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ABSTRACT Autonomous shipping refers to the ability of a ship to independently control its own actions
while transporting cargo from one port to another, which places higher requirements on ship motion control
methods. When a ship enters a port, it is important to ensure that the ship sails from the fairway area to
the assigned position at the berth with a desirable speed and that it finally stops at the desired position. Ship
docking is known as one of the most challenging tasks due to the non-linearity of low-speed ship movements
and the high requirements on collision avoidance with the quayside. This paper proposes a nonlinear model
predictive control (NMPC) -based approach for underactuated ships, providing optimal ship rudder angles
and propeller revolution rate to automate the ship docking process. At each sampling instant, a finite horizon
optimal control problem is formulated based on a nonlinear ship maneuverability model. A lexicographic
multi-objective optimization strategy is proposed in the design of the NMPC controller, saving the efforts
on control parameters tuning. Simulation experiments are carried out to evaluate the effectiveness of the
proposed approach.

INDEX TERMS Automatic docking, motion control, nonlinear model predictive control.

I. INTRODUCTION
With the trends towards autonomous shipping, advanced ship
motion control techniques are being developed to ensure that
ships can independently control their own actions, especially
in complicated situations. When a ship enters a port, it is
important to ensure that the ship sails from the fairway area to
the assigned position at the berth with a desirable speed and
that it finally stops at the desired position. In practice, the ship
docking procedure performed by a skilled shipmaster usually
consists of three steps [1]: firstly, when the ship has sufficient
acceleration to alter its course with the rudder, the course of
the ship is changed to the desired berth-approach direction.
Secondly, the ship decelerates, and the ship’s maneuverability
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is also reduced due to the low speed, which makes it difficult
to maneuver the ship with rudder; thirdly, the main engine
is stopped at the appropriate time, and the ship moves to
the berth with the remaining speed. In short, a ship docking
procedure includes course changing, speed deceleration, and
engine stopping.

Ship docking is known as one of the most challenging
tasks [1]–[4], inappropriate ship maneuvers may lead to col-
lision accidents with the quayside, which causes losses of
lives and property. To ensure maritime safety, as well as to
contribute to the development of smart ships and autonomous
shipping, automatic ship docking techniques are required.
When a ship is moving at a low speed, the ship maneu-
verability also reduces, which makes it difficult to steer the
ship in a flexible way. In addition, most marine ships are
under-actuated systems, only the yaw and surge movements
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can be actuated directly, which means that there are more
variables to be controlled than the number of control actu-
ators. Unlike fully-actuated ships, the control feedback of
under-actuated ships is difficult to linearize, which makes it
an open and interesting problem in control. While numer-
ous under-actuated systems have been controlled, there are
few general principles. Moreover, the under-actuated nature
of a ship is coupled with the nonlinear characteristics of
the hydrodynamics associated with ship motion, this further
increases the difficulty of designing a suitable controller for
ship docking control.

To dock a ship to a berth safely, ship states including
position, heading angle, and velocity need to be controlled
appropriately by the rudder and the propeller. The key for a
successful docking controller is how to regulate the rudder
and the propeller properly. To automate this challenging pro-
cess, several control methods have been proposed in recent
years.

Artificial Neural Networks (ANN) have been one of the
most commonly used methods because of their learning abil-
ity and mimicking actions of the human brain when per-
forming stages of ship docking. In [1], an ANN controller is
designed based on a head-up ship coordinate system to design
the ANN controller, which includes the relative bearing and
distance from the ship to the berth. This makes the ANN con-
troller able to adapt to different ports without having to retain
the ANN structure. An ANN auto-docking control method
is proposed in [5], considering unknown ship dynamics and
external disturbances, which is based on deep-rooted infor-
mation and performed using the additional control method,
dynamic surface control, and minimum learning parameter
techniques.

Another ANN approach is proposed in [6], in which the
network is trained by consistent teaching data to replicate
human brain decisions during ship docking, considering
wind disturbances. The docking maneuver process is divided
into three types, including course changing, step decelera-
tion and stopping, in order to prepare teaching data. Then
feed-forward multi-layered ANN controllers are proposed
and trained with the Lavenberg-Marquart algorithm in back
propagation technique for different rudder angles and pro-
peller revolution rates. While the results are effective, it still
takes time to train ANN models.

The authors in [2] proposed a quasi real-time method
to solve minimum-time approaching control for automatic
docking. In [3], the automatic ship docking problem is for-
mulated as an off-line minimum-time optimal control prob-
lem. To deal with the computational difficulty caused by
the non-linearity of the problem, a covariance matrix adap-
tion evolution strategy is used to optimize the real-valued
variables.

Most research takes the surge forces and yaw moments
as the control inputs, as they can directly affect ship move-
ments. This also makes it easier to handle the non-linearity
of ship dynamics. In practice, a shipmaster uses the pro-
peller revolution rate and rudder angle as the actual control

inputs. Considering compliance with practicality, this paper
adopts the propeller revolution rate and rudder angles as the
main control variables. In addition, most marine ships are
underactuated, and equipped with propellers and rudders for
surge and sway movements, without any actuators to directly
control the sway movements. Therefore, this paper focus on
underactuated ships.

This paper proposes to solve the auto-docking problem of
underactuated ships in light of model predictive control the-
ory.Model predictive control (MPC) is an optimization-based
control strategy that could provide a flexible framework
to deal with complicated and nonlinear system dynamics
and system constraints. It has been extensively studied and
applied to numerous industrial problems, a literature review
can be found in [7]. It has also received attention for
the trajectory tracking control problem of ships [8]–[15].
Firstly, it is a systematic way to deal with complicated prob-
lems with multiple inputs and outputs. Secondly, it could
explicitly consider constraints on state and control vari-
ables. Moreover, its optimization-based nature could guar-
antee optimality or sub-optimality of generated control
moves.

As a first step, the automatic docking problem is formu-
lated as an optimal control problem. Due to the non-linearity
of the ship dynamics in docking, a multi-objective nonlinear
model predictive control scheme is proposed to generate
optimal control inputs for the ship.

Nonlinear model predictive control (NMPC) is the exten-
sion of classic MPC with nonlinear models, constraints and
objective functions. In an NMPC problem, the objective func-
tion usually consists of a weighted sum of different terms,
but the selection of appropriate weight assigned to each term
could be a time-consuming task. Reducing one weight on one
objective and increasing another does not necessarily lead to
a proportional response in the results.

Multi-objective nonlinear model predictive control
(MO-NMPC) could deal with the optimization problem of
multiple conflicting performance criteria over a receding
horizon for constrained nonlinear systems [16]. The opti-
mization inMO-NMPC is based onmulti-objective optimiza-
tion algorithms including the weighted sum [17], the goal
attainment [18], utopia tracking [16], [19], and the lexico-
graphic method [20], [21], etc.

Among these methods, the lexicographic method could
explicitly consider the priorities of different optimization
objectives. This is in accordance with ship docking practice,
in which the shipmaster first adjusts its course and then
positions. In other words, the shipmaster prefers course angle
alteration in the beginning and changes its operation priority
into reaching the berth location precisely. Therefore, this
paper uses lexicographicMO-NMPC to design a ship docking
controller, as it can explicitly take into account the priorities
of different objectives.

In the final stage of the docking operation, it is important
to avoid collisions against the berths or nearby ships docked
in neighboring berths. This paper deals with this situation
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by introducing reference points and planning of safe docking
paths.

The main contributions of this paper include:
1) Most research simplified the ship model and uses surge

force and yaw moment as the control variables, while
in practice most ships use RPS and rudder angle as the
control inputs. This paper formulates a nonlinear ship
model that uses RPS and rudder angles as main con-
trol inputs, which is in compliance with ship docking
practice.

2) To save the efforts on tuning the weights assigned to
each term in the objective function, a lexicographic
multi-objective optimization strategy is adopted in the
design of the MO-NMPC controller for underactuated
ships.

This paper is organized as follows: Section 2 introduces
nonlinear ship dynamics and formulates the ship docking
problem as an optimal control problem. Section 3 introduces
the MO-NMPC controller design and solution steps of the
auto-docking approach. Simulation results are presented in
Section 4. Conclusions and future work are given in Section 5.

II. PRELIMINARIES AND PROBLEM FORMULATION
An NMPC problem is usually formulated as a discrete-time
optimal control problem over a finite horizon constrained
by nonlinear model equations. Therefore, this section first
introduces the preliminaries of ship dynamics and then gives
the formulation of the ship docking control as an optimal
control problem.

FIGURE 1. Ship coordinate system.

A. NONLINEAR SHIP DYNAMICS
Figure 1 shows the ship coordinate system used in this paper:
the space-fixed coordinate system O0 − x0 y0 z0 and the
moving ship-fixed coordinate system o−xyz, where o is taken
on the midship of the ship, with x, y and z axes that point
towards the ship’s bow, towards the starboard and vertically
downwards, respectively. Heading angle ψ is defined as the
angle between the x0 and x axes, variable δ represents the
rudder angle and r represents the yaw rate. Variables u and v
denote the surge and sway velocity in x and y directions,
respectively.

FIGURE 2. Ship docking process.

For ship maneuvering model, a 3-DOF (degree of free-
dom) model is used to represent the ship dynamics on the
surge, sway and yaw axes. AnMMG (ManeuveringModeling
Group) model is applied to represent the ship movements,
in which the hydrodynamic forces and moments on the ship
are divided into hull, rudder, and propeller, expressed in the
following form:
(m+ mx)u̇− (m+ my)vr − xGmr2 = XH + XP + XR
(m+ my)v̇+ (m+ mx)ur + xGmṙ = YH + YP + YR
(Iz + x2Gm+ Jz)ṙ + xGm(v̇+ ur) = NH + NP + NR

(1)

where, subscripts H ,P,R represent the hull, the propeller,
and the rudder; m,mx and my are ship mass, added mass in
x-direction, and added mass in y-direction; Iz and Jz are
moment of inertia and added moment of inertia around the
z-axis, u and v are ship longitudinal and lateral speed, r is
ship yaw rate around midship, and the dot notation of u,
v and r represents the derivative of each parameter.

Then, the system state of (1) can be transformed into the
following form [22]:

ẋ = u cosψ − v sinψ
ẏ = u sinψ + v cosψ
ψ̇ = r

u̇ =
mv
mu

vr −
fu(v)
mu
+
Tu(·)
mu
|n|n+ dwu

v̇ = −
mu
mv

ur −
fv(v)
mv
+ dwv

ṙ =
(mu − mv)

mr
uv−

fr (v)
mr
+
Fr (·)
mr

δ + dwr ,

(2)

where 
mu = m− Xu̇ = m+ mxx
mv = m− Yv̇ = m+ myy
mr = Izz − Nṙ = Izz + Jzz.

(3)

Parameters dwu, dwv and dwr represent the disturbances on
the x, y and z axes. Variables fu(v), fv(v) and fr (v) represent
the high-order fluid dynamics items:

fu(v) = −(X|u|u|u|u+ Xvrvr + Xvvv2 + Xrrr2)

= −
1
2
ρLppTV 2(−R′0 + X

′
vvv
′2
+ X ′vrv

′r ′ + X ′rrr
′2

+X ′vvvvv
′4) (4)
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fv(v) = −(Yvv+ Yrr + Y|v|v|v|v+ Y|r|r |r|r + Ywrv2r

+Yvrrvr2)

= −
1
2
ρLppTV 2(Y ′vv

′
+ Y ′rr

′
+ Y ′vvvv

′3
+ Y ′vvrv

′2r ′

+Y ′vrrv
′r ′2 + Y ′rrrr

′3) (5)

fr (v) = −(Nvv+ Nrr + N|v|v|v|v+ N|r|r||r|r

+Nwrv2r + Nvrvvr2)

= −
1
2
ρL2ppTV

2(N ′vv
′
+ N ′rr

′
+ N ′vvvv

′3

+N ′vvrv
′2r ′ + N ′vrrv

′r ′2 + N ′rrrr
′3),

(6)

in which 
u′ = u/V
v′ = v/V
r ′ = rLPP/V
V =
√
u2 + v2.

(7)

The main control forces are the surge force Tu(·) and
the yaw moment Fr (·), which are generated with differ-
ent propeller revolution n (per second) and rudder angle δ,
respectively.

The surge force Tu(·) is determined by propeller rev-
olution n, propeller diameter DP and the propeller thrust
coefficient KT :

Tu(·) = (1− tP)ρD4
PKT , (8)

whereKT is commonly expressed by second order polynomi-
als of the propeller advance ratio JP as:

KT = k2J2P + k1JP + k0, (9)

in which JP can be obtained as:

JP =
u(1− wP)
nDP

(10)

In equation (10), Jp is the propeller advance ratio, which is an
indicator of the propeller performance in certain flow speed.
u(1 − wP) represents the flow speed at the propeller. wP is
the wake factor at propeller position in maneuvering, which
is commonly estimated based on the wake factor at propeller
position in straight moving wP0 and the geometrical inflow
angle to the propeller in maneuvering βP, defined as:

βP = β − x ′Pr
′, (11)

where β = arctan(− v
u ), x

′
P = xP/Lpp = −0.48 and xP is

longitudinal portion of propeller.
This paper applies the methods of wP introduced by [23]

as:
(1− wP)
(1− wP0 )

= 1+ {1− exp(−C1|βP|)}(C2 − 1), (12)

where wP0 is the wake factor at propeller position in straight
moving, C1 and C2 are experimental constants. Furthermore,
C1 and C2 are different in motions for port and starboard

owing to an asymmetric wake factor with respect to the
propeller rotational effect.

The yaw moment Fr (·) is defined as:

Fr (·) = (xR + aHxH )

[
−

6.13λ
λ+ 2.25

AR
L2PP

(u2R + v
2
R) cos δ

]
,

(13)

where aH = a′H = LPP, and xH = x ′H = LPP.
Considering the effect of the propeller on the increment

of the rudder inflow velocity, the longitudinal velocity of the
inflow to the rudder uR is expressed as:

uR=uε(1−wP)

√√√√
η

{
1+κ

[√(
1+

8KT
πJ2

)
−1

]}2

+(1−η)

(14)

where ε = (1 − wR)/(1 − wP), wR is the wake factor at the
rudder position inmanoeuvring, κ is an experimental constant
for expressing uR, and η is the ratio of the propeller diameter
to the rudder span. The lateral inflow velocity to the rudder
vR is written as:

vR = VγR(β − `′Rr
′), (15)

where γR is the flow straightening factor and different for port
and starboardmotions, `′R = `R/Lpp is the effective longitudi-
nal coordinate of rudder position. We refer the readers to [23]
for more details on the nonlinear ship maneuverability model.

B. OPTIMAL CONTROL PROBLEM
For automatic ship docking, the control objective is to
steer the ship state to follow the reference state xr =
[xr , yr , ψr , ur , vr , rr ]>, in which ur = 0, vr = 0, rr = 0
so that the ship is stopped, (xr , yr ) are the designed docking
position, ψr equals 0◦, ±180◦ or other values, depending on
the layout of quayside of port.

The state equation of ship dynamics can be represented as:

ẋ = f (x,u),

where x = [x, y, ψ, u, v, r]> ∈ R6 is the ship state vector,
and u is the control input vector. Most research takes surge
force Tu and yaw moment Fr as the main control variables,
as they can lead to surge and yaw movements. In this paper,
we consider the fact that shipmasters use rudder angle and
propeller revolution rate docking operation in practice as the
main control signal. Therefore, the control input is chosen
as u = [n, δ]> ∈ R2, in which n refers to the propeller
revolution rate and δ refers to the rudder angle.
The nonlinear ship dynamics are discretized with the Euler

method, and then a system of discrete-time state-space equa-
tions with state xk , control input uk is obtained. At each
sampling instant k , the ship control objective is to follow the
reference states, and it is formulated as an optimal control
problem that takes the following form:

min
x(k),u(k)

J (x, u) =
N−1∑
k=0

L(x(k),u(k))+ E(xN |k ) (16)
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subject to: xk+1 = f (xk ,uk ) (17)

xk=0 = x0 (18)

xk ∈ X , uk ∈ U , k ∈ I (19)

where, f (·, ·) refers to the right-hand side of discretized equa-
tion (2), X ⊂ R6, U ⊂ R2. The objective function J
consists of stage cost and terminal cost, in which the stage
cost function is represented as L = ‖x(t) − xr (t)‖Q +
‖u(t)− ur (t)‖R, and the terminal cost function is formulated
as ||x(N )− xr (N )||P. Here, Q,R,P are positive semidefinite
weight matrices.N refers to the prediction horizon. Objective
function J aims to minimize the deviations of the system
inputs and states from the reference states.

After formulating the optimal control problem, the objec-
tive of a NMPC problem is to find the optimal control
sequence U = {u0, · · · ,uN−1} with prediction horizon
N at each sample time k , such that the resulting state
sequence X = {x0, · · · ,uN } and the control sequence U
minimize the objective function J (x, u) without violating
Constraints (17)-(19).

At each sampling instant k , the NMPC algorithm uses the
discretized nonlinear ship model (2) and the measured states
to predict the future system states within a pre-defined time.
After solving the optimal problem, a nonlinear state feedback
u is obtained.

III. CONTROLLER DESIGN BASED ON NONLINEAR
MODEL PREDICTIVE CONTROL
This section introduces the controller design steps. Firstly,
the reference path from the ship’s current position to the
docking position needs to be determined. Secondly, the auto-
matic ship docking problem is formulated as a lexicographic
multi-objective NMPC problem, so as to relieve the burden
of controller parameter tuning. Thirdly, the solution steps of
the proposed NMPC control scheme are introduced. Finally,
the proof of stability of the MO-NMPC strategy is given.

FIGURE 3. Ship docking path planning.

A. REFERENCE PATH GENERATION
Figure 3 gives an example of a reference docking path for
Ship 1 when it starts docking from location A to berth B.
If the nearby berths are empty, the reference path would be

the direct line from point A to the point B. The reference path
is generated as a series of points. Assuming that point A’s
coordinate is (xA, yA) and point B’s coordinate is (xB, yB), and
that takes time T for the ship from A to B in its regular speed,
then a series of points are generated. When Ship 1 starts
docking procedure from point A at time t = 0. The reference
point (xt , yt ) at time t , is calculated as follows:

xt = xB + (xA − xB) ∗
T − t
T

,

yt = yB + (yA − yB) ∗
T − t
T

.

When the t ≥ T , the reference point become (xB, yB)
afterwards.

Under certain circumstances, it could happen that the
neighborhood berth has been occupied by another ship.
As shown in Figure 3, Ship 2 has been docked at the right
side of berth B. Therefore, Ship 1 needs to keep enough
distance with the Ship 2 and avoid collisions in its docking
operation. The originally planned path, which is the direct
line from A to B, is no longer feasible.

Because of this, reference point C is introduced, which
divides the path into two parts. The coordinate of point C is
determined by the midship of Ship 2 and the required safe
distanceDsafe. The control task from points A to C is to ensure
that the distance between itself and Ship 2 should always be
larger than the required safe distance before it passes point C.
After Ship 1 passes point C, the collision avoidance task has
been finished and the control task is to dock and stabilize
the ship at berth B. The reference points from points A to C,
and from points C to B are generated in a similar way as the
reference points from points A to B.

B. LEXICOGRAPHIC MULTI-OBJECTIVE NMPC
As described earlier, the objective function of an NMPC
problem typically is the weighted sum of different terms
including the ship’s position deviations, course deviations
and velocity deviations from desired values. The selection of
different weights generates different solutions. Selecting an
appropriate set of weights could be a complicated task, which
is usually done by trial and error. Therefore, considering the
applicability of the NMPC controller, it is important to find
an efficient way to tune the weights in the objective function.

Multi-objective optimization, which aims at finding
optimal solutions for multiple and conflicting objec-
tives, has been adopted in tuning MPC control para-
meters [16], [21], [24]. This paper adopts the multi-objective
model predictive control scheme proposed in [21], in which
the NMPC problem is reformulated as a lexicographic opti-
mization problem. The optimal solutions are obtained by
solving a series of optimization problems.

The discretized nonlinear ship dynamics are xk+1 =
f (xk ,uk ), where xk and uk are the state and control vectors at
sampling time interval k . Consider a finite sequence of future
control actions at time k , uk,N = {u0|k ,u1|k , · · · ,uN−1|k},
in which N represents the prediction horizon. The overall

70048 VOLUME 8, 2020



S. Li et al.: Automatic Docking for Underactuated Ships Based on Multi-Objective NMPC

FIGURE 4. The scheme of the proposed auto-docking method.

objective function (16) is divided into several sub-functions,
and their importance of different objective functions are
ranked with an order from J1 to JM , in which J1 is the most
important and JM is the least important. Therefore, the prior-
itized multi-objective optimization problem is formulated as

min
uk,N

J (u, x)

where, J (u, x) = [J1(u, x), · · · JM (u, x)]T is the objective
function vector that maps the constrained control sequence
u and current state x to a set of N objective functions.
At time k , given the ship state xk and control action

sequence uk,N , the future ship states at time k + t is denoted
as xt|k . Therefore, xt+1|k = f (xt|k ,ut|k ) with x0|k = xk .

Solving a lexicographic multi-objective optimization prob-
lem involves finding:

u∗k,N = argmin
uk,N
{JM (u, x)|Jj(uk,N , xk,N ) ≤ J∗j (xk )+ σj,

∀j ∈ {1, 2, · · · ,N − 1}}

where J∗j (xk ) represents the optimal value function of the
j-th optimization problem, σj ≥ 0 are small tolerance to be
determined. Initially, the first or the most important objec-
tive function J1 is minimized subject to original Constr-
aints (17)-(19). When the problem is feasible and an optimal
solution is obtained, it is also the solution to the whole opti-
mization problem. Then the second most important objective
function J2 is minimized by adding a new constraint which
ensures that the value of J1 when solving J2 could preserve
its optimal value, i.e., it should not be worse than the value
of the solution of the in the previous optimization problem.
If this subproblem is feasible and has a unique solution, it is
the solution to the original problem. Otherwise, the process
continues. The whole process repeats at each time interval.

After minimizing the last objective function JM , solution
u∗k,N is obtained, which is the lexicographic optimal solution
to the whole problem. The MO-NMPC control law for the
ship at time k will take the first value in the set u∗k,N =
{u∗0|k ,u

∗

1|k , · · · ,u
∗

N−1|k}, therefore u
nmpc
k = u∗0|k .

C. ALGORITHMIC STEPS
The scheme of the proposed NMPC-based auto-docking
method is given in Figure 4. Firstly, the ship prediction
model is formulated and Euler discretized based on the non-
linear ship dynamics introduced in Section II-A. For the
multi-objective NMPC formulation, according to the impor-
tance of the auto-docking operation in practice, three objec-
tive functions are considered:

J1(uk , xk ) = ||x(N )− xr (N )||P1 +
N−1∑
t=0

(||x(t|k)− xr (k)||Q1

+ ||u(t|k)− ur (k)||R1 ) (20)

J2(uk , xk ) = ||x(N )− xr (N )||P2 +
N−1∑
t=0

(||x(t|k)− xr (k)||Q2

+ ||u(t|k)− ur (k)||R2 ) (21)

J3(uk , xk ) = ||x(N )− xr (N )||P3 +
N−1∑
t=0

(||x(t|k)− xr (k)||Q3

+ ||u(t|k)− ur (k)||R3 ) (22)

For the docking problem, it is important for the ship to
stop accurately and stabilize at the desired berth. Therefore,
the ship firstly needs to follow the reference states, when it
arrives at close quarters of the quayside, it needs to stop and
stabilizes at the desired position. This implies that variables
x, y are more important in the beginning, and will be given
higher priorities in the objective function. When it is close to
the quayside, variables u, v, r will be given higher priorities
in the objective function.

To get initial solutions, in objective function J1, all the
weights for state variables x = [x, y, ψ, u, v, r]> are equal,
therefore matrix Q1 = diag[1, 1, 1, 1, 1, 1]. Then variables
(x, y) and (u, v) are given higher priorities in objective func-
tion J2, and matrix Q2 = diag[0, 0, 1, 0, 0, 1]. In objective
function J3, states (ψ, u, v, r) are given higher priorities,
and matrix Q3 = diag[0, 0, 0, 1, 1, 0]. In all the objective
functions, R1 = R2 = R3 = diag[0.1, 0.1], and that
P1 = P2 = P3 = diag[1, 1, 1, 1, 1, 1].
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Algorithm 1 The Algorithmic Steps of Ship Docking Control
Method

1. Set sampling time k , initialization at time k = 0,
prediction horizon N , objective functions Ji(uk , xk ) and
their priorities.
2. Measure the state xk at time interval k .
3. Based on ship’s current coordinate (x, y), plan the ref-
erence trajectories (xr , yr ) to the docking location (xR, yR).

4. Compute the optimal control sequence u∗k :
(1) Solve the 1st-layer problem (20) subject to Con-

straints (17)-(19), obtain one series of optimal control
actions,

u∗k,1 = argmin J1(uk , xk ), and the optimal objective
value J∗1 ;

(2) Solve the 2nd-layer problem (21) subject to Con-
straints (17)-(19), obtain one series of optimal control
actions,

u∗k,2 = argmin{J2(uk , xk )|J1(uk , xk ) ≤ J∗1 + σ }, and
the optimal objective value J∗2 ;

(3) Solve the 3rd-layer problem (22) subject to Con-
straints (17)-(19), obtain one series of optimal control
actions,

u∗k,3 = argmin{J3(uk , xk )|J1(uk , xk ) ≤ J∗1 +
σ, J2(uk , xk ) ≤ J∗2 + σ }, and the optimal control sequence
u∗k = u∗k,3.
5. Apply the first element unmpc

= u∗0|k,3 of the lexico-
graphic optimal sequences to ship model (2), and update
ship’s states.
6.Wait for the next sample and set the time index k = k+1,
then go to 2.

The control law u is obtained by solving on-line, at each
sampling instant k , a finite horizon open-loop optimal con-
trol problem and using the actual state of the ship as the
initial state. The optimization generates an optimal control
sequence and the first element u0|k of this sequence is applied
to the ship. Based on the nonlinear ship dynamics, ship
states are updated as xi|k . The algorithmic steps are given in
Algorithm 1. It is noted that when the ship starts docking pro-
cedure, only optimization problem (20) needs to be solved.
When the ship is close to the docking points, problems (20),
(21) and (22) need to be solved sequentially afterward.

D. NONLINEAR OPTIMIZATION
To solve the nonlinear optimization problems (16) with objec-
tive functions J1,J2 and J3 sequentially at each sampling inter-
val k , an interior point method [25] is used. This section uses
the solution process of objective function J2 as an example
to explain. When the first optimization problem J1 is solved,
the value of J∗1 is obtained. For optimization problem J2, it has
the following form:

min
uk,N

J2(uk , xk ) (23)

s.t. h(uk , xk ) = xk+1 − f (xk ,uk ) = 0 (24)

g(uk , xk ) = J1(uk , xk )− (J∗1 + σ ) ≤ 0 (25)

Given the current ship states value xk , the optimization
problem (23) will be solved to get optimal control input
uk and predicted ship states. This paper adopts an interior
method to replace the nonlinear program by a sequence of
barrier sub-problems of the form:

min
z
ξµ(z) = J2(u)− µ

m∑
i=1

ln si (26)

here, uk is replaced with u, and s > 0 is a vector of slack
variables, z = (u, s) and µ > 0 is the barrier parameter. The
Lagrangian function associated with problem is defined as:

L(z, λ;µ) = ξµ(z)+ λTh h(u)+ λ
T
g (g(u)+ s) (27)

where λh and λg are Lagrange multipliers and λ = (λh, λg).
The first-order optimality condition for the barrier prob-
lem (26) can be written as:[

∇J2(uk )+ Ah(u)Tλh + Ag(u)Tλg
S3ge− µe

]
=

[
0
0

]
, (28)

together with (24) and (25) and restrictions that s and λg be
non-negative. Here, S and 3g represent diagonal matrices
whose diagonal entries are given by vector s and λg, respec-
tively. e is the vector of all ones. Matrices Ah and Ag are
the Jacobian matrices of h and g. Then Newton’s method is
applied to (28), (24) and (25). Based on the value of (z, λ) in
current iteration, a primal-dual system is formulated:[

W (z, λ;µ) A(u)T

A(u) 0

] [
dz
dλ

]
= −

[
∇zL(z, λ;µ)

c(z)

]
, (29)

where,

A(u)=
[
Ah(u) 0
Ag(u) I

]
, (30)

W (z, λ;µ)=∇zzL(z, λ;µ) =
[
∇

2
uuL(z, λ;µ) 0

0 S−13g

]
.

(31)

Then the new iterate is given by

z+ = z+ αzdz,λ+ = λ+ αλdλ. (32)

The step-lengths αz and αλ are computed in two stages.
Firstly, we compute:

αmax
z = max{α ∈ (0, 1] : s+ αds ≥ (1− τ )s} (33)

αmax
λ = max{α ∈ (0, 1] : λg + αdg ≥ (1− τ )λg}, (34)

in which τ ∈ (0, 1). Then a backtracking line search is
performed, which computes step-lengths:

αz ∈ (0, αmax
z ], αλ ∈ (0, αmax

λ ], (35)

that could provide a sufficient decrease in a merit function.
For more details regarding the formulation of merit function
and setting barrier parameter µ, we refer the readers to [25].
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Here, we list the termination criteria of the nonlinear opti-
mization algorithm. The algorithm terminates if an iterate
(z,λ) satisfies

‖∇J2 + ATh λh + A
T
g λg‖∞ ≤ max{1, ‖∇J2‖∞}εopt (36)

‖Sλg‖∞ ≤ max{1, ‖∇J2‖∞}εopt (37)

‖h,max{0, g}‖∞ ≤ max{1, ‖h,max{0, g}‖∞}εfeas

(38)

where εopt and εfeas are termination tolerances to be
determined.

E. PROOF OF STABILITY
To guarantee the asymptotic stability by using the control
law unmpc

k , it is desirable to use infinite prediction and control
horizons. While it is not feasible to get solutions for an
infinite horizon nonlinear optimization problem, stability of
the lexicographic MO-NMPC problem can still be guaran-
teed by choosing suitable objective functions and region of
attraction. This has been studied in [24]: considering M pri-
oritized objectives of system (17), which are represented by
Ji(uk.N , xk ) = Ei(xN |k ) +

∑N
t=0 Li(xt|k ,ut|k ), i ∈ M , where

Li represents stage costs, and Ei represent terminal costs, and
that both stage and terminal costs are continuous on their
arguments. The required stability conditions are summarized
as follows:

1) For the first layer problem J1, the stage cost L1 and ter-
minal cost are positive-definite functions with respect
to their arguments;

2) There exist an invariant set � ⊆ X of system (17),
containing the origin in its interior, and a local control
law u = U local

1 (x) such that

U local
1 ∈ U , f (x,U local

1 ) ∈ �,

E1(f (x,U local
1 ))− E1(x)+ L1(x,U local

1 ) ≤ 0

for any x ∈ �.
3) The first layer sub-problem J1 is feasible in the set

of admissible states Xnmpc(N ) = {x ∈ X |∃uk,N ∈
UN , s.t.(x,uk,N ) ∈ Z (N )} at time k = 0, where UN

is the product of N sets U , and Z (N ) is defined as an
admissible set of (x,uk,N ) pairs:

Z (N ) = {(x,uk,N )|xt+1|k = f (xt|k ,ut|k ), x0|k = x,

xt|k ∈ X ,ut|k ∈ U , xN |k ∈ �}.

If Conditions 1)-3) hold, then the system in closed-loop
with the controller obtained by Algorithm 1 is asymptotically
stable with the region of attraction Xnmpc(N ).
For our problem, the stage cost Li = ||x(t|k)− xr (k)||Qi +
||u(t|k) − ur (k)||Ri , terminal cost Ei(xN |k ) = ||x(N ) −
xr (N )||Pi . As indicated in earlier sections, our problem for-
mulation satisfies these conditions.

IV. SIMULATION RESULTS
To evaluate the effectiveness of the proposed NMPC con-
troller, the KVLCC2 tanker is used, using the ship parame-
ters given in [26]. The hydrodynamic parameters are listed

in Table 4. Our experiments are performed on an Intel Core
i7-7500 CPU with 8GB RAM running Windows 10 and are
implemented in MATLAB R2019a. The NMPC controller is
implemented with MATLABModel Predictive Control Tool-
box. MATLAB-fmincon function was used as the nonlinear
optimization solver. To speed up the optimization process,
parameters εopt and εfeas are set as 0.001. The maximum
iterations are set at 1200. The prediction horizon length is
selected to be N = 30s and the sampling interval is k = 1s,
the control horizon is Tc = 1s. which leads to a discrete
horizon of 30 samples.

Two types of scenarios are considered, one with a ship at
the nearby berth and one without. The docking target states
in both scenarios are x = 0, y = 0 and ψ = −180◦. The
minimum and maximum limits for propeller revolution rate
and rudder angle are considered as:−10.34 ≤ n ≤ 10.34 and
−35◦ ≤ δ ≤ +35◦.

A. SCENARIO 1: WITHOUT COLLISION AVOIDANCE
In docking practice, a ship usually starts with an approach
angle smaller than 30◦. An approach angle refers to the
angle between the ship’s course and the quayside when it
starts docking. To verify the applicability of the proposed
control scheme, four cases with different approach angles are
considered. It is noted that in these cases, the ship’s approach
angles are 10◦, 20◦, 30◦ and 40◦, the ship’s course angle is
−170◦,−160◦,−150◦ and −140◦, respectively.

• Case 1: x = 70, y = 12.35, ψ = −170◦, u = 1.2,
v = 0, r = 0;

• Case 2: x = 70, y = 25.48, ψ = −160◦, u = 1.2,
v = 0, r = 0;

• Case 3: x = 70, y = 40.42, ψ = −150◦, u = 1.2,
v = 0, r = 0;

• Case 4: x = 70, y = 58.74, ψ = −140◦, u = 1.2,
v = 0, r = 0.

Figure 5 shows the ship docking trajectories in Cases 1-4.
The ship in all cases finally stabilizes at (0, 0) with the desired
heading angle −180◦.
Figure 6 shows the plots of the surge velocity u, sway

velocity v and yaw rate r over time. The surge speed u
stabilizes gradually at 0m/s at around 200 seconds, and so
does the sway velocity v and yaw rate r .

Figure 7 shows the curves of control inputs including pro-
peller revolution rate n and rudder angle δ. It can be seen from
Figure 7a that the propeller revolution rate in Case 1 stabilizes
at 0 within around 500 seconds, and that it stabilizes at 0
within around 550 seconds, 650 seconds and 700 seconds in
Cases 2, 3 and 4, respectively. This is consistent with docking
operation practice, the larger the approach angle is, the more
difficult for the shipmaster to maneuver the ship at the desired
position. Figure 7b shows the same pattern, the rudder angle
in Case 1 stabilizes at 0 the first and then Cases 2, 3 and 4.
Figure 7 also shows that the ship adjusts its heading angles
first, and then uses a propeller revolution rate to decelerate
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FIGURE 5. Simulated ship docking trajectories in Cases 1-4.

and stop at the desired location. Therefore, the rudder angles
stabilize at an earlier time than the propeller revolution rate.

TABLE 1. Computation time in each iteration in Cases 1-4 (in seconds).

Table 1 presents the maximum, minimum and average
computation times in each iteration in Cases 1-4. While in
some rate situations, the computation time could be around
3 or 5 seconds, in most situations it is far less than the
1.0 seconds sampling interval, which is acceptable for prac-
tical implementations.

B. SCENARIO 2: COLLISION AVOIDANCE
For the second scenario, the initial ship states is set as x =
70, y = 25.48, ψ = −160◦, u = 1.2, v = 0, r = 0.
A neighbor docked ship A with a length of 10m and width of
5m is considered. Different safe distancesD = 8m,D = 12m,
and D = 16m are considered and labeled as Cases 5, 6 and 7,
respectively.

The x coordinate of Ship A’s midship is 20, and the y
coordinates of its starboard side is 3. Therefore, to ensure
the safe distance, the reference points for path planning are
set as (20, 11), (20, 15) and (20, 19) accordingly in Cases 5,
6 and 7. The collision avoidance task is to ensure that the
ship’s y coordinates should be larger than 11, 15 and 19 when
it passes x = 20 in Cases 5-7.

Figure 8 shows the ship docking trajectories in Cases 5-7.
It can be seen that the ship can avoid collisions with the
neighboring docked ship and keep enough distances. In all

FIGURE 6. Changes of ship states over time in Cases 1-4.

cases, the ship needs to decelerate and accelerate to avoid
collisions, and then decelerate again to stabilize at the desired
location. In Case 7, the ship needs to make larger adjustments
in its heading angle, therefore the increase of its speed is
larger than the increase of speeds in Cases 5 and 6. This also
means that it takes a longer time and distance for the ship
to decelerate in Case 7 than in Cases 5 and 6. Therefore,
the ships in Cases 6 and 7 reaches x = −15 and x = −10
and then moves back to x = 0.
Figure 9 shows the curves of surge velocity u, sway veloc-

ity v and yaw rate r over time. It can be seen that they stabilize
gradually at 0m/s within 300 seconds. As the ship needs to
accelerate so as to change its heading angle to avoid collisions
with the docked ship A, the surge speed u has increased
between 80 seconds to 120 seconds.

Figure 10 shows the curves of control inputs including
propeller revolution rate n and rudder angle δ. Similar to
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FIGURE 7. Changes of control inputs over time in Cases 1-4.

Figure 9a, the propeller revolution rate has also increased
from 80 seconds to 120 seconds to accelerate the ship, so as
to change its heading angle to avoid collisions. In Figure 10a,
the propeller revolution rate stabilizes at around 400 seconds,
600 seconds, and 730 seconds in Cases 5, 6 and 7, respec-
tively. In Figure 10b, the rudder angle stabilizes at around
200 seconds, 250 seconds, and 300 seconds in Cases 5, 6,
and 7, respectively. The ship also takes the strategy to firstly
adjust its heading angles and then decelerate its speed. There-
fore, the rudder angle stabilizes at an earlier time than the
propeller revolution rate.

TABLE 2. Computation time in each iteration in Cases 5-6 (in seconds).

Table 2 presents the maximum, minimum and average
computation times in each iteration in Cases 5-6. Compared
with Cases 1-4, the computation times are slightly longer,
which means it takes a longer time to find solutions to fol-
low the collision-free path. The average computation time is
around 0.3 seconds, which is much smaller than the sampling
time.

C. COMPARISON WITH DIRECT NMPC METHOD
Simulation experiments are also carried out to com-
pare the proposed MO-NMPC approach with a direct

FIGURE 8. Simulated ship docking trajectories in Cases 5-7.

NMPC approach. In the direct NMPC, the controller directly
solves just one optimization problem J0 in each iteration
instead of three optimization problems in MO-NMPC:

J0(uk , xk ) = ||x(N )− xr (N )||P0 +
N−1∑
t=0

(||x(t|k)− xr (k)||Q0

+ ||u(t|k)− ur (k)||R0 ). (39)

In order to make it consistent with the weights assigned
to objective functions J1, J2 and J3, we set Q0 =

diag[1, 1, 1, 1, 1, 1], R0 = R1 = R2 = R3 =
[
0.1 0
0 0.1

]
,

and that P0 = P1 = P2 = P3 = diag[1, 1, 1, 1, 1, 1].
Figure 12 shows the comparison of the control perfor-

mance of MO-NMPC and direct NMPC methods, with
respect to ship position variables x, y, ψ Cases 1-4. The
results of direct NMPC is labeled as ‘‘-NMPC’’. It can be seen
that with MO-NMPC method, the value of variable x con-
verges to 0 with a shorter time than the direct NMPC method
in all cases. While the value of variable y in MO-NMPC
method reaches 0 with a longer time than the direct NMPC
method in all cases, it finally stabilizes at 0. Meanwhile,
the value of variable y in direct NMPC method does not con-
verge to 0, and small deviations exist in all cases. Moreover,
the ship cannot reach the desired heading angle with the direct
NMPC method, and that large deviations still exist at the
end of the simulation, while the value of ship heading angle
reaches and stabilizes at the desired value with MO-NMPC
method.

Figure 13 shows the comparison on the control perfor-
mance with respect to ship states motion variables u, v, r
in Cases 1-4. It can be seen that the value of variables u
converges to 0 with both methods in all cases and that in
Cases 3 and 4, it converges at an earlier time withMO-NMPC
than with NMPC. The value of variable v converges to 0 with
bothmethods in all cases. The value of variable r converges to
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FIGURE 9. Changes of ship states over time in Cases 5-7.

0 in all cases withMO-NMPCmethod, while small deviations
exist in Cases 2 and 3 with direct NMPC.

Figure 11 shows the comparison of control inputs δ and n
in Cases 1-4. It can be seen that the value of the rudder angle
δ with both methods converges to 0. For propeller revolution
rate n, with the MO-NMPC method, it could stabilize at 0 in
all cases within the simulation time. Meanwhile, the value of
variable nwith direct NMPC method does not converge in all
cases.

It can be seen from the simulation results in Cases 1-4 that
the proposed MO-NMPC method performs better than the
direct NMPC method with respect to ship state variables and
control inputs.

Table 3 presents the maximum, minimum and average
computation times in each iteration with the direct NMPC
method in Cases 1-4. Compared with the computation time

FIGURE 10. Changes of control inputs over time in Cases 5-7.

FIGURE 11. Comparison of direct NMPC and proposed MO-NMPC with
respect to δ and n.

of the proposed MO-NMPC method in Table 1, the com-
putation times are slightly shorter. This is because, in the
MO-NMPC-based method, the controller needs to solve three
optimization problems, while the direct NMPC controller
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FIGURE 12. Comparison of direct NMPC and proposed MO-NMPC with respect to x, y and ψ .

FIGURE 13. Comparison of direct NMPC and proposed MO-NMPC with respect to u, v and r .

TABLE 3. Computation time in each iteration in Cases 1-4 (in seconds).

only solves one optimization problem in each iteration. In all
cases, the average computation times of the direct NMPC
method is much shorter than the 1.0 seconds sampling
interval.

D. RESULTS DISCUSSIONS
Based on the simulation results, we can concluded that:

1) Rudder angle and propeller revolution rate have been
introduced as the main control variables, which makes
the control results more in line with the actual ship
situation.

2) The proposed MO-NMPC-based automatic docking
method could successfully lead the ship to the desired
berthing point. It could also avoid collisions when
another ship has been docked in its neighboring
berth.
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TABLE 4. Applied parameters in the simulations of the KVLCC2 tanker.
Source: [23].

3) The proposed MO-NMPC-based docking controller
shows better performance than a direct NMPC con-
troller on the convergence of control variables. It also
shows better performance in tracking reference states
and stabilizing at desired positions.

4) It is possible that a direct NMPC method could pro-
vide the same control performance as the MO-NMPC
after taking trial-and-error experiments with differ-
ent weights in the objective function. However,
it is a time-consuming process, and our proposed
MO-NMPC-based method could save the efforts on
tuning these parameters.

5) While the proposed MO-NMPC controller takes
slightly longer computation time than the direct NMPC
controller in each iteration, it is still much shorter than
the sampling time interval in general. This could facil-
itate the implementation in practice.

V. CONCLUSION AND FUTURE WORK
To ensure safe and autonomous ship docking, this paper pro-
poses a nonlinear model predictive control method. A 3-DOF
ship model is used with a propeller revolution per second
and rudder angle as the control variables. The automatic
ship docking problem is formulated as an NMPC problem,
in which the control objective is to make sure that the ship
state follows the reference state. A quadratic cost function
is adopted, in each sample time, the optimization objective
is to minimize the deviations of the ship’s current states

from desired states. Amulti-objective optimization strategy is
proposed, which could save the efforts on tuning the weights
in the objective function of the formulated NMPC problem.
Simulation results are promising and validate the effective-
ness of the proposed method.

For future work, this research will be extended in several
directions. Firstly, this paper did not consider the external dis-
turbances including wind, wave, and current. External envi-
ronmental forces might lead to a tracking error if they are not
considered in the controller design. Therefore, we will con-
sider the measurements or estimation of these disturbances
by introducing a nonlinear disturbance observer, so that the
disturbances could be compensated. Secondly, as the hydro-
dynamic coefficients of the hull, the propeller, and the rudder
will be changed in different ship speeds, we will consider this
in our future work after the identification of these coefficients
in basin tests. Thirdly, a time delay of the control signal
and input saturation of rudder and propeller will also be
considered in our future work.

In addition, due to the underactuated characteristic of the
ship, the proposed control method does not apply to all initial
docking positions. This could be done by designing intelli-
gent path planning algorithms integrated with practitioners’
experiences, and carrying out experimental tests in the future.
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