d

2H

dx2
.

In a similar way we find that

d2ψ

dH2
= 2 ·

(
dH

dx

)−1 d3H
dx3

. (3.9)

Equation (3.3a) can be rewritten as follows:

d3H

dx3
+

1

3
(H2 +Hn−1)−1 = 0

=⇒
(
dH

dx

)−1(
2
d3H

dx3
+

2

3

(
H2 +Hn−1)−1) = 0

=⇒ 2

(
dH

dx

)−1 d3H
dx3

+

(
dH

dx

)−1(2

3
(H2 +Hn−1)−1

)
= 0

and this equation, using equations (3.9) and (3.7), can be written as equation (3.8a). The
boundary conditions (3.8b) and (3.8c) follow directly from the definition of ψ(H) in (3.7)
and the boundary conditions of (3.3).
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Chapter 3. Coordinate transformation and main theorem

3.4 The main result

The rest of this thesis is devoted to proving the following theorem, which is often referred
to as the main theorem.

Theorem 3.4. Let n ∈ [1, 3). The unique classical solution ψ(H) of (3.8) obeys the
following asymptotic behavior:
there exists a parameter B and a function R(H) such that

ψ(H) = ψT (BH)(1 +R(H)) for BH ≥ C, C > 0 (3.10)

where
R(H) = O

(
(log(H))−1H−(3−n)

)
as H →∞.

Here, B and R are C1-functions of k̃. Also, in the non-resonant case,

ψ(H) = k̃2(1 +O(Hα)) as H ↓ 0, (3.11)

where α = min{1, 3− n}. In the resonant case, it follows that

ψ(H) = k̃2
(
1 +O(H3−n −H log(H))

)
as H ↓ 0. (3.12)

In this theorem, equation (3.10) tells us what the behaviour of the solution ψ(H) to
equation (3.8a) is, with its boundary conditions as H → ∞. Since ψ(H) is defined as

ψ(H) =
(
dH
dx

)2
, this behaviour gives information about the macroscopic contact angle.

Because the parameter B depends on k̃2, it follows that the macroscopic contact angle is
dependent on the microscopic contact angle.

On the other hand, equation (3.11) and (3.12) give us information about the behaviour of
the solution for values of H close to zero. We can see from the equations that the value
of ψ(H) as H ↓ 0 is equal to k̃2 with a correction. This equation gives information about
the microscopic contact angle.
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Chapter 4

Reformulation as a dynamical
system

In this chapter a dynamical system (see definition 2.11) will be formulated to characterize
the error between ψ and k̃2 as H ↓ 0. In order to do this, first the contact line that is
now at H = 0 is shifted to s = −∞. This is done using the coordinate transformation
s = ln(H). A new unknown

1 + µ =
ψ

k̃2
(4.1)

is introduced. Here, µ is the error between ψ and k̃2. The coordinate transform and the
new unknown 1 + µ are used to rewrite the problem found in lemma 3.3

d2ψ

dH2
+ ψ−

1
2φ(H) = 0 for H > 0 (4.2a)

where φ(H) =
2

3
(H2 +Hn−1)−1.

ψ = k̃2 at H = 0 (4.2b)

dψ

dH
→ 0 as H →∞ (4.2c)

as a differential equation for µ. The new ordinary differential equation with boundary
condition is given by:

(
d2µ

ds2
+
dµ

ds

)
(1 + µ)

1
2 +

2

3k̃3(1− e(n−3)s)
= 0 for s ∈ R (4.3a)

lim
s→−∞

µ = 0. (4.3b)

This differential equation is obtained by using the definition of µ in equation (4.1), differ-
entiating this with respect to s (or to H using the coordinate transform), and plugging it
into equation (4.2a).

4.1 The dynamical system

Equation (4.3a) will now be reformulated as an autonomous three-dimensional continuous
dynamical system, using the additional functions

r(s) = e(3−n)s and p(s) =
dµ

ds
.
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Chapter 4. Reformulation as a dynamical system

The dynamical system becomes

d

ds

rµ
p

 = F (r, µ, p), (4.4)

where

F (r, µ, p) =

 (3− n)r
p

p− 2r

3k̃3(1+µ)
1
2 (r−1)

 .

This system is obtained by using the functions r and p, plugging them into equation (4.3a)
and rewriting this as a system of first order ordinary differential equations. It can be easily
checked that (0, 0, 0) is a fixed point of the system (4.4). In the next lemma we will see
that the unique solution of equation (4.2a) converges to the fixed point when s→ −∞.

Lemma 4.1. (r, µ, p)→ (0, 0, 0) as s→ −∞ for the unique solution of (4.2a).

Proof. For r, the following holds: r → 0 as s→ −∞, since r = e(3−n)s, and 3− n > 0 for
n ∈ [1, 3).
Then for µ we have that: µ = ψ

k̃2
− 1, and ψ

k̃2
→ 1 as s→ −∞. So µ→ 0 as s→ −∞.

To find out what happens to p when s→ −∞, equation (4.1) is differentiated. This gives:

p =
dµ

ds
=

1

k̃2
dψ

ds
=

1

k̃2
H
dψ

dH
.

It remains to show that H dψ
dH converges to 0. To do this, note that from equation (4.3b)

it follows that ψ = k̃2(1 + o(1)) as H ↓ 0 and equation (4.2a) gives

d2ψ

dH2
= −ψ−

1
2φ(H) = −k̃−1(1 + o(1))H1−n = k̃−1H1−n(1 + o(1))

as H ↓ 0. To get an expression for dψ(H)
dH , we do the following. Let ε > 0 be small. Then

dψ(H)

dH
=
dψ(ε)

dH
−
∫ ε

H

d2ψ(H̃)

dH2
dH̃ =

dψ(ε)

dH
+ k̃−1(1 + o(1))

∫ ε

H
H̃1−ndH̃

=

{
C(ε)− 1

k̃(2−n)H
2−n(1 + o(1)) for n 6= 2

C(ε)− k̃−1 log(H)(1 + o(1)) for n = 2

as H ↓ 0, where C(ε) is a constant depending on ε. This can be rewritten as
C(ε)(1 + o(1)) for 0 < n < 2

−k̃−1 log(H)(1 + o(1)) for n = 2
1

k̃(n−2)H
2−n(1 + o(1)) for 2 < n < 3

as H ↓ 0.

We can see that for n 6= 2, dψ
dH does not diverge as H ↓ 0 . If n = 2, H log(H) → 0 as

H ↓ 0. Now it is clear that H dψ
dH → 0 as H ↓ 0. So p→ 0 as s→ −∞.
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Chapter 4. Reformulation as a dynamical system

4.2 Linearization

Equation (4.4) can be linearized around the fixed point (0, 0, 0), resulting in

DF (0, 0, 0) =

3− n 0 0
0 0 1
2

3k̃3
0 1

 , (4.5)

where DF denotes the Jacobian matrix of F , evaluated in (0, 0, 0). The eigenvalues are
equal to 0, 1 and 3 − n. Because of these eigenvalues, it follows that the dimension of
the center manifold is one and the dimension of the unstable manifold is two (see defi-
nition 2.12) . When n 6= 2, all eigenvalues are distinct, so the linearized system can be
diagonalized as in theorem 2.2. Then it follows that

DF (0, 0, 0) = PDP−1,

where P =

0 0 −3(n−2)k̃3
2

1 1 − 1
n−3

0 1 1

 and D =

0 0 0
0 1 0
0 0 3− n

.

If n = 2 the eigenspace for eigenvalue 1, which turns up twice now, has dimension 1.
A generalized eigenvector is needed to get a generalized eigenspace of dimension 2. The
linearized system can now be written in Jordan form, as in theorem 2.4.

DF (0, 0, 0) = TJT−1,

where T =

0 0 3k̃3

2
1 1 1
0 1 2

 and J =

0 0 0
0 1 1
0 0 1

 .

From the linearization, we can see that the fixed point (0, 0, 0) is not hyperbolic (see def-
inition 2.13).

This linearization will be used in the following chapter to see which eigenvalues and (gen-
eralized) eigenvectors of this matrix correspond to the unstable manifold.
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Chapter 5

Resonances

In this chapter, the resonances of the unstable manifold of the linearized system as found
in the previous chapter will be calculated. For this, the next lemma is needed, where the
unstable manifold (see definitions 2.12 and 2.15) will be characterized.

Lemma 5.1. For n ∈ [1, 3) the unstable manifold M−(0, 0, 0) of the dynamical system
(4.4) can be parameterized by (r, µ). In particular we have

p = g(r, µ), (5.1)

where g satisfies

g(0, 0) = 0,
∂g

∂r
(0, 0) =

−n1
n3

and
∂g

∂µ
(0, 0) = 1. (5.2)

Here n1, n2 and n3 are given by the cross product of the vectors spanning the tangent space
to the unstable manifold. g(r, µ) is analytic on [0, ε]× [0, ε] for ε small enough. ε depends
on both k̃2 and n.

Proof. There are two cases which need to be distinguished, namely n = 2 and n 6= 2.
First, look at n 6= 2.
The tangent space to the unstable manifold, M−(0, 0, 0), is given by

span


0

1
1

 ,

−3(n−2)k̃2
2

− 1
n−3
1


 = span{v1, v2}.

If we say that

n = v1 × v2 =


1

n−3 + 1

− k̃3(3n−6)
2

k̃3(3n−6)
2

 =:

n1n2
n3

 ,

the equation

0 = n ·

rµ
p

 = n1 · r + n2 · µ+ n3 · p

can be rewritten so that p is expressed in terms of r and µ. When this is done, it follows
that p = −n1r−n2µ

n3
. Because of this, the unstable manifold around the stationary point

(0, 0, 0) can be parameterized by r and µ. We can say that p = g(r, µ).
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Chapter 5. Resonances

Now for n = 2. the tangent space to the unstable manifold is given by

span


0

1
1

 ,

3k̃3

2
1
2

 = span{v1, v3}.

Similarly as before, we can use

n = v1 × v3 =

 1
3k̃3

2

−3k̃3

2

 =:

n1n2
n3

 ,

to find that p = −n1r−n2µ
n3

. Also, M−(0, 0, 0) can be parameterized by r and µ, and we can
say that p = g(r, µ). It is now clear that the unstable manifold can be parameterized by r
and µ in both cases. Note that the function g(r, µ) can be found for both n = 2 and n 6= 2,
but that it is different in both cases. This is because the tangent spaces are different. The
partial derivatives of g in (0, 0) can easily be computed using the expressions found for
p.

The flow on the unstable manifold is now given by

d

ds

(
r
µ

)
= A

(
r
µ

)
+N (r, µ) (5.3)

because of lemma 5.1. Here, A denotes the linear part and N the nonlinear part of the
flow. In the next definition, the notion of a resonance is explained.

Definition 5.2. Let Λ = (λ1, λ2)
> contain the eigenvalues of A. Let q ∈ (N0)

2 and
define |q| = q1 + q2. The system in equation (5.3) has a resonance if there exist a vector
q = (q1, q2)

> and index k such that q>Λ = λk and |q| ≥ 2.

For the system (5.3) the resonances are characterized in the following lemma. The struc-
ture of this lemma is similar to [Belgacem et al., 2016, lemma 4.8], and the same strategy
of the proof is used.

Lemma 5.3. If n ∈ [1, 3) then resonances of (5.3) appear if

• n = 3− 1
m with m = 2, 3, . . . for q = (0, q2) and q2 ≥ 2,

• n = 1 for q = (2, 0)>.

Proof. Since Λ contains two eigenvalues, λ1 = 1 and λ2 = 3−n, there are two possibilities
for resonances to occur:

1. q1λ1 + q2λ2 = λ1

2. q1λ1 + q2λ2 = λ2

We will now look at the first case. If q1 ≥ 1, it follows that

q1λ1 + q2λ2
def 5.2
≥ min{λ1 + λ2, 2λ1} > λ1.

This means that no resonances can occur if q1 ≥ 1, so q1 has to be equal to 0. Now the
equation becomes

(3− n)q2 = 1, q2 ≥ 2,
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Chapter 5. Resonances

and this implies that

n = 3− 1

q2
, q2 ≥ 2

and this proves the first point of lemma 5.3.
Now, for the second possibility. If q2 ≥ 1, then

q1λ1 + q2λ2
def 5.2
≥ min{λ1 + λ2, 2λ2} > λ2.

So no resonances can occur if q2 ≥ 1, hence q2 = 0. Now, it follows that

q1 = 3− n, q1 ≥ 2

=⇒ n = 3− q1, q1 ≥ 2 and n ∈ [1, 3)

=⇒ n = 1 and q1 = 2.

This proves the second point in lemma 5.3.

Note that a resonance also occurs if n = 2, this follows from the linearization in the previous
chapter. When n = 2, not all eigenvalues are distinct and a generalized eigenvector is
needed to get a generalized eigenspace of dimension 2. The found resonances will be used
to distinguish a resonant and non-resonant case in the next chapter. This will be done by
considering values for n where resonances of the system (5.3) do or do not occur.
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Chapter 6

Fixed point problem

In this chapter, the existence of µ is shown. This is split in the non-resonant case in
section 6.1 and the resonant case in section 6.2.

6.1 Non-resonant case

For the non-resonant case, consider n ∈ [1, 3) with n 6= 3 − 1
m for m ∈ N. Note that

the case n = 1 is included in this section. The reason for this is stated in the proof of
proposition 6.1. From lemma 5.1 it follows that p = H dµ

dH = g(H3−n, µ). This can be
rewritten as (

H
d

dH
− 1

)
µ = G(H3−n, µ), (6.1)

where G(H3−n, µ) = g(H3−n, µ)− µ.

To continue, let x1 = H, x2 = H3−n and µ(H) = v(x1, x2). For n /∈
{

3− 1
m , m = 1, 2, 3, . . .

}
,

we can look at equation (6.1) by treating x1 and x2 as independent variables. Then we
can write(

x1
∂

∂x1
+ (3− n)x2

∂

∂x2
− 1

)
v = G(x2, v) around (x1, x2) = (0, 0). (6.2)

Now, x1 is in the kernel of the linear operator in (6.2). The boundary conditions are taken
as (

v,
∂v

∂x1

)
= (0, b) at (x1, x2) = (0, 0).

Note that the dependence of v on b is implicit, this is made explicit using

w(x1, x2, x3) + x3 = v(x1, x2) with x3 = bx1.

Then it follows that(
x1

∂

∂x1
+ (3− n)x2

∂

∂x2
+ x3

∂

∂x3

)
w + x3 =

(
x1

∂

∂x1
+ (3− n)x2

∂

∂x2
− 1

)
v.

The new differential equation becomes(
x1

∂

∂x1
+ (3− n)x2

∂

∂x2
+ x3

∂

∂x3

)
w + x3 = G(x2, w + x3) around (x1, x2, x3) = (0, 0, 0)

(6.3a)(
w,

∂w

∂x1
,
∂w

∂x3

)
= (0, 0, 0) at (x1, x2, x3) = (0, 0, 0) (6.3b)
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Chapter 6. Fixed point problem

Proposition 6.1. (non-resonant case). Let n ∈ [1, 3), n 6= 3 − 1
m for m ∈ N. Let

0 < ε ≤ C, C > 0. Then (6.3) has an analytic solution w = w(x1, x2, x3) for (x1, x2, x3) ∈
[0, ε]× [0, ε2]× [−ε, ε].

Proof. In this proof, equation (6.3) is rewritten as a fixed point problem in the following
way:

w = T G(x1, x2, w + x3). (6.4)

Here, the linear operator T is defined by

T g(x1, x2, x3) :=
∑

(k,l,p)∈I

∂k

∂xk1

∂l

∂xl2

∂p

∂xp3
g(0, 0, 0)

k + (3− n)l + p− 1
xk1x

l
2x
p
3

where I = (N0)
3\{(0, 0, 0), (1, 0, 0), (0, 0, 1)}. Since the denominator does not vanish for

n = 1, this proposition also holds for this value of n. To construct a solution for w using
Banach’s fixed point theorem 2.10, the following sub-multipicative norm is used:

||w|| :=
∑

(k,l,p)∈I

εk+2l+p

k!l!p!

∣∣∣∣ ∂k∂x1 ∂l

∂x2

∂p

∂x3
w(0, 0, 0)

∣∣∣∣ (6.5)

The rest of the proof can be found in [Belgacem et al., 2016, proposition 4.9].

6.2 Resonant case

For the resonant case, consider n ∈
{

3− 1
m , m = 1, 2, 3, . . .

}
. Let y = H

1
m and G(y, µ) =

m(g(y, µ)− µ), then equation (6.1) becomes(
y
d

dy
−m

)
µ = G(y, µ).

Similar to the non-resonant case, let y1 = ym log y, y2 = y and v(y1, y2) = µ(y). Writing
y d
dy as (my1 + ym2 ) ∂

∂y1
+ y2

∂
∂y2

, equation (6.2) becomes(
(my1 + ym2 )

∂

∂y1
− y2

∂

∂y2
−m

)
v = G(y, v) around (y1, y2) = (0, 0). (6.6)

Now ym2 is in the kernel of the linear operator in (6.6). The boundary conditions are taken
as

(v,
∂m

∂ym2
v) = (0, bm!) at (y1, y2) = (0, 0).

The dependence on b is made explicit by using

w(y1, y2, y3) + y3 = v(y1, y2) if y3 = bym2 .

Then it follows that(
(my1 + ym2 )

∂

∂y1
+ y2

∂

∂y2
+my3

∂

∂y3
−m

)
w +my3 =

(
(my1 + ym2 )

∂

∂y1
+ y2

∂

∂y2

)
v.

We get a differential equation of the form(
(my1 + ym2 )

∂

∂y1
+ y2

∂

∂y2
+my3

∂

∂y3
−m

)
w = G(y2, µ) around (y1, y2, y3) = (0, 0, 0)

(6.7a)(
w,
∂mw

∂ym2
,
∂w

∂y3

)
= (0, 0, 0) at (y1, y2, y3) = (0, 0, 0).

(6.7b)
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Chapter 6. Fixed point problem

Proposition 6.2. (resonant case). Suppose n = 3 − 1
m , m ∈ N. Let 0 < ε ≤ C, C > 0.

Then (6.7) has an analytic solution w = w(y1, y2, y3) for (y1, y2, y3) ∈ [0, ε2] × [0, ε2] ×
[−ε, ε].

Proof. Equation (6.7a) is rewritten as a fixed point problem as follows:

w = T G(y1, w + y3).

The definition of the linear operator T is different from the definition of T in the proof of
proposition 6.1. The T that is needed here is defined inductively in the proof of [Belgacem
et al., 2016, proposition 4.10]. The norm that is needed for using Banach’s fixed point
theorem is

||w|| :=
∑

(k,l,p)∈I

ε2mk+2l+p

k!l!p!

∣∣∣∣ ∂k∂y1 ∂l

∂y2

∂p

∂y3
w(0, 0, 0)

∣∣∣∣ .
This norm is also sub-multiplicative. The rest of the proof can be found in [Belgacem
et al., 2016, proposition 4.10].
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Chapter 7

Proof of the main result

To be able to prove the main theorem, a few more results are needed. This is split into two
sections, a section where two important propositions are given, and a section about the

linear independence of
(
∂ψb
∂b ,

∂
∂H

∂ψb
∂b

)
and

(
∂ψB
∂B , ∂

∂H
∂ψB
∂B

)
. This result will be needed for

the use of the implicit function theorem in the proof of the main theorem. The propositions
characterize two solution manifolds to

d2ψ

dH2
+ ψ−

1
2φ(H) = 0 for H > 0 (7.1a)

where φ(H) =
2

3
(H2 +Hn−1)−1.

with boundary conditions

ψ = k̃2 at H = 0 (7.1b)

dψ

dH
→ 0 as H →∞. (7.1c)

7.1 Two important propositions

In this section, we look into two propositions. The first proposition characterizes the
solution curve for values of H close to zero. The second proposition does the same as
H goes to infinity. For this proposition, the results are the same as in [Giacomelli et al.,
2016], since in partial and complete wetting the film behaves the same near infinity.

Proposition 7.1. For all b ∈ R there exists a function µb(H) for H < c ·max{1, b−1}, c
constant, such that

ψb(H) = k̃2(1 + µb(H)) (7.2)

is a solution to (7.1a) and its first boundary condition. Also

µb(H) = bH + w(H,H3−n, bH), (7.3)

where w is a solution of (6.3) in the non-resonant case. In the resonant case we have

µb(H) = bH + w(H log(H3−n), H3−n, bH), (7.4)

where w is a solution of (6.7). Furthermore, µb depends smoothly on k̃. Also, the boundary
condition

∂ψb
∂b

(H) = k̃2(H +
∂w(H,H3−n, bH)

∂bH
H) as H ↓ 0 (7.5)

holds.
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Proof. In the way µ was constructed in subsections 6.1 and 6.2 it follows that µb has
the form as in (7.3) and (7.4). From propositions 6.1 and 6.2 it follows that in both the
resonant and non-resonant case an analytic solution w exists for all b ∈ R. From the defi-
nition of µ, 1 + µ = ψ

k̃2
, it follows that ψb(H) has the form as in (7.2). Thus, for all b ∈ R

there exists a µb(H) such that ψb(H) is a solution of (7.1a) and its first boundary condition.

To look at the smooth dependence of µb on k̃, the fixed point problem from proposi-
tions 6.1 and 6.2 is used. For readability, write G(x2, w + x2) = G(w) in the case of no
resonances, and write G(y2, w + y3) = G(w) in the resonant case. The proof works the
same in the resonant and non-resonant case, so the same notation can be used. The fixed
point problem can then be written as

wk̃ = T Gk̃(wk̃),

where T is a linear operator as defined in the proof of proposition 6.1 or 6.2. The subscript
k̃ is used to denote the dependence of w and G on that parameter. Let k̃1 and k̃2 be
different values of k̃ > 0. Then

wk̃1 − wk̃2 = T Gk̃1(wk̃1)− T Gk̃2(wk̃2)

= T
[
Gk̃1(wk̃1)−Gk̃2(wk̃2)

]
(because T is a linear operator)

= T
[
Gk̃1(wk̃1)−Gk̃2(wk̃1)

]
+ T

[
Gk̃2(wk̃1)−Gk̃2(wk̃2)

]
⇐⇒

wk̃1 − wkt
k̃1 − k̃2

= T
[
Gk̃1(wk̃1)−Gk̃2(wk̃1)

k̃1 − k̃2

]
+ T

[
Gk̃2(wk̃1)−Gk̃2(wk̃2

k̃1 − k̃2
)

]
. (7.6)

When in equation (7.6) the limit of k̃2 to k̃1 is taken, it follows that

∂wk̃1
∂k̃1

= T

[
∂Gk̃1(wk̃1)

∂wk̃1

∂wk̃1
∂k̃1

]
+ T

[
∂Gk̃1(wk̃1)

∂k̃1

]

= T

[
∂Gk̃1(wk̃1)

∂wk̃1

∂wk̃1
∂k̃1

+
∂Gk̃1(wk̃1)

∂k̃1

]
.

This is rewritten as a fixed point equation for φ :=
∂wk̃1

∂k̃1
, which gives

φ = T

[
∂Gk̃1(wk̃1)

∂wk̃1
φ+

∂Gk̃1(wk̃1)

∂k̃1

]

⇐⇒
(
I − T

[
∂Gk̃1(w∂k̃1)

k̃1

])
φ = T

[
∂Gk̃1(wk̃1)

∂k̃1

]
Using the Neumann series, see theorem 2.5, we find that

φ =

(
I − T

[
∂Gk̃1(w∂k̃1)

k̃1

])−1
T
[
∂Gk̃1(wk̃1)

∂k̃1

]
if

∣∣∣∣∣∣∣∣T [∂Gk̃1
(wk̃1

)

∂k̃1

]
φ

∣∣∣∣∣∣∣∣ ≤ C||φ|| and C < 1, where the sub-multiplicative norm is taken as

in the proof of proposition 6.1 or 6.2 in respectively the non-resonant and resonant case.
Because of the sub-multiplicativity, and because for the linear operator T we know that
||T g|| ≤ D||g|| for some constant D > 0, we can write∣∣∣∣∣∣∣∣T [∂Gk̃1(wk̃1)

∂k̃1

]
φ

∣∣∣∣∣∣∣∣ ≤ D ∣∣∣∣∣∣∣∣∂G∂w
∣∣∣∣∣∣∣∣ · ||φ||. (7.7)
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From the definition of G and lemma 5.1 it follows that ∂G
∂µ = 0 for all values of k̃. So also

∂G
∂w = 0, which leads to the estimate ||∂G∂w || < ε for all ε > 0. If we choose ε < 1

D , then it
follows that C = Dε < 0, so ∣∣∣∣∣∣∣∣T [∂Gk̃1(wk̃1)

∂k̃1

]
φ

∣∣∣∣∣∣∣∣ ≤ C||φ||.
Hence, the dependence of w on k̃ is smooth, so also the dependence of µb = wb + bH on k̃
is smooth.

The boundary condition of equation (7.5) can be obtained by differentiating (7.2) with
respect to b.

Proposition 7.2. For all B > 0, there exists a function RB(H) for H ≥ C(1 + B−1),
C > 0, such that

ψB(H) = ψT (BH)(1 +RB(H)) for H ≥ C(1 +B−1), C > 0

gives a solution of (7.1a) and its second boundary condition. ψT (H) is the unique classical
solution of

d2ψ

dH2
+

2

3
ψ−

1
2H−2 = 0 for H > 0

dψ

dH
→ 0 as H →∞,

where

(ψT (H))
3
2 = lnH − 1

3
ln lnH + o(1) as H →∞.

Also

|RB(H)| ≤ D
(
B3−n(ln(H))−1H−(3−n)

)
, D > 0, H ≥ C(1 +B−1), C > 0.

The correction RB(H) has, locally in H, a C1-dependence on B, k̃ and the boundary
condition

∂

∂H

∂ψB
∂B

= − 2

9B
(ln(H))−

4
3H−1(1 + o(1)) as H →∞

is satisfied. Furthermore, there exists a B > 0 such that the unique solution ψ of (4.2a)
is the same as ψB.

Proof. The proof can be found in [Giacomelli et al., 2016, prop 3.1].

7.2 Linear independence

The solutions that are constructed in propositions 7.1 and 7.2 fulfill the following boundary
conditions, see (7.1b) and (7.1c):

ψb = k̃2 at H = 0 (7.9a)

∂ψB
∂H

→ 0 as H →∞. (7.9b)

When ψb is differentiated with respect to b, we find that ∂ψb
∂b = 0 at H = 0. Let (ψ, η) ∈{

(ψb,
∂ψb
∂b ), (ψB,

∂ψB
∂B )

}
. If b and B are chosen such that ψb = ψB =: ψ, then both ∂ψb

∂b and
∂ψB
∂B exist globally and satisfy

d2η

dH2
− 1

2
ψ

3
2φ(H)η = 0. (7.10)
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Equation (7.10) is obtained by differentiating (7.1a) to b or B, depending on the choice of
η. That the derivative of ψ to b and B exist globally is because of the C1-dependence of
ψb and ψB on b and B respectively. For equation (7.10) we have the following result:

Lemma 7.3. Suppose that ψ is the unique classical solution of (7.1a) and its boundary
conditions, and η ∈ C0([0,∞)) ∩ C2((0,∞)) is a solution of (7.10) fulfilling

η = 0 at H = 0 (7.11)

and

dη

dH
→ 0 at H →∞. (7.12)

Then η ≡ 0.

Proof. Consider the function η2 ≥ 0. Note that

1

2

d2η2

dH2
=

1

2

d

dH

[
2η

dη

dH

]
= η

d2η

dH2
+

(
dη

dH

)2

and thus
1

2

d2η2

dH2
= η

d2η

dH2
+

(
dη

dH

)2
(7.10)

=
1

2
ψ−

3
2φ(H)η2 +

(
dη

dH

)2

≥ 0.

From this it follows that dη2

dH is increasing. Also, η2 = 0 at H = 0 by (7.11) and η2 ≥ 0 for

H > 0, which implies that dη2

dH ≥ 0 at H = 0. Hence, dη2

dH ≥ 0 for all H ≥ 0. Note that

dη2

dH
= 2η

dη

dH
=⇒ η

dη

dH
=

1

2

dη2

dH
,

which gives that

d

dH

(
dη

dH

)2

= 2
dη

dH

d2η

dH2

(7.10)
= ψ−

3
2φ(H)η

dη

dH
=

1

2
ψ−

3
2φ(H)

dη2

dH
≥ 0.

So
(
dη
dH

)2
≥ 0 is increasing. Condition (7.12) implies that

(
dη
dH

)2
= 0 when H approaches

infinity. Hence,
(
dη
dH

)2
≡ 0 and also dη

dH ≡ 0. This means that η must be constant and

from (7.11) it follows that η ≡ 0.

For the next corollary, the following lemma is needed:

Lemma 7.4. For the first order linear system

y′(t) = A(t)y(t), (7.13)

where A is continuous in time, the following holds: two solutions of the system are linearly
dependent for one value t0 if and only if the two solutions are linearly dependent for all t.

Proof. For the first order linear system (7.13) it is known that, with initial condition
y0 = y(t0), the solution is unique. Suppose y1 and y2 are solutions of (7.13), and that
they are linearly independent for time t0, i.e., there exist a1, a2 ∈ R such that

a1y1(t0) + a2y2(t0) = 0.
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Here, a1 and a2 cannot both be equal to zero. Define y(t) = a1y1(t)+a2y2(t). By linearity,
y(t) is a solution of (7.13) with y(t0) = 0. Because also the constant solution 0 solves
(7.13) with initial condition 0, it is necessary that y(t) = 0 for all t. This means that

a1y1(t) + a2y2(t) = 0

for all t, so y1 and y2 are linearly dependent. The converse is trivial.

From lemma 7.4 it also follows that two solutions of the system (7.13) are linearly inde-
pendent for one value t0 if and only if the two solutions are linearly independent for all t.
This result is needed in the following corollary.

Corollary 7.5. Suppose that for every n ∈ [1, 3) the parameters b, B ∈ R are chosen so
that ψb = ψB =: ψ, where ψ is the unique classical solution of (7.1a). Then, the vectors(

∂ψb
∂b

,
∂

∂H

∂ψb
∂b

)
and

(
∂ψB
∂B

,
∂

∂H

∂ψB
∂B

)
(7.14)

are linearly independent for all H > 0.

Proof. Because of propositions 7.1 and 7.2 these values of b and B can be chosen. From
lemma 7.4 we know that for the vectors (7.14) to be linearly independent for all H > 0,
we only have to show that they are linearly independent for one H > 0. Looking into the
structure of these vectors, it is clear that they can only be independent if the functions ∂ψb

∂b

and ∂ψB
∂B are linearly independent. This will now be proven in the following way: suppose

that

αb
∂ψb
∂b

+ αB
∂ψB
∂B

≡ 0 (7.15)

for some αb, αB ∈ R. By proposition 7.1 we know that ∂ψb
∂b 6≡ 0, and because ∂ψb

∂b fulfills

(7.11) it cannot fulfill (7.12). Because ∂ψB
∂B fulfills (7.12), it must hold that αb = 0. Since

it is also known that ∂ψB
∂B 6≡ 0, it is also necessary that αB = 0.

This lemma tells us that geometrically the solution manifolds{(
H,ψb,

∂ψb
∂b

)}
and (7.16a){(

H,ψB,
∂ψB
∂B

)}
(7.16b)

are transversal, i.e. the manifolds are not tangent along their intersection line.

7.3 Proof of the main theorem

The main theorem is

Theorem 7.6. Let n ∈ [1, 3). The unique classical solution ψ(H) of (7.1) obeys the
following asymptotic behavior:
there exists a parameter B and a function R(H) such that

ψ(H) = ψT (BH)(1 +R(H)) for BH ≥ C, C > 0 (7.17)

where
R(H) = O

(
(log(H))−1H−(3−n)

)
as H →∞.
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Here, B and R are C1-functions of k̃. Also, in the non-resonant case,

ψ(H) = k̃2(1 +O(Hα)) as H ↓ 0, (7.18)

where α = min{1, 3− n}. In the resonant case, it follows that

ψ(H) = k̃2
(
1 +O(H3−n −H log(H))

)
as H ↓ 0. (7.19)

Proof. Because of the uniqueness result in [Chiricotto and Giacomelli, 2011], we know that
the solution manifolds (7.16a) and (7.16b) intersect in exactly one curve that defines the

unique solution of the dynamical system
(
H, dψdH ,

d2ψ
dH2

)
corresponding to (7.1a). So, this

means that there exist a unique b and B such that ψb(H) = ψB(H) =: ψ(H), where ψb(H)
and ψB(H) are as in propositions 7.1 and 7.2. The order of the errors in the non-resonant
and resonant case follow from (7.3) and (7.4) respectively.

It remains to show that b(k̃) and B(k̃) are C1-functions of k̃. Define f1 = ψB(H)−ψb(H)

and f2 = ∂ψB(H)
∂H − ∂ψb(H)

∂H . Note that f =

(
f1
f2

)
equals zero on the solution curve. Because

of corollary 7.5, we have that

det

(
∂ψB(H)
∂B

∂
∂B

∂ψB(H)
∂H

∂ψb(H)
∂b

∂
∂b
∂ψb(H)
∂H

)
6= 0.

Now, the implicit function theorem (theorem 2.8) gives a locally continuously differentiable

map g(k̃) =

(
B(k̃)

b(k̃)

)
, so B and b are locally C1-functions of k̃.

7.4 Conclusion

In this thesis the goal was to investigate the asymptotic behaviour of the solution to the
thin-film equation in partial wetting. To do this, the thin-film equation was first rewritten
as a third order ordinary differential equation. After a coordinate transformation, this
differential equation was reduced to second order. The obtained problem is given by

d2ψ

dH2
+ ψ−

1
2φ(H) = 0 for H > 0

where φ(H) =
2

3
(H2 +Hn−1)−1

with boundary conditions

ψ = k̃2 at H = 0

dψ

dH
→ 0 as H →∞.

Here the boundary condition ψ = k̃2 > 0 at H = 0 follows from the partial wetting state.

A class of solutions ψB(H) as H → ∞ was constructed in [Giacomelli et al., 2016]. In
this thesis a class of solutions ψb(H) was constructed that obeys the boundary condition
at H = 0. This class of solutions has the form ψb(H) = k̃2(1 + µb(H)). Here, µb(H)
is different depending on the (resonant or non-resonant) value of n. The intersection of
ψB(H) and ψb(H) defines the unique solution ψ(H) to the problem defined above. This
solution has a local C1-dependence on k̃2.
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