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EXECUTIVE SUMMARY 
INTRODUCTION 
Cables and pipes are critical infrastructure systems (CISs) which are mostly located in the very crowded 
subsurface. Especially in urban areas, a typical road includes five to ten infrastructure systems which 
are all owned and managed by different entities. The CISs are spatially interdependent as these are 
highly interconnected due to the close spatial proximity. Despite the critical function of cables and pipes, 
over 30,000 cable and pipe failures from excavation works are reported in the Netherlands yearly. 
Multiple studies have been conducted to reduce the risk of excavation damage. These studies have 
mainly focused on the impact side. Remarkable as from an extensive cooperation between the network 
operators and other stakeholders, a guideline (CROW500) was formed that seeks to prevent cable and 
pipe damage from excavation works.  

Despite the extra guideline and the close spatial proximity between cables and pipes in cities, it is still 
unexplored what the effect of spatial interdependencies is on the probability of failure from excavation 
works.  

RESEARCH QUESTION AND SUB-QUESTIONS 
Therefore, the objective of this thesis is to develop a model to accurately predict cable and pipe failures 
from excavation works, considering spatial interdependencies. The associated research question is:  

“What method can predict the influence of spatial interdependencies on the probability of failure from excavation 
works on the cables and pipes of subsurface utility operators?”  

Three sub-questions were stated to guide the research and answer the main research question. 
Herewith, a method to accurately predict failures from excavation works is provided by: 

o Identifying the variables that are most related to cable and pipe failure from excavation works; 
o Assessing to what extent the variables affect the probability of failure from excavation and how this 

can be predicted accurately; 
o Exploring how the findings can be implemented by network operators. 

SUB-QUESTION I  
What variables are most related to cable and pipe failure from excavation works?  
A literature review and three qualitative in-depth expert interviews served to identify the related 
variables that were already known. The gained knowledge was adopted during data collection in which 
multiple databases had to be combined, resulting in the categorical dependent variable failure or non-
failure. Currently, network operators measure the network performance in failures per kilometer per 
year, whereby the network is assessed integrally. In this study, all locations and excavation activities 
are considered unique, which alters the possible modelling methods. As the modelling method, logistic 
regression was selected to identify what variables are related to cable and pipe failures from excavation 
works and to predict failure from excavation works.  

By assessing the statistical significance on the one hand and application of a stepwise backward 
elimination procedure based on the Akaike Information Criterion on the other hand, the relevant 
variables were identified. The three methods together; literature review, expert interviews and logistic 
regression were able to answer the first sub-question. Multiple variables were identified by all three 
methods, but also new variables were identified by the expert interviews and logistic regression model. 
Newly identified were the diameter of the own asset and emergency excavation requests, which both 
stood out from the logistic regression model as factors with statistical significance in relation to failures 
from excavation works. 
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SUB-QUESTION II 
To what extent are the identified variables affecting the probability of failure from excavation works and how can 
we accurately predict the probability of failure?   
In logistic regression, the probability of Y (the dependent variable) occurring is predicted. In this way, 
a proper model can be applied to identify to what extent other variables affect the probability of failure 
from excavation works. Therefore, the statistical significance of both the individual variables as well as 
from the entire model (with the relevant variables) were tested. In order to assess the predictive 
performance of the logistic regression, two methods (repeated K-Fold cross validation and the Receiver 
Operator Curve) were used to validate the model.   

However the full dataset which is used for the logistic regression is imbalanced as it contains more than 
100,000 non-failures and only 180 failures. From the validation, it followed that the predictive 
performance of the logistic regression is poor, as the balanced accuracy was 0.50 which is like a coin flip. 
Therefore, three alternative (sampling) techniques for logistic regression with rare event data were 
tested.  

First, the method of King & Zeng (2001) was applied, which  uses weighting and under sampling. In 
this way, instead of maximizing the log-likelihood, the weighted log-likelihood is maximized. From the 
validation, it followed that a sample set with four times more non-failures than failures, including the 
weight, was able to predict with a balanced accuracy of 0.66, whereby 38% of the failures were 
accurately predicted and 94% of the non-failures.  

The second approach to overcome the imbalanced data is the Synthetic Minority Over-sampling 
TEchnique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002), in which new data for the minority 
(failures) is created. This is done by taking the k-nearest neighbors and selecting a random point on the 
line in between. On the other hand, the majority class (non-failures) is under sampled to create an almost 
perfectly balanced sample set. During validation, a balanced accuracy was found of 0.61, whereby 58% 
of the failures were accurately predicted and 63% of the non-failures. A third approach, Bayesian logistic 
regression had similar results as the logistic regression applied on the entire dataset, so it had no 
predictive power at all.  

Both, SMOTE and weighting were capable to predict failures more accurate than the full data model. 
However, none of the models was capable to accurately predict all failures.  

SUB-QUESTION III 
In what way can network operators use the model to reduce failure from excavation works?  
A gap analysis identified the difference between the current situation and the desired situation. Next, a 
SWOT-analysis has been used to assess the strong and weak points of the current situation, whereas the 
opportunities and threats followed from the developed model to come to the desired situation in the 
best possible way. 

From the analysis, three possible application strategies were found by a TOWS-analysis. First, the risk-
assessment that is currently done by expert judgements can be complemented by the model. Besides it 
can train the experts and contribute to reach more consistency during these risk-assessments. Second, 
the model proved once again that incorrect data has large influence on failures from excavation works. 
However, despite the incorrect data, the models are still capable to predict 38% and 58% of the failures, 
which were not averted by the expert judgements. 

CONCLUSION 
From this thesis it followed that various steps are necessary to come to an accurately predicting model. 
In the end a combination was found of methods for rare event data and a binary logistic regression 
model. The models that followed from the two sampling techniques, Weighting and SMOTE were 
capable to predict failures from excavation works with a balanced accuracy up to 0.66 and 0.61. Even 
though both models (weighted and SMOTE) cannot predict all failures accurately, it can increase the 
accuracy of the predictions which are currently done by experts. A combination of the two predicting 
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methods, by expert and one of the models will be able to predict cable and pipe failures from excavation 
works more accurate than is currently attained by experts only. 

During the final stages of this thesis research, the primary focus moved to writing a scientific article as 
mentioned in the Colophon. Consequently, the paper contains more detail on some parts than this 
thesis. The paper is focused on the application of rare event data methods for network operators. 
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1 INTRODUCTION 
1.1 RESEARCH BACKGROUND 

An infrastructure system is a network of independent, “man-made systems and processes that function 
collaboratively and synergistically to produce and distribute a continuous flow of essential goods and 
services” (Marsh, 1997, p.3). Well-being of citizens and the economy of a nation depends on the 
continuous and reliable functioning of its infrastructure systems. Of those systems, the Critical 
Infrastructure Systems (CISs) are the ones “whose incapacity or destruction would have a debilitating 
impact on the defense and economic security” (Ouyang, 2014, p. 44) of nation states.  

Many CISs are entirely or partially located in the subsurface, where the underground is very crowded 
in urban areas. A typical city road includes five to ten underground infrastructure systems, all owned 
and managed by different entities, mostly making decisions without any mutual coordination or 
information sharing (Osman, 2016). Over 1.7 million kilometers of cables and pipes are already situated 
in the subsurface in the Netherlands and the amount is anticipated to increase as the economy and 
population are expected to growth, as well as through innovation (e.g. fiberglass) (Groot, Saitua, & 
Visser, 2016; Rijksoverheid.nl, 2017). Each year, major investments are made in subsurface 
infrastructure in the Netherlands. The forecasts are that about €100 billion will be invested between 2015 
and 2030 (Groot et al., 2016). The investments are made for extension and for rehabilitation of the 
networks. Rehabilitation in the Netherlands is defined by EN 752: “measures for restoring or upgrading 
the performance of existing drain and sewer systems” (Tscheikner-Gratl et al., 2016, p. 13). So, 
rehabilitation contains all preventive maintenance activities, concerning all aspects of the network’s 
assets (Tscheikner-Gratl, 2015). Rehabilitation is always planned for the longer term, therefore 
infrastructure companies moved their focus toward pro-active approaches, using predictive analyses 
(Engelhardt, Skipworth, Savic, Saul, & Walters, 2000; Tscheikner-Gratl, 2015).  

In contrast to rehabilitation, planning of repairs is not possible since repairs are done almost 
immediately after failures because cables and pipes have a vital function for a country and its citizens 
(Tscheikner-Gratl, 2015). Failure can be caused by excavation activities. In 2015 more than 530,000 
excavation requests and 32,858 damages from excavation works were reported in the Netherlands alone 
(Kabel- en Leiding Overleg, 2016), which is 5.7% of all cable and pipe failures (Kabel- en Leiding 
Overleg, 2016). Excavation damage and third-party damage of cables and pipes refers to any damage 
caused by a person which is not directly associated to the network (Wei & Han, 2013, p. 2527). The direct 
repair costs of the excavation damages are over € 26 million per year, and the indirect costs are estimated 
to be €100 million per year in the Netherlands alone (Van Mill, Gooskens, Noordink, & Dunning, 2013). 

1.2 PROBLEM ANALYSIS  
1.2.1 REGULATIONS FOR EXCAVATION  

To reduce excavation damage the Law Information Exchange Subsurface Utilities (WION) has been 
introduced. WION was introduced with the goal to limit danger and economic damage due to damage 
from excavation works (Kadaster, 2017). It obliges a ‘KLIC-request’ (Cable and Pipe Information Centre) 
before any mechanical excavation work is conducted (Kabel- en Leiding Overleg, 2015, 2016; Van Mill 
et al., 2013). A KLIC-request is in this thesis defined as the obligatory request that is done before 
mechanical excavation takes place.  There are three types of KLIC-requests (Kadaster, n.d.):  

o Orientating KLIC-request, which is used if the applicant is not planning to excavate within 20 days. 
It is even not allowed to excavate with this type of request and therefore serves other goals than 
excavating, such as preparation or design work.  

o Regular KLIC-request, which allows the applicant to start excavating from the third day after the 
request until the twentieth day after the request. 
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o Emergency KLIC-request is for unexpected situations that could harm civilians, cause other major 
damage, or result in a critical supply stop. The emergency KLIC-request allows the applicant to start 
immediately after the request.  

WION and KLIC were renewed in 2017, to modernize the data exchange methods and implement 
INSPIRE, the European legislation. The renewed WION has been introduced in the first quarter of 2018 
as Law Information Exchange Surface and Subsurface Utilities (WIBON) (Kadaster, 2017). KLIC will 
become KLIC-WIN in the beginning of 2019.   

As of the revision of WION and KLIC, CROW250 was also revised in 
2017 into CROW500. Both, CROW250 and CROW500 have been 
developed by the Cable and Pipes Consultation (KLO), which is an 
extensive cooperation between network operators, excavation 
contractors and clients in the cable and pipes branch (Van Mill et al., 
2013). The CROW 500 (2016) is, like CROW 250 was, a guideline that 
seeks to ‘prevent damage on cables and pipes from excavation works, guideline 
carefully excavating from initiation to implementation phase’ and expands the 
obligations and responsibilities that are already stated by the law 
(WIBON and KLIC). Both, the duty of providing information for network 
operators as well as the duty of careful excavating by contractors and 
clients were specified (CROW-werkgroep, 2016). Among the 
specifications the early mapping of risks and the localization of cables 
and pipes during the design phase are included (CROW-werkgroep, 
2016). 

1.2.2 RISK-ASSESSMENT  
The mapping of the risk and localization of the cables and pipes should be done already in the concept 
phase of the project life cycle (CROW-werkgroep, 2016). The gathered data is used as a basis for the risk-
assessment, which is obligatory for the initiator before any (mechanical) excavation work is conducted 
(CROW-werkgroep, 2016).  In the risk-assessment all possible conflicts between cables and pipes are 
analyzed, as also other characteristics of the excavation location (e.g. soil conditions). During the risk-
assessment, more detailed information can be requested from other network operators such as function, 
diameter and depth. Altogether, it should result in suitable control measures and agreements between 
parties about the required precautions, such as (temporary) relocation of cables and pipes, alternative 
designs design or protective measures (CROW500, 2016). 

The precautions and control measures follow from theoretical (location) data from the orientation KLIC-
request. As the real location of cables and pipes could deviate from the theoretical location, CROW500 
also prescribes the obligatory localization of cables and pipes through trial trenching. Trial trenching 
comes from archaeology and is used to provide a sampling of a larger area  (Palmer, 2015). For 
excavation works, the size of trial trenches depends on three parameters (CROW-werkgroep, 2016):  

o The excavation profile is the area where the actual excavation work will be conducted. The size of 
the area is determined during the design phase (CROW500, 2016). 

o Design and measure tolerance is the area directly around the excavation profile. The size of the 
tolerance area is based on the kind of work (e.g. cable construction) and the type of machine used 
for the work (e.g. small excavator). For a standard excavator, the tolerance is 0,50 (horizontal) 
meters, for all other types of excavating (e.g. drilling, piling) the tolerance should be determined 
per unique situation (CROW500, 2016).  

o The total size of the search area follows by adding a margin for error of the data. According to 
WION, a cable or pipe must be located within a meter (two-sided) of its presumed virtual location, 
therefore CROW500 prescribes another meter trial trenching (CROW500, 2016). An example of a 

Figure 1: CROW500 is the  
guideline in the Netherlands  
for anyone who is planning to 
excavate (mechanically) 
(CROW-werkgroep, 2016) 
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search area is shown in Figure 2. Network operators determine how many trial trenches should be 
used to reduce the risk. 

Altogether, according to the CROW 500 guideline, the area to be investigated by trial trenches must 
thus be at least 1.5 meters around the actual excavation location. WIBON does not prescribe anything 
on the accuracy of vertical location data, therefore it became mandatory by CROW500 to search an extra 
20 cm in depth than the expected depth (CROW500, 2016). Multiple network owners, poor data 
management and unnotified relocation of utilities are reasons for inaccuracy, out-of-date and sometimes 
even incomplete utility location data (S. Li, Cai, & Kamat, 2015).  

Several methods and innovations, such as Subsurface Utility Engineering (SUE), have been presented 
over the past years to improve the accuracy of the available data (Li et al., 2015; Osman & El-Diraby, 
2007). SUE is an emerging engineering process that aims to accurately locate and depict cables and pipes 
to reduce underground excavation accidents (Jeong, Abraham, & Lew, 2004).  Furthermore, for example 
the water distribution companies developed BEEL (Assessment External Effects Pipes), which was 
introduced for mains nearby important objects such as highways, public locations and flood defenses. 
If the impact of a mains failure nearby these important locations is high, extra control measures like 
protecting covers and constructive measures are taken to reduce the probability of failure. So, the risk 
which exists of a probability and an impact determines what kind of measures the water network 
operators should take. BEEL is mainly focused on the impact-side of risk as illustrated in Figure 3.  

During the evaluation of the WION it was found that the obligated KLIC-request created more 
awareness about excavation damage for both, contractors and network operators, since they always 
receive the locations of other cables and pipes before excavating. This follows from the increase in both, 
preparation- and excavation requests, which resulted in the absolute reduction of excavation damage 
by 9% in 2015 (Kabel- en Leiding Overleg, 2016; Van Mill et al., 2013).  

Figure 3: Subsurface Utility Engineering (SUE) and Assessment 
External Effects Pipes (BEEL) within a bow-tie model 

Figure 2: The excavation profile (CROW 500, 2016). For example: the light blue dashed line could be the location 
of the actual trial trench. 
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KLO (2015) studied excavation damages and all kinds of components in the Netherlands. It was found 
that almost half of the excavation damages were related to data communication cables (Kabel- en 
Leiding Overleg, 2015, p. 15). Besides, half of the damages were on service connections, which are not 
included in the maps that excavators receive from KLIC (Kabel- en Leiding Overleg, 2015). Service 
connections concern all cables and pipes between the distribution networks and clients’ property, both 
private individuals as companies. More details of excavation damages are discussed in section 1.2.4. So, 
multiple studies on many aspects have been conducted, resulting in measures to reduce the risk of 
excavation damage.  

1.2.3 SPATIAL INTERDEPENDENCIES 
Nevertheless, CROW 500 and KLO do not consider the probability of failure from excavation works 
based on distances between cables and pipes (spatial interdependencies). The minimum horizontal 
distance of 1.50 meters for localization of nearby cables and pipes through trial trenches, was 
determined without empirical data. It was only based on uncertainties of the kind of work and possible 
real locations that deviate from the virtual locations as described in the previous section (CROW-
werkgroep, 2016). (Geo-) Spatial interdependencies are considered important for collocated 
infrastructures when these are considered for rehabilitation or renewal (Islam & Moselhi, 2012). 
However, the impact of spatial interdependencies on excavation damage is unknown.  

The CISs are highly interconnected and interdependent, which indicates a bidirectional interaction 
(Osman, 2016; Ouyang, 2014), meaning that “the state of one infrastructure affects or is correlated 
according to the state of another infra-structure” (Utne, Hokstad, & Vatn, 2011). Interdependency is 
defined as: “A bidirectional relationship between two infrastructures through which the state of each 
infrastructure influences or is correlated to the state of the other. More generally, two infrastructures 
are interdependent when each is dependent on the other” (Rinaldi, Peerenboom, & Kelly, 2001, p. 14). 

Geographical interdependency, a specific type of interdependency arises when the state of multiple or 
all infrastructures can be changed through one local (environmental) event (Rinaldi et al., 2001). This 
occurs when the infrastructure elements are in close spatial proximity, whereby events such as a pipe 
burst can affect the geographical interdependent infrastructure systems. As a result, it is also called 
spatial interdependency. Based on the physical proximity, more than two systems can be spatial 
interdependent (Rinaldi et al., 2001).  

Many studies were already conducted on spatial (or geographical, geospatial, co-located) 
interdependencies between critical infrastructure systems (Hokstad, Utne, & Vatn, 2012). It followed 
that the concept of spatial interdependency had a similar meaning in all the examined literature. From 
here, this study will use the term ‘spatial interdependency’ for the concept.    

Just as scientists, governing bodies acknowledge the importance of (underground) infrastructure and 
the spatial interdependencies either. Therefore, norms and supplementary criteria were drafted. In the 
Netherlands, NEN 7171-1 and NPR 7171-2 (Underground utility networks planning - part 1: Criteria, Part 2: 
Planning process) norms are the basis for the design of the underground utility networks 
(Normcommissie 349 200 “Dwarsprofielen,” 2009a, 2009b). Both norms are complemented by local 
(municipal) procedures, such as ‘Handboek Leidingen Rotterdam – 2015’ (Slee & Tjan, 2015).  

The stated design criteria by the norms and procedures are based on possible consequences in case of 
failure and set limitations to the design possibilities that can affect spatial interdependencies. All 
relations between the various stakeholders, norms, guidelines and regulations for all types of networks 
are summarized in Figure 4. 
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1.2.4 EXCAVATION DAMAGE 
Notwithstanding the many regulations, consultations and guidelines to reduce the number of failures 
from excavation works, excavation damage remains a big problem. Of all failures, over 18% of water 
distribution system (KWR, 2011) and over 12% of gas network’s failure in the Netherlands (Kiwa, 2013) 
are caused by third parties, mostly through excavation work. Within urban areas excavation works 
cause even 30% of all failures. In the entire world, third party damage is a main cause for infrastructure’s 
failure as shown in Table 1 (Wei & Han, 2013).   

The Kabel- en Leiding Overleg (2015) studied excavation damage and found that 83% of third party-
induced damage was caused during mechanical excavation against 14% by manual excavation. Further 
specification of the mechanically caused damages showed that excavators caused 54% of those. The 
other 46% were caused by manual excavation (16%) and other machines. From all types of work, 
constructing and removing cables and pipes causes most damage (59% of all damages). Despite the 
CROW500 guidelines, which prescribe localization of cables and pipes, more than half of all damage 
was caused without localization through trial trenches (53%) (Kabel- en Leiding Overleg, 2015). Some 
type of networks experience more problems than others as illustrated in Figure 5.  

Table 1: Overview percentage damages caused by third parties 
Country  Period  Third party induced damage (% of total failure) 
USA 1987-2006 38% (gas) 
EU 1970-1998 50% (gas) 
China 1999-2002 40% (gas) 

Figure 4: The various laws, regulations and design standards concerning excavation activities and cable and pipe 
designs in the Netherlands. The light blue boxes are the stakeholders responsible for the development and supervision 
of the corresponding boxes (own illustration) 

Figure 5: The number of damages from excavation works that network operators had in the Netherlands in 2016 
and the average costs per damage (Agentschap Telecom, 2016) 
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1.3 PROBLEM STATEMENT 
Even though spatial interdependencies are considered as important for collocated infrastructures, it is 
still unknown how spatial interdependencies affect cable and pipe failure from excavation works. The 
gap of knowledge is remarkable as network operators stated their own stricter guidelines, additional to 
the governmental norms. This indicates a clear acknowledgment of a problem around excavation 
damage by cable and pipe operators. Although risk is calculated by multiplying probability and impact 
(consequence), all reviewed literature was focused on the consequences of failure from excavation 
works, and none on the probability.  Regardless of the close spatial proximity between cables and pipes 
in cities, it is still unexplored what the effect of spatial interdependencies is on the probability of failure 
from (a type of) excavation. As a result, network operators are not able to pro-actively prevent failures 
from excavation works. 

1.4 STRUCTURE OF THE THESIS 
This research will focus on spatial interdependencies in relation to excavation damage. The subject has 
been introduced in this chapter. Hereafter, the research approach will be explained, as shown in Figure 
6.  

 

  

Figure 6: Overview of the thesis structure 
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2 RESEARCH DESIGN 
2.1 OBJECTIVE 

The objective of this research is to develop a model which accurately predicts cables and pipes failures 
from excavation works, considering spatial interdependencies. On the one hand, application of the 
model should predict the probability of failure from excavation works, allowing network operators to 
decide if risk mitigating measures are necessary.  

2.2 RESEARCH QUESTIONS 
The analysis, problem statement and establishment of the research objective led to the following main 
research question:  

What method can predict the influence of spatial interdependencies on the probability of failure from excavation 
works on the cables and pipes of subsurface utility operators? 

For the structuring of the research, and as contribution to answering the main research question, three 
sub-questions will guide the research:  

1. What variables are most related to cable and pipe failure from excavation works?  
2. To what extent are the identified variables affecting the probability of failure from excavation works and how 

can we accurately predict the probability of failure?   
3. In what way can network operators use the model to reduce failure from excavation works?  

Based on the relevant literature, expert knowledge and model selection, the most related variables will 
be identified in the first sub-question. So, what variables are most related to excavation damage? Once 
identified, the statistical significance of the variables in a predictive model will be tested and validated, 
whereby the focus is mainly on the predictive accuracy. The model will help to answer the second 
question. Third, it is examined how the outcome from sub-questions one and two can be implemented 
into network operators’ systems. The knowledge of all sub-questions together will enable answering 
the main research question by combining all answers into one method.   

2.3 SCOPE 
To define what is included in this thesis, a scope is set to define the boundaries of the project. The 
literature and expert interviews will focus on all networks and the spatial interdependencies between 
those. In contrast, for the modeling in this thesis, Evides - a water distribution company in the 
Netherlands - is used as case. For the excavation damage on water distribution systems, the 
interdependencies between for example the gas pipes and sewer systems are less important. Therefore, 
the interdependencies between other infrastructures than between water distribution systems and 
others are examined to a lesser extent.  

Second, the study has a specific focus on city centers and old residential areas. These areas have a high 
population and building density and are both used for mixed functions (such as living and shopping 
area). Due to upper ground developments in the past, the underground situation is often unorganized 
and crowded. On the one hand, because of the crowded underground, there is a large probability of 
failure from excavation works. On the other hand, the consequences of failure are large in the busy 
areas. Both, the probability and the consequence result in a high risk. The unorganized underground 
increases the probability for excavation damage (Vloerbergh & Beuken, 2011).   

Furthermore, infrastructures are socio-technical systems, a special type of complex systems engineering 
(Ottens, Franssen, Kroes, & Van de Poel, 2006). The social side of the socio-technical systems refers to 
human involvement, such as regulations, laws, procedures and standards, where the technical refers to 
systems engineering (Ottens et al., 2006). For the goal of this thesis, which is to develop a predictive 
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method to determine the influence of spatial interdependencies, quantifiable variables are preferred 
since more modelling methods for numerical variables exist and data is available. On the other hand, 
for example, carelessness of an excavating contractor is hard to measure, whereas mutual distance 
between cables and pipes are numeric. The former is not quantified, whereas the latter is already from 
itself. To support the modelling, this thesis is mainly focused on the technical side of the socio-technical 
systems. Once the technical possibilities are identified, a later study could test for example the social 
side of the spatial interdependencies and excavation damage.   

2.4 CASE: EVIDES, WATER DISTRIBUTION COMPANY 
As the objective of this thesis is to develop an accurate predictive model of cable and pipe failures from 
excavation works, detailed data of cables and pipes and the accompanying failures are essential. 
Predicting these failures can be integrated in decision making processes for Evides. The model can be 
adapted generally by other network operators. To gain these data, a case study at a network operator is 
conducted. A case study is an appropriate approach to explore the possibilities of modelling cable and 
pipe failures from excavation.  

This thesis is conducted from the point of view of Evides Water Company, the second largest drinking 
water company in the Netherlands. Evides has 722 fte employees, who served in 2016 156.7 million m³ 
safe and clean drinking water to 2.5 million consumers and business in three provinces: The South of 
Zuid-Holland, Zeeland and the West of Noord-Brabant in the Netherlands (Figure 7). Besides, Evides 
Industrial water served 95.4 million m³ to over 400 large industrial companies in the Netherlands, 
Belgian and Germany in 2016 (Evides, 2017).  

Evides N.V. is owned by B.V. Gemeenschappelijk Bezit Evides for 50%, which are the municipalities in 
the South of Zuid-Holland. The other half is owned by PZEM, which is owned by the provinces Zuid-
Holland, Zeeland and Noord-Brabant and 16 municipalities, mostly in Zeeland (Evides, 2017).  Within 
Evides, the department Asset Management Infra (AMI) manages all 14,717 kilometers of pipes. In 2016 
there were around 500 pipeline failures, causing an average downtime of 18.2 minutes per customer per 
year, from which 11.4 minutes were scheduled downtime (for replacement activities) (Evides, 2017). 
The average unplanned downtime which is caused by failures, is 6.8 minutes per customer per year. 

To manage all the assets, AMI uses extensive databases in a Geographic Information System (GIS). The 
databases include information about the characteristics and locations of pipes, leakages, KLIC 
(excavation) request and other assets. This research is conducted with the databases possessed by Evides 
only, within the region named Rijnmond area which is highlighted in Figure 7. From this, Rotterdam is 
selected for the analysis as there is an extra database available (Rotterdam3D) with the cable and pipe 
data of all other networks.   

Figure 7: Evides' service area, the Rotterdam area is highlighted in dark blue (Evides, 2017) 
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2.5 RESEARCH STRATEGY  
2.5.1 DATA COLLECTION 

A research strategy has been developed to come to the defined research objective. To identify the 
relevant variables, three approaches are applied. First, scientific and technical literature which 
addresses pipeline failure and spatial interdependencies is reviewed to determine what variables were 
already identified in earlier studies. The literature also serves as a starting point for the data collection 
that will be done from Evides’ databases. During the data collection, four databases are connected based 
on multiple criteria, such as geographical location and dates.  

Second, once the data collection is completed, expert interviews are conducted to both verify the 
variables from literature as well as to identify other relevant variables. The interviews will be semi-
structured interviews with three experts in the field of excavation damage within Evides.  

The newly found variables from the expert interviews are, if possible and available, added to the dataset 
that is prepared for the third step in answering sub-question one. The experts, if familiar with the case, 
can also contribute to find representative replacements for the incorrect and incomplete data. These data 
irregularities could be an outcome of the data selection.  The third step for answering sub-question one 
contains the model selection of a logistic regression model which should both support the earlier found 
variables as well as identify other relevant variables. As the modeling approach, logistic regression has 
been selected as it is an accepted way to assess the relation between a categorical dependent variable 
and various independent variables (Ariaratnam, El-Assaly, & Yang, 2001). The modeling is done with 
statistical software R, but before employing the model, multiple tests on the dataset are conducted. 
Multicollinearity, over- and underfitting and completeness of the data are checked before the model is 
developed. All steps together, literature, data collection, expert interviews and modelling should enable 
to answer the first sub-question. 

Sub-Question I: What variables are most related to cable and pipe failure from excavation works?  

2.5.2 DATA ANALYSIS  
Next, the developed model, including all relevant variables that are available, is tested on variables 
individual contribution to the model fit as well as with respect to the goodness of fit of the overall model. 
Given that the objective of this thesis is to accurately predict cable and pipe failures from excavation 
works, the model is also evaluated from a predictive point of view. Therefore, a validation step is 
undertaken.  

First, the individual contribution of each variable is tested with the Wald-statistic, which shows a 
variables contribution in predicting the outcome of the model. Second, the goodness of fit of the entire 
model is tested in three ways, by using the log-likelihood ratio, McFadden’s pseudo coefficient of 
multiple determination (R2) and the Akaike Information Criterion (AIC) as these are generally accepted 
for logistic regression. Third, the model is validated by both, determining the Area Under the ROC 
Curve, as well as by repeated K-fold cross validation. The former is a manual validation technique, the 
latter a machine learning technique.  

Because cable and pipe failures are rare event data (<1%), the dependent variable is imbalanced. 
Imbalanced data refer to a dataset where “there are many more instances of some classes than others” 
(Chawla, Japkowicz, & Drive, 2004, p. 1). This particularity of the data lead to a decrease in the 
predictive power of the logistic regression, which has been confirmed by the analysis in this study. 
Therefore, three alternative sampling techniques (Bayesian logistic regression, weighting and Synthetic 
Minority Oversampling) were applied in an attempt to overcome this problem. The results of the 
methods are compared in order to test what method increases the predictability of the model to the most 
accurate failure predictions. 
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After selecting the ‘best’ rare event data strategy for a particular dataset, the individual contribution 
and goodness of fit of the model is tested again in order to check whether the performance of the model 
has improved in comparison with the full data model. The best predicting model based on the AUC and 
repeated K-fold cross validation and all the other tests contribute in answering the second sub-question. 

Sub-Question II: To what extent are the identified variables affecting the probability of failure from excavation 
works and how can we accurately predict the probability of failure?   

2.5.3 DATA RESULTS 
Once the relevant variables are known and implemented in a predictive model, new knowledge has 
been gained. To test how the model can contribute to reduce cable and pipe failure from excavation 
works, possible implementation and application strategies for network operators are developed.  

First, the difference between the current and the desired situation is analyzed by a gap-analysis, which 
is a generally applied technique to determine the proposed state (Marra, Biccari, Lazoi, & Corallo, 2018). 
What is the difference and how could the model fill this gap? The contribution of the model is 
determined based on a SWOT analysis, whereby the opportunities and threats follow from the 
developed predictive model. In a TOWS analysis, the opportunities and threats are combined with the 
strong and weak points of the current procedures to come up with possible application strategies. This 
should lead to the answer of sub-question three. 

Sub-Question III: In what way can network operators use the model to reduce failure from excavation works?  

Once the answers for all sub-questions are found, all information is combined to be able concluding and 
answering the main research question. Furthermore, the research limitations and recommendations are 
discussed.  
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3 LITERATURE 
Literature has been reviewed to identify what variables are already known as related to failures from 
excavation works from previous studies. However, first some basic assumptions from this thesis are 
discussed. The parties that cause the actual excavation damage are the contractors of the network 
operators. In this report, the excavating parties are considered as the network operators (clients) instead 
of the actual excavating contractors. So, if the hired contractor of Stedin (gas network operator) causes 
damage, the gas company is held responsible. This is possible as Kabel- en Leiding Overleg (2015) found 
that there is no significant difference between the number of damages that these contractors in the 
Netherlands cause per excavation request.  

Before the relevant variables are determined, one should define what is included and what is excluded. 
Excavation damage, or third-party damage was defined once as “any accidental damage done to the 
pipe as a result of activities of personnel not associated with the pipeline” (Muhlbauer, 2004, p. 3/43). 
The definition indicates the potential for third-party damage. On the contrary, this research will focus 
on the probability of pipeline failure from third-party damages, which is an important distinction. The 
former excludes variables such as pipe strength and characteristics of the excavation activities, whereas 
the latter does include the extra variables, since these variables could be the difference between damage 
and (registered) failure (Muhlbauer, 2004). Muhlbauer (2004) already conducted research on the former, 
where this thesis focusses on the latter. Therefore, the definition of excavation damage used in this 
research is:  

An event that is registered by one network operator as failure which is caused by excavation activities of another 
party’s personnel.  

The definition excludes damage due to earth movement, natural disasters, intentional damage and 
damages caused by own personnel accidentally, as these are not related to spatial interdependencies. 
There are many possible variables that affect the probability of failure from excavation works. These 
variables are classified into three categories: how is failure caused, physical factors and non-physical 
factors. 

3.1 CAUSES FOR FAILURE FROM EXCAVATION WORKS 
From the definition of excavation damage, the way assets are damaged becomes important. Kabel- en 
Leiding Overleg (2015) did study which actions led to excavation damages in the Netherlands. In 83% 
of all registered third party failures, mechanical excavation was the cause against 14% manual 
excavation and 3% other reasons such as heavy trafficking (Kabel- en Leiding Overleg, 2015). The kind 
of activities that led to the failures were also analyzed as shown in Table 2.  

The Watercycle Research Institute (KWR) did study the increasing excavation activities in the 
Netherlands. A significant relation was found between excavation areas and failure rate of water mains. 
In particular, a significant increase of the failure rates in excavation areas of sewers was found, and to a 
lesser extent also in the excavation areas’ gas pipes (van Eijk & van Daal, 2013). Excavation damage on 
the water distribution systems was in 40% of all the excavation damages water distribution systems 
encounter caused by contractors of the sewer network operator. Van Eijk and van Daal (2013) found 
that imprudent excavation and ground settlement are major reasons for failure from excavation works, 
but do not elaborate on the reason why excavation on sewer systems causes damage more often.  

Multiple causes for third party induced damage were found in literature, including some that are not 
within the scope of this study. Among the aspects that are not included, are all activities other than 
excavation damage, whereby other third party induced damages will be excluded from this study. For 
instance, heavy trafficking and leakages owing to ground movement in a certain period after excavation 
activities are excluded (“na-ijleffect”) (van Eijk & van Daal, 2013). Furthermore, Muhlbauer (2004) 
classified wildlife, seismic charges and projectiles also as third-party induced damage, which all are 
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categorized as factors beyond control. Last, malicious (excavation) damage (J. Li, Zhang, Han, & Wang, 
2016; Wei & Han, 2013) is not included, since intentionally caused damages are not predictable 
considering the same aspects as unintentional damages. The probability of failure from illegal 
excavation (J. Li et al., 2016) without a KLIC-request is not part of the problem in this study and is 
therefore excluded as it is not considered problematical.   

 

3.2 PHYSICAL INFLUENCE FACTORS 
SURROUNDING CHARACTERISTICS  
The probability of failure will naturally rise if more excavation activities happen nearby. Generally, this 
is equal to the population density factor, as well as to the presence of other cables and pipes, as both 
lead to more activities and more frequent excavation (Muhlbauer, 2004). 

Tree roots have been identified as a cause for sewer blockage and other pipe failures (Marlow, Boulaire, 
Beale, Grundy, & Moglia, 2011). However, this is direct blockage (failure), there is no literature 
elaborating on the influence of tree roots affecting the probability of excavation damage. However, 
Evides conducted an internal study, from which followed that the presence of trees does not influence 
the failure rate, and even decreases the probability of failure from excavation works. It is strongly 
believed that the decrease is the result of a mechanical excavation prohibition under the crown of trees 
(Van den Ende, 2016). 

Furthermore, Riley and Wilson (2006) found that soil conditions do matter when looking at excavation 
damage. Higher soil density increases the soil strength, which reduces ground movements. In here, the 
presence of ground water should be included as it affects the soil strength (mostly) in a negative way. 
In general it holds that the higher the soil strength, the smaller the probability of failure from excavation 
works (Riley & Wilson, 2006).  

OWN PIPE CHARACTERISTICS 
From both, Muhlbauer’s (2004) and Riley and Wilson’s (2006) analyses on third party induced damage, 
the minimum depth of cover followed as important variable. Third party damage reduces if a pipe is 
located deeper, as less excavation activities will affect this pipe. Furthermore, the wall thickness of pipes 
is also mentioned as influencing factor on the probability of failure from excavation works, as thicker 
walls are proving to provide additional protection against failure from external damage (Muhlbauer, 
2004). In line with the thickness of walls, also the wall material and the pipe joint systems affect the 
probability of failure from excavation works (Riley & Wilson, 2006). 

OTHER CABLES AND PIPES CHARACTERISTICS 
As already described in the previous section, it does matter on what network type the excavation 
activities are conducted. On the other hand, several spatial factors were found, affecting the probability 
of failure from excavation works. First, the horizontal distance between cables and pipes are relevant, 
as well as the vertical separation between cables and pipes. The larger the separation, the smaller the 
probability of failure from excavation work. The spatial variables also affect the probability of failure 

Table 2: Kind of activity that led to third party-induced failure (Kabel- en Leiding Overleg, 2015) 
Kind of work Percentage Specification Percentage 
Constructing and removing cables and pipes 59% Sewer 36% 

Fiber glass 35% 
Unknown 28% 
Other 1% 

Paving work and road construction 9,7%   
Planting and grubbing up trees 2,6%   
Other activities (e.g. directional drilling, dredging, 
sheet piling, drainage, unknown, heavy trafficking) 

28,7%   
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indirectly, because more separation reduces the probability of failure from failure of one of the other 
cables and pipes (collateral damage) (Riley & Wilson, 2006).  

Riley and Wilson (2006) also found a relation between the diameter of pipes and the probability of 
failure. A large cable or pipe needs more excavation, which increases the probability of failure from 
excavation works.  

3.3 NON-PHYSICAL INFLUENCE FACTORS 
Besides the environmental factors, also soft or human factors affect the probability of failure from 
excavation works. One of these factors is the public education about excavation work, which should 
create awareness about the consequences of failure from excavation works for network operators, as 
most failures arise unintended and due to ignorance (Muhlbauer, 2004). Even minor scratches, 
appearing irrelevant for the general public, could have a potential high impact on the network 
(Muhlbauer, 2004).  

A KLO (2015) study showed that 41% of the damages was caused without KLIC-request. In 53% of all 
failures, the excavator did not localize the cables and pipes through trial trenches (KLO, 2015). 
Especially in urban areas, the ignorance of the regulations is attributed to smaller contractors as these 
disruption has larger consequences for them than for large contractors  (Muhlbauer, 2004). Furthermore, 
the incentive to avoid excavation damage is low for the excavating party, since the financial 
consequences of damaging other networks (financial compensation) is smaller than the costs of avoiding 
damage on other networks.  

Van Norden (2013) found that time affects the probability of failure from excavation works. Especially 
time constraints cause imprudent excavation. Mostly, projects with a limited budget that are relative 
small compared to large excavation projects, cause more damage due to imprudent excavation. 
Additionally, large companies often have more modern techniques for careful excavation, such as 
ground radars and cable locators, than small excavating companies (Van Norden, 2013). 

Tscheikner-Gratl (2015), Amador and Magnuson (2011) and Van Norden (2013) all describe the 
influence of coordinated excavation activities as an influencing factor on the probability of failure from 
excavation works. According to Tscheikner-Gratl, coordination is that “instead of examining all public 
networks separately (all of them in an integrated way implementing all available influences), which are 
intertwined in our street networks, the road network is considered a container for all together and is 
used for prioritization” (Tscheikner-Gratl, 2015, p. 14).   

3.4 DATA QUALITY 
As described in section 1.2.2, the real location of cables and pipes must be within one meter of the virtual 
KLIC-request location. Despite this requirement, 13% of the excavation damages (2012-2014) in the 
Netherlands were caused in a situation where the data deviated more than the maximum of one meter 
(Kabel- en Leiding Overleg, 2015). Already in 2004, Muhlbauer identified incorrect data as one of the 
factors affecting the probability of failure from excavation works. He proposed a line locating program, 
to identify the exact location of cables and pipes (Muhlbauer, 2004). Trial trenching, as described in 
CROW500, is like the line locating program of Muhlbauer.  

The correctness of the data is hard to improve. During the evaluation of WION, Van Mill et al. (2013) 
found that excavating parties have a lack of knowledge about the requirement to report deviating 
situations. Besides, reporting charges no income for the contractors, as well as that reporting deviating 
situations is seen as entrusting the network operators, often also contractor’ s clients, with 
administration work. On top of that it followed from the evaluation that in case of damage caused by 
excavating, the excavating party is held responsible by law, even if the data are incorrect (Van Mill et 
al., 2013). Therefore, the incentive to improve data accuracy of one network operators is low for other 
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network operators. In case the contractor reports the deviating situation properly, it is still hard to revise 
the pipe locations as the report is not detailed enough (Van Mill et al., 2013). 

3.5 FINDINGS 
Multiple aspects were found in all three categories. Table 3 summarizes the findings of literature.  

Table 3: The most relevant variables found from the literature study categorized in three groups 
Causes Physical influence factors Non-physical influence factors 
Mechanical excavation Population density factor Awareness 
Excavating party Tree roots (positive) Ignorance of regulations 
Imprudent excavation Soil conditions Lack of time 
 Depth (vertical) Techniques  
 Wall thickness Coordination 
 Wall material Data correctness 
 Horizontal distance  
 Diameter  
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4 DATA COLLECTION 
As a preparation for the predictive model that has to be developed, data is collected. Furthermore, data 
collection serves as a starting point of view to identify the relevant data. For the model, data from 
multiple data bases will be collected. Expert interviews will complement the missing data and 
contribute to the identification of the relevant variables.  

4.1 SAMPLE COLLECTION 
Multiple data from different databases are combined to become useful for the analysis. In the upcoming 
sections, the various databases used for this study and the applied filters are explained. The most 
important variables for the linking of different databases are explained in the last section and the 
correctness and completeness of the collected data is assessed.  

4.1.1 KLIC  
As already explained and elaborated in detail (§ 1.2.1), all mechanical excavation activities should be 
notified on beforehand at the Kadaster. Between 2012 and 2014 98.4% of all excavation damages were 
caused despite a prior KLIC-request (Kabel- en Leiding Overleg, 2015). The study does not indicate 
whether these requests are related to city centers and old residential areas or not (Kabel- en Leiding 
Overleg, 2015). However, comparing numbers of the percentage excavation damages per municipality 
in the Netherlands, does show that there is  no relevant difference between the largest 30 municipalities 
and all the others (Agentschap Telecom, 2016). 

Evides stored all the KLIC requests in its network in a GIS database since June 2010, which will be called 
the KLIC database.  From this date forward, Evides started using a server for automatic KLIC-request 
handling, which also stores the data. As the KLIC requests are stored in GIS, geographical information 
is available, enabling to filter them, based on location.  

To prepare the KLIC-database for the analysis, some filters are applied on the data. First, three types of 
KLIC-requests are distinguished; orientation-, regular- and emergency requests. Orientation requests 
are only informing and do not allow parties to start excavating until a regular excavation request is done 
(Kadaster, n.d.), therefore orientating requests are filtered out of the main analysis. However, it should 
be tested whether there is a relation between KLIC orientation requests and excavation damage. In case 
a connection is found, orientation requests should be included in the dataset that is modelled again 
(section 0). 

Second, the application date of the KLIC-request must be noted and should be after the database’s 
realization date, as from this moment all KLIC-data are stored. Besides, an application date that is 
registered as if it is before the database’s formation would indicate incorrect data.  

Third, the Kadaster allows KLIC-requests up to a polygon of 500 x 500 meters. It is very likely that the 
size of the polygon and the number of assets located in it are related. As large polygons will contain 
multiple assets, it becomes hard to predict what cables or pipes are affected by the planned excavation 
work. Excavation activities are mostly very local. Therefore, a maximum size for the KLIC-polygon is 
set, where the area’s type should be considered (e.g. city center or country side). The remaining 
polygons are categorized into four (size-)categories to ensure that small- and large polygons can be 
differentiated. In this way, these categories could become a variable during modelling.  

The above-mentioned criteria are used to filter the data that will be used during the analysis. The KLIC-
requests, indicating excavation activities, will be used as the basis for the analysis as it is the only way 
to identify excavation activities on a large scale. Other indicators for excavation activities are unknown. 
During the interviews (section 4.2) it should become clear what other available data of KLIC-requests, 
such as type of company and excavation type are useful for the analysis.  
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In Figure 8, the remaining KLIC-requests for the Evides case are shown. The figure on the right is 
zoomed in on the map and shows that many KLIC-requests are done for single areas. The colors indicate 
the four size categories that were assigned. Over 80% of the remaining KLIC-requests is smaller than 
5,000 m2. 

Apart from the filtering, some KLIC data is adjusted. First, when a contractor/network operator does a 
KLIC-request, there are 50 possibilities for the type of work, from which a maximum of six per KLIC-
request can be selected. To simplify the data for the analysis the types of work are categorized into five 
types of work; cables and pipes, construction, landscaping and gardening, piling and drilling, 
remainders and unavailable. The type of work ‘cable and pipe work’ is specified further per network 
type. The further specification is also helpful to determine what network type was behind the request, 
as mostly only the contractor is known in the KLIC-requests. A complete overview of the grouping of 
the types of work can be found in appendix 12.2.  

4.1.2 COMPANIES’ CABLES AND PIPES 
Once the KLIC-requests are filtered, the own cable or pipe data should be prepared for analysis. It is 
assumed that none of the network operators stores its data with the same variables in the same way. 
However, nowadays, it is assumed that all cable and pipe operators use a Geographical Information 
System (GIS) to store their assets’ locations.  

If available, network operators can include historical cables and pipes, as (excavation) damage could 
result in replacement of an asset. Historical cables and pipes refer to two types of assets, first removed 
assets that were taken out of the field. Second, in field assets that are out of order. Therefore, these data 
are still interesting for the analysis. To ensure that the analysis only has to be conducted once, it is 
recommended to combine the historical asset data and the current asset data if possible. Merging the 
two databases is done by selection of matching variables, where it is suggested to include at least date 
of construction, function and date of removal, as these variables are used for filtering.  

Once the databases are merged, some filters are applied to it. First, service connections are removed, as 
these are assumed to be right-angled on the distribution cables and pipes, creating a problematic 
situation when mutual distances are determined later on. Furthermore, service connections are 
(normally) not included in KLIC-requests, the starting point of the analysis. However, in some way the 
service connections will be included as it will be examined whether the other cables and pipes are 

Figure 8: Left: the remaining KLIC-requests after filtering. Right: A zoom in whereby the weights per area size 
have different color (see legend) 

 Size [m2] Left after 
filtering [#] 

1 0-1000 36,691 
2 1000-5,000 23,975 
3 5,000-10,000 8,885 
4 10,000-25,000 8,901 



17 
 

located between the own asset and houses or not. Hereafter, special assets like sinker pipelines, which 
are pipelines located underneath waters (e.g. canal crossings and ditches), are removed as these often 
cause data irregularities. After filtering the ‘special’ assets out, the duplicate data and data with irregular 
dates are filtered.  

Furthermore, when pipes are connected to KLIC-requests, the pipe removal date should be after the 
application date of KLIC to be relevant for the study. If the date is before, the possible reason of removal 
is certainly not the excavation activity following from that KLIC-request. To connect the data properly, 
correct (date-)entries are of great importance.  

To conclude some technical preparations in GIS should be done, to create a workable dataset for 
analysis. On the one hand, cables or pipes are denoted as ‘lines’ in GIS, without consideration of the real 
asset length. Some of the lines have intercepting ends, which means that one of the lines is over the other 
line. If that is translated to the real world, it should mean that two pipes are on the exact same location. 
To avoid these double ‘lines’ (=cable/pipe) and to create a better entity and less chaos in the dataset the 
intercepting lines are merged. In this situation merge means, that two lines become one.  

On the other hand, a minimum shape length is set as the ‘line length’ does not explain anything about 
an asset. Some lines referring to pipes are 300 ‘meters’, while others are only 0.4 meters. The minimum 
length is set to ensure loose connections at crossings are removed.  

4.1.3 FAILURES 
Some aspects of failure data are relevant for the analysis. A network operator must be able to link a 
failure to an asset and, if related, also to a KLIC-request. First, the failure’s date is important as this 
indicates whether it happened in a period (just) after a KLIC-request, as well as if the nearby asset was 
in use during failure. Second, failures are caused by many reasons. To distinguish what failures 
followed from excavation works, network operators need a method to classify various types of failure. 
Last, network operators need to have location data of failures. Figure 9 shows all registered and linked 
failures from excavation in Rotterdam between 2010 and 2017. A failure is defined as an event that 
required Evides’ intervention and was recorded on their servers as a leakage (Trotter, 2017).  

Figure 9: All registered failures from excavation works in Rotterdam that are 
linked to an asset and a KLIC-request 
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4.1.4 OTHER’S DATA 
Once all internal datasets are collected and linked together, data of other networks is collected. The data 
from others is relevant as this study focusses on the spatial interdependencies between cables and pipes 
and other objects in close spatial proximity.  

Identify all available data, whereby available data refers to the willingness of other parties to share the 
data. On one hand, this is done by contacting other network operators. On the other hand, by checking 
the possible existence of umbrella organizations whom possess all data. The availability of data is not 
self-evident, as cables and pipes data are mostly confidential, aiming to prevent malicious damage. 
Once available data is found, the relevant variables are identified. It is proposed to collect at least the 
assets’ locations, diameters, types and materials.  

In Evides’ case, the municipality of Rotterdam developed a 3D city model to enable multiple parties to 
use their unique database. Besides the standard web viewer, the data is also available on request per 
neighborhood in multiple formats. A special map was included with a lowered ground level, which 
makes multiple ‘hidden’ city components visible, including cables and pipes, lamppost connections and 
tree roots. The cables and pipes are grouped by group, layer and class. Therefore, it is possible to extract 
the desired data from the rest of the model (that contains also upper ground data. Furthermore, the 
outer diameter of all cables and pipes is available, as well as some more details for a part of the data.   

For this study, the locations, network type, and outer diameter of all cables and pipes in the area were 
received. Besides, the municipality shared the location and size of the tree roots and lampposts.  

Besides, gas network operator Stedin and Evides try to coordinate their rehabilitation activities. 
Therefore, location data and the preferred rehabilitation moment are mutually shared. The coordination 
is done to prevent possible negative effects following from the other’s excavation works. Within Evides, 
the used rule of thumb for coordination is to coordinate the activities if the Evides pipe’s material is 
Asbestos Cement (AC) and it is located within a meter from the gas pipe. The Evides data is compared 
with the Rotterdam 3D data to review the data correctness in a later section.  

4.1.5 HOUSES 
The cables and pipes considered in this thesis are distribution and transport pipes, not the service 
connections. However, many failures from excavation works are on service connections. Service 
connections are located between the distribution pipes and buildings, providing consumers the service 
(e.g. gas or water). Therefore, it is relevant to know whether the other networks are located on the 
‘building-side’ or the ‘street-side’ of the own asset. To implement the side of the other networks, the 
nearest house to a cable or pipe is determined. To do so, a buildings database is included.  

In the Netherlands, the Kadaster has the buildings database which is named Basic Registration 
Addresses and Buildings (BAG). In this thesis, it is assumed that all network operators have access to 
this database, as the Kadaster provides it to all public organizations.  

The BAG database contains many data and should therefore be prepared and filtered before it can be 
implemented in the analysis as it benefits the calculation speed. In this study, the BAG is prepared in 
Q-GIS where only the buildings intersecting the remaining KLIC-requests are selected. From the 
selection all replaced buildings are removed.  
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 Failure  Water  Middle point water   (Nearest) building 
 Sewer  Electricity  Gas  Telecom 

4.1.6 FINDINGS 
Now all individual databases are collected, and data irregularities are filtered, the databases are linked 
into one dataset usable for the analysis. It was found that, despite digitalization of systems, cooperation 
between databases does not come naturally, complicating this study, but also other analyses that 
network operators would like to perform.  This study provides only some general guidance for the 
linking, as ‘the best way’ is very dependent on the network operators’ databases. Evides’ case is used to 
describe the linking process and the corresponding recommendations.  

Figure 11: All used databases per data category and database type (own illustration) 

Figure 10: All network types, the middle points on the water mains and the nearest buildings including one failure. 
Only the KLIC polygons are left out in this figure. 
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As already mentioned, it is assumed that all databases contain geometry data in some way, which is the 
main variable during linking. First, pipes (or cables) are linked to failures. Assets are connected to the 
most adjacent failures within ten meters. Additionally, the asset’s construction date should be before 
the failure date, which has to be before the asset’s removal/out of use date. Connecting assets to failures 
succeeded for all failures. 

Second, failures are connected to KLIC-requests. Where failures are “points”, the KLIC-requests are 
polygons/areas. The first requirement for linking is that the point must be inside the polygon.  
Furthermore, the failure must be after the KLIC-request date, but no more than three months. From all 
78,452 filtered KLIC requests between 14-06-2010 and 29-05-2018 in Rotterdam, 256 failures were 
connected to the KLIC-polygons. The three months period follow from the assessment of various 
maximum periods for connection as shown in Table 4. Besides, the three months period has been 
selected as an excavation activity must start within 20 days after application, but not earlier than three 
days after. Considering the duration of maintenance or construction work, the duration of the period 
could be adapted, as well as by the preferences’ network operator. 

Table 4: Failures related to KLIC-requests, depending on the maximum duration of the period after the 
request 
Months after KLIC-application date 1 2 3 4 5 6 
Failures from excavation works 157 210 256 289 311 332 
 

Third, the 86,207 (distribution-, transport distribution- or transport) pipes that followed from the 
filtering are connected to the KLIC-requests. The connections are made based on similarities in location 
and date. As a result, often, multiple pipes were linked to one KLIC-request, as it is likely in a densely 
populated urban area such as Rotterdam, that multiple pipes are in an area when KLIC-polygons are 
up to 25,000 m2. Because multiple pipes (or cables) could be linked to one KLIC-polygon, the linking 
criteria must be considered. For example, should the assets be entirely inside the polygon, is a small 
intersection enough, or is a combination of both preferred. This optimal situation will differ per network 
operator, but they all have to consider the same aspect; on the one hand, it is preferred to model 
balanced data, meaning that 50% of the dataset results in failures and 50% in non-failures. On the other 
hand, network operators should try not to lose too much data. To reach the best situation (as many data 
as possible and as balanced as possible) a network operator can try several options. In this thesis eight 
options, following from trial and error, were considered: 

1. Without any filter, the smallest interception is enough to connect an asset to a KLIC-polygon. 
2. Only link the asset nearest to the middle point of the KLIC request 
3. An asset should intersect the polygon with a minimum percentage of its total shape length or a 

minimum distance or a combination of both. 
4. All assets have a virtual middle point (as explained later in this section). The asset is only connected 

to an KLIC-request if the middle point is located within the polygon.  
5. Only the one asset with the greatest intersection length in the polygon is connected to the KLIC-

request 
6. Only link assets that contribute a minimum percentage to the total length within a polygon.  
7. Filter the assets on their minimum shape length (7.5 meters) and set a minimum length of 

intersection in the polygon.  
8. Filter the assets on their minimum shape length (15 meters) and set a minimum length of 

intersection in the polygon.  

The percentage of failures and the size of the data set are plotted for each option in Figure 12. As the 
most balanced (or least imbalanced) dataset with as many data as possible is desired, option 8 has been 
selected in this thesis as it has the highest score when multiplying the two aspects (included data and 
failure ratio). As mentioned before, this is totally dependent on the dataset and should therefore be 
selected carefully. The full results of the various options are attached in appendix 12.3.  
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Once the connection between the own cables or pipes and the KLIC-polygons are made, the relation 
between the different networks is examined. To do so, the middle point of a pipe (or cable) within a 
KLIC-polygon is selected and a new virtual point is created. From that virtual middle point, the mutual 
distances to the other surrounding networks is calculated. The middle point was introduced as it was 
found that calculating the smallest mutual distance between networks over the entire asset length often 
results in a mutual distance of zero. This is because cables and pipes often cross each other whereby 
that point is selected as the smallest mutual distance. So, the mutual distances within a KLIC-polygon 
are all determined from the one middle point on the own asset.  

So, to prevent misleading calculations of mutual distances, the short shape (virtual) lengths were filtered 
as all shapes smaller than 15.0 meters were excluded during the asset preparation already. This was 
done as the smaller shape lengths are mostly located at crossings where the average mutual distances 
are hard to determine. The mutual distance has been calculated for all networks within 10 meters from 
the middle point. If any further, it is considered as irrelevant when considering excavation damages, 
since it is not very likely that for example an excavator deviates that much (>10m) from the actual 
excavation location.  

4.1.7 QUALITY OF THE DATASET 
If possible, validation of the dataset’s correctness is recommended. Especially when data is provided by 
other parties, the precision/correctness is unknown. When some datasets are available twice, like in the 
Evides case, it creates the opportunity to compare the own database with the ‘foreign’ database. In this 
thesis, Evides’ data is considered as the own data and Rotterdam3D’s data as the foreign data.   

The deviation of foreign data against the company data can be measured on the common variables. In 
this study, the common variables are the (horizontal) location and diameter of the assets. It is assumed 
that the company data (Evides) being the network owners are original and right, and that in case of 
differences between the values, the foreign data are inconsistencies. As the correctness of all databases 
is an uncertainty, it is up to the analyzing party what dataset is assumed most reliable (true). 
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Figure 12: The results of the eight 'linking' options. Option 8 is preferred as it has the highest score when 
multiplying the total data included and failure ratio. 
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For the compared Evides data, it was found that 14,648 out of 19,992 compared assets (73.27%) have the 
exact same location. Testing the correctness of the data, results in Figure 14, which shows the decrease 
of the sample size if the maximum allowed deviation declines. Analyzing the data in this way, supports 
proper decision making by the network operators. In the Evides case, the maximum deviation from 
Rotterdam3D compared to the Evides data is set at 0.4 meters, which indicates that 94.5% of the data 
within five meters of the own assets is used for analysis. So, 94.5% of the Rotterdam3D data is 
considered reliable and will be included in the analysis, whereas the remaining 5.5% is excluded.   

 

For the deviating pipes, a remarkable difference between the transport, transport-distribution and 
distribution pipes was found as shown in Table 5. Despite the prioritized control measures for transport 
pipes, the deviation from the Rotterdam3D database compared to the Evides database increases with 
the diameter of the pipes. The deviation of the diameter can be positive or negative, meaning that the 
diameter can be either larger or smaller. This fact should be used when comparing, to enable a graphical 
description of the quartiles by a boxplot (Figure 13). From the boxplot it becomes clear that the variation 
outside the upper- and lower quartile is enormous, but most of the data is quite similar. Each network 
operator can individually consider up to what deviation the data is reliable (enough). The average 
deviation of the Rotterdam3D data in the Evides case as shown in Table 5 is considered as reliable.  

 

For the modeling in this thesis, independent variable Evi_data_quality will refer to the correctness of the 
data. The variable indicates the deviation of Rotterdam3D compared to the “master” Evides database.  

  

Table 5: Average deviation of the diameters between Evides’ data and Rotterdam3D’s data per type 
of asset (transport, transport distribution or distribution pipes) 
Diameter Deviation [mm] 

Total [avg] 90.28 
Transport pipes [avg] 457.70 
Transport distribution pipes [avg] 171.58 
Distribution pipes [avg] 73.27 

Figure 14: Remaining data after filtering the data with 
a deviation above threshold 
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4.2 INTERVIEW 
4.2.1 SETUP  

The purpose of the interviews is to contribute to the body of knowledge that is necessary to conduct the 
analysis. The interviews will be qualitative in-depth, as it encourages the interviewee to describe several 
phenomena richly, leaving the interpretation and analysis to the researcher (DiCicco-Bloom & Crabtree, 
2006).  

A structure for the interviews is developed, consisting of main questions, follow up questions and 
probes. The main questions cover all important topics for the interview, whereas follow up questions 
and probes are guiding to go into more detail (Rubin & Rubin, 2005). All main questions are related to 
the research question of this thesis. The main questions used for interviewing were: 

1. What causes excavation damage (mostly)? 
2. What is the quality of the data, such as KLIC, that is available during excavation works? 
3. How do spatial interdependencies affect the probability of failure from excavation works?  
4. What variables affect the probability of failure from excavation works mostly?  
5. According to CROW500, localization through trial trenching is obligatory over a minimum distance 

of at least 1,5 meters to both sides. What are the consequences of trial trenches?  
6. How can knowledge about the probability of failure from excavation works be implemented, and 

how should it contribute to the organization?  

These questions have been developed during and after the sample collection and literature study. This 
sequence is recommended as it contributes to develop more effective questions (DiCicco-Bloom & 
Crabtree, 2006). All questions are supported by multiple sub-questions, but those are partly dependent 
on the interviewee’s answers, whereby these are not exactly prepared (Rubin & Rubin, 2005). The (semi-
)structure of the interview is important for the comparability, since multiple interviews are held (Van 
Oel, 2017). The entire interview form, including main- and sub-questions can be found in appendix 12.3.  

4.2.2 INTERVIEWEES SELECTION 
The selected experts for the interviews were people within the organization who’s daily work includes 
excavation damage somehow. In gaining initial access to the interviewees, it is most feasible if experts 
within the own organization are approached. If necessary, the interviewees can be asked whom else 
could be of interest for interviewing (Horton, Macve, & Struyven, 2004). To expose all sides of 
knowledge, the selected interviewees have different functions within the organization. By illuminating 
various sides, an ‘expert’ view on excavation damage from multiple asset management levels is created.  

In this study, the first interviewee was a fitter, giving the infield, operational insights of failures from 
excavation works. What does he encounter infield during his work and is this like the expectations from 
the office? The interviewed fitter is employed by Evides already three years as the district fitter of 
Ommoord. Ommoord was built in the 70’s, nowadays it is one of the largest districts in Rotterdam. 
Before Evides, the fitter did the same for the gas and electricity network operator in the area (Stedin), 
making him expert in several ways.   

Second, an innovation and policy engineer, working at the Asset Management Infra department was 
interviewed. The asset manager who is primarily focused on the tactical asset management level, has 
according to many staff the greatest knowledge on excavation damage within the department. He has 
experience in the past at two other water distribution companies (Vitens and Dunea) and as researcher 
at the Watercycle Research Institute (KWR).  

Third, a senior area manager was interviewed, who has three years’ experience within Evides. Before 
he was employed by the municipality of Rotterdam where he did even contribute in the development 
of CROW500. At Evides, he oversees the entire Rotterdam harbor district.  
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4.2.3 RESULTS 
In this thesis, the outcomes of the interviews have been analyzed in Atlas.ti, which is a powerful tool 
(software) for qualitative data analysis. The researcher’s knowledge of the software is more important 
than what software is used and could therefore also be another program. In Atlas.ti, families and 
underlying concepts were created to quantify and clarify the results (appendix 12.3). The five families 
and 41 concepts were linked to interview fragments 184 times. The former are overarching themes of 
the concepts, which can be all topics.  The following families were chosen based on the first impressions 
of the interviews:  

o Causes, which are factors that lead to registered failure. For example, excavation damage can be 
caused through an imprudent contractor with an excavator.  

o Data concerns all topics related to data, such as quality and completeness. So, it’s not directly related 
to excavation damage, but it provides more insight in the data that is used. 

o Variables are the concepts that could affect the probability of failure through excavation damage by 
a third party. 

o Parties are all cable and pipe (network) operators, which are mentioned during the interviews as 
high-risk excavators.  

o Other are the remaining factors mentioned during the interviews, such as human quality and trial 
trenches.  

From the 41 concepts, 13 were mentioned more than 5 times. The 10 most mentioned concepts can be 
found in Table 7. 

The model that is developed with the most correlated variables, will only use the concepts of certain 
families. The family other will not be included in it and is only used for recommendations, reflection and 
eventually validation of the model. This is, because the concepts in the other family are hard to quantify 
for the modelling whereas the other families are not.  

A remarkable variable is the correctness of the data, which was specifically asked for during the 
interview, as it is an important factor for the reliability of this research. For example, correctness of the 
data refers to the deviation between the actual pipe location and the expected pipe location based on 
maps. All experts had a different opinion about the deviating distances. The area manager expects the 
deviation to be +-50 centimeters in general, whereas the asset manager thinks the data is ‘pretty good’. 
The fitter thinks the virtual data is almost similar to the actual locations. Rotterdam, the area where the 
fitter works, is the only municipality in the Evides service area who collects all cables and pipes in a 
map. Furthermore, the municipality of Rotterdam is monitoring stricter if the excavation locations 
complies with the permitted locations than other municipalities in the area. The strict monitoring, by 
random checks, increases the reliability of the location data in Rotterdam, which benefits the reliability 
of the analysis.  

Another concept that was frequently mentioned was law and regulation. The tendencies of the 
interviewees’ answers varied widely on this topic. Therefore, the co-occurrences were analyzed, giving 
insight in the context where law and regulations were used (Table 6). The concept was mentioned three 
times together with the correctness of the data, three times with the horizontal distance and twice with 
imprudent excavating. It can be summarized as: the regulations are not followed, decreasing the 
correctness of the data and the horizontal distance between cables and pipes. The underlying reason, as 
claimed by all interviewee, is lack of time for the contractors, which results in imprudent excavation.  

Table 6: Co-occurrence of Law & Regulations concept, which gives insight in the context where the 
concept was used  

Horizontal 
position 

Human 
quality 

Imprudent 
excavating 

KLIC Party Quality 
Data 

Trial 
Trenches 

Law & 
Regulations 

3 1 2 1 1 3 1 
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Some shortcomings of the procedure around KLIC-requests were found. The most reoccurring theme 
was the missing of service connections in KLIC-requests. All respondents agreed upon the fact that there 
is more excavation damage between the distribution pipes and buildings, than on the ‘street side’ 
because the service connections are located on the building side. Furthermore, when a network operator, 
during the design phase, determines a new possible location, issuing of the permits takes more than 
three days. As no excavation can be done within the first three days after the a regular KLIC-request, 
the new location is determined and permitted before the actual profile is determined by trial trenches. 
Therefore, no options are left to include the actual found profile.  

According to all experts, trial trenches are a very important factor in preventing failures from excavation 
works. Trial trenching should be done on multiple locations in a street as data and electricity cables are 
flexible, which makes it possible these swerves through the streets. For water-, gas-, and sewer one trial 
trench should be enough as these pipes are not flexible and therefore are located parallel (and straight) 
to the property line. The experts had a different opinion on the minimum size of the trial trenches. The 
fitter believed trial trenches should be from curb to curb, covering all potential deviations. In contrary, 
the area manager mentioned 1,5 meters as a luxury in cities, as the cables and pipes are located very 
close together. The innovation and policy engineer were satisfied with the current CROW500 policy.  

4.2.4 FINDINGS  
First, it was found that the procedure around KLIC-requests is a problem. After the request, the 
contractor receives multiple maps with each map showing only one of the networks instead of one map 
including all networks. However, this will be solved once KLIC-WIN has been introduced. The larger 
problem found is the fact that half of the excavation damages are on service connections, but KLIC-
requests still do not contain these connections (Kabel- en Leiding Overleg, 2015).    

As already explained in section 4.1.4 (the cooperation between Evides and Stedin), network operators 
try to coordinate their replacement activities. According to the experts (and literature), failures from 
excavation works on spatial interdependent networks can be reduced by coordinating maintenance 
activities. For example, instead of three different moments for the maintenance activities on three 
different networks, all maintenance is done at the same time. This can reduce failures as most of the 
infrastructure systems are considered in coordination instead of focusing on a single system (Amador 
& Magnuson, 2011).  

For the analysis, the family causes is related to the KLIC-requests as it all has to do with the excavation 
activities. The concepts that do matter according to the experts are the type of the own asset (4), the 
excavating party (4) and the kind of work that is executed (2).  

The experts agreed that excavation activities on the sewer system cause the highest probability of failure 
from excavation works because it is the deepest network and has a large diameter. Furthermore, 
excavation work by data and telecom network operators was mentioned as having a high probability 
of failure. There are much more data and telecom cables in the subsurface than other types of networks 
(mostly, providers use their own cable network), resulting in more excavation work from the data and 
telecom providers. More excavation results in a higher probability of failure. Furthermore, these 
network operators have a lot of competition, which results in lack of time for contractors as explained 
in the previous section.  

Some aspects from the family variables were mentioned very often (as shown in Table 7). Those were 
horizontal position, vertical position, diameter, material, and again party.  

The vertical position of cables and pipes is considered important by both, literature and experts. It is 
important to notice that there is almost no data available on networks actual vertical position. Network 
operators know the depth of construction, which is based on regulations, but the real depth changes 
over time due to construction, landscaping and soil subsidence (S. Li et al., 2015). From the various test 
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points’ Evides has, it is confirmed that the actual depth of cables and pipes can vary a lot from the 
expected depth, resulting in inaccurate data.  

During the literature study and the interviews, some important aspects affecting the probability of 
failure from excavation works were found. In Table 7  are the findings (from literature and interviews) 
summarized and compared.  

 

Table 7: Results interviews and literature study 
 Family Concept Mentioned 
1. Variables Horizontal position 17 
2. Variables Vertical position 13 
3. Variables Diameter 12 
4. Data Quality of the data 12 
5. Variables Material of the cable or pipe 10 
6. Other Law & Regulations 9 
7. Other KLIC 8 
8. Variables What party is excavating (party) 7 
9. Parties Sewer as damaging party 7 
10. Other Trial trenching 7 
 

It was found that the relevant factors that followed from the interviews were mostly similar to the 
relevant factors found from literature in some way. On two of the concepts found from the interviews, 
which are slightly expending the literature, this thesis will elaborate on further. First, it is expected that 
the law and regulation concept is missing in literature because it deviates per country, region or 
municipality. Ignorance of regulations and imprudent excavation were mentioned by literature, but 
from the interviews it followed that the underlying procedures are not perfect. For example, the KLIC-
requests appears to be imperfect, as these do not include service connections even though 50% of the 
failures are caused on service connections.  

Second, trial trenches were found from the interviews as very important, whereas it was not found in 
the scientific literature. It is obliged in the Netherlands by CROW 500, but that is (only) a guideline that 
followed from an extensive cooperation between network operators. However, the fact that it is 
included in the guideline, shows the acknowledgement of the importance of trial trenches by network 
operators.  
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5 METHODOLOGY 
5.1 MODEL SELECTION 

Before the collected data are analyzed, the selection of the method which is used to identify the relations 
between the dependent- and independent variable(s) is explained. To the best of my knowledge, almost 
all statistical studies on cables and pipes are conducted using failure/km/year as dependent variable, 
considering the network as a whole. By contrast, in this thesis the dependent variable Y is registered as 
failure (1) or non-failure (0), since all situations are unique and considered separately instead of all assets 
as a group. As a result, the dependent variable changes from numeric continuous into a categorical 
dichotomous type, which alters the possible modelling approaches.  

Multiple statistical approaches have been reviewed and the advantages and disadvantages of every 
method are explained in section 5.4. In the end, binary logistic regression was selected as the method to 
start with. A major advantage of logistic regression is that it is generally accepted for binary outcome 
statistics (Hosmer, Lemeshow, & Sturdivant, 2013) and it has been shown to have good performance 
(Ariaratnam et al., 2001). Besides, the only studies found in literature for unique situations in the cable 
and pipe sector are Ariaratnam et al. (2001) and Tung (1985) whom both applied logistic regression.  

LOGISTIC REGRESSION 
Usually, (linear) regression models are applied to describe a linear relation between a dependent 
variable and the predictor (independent) variables. In multiple linear regression, the dependent variable 
Y is predicted by equation [1]. In this equation is 𝑏଴ the Y intercept and 𝑏ଵ, … , 𝑏௡ the regression coefficient 
of its respective independent variables 𝑋ଵ, … , 𝑋௡. An important assumption of linear regression is the 
linear relationship between the dependent variable and the independent variables, otherwise the model 
will not be valid.  

 𝑌௜ = 𝑏଴ + 𝑏ଵ𝑋ଵ௜ + 𝑏ଶ𝑋ଶ௜ + ⋯ + 𝑏௡𝑋௡௜ + 𝜀௜   [1] 
 
where 𝜀௜ ~ 𝑁(0,1) is white noise. In this study, the assumption of linearity is violated as Y is a categorical 
variable. To overcome this problem, logistic regression was developed in which logarithmic terms 
(logit) express the multiple linear regression equation (Field, 2013, p. 887). The logistic regression 
equation is given by equation [2], where 𝑃(𝑌) is the probability of Y occurring and 𝑒 the natural 
logarithms’ base.  

 𝑃(𝑋௜ = 1) =
1

1 + 𝑒ି(௕బା௕భ௑భ೔ା௕మ௑మ೔ା⋯ା௕೙௑೙೔ାఌ೔)
 [2] 

 
In the new equation, instead of predicting the value of dependent variable Y as for the linear regression, 
the probability of Y occurring is predicted. In other words, will the cable or pipe fail after the KLIC-
request or not. The logistic regression method is an accepted way to assess the relation between a 
categorical dependent variable and various independent variables, also denoted as covariates 
(Ariaratnam et al., 2001). Logistic regression has been used in various applications. For example, 
Ariaratnam et al. (2001) applied logistic regression models to predict the likelihood of a particular cable 
or pipe being in a certain state (cracks versus no-cracks). They found that their application of logistic 
regression contributed to reduce subjectivity, as situations were assessed on probability, using historical 
data, rather than single numerical (condition) ratings (Ariaratnam et al., 2001). 

ASSUMPTIONS OF LOGISTIC REGRESSION 
Before a logistic regression model is built, some basic assumptions are tested. First, logistic regression 
assumes that the dependent variable follows a Bernoulli probability function having only two possible 
outcomes, 0 or 1, where 1 usually denotes failure and 0 non-failure with the probability  
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𝑌௜~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑌௜|𝜋௜) 
 

𝑃(𝑋 = 1 ) = 𝜋௜  
𝑃(𝑋 = 0 ) = 1 − 𝜋௜  

[3] 

where 𝜋௜  ~ 𝑁(0,1) is the random variable that represents the probability of failure (King & Zeng, 2001; 
Monroe, 2017) and is explained as in equation [2]. Furthermore, it is important that each sample is 
independent, so the probability without considering independent variables should be the same for 
every action. In this study, 1 denotes leakage and 0 denotes no leakage.  

Second, the regression models assume independence of all independent variables. When some 
independent variables are dependent this poses some issues called multicollinearity, which should be 
below a certain threshold. This is, one independent variable can predict another independent variable 
with a certain accuracy1. One method to test multicollinearity is with the Variance Inflation Factor (VIF). 
The VIF can be tested easily by (almost) all statistical software programs. When the VIF is smaller than 
one, variables are not correlated, when VIF is between one and five, than the variables are moderately 
correlated and greater than five is highly correlated. In this thesis, VIFs lower than 2.5 are considered 
not to cause any problems2. Furthermore, independent variables can be completely separated when the 
individual explanatory variable predicts the outcome variable perfectly. The dataset should be tested 
on complete separation, especially as it often occurs in rare events data (Rainey, 2016). Complete 
separation arises when a dependent variable can be perfectly predicted by one variable or a combination 
of independent variables (Field, 2013). Rare events data are outcome variables with “dozens to 
thousands of times fewer ones (events, such as wars, coups, presidential vetoes, decisions of citizens to 
run for political office, or infections by un- common diseases) than zeros (“nonevents”)” (King & Zeng, 
2001, p. 138).  

Third, it is known that logistic regression is affected by the proportion of ‘positive’ cases in the sample. 
Logistic regression models need many events (samples) relative to the independent variables being 
evaluated, especially for rare event data. For the sample size it is recommended that (Peduzzi, Concato, 
Kemper, Holford, & Feinstem, 1996):  

 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 10 ∗
𝑘

𝑝
 [4] 

 

where k is the number of independent variables and p the proportion of ‘positive’ cases.  

The last test is to check if the model is overfitted. This occurs when too many (independent) variables 
are included in a model, resulting in a model only being predictive of the utilized dataset (Hosmer et 
al., 2013). A model becomes overfitted when it is trying to follow noise patterns as it follows specific 
points too tightly. On the other hand, underfitting also results in poor predictive power of the model,3 
which refers to the overall performance of the model to correctly classify the cases (Statsoft, 2013). The 
possible over/underfitting of the model makes the theoretical basis (as examined in section 3.2 and 3.3) 
even more important for variable selection.  

The variables, relevant according to literature and interviews, are tested on type and completeness. This 
is done by a complete-case analysis. Type refers to e.g. numerical and categorical, where completeness 
refers to the percentage of the cases where the variable is present or available (e.g. the district heating is 
not present in the entire city).  

PREPARE DATASET FOR MODEL FITTING  
Once all tests are conducted, the dataset is modified. As the goal of the model is to determine which 
independent variables are most related with excavation damage, it is also important to determine what 
variables should be included. The variables that followed as relevant from the theoretical bases are split 

                                                           
1 http://www.statisticshowto.com/ 
2 Allison, P. (2012) When Can You Safely Ignore Multicollinearity? Statistical Horizons 
3 https://stats.stackexchange.com/questions/81576/ 
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into some smaller groups of independent variables to be tested against the dependent variable. Three 
groups were created, two equally sized groups with both half of the variables and an all-encompassing 
group. The independent variables are divided randomly over the two smaller groups (e.g. odd and even 
variables). This step is helpful in two ways: first, it prevents overfitting the model. Second, the more 
variables are included in a model, the more time the computations will take. The groups that were 
created are shown in the next section (6.1.1).   

The samples in the groups are split into a training and a test set to be able to validate the model’s 
predictive power once it is finished. As already mentioned in findings of the data collection (section 0), 
only 0.2% of the dataset’s dependent variables represents failure, it is not very likely that these are 
divided equally over the train and test group that are created. Therefore, a technique called stratified 
random sampling is applied (Kothari, 2004). In stratified random sampling, homogenous groups are 
created, called strata. From the strata random samples are taken4. In this study, the only stratum used 
is the outcome variable which is split into failure and non-failure. From both groups, around 80% is 
selected randomly and placed in the trainings set, where the remaining 20% is for the test set. If 
available, one could also use data from another (comparable) area, which would be a comparable city 
in this study. However, due to limited time for this thesis and data which was hard to obtain, no other 
data than Rotterdam are used.  

DEVELOP MODEL 
Once the datasets are prepared, the model is developed. Almost all statistical software will do this 
automatically, but the modeling theory is explained shortly. The logistic regression equation was 
already shown in equation [2]. The beta parameter for each variable is determined based on maximum 
likelihood estimation. As its name states, the beta estimates are determined by maximizing the 
likelihood of the data. So, based on the predictors, the model is fitted and the parameters are estimated 
(Field, 2013). Taking logs in combination with equation [3] simplifies the log-likelihood to: 

 𝑙𝑛 𝐿(𝛽|𝑦) =  − ෍ ln൫1 + 𝑒(ଵିଶ௒೔)௑೔ఉ൯

௡

௜ୀଵ

. [5] 
 

SELECT THE SIGNIFICANT VARIABLES  
As mentioned before, only the variables that were found relevant by literature and interviews, as well 
as some variables that could be interesting are used. From the training models, the statistical significance 
of these relevant variables is tested on the one hand. The p-values that follow from the trainings model 
are a measure of whether the research findings are likely to have occurred by chance or not. As in most 
studies, a relation is considered statistically significant when the p-value is below 0.05.  

On the other hand, a stepwise backward elimination procedure based on the Akaike Information 
Criterion (AIC) is conducted. During this procedure, which is included in most statistical software, 
variables are removed one by one until the AIC of the model does not improve (enough) anymore. AIC 
is used to establish the goodness of fit of statistical models while accounting for the simplicity of the 
model, i.e. the number of parameters. The AIC is calculated by  

 𝐴𝐼𝐶 =  2𝑘 − 2 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 [6]  
where 𝑘 is the number of variables (including intercept) and the log-likelihood measures the likelihood 
of the data and has been defined in equation [5].  

All three kinds of methods, the stepwise backward elimination procedure, p-value and the knowledge 
from the theoretical background are combined and used to select the variables that will be included in 
the model.  

 

                                                           
4 https://www.investopedia.com/terms/stratified_random_sampling 
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5.2 GOODNESS OF FIT 
The variables that are relevant to the probability of failure from excavation works were selected during 
model selection. In order to be able to answer sub-question 2 ‘To what extent are the identified variables 
affecting the probability of failure from excavation works and how can we accurately predict the probability of 
failure?’ later on, a more complex model is developed.  The complex model will build on the regular 
model that was already established during model selection. In first instance it will follow from goodness 
of fit tests.  

For the goodness of fit, first the individual contribution of the variables is tested. Second, the goodness 
of fit of the entire model is tested.  

INDIVIDUAL CONTRIBUTION 
When determining whether a variable is relevant for the overall logistic regression model, the Wald 
statistic is most important5. It shows the individual contribution of a variable. The more the Wald 
statistic is different from zero, the more it can be assumed that the variable has a greater contribution in 
predicting the outcome. The Wald statistic is calculated by dividing the square of the logistic regression 
coefficient (𝛽መ) minus the parameter of interest (𝛽଴) by the variance of the estimates (equation [7]). The 
logistic regression coefficient (estimated 𝛽) of the independent variables also indicates whether the 
independent variable has a positive or a negative influence on the outcome.  

  𝑊ଶ =
(𝛽መ − 𝛽଴)ଶ

𝑣𝑎𝑟(𝛽መ)
 [7] 

GOODNESS OF FIT 
Likewise, the individual variables, the total model fit is also tested. First, the log-likelihood statistic is 
examined, which explains the fit of the entire model, indicating how much of the data is explained by 
the model. Equation [8] shows the log-likelihood-ratio, which is used to determine whether an extra 
variable improves the fit of the model. Equation [8] uses the deviance, which is calculated by −2 ∗

𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑.  

 −2log (
𝐿଴

𝐿ଵ

) = (−2𝑙𝑜𝑔𝐿଴) − (−2𝑙𝑜𝑔𝐿ଵ) [8] 

  
Second, the coefficient of multiple determination (R2) is tested, which is the partial correlation between 
the outcome variable and each of the independent variables. It provides an insight in the substantive 
significance of the entire model, but it was originally developed for regular linear regression models. 
As the ‘regular’ coefficient of multiple determination is missing for logistic regression models, multiple 
alternatives, called pseudos were developed. Therefore, cautiousness is required when interpreting R2 

pseudo’s, as its trustworthiness is smaller than the regular R2. One of the pseudos is McFadden’s R 
squared measure, which is the default pseudo in most statistical programs and proposed by Allison 
since it is closely related to the linear regression R2 definitions6. It uses the maximized likelihood value 
from a model (𝐿௖) and the corresponding value from the null model (𝐿௡௨௟௟) which is a model which only 
includes the intercept and no other predictors:  

 𝑅ெ௖ி௔ௗௗ௘௡
ଶ = 1 −

log (𝐿௖)

log (𝐿௡௨௟௟)
 [9] 

 
An important side-note when interpreting McFadden’s R squared is that one should not expect it to be 
too large. According to McFadden does values between 0.2 and 0.4 already indicate an excellent model 
fit (McFadden, 1979).  

                                                           
5 Allison, P. (2014) Another Goodness-of-Fit Test for Logistic Regression. Statistical Horizons 
6 Allison, P. (2013) What’s the Best R-Squared for Logistic Regression? Statistical Horizons 
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As last test for the goodness of fit the Akaike Information Criterion (AIC) is tested again. The AIC-score 
is first used during the backward elimination procedure during model selection, but once the variables 
are selected, the AIC score is tested again for the model fit. AIC is used to establish the goodness of fit 
of statistical models while accounting for the simplicity of the model, i.e. the number of parameters.  

Once the goodness of fit of the individual variables and the total model are assessed, the model will be 
validated. 

5.3 MODEL VALIDATION 
By validating the model, it is assessed how well the model can predict the outcome. As the dependent 
variable is categorical, validation is done by testing the capability of the model to predict the outcome 
accurately. Multiple validation techniques exist, such as leave-one-out, (repeated) K-Fold cross 
validation and some manual techniques. In this thesis, the ROC (manual validation) and repeated K-
Fold cross validation are used (Kohavi, 2016).  

Splitting the data into a training and a test set as mentioned in ‘prepare dataset for modeling’ (section 
5.1) is done for the (manual) model validation. First, the Receiver Operating Characteristic (ROC) curve 
is used to validate the model. In a ROC curve the true positive predicted samples are plotted against 
the true negative predicted samples. The Area Under (the ROC) Curve (AUC) measures the predictive 
accuracy of the model, where it is important to realize that 0.5 would be a coin flip and 1 a perfect model.  

The second method for measuring the accuracy of the model is repeated K-fold cross validation. This 
machine learning technique divides the data in k subsets, which mostly is 10 as also in this thesis. One 
of the subsets becomes the test set, all the others are for training. In this thesis this was repeated hundred 
times, significantly reducing the error estimation and the bias. K-fold cross validation is used to produce 
a confusion (error) matrix which visualizes the performance of the model. The confusion matrix helps 
to determine the accuracy, kappa, sensitivity and specificity of the model. An example of the confusion 
matrix is given in Table 8 where TP = true positive, TN = true negative, FP = false positive and FN = 
false negative.   

Table 8: Confusion matrix from theory 

 
Reference model 

No event Event 

Predicted model 
No event TN FN 

Event FP TP 

 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 𝑠𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

First, accuracy is the general measure of a classifier, which measures the overall efficiency of the model. 
However, with imbalanced data the majority class contributes more to the measure than the minority 
class and could therefore be misleading. Second, both specificity and sensitivity measure the efficiency. 
The former measures the accuracy of the negative cases, whereas the latter measures the accuracy of the 
positive predicted cases. Third, kappa determines the accuracy that follows from the difference between 
the model and data that is generated purely by change. Last and most important in this thesis is the 
balanced accuracy, which combines the specificity and sensitivity. The balanced accuracy measures the 
average accuracy from both, the minority and majority class. It is calculated by equation [10],  

whereas a high (traditional) accuracy and a low balanced accuracy indicates that the (traditional) 
accuracy is high because of the classifier distribution (Akosa, 2017). The difference between accuracy, 
kappa, sensitivity, specificity and balanced accuracy is important as these measures can be misleading 

 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

 
[10] 
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when data is highly imbalanced. Because of the imbalanced data in this thesis (section 2.5.2), the 
balanced accuracy is way more important for predicting failures than the other measures.  

5.4 OTHER STATISTICAL MODELS 
There are multiple statistical methods which can be used to model a categorical dependent variable. 
Four statistical methods have been considered as relevant for this study; stochastic gradient tree boost 
(SGT), Cox proportional hazard (CPH), ‘regular’ logistic regression and Bayesian logistic regression. In 
a literature review, several advantages and disadvantage for the three methods were found (Grzenda, 
2015; Kleinbaum & Klein, 2010; Lombardo, Cama, Conoscenti, Marker, & Rotigliano, 2015).  

First, CPH has the advantage that in many situations the true hazard function is unknown or complex, 
whereby this does not matter for CHP. Besides, CHP focuses more on the effects of the independent 
variables instead of on the nature of the hazard function which is not very relevant in this thesis (Harrell, 
2001). However, CPH was excluded as the dependent variable is modeled as time dependent, which is 
not relevant in this thesis.  

Second, stochastic gradient treeboost and logistic regression were compared. SGT is very efficient and 
easy to implement. However, in a study on landslide events, binary logistic regression was found to 
produce more robust models around the mean, which results in smoother and less binarized predictions 
of the failure probabilities (Lombardo et al., 2015).  

Last, Bayesian logistic regression assumes that the model parameters are random variables. This has the 
advantage that it has the ability to use out the knowledge about the sample set during modelling. 
However, a major disadvantage is that this approach entails very large computational performance as 
it has a high model complexity (Grzenda, 2015). As explained earlier, the wide application of ‘regular’ 
logistic regression has the major advantage that extensive studies on model adjustments have been 
executed. So, this was decisive during the selection of the method. However, Bayesian logistic 
regression will also be tested so it can be compared with the ‘regular’ logistic regression model.  
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6 RESULTS 
6.1 FULL DATA 

First, the assumptions associated with logistic regression were tested for the entire dataset. Once tested, 
the dataset is split into groups to develop the basic model.  

6.1.1 MODEL SELECTION 
BERNOULLI PROBABILITY FUNCTION 
The dependent variable “leak_dummy” has only two outcomes, failure (1) and non-failure (0), where all 
samples are considered to be independent. This means, the probability of failure remains the same 
during all trials. However, from some logical reasoning some assumptions followed. As discussed 
extensively during sample collection, it is possible that multiple assets cross a KLIC-polygon. In such 
situations, multiple samples could be affected by a similar event, leading to doubtful independencies. 
It is unknown what data is involved in these situations. On the contrary, it is unlikely that the actual 
excavation work crosses two assets, let alone all assets within the (larger) KLIC-polygons. These 
considerations were elaborated on in more detail in section 0 (sample collection, findings). In this thesis, 
due to the lack of more detailed information on multiple assets per KLIC-polygon and the 
considerations in this section, it will be assumed that all samples are independent. However, one of the 
independent variables which is included, is the total asset length in a KLIC-polygon. If this variable 
seems to be below the statistical significant level, it could indicate that multiple assets per KLIC-polygon 
does matter.  

MULTICOLLINEARITY  
From the Variance Inflation Factor test some situations of complete separation of several independent 
variables were pointed out. To overcome this problem, the gained knowledge from literature and 
interviews was used to take out the variables expected to be correlated, such as type of work I and type of 
work II that are sequential. Taking out the variables did work and an VIF table followed. To test all the 
multicollinearity, the remaining variables were inserted one by one, until the complete separation error 
appeared again. Furthermore, a detailed analysis of the dataset, specifically checking for 
multicollinearity was conducted and the variables that caused the complete separation were studied, 
whereby the background knowledge and the way of data collection were kept in mind.  

It was found that the type of KLIC-request (normal vs emergency) and the type of work are completely 
separated. Emergency KLIC-requests do not require any specification on the type of work and are 
therefore always classified as ‘unknown’ in the dataset while the type of work for all normal KLIC-
requests was specified. As the type of work basically explains both variables, the type of KLIC-request 
will be excluded.  

The specified type of work ‘klic_type_work2’ and the responsible party which has been determined based 
on several variables are also completely separated. Again, the variable that is expected, from the prior 
knowledge, to be most informative will be included, which is the responsible party.  

The final VIF table can be found in appendix 12.6. The variables that were excluded from further 
analyses due to complete separation or unavailability are shown in Table 9 underneath.   

Table 9: The four variables that were excluded from the analysis because of complete separation or 
availability 
Remaining cables and pipes Type of work 
Remainder_Distance Type_of_workI (General) 
Remainder_Side Type_of_workII  (Cables and pipe specific) 
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SAMPLE SIZE 
The complete separation found during the multicollinearity tests indicated the need for more samples 
compared to the number of independent variables already. The variables that were completely 
separated were excluded from the analysis. This filtered and reduced the number of independent 
variables from 31 to 27. 

In first instance, the relation between the dependent variable and 27 independent variables not being 
multicollinear was tested, using al 107.500 samples. The method proposed by Peduzzi et al. (1996), 
recommends that the sample size should be above 150,000 whereas the dataset in this thesis only 
contains ≈107,000 samples. As it is not possible to increase the number of samples, the number of 
independent variables is decreased. Using Peduzzi’s equation to find 𝑘 shows that 21 independent 
variables is the maximum for the sample size. 

107,000 = 10 ∗
𝑘

0,0002
 

The fact that the sample size is too small is kept in mind, but no further actions are taken here. The 
significance test and stepwise backward elimination in a later phase (section 6.1.1.1 - 6.1.1.4) will help 
to determine what variables are irrelevant and can be removed from the model.  

OVERFITTING  
To overcome over- or underfitting problems, the theoretical basis, including the results from 
multicollinearity are used together. The latter filtered already some variables out, but to overcome a 
model from being predictive of the own dataset, some additional measures were taken.  

First, the dataset is split into three groups. The odd half of the independent variables (IVs) (group 1), 
the even half of the IVs (group 2) and all IVs together (group 3). The odd- and even were chosen to 
create equally sized and random groups. On all three groups the same analyses are conducted to find 
potential differences during all steps. So, the actual results from the overfitting tests cannot be noticed 
now but should be checked later. 

COMPLETENESS 
Both type and availability of data are assessed, as logistic regression only includes complete samples. 
The results of the assessment are shown in appendix 0. It was found that some independent variables 
had many non-available (NA) entries. Especially remainder pipes had many NA data (+- 93% NA).  The 
NAs can be explained by the absence of remainder pipes in large areas’ Rotterdam. Furthermore, district 
heating can only be found in +- 30% of Rotterdam and therefore requires attention.  

From the more than 107 thousand samples, less than 10% was found to be entirely complete after 
excluding the remainder pipes variables. Again, the simple explanation for large number of NA data is 
the absence of cables and pipes within the maximum distance from the measure points or irreducible 
responsible parties.  

To overcome this problem, multiple adjustments were made to the dataset. Where most studies use the 
mean of a variable to insert on empty places, this thesis will need another approach. As discussed earlier, 
NAs are not necessarily missing, it only refers to the absence of a network type within the maximum 
measure distance. Therefore, imputing a variable’s mean would be inappropriate for this dataset. 
Instead, a value not present in the dataset should be chosen to use for imputation.  

First, as the mutual distance between the measure point on the Evides main and the other networks is 
only included within 10 meters, a value larger than 10 is selected to use for imputation. In this thesis, 12 
(meters) was selected as the imputation value for missing distances. Second, an unavailable distance 
will automatically result in missing diameter and side. With a very few exceptions, all diameters of 
cables and pipes were smaller than one meter. Therefore, ‘1’ was selected as imputation value for the 
missing diameters. As the cable ‘side’ is a categorical variable (0 and 1), the NAs will be replaced with 
number 2. Last, other categorical data, such as responsible party and type of work also contain NA 
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entries. This happens when these variables are not traceable. If so, the empty samples are imputed with 
‘unknown’.  

SAMPLING 
All three groups, which were constructed to overcome the overfitting problem, are sampled in a 
stratified manner. The groups were split into a training- and a test set with respectively .8 and .2 of the 
group data. For all groups a model based on the training set was developed. Both, the results from the 
backward stepwise elimination and significance as well as the difference between the results are shown 
in the following sections, where the results per group are shown.   

6.1.1.1 GROUP I: ODD INDEPENDENT VARIABLES 
First, the model selection for the group with the odd (𝑛 = 2,4, … , 𝑛௜ ∗ 2) independent variables was 
executed. The 13 odd independent variables were inserted into a logistic regression model, from which 
their p- and z-value were determined. The most significant variable is the diameter of the own assets, 
which has a p-value smaller than 2*10-16 and has a negative estimate, meaning that a smaller diameter 
increases the probability of failure. Furthermore, the unknown type of work rises the probability of 
failure enormously. Important to realize is the type of work ‘unknown’ refers to the emergency KLIC-
request (as a result of the data collection). Moreover, the correctness of the data (deviation between 
Evides- and Rotterdam 3D data), diameter of the sewers, gas distance and diameter of the district 
heating are below the significance level and are therefore included in the model.  

On the other hand, the backward elimination based on AIC ended with the same variables as were 
selected by the p-values, except the gas distance (p = .08). Opposite, the age of the own asset was left in 
the AIC model, but has a significance level of 0.26. The AIC improved from 2591 at the start, to 2580 at 
the end of elimination.   

The intercept, the variable representing the estimated log odds baseline when all independent variables 
are zero, is also very large. A large negative intercept indicates that there are many more 0 outcomes 
than 1 outcomes, which is true for this dataset. 

In Table 10 the variables with the highest statistical significance are shown. In the table, the column 
estimate represents the estimated β-value for each (independent) variable. Then, the Wald-statistic (z-
score) which is calculated through dividing the estimate by the standard error is shown which is 
assumed to be normally distributed. The p-value of the normal distribution is shown in the last column. 
More details on the Wald-statistic will follow in the next sections.  

Table 10: The odd independent variables (group 1) with a p-value below threshold (p < 0.10) and their 
corresponding estimates and z-values 
Significance group 1 Estimate z value Pr(>|z|) 

(Intercept) -5,23 -9,67 0,00 
klic_type_work Kabels-Leidingen 0,88 2,10 0,04 
klic_type_work Unknown 2,17 4,91 0,00 
evi_diameter -0,01 -5,66 0,00 
evi_data_quality 1,39 2,04 0,04 
sew_diameter -0,70 -2,70 0,01 
gas_distance -0,05 -1,77 0,08 
heat_diameter -0,76 -3,16 0,00 
 

6.1.1.2 GROUP II: EVEN INDEPENDENT VARIABLES 
Coincidentally, group 2 contains many more categorical variables than group 1. However still the same 
tests are conducted for this group. First the significance from the Wald statistic was tested. The variable 
with the lowest p-value is the side where the telecom cables are located. That is remarkable as most 
studies are focused on the large diameter networks. Furthermore, the mutual distance between the 
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sewer system and the own asset was found very significant. The side of the electricity cable, the 
excavating party and the length within a KLIC-polygon are also significant.  

The backward stepwise elimination has more dissimilarities with the p-values below threshold than in 
group 1. Only five variables had a p-value considered small enough, whereas the stepwise procedure 
left seven variables in the model. Both the side of the district heating was left in the model based on 
AIC, as well as the material of the own assets. Through the backward elimination, the AIC decreased 
from 2640 to 2626 in the final step. The very large intercept is not surprising, as the ratio of the dependent 
variable is like group 1.  

Table 11: The even independent variables (group 2) with a p-value below threshold (p < 0.10) and 
their corresponding estimates and z-values 
Significance group 2 Estimate z value Pr(>|z|) 

(Intercept) -5,36 -6,34 0,00 
asset_length_in_klic 0,00 -1,65 0,10 
klic_partyHeat 0,92 1,90 0,06 
sew_distance -0,09 -2,71 0,01 
elec_side1 0,29 1,71 0,09 
elec_side2 0,66 2,01 0,04 
tele_side1 -0,94 -5,38 0,00 
tele_side2 -1,07 -2,92 0,00 

6.1.1.3 GROUP 3: ALL INDEPENDENT VARIABLES 
In group 3, where the model selection is done with all independent variables (group I and II), most of 
the variables correspond to the separate groups. Eleven variables were found to have a p-value below 
threshold (p < .1), just like group I and II together. The most remarkable differences found, was that the 
diameter of the district heating is above threshold in this group. Moreover, the mutual distance between 
the sewer pipes and own asset had a very low p-value in group I but is not in this group. Also, some 
new variables were found in group 3. First, the side where the sewer pipes are located was found 
important. Second, the diameter of the gas pipes has a low p-value.  

The backward stepwise elimination reduced the AIC from 2531 to 2511, which is the best AIC score of 
all groups. Again, in this group some differences were found between the variables left based on AIC 
and the significant variables. Five new variables were selected based on AIC, whereas the significant 
sewer side was not selected by the elimination procedure. The extra variables are presented in Table 12.  

Again, the intercept’s estimate has a large estimate and a low p-value. However, it is smaller than in 
group I and II.  
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Table 12: All independent variables (group 3) with a p-value below threshold (p < 0.10) and their 
corresponding estimates and z-values 
Independent variables Estimate z value Pr(>|z|) 

(Intercept) -5,47 -5,18 0,00 
klic_type_workUnknown 2,20 4,96 0,00 
evi_diameter -0,01 -5,95 0,00 
evi_data_quality 1,60 2,34 0,02 
sew_diameter -1,21 -2,85 0,00 
gas_distance -0,07 -1,88 0,06 
klic_partyHeat 0,86 1,76 0,08 
sew_side2 1,53 2,23 0,03 
gas_diameter 1,63 2,22 0,03 
heat_side2 -1,05 -2,39 0,02 
elec_side1 0,32 1,81 0,07 
elec_side2 1,00 1,88 0,06 
tele_side1 -0,86 -4,72 0,00 
tele_side2 -1,84 -3,65 0,00 

 

6.1.1.4 DIFFERENCES BETWEEN GROUPS 
Comparing all groups, multiple similarities and differences were found as shown in Table 14. In the 
table each variable found relevant in group 1 and 2 is compared with the variables found relevant in 
the all-encompassing group 3. In the last rows, independent variables that where only selected from 
group 3 are shown. The last column is the number of times an independent variable was selected, where 
four is the maximum. As a criterion in this thesis, an independent variable should be selected in the 
groups at least three times, e.g. significant in group I and 0 and left in the stepwise model from group I. 
Nine variables met the criterion.  

First, five variables were selected in all categories. The type of work, own asset’s diameter, data 
correctness, diameter of the sewer pipes and the mutual distance between the gas network and own 
network. The network type behind the request (party), and side of all, telecom, electricity and district 
heating were selected three times. These nine independent variables are all selected based on the 
statistical tests as relevant variable in relation to excavation damage and will therefore be included in 
the model in the next section.  
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Table 13: Compare the results of group 1 and 2 with the results from group 3 which contains all independent 
variables. All variables that were selected in at least two groups by three or four of the selection criteria 
are included 
 
Group 1 

 
p-value 

 
AIC 

Group 3  
p-value AIC Total 

Klic_type_work Unknown X X X X 4 
evi_diameter X X X X 4 
evi_data_quality X X X X 4 
sew_diameter X X X X 4 
gas_distance X X X X 4 
heat_diameter X X   2 
Evi_age  X  X 2 
Group 2      
asset_length_in_klic X    1 
klic_partyHeat X  X X 3 
sew_distance X   X 2 
elec_side1 X  X X 3 
elec_side2 X  X X 3 
tele_side1 X  X X 3 
tele_side2 X  X X 3 
Heat_side  X X X 3 
Evi_material  X  X 2 
Group 3      

Evi_distance_house  X 1 
Tele_distance  X 1 
Elec_distance   0 
Sew_side X  1 
Gas_diameter X  X  2 

 When translating these results into a logistic regression model, the equation would look like 
equation[11]. In this equation, only the relevant variables found from the statistical tests are inserted. 
Based on the theoretical background some extra variables could be added, this will be done in the (sub) 
conclusion section. The fitted model is 

 

with: 𝑍 = 𝑏଴ + 𝑏ଵ 𝑘𝑙𝑖𝑐௧௬௣௘ೢ೚ೝೖ
+ 𝑏ଶ𝑒𝑣𝑖ௗ௜௔௠௘௧௘௥ + 𝑏ଷ 𝑒𝑣𝑖ௗ௔௧௔೜ೠೌ೗೔೟೤

+ 𝑏ସ 𝑠𝑒𝑤ௗ௜௔௠௧௘௥ + 𝑏ହ 𝑔𝑎𝑠ௗ௜௦௧௔௡௖௘ +

𝑏଺ 𝑘𝑙𝑖𝑐௣௔௥௧௬ + 𝑏଻ ℎ𝑒𝑎𝑡௦௜ௗ௘ + 𝑏଼ 𝑒𝑙𝑒𝑐௦௜ௗ௘ + 𝑏ଽ 𝑡𝑒𝑙𝑒௦௜ௗ௘ +  𝜀  

where 𝜀 ~ 𝑁(0,1). 
  

  

 𝑃(𝑌 = 1) =
1

1 + 𝑒ି(௓)
, [11]  
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6.1.2 GOODNESS OF FIT 
In first instance, all tests were conducted on the entire dataset, so all 107,266 non-failures and all 182 
failures were included (Figure 15). The results of the tests are discussed shortly. 

WALD-STATISTIC 
The individual contribution of the selected variables was tested based on the Wald statistic. The more 
the z-score differs from zero, the larger the contribution of the variable for the total model. All variables 
with a z-value differing more than 1 from 0 are shown in Table 14. Besides, their significance in the new 
model is inserted. It follows that the p-value for some variables changed compared to the group 3 model 
where all independent variables were included in the previous section. First, the mutual distance 
between the gas network and Evides’ main became above the stated significance threshold level. 
Second, the p-value of the side of the electricity cables decreased from 0.06 to 0.01. For all other variables, 
the p-values remained basically equal.    

Table 14: Results for the Wald-statistic and p-value of the selected independent variables 
 

Estimate z value Pr(>|z|) 

(Intercept) -5,03 -5,67 0,00 
klic_type_workKabels-Leidingen 0,68 1,52 0,13 
klic_type_workUnknown 2,22 5,06 0,00 
evi_diameter -0,01 -5,70 0,00 
evi_data_quality 1,46 2,14 0,03 
sew_diameter -0,68 -2,54 0,01 
gas_distance -0,02 -1,28 0,20 
klic_partyHeat 0,81 1,67 0,10 
klic_partySewer 0,43 1,03 0,30 
heat_side1 -0,61 -1,77 0,08 
heat_side2 -0,70 -3,60 0,00 
elec_side1 0,33 2,03 0,04 
elec_side2 0,70 2,45 0,01 
tele_side1 -0,90 -5,15 0,00 
tele_side2 -0,93 -3,02 0,00 
evi_materialPE -1,18 -1,28 0,20 
evi_materialST 0,73 1,04 0,30 

 

LOG LIKELIHOOD RATIO 
The Log Likelihood Ratio was tested to find the goodness of fit of the entire model. It was found that 
the Log Likelihood Ratio of the model with the selected variables, compared with a model with all 
variables included has a Chi-square score of 0.399, which is above the significance level (p < 0.10). 
Therefore, the null hypotheses, which states that the data are consistent with the Bernoulli distribution, 
is accepted7.  

COEFFICIENT OF MULTIPLE DETERMINATION  
Besides the log likelihood ratio, McFadden’s pseudo R2 was calculated. It was found that the model has 
a partial correlation of 0.0915, which indicates a poor model fit with respect to the pseudo R2.  

                                                           
7 http://stattrek.com/chi-square-test/goodness-of-fit.aspx?Tutorial=AP  

Figure 15: The sample set including all data. F indicates leakages, NF non-leakages. Only 0,169 % of the sample 
set represents leakages 
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6.1.3 MODEL VALIDATION 
The model also needs to be validated. Therefore, the ROC curve and the Area Under Curve (AUC) were 
determined. In Figure 16, the ROC curve for the developed model is given, which contains an Area 
Under Curve of 0.595. All scores below 0.60 are ranked as failing models, therefore this model is 
interpreted as not working. Nonetheless, the result is very close to 0.6. 

 

K-Fold cross validation  
During the K-Fold cross validation the confusion matrix helps to determine the failures, based on the 
balanced accuracy, accuracy and kappa of the model. It was found that the probability of failures was 
under estimated in this method (0 out 31). Because failure was never predicted, kappa is 0, and the 
balanced accuracy is 0.500. The balanced accuracy of the model indicates that the model has no 
predictive power at all. This outcome is in line with the ROC / AUC results. 

Table 15: Confusion matrix of the full data model 

 
Reference model 

No event Event 

Predicted model 
No event 21458 31 

Event 0 0 
 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 1.0000 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.0000 

 

  

Figure 16: The ROC-curve and the corresponding Area Under the Curve for the full data model 
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6.2 SUB-CONCLUSION I 
Before failures from excavation works can be predicted by a model with independent variables 
concerning spatial interdependencies and other important factors (main research question), the 
variables that contribute to these failures must be identified. Although many variables were found as 
related in earlier studies, logistic regression is useful to gain another view on the variables that are 
related to excavation damage. Hence, variables that could be relevant for network operators to estimate 
the probability of failure from other’s excavation works were identified in three ways. First, a literature 
study identified the well-known variables. Second, expert interviews added some more relevant 
variables. Third, all single variables were combined into an all-encompassing model to determine the 
contribution and significance of all individual (independent) variables to the probability. By testing the 
significance and assessing a stepwise elimination based on AIC, the most related variables were found. 
These finding enables answering sub-question one: What variables are most related to cable and pipe failure 
from excavation works?  

Multiple variables were found related to excavation damage by all methods: literature, expert 
interviews and logistic regression. These are included in this paragraph. First, the type of network where 
the excavation work is conducted for, earlier indicated as ‘party’. Second, a smaller horizontal distance 
between cables and pipes increases the probability of failure. Third, diameters were found as related in 
all three methods, but the logistic regression showed some contradictions with the other methods. On 
one hand, logistic regression showed that some diameters have a negative estimate and others a positive 
estimate. On other hand, literature and interviews indicated that larger diameters increase the 
probability of failure. Last, if the correctness of the data reduces, the probability of failure increases.  

Some variables were only implied by two of the methods. First, the process of KLIC which was 
mentioned in general during the interviews and was also identified by the logistic regression. The 
logistic regression indicates a strong increase of probability of failure in case of an emergency KLIC 
request. Second the material of the own assets, which were not significant in the logistic regression, 
were named as relevant in both literature and interviews. Third, excavation activities on cables and 
pipes located between the own asset and houses increase the probability of failure enormously.  

Some variables found in literature and interviews were not included in the logistic regression due to 
unavailability, absence or other complications. On one hand, if cables and pipes are located deeper, the 
probability of failure from excavation works increase for the other networks, but accurate information 
about the vertical position is unavailable. On the other hand, whether a trial trench is made, so whether 
the process is followed by the rules or not is unknown and is therefore not included.   

Altogether, multiple variables affect the probability of failure from excavation works. All variables that 
are relevant are summed in Table 16, where it is shown from what method the variable followed. In the 
table, the Non-Available (NA) data refers to data that was not available for the logistic regression model. 
From the table it follows that the pipes’ wall material should be added to the logistic regression model.  
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Table 16: All relevant variables that were found from the literature study, expert interviews or logistic 
regression 
  Literature Interviews Logistic  

Regression 
Excavating party  X X X  
Depth (vertical position)  X X NA 
Wall material  X X  
Horizontal distance between cables and pipes  X X X 
Diameter of cables and pipes  X X X 
Correctness of the data  X X X 
Emergency KLIC request   X X 
Trial trenches   X NA 
Excavating on the house or street side.   X X 
Type of work   X  X  NA 
 

It can be concluded that all relevant and available independent variables following from the three 
approaches, results in a logistic regression model that is like equation [12].  The fitted model is 

 𝑃(𝑌) =
1

1 + 𝑒ି(௓)
, [12] 

 

with: 𝑍 = 𝑏଴ + 𝑏ଵ 𝑘𝑙𝑖𝑐௡௢௧௜௙௜௖௔௧௜௢௡೟೤೛೐
+ 𝑏ଶ𝑒𝑣𝑖ௗ௜௔௠௘௧௘௥ + 𝑏ଷ 𝑒𝑣𝑖ௗ௔௧௔೜ೠೌ೗೔೟೤

+ 𝑏ସ 𝑠𝑒𝑤ௗ௜௔௠௧௘௥ + 𝑏ହ 𝑔𝑎𝑠ௗ௜௦௧௔௡௖௘ +

𝑏଺ 𝑘𝑙𝑖𝑐௣௔௥௧௬ + 𝑏଻ ℎ𝑒𝑎𝑡௦௜ௗ௘ + 𝑏଼ 𝑒𝑙𝑒𝑐௦௜ௗ௘ + 𝑏ଽ 𝑡𝑒𝑙𝑒௦௜ௗ௘ + 𝑏ଵ଴ 𝐸𝑣𝑖௠௔௧௘௥௜௔௟ + 𝜀௜ 

where 𝜀 ~ 𝑁(0,1). 

Further research should be conducted on the variables that seemed to be important from the literature 
study and expert interviews. Variables as soil type and vertical position were not included as these data 
were not accurate enough or unavailable.  

Furthermore, from the validation of the full data logistic regression model it followed that the balanced 
accuracy of the model is 0.50, which has not accurate at all. Sub-question two concerns the improvement 
of the (balanced) accuracy in order to accurately predict the probability of failure. 
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6.3 RARE EVENT DATA 
6.3.1 METHODOLOGY 

From the previous section it followed that the full data model has no predictive power at all, i.e. the 
balanced accuracy was 0.50. This result from the full data model proved that the imbalanced dependent 
variable is not supported by generic logistic regression. Because of the second sub-question, some 
alternatives were tested in order to possibly increase the balanced accuracy.  

First, King and Zeng (2001) studied rare events data in politics, on topics such as war, coups and 
uncommon disease infections. Rare event data are binary dependent variables with a positive outcome 
that is tens to even thousands of times smaller than the negative (0) outcome (King & Zeng, 2001). On 
the one hand, King and Zeng developed a widely applied method on how to correct for the 
underestimated event probabilities. On the other hand, a far more efficient way of data collection is 
proposed, as events (1) are much more informative than the non-events (0).  

6.3.1.1 WEIGHTING 
Both prior correction and weighting were developed to correct the model for the underestimation. Prior 
correction is applied on finite datasets whereas weighting can be applied on both, finite and infinite 
population datasets. In this thesis, excavation- requests and damages are considered infinite, as it will 
not stop after tomorrow and it is (almost) impossible to include all cables and pipes worldwide. Because 
of the infinite data, only weighting will be applied (and discussed) in this study.  

Weighting is relatively simple as it uses the weighted exogenous sampling maximum-likelihood 
estimator. Herein, the weighted log-likelihood is maximized instead of the ‘normal’ log-likelihood as in 
‘normal’ logistic regression (equation [5]). In equation [13], the weight 𝝎𝒊 is bold to emphasize the 
difference with the regular log-likelihood equation.  

 𝑙𝑛 𝐿(𝛽|𝑦) =  − ෍ 𝝎𝒊 ln (1 + 𝑒(ଵିଶ௒೔)௑೔ఉ)

௡

௜ୀଵ

 [13] 
 

With equation [14], the weights 𝝎𝒊 can be determined by 

 𝝎𝒊 =  𝜔ଵ 𝑌௜ +  𝜔௢  (1 − 𝑌௜) [14]  
where 𝜔ଵ =  

ఛ

௬ത
 and 𝜔଴ =  

(ଵିఛ)

(ଵି௬ത)
, with 𝜏 as population fraction and 𝑦ത as the sample fraction (King & Zeng, 

2001). The population fraction is calculated by the number of failures divided by all available data. On 
the other hand, the sample fraction is the number of included failures divided by the entire sample size.  

6.3.1.2 SAMPLE SELECTION 
One of the parameters used to determine the weights in the weighted log-likelihood is the sample 
fraction. It already implies that only a fraction of all samples is used. King and Zeng (2001) propose 
endogenous stratified sampling on the rare event (failure) data to ensure that these are split fairly. On 
the other hand, a different strategy for the majority is suggested.  

If possible, it is recommended to generate an “equal shares sampling design (i.e., 𝑦ത = 0.5)" (King & 
Zeng, 2001, p. 143). As equal shares are clearly not realistic for the data in this thesis, the first step is to 
collect all failure events’ available. For non-failures this is definitely not the situation “since the marginal 
contribution to the explanatory variables’ information content for each additional zero starts to drop as 
the number of zeros passes the number of ones, we will not often want to collect more than (roughly) 
two to five times more zeros than ones” (King & Zeng, 2001, p. 143).  

Considering the sampling rule, the sample set would change as shown in Figure 18. The non-failures 
included in the sample set are randomly selected from all non-failures. The various ratios of non-failures 
compared to failures are all tested during modeling to find the best failure – non-failure ratio as 
recommended by King and Zeng (2001).  
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6.3.1.3 SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE 
A second approach to overcome the imbalanced data, is synthetic minority over-sampling (SMOTE) 
(Chawla et al., 2002). A dataset is imbalanced if the classes are not equally represented, which is basically 
the same as rare event data. The smallest class is the minority, whereas the normal/largest class is the 
majority. In oversampling, the minority class is increased to balance the dataset. In under sampling the 
majority class is decreased with a similar goal as over sampling.  

Chawla et al. (2002) suggest over-sampling of the minority with “synthetic” examples instead of over-
sampling with replacement. The synthetic samples are generated “along the line segments joining 
any/all of the k minority class nearest neighbors” (Chawla et al., 2002, p. 328). The amount of over-
sampling determines what neighbors from the k nearest neighbors are chosen. The difference between 
the sample and the nearest neighbor is multiplied by a random number between 0 and 1. In this way a 
random point within the correct region is selected, which enlarges the minority class (Chawla et al., 
2002).  

Whereas this section is about over-sampling of 1s and under sampling of 0s, one could consider the 
approach of King and Zeng (2001) as under-sampling and algorithm adjustment (Haixiang et al., 2017). 
Chawla et al. (2002) suggest to combine SMOTE and under-sampling, where the under-sampling is 
similar as in the previous section. The combination of both reverses the initial bias of the learner towards 
the majority class into the favor of the minority class. The use of both techniques could improve the 
classification of data (Chawla et al., 2002). Herewith this respect, classification refers to the confusion 
matrix and area under curve which were described in section 5.3.  

A disadvantage of the SMOTE method is the incapacity to include categorical variables, because of the 
synthetic generating. For example, a synthetic generated datapoint could be made of material between 
PVC and steel, which naturally does not exist.  

 

 

Figure 17: SMOTE: the five solidly filled points are the 'real' data. In between all data points, new 'synthetic' 
points are created on a random distance between the two 'real' points (Khurkhuriya, 2018) 
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6.3.2 WEIGHTING 
In this section, weights are added to the samples and under sampling is applied to compensate the 
imbalanced dataset.  

6.3.2.1 MODEL SELECTION 
SAMPLE SIZE 
By the proposed method of King and Zeng (2001), the sample set has been compiled. All suggested 
ratios that are integer numbers were tested (2, 3, 4 and 5 times). The possible ratios between failures and 
non-failures are shown in Figure 18. To determine what the optimal sample size is considering the AUC 
and balanced accuracy the goodness of fit is tested, and the four different models are validated. In the 
end, for each unique study it can be decided what tests are more important than others, but the 
considerations made in this thesis will be explained.  

It is important to realize that apart from the non-failure failure ratio, the split ratio between the train 
and test set is also relevant. Here the training and test set contain 0.8 versus 0.2 of the entire sample set. 
It should be considered because the size of the test set could become very small and therefore 
inconsistent when tested multiple times.  
 
WEIGHT  
Weighting has been done in two ways. First, the software package Zelig for R, developed by King and 
Zeng (2001), has been used. In the package, the weighting and bias correction are performed 
automatically. The package is available for the statistical software Stata and R. A disadvantage of the 
package is that most standard statistical tests, such as the Wald-statistic, log-likelihood ratio and the 
coefficient of multiple determination cannot be applied to models developed within the package. 
Therefore, only the tests that were also included by King and Zeng (2001) could be performed.  

Second, the equation to calculate the weight is known and given in equation [13]. Using this thesis’ case 
to determine the weight gives  

𝜔௜ =  
0.00169

(𝑥 + 1)ିଵ
 𝑌௜ +  

(0.998)

(1 − (𝑥 + 1)ିଵ)
 (1 − 𝑌௜)     𝑤𝑖𝑡ℎ 2 < 𝑥 < 5  

where x represents the ratio zeros to ones in the sample. If x is given, the weights for the event and non-
event are shown as an average of three trials in Table 17. The AUC and balanced accuracy are also 
included as of the second sub-question aims to accurately predict failures. Therefore the most interesting 
in Table 17 is a high balanced accuracy.   

Table 17: The calculated weights following from the non-failure / failure ratio and the corresponding 
AUC and balanced accuracy  
Ratio  
non-event / event 

Weight AUC Balanced accuracy 

Event (1) Non-event (0)  

2 0.00508 1.497 0.691 0,651 
3 0.00678 1.331 0.685 0.637 
4 0.00847 1.248 0.758 0.658 
5 0.010 1.198 0.655 0.596 

 

For the readability of the thesis, it is important to know that the results following from the package and 
the manually calculated weight are very different. Therefore, both are described and will be compared 
in the end.  

Figure 18: The sample set when adjusting the non-failure failure ratio from two to five times as suggested by King 
and Zeng (2001).   
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6.3.2.2 GOODNESS OF FIT 
WALD 
From the test with the manually calculated weight, some very remarkable results followed. None of the 
variables seemed to have a p-value coming near the significance level. The unknown type of work, 
which refers to the emergency KLIC request has both, the lowest p-value and the highest z-score with 
respectively 0.772 and 0.290. The own material of the considered network has (almost) the same scores. 
The results are so remarkable and contradicting with all other models that it is assumed something is 
not right. For instance, the lowest (or best) p-value is 0.76.    

Using the package to test the individual contribution of variables gave results that seemed to be more 
realistic. In Table 18 the p-values and z-scores of the sample set with four times more non-events than 
events are shown. Varying the ratio event versus non-event does adjust the values a little, but not 
enough to include all in this report. The p-value moves toward zero when more samples are included, 
whereas the z-score does the opposite.  

Table 18: The p-values, estimates and z-scores of the weighted model, with four times more non-
failures than failures.   

Estimate Z value Pr(>|z|) 

Klic_party Gas 1.23 1.66 0.097 
Klic_party Heat 1.51 1.84 0.066 
Klic_type_work cables and pipes 0.98 1.68 0.093 
Klic_type_work Unknown 2.38 3.93 8.44E-5 
evi_materialHPE 640000 805.430 2.00E-16 
evi_materialONB 3836000 3851000 2.00E-16 
evi_diameter -0.0096 -4.82 1.44E-06 
Evi_data_quality 2.29 2.17 0.03 
Heat_side1 -0.83 -1.65 0.09 
heat_side2 -0.84 -2.91 0.004 
elec_side1  0.48 1.97 0.049 
elec_side2      0.97 2.09 0.036 
tele_side1            -0.60 -2.29 0.022 
Tele_side2 -1.09 -1.95 0.052 

On the one hand, a major disadvantage of the rare event logistic regression model package is the absence 
of multiple tests, especially for goodness of fit. On the other hand, the developed model is not supported 
by any external goodness of fit tests. Therefore, the only model that was tested on goodness of fit was 
the manual weighted model from which the results only the results from the manually conducted 
weighting are elaborated below.  

LOG-LIKELIHOOD RATIO 
In line with the results from the Wald-statistic and p-value, the log likelihood ratio has remarkable 
values as well. After taking out the most significant variables (type of work and own diameter), the 
model fit increased one out of one, indicating that the variables in the model do not improve the model 
anything compared to the model with only an intercept.  

COEFFICIENT OF MULTIPLE DETERMINATION (R2)  
Again, the unusual results found from the individual tests do already indicate that the goodness of fit 
will not be good either. McFaddan’s Pseudo R2 resulted in the very small 0.001429. 

On the other hand, the AIC score of the (manually weighted) model is only 59.23, where the AIC of the 
first model from the previous section (6.1.1.3) was 40 times larger (AIC full data model = 2511). Once 
again, this is determined by the much smaller sample size as compared to the data for the first model. 
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6.3.2.3 MODEL VALIDATION 
Validation could be done on both the manually weighted model as well as the automatic weighted 
model. Both results are included.  

Remarkable enough, during validation of the manually weighted model, the AUC was 0.71. This is 
contradicting with the goodness of fit that was found very poor and shows that a poor model fit is not 
an indication of model predictive performance and vice versa. Whereas model fit indicates how much 
of the data is explained by the model, the predictive performance indicates the how well the model can 
predict the outcome.    

REPEATED K-FOLD CROSS VALIDATION 
Like Results I (with the entire dataset), the model with the manually created weight did not predict any 
failure. Therefore, kappa and the balanced accuracy are respectively zero and 0.50. As this is not very 
interesting because it does not predict anything, only the confusion matrix (Table 19) of the ‘package’ 
model is elaborated on.  

Because of the weighting, the confusion matrix is affected, probably in the desired way. In Figure 20 
(left), the results of the weighting by the automated software are shown. Before the weighting all 
samples were in the red box (100%). Through the weights, 29 percent moved from true negative to other 
positions since the failures are considered more important by the model. Therefore, more often failures 
will be predicted than without weighting. Figure 20 (right) illustrates the change from the ‘old’ expected 
values (E(Y|X)) into the new (blue) ones (E(Y|X1)).   

 

 

 

 

 

 

Figure 19: The ROC curve of the weighted model. The AUC is 0.71 
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In the confusion matrix, the sensitivity and specificity can be found and are respectively 0.38 and 0.94. 
The balanced accuracy has a score of 0.66, which is the best score of all models.   

Table 19: Confusion matrix of the weighted model 

 
Reference model 

No event Event 
Predicted 

model 
No event 136 23 

Event 9 14 
 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 0.9379 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.3784 

Accuracy  0.714 
 Kappa 0.368 

Balanced acc. 0.658 

  

Figure 20: The result of weighting the model. Left: before the weighting 100% was in the red box. Because of the 
weight 29% moved from true negative to the other positions. Right: the expected value from Y given X from the 
unweighted model (red graph) and the weighted model (blue graph)  
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6.3.3 SMOTE 
6.3.3.1 MODEL SELECTION 

SAMPLE SIZE  
As explained in an earlier section, the dataset will be adjusted by over- and under sampling. Hereby, it 
is important to realize that one should be careful not to oversample too much synthetic, non-real data. 
Furthermore, the ratio non-event versus event should not flip over as this would be opposite to the real 
situation. Therefore, the non-failure / failure ratio should be at least one and this is also recommended 
by Chawla et al. (2002). In Table 20, the ratio of the sample set is shown for different combinations (%) 
of over- and under sampling. For example, when considering a 100 percent under sampling and 100 
percent over sampling, one obtains a ratio of 2, meaning twice as many non-failures than failures 
included in the sample set. 

Table 20: The non-failure / failure ratio of the sample set for different over- and under-sampling 
percentages 

  Over sampling [%] 
Under sampling [%] 0 50 100 200 300 

0           
50   5,67 4,00 3,00 2,67 

100   3,00 2,00 1,50 1,33 
150   2,00 1,33 1,00 1,13 
200   1,50 1,00 0,75 0,67 
250   1,22 1,27 0,60 0,54 
300   1,00 0,67 0,50 0,45 

 

For the various ratios the model has been tested on the ROC and corresponding AUC. The ROC and 
AUC depend, of course, on the sampled data set. Different samples hence provide different results. 
Therefore, the average AUC of five samples for every over/under sample percentage has been chosen.   
Considering the previous example (100% over- and under sampling), it would follow that the AUC is 
0,68.  

Table 21: The Area Under Curve for the various over and under-sampling percentages 

  Over sampling [%] 
Under sampling [%] 0 50 100 200 300 

0 0,58       0,65 
50   0,65 0,63 0,65 0,66 

100   0,62 0,68 0,68 0,66 
150   0,66 0,68 0,70 0,69 
200   0,68 0,70 0,70 0,69 
250 0,58       0,65 
300   0,65 0,63 0,65 0,66 

Figure 21: From the tables above, 200% under sampling and 100% over sampling were selected. From the 
sampling a training set with equally sized failure and non-failure follows, whereas the test set remains it original 
size (20% of all data) 
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From the table a notable increase of the Area Under the Curve follows, compared to the results when 
using the entire dataset. Considering the Area Under the Curve in Table 21 and the ratio between non-
events and events, it has been decided to use 100% oversampling and 200% under sampling. To validate 
the model’s performance based on the rare event sampling, we also perform a validation analysis. As 
usual, we choose the training set to account for 80% of the dataset, which results in 302 failures and 302 
non-failures. The exceptional quality of SMOTE is that the test set remains unmodified. Only the 
training set is adjusted to train the model better before it needs to be validated. Figure 21 shows the 
sizes of the sample sets.  

6.3.3.2 GOODNESS OF FIT 
WALD 
When testing the individual contribution, again the Wald test is conducted. Both, the z-score and the p-
value are assessed. The first aspect that should be noticed is the absence of the categorical variables. 
This is because the Synthetic Minority Oversampling Technique cannot include categorical variables.  

The AIC score of this model (AIC=795.81) is already way better than the earlier tested alternatives. This 
is, however, due to the smaller number of variables. Comparing the scores shows that the AIC is more 
than 2.6 times smaller than in the first model.  

 
LOG-LIKELIHOOD RATIO 
Just like the AIC-score, the Log-likelihood ratio of the SMOTE model has been improved a lot compared 
to the original model. Where it was four times above the significance level, Chi square became very 
small in the SMOTE model (6.178*10-11). This Chi square follows from the difference between all 
variables and selected variables (diameter of the own asset and the side of the telecom cables).  

 
COEFFICIENT OF MULTIPLE DETERMINATION (R2)  
From McFaddan’s R squared test, it follows that the total model fit is worse than in the full data model 
(R2 = 0.092). In this model, which is over- and under sampled, R squared is only 0.069. Nonetheless, the 
overall change is small. 

 

 

 

 

 

 

 

Table 22:  The p-values, estimates and z-scores of the SMOTE model 

Variable Estimate z value Pr(>|z|) 

(Intercept) 1.58 4.99 0.00 
evi_diameter -0.01 -4.59 0.00 
evi_data_quality 2.08 2.35 0.02 
gas_distance -0.07 -2.57 0.01 
gas_side 0.39 2.46 0.01 
heat_side -0.31 -2.59 0.01 
elec_side 0.32 2.15 0.03 
tele_side -0.61 -3.41 0.00 
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6.3.3.3 MODEL VALIDATION 
ROC AND AUC 
As the samples are different every time, every ROC test will have a different result. Therefore, the test 
has been conducted five times to have an indication of the mean. From the five trials, the difference 
between the largest and smallest AUCs was 0.07. In the end, the ROC curve in Figure 22 was average 
result of the five trials and is therefore selected as the final ROC for the SMOTE model. This results in 
an AUC of 0.74 when the minority is over samples a 100% and the majority is under sampled at 200%.  

REPEATED K-FOLD CROSS VALIDATION 

As the ROC curve already showed a major improvement for the new model, it is expected that the 
repeated K-fold cross validation will also show improvement. When 80% of the dataset is in the training 
group, this validation method indicates a balanced accuracy of 0.58 for the SMOTE model. When the 
test and training group have equal sizes, the model results indicate better predictable performance of 
0.605. Underneath, the confusion matrix for the model with the data equally split over the training and 
test group is given (Table 23).    

Table 23: Confusion matrix of the SMOTE model 

 
Reference model 

No event Event 

Predicted model 
No event 33,905 38 

Event 19,729 52 
 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 0.632 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 0.578 

Accuracy  0.743 
 Kappa 0.0019 

Balanced acc. 0.605 
An important note is that altering the ratio of the training/test group sizes also influences other tests. 
For example, the Area Under Curve is better performing (closer to 1) at the 80/20 ratio than at the 50/50 
ratio of the training/test set.  

Figure 22: The ROC and AUC of the SMOTE model compared to the full data model (basic model), when the failures 
are oversampled 100% and the non-failures are under sampled 200%. 



52 
 

6.3.4 ALTERNATIVE MODELS 
It has been over thought to combine synthetic minority over sampling and weighting. However, SMOTE 
tries to equally balance the failure / non-failure ratio already during the sampling. Therefore, the sample 
set is already balanced after the synthetic minority oversampling and under sampling. On the other 
hand, weighting is a technique applied to compensate for imbalanced datasets, preferably on a sample 
set with a majority class two to five times the size of the minority (failure) class. So, the former does 
balance the sample set completely, where the latter is a technique to compensate for imbalanced sample 
sets. 

Furthermore, Bayesian logistic regression has been tested on the entire dataset (as in results I). It was 
found that there was noteworthy difference between the results of normal logistic regression and 
Bayesian logistic regression. Therefore, the results are not included in this thesis. 

6.4 FINDINGS 
Basically, the results of five methods can be distinguished; the basic logistic regression model, the 
SMOTE model, the manually weighted model, the automatically weighted model and the Bayesian 
logistic regression model. Taking the basic model from section [5.2] (results I) as starting point creates 
the opportunity to compare the five models on all the tests that were conducted. Comparing the results 
supports decision making on what model should be used.  

In Table 24, the results of all models are compared for each test that was conducted. Besides the score, 
also a ranking was added to create a better overview. A double plus or min indicates the best or the 
worst performing model on that test. A single plus or min indicates whether a model is performing 
better or worse than the basic model. It is important to realize that all models contained the same 
variables in the beginning, namely the variables found in the model selection. Using the same variables 
is essential to compare the models.  

Looking at the P-values of the individual variables, SMOTE and the automatically weighted model 
perform very well, whereas the manually weighted model had strange results with very high p-values. 
Likewise, the other results of the manually weighted model show aberrant results. On all goodness of 
fit tests, it scores worst. However, it has an anomalous low AIC score. The equal scores on sensitivity 
and specificity is clarified by the fact that the ‘basic model’ does not have any predictive power either.  

The missing predictive power was also found in the Bayesian model. Additionally, the other scores of 
the Bayesian model do also show great similarities with the basic model. Therefore, the detailed results 
were also left out the earlier results.  

Two models perform better than the basic model on most aspects; the SMOTE model and the automatic 
weighted model. An earlier described disadvantage of the automatic weighting is the disability to 
perform goodness of fit tests on the model, whereby it becomes more complicated to compare it to other 
models. However, on the two good performing models also other tests were conducted which can be 
compared.  

During validation, some differences were found. First, the sensitivity of the automatic weighted model 
is much better than that of the SMOTE model.  In contrast, SMOTE performs much better on the 
specificity than the weighted model. All validation together, the balanced accuracy of the weighted 
model is closer to one (0.66) than the balanced accuracy of the SMOTE model (0.61). 
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Table 24: The five assessed alternatives compared, where the basic model is considered as the basic 
measure point. The models are ranked on the performance per test. Above the dotted line are standard 
and goodness of fit tests, underneath is validation 
  SMOTE 

Manually 
weighting 

Automatic 
weighting 

Bayesian 
Log.Reg. 

Test 
Basic 

model Score Rank Score  Rank Score  Rank  Score  Rank 

Average  
P-values 

0.08 0.02 ++ >0.77 -- 0.04 + 0.28 - 

Average  
|z-score| 

|2.64| |3.12| ++ |0.10| -- NA  |1.85| - 

LLR 
(Chi squared) 0.40 6E-11 ++ 1 -- NA  0.37 + 

Coefficient of 
determination 0.092 0.069 - 0.0014 -- NA  0.0093 = 

AIC 2070 795 + 59 ++ 434 + 1950 = 
AUC of ROC 0.60 0.74 ++ 0,71 + 0.70 + 0.72 + 
Specificity 1 0.63 -- 1 = 0.94 - 1 = 
Sensitivity 0 0.58 ++ 0 = 0.38 + 0 = 
Balanced 
accuracy 

0.500 0.61 + 0.500 = 0.66 ++ 0.500 = 

Ranking clarified:  
++ Best model on the test 
+   Model scoring better than basic model 
=  Approximately equal to basic model 
-   Model scoring worse than basic model 
-- Worst model on the test 
 

6.5 SUB-CONCLUSION II 
The first sub-question identified the related variables affecting the cables and pipe failures from 
excavation works. As it was found that the full data model with the identified variables had a balanced 
accuracy of 0.5000 which indicates that this model cannot predict (accurate) at all, a new literature study 
followed to find a way to answer sub-question two: To what extent are the identified variables affecting the 
probability of failure from excavation works and how can we accurately predict the probability of failure?   

Even though the full data model cannot predict accurate at all, it is very informative about the extent to 
which spatial interdependencies affect the probability of failure. Based on the goodness of model fit 
tests log-likelihood-ratio which is far above significance level (p=0.40) and the coefficient of multiple 
determination (R2=0.09) it is clear that the model with the independent variables included affect the 
probability of failure in a large extent. Especially the contribution of the diameter of the own network, 
the side of the telecom cables and emergency KLIC-requests had large Wald-statistics and very low p-
values whereby these three variables affect the probability to the largest extent of all identified variables.   

However, it was found that the regular logistic regression model is not able to predict accurately when 
data is imbalanced. From literature, two effective methods were identified to deal with the rare event 
data for predictive modelling. First, the synthetic minority over sampling technique (SMOTE) was 
applied to balance the dependent variable in the trainings sample set. Second, weighting was tested to 
correct for the underestimating model. Both methods have shortcomings, the former is not able to 
handle categorical independent variables, the goodness of fit of the latter cannot be tested. Despite the 
deficiencies, both methods performed much better predicting (higher accuracy) than the full data model 
without modifications. Therefore, both methods were considered to answer the second sub-question. 

First, four times more non-failures than failures was found to have the highest accuracy for the weighted 
and under sampled model. The sensitivity was 0.38 (failures) and the specificity 0.94 (non-failures), 
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resulting in a balanced accuracy of 0.66. So, the sensitivity is much better (+0.38), whereas the specificity 
decreases just a little (-0.06) compared to the full data model.  

Second, from the sensitivity analysis the most accurate SMOTE model followed. It was able to predict 
58% of the failures from excavation works (sensitivity), whereas it predicts 63% of the non-failures 
accurate (specificity). This results in a balance accuracy of 0.61, which is 0.11 more accurate than the full 
data model. Also, the regular accuracy is higher than the full data model (0.74 vs 0.59).  

Concluding, both methods predict more accurate than the full data model. The SMOTE model predicts 
more failures accurately but also more false failures than the weighted model. Thereby, it can also be 
concluded that logistic regression does work to assess individual situations and therefore has a lot of 
potential for future developments within cable and network providers.   

Whether the (balanced) accuracies are enough to implement the model or not will be discussed in the 
next section, but at least it is proven that the variables affect the failure rate and it is possible to predict 
failures accurately to a certain level. 
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7 APPLICATION 
In the second sub-question it was found that both models, weighted (0.66) and SMOTE (0.61), predict 
failures more accurate than the full data model. However, as it is not 1.00 it is insufficient to accurately 
predict all failures. Despite the balanced accuracies, the method could still be useful for network 
operators. To see how the applied method from this thesis could be implemented by network operators, 
a gap analysis, often used in a business environment is conducted. “A gap analysis is the technique used 
to define the difference between the current state and the proposed state of any business and its 
functionalities” (Marra et al., 2018, p. 157). In this analysis, there are two questions that raise the third 
question. On one hand, what is the current situation (starting point)? On the other hand, what is the 
desired situation? The gap analysis is the process to “identify the delta between the proposed and the 
existing functionalities in any application” (Marra et al., 2018, p. 157). Strengths and weaknesses of the 
current process are highlighted to see how network operators can use the model to reduce failures from 
excavation works (sub-question three).  

In considering strengths and weaknesses the difference between the business- and construction 
environment is gapped. The analysis of strengths and weaknesses in asset management is often done 
through a SWOT-analysis, which is an accepted method within the industry (McGrail & Roberts, 2005). 
A SWOT-analysis is an established method for assisting the formulation of strategy, it aims to identify 
the strengths and weaknesses of an organization and the opportunities and threats in the environment. 
Once the factors are identified, strategies will be developed which build on the strengths, eliminate the 
weaknesses, exploit the opportunities and counter the threats (Dyson, 2004, p. 152). Basically, the 
identification of strengths and weaknesses is an assessment of the current situation. The opportunities 
and threats can be used to fill the gap that raises from the gap analysis.  

First, the current situation will be described after which the desired future situation is described 
according to the gap-analysis strategy. Once the desired situation is defined, the gap will be filled as 
good as possible by application of the SWOT-method. 

7.1 CURRENT SITUATION 
DATA 
In 2015 about 33,000 excavation damages were registered. As shown in Table 25, about 30 large network 
operators serve in the Netherlands (besides sewer systems owned by the municipalities). Assuming 75% 
of all damages is caused on these 30 large networks, it would be around 25,000 failures. If all parties are 
harmed equal times, these 30 parties would all have around 800 failures from excavation per year.  

All the assumptions are made as an example to illustrate the current situation. On average, network 
operators have access to 800 failures from excavation per year, which is only a small number compared 
to the total number of exaction activities (or KLIC-requests). Therefore, failures become rare event data 
for network operators, which hampers statistical analyses that are essential for pro-active approaches. 

CROW500 
As explained earlier in this thesis, several regulations and procedures are introduced to reduce the 
number of excavation damages on cables and pipes. The most extensive guideline was developed by 
the involved parties themselves and is CROW500.  
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CROW 500 includes tasks for every phase of the project cycle, from the initiation- to the operational 
phase, to avoid cables and pipes failures from excavation works. The steps that should be taken 
according to the guideline are (CROW-werkgroep, 2016): 

o During the initiation phase, the initiator is responsible to provide sufficient resources (time and 
money) for the following project phases.  

o Next, in the concept phase an orientation KLIC-request is done to ascertain the theoretical position 
and other characteristics of nearby cables and pipes. This information is the starting point for the 
executed risk-assessment as described in section 1.2.2. In the risk-assessment, one or multiple 
control measures are mapped (e.g. implement in design, move a cable or pipe, temporarily cut of a 
connection).  

o The risk-assessment from the concept phase will be used to develop a control measurement plan 
during the design phase. To do, one of the suggested control measures from the risk-assessment is 
selected for every single cable or pipe. Furthermore, based on the risk-assessment locations are 
selected where cables and pipes should be localized through trial trenches.  

o Latest, during the work preparation phase, the control measurement plan is developed into work 
instructions. The work instructions should describe what must be done to avoid damages during 
excavation. Together with a regular KLIC-request, the contractor should be able to excavate 
carefully now.  

To summarize, the CROW 500 includes the early mapping of risks and the localization of cables and 
pipes during the design phase. The steps from the orientation KLIC-request to the work instructions are 
illustrated in Figure 23. In the figure the human aspect has been implemented either. All steps to the 
next phases are done because of human action. The responsible expert for a certain phase of the cycle 
must judge what (protective) measurements are desired. 

The process of the risk-assessment as described above is for regular KLIC-requests, not for emergency 
KLIC-requests. This makes it plausible that the described process has been developed for rehabilitation 
excavation work (planned) and not for (unplanned) repairs. The dataset of the Evides case contains 5% 
emergency KLIC-requests, whereas this type of requests result in 24% of all failures.  

 

Table 25: Number of registered network operators per type in the Netherlands. About 60% of the 
registered networks are cables/pipes serving as transport between multiple affiliates of companies 
(KLIC-phone, 2018) 
Network type Larger companies [#] Comments 
Water 10  
Sewer 380 All municipalities 
Gas  7  
District heating NA  
Electricity 7  
Telecom 5  
Fluids and remainders  NA  
Other (small) parties 631  
Total 1,050 Information contained through the KLIC-phone on 

18/05/2018  

Figure 23: The CROW 500 process to prevent cables and pipes failures from excavation work as good as possible
in five steps  
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WIBON AND KLIC-WIN 
To reduce the failures from excavation works and to better comply to the European legislation 
(INSPIRE), WION was renewed (21 March 2018) and KLIC will be renewed. For the future benefit of 
this thesis it is assumed that KLIC-WIN has already been introduced, as this will happen within a half 
year. Therefore, the current application of WIBON and KLIC-WIN are considered in this section.  

KLIC-WIN obliges mechanical excavators to do a KLIC-request before starting the actual work. The 
network operators within the concerning KLIC-polygon have to provide their data to the Kadaster 
where all cable and pipe data is combined into one map. The all-encompassing map is sent to the 
excavating party only. For the regular process, the request has to be done three to twenty days in 
advance of the actual work.  

7.2 SWOT I 
The assessment of the current situation is basically the assessment of the strengths and weaknesses of 
the SWOT analysis. Therefore, the strengths and weaknesses are only assessed shortly here, as it has 
already been described in the previous section (7.1).  

7.2.1 STRENGTHS  
o The by CROW500 obligated risk-assessment procedure is already very extensive.  
o The WIBON and KLIC-WIN obligate a KLIC-request before excavation starts manually. Thereby, 

the excavator receives a map containing all the cable and pipe locations. 
o Network operators possess databases already, containing detailed information on failures from 

excavation works.  
o The KLIC-requests are (within Evides) registered and processed automatically, after which area 

managers check what requests have a higher failure probability. The area managers will actively go 
after the critical requests. So, experts assess all KLIC-requests. 

7.2.2 WEAKNESSES 
o There is no large data sharing program which leads to the rare event data. Rare event data are 

harder to analyze.  
o During the process from the risk-assessment to the working instructions multiple steps are passed. 

All these steps are handled by in-company experts which results in a certain bias. An employee will 
always try to look after the interests of his company instead of other companies. Furthermore, the 
involvement of 4 steps increases the probability of unnecessary mistakes.  

o The localization is done by infield employees, whereas the assessment of the maps is mostly done 
by office persons. Localization is again, based on the expert’s opinion.  

o A disadvantage of the current method is that only the excavating party receives the entire map. 
Therefore, other companies are not able to assess the full situation.  

o There has never been an empirical research to study the size of the localization area. Also, spatial 
interdependencies are quite unfamiliar in the sector. However, the fact that the localization areas 
include a whole meter for the margin of data error speaks for the incorrectness of the data.  

o In 20% of all KLIC-requests a cable or pipe failure occurs from the excavation works, which is 
obviously too much. 
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7.3 FUTURE SITUATION 
Of course, a world without any failures from excavation works is the most desired situation. However, 
in the gap analysis it is more useful to state more realistic and specified goals as it becomes easier to 
perform the SWOT-analysis in more detail. Therefore, the desired situation has been split in similar 
topics as the current situation.  

DATA 
From the former sub-questions, it followed that data correctness influences the probability of failure 
from excavation works to a large extent. Therefore, it is desired that the data is very accurate (i.e. 
correct). In this thesis’ case, more than 94.5% of all compared data (Rotterdam 3D and Evides) were 
located within 40 centimeters from each other. However, this is virtual data compared with virtual data. 
CROW500 prescribes a localization area of at least 1.50 horizontal meters, from which two third is 
margin for data error. In the desired situation, the data error has been reduced as far as possible. 
Furthermore, in the desired situations some other variables become available accurately. On one hand, 
the vertical position (i.e. depth) of the cables and pipes is known more accurate. On the other hand, 
collecting data on the positions where cables and pipes are localized through trial trenches has been 
started and is included in the model.   

Furthermore, a shared failure database which contains all the failure data from multiple network 
operators should exist. The shared failure database creates the opportunity to do very large data 
analysis and decrease the rareness of the failure data.  

CROW500 
Just like the rehabilitation strategies of network operators, it is desired that the excavation strategy 
becomes pro-active either. This is supported by predictive analysis which also supports the reduction 
of the human bias as desired. The desired data collection of localization positions has contributed to 
develop a predicting program which tells what locations should be localized before the real excavation 
can start.  

WIBON AND KLIC-WIN 
The network operators communicate better and share data. Now, only the excavator receives the cable 
and pipe locations by the Kadaster. In contrast, in the future situation all network operators will receive 
the information as it enables them to analyze the excavation works more extensively. It enables all 
network operators to do a risk-assessment.  

Also, it is preferable that the minimum waiting time of 3 days after a regular request is shortened. 
Therefore, the system should become more automated which could reduce the waiting time.  
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7.4 SWOT II 
The developed predictive model and the newly found variables create opportunities to fill the gap to 
the desired situation. However, the method also has some threats that could work opposite. The results 
from the first two sub-questions of this thesis are considered as external input, whereby it creates the 
potential to use it as input for the opportunities and threats of the SWOT-analysis.  

7.4.1 OPPORTUNITIES 
RELEVANT VARIABLES 
o The newly found variables relevant for failures from excavation work can be examined further. It 

can help to improve the model and find new fields of research. 
o The results from sub-question one and two help network operators to move their focus to certain 

aspects  
o With the knowledge from the results, procedures within companies can be adjusted to reduce the 

probability of failure from excavation works further.  

MODEL 
o Instead of the risk-assessment by experts only, it becomes possible to do the risk-assessment with 

both, the model and an expert opinion.  This could result in a more consistent risk-assessment. The 
further application of the model can also help to improve its predictable power by either further 
modeling or artificial intelligence.  

o Experts can be trained by the model, to improve their risk-assessment skills.  
o Because the model can filter low risk excavation activities out, the workload will reduce for network 

operators.  

METHOD 
o Binary outcomes work also for cable and pipe networks to assess individual and specific situations. 

In this thesis logistic regression was the applied method, but for example, Cox proportional hazard 
which is used for time dependent variables could also be examined.  

o The sampling techniques proved that it should not be limiting when data contain a rare event. 

OTHERS 
o Through technological innovation it becomes possible to improve the data correctness which is an 

important aspect considering failure from excavation. For example, the Autonomous Inspection 
Robot (AIR) which is under development for the water distribution sector. It includes an GPS, which 
can help to improve the data correctness (e.g. location) (Thienen, van Maks, & Yntema, 2016). 

o The almost 33,000 excavation failures per year in the Netherlands alone would be a great source of 
information for the model. There is a great opportunity in data sharing among different network 
operators.  
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7.4.2 THREATS  
There are also some threats that could work against the proposed method.  

RELEVANT VARIABLES 
o It can be that some variables are not identified because of shortcomings or unavailability of the data. 

These variables could fall into oblivion.  

MODEL 
o The developed model is fully based on Evides data and specifications. It could be that the method 

is only successful for Evides and that all companies are facing very different datasets and 
characteristics.  

o The correctness of the data is uncertain and therefore the predictable power and the quality of the 
model could be questionable.  

METHOD 
o The proposed method from this thesis (binary logistic regression) is certainly not the only method 

suitable for binary outcomes. It could be that other methods are able to predict failures better. 

OTHERS 
o Network operators are not willing to share data, whereby the entire model should not work. Or 

KLIC is not willing to share maps with all network providers, but only with the requestor. 
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7.5 TOWS 
In the TOWS Matrix the various factors are identified, and these are then paired with the intention of 
stimulating a new strategic initiative (Dyson, 2004, p. 152). It is proposed as a conceptual framework for 
a systematic analysis that facilitates matching the external threats and opportunities with the internal 
weaknesses and strengths of the organization (Weihrich, 1982). In Table 26 the results of the SWOT-
analysis and the TOWS-analysis are summarized. A more elaborated explanation of the strategies that 
followed from the TOWS can be found below the table. 

Table 26: SWOT and TOWS-analyses 
 (Internal) Strengths (Internal) Weaknesses 
 o Extensive risk-assessment 

procedure 
o Detailed failure databases 
o Excavation damage is rare 
o Expert judgement for 

every single request 

o No failure data sharing  
o Human bias and multiple 

steps in risk-assessment 
o Localization based on expert 

judgement 
o Detailed map only for 

excavating party 
o Quality of the data 
o 20% of all KLIC-requests 

lead to failure 
o Unavailable data (e.g. 

vertical location) 

(External) Opportunities SO (Maximize) WO (Compensating) 
o New variables found as 

relevant 
o Model to predict failure 

from excavation works 
o Analyses with binary 

outcomes  
o Expert training 
o Sampling techniques for 

rare event data 

o Include new variables in 
risk-assessment 

o Model + expert judgement 
for risk-assessment 

o Train experts to select high 
probability situations 

o Explore possibilities with 
binary outcome data 

o Innovation to improve data 
quality and collect new data 
(e.g. vertical location) 

o Reduce human bias with 
predictive model 

o Implement localization 
areas in the model 

o Use model to determine 
what KLIC-requests should 
be assessed 

(External) Threats ST (Compensating) WT (Minimize) 
o Predictive power of the 

model 
o Missing variables 
o Data quality used during 

development 
o Other modelling 

methods work better 
o Network operators are 

not willing to cooperate 
o Very different data 

within each company 

o Use expert judgement and 
model together 

o Emphasize the benefits of 
cooperation during the 
procedure 

o Compare net. operators’ 
failure databases 

o Predictive power is 
worthless because of the 
data quality  

o Network operators their 
experts’ interests 

 

7.5.1 STRENGTHS AND OPPORTUNITIES 
In this section strategies to exploit the opportunities by using the existing strengths are explained. First, 
instead of an extensive risk-assessment procedure based on expert judgements only, some other 
alternatives become available because of the predictive model. Either, the expert judgements can be 
supported by the model or the entire risk-assessment will be done by the model. Support the expert 
judgements with the model can be done in two ways. On the one hand, it could become the secondary 
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assessment of the risk, so it becomes one of the steps the experts consider. On the other hand, when the 
model has been improved it could be used to train the experts to improve their assessment skills.  

Second, the model proves that it is possible to use logistic regression for network operators’ rare event 
data. Other binary methods, such as Cox proportional hazard, can be explored on other failure 
databases to assess specific situations.  

7.5.2 WEAKNESSESS AND OPPORTUNITIES 
The opportunities are used to avoid or reduce the weaknesses. First, the smaller the margin for data 
error and the higher the related data correctness, the lower the probability of failure from excavation 
works. An improvement of the existing data correctness can be achieved through some innovative 
inventions. Besides, supplementary data, such as the vertical location could become available in an 
accurate way. For water distribution companies the data improvement could be achieved by the means 
of the Autonomous Inspection Robot (AIR). Second and a bit like the previous section, the model can 
help to reduce the human bias. This could be done by either cooperating with experts or training the 
experts. Third, if the data correctness improves, the localization areas could be implemented in the 
model. This could help to localize the best locations for trial trenches. Last, the large number of data all 
network operators have could be shared by innovative solutions. The best example in the nearby future 
is the merge of KLIC into KLIC-WIN, where most of the data will be stored in a central location. Better 
data facilities, correctness and availability will help to improve the model and stimulate network 
operators to develop new tools to improve their services. 

7.5.3 STRENGHTS AND THREATS 
Opposite to the previous section, here strategies are examined whereby the threats are overcome or 
avoided by the strengths. First, the predictable power of the model is not perfect at all and could 
therefore lead to very remarkable predictions. This can be overcome if experts are kept in the process 
and have the final judgement. So, the machine must be controlled and checked by experts as they know 
the details about excavation failures. Second, a campaign showing that the benefits of a model as a 
supplement to the already extensive risk-assessment procedure could reduce cost and risk for all 
network operators has to make sure no one is going to frustrate. Last, as most databases will be shared 
with the Kadaster for KLIC-WIN, it is possible to compare the databases on correctness and type of data 
to ensure there are similarities between the databases.  

7.5.4 WEAKNESSES AND THREATS 
Last, strategies to minimize the effect of weaknesses and overcome threats are examined. On one hand, 
the model’s predictive power could be worthless when the data is very incorrect. Therefore, some 
examples from the case in this thesis will be necessary to prove that the model is also working with the 
incorrect data. On the other hand, the network operators should be involved in the process of 
implementation to ensure that the experts are also willing to join. It could be that they feel passed, but 
it will be sold as an additional tool.  
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7.6 APPLICATION FROM THE RESULTS 
When the TOWS-matrix is considered and combined with the results from this thesis some possibilities 
for application are found. The relevant variables and to what extend the variables affect the probability 
of failure from excavation works are important for the network operators. Although it will deviate for 
all network operators, because of the dataset and the type of network they manage or possess, this 
section will elaborate on the variables that could help Evides reduce the number of failures from 
excavation works. So, what should Evides consider doing and what factors are most important during 
the risk-assessment.  

At this moment the area managers assess the incoming KLIC-requests. Based on expert judgment the 
probability of failure following from the forthcoming excavation work is estimated based on several 
surrounding characteristics, varying per expert. This thesis identified aspects with an extensive data 
analysis that increase or decrease the probability of failure.  

First, network operators should be more alert for the emergency KLIC-requests as these increase the 
probability of failure with an estimated beta of 2.22, while being way below the significance level. From 
a further look into the variable, it was found that emergency KLIC-requests represent only 5% of the 
total dataset, whereas it represents 23% of the failures.  

Second, network operators (or at least Evides) should be alert for the excavation activities from telecom 
providers on their networks. It was found that irrespective to the side, excavation activities for telecom 
providers increase the probability of failure. The ‘streetside’ has a beta of 1.86 whereas the ‘buildingside’ 
has a beta of 1.00. This is remarkable because from the literature and expert interviews it was expected 
that the building side would have a larger probability as the service connections are crossed. At the 
crossings the probability of failure from excavation works is higher.   

A hypothesis is stated that the telecom cables on the ‘streetside’ are located nearer to the water main 
than the telecom cables on the building side. This is expected since telecom providers prefer to be as 
close as possible to the facades for shorter service connections. However, when this hypothesis was 
tested, it was found that on average the telecom cables on the building side are half a meter closer to the 
water mains (Figure 24). Therefore, there is no clear explanation for this finding, besides the fact that 
excavation works for telecom providers increase the probability of failure.  

Third, the own assets should be considered more carefully. On the one hand because of the own 
diameter. The smaller the diameter (β = -0.01), the larger the probability of failure. The estimate looks 
small, but since the Evides diameter is registered in millimeters the difference between a 20 cm and 
30cm pipe is relevant. Using equation [15] and the results from Table 14 with the intercept and a 200 
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Figure 24: The distance from the telecom cable to the Evides main for the two ‘sides’ are compared. It was found 
that the telecom cables are +- 50 cm closer to the Evides main on the building sides than on the street sides. 
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and 300-millimeter diameter, raised P(Y) from 0.00033 to 0.00088, which is almost the triple. Comparing 
a 300 and 50-millimeter diameter pipe raises P(Y) even from 0.00033 to 0.0040, which is 12 times larger. 
Because of the linearity, it can be stated that per 100 mm decrease of diameter, the probability of failure 
from excavation becomes three times larger.    

 𝑃(𝑌) =
1

1 + 𝑒ି(ିହ.଴ଷି଴.଴ଵ ௘௩௜೏೔ೌ೘೐೟೐ೝା⋯ା௕೙ ௑೙ାఌ೔)
 

 
[15] 

On the other hand, the material of the own network is of importance. This probably follows from the 
material strength and stiffness, but some materials were found altering the probability positive and 
some negative. From Table 29 in appendix 12.8 it follows that PVC pipes (β = 14.77) increase the 
probability most, whereas Polyethylene, which is a relative new material had been found to decrease 
the probability of failure (β = -0.25). Please note that these beta values follow from a model with a very 
large intercept (β = -20.34) and where all variables are included.  

Fourth and probably the hardest to implement for network operators is the correctness of the data. It 
was found that for every meter deviation of the Rotterdam3D data compared to the Evides data (which 
is assumed to be true) the probability of failure increases by 1,46 (per meter deviation). However, since 
the actual deviation with the real cable or pipe location is unknown, it could be very different and is 
therefore also included in the sector recommendations and discussion.  

Last, but to a smaller extent, the sewer systems were found to have a negative estimate for all variables. 
That is, the diameter and both sides are all below the significance threshold and with negative estimates 
varying from -1.19 to -1.50. Even the mutual distance between the sewer- and water pipe has a (small) 
negative estimate. This is remarkable as sewer systems, large diameter, deeply located networks, are 
considered as one of the parties causing most excavation failures.  

7.7 SUB-CONCLUSION III 
As the model itself is not sufficient to predict all failures from excavation works accurately, other ways 
of application were tested. With a GAP-analysis both, the desired situation as well as the difference 
between that situation and the current situation were identified. The opportunities and threats that 
could fill the gap were identified through a SWOT-analysis. The SWOT was translated into strategies 
by the TOWS analysis to be able to answer sub-question three: In what way can network operators use the 
model to reduce failure from excavation works?  

The model from this thesis can serve several strategies to come to the desired situation. The model can 
be applied to predict a certain number of failures, which are not predicted by experts now. The weighted 
and SMOTE models were capable to respectively predict 38% and 58% of the failures accurately. 
However, the former predicts 6% false positives whereas the latter predicts 37% false positives. To 
reduce failures from excavation works further network operators can use several strategies.  

First, the model can complement the expert’s risk-assessment as well as train the expert’s knowledge. 
Complementing the expert will increase the number of predicted failures as the models itself already 
predicted 38% and 58% of the failures that were not predicted or prevented before. This will also train 
the expert’s knowledge about the probability of failure from excavation works as the expert is supported 
in the risk-assessment. Training and complementing the expert can also help to reach more consistency 
during the risk-assessment procedure by reduction of the human bias. Opposite, experts can assess the 
outcome of the model to filter the false positive predictions.   

Second, the model proved once again that incorrect data has large influence on failures from excavation 
works. However, despite the incorrect data, the weighted and SMOTE models are still able to accurately 
predict with a balanced accuracy of respectively 0.66 and 0.61. Using new techniques to improve the 
data correctness will result in a more accurate predicting model, which is helpful to reduce the number 
of failures from excavation works.   
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8 DISCUSSION 
This thesis aimed to fill the theoretical and practical gap on the probability side of cable and pipe failures 
from excavation works. In this chapter both the findings are discussed as well as the limitations of the 
research approach.  

DATA QUALITY 
The reliability of the findings from the results are most dependent on the correctness of the data. 
CROW500 included an extra meter for the minimal localization area in all horizontal directions because 
of the inaccuracy of data. On top of that, the interviewed experts did not agree about the correctness of 
the data. One expert thought that the virtual and actual location were almost similar, whereas another 
expert believed that the virtual location deviates about 50 centimeters from reality. This thesis assessed 
the data correctness based on the deviation between two ‘virtual’ databases: Rotterdam3D versus 
Evides’ asset database. From that comparison it was found that over 95% of all mains are (virtually) 
located within 40 centimeters from each other. However, comparing databases is not equal to comparing 
actual locations with virtual locations. If it is true that the real location deviates more from the virtual 
data than assumed, the quality of this study can move in two directions when the correctness of the 
location data is improved. Either, the data correctness increases, which will improve the model because 
the real situation is simulated better. Or the data correctness increases after which it is found that the 
model predicted based on randomness whereby it will become useless. However, in case of the latter, 
the applied method from this thesis could still be used to develop a new model based on the new data.  

On top of that, this thesis has been conducted within a single area, based on one (created) dataset. As a 
result, validation had to be done by splitting the single database into a training and test set, whereas it 
would be preferred to validate the model on a completely new dataset. Furthermore, the data are 
separately stored in multiple databases, which are despite digitalization, hard to link whereby this and 
other analysis are complicated. When the various networks are linked, multiple criteria are necessary 
to reduce the nuisance. The linking criteria are of great importance as the most balanced dataset (failure 
/ non-failure) is required, including as many data as possible. Despite a triangular linking process, 
multiple failures were lost because of the stated criteria. It is expected that more deliberate ideas could 
be found to improve the linking process, whereby the failure rate and the number of data increases.  

Moreover, only assets within a mutual distance within 10 meters were linked to each other, whereby 
multiple assets were not linked, simply because these were not there, resulting in incomplete data. 
Consequently, empty fields are imported into the statistical software programs, that interpret the absent 
variables as non-available variables. A single non-available or missing variable in a sample is enough 
to exclude the entire sample from the analysis. Therefore, the empty fields (absent variables) were filled 
with virtual, non-existing data to ensure the sample is not excluded. Most studies would use the mean 
to replace missing variables, but since the empty fields have a meaning in this study (e.g. not within 10 
meters), the mean value was not an option. Therefore, the numbers that were selected as replacement 
were more or less randomly selected, but in such a way that the replaced numbers are recognized (e.g. 
12 meters as it is larger than 10 meters). Alternative methods should be considered to solve this 
‘problem’. The virtual, non-existing data as described has also been used to complement the data about 
the sides of other cables and pipes.  

METHODOLOGY  
Only one prior study on cable and pipe networks was found using logistic regression to assess sections 
of infrastructure systems instead of testing the system as a whole (Ariaratnam et al., 2001). The logistic 
regression in this thesis proves that it is an effective method to assess individual situations, such as 
excavation works. Probably, alternative modeling methods for binary data would also be effective. 
When considering a binary method, the event / non-event ratio should be kept in mind as validation 
proved that logistic regression on rare event data does only predict the major class. Four sampling 
techniques were tested and compared for the rare event data. However, the most recent method dates 
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back to 2002, which is already 16 years ago. Together with the (technological) innovation and 
digitalization over the last decades, it is expected that better sampling methods have been developed. 
The four applied sampling techniques are discussed later in this section.  

Another important assumption due to limited time is the relation between the independent variables 
and the dependent variable. All independent variables in the model were assumed to have a direct 
relation to the dependent variable (Figure 25, simple relation). However, multiple other relations exist, 
which affects the way the independent variables should be implemented in the model. On the one hand, 
variables are moderating when they affect the relation between other variables directly. On the other 
hand, mediating variables explain the relationship between the independent and dependent variable 
by the relation it has with the two variables (Field, 2013). For example, the type of work could cause a 
failure. However, indirect, the horizontal distance between the work and the other possible failure 
location also affects if a failure will follow (Figure 25, mediation).  

The first sampling technique that was applied was weighting, combined with under sampling from the 
majority class. As discussed, weighting can be done through application of the automatic R package or 
manually. The package does not support most statistical tests, such as goodness of fit tests, whereas the 
calculations can also be done by hand. It is preferable to do both, in order to compare the different 
approaches. In this thesis, the manual weighting resulted in very diverging results from the automatic 
weighting. Despite various trials to solve this ‘problem’, it did not work out whereby the results of the 
manual weighting can be considered as worthless. Second, a synthetic minority over sampling 
technique was applied. This method has the disadvantage that categorical variables are excluded as 
these cannot be oversampled in a synthetic way. So, as for weighting only the automatic version worked 
properly, no goodness of fit tests could be done, whereas with the SMOTE method the categorical 
variables had to be excluded. Therefore, the models from both rare event techniques were not able to 
fulfill all tests on all data leaving uncertainties about the model’s quality.    

Bayesian Logistic Regression was tested on the full data set, just like the ‘full data’ model. Looking back, 
it is doubtful whether this was the best way. In first instance, the ‘full data’ model was already found to 
have a balanced accuracy of 0.50 because of the imbalanced data. According to the reviewed literature, 
Bayesian logistic regression was more appropriate to handle the imbalanced (or even rare event) data. 
However, from the results it was found that the Bayesian logistic regression model was not able to 
predict better than the ‘full data’ model. With the current knowledge, a pre-sampling, to balance the 
sample set a little more would be preferred. Basically, it is expected that other modelling methods for 
binary dependent variables could also work when combined with a proper sampling technique and 
should therefore be tested. Due to the limited time, this study did not test other modeling methods than 
logistic regression and Bayesian logistic regression.   

 

Figure 25: The possible interaction effects between variables. In this thesis the independent variables are assumed 
to have a direct relation to the dependent variable. For the mediating interaction effect an example of possible 
mediation is given (Field, 2013)  
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SECTOR 
The results of this thesis can be valuable for the network operators (i.e. cable and pipe network sector). 
The first results indicate that certain variables are relevant when trying to predict failures from 
excavation works. However, more interesting are the results of the models and sampling techniques.  

First, the model results indicate that binary dependent variables can be used in the cable and pipe sector. 
This creates the opportunity to assess specific situations in future studies, in which the dependent 
variable can represent any categorical variable with two outcomes. Nevertheless, it is important to 
realize that this study was conducted with data from Evides water distribution company. All networks 
have different specifications and regulations, from which characteristics follow. For example, an 
electricity cable has a small diameter and is flexible compared to water mains. In addition, the water 
main is probably located deeper and further away from buildings than the electricity cables. Therefore, 
the electricity cable is probably more vulnerable for excavation activities as it is smaller and crossed 
more often. A comprehensive study is necessary to check whether the method from this thesis could be 
transferred to other network types’. This could be done, by application and validation of the model for 
another network type, whereas the validation will show whether the model is applicable for other 
networks.   

Second, the sampling techniques that were applied to balance the rare event data could be real 
interesting for network operators. Both techniques, SMOTE and Weighting were successful in 
increasing the balanced accuracy of the model. However, this thesis only tested the techniques on that 
very specific topic and did not assess other applications of the technique. Therefore, the applicability of 
the techniques for other issues could be questioned. Despite this uncertainty, it can be expected that it 
will also work for other studies of network operators. This is supposed because it is an existing 
technique coming from other sectors (political medical and financial sectors), where it was applied for 
various purposes (e.g. predicting wars or diseases). Since it has already been applied in certain sectors 
and for multiple purposes, it is expected that it will also be successful for various applications by 
network operators.   

Third, it has not been studied whether the incentives and strategies of all network operators are similar. 
At this moment the costs of failures are lower than the costs preventing failures, whereby low costs can 
also be seen as an incentive for network operators. It can therefore be questioned against what price 
network operators are willing to reduce failures (and improve reputation).  

Fourth, orientation KLIC-requests were excluded from this thesis. Due to the limited time, linking these 
to failures and testing whether such requests have been done prior to the regular KLIC-requests was 
not possible. It could be worthwhile for the sector to test whether there is a relation between orientation 
KLIC requests and excavation damage.  
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9 CONCLUSION 
The objective of this thesis was to develop a model to accurately predict cable and pipe failures from 
excavation works, considering spatial interdependencies. The model has to predict failures to allow 
network operators to take risk mitigating measures and to verify the size of the localization area by trail 
trenches. To meet the objective, the following main research question was answered:  

What method can predict the influence of spatial interdependencies on the probability of failure from excavation 
works on the cables and pipes of subsurface utility operators?  

First the conclusions of the sub-questions will be summarized and combined in order to answer the 
main research question of this thesis in the end.  

9.1 SUMMARY OF THE SUB-QUESTIONS 
1. What variables are most related to cable and pipe failure from excavation works?  

Given the research objective, relevant variables that are related to cable and pipe failures from 
excavation works were identified first. These variables were identified via a literature review, three 
expert interviews, p-values and a stepwise backward elimination procedure based on the AIC score. 
From the literature review and expert interviews the same relevant variables followed. The p-values 
and stepwise backward elimination that were extracted from a binary logistic regression model 
complemented the list with relevant variables. The three methods together, resulted in the most related 
variables to cable and pipe failure from excavation works, which were all inserted in a logistic regression 
model. 

2. To what extent are the identified variables affecting the probability of failure from excavation works and how 
can we accurately predict the probability of failure?   

Regular logistic regression is not able to accurately predict probabilities of failure when data is 
imbalanced. To increase the accuracy of the model, rare event sampling techniques were used for over- 
and under sampling as well as compensations for the minority were applied.  

The weighted and under sampled model predicted 38% of the failures and predicted 94% of the non-
failures accurately, resulting in a balanced accuracy of 0.66. The SMOTE model predicted 58% of the 
failures accurately and 63% of the non-failures, resulting in a balanced accuracy of 0.61. Concluding, the 
weighted and under sampled model predicts more accurate looking at failures and non-failures, 
whereas the latter predicts more accurate when considering only the failures.  

3. In what way can network operators use the model to reduce failure from excavation works?  

From a gap-analysis together with a SWOT and TOWS analysis several strategies were found for 
applications of the model to reduce cable and pipe failures from excavation works. First, the models can 
be applied by itself to accurately predict some failures (as described above). Second, the model can 
complement the expert’s risk-assessment (by 38% and 58%) as well as increase the consistency of the 
predictions by training the expert’s knowledge. On the other hand experts can be used to assess the 
outcomes of the model.  
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9.2 CONCLUSION TO THE MAIN RESEARCH QUESTION 
This thesis filled the theoretical and practical gap that was found on the probability side of cable and 
pipe failures from excavation works. The objective was to develop a method that can help network 
operators to accurately predict cable and pipe failures from excavation works, whereby risk mitigating 
measures could be taken based on the probability of failure. To meet the objective, the following 
question was defined:  

What method can predict the influence of spatial interdependencies on the probability of failure from excavation 
works on the cables and pipes of subsurface utility operators?  

In this thesis, a method was identified to accurately predict the cable and pipe failures from excavation 
works. Several steps are necessary to end with an accurately predicting model. The existing knowledge 
serves as starting point, in the form of a literature review and expert interviews. This basis is used for 
the data collection, in which data of all networks in a certain area are collected and connected, whereby 
KLIC-requests serve as the base and failures and non-failures as the dependent variable.  

Binary logistic regression was selected as the modelling method. It was found that logistic regression is 
not able to handle rare event (i.e. or imbalanced) data. From literature, two effective methods were 
identified to deal with the rare event data. First, weighting and under sampling were tested to correct 
for the underestimating model. The balanced accuracy was 0.66 whereby 38% of the failures were 
accurately predicted and 94% of the non-failures.  

Second, a synthetic minority over sampling technique (SMOTE) was applied to balance the dependent 
variable in the trainings sample set. The model following from this technique was able to accurately 
predict 58% of the failures and 63% of the non-failures (i.e. balanced accuracy 0.61). 

Both methods have shortcomings; the goodness of fit of the former cannot be tested, whereas the latter 
is not able to handle categorical independent variables. Despite these deficiencies, both methods 
predicted more accurate than the basic model without modifications which was incapable to predict 
any failure accurately. 

Even though both models (weighted and SMOTE) cannot predict all failures accurately, it can increase 
the accuracy of the predictions which are currently done by experts. A combination of the two predictive 
methods, by expert and one of the models will be able to predict cable and pipe failures from excavation 
works more accurate than is currently attained by experts only.  
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10 RECOMMENDATIONS 
Since this thesis applies techniques which are new for network operators and it has not been tested yet 
and because the study contained several limitations as discussed in the discussion section, further 
research is worthwhile. First recommendations for further study are enumerated from the limitations 
of this research, after which some recommendations for network operators follow.  

10.1 RECOMMENDATIONS FOR FURTHER STUDY 
First, it is recommended to have a more detailed look at improved rare event techniques. Weighting 
dates from 2001 and SMOTE dates from 2004. With all technical developments including artificial 
intelligence it is expected that new sampling techniques have been established, as were identified in “an 
in depth review of rare event detection from an imbalanced learning respective” (Haixiang et al., 2017, 
p. 220). Furthermore, the manual weighting has many potentials if it is modelled properly. Due to the 
limited time, the ‘problem’ with this model was not solved and therefore the accuracy of the model has 
not been tested. It is therefore recommended to test the manual weighted model, to find more plausible 
results.  

Second, this study only focused on the probability side of the risk of failure from excavation work. As 
risk exists of a probability and a consequence, it would be a major improvement if possible 
consequences could also be included. However, as this would probably alter the dependent variable 
from a categorical dichotomous variable into a numerical variable, new methods should be identified 
for modelling with rare event data on ordinal variables.  

Third, the current risk-assessment is done based on expert judgment. Whereas this thesis focused on 
the ‘hard’ statistical side, the human aspect in the risk-assessment has not been considered. If the risk-
assessments will be done by both the model and the expert in parallel, it would be real interesting to 
study the differences and similarities in their assessment. It should be studied how the risk-assessments 
are currently done in practice and what decision making is based on. Since all parties have different 
opinions and different interest, it is expected that everyone will come up with different ‘solutions’. To 
identify potential differences in the risk-assessment between parties, a qualitative study is necessary. If 
large differences are found, an automated system (based on a model) could help to create equivocality.   

Last, within limited time, the balanced accuracy of 0.66 for the weighted model in this thesis has been 
achieved. The applied method proved to be able to accurate predict some failures as the balanced 
accuracy increased from 0.50 to 0.66. However, it is expected that there are multiple possibilities to 
improve the predictive power of the model even further by slightly moderating some details. Due to 
the limited time, there has not been an extensive search for the optimal performance point. It is expected 
that parties with more extensive resources (like time and knowledge) could increase the balanced 
accuracy much further while applying the same method.   

In this thesis a sensitivity analysis for the dataset has been conducted (see 6.3.2.1 and 6.3.3.1). However, 
this thesis did not do a sensitivity analysis on the model. That is, also for the model the number of 
inserted variables can be varied (k). From the validation overfitting or underfitting could be found. 
Despite this fact, this thesis did only do goodness of fit tests, like the log likelihood ratio to test the entire 
model fit. It is recommended to validate different model sizes to test the sensitivity.  
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10.2 RECOMMENDATIONS FOR THE SECTOR 
For the sector, more practical recommendations have been developed. First, it is recommended to do a 
study to test the actual deviation between virtual location data and the actual locations. This could be 
done through picking multiple sampling locations, where different situations are assessed. It is 
recommended as more knowledge about the data correctness can have major influence on possibilities 
for new studies.  

Second, it is recommended to test logistic regression and other binary dependent data modelling 
techniques for other purposes. For example, Cox Proportional Hazard could be used to test more time 
related data, such as the current state of a pipe which was constructed many years ago. Also, Bayesian 
Networks could be tested that predicts the probability with a graphical model. The same applies to the 
sampling techniques that have been used. As most failures will be rare events on the many kilometers 
pipes, these techniques can also be used for other studies.  

Third, it is recommended for network operators that the cooperation between databases comes 
naturally. The cooperation is essential as this thesis uses the connections between various aspects. On 
the other hand, it is recommended to conduct a study on the willingness of other network operators to 
share data and cooperate. This is helpful for studies like this thesis, as well as instructive since the 
network operators can benefit from each other’s data and knowledge.  

Fourth, study what parties are using emergency KLIC-requests above average. This could indicate 
unnecessary use of it (probably because one can start excavation immediately instead of waiting for 
three days). At this moment, the emergency KLIC-requests can be up to an area of 500x500 meters. It is 
recommended to reconsider if it is useful that emergency KLIC-requests, which should only be used 
when excavation work is so urgent that it cannot wait, should be allowed up to a polygon size of 250,000 
m2. Probably, network operators know where a failure occurs and can scope to an area much smaller. 
Therefore, consider a standard size for the KLIC-polygon, so network operators should only point the 
precise location after which automatically an area of e.g. 20x20 is drawn around it.  

Additionally, some shortcomings of the procedure around KLIC-requests were found. When a network 
operator, during the design phase, determines a new possible location, issuing of the permits takes more 
than three days. As no excavation can be done within the first three days after the a regular KLIC-
request, the new location is determined and permitted before the actual profile is determined by trial 
trenches. Therefore, no options are left to include the actual found profile. Therefore, it is recommended 
to study the procedure around the KLIC-requests.  

Finally, it is recommended to do further research on the locations of telecom cables as the model proved 
that it has a large effect on the probability of failure. Especially the side (street side or building side) 
where the cables or pipes are located seemed to be very important. It was expected that crossing the 
service connections, which are closer to the surface causes the high probability of failure. However, in 
section 7.6 it was found that this is not true. Therefore, a further study on the excavation works of 
telecom providers is recommended.    
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12 APPENDIX 
12.1 VARIABLE EXPLANATION 

 

Variable name Explanation 
klic_id_new A reference number created per row to trace back situations if necessary 
klic_polygon_size The size of the KLIC-request 
asset_length_in_klic The sum of all assets that are situated in a certain (KLIC) polygon 
klic_notification_type Emergency or regular KLIC-request 
klic_party For what network has the excavation works been done 
klic_type_work What sector was the work conducted for 
klic_type_work2 Specification of klic_type_work if it was cable or pipe excavation work 
evi_age The number of years an Evides pipe is in use in field 
evi_material Material of the Evides pipe 
evi_diameter Diameter of the Evides pipe 
evi_distance_house Distance to the nearest building from the measure (middle) point of the 

Evides pipe 
evi_shape_length Total ‘virtual’ length. So how long is the line drawn in GIS 
evi_intersection_length Length that a certain asset intersects the KLIC-polygon 
evi_data_quality Deviation between Evides and Rotterdam3D databases 
sew_distance Smallest distance from the Evides middle point to sewer 
sew_diameter Diameter of the sewer pipe (closest to Evides) 
sew_side Is the sewer located on the building side [2] or on the ‘streetside’ [1] 

compared to the Evides pipe  
gas_distance Smallest distance from the Evides middle point to sewer 
gas_diameter Diameter of the gas pipe (closest to Evides) 
gas_side Is the gas pipe located on the building side [2] or on the ‘streetside’ [1] 

compared to the Evides pipe 
heat_distance Smallest distance from the Evides middle point to district heating 
heat_diameter Diameter of the district heating pipe (closest to Evides) 
heat_side Is the district heating located on the building side [2] or on the ‘streetside’ 

[1] compared to the Evides pipe 
elec_distance Smallest distance from the Evides middle point to electricity cables 
elec_side Is the electricity cable located on the building side [2] or on the 

‘streetside’ [1] compared to the Evides pipe 
tele_distance Smallest distance from the Evides middle point to telecom cables 
tele_side Is the telecom cable located on the building side [2] or on the ‘streetside’ 

[1] compared to the Evides pipe 
cable_distance Smallest distance from the Evides middle point to cable (CAI) 
cable_side Is the CAI located on the building side [2] or on the ‘streetside’ [1] 

compared to the Evides pipe 
remainder_distance Smallest distance from the Evides middle point to remainder cables and 

pipes 
remainder_side Is the remainder cable/pipe located on the building side [2] or on the 

‘streetside’ [1] compared to the Evides pipe 
leak_dummy Failure [1] or non-failure [0] 
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12.2 TYPES OF WORK 
 

Table 27: Types of work 

Kabels-leidingen Landscaping/gardening Slaan/boren 
Gasleiding leggen Hovenierswerkzaamheden Aarding slaan 
CAI kabel leggen Bomen rooien/planten Damwand/beschoeiing slaan 
Huisaansluitingen maken Stobben frezen Diepploegen 
Kabels/leidingen leggen Vijver graven Handholes plaatsen 
Kabels/leidingen verleggen  Hekwerk plaatsen 

Leggen laagspanning Overig 
Palen/masten 
plaatsen/verwijderen 

Leggen middenspanning Heien 
Tanks/putten/containers 
in/uitgraven 

Leggen hoogspanning Baggerwerk Persing/boring 
Mantelbuis leggen Archeologisch onderzoek Duikers leggen enz. 
Rioleringswerkzaamheden Bodemonderzoek/sondering  

Stadsverwarming leggen Bodemsanering Construction 
Telefoonkabel leggen Proefsleuven graven Bouwwerkzaamheden 
Trafostations plaatsen Bestratingswerk Funderingswerk 
Verwijderen kabels/leidingen O.V.werkzaamheden Grondwerk/bouwrijp maken 
Waterleiding leggen zie notitities Reconstructiewerkzaamheden 
Werk aan bestaande leiding Zinker maken Sloopwerkzaamheden 
HDPE buis leggen Drainage Waterbouwkundige werken 
 Drainage Wegenbouw 
  Woningbouw 
  Woonrijp maken 
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12.3 LINKING OPTIONS 
Option 1 Without filter    
Failures 281 281       
Pipes 309355 309355       
percentage 0,091%        
         
Option 2 Only link pipe nearest to middle point of polygon    
Failures 97        
Pipes 63000        
percentage 0,154%        
         
Option 3 Minimal percentage or distance for intersection    

Minimal 
intersecting 
percentage Assets left failures left   

Minimal 
shape 
length 

Assets 
left 

failures 
left  

0% 309083 271 0,088%  0 309083 271 0,088% 
10% 263934 241 0,091%  3 285596 263 0,092% 
20% 228978 219 0,096%  5 269156 253 0,094% 
30% 202666 200 0,099%  10 204847 213 0,104% 
40% 182118 185 0,102%  15 158596 184 0,116% 
50% 165341 176 0,106%  20 127150 148 0,116% 
60% 151571 160 0,106%  25 104262 127 0,122% 
70% 139805 151 0,108%  30 87230 113 0,130% 
80% 129400 140 0,108%  35 73659 102 0,138% 
90% 119587 131 0,110%  40 62700 94 0,150% 

100% 109531 118 0,108%  45 53384 78 0,146% 

Minimal 
intersecting 
percentage 

Minimal shape 
length Percentage left 

Assets 
left 

failures 
left     

0% 0 0,09% 309083 271     
10% 3 0,09% 291043 267     
20% 5 0,09% 276914 262     
30% 10 0,09% 249599 237     
40% 15 0,10% 226184 220     
50% 20 0,10% 206002 202     
60% 25 0,10% 189062 188     
70% 30 0,10% 174408 179     
80% 35 0,11% 161578 173     
90% 40 0,11% 150042 163     

100% 45 0,11% 139239 149     
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Minimum shape length during pipe preparation     

  min shape_l = 0 

min 
shape_l 
= 2.5 

min 
shape_l 
= 5 

min 
shape_l 
= 7.5 

min 
shape_l 
= 10 

min 
shape_l 
= 15  

DISL distributie 196182 128304 115094 #### 98816 86207 91% 
TRDISL Transportdistributie 11992 7954 7019 6487 6060 5371 6% 
INL Industrie 100 71 66 59 54 53 0% 
PRODL Productie 223 140 105 92 79 68 0% 
RWL Ruw water  933 874 820 769 754 712 0% 
BLML Brielse Meer Water 575 327 275 260 241 227 0% 
BWL Bron Water 357 232 210 199 189 175 0% 
TRANSL Transport  5565 3942 3327 3039 2871 2631 3% 
DMWL Demi Water 568 334 293 277 264 256 0% 

  216495 142178 127209 #### 109328 95700 100% 

         
Option 4 only connect KLICs to assets middlepoints    
Failures 185        
Pipes 173690        
percentage 0,107%        
         
         
Option 5 Only link the pipe with the largest intersection length    
Failures 43        
Pipes 58267        
percentage 0,074%        
         

Option 6 
Only link pipes that contribute a minimal percentage to the total 
asset length in the polygon    

 10% 20%       
Failures 165 121       
Pipes 132568 83610       
percentage 0,124% 0,145%       
         
Option 7 Only DISL, minimum shape 7.5   

 intersection > 0m 
intersection > 
7.5m 

intersection > 
15m     

Failures 259 231 186      
Pipes 257942 207808 139683      
percentage 0,100% 0,111% 0,133%      
         
Option 8 Only DISL, minimum shape 15   

 intersection > 0m 
intersection > 
7.5m 

intersection > 
15m     

Failures 254 225 200      
Pipes 215074 174655 139683      
percentage 0,118% 0,129% 0,143%      
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12.4 INTERVIEW FORM  
Introduction 

o Wie ben ik? Studie, etc. 
o Waarom ben [jij] geselecteerd?  
o Wat gebeurd er met de interview data?  Anoniem, afstudeeronderzoek,  
o DOEL:  

o Verband tussen variabelen van ruimtelijke afhankelijkheden en graafschade 
o Eerste setup voor de statistische analyse, correlatie.  
o Kritische blik op de reeds verzamelde data, en het aanvullen daarvan. 

o Toestemming om op te nemen 
o Introduceer  [jezelf]. 

Graafschade: Is het een probleem en komt het veel voor?  

1. Wat is (meestal) de oorzaak van graafschade? 
o Soort werk (mechanisch/handmatig, leggen/gestuurde boring, etc.) 
o Partij (Gas, Riool, Straat (gemeente), Electra, Telecommunicatie (incl. glasvezel), Stadsverwarming, openbare 

verlichting een verkeersregelinstallaties, afvalinzameling, industrieel/militair transport, de ‘gewone burger’).  
o Aansluit, distributie, transport? Belang van leiding?  
o Wat is hiervoor de oorzaak? (onvoorzichtig, moeilijk, foute data) 
o Kruising/gewoon in de straat? 

 
2. Hoe goed is de informatie (van KLIC) die jullie/anderen hebben wanneer je gaat graven? DATA 
o Nauwkeurig? 
o Hoe gebruiken jullie die data?  
o Bij een probleem/melding geven jullie een probleem, oorzaak, storingscode op. Gebeurt dit op de 

juiste manier?  
o Maken wij ook een melding als wij een schade veroorzaken?  
o Wat doen wij met KLIC data? Wordt het opgeslagen en waar? 
o Wordt bij een derde van de graafschades geen melding gedaan?  

 
3. Wederzijdse ruimtelijke afhankelijkheden 
o Wat denk je dat het is?  
o Hoe beïnvloeden ruimtelijke afhankelijkheden de kans op graafschade? 

 

4. Wat voor een dingen hebben veel invloed op de kans op graafschade? 
o Welke partij graaft? Waar wordt dit opgeslagen? 

Onderzoeksvragen:  

Welke methode is in staat om de invloed van ruimtelijke afhankelijkheden op de kans op 
graafschade aan kabels en leidingen te voorspellen?  
1. Welke (ruimtelijke) variabelen zijn het meest te relateren aan derde schade?  
2. In welke mate zijn ruimtelijke afhankelijkheden van invloed op de kans op schade door derden?  
3. Hoe kunnen netwerk beheerders kennis over ruimtelijke afhankelijkheden implementeren om 

derden schade te voorkomen?  

Een tweezijdige relatie tussen 2 infrastructuren waarbij de staat van de ene de andere kan 
beïnvloeden. In het algemeen: twee infrastructuren zijn wederzijds afhankelijk als ze afhankelijk van 
elkaar zijn.  

Infrastructuur systemen zijn ruimtelijk wederzijds afhankelijk als een lokale gebeurtenis beide kan 
beïnvloeden. Dit ontstaat doordat ze vlak bij elkaar liggen.  
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o De afstanden tussen de verschillende netwerken? 
o Diepte? Diameter? Grondsoort? Materiaal van de waterleiding of het andere netwerk? Wie graaft, 

gas, riool, electra, etc.?  
o Helpen de verschillende wetten en onderlinge afspraken bij het reduceren van de kans op 

graafschade? Welke wordt het meeste gebruikt/gehanteerd? 
o Ken je CROW 500? Helpt het om de kans op graafschades te reduceren?  
o SOORT WERK (leggen/verwijderen, damwanden, etc.) 
o BOMEN 
o LANTARENS 
o TYPE BESTRATING 
o GEBIED (stedelijk, landelijk, etc.) 

 
5. Volgens CROW 500 moet er bij mechanisch graven minimaal 1,50m proefsleuf worden gegraven.  
o CROW 500 zegt >1,5m. Als jij dit mag veranderen, dan meer, gelijk, of minder grote proefsleuven? 

Waarom?  
o Weet je of de proefsleuven worden gegraven in geval van schade? 
o Vroeger werkte Stedin en Evides, maar ook andere partijen meer samen. Dan werd er rechtstreeks 

naar het kantoor van ‘de ander’ gebeld wanneer er schade werd veroorzaakt. Nu niet meer, hoe 
komt dat denk je?  

o Hoe kunnen we graafschade reduceren? 
 

6. Op welke manier zou kennis over de kans op graafschade en ruimtelijke afhankelijkheden 
Evides kunnen helpen? (Opportunity)  

o Waar in het process?  
o Wie moet ermee aan de slag? 
o Op welke manier helpt het?  
o Hoe zou je het voor je zien?  
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12.5 INTERVIEW RESULTS 
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12.6 MULTICOLLINEARITY 
Multicollinearity table 

Variable GVIF Df GVIF^(1/(2*Df)) 
klic_polygon_size 2,71 1 1,65 
klic_request_type 1,44 1 1,20 
evi_age 1,25 1 1,12 
evi_diameter 1,17 1 1,08 
evi_shape_length 1,31 1 1,15 
evi_data_quality 1,03 1 1,02 
sew_diameter 2,80 1 1,67 
gas_distance 4,70 1 2,17 
gas_side 9,27 2 1,74 
heat_diameter 3,84 1 1,96 
elec_distance 2,44 1 1,56 
tele_distance 1,87 1 1,37 
cable_distance 6,31 1 2,51 
asset_length_in_klic 2,80 1 1,67 
klic_party 1,54 6 1,04 
evi_material 1,32 6 1,02 
evi_distance_house 2,79 1 1,67 
evi_intersection_length 1,34 1 1,16 
sew_distance 1,50 1 1,23 
sew_side 10,62 2 1,81 
gas_diameter 4,80 1 2,19 
heat_distance 5,84 1 2,42 
heat_side 7,77 2 1,67 
elec_side 6,61 2 1,60 
tele_side 4,75 2 1,48 
cable_side 6,76 2 1,61 
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12.7 TYPES OF VARIABLES 

  What Name 

Include
d in 
analysis
? 

% 
available Type 

Type 
(statistics) Specify 

  id id 0 100,00%       

KLIC 

KLIC ID klicnummer 0 100,00%       
Date of request  klic_datumaanvraag 0 100,00%     
Area size klic_oppervlakte 1 100,00% Num Continuous Interval 

Weight area size 
klic_gewicht_oppervl
akte 0 100,00%     

Type of request klic_meldingsoort 1 100,00% Cat Nominal Dichotomous 

Evides 

Assetnumber evi_assetnummer 0         
Date of 
construction 

evi_jaar_aanleg 
0      

Material evi_materiaal 1 100,00% Cat Nominal   
Diameter evi_diameter 1 99,92% Num Continuous   
Distance to 
nearest building evi_distance_house 1 92,12% Num Continuous Ratio 
Length in KLIC asset_length_in_klic 1 100,00% Num Continuous Ratio 
Type of asset 
(ansl/disl/etc) evi_netdeel 1 100,00% Cat Nominal   

Sewer 

Within 10 
meters? sew 1 100,00% Cat Dichotomous   
House side? sew_side 1 90,81% Cat Dichotomous   
Distance to own 
asset sew_distance 1 98,40% Num Continuous Ratio 

Diameter sew_diameter 1 98,40% Num Continuous Ratio 

Gas 

Within 10 
meters? gas 1 100,00% Cat Dichotomous   
House side? gas_side 1 83,74% Cat Dichotomous   
Distance to own 
asset gas_distance 1 89,61% Num Continuous Ratio 

Diameter gas_diameter 1 89,61% Num Continuous Ratio 

District 
heating 

Within 10 
meters? heat 1 100,00% Cat Dichotomous   
House side? heat_side 1 28,11% Cat Dichotomous   
Distance to own 
asset heat_distance 1 29,76% Num Continuous Ratio 

Diameter heat_diameter 1 29,76% Num Continuous Ratio 

Electric
ity 

Within 10 
meters? 

elec 
1 100,00% Cat Dichotomous   

House side? elec_side 1 91,07% Cat Dichotomous   
Distance to own 
asset 

elec_distance 
1 99,55% Num Continuous Ratio 

Teleco
m 

Within 10 
meters? tele 1 100,00% Cat Dichotomous   
House side? tele_side 1 90,18% Cat Dichotomous   
Distance to own 
asset tele_distance 1 98,54% Num Continuous Ratio 
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CAI 

Within 10 
meters? cable 1 100,00% Cat Dichotomous   
House side? cable_side 1 72,29% Cat Dichotomous   
Distance to own 
asset cable_distance 1 74,93% Num Continuous Ratio 

Other 

Within 10 
meters? other 1 100,00% Cat Dichotomous   
House side? other_side 1 6,15% Cat Dichotomous   
Distance to own 
asset other_distance 1 7,11% Num Continuous Ratio 

Leakag
es 

lek_assetnumme
r lek_assetnummer 0         
lek_id_oorzaak lek_id_oorzaak 0      
lek_datum_opvo
eren lek_datum_opvoeren 0      
lek_eam_gemeld
_op lek_eam_gemeld_op 0      
lek_storingscode lek_storingscode 0      
lek_probleemco
de lek_probleemcode 0      
lek_oorzaakcode lek_oorzaakcode 0      

lek_outcome lek_outcome 1 100,00% Cat Dichotomous   
Correct
ness 

  
d_water_water 1 100,00%       
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12.8 STATISTICS OF DATASET 
Table 28: In the top half of the table, the percentage of certain categorical data from the entire dataset is 
compared to the percentage of that categorical variable within the failures. From the full data model, the 
estimates and p-values were also included to compare the results. In the bottom half, the numerical 
variables from the full data model are compared. First the average when all data is considered, then the 
average of the failures only. 

 

  All data Failures only  
Full data 

model 
(Categorical) 
Variable What Number Percentage Number Percentage Diff Estimate 

P-
value 

KLIC_party Telecom 6347 6% 7 4% -2%   

 Sewer 12010 11% 29 16% 5% 0,43 0,30 

 Gas 8109 8% 17 9% 2%   

 
District 
heating 2691 3% 12 7% 4% 0,81 0,10 

 Electricity 4985 5% 7 4% -1%   

 Water  6235 6% 12 7% 1%   

 Unknown 67130 62% 98 54% -9%   
Type of KLIC-
request Regular 101645 95% 141 77% -17%   

 Emergency 5862 5% 41 23% 17%   
Evi_material PVC 84745 79% 167 92% 13%   

 PE 2428 2% 2 1% -1% -1,18 0,20 

 AC 2423 2% 3 2% -1%   

 GGIJ 6315 6% 3 2% -4%   

 ST 4601 4% 7 4% 0% 0,73 0,30 
Sew side 0 70355 65% 129 71% 5%   

 1 21959 20% 36 20% -1%   

 2 15193 14% 17 9% -5% 1,53 0,03 
Gas side 0 48659 45% 91 50% 5%   

 1 32003 30% 49 27% -3%   

 2 26845 25% 42 23% -2%   
Heat side 0 12737 12% 38 21% 9% -0,61 0,08 

 1 7505 7% 11 6% -1% -0,70 0,00 

 2 87265 81% 133 73% -8% -1,05 0,02 
Elec 0 47800 44% 73 40% -4%   

 1 47312 44% 88 48% 4% 0,32 0,07 

 2 12395 12% 21 12% 0% 1,00 0,06 
Tele  0 12647 12% 47 26% 14% -0,90 0,00 

 1 80296 75% 116 64% -11% -0,93 0,00 

 2 14564 14% 19 10% -3%   
Cable 0 6327 6% 11 6% 0%   

 1 53045 49% 102 56% 7%   

 2 48135 45% 69 38% -7%   
Remain 0 1315 1% 0 0% -1%   

 1 1531 1% 1 1% -1%   

 2 104661 97% 181 99% 2%   

Type of work 
Cables and 
pipes 61963 58% 116 64% 6% 0,68 0,13 
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 Construction 7946 7% 6 3% -4%   

 
Landscaping/ 
gardening 6508 6% 4 2% -4%   

 
Piling/drillin
g 7711 7% 6 3% -4%   

 Remainders 17517 16% 9 5% -11%   

 Unavailable 5862 5% 41 23% 17% 2,22 0,00 

(Categorical) Variable Number  Number Difference 
Percen

tage Estimate 
P-

value 
 

KLIC_polygon 7332,90  -1368,08 8700,97 -16% 
 

 
 

Evi_age  34,81  -0,33 35,15 -1%   
Evi_diam  133,64  -28,73 162,37 -18% -0,01 0,00 

Evi_data_quality 0,09  0,01 0,07 17% 1,46 0,03 
 

Sew_diam 0,27  -0,12 0,39 -31% -0,68 0,01 
 

Gas_distance 0,19  0,00 0,19 -1% -0,02 0,20 
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Table 29: The estimate, z-value and p-value of the full data model, including all (not completely 
separated) variables. The variables below the significance level (p ≤ 0.10) are bold.   

Estimate z value Pr(>|z|) 
(Intercept) -20,34 -0,03 0,98 
klic_polygon_size 0,00 -0,60 0,55 
klic_type_workHovenierswerkzaamheden -0,21 -0,33 0,74 
klic_type_workKabels-Leidingen 0,69 1,54 0,12 
klic_type_workOverig -0,37 -0,70 0,48 
klic_type_workSlaan/boren 0,01 0,02 0,99 
klic_type_workUnknown 2,20 4,96 0,00 
evi_age 0,01 1,31 0,19 
evi_diameter -0,01 -6,00 0,00 
evi_shape_length 0,00 0,38 0,71 
evi_data_quality 1,58 2,30 0,02 
sew_diameter -1,19 -2,81 0,00 
gas_distance -0,07 -1,90 0,06 
gas_sideBuilding 0,19 0,37 0,71 
gas_sideStreet 0,38 0,81 0,42 
heat_diameter 0,34 0,75 0,45 
elec_distance -0,06 -1,33 0,18 
tele_distance 0,05 1,35 0,18 
cable_distance 0,02 0,59 0,56 
asset_length_in_klic 0,00 0,11 0,91 
klic_partyElec -0,05 -0,11 0,91 
klic_partyGas 0,29 0,97 0,33 
klic_partyHeat 0,81 2,29 0,02 
klic_partySewer 0,42 1,63 0,10 
klic_partyTele -0,38 -0,90 0,37 
klic_partyWater 0,23 0,68 0,50 
evi_materialAC 14,21 0,02 0,99 
evi_materialGGIJ 13,58 0,02 0,99 
evi_materialHPE -0,25 0,00 1,00 
evi_materialPE 13,16 0,02 0,99 
evi_materialPVC 14,77 0,02 0,99 
evi_materialST 15,01 0,02 0,99 
evi_distance_house -0,01 -0,59 0,55 
evi_intersection_length 0,00 0,20 0,84 
sew_distance -0,03 -0,90 0,37 
sew_sideBuilding -1,45 -2,12 0,03 
sew_sideStreet -1,50 -2,20 0,03 
gas_diameter 1,63 2,24 0,03 
heat_distance 0,01 0,28 0,78 
heat_sideBuilding 0,53 0,91 0,37 
heat_sideStreet 1,05 2,39 0,02 
elec_sideBuilding -0,65 -1,16 0,25 
elec_sideStreet -0,96 -1,81 0,07 
tele_sideBuilding 1,00 1,91 0,06 
tele_sideStreet 1,86 3,68 0,00 
cable_sideBuilding 0,17 0,42 0,68 
cable_sideStreet -0,05 -0,11 0,91 
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