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Abstract

The growing field of research into batteryless or intermittent systems has en-
abled Internet of Things applications that were previously impossible. For ex-
ample, the FreeBie system recently introduced Bluetooth Low-Energy (BLE)
to intermittent devices, making medium to long range bi-directional communic-
ation a reality for the first time. However, this achievement also highlighted
that some inefficiencies considered acceptable for conventional systems are un-
acceptable when working in the intermittent domain. Our key insights are that
intermittent peripherals should dictate the connection parameters and not the
central, that connection setup overhead should be reduced as much as possible,
and that connection parameter updates should be applied faster. To achieve
these goals, we 1) introduce a method of sharing connection parameters before
a connection is made, 2) introduce methods of caching connection setup packets
together with a reconnect procedure called Fast Reconnect that reduces con-
nection setup to a single packet, and 3) apply 1 and 2 in a dynamic algorithm
called FRAPPUCcInO that controls connection rate based on energy harvest-
ing capabilities. These three solutions allow intermittent BLE to be used in
environments with less ambiently available energy than before by improving
efficiency and responsiveness.
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“Never gonna give you up” – Richard P. Astley
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Chapter 1

Introduction

Powered by the decreasing process-node sizes, more efficient battery chemistry,
and expanding wireless communication infrastructure, billions of Internet of
Things (IoT) devices have entered our lives [1, 10]. However, the promise of
“smart dust” seems to elude us still [8]. In this vision, tiny internet-connected
devices permeate our clothing, infrastructure, and more, enabling us to monitor
everything [9].

One of the key aspects of wireless devices holding us back from this idea
is the reliance on rechargeable, chemical batteries like those based on lithium.
The lifespan of these batteries is severely limited by the number of charge cycles
they can withstand before slowly reducing their total capacity. Moreover, even if
they could maintain the same capacity throughout their entire lifespan, charging
billions of sensor nodes is inconvenient, if not impossible, especially if they
are embedded in concrete structures for maintenance monitoring purposes, for
example.

The field of battery-free or batteryless computing aims to solve this by en-
tirely ridding these devices of conventional batteries, opting to use capacitors
as energy reserves instead [6, 8, 20]. Capacitors provide numerous advantages
compared to pouch or cylinder style lithium batteries, like tiny form factor, no
leakage current, solid state architecture, and practically infinite lifetime, at least
compared to other components within the device.

Battery-free devices usually get their energy from harvesting. These sources
could include solar (through photovoltaic cells) [5, 4], radio-frequency (through
induction within the antennae) [7, 18], kinetic (e.g. by pressing buttons that
capture kinetic energy) [5] and sometimes a combination of two or more meth-
ods. As one might imagine, these sources are sparse and can be unpredictable.

To conserve energy as much as possible, these devices often only power up
parts of the system that are strictly necessary. This can take the form of the
system only receiving power from its harvesting when being used (e.g., energy-
harvesting buttons in smart light switches) or the system scheduling its own
power-on events using low-power circuitry. This mode of operation is often called
intermittent computing and these devices intermittent or intermittently-powered
devices. Figure 1.1 shows how these devices operate versus conventionally-
powered devices.

Intermittently-powered operation makes wireless communication difficult. In
the state-of-the-art solutions for intermittently-powered devices, Uni-directional
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Figure 1.1: Intermittently-powered device operation versus a
conventionally-powered device operation (Figure taken from [6]).
When the conventional, non-protected system exhibits a power fail-
ure, all network state is lost, and the handshake procedure has to be
fully restarted. An intermittently-powered device powers itself down
in between network events in order to conserve energy as well as be-
ing able to fully recover from a power failure as if it was operating
normally.

communication has been achieved by advertising data when enough power is
available. For example, bi-directional communication has been realized at a
short range using RFID. With RFID technology, a reader “interrogates” a device
that communicates back utilizing the principle of backscatter [18]. Although
RFID is bi-directional, it requires a reader to energize the sensor devices at a
short distance. As a result, medium-range, high throughput, intermittently-
powered communication with active radios has not been possible until very
recently. The system proposed by [6], called FreeBie, aims to solve this. It
does so by using Bluetooth Low-energy and noting that, between transmission
events, the System on Chip (SoC) could be powered down fully, only leaving on
an ultra-low-power real-time clock (RTC) tasked with turning the SoC back on
just in time for the next transmission. By doing so [6] achieved the first ever
battery-free devices capable of maintaining a wireless connection of a widely
accepted standard. Even though BLE, as the name would suggest, has been
developed for low-energy peripherals, its use within an intermittently-powered
device has exposed some inefficiencies previously considered acceptable.

The work within this thesis will be based on the FreeBie system. By modifying
the BLE stack source code, we aim to mitigate the inefficiencies of FreeBie.
What these inefficiencies are will be discussed in the next section.

Problem Statement

To provide context, we would like to reiterate that intermittent devices receive
power by harvesting ambient energy. Although the variability and unreliability
of power is the root issue with energy harvesting systems, this can not be solved.
However, it does provide context as to why the following issues do not exists
with conventionally-powered BLE devices.
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The first problem arises when the connection is formed. When the central,
for example, an Android phone, initiates a connection with a peripheral, in this
case FreeBie, it gets to decide the initial connection settings. These connec-
tion settings define the baseline connection speed and, as a result, the power
consumption of the peripheral. After the connection setup, the peripheral can
request more suitable connection parameters. However, this means that during
the connection setup, we have to contend with the default connection paramet-
ers of the central. In the case of a phone running the Android operating system
(OS), these settings are high-throughput and high power consumption.

These unfavorable connection parameters forced FreeBie’s designers to use
capacitor sizes within FreeBie that, after the connection setup is finished, go
mostly unused [6]. This means the device as a whole increased in size and cost.

The connection setup itself also has room for improvement. In the naive
approach used in common frameworks, like Packetcraft and Zephyr, the con-
nection setup is long and repetitive. For even a simple application, the number
of packets required to set up can easily exceed 70 packets, which can be seen in
Figure 4.1. At Android’s fast settings, this already takes a few seconds. Using
slower settings, which are more favorable for these ultra-low power devices, the
setup can take up to three minutes. With more complex applications, these
numbers increase rapidly.

Considering the variability of the power harvesting methods that these devices
employ, it is often advantageous to switch to a faster connection configuration
when plenty of energy is available or even crucial to switch to a slower connection
configuration to protect against a power failure. Using the procedures available
within the BLE specification, it takes a fixed six packets for the central to apply
the connection settings after accepting them from the peripheral. This takes
anywhere between tens of milliseconds to a minute, depending on the active
connection parameters.

Take as an example an intermittent device that takes its power from solar. If
someone were to accidentally block the solar panel, then at the lowest connection
settings, the device would not be able to throttle the connection fast enough to
protect itself against a power failure. From all these remarks, we can gather at
least three possible goals to improve BLE for use within intermittently-powered
devices:

1. Goal 1: Allow the Peripheral to dictate the initial connection parameters.

2. Goal 2: Reduce the time required for the connection setup.

3. Goal 3: Reduce the time required to apply new connection parameters.

This thesis will address these the above three points with the general goal of
improving the viability of BLE for intermittently-powered devices.

Chapter 2 covers the necessary background information. Chapter 3 will ex-
plain the architecture of the proposed solutions. Chapter 4 validates and evalu-
ates the efficacy of these solutions. Chapter 5 will discuss future work. Finally,
Chapter 6 will draw a conclusion from the evaluation.
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Chapter 2

Background

In 1996, Intel, Ericsson, and Nokia came together with the goal of standardizing
short-range radio technology for connectivity between different products across
many industries. The resulting technology was codenamed Bluetooth, lending
its name to King Harald “Bluetooth” Gormsson, who was known for uniting
Denmark and Norway in 958 and, more importantly, for his dead blue tooth
[23]. From this collaboration, the Bluetooth Special Interest Group (SIG) was
formed, which released its first version of the standard in 1999. Today, Bluetooth
SIG has over 36 thousand members [22].

Bluetooth 4.0 first introduced Bluetooth Low-Energy (BLE) with a focus on
low-power devices like wireless headphones and location beacons. BLE was not
intended to replace the classic Bluetooth, now called Bluetooth Basic Rate/En-
hanced Data Rate (BR/EDR), but to live alongside it and expand on the feature
set available.

Since its inception, Bluetooth has become one of the most ubiquitous wireless
communication technologies, reaching nearly 100% market saturation in plat-
form devices (phones, tablets, and PCs) [21]. In 2022, over 5.1 billion devices
were shipped with Bluetooth radios, projected to grow to 7 billion by 2026. By
that time, Bluetooth SIG expects 95% of all Bluetooth devices to support the
LE-variant, highlighting BLE’s importance.

In this chapter, the background information will be covered to understand
the architecture of the solutions proposed to fix the inefficiencies mentioned in
Chapter 1. This information includes a high-level overview of the BLE stack,
an explanation of the Operating Systems (OS) used to implement the solutions,
and some useful definitions. For a more comprehensive explanation of BLE and
how to implement it, we refer to Getting Started with Bluetooth Low Energy
[26].

2.1 Wireless Connection

Within the Bluetooth Low-Energy connection, there exists a clear hierarchy,
where one device is dominant and is called the central. The central is in control
of the connection and is usually a phone or a laptop. The other side of the
connection (one or more) is called the peripheral. Typical peripheral devices
include headphones, smart watches, IoT sensors, and push buttons.
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For this thesis, we define three phases for a BLE connection. These phases
are:

� Unconnected : Before any connection is established between the central
and the peripheral.

� Connection Setup: Starts from the connection request and ends when the
last non-application packet is sent.

� Application: Starts when connection setup is finished, and only applica-
tion packets are sent. Application packets are packets that are necessary
to fulfill the application.

These terms are not officially defined by the BLE specification but are used
throughout this thesis.

2.2 Connection Setup

As previously defined in Section 2.1, the connection setup starts from the Con-
nection Request and ends when the last non-application packet is sent. The
packets that occur during Connection Setup can be divided into four groups
which correspond to the subjects discussed in the previous sections.

� Link Layer

� Service Discovery

� Configuration

� Application

The order in which they occur is usually Service Discover, Configuration, and
then Application, with Link Layer communication starting parallel to the Ser-
vice Discovery from the start.

2.3 Architecture of the Bluetooth Low-energy
Stack

As seen in Figure 2.1, the BLE stack is divided into many layers with increas-
ing levels of abstraction. The bottom-most layers, the Physical Layer (PHY)
and Link Layer (LL), form the controller, which is responsible for controlling
the connection. The top-most layers, the Generic Access Profile (GAP), Secur-
ity Manager (SM), Generic Attribute Protocol (GAP), and Attribute Protocol
(GATT), provide higher level functionality and APIs which, together with the
Logical Link Control and Adaption Protocol (L2CAP) form the host.

The separation of the host and controller is derived from how Bluetooth
BR/EDR is implemented, where the host and controller can be implemented
separately or even exist on different chips entirely. The host and controller
are connected together using a Host-Controller Interface. This separation also
allows a single radio to be used simultaneously with a BR/EDR and BLE con-
troller and a generic host to support both versions of Bluetooth.
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Figure 2.1: The BLE Network Stack. The controller is comprised of the
Physical Layer and the Link Layer. The Generic Access Profile, Se-
curity Manager, Generic Attribute Protocol, and Attribute Protocol
messages get translated by the Logical Link Control and Adaption
Protocol and together form the host. The Host-Controller Interface
exists between the host and controller.

Nordic Semiconductors supplies the SoftDevice for its microcontrollers, which
contains the host and controller in a single qualified, pre-compiled binary [14].
The Zephyr framework can interface with Nordic’s SoftDevice Controller through
HCI or, since version 3.0.0, supports its own custom Zephyr BLE Controller.
Packetcraft implements the entire stack from application to PHY.

2.3.1 Physical Layer

The PHY operates at the unlicensed 2.4GHz ISM (industrial, scientific, and
medical) band and uses Gaussian frequency-shift keying (GFSK) modulation
with adaptive frequency-hopping to reduce collisions. The 2.4GHz band is di-
vided into 40 channels from 2.4000GHz to 2.4835GHz. The radio calculates the
next hop using the formula:

channelnew = (channelcurrent + hop) modulo 37

where the value hop is exchanged when the connection is established.
BLE has a theoretical maximum throughput of 1Mbps for version 4.2 and

2Mbps for version 5.0. However, in practice, this lies much lower. In normal
operation (uncoded), every bit is represented by one symbol. From version 5.0
onwards, BLE supports Coded PHY where a single bit is represented by 2 to 8
symbols for improved range but reduced throughput.

2.3.2 Link Layer

The link layer (LL) directly controls the PHY and manages the link state. The
link layer is the only hard real-time layer of the BLE stack and is partly hardware
dependent. For this reason, it is usually implemented and kept separate from
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Figure 2.2: Link Layer state machine diagram. In the standby state,
no packets are received or transmitted. Advertisers send advertising
packets without a connection, scanners receive advertising packets
without the intention of connecting, and initiators initiate a connec-
tion with advertisers, which then become the centrals and peripher-
als, respectively.

the rest of the stack. However, Zephyr goes even further and splits the link
layer into an upper and a lower link layer (ULL and LLL, respectively), where
the ULL is hardware agnostic and generic, and the LLL is hardware specific.

States and Roles

The link layer can be described as a system of one or more state machines. The
states that each LL state machine can occupy are shown in Figure 2.2. The link
layer should have at least one LL state machine that supports Advertising or
Scanning.

The link layer in standby does not receive or transmit any packets. When
the link layer moves from standby to advertising, the link layer takes on the
role of advertiser. As an advertiser, the link layer transmits advertising channel
PDUs and possibly responds to requests from other devices for more data. The
different types of advertising packets and their content will be discussed later.

A link layer in the scanning state takes on the role of a scanner. In this role,
it can listen for advertising packets and consume their content, but it can not
form a connection with the advertiser.

If a device intends to form a connection with an advertiser, it should enter
the intitiating state, taking on the role of initiator. When an advertisement
packet is received, the initiator can respond with a CONNECT IND packet to form
a connection. After a connection is formed, the initiator becomes the central
and the advertiser becomes the peripheral. The central defines the timing of
transmission events.

The synchronization state is used to listen to periodic advertising trains from a
specific device within its Broadcast Isochronous Group (BIG). The isochronous
broadcasting state is used to broadcast data to a group of devices in a BIG.

8



Advertising Type Connectable Scannable Directed
ADV IND Yes Yes No
ADV DIRECT IND Yes No Yes
ADV NONCONN IND No No No
ADV SCAN IND No Yes No

Table 2.1: Primary advertising PDU types.

Figure 2.3: When a scanner receives a scannable advertisement PDU
while passively scanning, no further action is performed. However,
when actively scanning, the scanner will perform a Scan Request, for-
cing the advertiser to send more data in the form of a Scan Response.

These states are used when a single device continuously streams data to multiple
receivers, such as wireless earphones. Figure 2.2 shows these states with dotted
borders since they do not apply to this thesis.

Advertising and Scanning

As an advertiser, the device sends out advertising channel packets at a set inter-
val between 20ms and 10.240ms. The advertiser does this for device discovery,
to broadcast data or both. There are four primary types of advertisement packet
types. These types are shown in Table 2.1.

These advertisement types can have three traits: connectable, scannable and
directed. A connectable advertisement type allows initiators to establish a con-
nection using the CONNECT IND PDU. Packet types without the connectable trait
are only used to broadcast data.

A scannable advertisement type allows a scanner or an initiator to request
more data from the advertiser using a scan request or SCAN REQ PDU. This
forces the advertiser to respond with a scan response or SCAN RSP PDU, which
doubles the amount of data that can be broadcast. In this process, the scanner
or initiator is said to perform active scanning. On the contrary, passive scanning
is where the scanner or initiator only listens to advertisement packets and never
issues a scan request. The difference between active and passive scanning is
show in Figure 2.3

A scanning device can listen for these packets and do nothing, which is called
passive scanning, or can request more data with a Scan Request, which is called

9



Avertisement PDU

a Header (2 bytes) Payload (1-255 bytes)

6 bytes 0-31 bytes

Header
R
F
U

C
hS
el

T
xA

dd

R
xA

dd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b PDU Type Length

Figure 2.4: a) Layout of the advertising PDU. b) layout of the advert-
isement PDU header. PDU Type as defined in Table 2.1. The Length
field contains the length of the Payload field in bytes.

active scanning.
Figure 2.4 shows the content of a generic advertising channel PDU. The first

two bytes of the PDU contain the header, followed by 1 to 255 bytes of payload
data. The four least significant bits of the header define the type of the advert-
ising channel PDU and refers to the types defined in Table 2.1. The length

field contains the length of the Payload field in bytes.
The payload for the four advertising channel PDU types defined in Table 2.1 is

shown in Figure 2.5a. As seen in Figure 2.5b, AdvData can contain any number
of AD Structures. The AD Structure’s AD Type field is an 8-bit identifier that
refers to one of the many predefined advertisement datatypes. This is followed
by the length of the data for this type and then the actual data. The payload of
the scan request is shown in Figure 2.6. The payload contains a ScanA and AdvA
field, which contain the address of the scanner and advertiser, respectively. The
payload of the Scan Response or SCAN RSP PDU is the same as the advertising
channel PDUs in Figure 2.5.

Some examples of AD Types include Local Name, TX Power Level, and Ap-
pearance. The Local Name type allows the device to share its locally assigned
device name. For example, one might name its headphones “John’s oPods”,
which scanners can display to the user to identify the device. The TX Power
Level type can be used to calculate a rough distance estimation between the ad-
vertiser and the scanner, and the appearance type can tell scanners the general
appearance of the advertiser (smartwatch, for example).

Connection Setup and Parameters

The connection setup is initiated by the central by responding to an advertising
channel PDU (for example, ADV IND) from an advertiser with a Connection
Request or CONNECT IND PDU. From this moment, a connection between the
devices is made, and the setup can begin. If the central receives no empty PDU
back as an acknowledgment of the connection request, then the central will retry
for a specific (user-defined) number of attempts.

Figure 2.7a shows the payload of the CONNECT IND. The payload consists of
an InitA, AdvA, and LLData field, which contain the address of the initiator
and advertiser, and the link layer configuration, respectively. As can be seen
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Payload for ADV IND, ADV DIRECT IND, ADV NONCONN IND, and ADV SCAN IND PDUs

a AdvA AdvData

6 bytes 0-31 bytes

AdvData

b AD Structure 1 . . . AD Structure N

AD Structure

c Length AD Type AD Data

1 byte 1 byte Length - 1 bytes

Figure 2.5: a) Advertising channel PDU payload for advertising types
of Table 2.1. b) AdvData can contain as many AD Structures (con-
tained pieces of advertisement data) as fits in 31 bytes. c) The AD
Structure starts with the length of the AD Type (type of advertise-
ment data as defined as defined in the Core Specification Supplement
[3]) and AD Data fields combined, followed by the AD Type, and
finally, the AD Data as defined in the specification for that AD Type.

Payload for SCAN REQ PDU

AdvA AdvData

6 bytes 6 bytes

Figure 2.6: The Payload field of a Scan Request or SCAN REQ PDU con-
sists of ScanA and AdvA fields. The ScanA field contains the address
of the scanner, and the AdvA field contains the address of the scan-
ner.

Payload for CONNECT IND PDU

a InitA AdvA LLData

6 bytes 6 bytes 6 bytes

LLData

b AA CRCInit WinSize WinOffset Interval Latency Timeout ChM Hop SCA︸ ︷︷ ︸
Connection parameters

Figure 2.7: a) The payload consists of an InitA, AdvA, and LLData
field, which contain the address of the initiator and advertiser, and the
link layer configuration, respectively. b) The content of the LLData
field in a, containing link layer configuration parameters (like the
connection parameters, for example).
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in Figure 2.7b, the LLData field can be further split up into the following ten
fields:

� AA: Contains the Access Address, which is the identifying address of the
link used by both devices.

� CRCInit: Contains the initialization value for the cyclic redundancy
check (CRC), which is an algorithm that can be used to check if a piece
of data has been corrupted.

� WinSize: Contains the transmission window size in units of 1.25ms. Used
to allow the central to schedule transmission events for multiple peripher-
als efficiently.

� WinOffset: Contains the transmission window offset in units of 1.25ms.
Used to allow the central to schedule transmission events for multiple
peripherals efficiently.

� Interval: Contains the connection interval in units of 1.25ms.

� Latency: Contains the peripheral latency, which is unitless.

� Timeout: Contains the supervision timeout in units of 10ms.

� ChMap: Contains a bitmask where each bit represents a used (1) and
unused (0) channels.

� Hop: Contains the hop value used in the formula examplained in Section
2.3.1.

� SCA: Contains the worst-case sleep clock accuracy of the central. The
SCA determines how much slack should be accounted for when waking up
for the next transmission event.

The most important parameters for the connection timing are connection
interval (CI), peripheral latency (PL), and Supervision Timeout (ST). The con-
nection interval defines the time between periodic connection events (CE). A
connection event starts with a packet transmission from the central. Every
packet from the central has to be followed by a packet from the peripheral.
Multiple transmissions can be chained together in a single connection event.
The peripheral latency defines how many connection events can be skipped by
the peripheral to conserve energy. If a valid packet has not been received for
more time than the supervision timeout defines, then a connection is considered
broken. For example, take a CI of 1 second and a PL of 0. In that case, the
central transmits a packet every second, and the peripheral responds. Now take
a CI of 1 and a PL of 1. In this case, the central transmits every second, but
the peripheral is allowed to sleep every other packet, effectively making the time
between transmissions two seconds. The second example is displayed in Figure
2.8. The units and ranges for the three connection parameters are defined in
Table 2.2.
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Figure 2.8: Example of a timeline between a central and peripheral
with CI=1s and PL=1. The CE at 1 second shows a normal connec-
tion event with one packet from the central and one response from the
peripheral. The CE at 2 seconds shows how multiple transmissions
can be changed during a single event. Finally, the CE at 3 seconds
shows the peripheral using its PL of 1 to sleep during an event.

Range Unit Real Range
CI 0x0006 to 0x0C80 (hexadecimal) 1.25ms 7.5ms to 4000ms

6 to 3200 (integer)
PL 0x0000 to 0x01F3 (hexadecimal) N/A N/A

0 to 499 (integer)
ST 0x000A to 0x0C80 (hexadecimal) 10.00ms 100ms to 32000ms

10 to 3200 (integer)

Table 2.2: The three connection parameters which define the timing of
connection events [2]. CI is the time in between connection events.
PL defines how many connection events can be skipped by the peri-
pheral. ST is the maximum time allowed since the last packet after
which a connection is considered lost
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Feature Expansion and Compliance

Newer revisions of BLE can add new features to the link layer, adding new
functionality or improving throughput. A vendor can also choose not to im-
plement functionality not required for their application to reduce complexity.
The supported features are stored in a 64-bit bitmask. The bitmask needs to
be exchanged at the beginning of the connection to make sure a controller on
one side does not use a procedure that the other controller does not support.
Some examples of these features include LE Encryption (bit 0), LE Data Packet
Length Extension (bit 5), LE 2MB PHY (bit 11), and LE Coded PHY (bit 11),
which might sound familiar[2, p. 2827].

A feature that has been mentioned in the list above but not yet addressed
is LE Data Packet Length Extension. By default, the link layer packet data
unit (PDU) allows for 27 bytes of data to be transmitted. The LE Data Packet
Length Extension feature allows this to be increased up to 251 bytes for vastly
improved throughput. However, higher-level protocols like ATT are encapsu-
lated within the LL PDU, so the effective application data per packet will be
lower than 251 bytes.

2.3.3 Host Controller Interface

The host controller interface provides a standardized way of communicating
between the hardware-specific, real-time part of the stack (controller) and the
rest, which is more hardware agnostic (host). The HCI can be implemented as
a software API if the host and controller exist within the same silicon or using
a hardware interface (UART, SPI, I2C, USB) when the controller is a separate
chip. It is common that the host and controller are implemented on the same
chip since that reduces power consumption, which is often a large consideration
for BLE devices.

The BLE specification defines a set of standardized HCI commands and events
that the host and controller exchange with each other, together with a data
packet format and control flow rules[26]. Some vendors choose to extend the
functionality of HCI by adding custom commands [24], which can allow the
developer to control low-level settings of the radio.

2.3.4 Logical Link Control and Adaption Protocol

The task of the Logical Link Control and Adaption Protocol (L2CAP) layer is
twofold. First, it encapsulates upper-level protocol packets into the standard
LL PDUs, functioning as a multiplexer. The converse of this process is called
decapsulation. The second function of L2CAP is fragmentation, which happens
when an upper-level protocol packet exceeds the supported LL PDU size and has
to be split into multiple L2CAP fragments. The L2CAP layer of the receiving
side then has to defragment the packets to create the original packet. L2CAP
adds a four byte header to each packet it encapsulates, thus reducing the effective
packet data size further from 27 to 23 bytes.

2.3.5 Security Manager

The Security Manager (SM) layer contains both a protocol and a group of
security-related algorithms and procedures. The algorithms are used to generate
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security keys that can be distributed using the defined procedures. Afterward,
the Security Manager Protocol (SMP) can be used by other layers to safely
connect and exchange data.

The following procedures are supported by the Security Manager:

� Pairing is when a set of temporary security keys are generated to encrypt
the link.

� Bonding can be done after pairing by exchanging permanent security keys,
which are stored in non-volatile memory.

� Encryption Re-establishment is done to re-use previously stored perman-
ent keys for a new encrypted link without having to pair and bond.

The pairing process requires the user to confirm the connection by entering a
pin code from the peripheral on the central.

2.3.6 Generic Access Profile

The Generic Access Profile (GAP) layer defines the generic procedures related
to the discovery of BLE devices and link management aspects of connecting to
BLE devices. In addition, it also defines procedures required to attain certain
security levels, as well as standard format requirements for parameters that are
available at the user level. Most importantly, GAP defines certain roles which
govern the hierarchy of a BLE network, resulting in the asymmetric power
requirements that allow the peripheral devices to operate efficiently.

Roles

GAP defines two pairs of roles for a total of four GAP roles. These pairs are
the broadcaster and observer pair, and the peripheral and central pair.

A broadcaster is a device with a link layer set to advertising that only trans-
mits data through advertisements of the non-connectable. A device in the broad-
casting role should have a transmitter, but a receiver is optional. Devices that
are suitable for broadcasting include temperature sensors and locating beacons.

An observer is a device that has its link layer state set to scanning and is
only interested in reading advertisement packets without pursuing a connection.
An observer should have a transmitter, but a receiver is optional. Phones are
often observers when listening for BLE locating beacons to improve localization
accuracy.

A peripheral (GAP role) is any device that accepts connection requests from
other devices. This means any device which is an advertiser sending out ad-
vertisements of the connectable type. When a peripheral (GAP role) goes to
the connected link layer state, it changes from an advertiser (LL role) to a peri-
pheral (LL role). A device in the peripheral role should have a transmitter and
a receiver.

A central (GAP role) is any device that initiates a connection with a peri-
pheral. When central (GAP role) goes to the connected link layer state, it
changes from an initiator (LL role) to a central (LL role). A device om the
central role should have a transmitter and a receiver.

Depending on the application requirements, a device may support multiple
roles simultaneously. For example, a phone can be connected with wireless
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Figure 2.9: The architecture of the GATT Server. Functionality is
grouped as services. Services contain data as characteristics that
can be read from or written to. Descriptors are used as metadata
to describe characteristics and for configuring the server to notify
the client of updates from the characteristic they are grouped under
(Figure taken from [26]).

headphones, making it a central, and listening for locating beacons, making it
an observer.

2.3.7 Attribute Protocol and Generic Attribute Profile

The Attribute Protocol (ATT) layer allows information to be discovered and
transferred between BLE devices in a structured manner. ATT uses a cli-
ent/server model, where the data is stored in the ATT server as attribute,
and the client requests to read or manipulate the attribute data. Each attrib-
ute contains a known UUID used to identify the type of data contained in the
attribute, and a 16-bit handle to identify the attribute itself.

The Generic Attribute Profile extends the functionality of ATT by creating a
hierarchy and data abstraction model on top of it. The GATT server groups at-
tributes into Services. Services contain data points called Characteristics. These
characteristics can be interpreted and configured using fields called Descriptors.
See Figure 2.9 for a schematic layout of the GATT Server.

For a real-world example, see the Heart Rate Service (HRS) in Figure 2.10.
The HRS allows a Client to read the heart rate sensor of a device. The HRS
contains a characteristic called Heartrate. One of the descriptors tells us that
the unit is defined as beats per minute. We could read the characteristic
value manually, but if we would like to be notified when a new measurement is
done, then we can set the Notify bit of the Client Characteristic Configuration
or CCC descriptor.

To be able to read or write to a characteristic, we need its handle. A handle
is a number that is unique for a characteristic within a GATT Server. To find
this handle, we can perform a Find By Type Request using its 16-bit Univer-
sally Unique Identifier (UUID). Bluetooth SIG has predefined UUIDs for many
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Figure 2.10: An example of a service. Each element is searchable
through its UUID and then uniquely identifiable using its consec-
utively numbered handle [26].

predefined Services. Each predefined service has a specification that defines the
shape of the service. This includes all the characteristics, descriptors, and their
respective UUIDs.

The process of finding all these handles is what is called Service Discovery.
The result of this process is a list of handles that can be used to read and
write to the server. After Service Discovery is done, the GATT Servers need to
be configured. This usually means writing to the CCC descriptor to configure
notifications for the desired characteristics. This process will, from here on, be
referred to as Configuration.

Both the Central and the Peripheral can be Servers and Clients at the same
time. For example, a phone can provide the central time for a smartwatch to
display on the watch face, while the smartwatch measures the heart rate for
the phone to present within a health application. This means that a Service
Discovery and Configuration need to be performed by both the Central and the
Peripheral.

2.4 Operating Systems Used to Implement the
System Proposed

The FreeBie project was originally developed using the open-source BLE stack
Packetcraft [16]. Packetcraft is a real-time operating system (RTOS), which
means it allows for real-time scheduling of tasks. Real-time scheduling is essen-
tial to run the link layer controller. Due to its architecture, it was especially
suitable to be modified in the way required for intermittent operation. This is
because all OS tasks are managed using a single scheduler which uses a generic
sleep method. This sleep method was altered to configure the real-time clock
(RTC), save the memory to FRAM, and fully power down the System-on-Chip
(SoC).

However, since FreeBie was originally developed, Packetcraft has gone into
closed-source development. For this reason, a newer RTOS was chosen for the
central, called Zephyr. Zephyr OS is a modern RTOS developed by the Linux
Foundation and is now the officially supported stack for Nordic Semiconductors
[25]. A side-effect of implementing the proposed solutions on two platforms
is proving that the approach used to solve the issues outlined in Section 1 is
platform-agnostic.
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Figure 2.11: The combination of central and peripheral on top is used
for testing, while the combination on the bottom is used for develop-
ment.

2.5 Demo System

The modifications we aim to make to the system will attempt to remove cer-
tain procedures without losing their functionality. We have developed a demo
system to verify that these functions still work. The demo system consists of a
single central and peripheral, shown in Figure 2.11. The configuration on top
consisted of an nRF52840DK as a central and the FreeBie as a peripheral and
was mostly used when verifying new code, when intermittency was required, or
during the final testing phase and evaluation. The configuration on the bot-
tom was primarily used during development since the FreeBie codebase runs on
any nRF52840DK when intermittent operation is disabled. This configuration
allows us to access the serial debug trace of Packetcraft.

We developed a Packetcraft application for FreeBie to act like a smartwatch
peripheral and a Zephyr application for the central to work like a stand-in for a
phone. Appendix A contains a list of all available terminal commands, a list of
all available services and characteristics, as well as a description of how to use
the demo system and how it was developed.
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Chapter 3

Architecture

This chapter will cover the architecture of the improvements proposed to fix the
inefficiencies mentioned in Chapter 1. The improvements have been divided into
four stages, where every successive stage contains the new improvement as well
as the improvements of the previous stage. This is because some improvements
build on top of changes from the previous stage and cannot exist independently.
Consequently, the order of these stages also corresponds to the order in which
the improvements have been implemented. For reference, these stages are:

Stage
Improvement 1 2 3 4
Connection Parameter Sharing Yes Yes Yes Yes
Service Discovery Cache No Yes Yes Yes
Fast Reconnect No No Yes Yes
Skip Reconfiguration No No Yes Yes
Feature Exchange Cache No No No Yes
Data Length Extension Cache No No No Yes

Table 3.1: Four stages of optimization.

3.1 Peripheral Dictating Connection Paramet-
ers

In the following section we present the solution to address Goal 1 mentioned
in Section 1.

3.1.1 Stage 1: Connection Parameter Sharing

There is no standard procedure for providing control to the peripheral when
deciding the initial connection parameters. The GAP service does provide a
characteristic definition called the peripheral preferred connection parameters
(PPCP) [2]. The fields contained in the PPCP characteristic are shown in
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Figure 3.1: Format of the peripheral preferred connection parameters
characteristic value of the GAP service as defined by the Bluetooth
Core specification [2].

0 1 2 3 4 5 6 7 8 9 10 11

11 0xFF 0xAFAF CImin CImax PL TO︸ ︷︷ ︸
Header

︸ ︷︷ ︸
CIC

︸ ︷︷ ︸
PPCP

Figure 3.2: AD Stucture. The meaning of each field is as follows. Byte
0 contains the number of remaining bytes in the AD Structure, and
byte 10 contains the AD Type value for Manufacturer-Specific Data
in hexadecimal, which together form the header. Byte 2-3 contains
the custom Company-Identifier Code we defined. Finally, byte 4 to
11 contain the PPCP as defined in Figure 3.1.

Table 3.1. However, this can only be read once the connection has already been
established [2, p. 1361].

The way we share the PPCP before a connection has been established is by
using the AdvData field within the advertisement packets. The specification
defines an AD Type called Service Data, which allows data from a service to
be shared as advertisement data. See Figure 2.5 for an explanation of how
advertisement channel payloads are formatted. The format for sharing data
provided by a service has to be defined in specification for that service. However,
the GAP service does not define this for the PPCP characteristic.

In order to be BLE compliant, the AD Type Manufacturer-Specific Data
[3], with hexadecimal value OxFF, is used. This AD Type contains a Com-
pany Identifier Code (CIC) in the first two bytes, followed by data part of
Manufacturer-Specific Data. The CIC is a 16-bit identifier which allows us to
discern between our custom data versus that of another company. For the sake
of this thesis we used a CIC of 0xAFAF. The complete AD structure is shown
in Figure 3.2.

Now that the data is present in the advertisement packets, we need a way
to parse it on the side of the Central. Algorithm 1 shows how this works. Es-
sentially, the first procedure, ON DEVICE FOUND, is called every time the central
receives a new advertisement packet. For each new MAC address that is detec-
ted, a new device entry is added to the device list. After that, any advertised
data is parsed by the central using the PARSE ADV DATA procedure and added
to the device entry within the device list. If the peripheral corresponding to a
device entry has been flagged as the target device on the central, the central
retrieves the appropriate connection parameters and responds to the advertise-
ment packet with a connection attempt.

To parse the data field of the advertising packet, two things happen. First,
the 16-bit CIC is compared with the one we have defined ourselves. This ensures
that data from another vendor is ignored. If that is correct, then the remaining
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8 bytes, which contain the PPCP, are copied by the central into the device list
entry structure, containing a 16-bit integer for each field of the PPCP.

Algorithm 1 Parsing and usage of PPCP by Central

1: procedure on device found(addr, data)
2: if addr not in record then
3: create entry in record for addr
4: end if
5: dev ← find entry for addr
6: parse adv data(dev, data)
7: if dev = target dev then
8: if dev contains ppcp then
9: params← pcpp(dev)

10: else
11: params← default parameters
12: end if
13: connect(dev, params)
14: end if
15: end procedure
16: procedure parse adv data(dev, data)
17: for ad structure in data do
18: if type(ad structure) = 0xFF then
19: if cic(ad structure) = 0xAFAF then
20: ppcp(dev)← store ppcp(ad structure) in entry
21: end if
22: end if
23: end for
24: end procedure

3.2 Reducing Connection Establishment Time

The solutions within the following three sections target Goal 2 of Section 1. In
general, these solutions try to decrease the connection setup time by decreas-
ing the number of packets being sent. This can be done since, in most cases,
from one connection to another, the same actions need to be taken to set up
the connection. By caching the results of these actions on both sides of the
connection and defining when this cache can be reused, the connection setup
can theoretically be brought back to a single packet.

3.2.1 Stage 2: Caching Service Discovery

For even the most trivial applications, the process of service discovery contrib-
utes by far the most packets to the connection setup time. As Figure 4.1 shows,
even in our relatively simple demo system, nearly 70% of the packets are for
service discovery. The BLE specification provides some methods of detecting
chances within the GATT server.

A simplified version of the process of service discovery is captured in Al-
gorithm 2. First, a Read By Type Request is sent using the UUID of the service
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that needs to be discovered. We can define a search range for the GATT server
to look between. Since we have not discovered anything prior, the range is set
to the maximum possible values that a handle can have, which are 0 and 65536.
The result of this request will be the first handle of the service (which points to
the service itself) and the last handle of the service. See Figure 2.10 for refer-
ence. The start and end handle provide the new bounds for the Read By Type
Request, which is sent for each characteristic and descriptor within the service.

Algorithm 2 Service Discovery within a GATT server

1: procedure discover services
2: for service in services do
3: send read by type request(uuid(service), 0, 65536)
4: receive start, end← read by type response()
5: for characteristic in characteristics(service) do
6: send read by type request(uuid(characteristic), start, end)
7: receive handle← read by type response()
8: end for
9: end for

10: end procedure

At the end, when this process has finished, the result is a list of 16-bit integer
values which correspond to all the discovered characteristics. This list is the
information that needs to be cached.

The GATT service provides a characteristic called the Database Hash to
detect changes within the GATT server. This is a 128-bit value containing a
AES-CMAC hash calculated from the database structure. If any single handle
is changed or the order of the services is different, then the hash will be different,
and the client must rediscover the database. If this hash is the same, then it is
safe to assume that all handles are the same as before.

Packetcraft

Packetcraft provides a framework for service discovery. This framework con-
tains hooks for the developer to add platform and application-specific code to
implement generally useful functionality, like discovery, caching, and configura-
tion. This is done by registering a callback that contains code to handle state
changes, which is explained in Section A.2.1 of Appendix A.

Within the stage change callback, there are two states that need to be modi-
fied to enable caching. During the initialization state (APP DISC INIT ) state
two pointers need to be registered that point to the handle list and the data-
base hash. Afterward, in the completion state (APP DISC CMPL), when the
database hash has been read, and the new database is discovered, these can be
stored.

For most systems, this means reading from and writing to a form of non-
volatile storage. However, since the Peripheral (FreeBie) dumps its memory to
FRAM every time it goes to sleep, all its memory is functionally non-volatile.
So to support caching of database handles in Packetcraft, we need to create
two arrays in global memory and provide these during the initialization state
within the state change handler and copy memory back to those pointers when
discovery has been completed.
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Zephyr

For Zephyr, this is a bit more involved and requires some custom logic to reach
the same functionality as is provided in Packetcraft. The logic is captured in
Algorithm 3. Since the original code is made up of multiple different functions
chained together as asynchronous callbacks, these callbacks have been placed
inline in Algorithm 3 to provide a linear, more easily understood version.

Algorithm 3 Linear Version of the Asynchronous Database Cache Algorithm
of the Central Device

1: procedure on connected
2: send read db hash request
3: receive hashremote ← read db hash response
4: if has cache then
5: if hashlocal = hashremote then
6: handles← read cached handles
7: configure services(handles)
8: return
9: end if

10: end if
11: handles← discover services
12: configure services(handles)
13: write cache(hashremote, handles)
14: end procedure

Reading and writing to the cache are done using Zephyr’s NVS library. This
library allows the developer to write to non-volatile flash memory using a simple
interface. Data is stored as (id, data) pairs. The id is a 16-bit integer and the
data can be an arbitrary size blob of 8-bit integers. After writing, the data can
be read again using the unique id.

3.2.2 Stage 3: Fast Reconnect

After the database discovery has been completed, it is common for both devices
to perform some form of configuration. This means reading the initial values
of certain characteristics and writing CCC values such that the GATT server
sends notifications when a characteristics value has changed.

In our demo system, configuration accounts for about eight packets. However,
the amount of packets during configuration grows linearly with every character-
istic that is necessary for the application. Aside from this, due to the Database
Hash requests that are sent as a result of the solution in the previous section,
four more packets are reintroduced into the connection setup.

Ideally, we would like to get rid of these packets altogether. However, this
is not possible to do all the time. Creating a Hash of the CCCs would allow
us to detect changes, but it would reintroduce another four packets to transfer
the hashes. To remove these packets entirely, it is necessary to define a scenario
where these checks and procedures can safely be skipped.

It is only safe to assume that all discovery and configuration has successfully
occurred when currently in a connected state. This is where Fast Reconnect
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comes in. When a connection is terminated from either side using the Fast Re-
connect termination reason, with hexadecimal value 0x46, both the Peripheral
and Central set the fast reconnect flag. If this flag is set when a new connection
is created, then the configuration and Database Hash requests are skipped.

For both platforms, this means the following modifications need to be made:

1. Add a new valid disconnect reason called Fast Reconnect.

2. When a Fast Reconnect happens, make the CCCs persist across connec-
tions.

3. When a Fast Reconnect happens, skip the Database Hash request.

How these modifications are implemented for each platform is explained in the
following sections.

Packetcraft

The first modification is done by adding a macro definition to the source file
to define HCI ERR FAST RECONNECT (this naming scheme follows the source’s
conventions) as 0x46. There are no checks elsewhere in the source code which
check if this is a valid disconnect reason.

To persist the CCCs, it is possible to abuse functionality that already exists
as part of the specification. The BLE specification allows for persistent config-
urations when using a bonded connection. However, connection bonding is not
possible using FreeBie. It is possible to disable the bond check entirely, thus
enabling persistent CCCs for all connections.

Although the configuration is now persistent, the device will still redo the con-
figuration when reconnecting. To fix this, the discovery framework is modified.
The framework stores its state in a control block. This control block is created
with the connection and subsequently destroyed when a connection is dropped.
If the disconnect reason is set to Fast Reconnect when disconnecting, then the
control block is kept in memory. When a new connection is opened, the same
control block is reused, and the discovery framework is left in the same state
as just before the devices disconnected. Since the discovery framework is also
responsible for requesting the Database Hash, this solves both modifications 2
and 3.

Zephyr

The first modification is the same as with Packetcraft, but in the case of Zephyr,
the macro has to be added to a list of valid disconnect reasons. As with Pack-
etcraft, to enable persistent CCCs, the check for a bonded connection is also
disabled. Algorithm 3 needs to be slightly altered for the remaining modifica-
tions. Algorithm 4 shows this updated variant.

3.2.3 Stage 4: Caching Link Layer Exchanges

After the optimizations done in the previous sections, only nine packets remain.
These packets are the CONNECT IND, which initiates the connection (cannot get
rid of this), and eight packets that belong to link layer procedures. These
procedures exchange link layer parameters such that each controller knows what
the other controller supports. The two procedures are:
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Algorithm 4 Altered Version of Algorithm 3

1: procedure on connected
2: if has cache is set and fast reconnect is set then
3: unset fast reconnect
4: return
5: end if
6: send read db hash request
7: receive hashremote ← read db hash response
8: if has cache then
9: if hashlocal = hashremote then

10: handles← read cached handles
11: configure services(handles)
12: return
13: end if
14: end if
15: handles← discover services
16: configure services(handles)
17: write cache(hashremote, handles)
18: end procedure

Fields Content Example
Max RX octets Number of bytes 27
Max RX time Microseconds 328
Max TX octets Number of bytes 27
Max TX time Microseconds 328

Table 3.2: Content of LL LENGTH REQ and LL LENGTH RES.

� Data Length Update Procedure

� Feature Exchange Procedure

The Data Length Exchange Procedure is required to increase the size of the
Data Channel Packet Data Unit (PDU). This is the size of the packet as trans-
ferred over the air. See Table 3.2 for the contents of the request and response
packets. When the application requests a read from a characteristic with a size
larger than 27 bytes, then it first has to perform a Maximum Transferrable Unit
(MTU) Exchange to increase the size of the ATT payload to a maximum of 251
bytes. However, if the Data Length Exchange has not yet increased the Data
Channel PDU size, then the controller will divide the ATT payload in 27 byte
L2CAP fragments. This is because the ATT payload is encapsulated within the
Data Channel PDU.

The Feature Exchange Procedure might be initiated to exchange the Link
Layer parameter for the currently supported feature set. The feature set of a
controller is represented as a bitfield where each bit corresponds to a feature
that is supported (1) or not supported (0). The feature exchange exchanges
these bitfields, and the used feature set is the logical AND of these fields. Lets
say the Central has FeatureSetA and the Peripheral has FeatureSetB then
after the exchange FeatureSetUSED = FeatureSetA ∧ FeatureSetB .
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Both procedures can be initiated by either the Central or the Peripheral.
Although both procedures only need to be initiated once, they often occures
twice. This happens because the Link Layer is programmed as an asynchronous
state machine and these requests are all pushed into the transmission queue at
the start of a connection before anything has been exchanged.

Although the BLE specification mentions that these procedures can be cached,
neither Packetcraft nor Zephyr have implemented this functionality in their
controller.

Packetcraft and Zephyr

Both Packetcraft and Zephyr’s essentially work the same. Their link controllers
keep a connection context for each connection. All Link Layer parameters are
stored in this context. When a connection is created, this context is allocated,
and when a connection is dropped, the context is freed. Like with the previous
solutions, this is where the information will be cached.

As mentioned previously, the Link Layer is programmed as a state machine.
During initialization, the state machine schedules all the procedures in a queue.
To keep this from happening when the Link Layer parameters have been re-
stored, a restore flag is added. Only when the restore flag is unset will the
procedures be scheduled.

3.3 Faster Connection Parameter Adaption

When using Fast Reconnect with Stage 4 optimizations, the connection can
be dropped and restarted significantly faster than a connection update request
is applied. Aside from the obvious general advantages of quickly being able to
set up a connection, this can also be used to change the connection interval (and
thus the connection speed) much faster than the regular Connection Update

Request.

The specification defines that, when Connection Update Request is accep-
ted, the new parameters will be applied at least six packets after the current
packet. In practice, however, this means that from the point of the Connection

Update Request this usually takes about 10-11 packets. Even at a fast Con-
nection Interval (for intermittent devices) of 1 second, this already takes more
time than a Fast Reconnect cycle.

For a regular, battery-powered device, it is not a significant issue if updating
the connection parameters takes several minutes since the battery reserve is
large and it is only charged occasionally. However, for an intermittent device,
which has a small energy reserve and harvests energy, this poses a bigger issue.
You are left either going 1) the conservative route and leaving a lot of potential
performance (throughput) on the table but always having enough charge or
going 2) the greedy route and having the maximum performance but risking not
being able to recoup the spent energy because of changing energy availability.

When FreeBie goes to sleep in between transmission events, it calls the
PalSysSleep is called. This is a modified version of Packetcraft’s sleep method,
which handles checkpointing memory regions and configuring the RTC to wake
up the microcontroller in time for the next scheduled system event. When the
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Figure 3.3: The three different target charge rates. Red region: negat-
ive charge rate. White region: voltage is maintained. Green region:
positive charge rate.

system is woken up again, the checkpoint is restored, and the system resumes
from within the sleep function.

When the system resumes, the voltage level of the capacitor can be measured
using the onboard Analog to Digital Converter (ADC), and the connection rate
can be adjusted appropriately.

3.3.1 FRAPPUCInO

Algorithm 5 shows the pseudocode of the algorithm. As the name would suggest,
AdaptConnParamsToVdd contains the logic for calculating the new connection
parameters based on the capacitor voltage.

The parameter that is controlled by the system is presetnew and is an integer
that represents the power level. This integer has a value between 0 and N and
for each value maps to a preset within the preset list. Each preset contains the
PPCP that corresponds to a certain connection speed and, as a result, power
draw. All presets within the preset list are ordered on expected power draw
from lowest power draw (0th item) to highest power draw (N th item).

The algorithm starts by calculating the slope of the voltage level over time.
This is done by taking the difference in voltage between now and the last time
the function was called (vdddiff ) and multiplying by the number of seconds
that have elapsed since then (rateactual). The slope of the voltage over time is
essentially the charge/discharge rate.

A target rate ratetarget is selected based on the voltage level of the capacitor.
If the voltage is low, then a positive charge rate is chosen. If it is high, then
a negative charge rate is chosen. For anything in between, the charge rate is
set to zero to try and maintain the voltage. Figure 3.3 visualizes these different
charge zones.

The difference between ratetarget and rateactual is calculated and multiplied
by a factor P which is then added to the current preset level. The method
LoadPreset then selects a preset from a list of presets which are ordered in
decreasing connection interval and thus in increasing power consumption.
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LoadPreset copies the new preset into the advertisement data. If the preset
is different than the one that was already loaded, a true is returned, otherwise,
a false is returned. Afterward, the network can be dropped using Fast Re-
connect, the device starts advertising again with the newly loaded connection
parameters, and the host will reconnect using these new parameters.

Algorithm 5 Algorithm for Calculating New Connection Parameters

1: procedure PalSysSleep
2: some code before...
3: if not conn param change pending then
4: AdaptConnParamsToVdd
5: else
6: if not net restored then
7: net restore pending ← true
8: else
9: Disconnect(FAST RECONNECT)

10: end if
11: end if
12: ...some code after
13: end procedure
14: procedure AdaptConnParamsToVdd
15: vddcurrent ←MeasureCapacitorVoltage
16: vdddiff ← vddcurrent − vddlast
17: if conn is active and conn setup done then
18: if skips = 0 then
19: rateactual =

vdddiff∗ticksper second

tickscurrent−tickslast

20: ratetarget ← SelectChargeRate(vddcurrent)
21: rateerror ← ratetarget − rateactual
22: adjustment← P ∗ rateerror
23: presetnew ← presetcurrent + adjustment
24: if adjustment and LoadPreset(presetnew) then
25: conn param update pending ← true
26: skips← 1
27: end if
28: else
29: skips← skips− 1
30: end if
31: end if
32: end procedure

Adjusting the preset based on the charge rate error essentially creates a P-
controller (Prate) for the charge rate. Moreover, the SelectChargeRate function
which selects a charge rate based on the capacitor voltage creates a P-controller
(albeit stepped due to the zones) on the capacitor voltage (Pvoltage). Together
these control systems resemble cascaded P-controller, where the outer controller
Pvoltage creates the setpoint for the inner controller Prate.

If only a single P-controller was used for the voltage, it could happen that
due to a slightly too large P value the controller would not step the connection
rate down enough to keep the capacitor from discharging in every situation.
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Due to the second P-controller for the charge rate, the system will always keep
adjusting the connection rate in order to target a positive charge rate for the
capacitor. In theory, this should provide superior robustness and response to
non-linear gains.
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Chapter 4

Evaluation

The evaluation of our system is split up in a static and a dynamic part. The
static evaluation quantifies the connection setup performance for each optim-
ization stage. The static behavior will be benchmarked on number of packets
during connection setup, connection setup time, connection parameter update
time, time until first useful packet, and power consumption. The dynamic eval-
uation is about quantifying the performance of FRAPPUCcInO, which will be
based on average throughput, and responsiveness.

This separation is made because the static performance improvement will be
applicable to both intermittently-powered and conventionally-powered devices.
Reducing connection setup time and power consumption on their own are at-
tractive propositions since it improves responsiveness and battery life. The
FRAPPUCcInO algorithm is not the only possible application of Fast Recon-
nect. For example, Fast Reconnect could also be leveraged to quickly build a
connection when ambient energy is insufficient for even the maximum connec-
tion interval, allowing a pseudo-connected state.

The demo system described in Section 2.5 was also used in all experiments.
The central is an nRF52840DK development board [12], and the peripheral is
the modified FreeBie platform [6]. The nRF52840-Dongle was used as a sniffer
for Wireshark [13]. During the static testing, the Nordic Power Profiler Kit II
(PPK-II, [11]) was used to power FreeBie and measure its power consumption.
During the dynamic testing, the PPK-II was replaced with a 46.5µW solar cell
from Panasonic [17], and a Saleae Logic Pro 8 was used to capture digital and
analog traces [19]. Finally, an Ikea TRÅDFRI smart light was calibrated and
controlled through python to simulate changing energy harvesting conditions.

The CMakeLists file of both applications have been retrofitted to enable easy
switching between optimization stages during testing. To enable a specific stage,
the CMake variables must be set according to Table 4.1.

4.1 Results

4.1.1 Static Evaluation

Between the number of packets sent between the CONNECT IND packet and the
first packet that does not belong to the connection setup, shown in Figure 4.1, a
significant reduction can be seen. From Stage 0 (no modifications) to Stage 4 (all
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Stage
Variable 1 2 3 4
CACHE SERVICE DISCOVERY 1 1 1
SKIP RECONF 1 1
CACHE LL FEAT EXCH 1
CACHE LL DL EXCH 1

Table 4.1: CMake variables to set for a given optimization stage. Set the
variable to 1 if the cell contains a 1, otherwise do not set the variable.

Figure 4.1: Number of packets from the CONNECT IND up to the last
connection setup packet.

modifications) this is a reduction of 98.80%. When only sharing the preferred
(slower) connection parameters (Stage 1), the average number of packets goes up
by 0.7 packets. This increase in packets is a result of slightly more Empty PDUs
as a result of different timing. Stage 2 still counts six packets for discovery, even
though service discovery caching is being used because reading the Database
Hash requires three packets for both the central and peripheral.

Figure 4.2 shows the time required to set up a connection, measured from
CONNECT IND up to the last packet that does not belong to the connection. At
first, Stage 1 through 3 seems significantly worse than stage 0. However, it
is important to remember that in Stage 0, the peripheral is forced to use the
default connection parameters of the central. As a result, our system needs to
be designed with a much larger capacitor than required after the connection
is established. Although slower, Stage 1 allows us to reduce the size of the
capacitors used in our system, which allows the system to recover much faster
after a full power failure, as well as reducing the overall size and cost of the
system. Stage 4 reduces the connection setup to a single packet, resulting in a
reduction of 99.93% compared to Stage 0.

To measure the fastest possible time until a useful packet is received by the
central, we perform a Read Request from the central on the battery level charac-
teristic. A useful packet is defined as anything that directly contributes to the
function of an application. For example, a read or write request on a character-
istic, or a write request on a CCC to enable Notifications.

From Figure 4.3 one can see that Stage 4 is about 4.46 times slower than
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Figure 4.2: Connection setup time, measured from CONNECT IND up to
the last packet that does not belong to the connection setup.

Figure 4.3: Time until the first useful packet. Measured from
CONNECT IND up to the first useful application packet.
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Figure 4.4: Time until new connection parameters are applied versus
currently used connection parameters.

Stage 0. However, the default connection interval used by Zephyr in Stage 0 is
50 milliseconds, which is 80 times slower than the connection interval used by
Stage 4. The improvements in Stages 2, 3, and 4 are able to recoup a significant
amount of the time gained by using the slowest connection parameters, which
is visible from Stage 1 in Figure 4.3. It is also notable that eight seconds is
the lower limit that is possible at a connection interval of four seconds since a
complete read operation from a GATT server requires two packets. The fact
that there is no decrease from Stage 3 to Stage 4 is supported by the idea that
the link layer procedures

Figure 4.4 shows the time it takes for new connection parameters to be ap-
plied when using the regular connection update request versus Fast Reconnect.
Since the time required to reconnect using fast reconnect is independent of the
connection interval, the time to update connection parameters does not increase
as the connection interval increases. However, fast reconnect is more variable
since it requires the central to receive a new advertisement from the peripheral.
One standard deviation is shown in Figure 4.4 with light orange. An optimal ap-
proach would use the conventional connection update request when CI is below
1250, and fast reconnect for CI above 1250.

As one can see in Figure 4.5a, when conventionally powered and using slow
connection parameters, the total energy consumed only drops below Stage 0
when using all optimizations. This is because the microcontroller is still using
power while idling, so extending the setup time by increasing the connection
interval will cause higher energy usage. However, when using all optimizations,
the energy usage is reduced by 99.46%. When using these optimizations
in devices that do not employ energy harvesting, it is advised to reduce the
connection parameters after the setup process is done. This is shown in Figure
4.5b.

Figure 4.6 shows the energy used during the connection setup while intermittently-
powered. Stage 3 and 4 show a significant reduction in energy consumed with
44.96% and 93.97%, respectively. However, Stage 1 and 2 might still be an
improvement when intermittently-powered since the average current draw dur-
ing connection setup is 68.96µA, and 71.13µA, compared to 1.21mA of Stage 0.
This reduced continuous current draw might allow an intermittently-powered
device to remain operational using Stage 1, while Stage 0 would result in the
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Figure 4.5: Energy consumed (in Joule) during connection setup versus
optimization stage when conventionally-powered. a) Uses Connection
Parameter Sharing (Stage 1). b) Does not use Connection Parameter
Sharing.

Figure 4.6: Energy consumed (in Joule) during connection setup versus
optimization stage when intermittently-powered.
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Figure 4.7: Connection Rate versus Light Output. The average
throughput when using Fast Reconnect (b) is 24.29% higher and the
peak throughput comes 15.86% earlier when compared to using the
regular Connection Update Request (a).

Figure 4.8: Connection Rate versus Light Output. left) Connection
Update Request. right) Fast Reconnect.

capacitor voltage becoming critically low.

4.1.2 Dynamic Evaluation

Figure 4.8 shows an optimal situation for using FRAPPUCcIno, which is a
sharp increase followed by a sharp decrease in available power after using slow
connection parameters. In this scenario, using Fast Reconnect allows an earlier
rise, as well as allowing the system to respond in time to prevent a power fail-
ure. As a result, FRAPPUCcInO using Fast Reconnect is able to maintain an
average throughput of 24.29% higher when compared to FRAPPUCcInO us-
ing the regular Connection Update Request. We define the responsiveness as
the peak-to-peak time between the light output and the connection rate. Us-
ing this definition, FRAPPUCcInO with Fast reconnect reaches its peak 191
seconds after the light output rises, and FRAPPUCcInO using Connection Up-
date Request reaches its peak after 227 seconds. The responsiveness is therefore
improved by 15.86%.

When performing a long run, the advantage in throughput is less drastic
but still significant. Figure 4.8 shows a 25 minute run with multiple peaks in
light output. In this scenario, the average throughput is 10.87% higher for
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FRAPPUCcInO using Fast Reconnect. However, responsiveness has improved
by 107%. This improvement can be attributed to the fact that FRAPPUCcInO
with Fast Reconnect is able to decrease the throughput earlier to start charging
the capacitor up. As a result, FRAPPUCcInO reaches the voltage where it can
increase the throughput again much earlier. We should note that during runs
longer than 15 minutes, both systems were very like to encounter hard faults.
These instability issues should be fixed before we are able to fully assess the
performance of FRAPPUCcInO over longer periods.
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Chapter 5

Future Work

While the method of sharing connection parameters within the advertisement
data works, it requires compliance from the central to work. Further research
could focus on standardizing the procedures around sharing the connection para-
meters so that other platforms can support this feature and Bluetooth Low-
Energy becomes more hospitable to batteryless devices.

Although Fast Reconnect covers all link-layer communication used in our
demo system, further testing must be done to assess if our method can be
applied to all link-layer exchanges. A generic approach built into the link layer
controller would be ideal and would guarantee support for future revisions of
BLE.

Finally, while FRAPPUCcInO provides some promising initial results, it is
clear that further work is required to improve stability and optimize the al-
gorithm further. A combination of using Fast Reconnect and the regular con-
nection parameter update request as the methods of applying parameters could
prove even more effective.
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Chapter 6

Conclusions

We have presented a new method of reducing connection setup overhead and
energy usage in Bluetooth Low-Energy (BLE) for battery-less devices, as well
as conventional battery-powered devices. This method is called Fast Reconnect
and is platform agnostic. Fast Reconnect applies caching in multiple levels of
the BLE stack, from the GATT layer all the way down to the link layer, to
reduce the connection setup process to a single packet. To improve connection
parameter adaption time within FreeBie, we also presented FRAPPUCcInO,
which combines Fast Reconnect with a control system to improve throughput
and responsiveness under highly variable energy harvesting conditions. Using
Fast Reconnect, together with FRAPPUCcInO, intermittent devices can be-
come smaller, perform with even less ambiently available energy, and even enjoy
a more responsive user experience.
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Appendix A

Demo System

This appendix includes supplementary information on the features of the demo
system, as well as a description of how it was implemented and developed.

A.1 Using the System

A.1.1 Connecting and Powering the System

Connecting and powering up the “development” configuration shown in Figure
2.11 is as simple as connecting both development boards to a computer using
two micro USB to USB A cables. Be sure to check if all power switches are set
to the ON position.

Connecting and powering the “testing” configuration shown in Figure 2.11 is
a bit more involved. The central is connected to the computer using a micro
USB-to-USB A cable like in the development setup. Connect FreeBie to a Segger
JLink debug probe using a 5-pin debug cable. Attach the debug probe to the
computer using a USB B-to-USB A. Power the FreeBie using the Nordic Power
Profiler Kit II (PPK2), by connecting the the Vout and Gnd on the PPK2 to
the Vbat and Gnd on FreeBie. Finally, download and open the Power Profiler
application and change the settings to Volt Meter and 2660mV.
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A.1.2 Using the Terminal

Command Help
ble list show Show all discovered devices.
ble list find <local name> Find device by name.
ble connect <index> Connect to a device using its index in

the device list.
ble disconnect Terminate the current connection using

the Remote User Terminated Connec-
tion reason.

ble conn reconnect Terminate the current connection using
the Fast Reconnect reason.

ble cache delete <name> Delete the cached data and hash of an
entry by name (e.g. ”handles”).

ble cache scramble <name> Scramble the cached hash of an entry
by name (e.g. ”handles”).

ble cts notify Trigger a notification for the Current
Time characteristic of the Central Time
Service.

ble test read Perform a large read request (≥ 27
bytes) on the Test characteristic of the
Test service. Used to validate LE Data
Length Extension caching.

ble test write Perform a large write request (≥ 27
bytes) on the Test characteristic of the
Test service. Used to validate LE Data
Length Extension caching.

Table A.1: Terminal commands available on the central.

Command Help
disconnect <id> [--fast] Terminate a connection by id (usually

1) using the Remote User Terminated
Connection reason (or Fast Reconnect
when the ”–fast” flag is added).

param update <preset index> Perform a parameter update to a pre-
defined preset using Fast Reconnect.

Table A.2: Terminal commands available on the peripheral

When the development boards are connected to the laptop, virtual COM ports
are created on /dev/ttyACM0, /dev/ttyACM1, etc. A serial terminal application,
such as PuTTY, can be used to connect to the central and peripheral with a
baud rate of 115200 bits per second. When connected, a help command can be
entered to display the available commands.

Table A.1 and Table A.2 show commands that can be invoked on the central
and peripheral, respectively. These commands are used to perform basic func-
tions required for testing new code and specific procedures to validate caching
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methods.

A.1.3 Making a Connection

To perform a connection setup, use the following steps:

1. Connect and power on the central and peripheral as described in Section
A.1.1.

2. Open a terminal session to the central using the method described in
Section A.1.2.

3. Enter ble list show and look for the local name “Watch” or enter ble

list find Watch if the list exceeds the terminal size.

4. Enter ble connect <index>, where index is the index of the device entry
found in the previous step.

A.1.4 GATT Services and Characteristics

Service Characteristic UUID Perm.

GAP

Device Name 0x2A00 R
Appearance 0x2A01 R
Central Address Resolution 0x2AA6 R
PPCP 0x2AC9 RW

GATT

Service Changed 0x2A05 R
Service Changed CCC RW
Client Supported Features 0x2B29 RW
Database Hash 0x2B2A R

CTS
Current Time 0x2A2B RWN
Current Time CCC RW

Test

Supported New Alert Category 0x2A47 R
New Alert 0x2A46 N
Supported Unread Alert Category 0x2A48 R
Unread Alert Status 0x2A45 N
Alert Notification Control Point 0x2A44 W

Table A.3: Services that are available in the central application. Per-
missions have been abbreviated in the permissions (perm.) column
to R for Read, W for Write, and N for Notification
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Service Characteristic UUID Perm.

GAP

Device Name 0x2A00 R
Appearance 0x2A01 R
Central Address Resolution 0x2AA6 R
Resolvable Private Address Only 0x2AC9 R

GATT

Service Changed 0x2A05 R
Service Changed CCC RW
Client Supported Features 0x2B29 RW
Database Hash 0x2B2A R
Server Supported Features 0x2B3A R

Battery
Battery Level 0x2A19 R
Battery Level CCC RW

Test
Text RW
Text CCC RW

Table A.4: Services that are available in the peripheral applica-
tion. Permissions have been abbreviated in the permissions (perm.)
column to R for Read, W for Write, and N for Notificatio

Table A.3 and Table A.4 show the services and characteristics that were added
to the central and peripheral applications, respectively. If a specific use is men-
tioned in the table, then it was explicitly added to validate our modifications.
The remaining services and characteristics provide a more realistic workload
when testing service discovery.

A.2 System Implementation

A.2.1 Packetcraft

Registering GATT Services with the ATT server

In this example, it is shown how to add a simple GATT service with a single
characteristic that contains the string “Lorem ipsum”. First, define three vari-
ables for the service declaration, characteristic declaration, and the character-
istic value.

1 /* Test s e r v i c e d e c l a ra t i on */
2 stat ic const u i n t 8 t tes tValSvc [ ] = {TEST UUID SERVICE} ;
3 stat ic const u in t 16 t testLenSvc = s izeof ( tes tValSvc ) ;
4
5 /* Test t e x t c h a r a c t e r i s t i c */
6 stat ic const u i n t 8 t testValTxtCh [ ] = {ATT PROP READ |

ATT PROP WRITE, UINT16 TO BYTES(TEST TXT HDL) , TEST UUID TEXT} ;
7 stat ic const u in t 16 t testLenTxtCh = s izeof ( testValTxtCh ) ;
8
9 /* Test t e x t va lue */

10 stat ic u i n t 8 t testValTxt [TEST TXT LEN] = { ’L ’ , ’ o ’ , ’ r ’ , ’ e ’ , ’m’ , ’ ’
, ’ i ’ , ’ p ’ , ’ s ’ , ’ u ’ , ’m’ , 0 } ;

11 stat ic const u in t 16 t testLenTxt = s izeof ( testValTxt ) ;

These variables can be used to describe the ATT attributes that make up the
GATT service.

1 stat ic const a t t sA t t r t t e s t L i s t [ ] =
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2 {
3 /* Serv i ce d e c l a ra t i on */
4 {
5 attPrimSvcUuid ,
6 ( u i n t 8 t *) testValSvc ,
7 ( u i n t 16 t *) &testLenSvc ,
8 s izeof ( tes tValSvc ) ,
9 0 ,

10 ATTS PERMIT READ
11 } ,
12 /* Charac t e r i s t i c d e c l a ra t i on */
13 {
14 attChUuid ,
15 ( u i n t 8 t *) testValTxtCh ,
16 ( u in t 16 t *) &testLenTxtCh ,
17 s izeof ( testValTxtCh ) ,
18 0 ,
19 ATTS PERMIT READ
20 } ,
21 /* Charac t e r i s t i c va lue */
22 {
23 testTxtUuid ,
24 testValTxt ,
25 ( u i n t 16 t *) &testLenTxt ,
26 s izeof ( testValTxt ) ,
27 (ATTS SET UUID 128
28 | ATTS SET READ CBACK
29 | ATTS SET WRITE CBACK) ,
30 (ATTS PERMIT READ | ATTS PERMIT WRITE)
31 } ,
32 } ;

Finally, the GATT service can be registered with the ATT server.

1 /* Test group s t r u c t u r e */
2 stat ic attsGroup t svcTestGroup =
3 {
4 NULL,
5 ( a t t sA t t r t *) t e s tL i s t ,
6 NULL,
7 NULL,
8 TEST START HDL,
9 TEST END HDL

10 } ;
11
12 AttsAddGroup(&svcTestGroup ) ;

Supporting Notifications for a Client

To allow a GATT client to enable Notifications on a characteristic using its
CCC descriptor, we need to register the CCCs with the ATT server. To do this
we first define the CCC set.

1 /* ! enumeration o f c l i e n t c h a r a c t e r i s t i c con f i gu ra t i on d e s c r i p t o r s
*/

2 enum
3 {
4 APP BATT LVL CCC IDX, /* ! Bat tery Leve l */
5 APP CCC COUNT
6 } ;
7
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8 /* ! c l i e n t c h a r a c t e r i s t i c con f i gu ra t i on d e s c r i p t o r s s e t t i n g s ,
indexed by above enumeration */

9 stat ic const a t t sCccSe t t appCccSet [APP NUM CCC IDX] =
10 {
11 /* APP BATT LVL CCC IDX */
12 {
13 BATT LVL CH CCC HDL, // ccc handle
14 ATT CLIENT CFG NOTIFY, // va lue range
15 DM SEC LEVEL NONE // requ i red s e cu r i t y l e v e l
16 }
17 } ;

The CCC set can then be registered with the ATT server.

1 stat ic void appCccCback ( attsCccEvt t *pEvt )
2 {
3 /* Perform any necessary ac t ion to enab le or d i s a b l e

n o t i f i c a t i o n s , l i k e s t a r t i n g pe r i od i c t imers . */
4 }
5
6 AttsCccRegi s ter (APP CCC COUNT, ( a t t sCccSe t t *) appCccSet ,

appCccCback ) ;

Service Discovery

To discover a single service, define a list of characteristics to discover. Afterward,
perform a service discovery using the characteristic list and pass the function a
pointer to the global handle list.

1 u in t 16 t g loba lHand l eL i s t [ 2 ] = {} ;
2
3 /* Charac t e r i s t i c 1 */
4 stat ic const at tcDi scChar t ch1 =
5 {
6 Characte r i s t i c1Uuid , /* uuid */
7 ATTC SET UUID 128 /* op t i ona l c h a r a c t e r i s t i c s e t t i n g s */
8 } ;
9

10 /* Charac t e r i s t i c 1 */
11 stat ic const at tcDi scChar t ch2 =
12 {
13 Characte r i s t i c2Uuid ,
14 0
15 } ;
16
17 /* ! L i s t o f c h a r a c t e r i s t i c s to be d i s covered ; order matches handle

index enumeration */
18 stat ic const at tcDi scChar t * cha rL i s t [ ] =
19 {
20 &ch1 ,
21 &ch2
22 } ;
23
24 AppDiscFindService ( connId ,
25 ATT 16 UUID LEN ,
26 ( u i n t 8 t *) ServiceUuid ,
27 GATT HDL LIST LEN,
28 ( at tcDi scChar t **) charL i s t ,
29 g loba lHand l eL i s t ) ;
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Configuration of a Remote GATT Server

Configuration consists of initial reads from and writes to characteristics and en-
abling notifications for characteristics. However, since notifications are enabled
by writing to the CCC descriptor of a characteristic, configuration is essentially
only initial reads from and writes to characteristics. Packetcraft automates con-
figuration by allowing us to define a list of characteristics to read from or write
to automatically. For example, first define a list containing an initial read on
the Central Time characteristic, as well as writing to the Central Time CCC
descriptor to get updates of the Central Time in the future.

1 /* Defau l t va lue f o r CCC no t i f i c a t i o n s */
2 stat ic const u i n t 8 t watchCccNtfVal [ ] = {UINT16 TO BYTES(

ATT CLIENT CFG NOTIFY) } ;
3
4 /* L i s t o f c h a r a c t e r i s t i c s to con f i gure a f t e r s e r v i c e d i s covery */
5 stat ic const a t t cD i s cC fg t d i s cove ryCon f i g [ ] =
6 {
7 /* Read : CTS Current time */
8 {NULL, 0 , (TIPC CTS CT HDL IDX + WATCH DISC CTS START) } ,
9

10 /* Write : CTS Current time ccc d e s c r i p t o r */
11 {watchCccNtfVal , s izeof ( watchCccNtfVal ) , (TIPC CTS CT CCC HDL IDX

+ WATCH DISC CTS START) } ,
12 } ;
13
14 AppDiscConfigure ( connId ,
15 APP DISC CFG START,
16 WATCH DISC SLAVE CFG LIST LEN,
17 ( a t t cD i s cC fg t *) d i scoveryConf ig ,
18 WATCH DISC SLAVE HDL LIST LEN,
19 g loba lHand l eL i s t ) ;

Custom Discovery and Configuration Procedure

This example shows how to register a callback to customize Packetcrafts default
discovery and configuration behavior.

1 stat ic void watchDiscCback ( dmConnId t connId , u i n t 8 t s t a tu s )
2 {
3 switch ( s t a tu s )
4 {
5 case APP DISC INIT :
6 /* perform custom i n i t i a l i z a t i o n */
7 /* For example : read the cache */
8 break ;
9 case APP DISC READ DATABASE HASH:

10 /* Read peer ’ s database hash */
11 AppDiscReadDatabaseHash ( connId ) ;
12 break ;
13 case APP DISC SEC REQUIRED:
14 /* r eque s t s e c u r i t y */
15 AppSlaveSecurityReq ( connId ) ;
16 break ;
17 case APP DISC START:
18 /* d i s covery f i r s t s e r v i c e */
19 break ;
20 case APP DISC FAILED :
21 case APP DISC CMPL:
22 /* perform custom complet ion */
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23 /* For example : wr i t e the cache */
24 /* s t a r t con f i gu ra t i on */
25 AppDiscConfigure ( . . . ) ;
26 break ;
27 case APP DISC CFG START:
28 /* s t a r t con f i gu ra t i on in case */
29 /* d i s covery i s sk ipped */
30 AppDiscConfigure ( . . . ) ;
31 break ;
32 case APP DISC CFG CONN START:
33 /* Conf igurat ion fo r connect ion se tup s t a r t e d */
34 break ;
35 case APP DISC CFG CMPL:
36 AppDiscComplete ( connId , s t a tu s ) ;
37 break ;
38 default : break ;
39 }
40 }
41
42 AppDiscRegister ( watchDiscCback ) ;

A.2.2 Zephyr

Registering GATT Services with the ATT server

This example shows how to add a simple GATT service with a single charac-
teristic containing the string “Lorem Ipsum”.

1 stat ic u i n t 8 t t e x t va l u e [ ] = { ’L ’ , ’ o ’ , ’ r ’ , ’ e ’ , ’m’ , ’ ’ , ’ i ’ , ’ p ’ , ’ s ’
, ’ u ’ , ’m’ , 0 } ;

2
3 /* Serv i ce Dec larat ion */
4 BT GATT SERVICE DEFINE( t e s t s e r v i c e ,
5 BT GATT PRIMARY SERVICE(TEST SERVICE UUID) ,
6 BT GATT CHARACTERISTIC(TEST SERVICE TEXT UUID,
7 BT GATT CHRC READ | BT GATT CHRC WRITE,
8 BT GATT PERMREAD | BT GATT PERM WRITE,
9 NULL, NULL,

10 t ex t va l u e ) ,
11 ) ;

Supporting Notifications for Clients

The example in the previous section can easily be extended to support notific-
ations.

1 stat ic void c c c c f g changed ( const struct b t g a t t a t t r * att r ,
u i n t 16 t va lue )

2 {
3 /* Perform any necessary ac t ion to enab le or d i s a b l e

n o t i f i c a t i o n s , l i k e s t a r t i n g pe r i od i c t imers . */
4 }
5
6 /* Serv i ce Dec larat ion */
7 BT GATT SERVICE DEFINE( t e s t s e r v i c e ,
8 BT GATT PRIMARY SERVICE(TEST SERVICE UUID) ,
9 BT GATT CHARACTERISTIC(TEST SERVICE TEXT UUID,

10 BT GATT CHRC READ | BT GATT CHRC WRITE,
11 BT GATT PERMREAD | BT GATT PERM WRITE,
12 NULL, NULL,
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13 t ex t va l u e ) ,
14 BT GATT CCC( ccc c fg changed , BT GATT PERMREAD |

BT GATT PERMWRITE) ,
15 ) ;

Service Discovery

The discovery of GATT service in Zephyr is a very manual, cumbersome process.
To make this easier we developed a library called gatt disc. This library allows
us to easily automate the discovery of any service. As an example, we automate
the discovery of the GAP service.

1 #include ” g a t t d i s c . h”
2
3 /* automatic index enumeration */
4 enum {
5 GAP DEVICE NAME IDX,
6 GAP APPEARANCE IDX,
7 GAP CAR IDX,
8 GAP LEN
9 } ;

10
11 g a t t d i s c s e r v i c e t g ap s e r v i c e = {
12 . name = ”GAP” ,
13 . a t t r s l e n = GAP LEN,
14 . a t t r s = {
15 {
16 . name = ”Device Name” ,
17 . type = BT GATT DISCOVER CHARACTERISTIC,
18 . idx = GAP DEVICE NAME IDX,
19 } ,
20 {
21 . name = ”Appearance” ,
22 . type = BT GATT DISCOVER CHARACTERISTIC,
23 . idx = GAP APPEARANCE IDX,
24 } ,
25 {
26 . name = ”Centra l Address Reso lut ion ” ,
27 . type = BT GATT DISCOVER CHARACTERISTIC,
28 . idx = GAP CAR IDX,
29 } ,
30 }
31 } ;
32
33 void g ap d i s c o v e r s e r v i c e ( struct bt conn *conn , u i n t 16 t *handles ,

g a t t d i s c d on e t done func ) {
34 g a t t d i s c s e r v i c e i n i t (&gap se rv i c e , BT UUID TYPE 16 , BT UUID GAP

, ( struct bt uuid * [ ] ) {
35 BT UUID GAP DEVICE NAME,
36 BT UUID GAP APPEARANCE,
37 BT UUID CENTRAL ADDR RES
38 } , GAP LEN, handles ) ;
39
40 g a t t d i s c s e r v i c e ( conn , &gap se rv i c e , done func ) ;
41 }

We can then discover the service at any time using gap discover service.

1 u in t 16 t handles [GAP LEN] = {} ;
2
3 void d i s c done ( struct bt conn *conn , g a t t d i s c s e r v i c e t * s e r v i c e )
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4 {
5 /* d i s covery i s done */
6 }
7
8 g ap d i s c o v e r s e r v i c e ( conn , handles , d i s c done ) ;

Configuration of a Remote GATT Server

This example shows how we can enable notifications for a single characteristic.

1 struct bt ga t t subs c r i b e pa rams subscr ibe params ;
2
3 u i n t 8 t n o t i f y f un c ( struct bt conn *conn ,
4 struct bt ga t t subs c r i b e pa rams *params ,
5 const void *data , u i n t 16 t l ength )
6 {
7 /* n o t i f i c a t i o n rece i v ed */
8 }
9

10 subscr ibe params . va lue hand le = CHARACTERISTIC HANDLE;
11 subscr ibe params . n o t i f y = no t i f y f un c ;
12 subscr ibe params . va lue = BT GATT CCC NOTIFY;
13 subscr ibe params . ccc hand l e = CHARACTERISTIC CCC HANDLE;
14
15 int e r r = b t g a t t s ub s c r i b e ( conn , &subscr ibe params ) ;
16 i f ( e r r && e r r != =EALREADY) {
17 /* s u b s c r i p t i on f a i l e d */
18 } else {
19 /* sub s c r i b ed */
20 }
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