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Conventional semiconductor diodes dissipate energy in the form of heat when current passes through
them. This is unwanted in, for example, cryogenic environments. Using a superconducting diode
could mitigate this problem. These have been made by using special materials or combining multiple
different circuit elements. We provide a systematic method of designing a tunable superconducting
diode using a circuit of solely Josephson tunnel junctions. We show that even for a small number
of Josephson junctions a strong diode effect can be achieved and that this method is stable under
manufacturing tolerances. This method involves solving computationally inexpensive linear least
squares problems to tune the Josephson energies of the junctions used.

I. INTRODUCTION

A diode is an electronic component that conducts
current in one direction with low resistance and high
resistance in the opposite direction; asymmetric con-
ductance if you will. There are multiple types of
diodes, but the most commonly used type in present
times is the semiconductor diode. The semiconductor
diode is a crystalline piece of semiconductor material
with a p-n junction.1

Semiconductor diodes have strongly asymmetric
resistance, but one downside they all share is that
resistance in the forward direction can never be truly
zero, meaning that they will always heat up while
conducting electricity. An alternative to this is to
make a superconducting diode, which allows for dis-
sipationless conduction of electricity.

A superconductor is a material in which electri-
cal resistance vanishes and magnetic fields are ex-
pelled from the material. Different materials have
different critical temperatures, the temperature under
which a material is superconducting. Unlike with non-
superconducting materials, the drop-off in resistance
is sudden under this temperature threshold. For typ-
ical superconductors, the critical temperature ranges
between 20K and less than 1K. Aluminium metal,
for example, becomes superconducting at 1.2K. The
basic idea behind superconductors is that below the
critical temperature electrons will pair together to
form Cooper pairs. This is due to phonon interactions
with the material. These electron pairs have an inte-
ger total spin, making them behave more like bosons
than fermions.2 Because of this bosonic behaviour,
multiple Cooper pairs can occupy the same quantum
state. These pairs have a slightly lower energy, be-
cause the pairing costs some energy, so an energy
gap will be created above the Cooper pair energy.
This is what stops any collision interactions between
electrons that would normally result in resistivity,
thus making said material have no resistance at low
temperatures.3

Multiple examples of such superconducting diodes
have been produced in other recent papers.4–11 Those
are all relatively complicated, use special materials,
and are harder to control the parameters of. We

would like to find a method for making a supercon-
ducting diode which uses standard components and
allows for more control of the various parameters of
the diode.

Josephson junctions are one example of standard
devices across which a supercurrent can flow.12 They
follow a symmetric current-phase relation. There are
multiple Josephson junction devices, devices which
are both non-linear and non-dissipative. The Joseph-
son tunnel junction is an example of one such device.
It consists of two superconducting electrodes sepa-
rated by an insulating layer(tunnel barrier). A com-
mon material to use for the electrodes is aluminium
and the insulating material is usually a thin alu-
minium oxide layer. In this device, electrons tunnel
through the insulating barrier between the electrodes
causing a supercurrent. The resulting Josephson
junction(JJ), has a sinusoidal current-phase relation,
the amplitude of which is proportional to both the
area of the superconducting electrodes and the trans-
parency of the tunnel barrier.13,14 The energy-phase
and current-phase relation15–17 are given by:

U(ϕ) = − EJ cos (ϕ),

I(ϕ) = 1
Φ0

∂U

∂ϕ
,

I(ϕ) =Ic sin (ϕ) = EJ2e

ℏ
sin (ϕ).

(1)

Here Ic is the critical current of the JJ, which is the
maximum current a device can carry with zero resis-
tance at a specified temperature and in the absence
of magnetic fields. ϕ is the phase and EJ is the char-
acteristic Josephson energy of a JJ, which determines
the amplitude of the energy or current as previously
mentioned. It is defined as EJ = Icℏ

2e , which is the
critical current times the reduced magnetic flux quan-
tum Φ0. For easier calculations and derivations, we
choose Φ0 = 1. I(ϕ) is now given in [J/Φ0].

Josephson junctions are a standard nonlinear build-
ing block for superconducting circuits, they are used
in sensing devices such as SQUIDs,18 SLUGs19 and
SNAILs.20,21 We use them to make a tunable su-
perconducting diode. The electrical symbol used in
circuit schematics for a Josephson junction is a cross,
as seen in the figure.



2
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(c) (d)

Figure 1: Schematic views of simple electrical cir-
cuits containing Josephson junctions. A Josephson
junction is denoted by a cross. (a) and (b) do not
work as a diode, (c) and (d) are the simplest working
examples.

The general idea behind designing a superconduct-
ing diode is combining multiple Josephson junctions
such that the resulting current-phase relation is asym-
metric. This means that the critical current going
one way is different from the critical current going
the other way. It is useful to look at the simplest
scenario of two JJs in parallel as depicted in Fig.
1(a). This is the simplest case; since one can add
the currents of the two junctions together to find the
total current. This is not sufficient to get an asym-
metric current-phase relation. The current for one
junction, I1(ϕ) = EJ1 sin (ϕ), added to the current
of the other junction, I2(ϕ) = EJ2 sin (ϕ + δϕ), gives
us another sinusoidal current-phase relation, which
can’t be asymmetric. Finding the current-phase re-
lation for two JJs in series as depicted in Fig. 1(b)
requires using the current for a single junction as seen
in Eq.(1). We derive this relation by using the fact
that because the JJs are in series; I1(ϕ1) = I2(ϕ2).
Here ϕ1 and ϕ2 are the phases through each of the
junctions. We also use ϕ = ϕ1 + ϕ2 because phases
in series add. We first find ϕ1(ϕ) by using α = EJ1

EJ2
and α sin (ϕ1) = sin (ϕ − ϕ1):

ϕ1(ϕ) = arctan
(

sin (ϕ)
α + cos (ϕ)

)
. (2)

We then substitute ϕ1(ϕ) into I1(ϕ1) following Eq.(1)
to find I(ϕ), where we have substituted α back into
the equation:

I(ϕ) =
(

2EJ1EJ2

EJ1 + EJ2

) sin ( ϕ
2 ) cos ( ϕ

2 )√
1 − 4EJ1 EJ2

(EJ1 +EJ2 )2 sin ( ϕ
2 )2

.

(3)
We simplify this equation by choosing A and τ as
parameters we can finetune by changing EJ1 and EJ2 :

A = EJ1 + EJ2 ,

τ = 4EJ1EJ2

(EJ1 + EJ2)2 .
(4)

We recognise the resulting current-phase relationship
as the derivative of the energy-phase relationship:16,22

I(ϕ) = ∂

∂ϕ

A

√
1 − τ sin (ϕ

2 )
2
 . (5)

One will find that this current-phase relation is
also symmetric, which can be seen in Fig. 3. So
using two JJs in series will not yield a diode effect by
itself.

The goal in this project is to find a way to combine
just JJs to achieve a high diode efficiency, η:23

η = |I+
c − I−

c |
I+

c + I−
c

. (6)

Here, I+
c is the forward critical current and I−

c is the
reverse critical current.

It has been demonstrated that using two junctions
in parallel with an inductance has a slight diode
effect.24 It is another possible approach, but has the
added complexity of introducing other types of circuit
elements, which could have dissipation of their own
or make it harder to control the parameters. In this
article, the maximum diode efficiency achieved was
relatively small compared to a normal, semiconductor
diode,1 with η = 0.25. This shows that a device this
simple is not sufficient, but it does provide a clue on
how to approach the problem.

It is not a given how to design an arbitrary su-
perconducting diode, but we provide a way to sys-
tematically achieve exactly that. In this thesis, we
describe a method using simple JJs in parallel and
in series to achieve a strong diode effect. We do not
consider using inductances like in the 2015 paper24

for simplicity’s sake. We provide an example with an
η = 0.70 and show that this method is stable under
manufacturing tolerances, meaning that this method
could be viable for real-world applications.

II. MINIMAL DIODE CIRCUIT

The simplest circuit that produces a diode effect
is one JJ in parallel to two JJs in series, as shown
in Fig. 1(c). We need to use the two JJs in series
because it has the simplest non-sinusoidal current-
phase relation, which is necessary to achieve any kind
of asymmetry. And indeed, when choosing a realistic
value for τ for the two junctions in series, τ = 0.9
in this case, and optimising for the ratio between
the amplitudes of the parallel single junction and
the two in series, we find η = 0.43. The current-
phase relation of this simplest case is shown in Fig.
2, which clearly shows that the maximum positive
current is larger than the minimal negative current.
We do not use this simplest working case to build our
diode with, because using multiple different building
blocks for our diode would make the fabrication more
complicated.

We use parallel arms that contain two Josephson
Junctions in series each. By Kirchoff’s current law, to
get the full current-phase relation, we can simply add
the currents of separate arms together. The current
of one arm is given by Eq.(3), and it is useful to know
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the derivative of the current given by:

I ′(ϕ) = Aτ

4
sin ( ϕ

2 ) cos ( ϕ
2 )

(1 − τ sin ( ϕ
2 )2) 3

2

+ Aτ

4
cos ( ϕ

2 ) − sin ( ϕ
2 )√

1 − τ sin ( ϕ
2 )2

. (7)

Figure 2: The current-phase relation of the circuit
shown in Fig. 1(c) for τ = 0.9. Optimisation here
has given EJ = 1.58, A = 5.79 and the phase offset
between the parallel branches is 11

10 π.

To give some better insight, in Fig. 3, Eq.(3) and
Eq.(7) are plotted for A = 1 and τ = 0.9. There it
can clearly be seen that the current-phase relation is
not sinusoidal.

Simply adding arms will not do to achieve a diode
effect. Even if we change A or τ of one arm, the
currents will simply add up to form the current-phase
relationship of a single different arm. By applying a
DC magnetic field however, we can induce a phase
offset between multiple arms, thereby shifting the
plot to the left or right as desired.

Just like in the simplest working case of two JJs
in series and one JJ in parallel to that, using four
Josephson junctions as seen in Fig. 1(d), will also
display a diode effect. If we optimise the Josephson
energies of all junctions used and the phase offset
between the arms, we can find a diode efficiency as
high as 0.50. This comes with the caveat that τ = 1.0
for one of the arms, which is very hard to achieve
since it would require that EJ1 = EJ2 precicely. This
is not realistically achievable when taking tolerances
into account. The optimisation also takes a long time
to calculate for multiple arms. This is impractical at
best and computationally impossible at worst.

A solution is to set τ to a constant value that is
achievable to manufacture. Choosing τ reasonably
close to 1 such as τ = 0.9 is appropriate. The lower
the τ , the less sharply peaked the derivative of the
current in Fig. 3(b) is. This does lower the diode
efficiency from η = 0.5 to η = 0.27 in the case with
two arms. However, this result does give some insight

(a)

(b)

Figure 3: Plots of the current and derivative of the
current of two Josephson junctions in series as given
by Eq.(3) and Eq.(7) over two periods. Here A = 1

and τ = 0.9.

into how to further approach the problem. Besides
giving a hint, it also shows that, indeed, with two
of these arms we already have a higher diode effi-
ciency than was achieved when using two JJs and an
inductance.24

The general shape we would ideally find for the
second derivative is two symmetric peaks surrounded
by a constant 0 area. This follows from the idea that
a perfect diode would have a current-phase relation
that looks similar to a square wave shifted up ver-
tically: The minimum of the wave being near zero
as seen in Fig. 4 while the integral over one period
remains 0. The derivative of a square wave is known
to have sharp peaks followed by a constant zero. The
spacing of the peaks determines the duty cycle of the
waveform. Now if one looks at Fig. 3(b), one can see
that while not nearly perfect, this derivative some-
what resembles that of the square wave. There is a
negative peak at ϕ = −π and a positive peak imme-
diately next to it. By adding up multiple derivatives
of this shape with different phase offsets and different
amplitudes, we aim to get as close as possible to that
ideal shape. Using multiple arms we cancel out the
derivative of the current in such a way that we find
a high diode efficiency.
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(a) (b)

Figure 4: Current of an idealised diode and its deriva-
tive over two periods. For this specific current-phase
relation; η = 0.8.

III. RECIPE FOR AN OPTIMAL DIODE

If multiple arms are used, the goal is to place
the sharp peaks of the derivative such that adding
all together, we get a large negative peak, a large
positive peak and a flat area around 0. This can be
done with manual tweaking and intuition if only two
or three arms are used but this becomes impossible
for more arms than that. Instead, we choose to have
an unshifted reference arm with a larger amplitude.
We then linearly space the offsets of the other arms
such that the negative peaks are in the flat area.
Then finally, we choose the amplitudes of all arms
such that they cancel out the singular larger reference
arm. The height of the peak of I ′, is given by Eq.(8)
which can be derived from looking at Fig. 3(b) and
Eq.(7). This then gives us the value of A to use to
have a peak with a certain height at a chosen ϕchosen:

min I ′(ϕ) = I ′(π) = Aτ

4
−1√
1 − τ

,

A = 4
√

1 − τ

τ
I ′(ϕchosen).

(8)

From there we shift I ′(ϕ) to the left or right by π to
get the negative peak of the derivative at 0. We can
then add a δϕ to the phase to shift the peak to the
final position as required. We show this approach
working in Fig. 5, where all peaks are shifted to
the area we want to be zero and the amplitudes are
chosen according to Eq.(8). This gives us η = 0.42
for just three arms with τ = 0.9.

Using this method and the appropriate number
of arms for a given tau, a high diode efficiency can
be achieved. The way to speed this up for more
arms is by changing the problem into a least squares
minimisation problem. Kirchoff’s current law, as
stated earlier, allows us to find the final current-
phase relation by simply adding the separate elements
together. We can also choose all amplitudes in such
a way that we minimise the height of the flat area
between the positive and negative peaks.

We first choose the offsets such that the positions
of the peaks are linearly spaced in the area we want
to be flattened, so we choose ϕ0 < ϕj < ϕmax where

Figure 5: Derivative of current for 3 arms of two JJs
in series each, τ = 0.9, η = 0.42.

we can choose ϕ0 and ϕmax. These can be optimised
for a given τ and the number of arms, but should
generally be chosen such that the positive peak is as
wide as the negative peak.

We say that {I ′
1(ϕ + δϕ1), I ′

2(ϕ + δϕ2), . . . } are the
derivatives of the current following Eq.(7); all with
the same τ and shifted by their respective δϕi. Then
we can say that at any given ϕ, I ′(ϕ) = A0I ′

0(ϕ +
δϕ0)+A1I ′

1(ϕ+δϕ1)+· · ·+AnI ′
n(ϕ+δϕn), where n is

however many arms you have. (We say that A0 = 1,
δϕ0 = 0 and I ′

0 is the unshifted reference arm.) Then,
we need to inspect this for multiple different ϕj to
choose the Ai optimally. We solve the least squares
minimalisation problem:

min
Ai

∑
j

I ′(ϕj)2. (9)

Solving this problem for a number of arms, we find
a higher diode efficiency than for the three arms in
Fig. 5: η = 0.57 for five arms in total and η = 0.70
for ten arms:

(a) (b)

Figure 6: Two plots showing the current(a) and the
derivative(b) of that current for 5 arms with τ = 0.9
over two periods, η = 0.57. The thick line is the
combined current or derivative and the dotted lines
are for the individual arms.
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(a)

(b)

Figure 7: Two plots showing the current and the
derivative of that current for 10 arms with τ = 0.9
over two periods, η = 0.70. The thick line is the
combined current or derivative and the dotted lines
are for the individual arms.

These figures clearly show that the current-phase
relation converges and that the diode efficiency in-
creases with the number of arms. The efficiency does
not scale linearly, so while ten arms have a higher η,
for the chosen τ = 0.9, there may be a lower number
of arms with high enough diode efficiency to be worth
the easier manufacturing.

With our method, with even just 10 arms, the
least squares problem converges and gives a high
diode efficiency, but it is useful to examine how it
is influenced if we introduce real-world tolerances of
5% for A and τ . Even if some errors such as these
are made in the fabrication process, the resulting
circuits are still diodes. In most cases, the positive
and negative errors will cancel out and yield a good,
though somewhat reduced, diode efficiency. In Fig.
8 multiple plots of the current and derivative of the
current for 10 arms are plotted. Here all τ and
all A have a random error as high as 5%. With
a completely random error, the resulting diodes still
have an average η ≥ 0.50. So while decidedly not as
good as without any errors, the diode effect is not
lost completely and is still high enough that any ten
arm ’failures’ could be used as five arm substitutes,
if the goal was to use a diode with η = 0.50. If the

(a)

(b)

Figure 8: The current and derivative of the current
plotted for 10 arms with a random 5% error applied
to both τ and A over two periods. The thick line is
the mean of the current or derivative and the shaded

area is the standard deviation.

error is not random but instead multiplicative on all
EJ , then the total amplitude of the current would be
affected, but not the diode efficiency, as can be found
by looking at Eq.(3) and Eq.(4). This is also how one
would intentionally produce a diode that will handle
a certain current.

IV. CONCLUSION

A good diode effect can be achieved using this
method of determining the offsets and amplitudes. It
is also computationally inexpensive and makes use of
just Josephson tunnel junctions without the use of
special materials.

We did not consider using other methods besides
linearly spacing to decide the locations of the negative
peaks in the derivative. In other words, we did not
optimise the phase offsets of the arms. In this thesis,
they are simply spaced linearly, but there may be a
better way to place them. Regardless, even with the
peaks spaced evenly, a diode efficiency of 0.70 can be
achieved with just ten arms, if tolerances are tight
enough.
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This thesis can and should be expanded on by
considering different current-phase relations. One
could use a method that doesn’t require knowing
the original energy-phase relation. For this project,
two Josephson junctions in series were used, and
that composition has a known current-phase relation.
Therefore, calculating the height of the peaks in
the derivative of the current is relatively easy. In
the future, other, sharper, or completely different
current-phase relations may well be used, even if the
exact relation is unknown, to achieve a diode effect
by the method described in this paper. Combining
multiple smaller devices in parallel to achieve an
optimal current-phase relationship by matching the
derivatives.

A superconducting diode made using this method
will most likely be used in a circuit at some frequency.
We did not consider frequency characteristics of the
junctions or other inductances and capacitances this
diode would be used in conjunction with. For any
implementation of a circuit diode like described here,
incorporating capacitances and calculating the fre-
quency response, will be necessary.
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