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When the influence of changing operational and environmental conditions, such as temperature and
external loading, is not factored out from sensor data it can be difficult to observe a clear deterioration
path. This can significantly affect the task of engineering prognostics and other health management oper-
ations. To address this problem of dynamic operating regimes, it is necessary to baseline the data, typi-
cally by first finding the operating regimes and then normalizing the data within each regime. This
paper describes a baselining solution based on neural networks. A self-organizing map is used to identify
the regimes, and a multi-layer perceptron is used to normalize the sensor data according to the detected
regimes. Tests are performed on public datasets from a turbofan simulator. The approach can produce
similar results to classical methods without the need to specify in advance the number of regimes and
the explicit computation of the statistical properties of a hold-out dataset. Importantly, the techniques
can be integrated into a deep learning system to perform prognostics in a single pass.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Most engineering systems go through different operating and
environmental conditions during their life cycle. For example,
speed [1], or load conditions [2] may change continuously during
the operation of an engineering system. A system’s full range of
operating and environmental conditions is usually grouped into a
finite set of operating regimes. An operating regime (or mode) is
a subset of operating points where the system behaves similarly.
For example, in a commercial airplane flight, a general classifica-
tion of the flight regimes are take-off, climb, cruise, descent, and
landing [3]. Importantly, changes in the operating regimes can sig-
nificantly affect sensor readings obscuring the systems’ degrada-
tion signature [4]. When the influence of these variations is not
reduced or eliminated, one may not easily deduce the underlying
damage trajectories from the different response signals.

The RUL is a random variable of interest in prognostics that
describes the remaining time to failure of equipment at a given
point in time. The task of RUL estimation can benefit from having
a baselining step to minimize the impact of the operational and
environmental conditions on data quality. Baselining is a classical
pre-processing step of RUL estimation. By baselining the sensor
data, what is meant is the factoring out of the influence of dynamic
operating regimes on sensor measurements. Note that the goal of
baselining is to reveal the progression of the underlying fault
mechanisms –, i.e., the physical processes which cause failure.
Since the exercise of RUL estimation, or in other words, of prognos-
tics, greatly depends on being able to observe the failure mecha-
nisms in the form of P-F curves 1 [5], baselining is of paramount
importance. Disregarding this step altogether can promote poor
prognostics, and in the case of purely data-driven prognostics, it
may even lead to meaningless results.

Baselining can be broken down into two stages shown in Fig. 1:
first, identifying to which operating regime each data point
belongs; and second, fusing the data points of the different
regimes. The first task is usually done by decomposing the regimes
using a technique such as K-means clustering [6]. For the second
task, a statistical rule is often employed to normalize the data
within each regime. Data normalization (also known as feature
scaling) means the standardization of the range of the data fea-
uipment
ilure and
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Nomenclature

Symbols
U Number of equipment units.
S Number of sensor features.
R Number of operating regimes.
u Index of unit such that u 2 1; . . . ;Uf g.
s Index of sensor feature such that s 2 1; . . . ; Sf g.
r Index of operating regime such that r 2 1; . . . ;Rf g.
Tu End of life of equipment u.
t Time index such that t 2 1; . . . ; Tuf g.
~xus Sensor feature s for unit u.
~mu

t Original collection of sensor measurements for unit u at
time t.

~mus
t Original sensor measurement of feature s for unit u at

time t.
Regr Operating regime.
f a :ð Þ First baselining function that assigns an operating re-

gime to each sensor measurement f b : R ! Regrf gr¼R
r¼1.

f b :ð Þ Second baselining function that transforms the sensor
measurements reducing the influence of the operating
regimes f b : R ! R.

~yus Baselined sensor feature s for unit u.
yust Baselined sensor measurement of feature s for unit u at

time t.
Cr Collection (cluster) of data points xust classified as

belonging to a certain operating regime r.
G Number of control and environmental variables.
P Number of input neurons in the self-organizing map.
g Index of control/environmental variable such that

g 2 1; . . . ;Gf g.
NSOM Total number of computational neurons of self-

organizing map.
sizex Number of neurons in the x-axis of self-organizing map.
sizey Number of neurons in the y-axis of self-organizing map.
j Index of computational neuron of self-organizing map.
i Index of input neuron of self-organizing map.
~p Input of the self-organizing map.
~z Computational neuron of the self-organizing map.
~wj Weight vector associated to each computational neuron

of self-organizing map.
n Number of input vectors z of self-organizing map.
a Learning rate of self-organizing map.
hcj tð Þ Neighborhood function of self-organizing map.
c Best matching unit of self-organizing map.
rSOM Neighborhood width of self-organizing map.
m Coordinate of neuron in self-organizing map.
ISOM Number of iterations (epochs) of batch self-organizing

map.
X The set of training examples of multi-layer perceptron.
NMLP The size of X (multi-layer perceptron).
IMLP Number of iterations (epochs) of multi-layer percep-

tron.

~x nð Þ;~y nð Þ� �
The n-th example pair in X of multi-layer perceptron

(supervised learning).
~x The array of examples of multi-layer perceptron.
~x nð Þ The n-th example of multi-layer perceptron.
d The dimension of a data point~x nð Þ of multi-layer percep-

tron.
D The number of dimensions of a data point~x nð Þ of multi-

layer perceptron.
~y The array of labels of multi-layer perceptron (super-

vised learning).
y nð Þ The n-th label of multi-layer perceptron (supervised

learning).b~y The array of predicted labels of multi-layer perceptron.dy nð Þ The n-th predicted label of multi-layer perceptron.
WMLP The weight matrix of multi-layer perceptron.
w nð Þ

d The weight corresponding to the d-dimension of the n-
th input of the multi-layer perceptron.

x nð Þ
d The input corresponding to the d-dimension of the n-th

input of the multi-layer perceptron.
EW The error function of multi-layer perceptron.
u Activation function (multi-layer perceptron).
bias Bias (multi-layer perceptron).
g Learning rate (multi-layer perceptron).
net Weighted sum of inputs (multi-layer perceptron).
c Best parameters of the function that the neural network

tries to approximate (multi-layer perceptron).
K Mini-batch size (multi-layer perceptron).
vmin Minimum value of uniform distribution used to initial-

ize multi-layer perceptron.
vmax Maximum value of uniform distribution used to initial-

ize multi-layer perceptron.
lr Mean of the data of one regime.
rr Standard deviation of the data of one regime.

Acronyms
C-MAPSS Commercial Modular Aero-Propulsion System Simula-

tion
RUL Remaining Useful Life
SOM Self-Organizing Map
NASA National Aeronautics and Space Administration
MLP Multi-Layer Perceptron
PCA Principal Component Analysis
PHM Prognostics and Health Management
SVM Support Vector Machines
ARX Autoregressive with Extra Input
SHM Structural Health Monitoring
FFNN Feed Forward Neural Network
BMU Best Matching Unit
TRA Throttle Resolver Angle
MAE Mean Absolute Error
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tures. Different formulas can be applied to perform the normaliza-
tion. Regardless of the procedure, the final result should be a col-
lection of sensor features where the operating conditions’
influence is factored out, and degradation trends are more readily
observable.

When the number of operating regimes is known beforehand,
assigning each data point to a regime is a more straightforward
task. However, in many applications, the number of operating
regimes is unknown. In such cases, alternative ways need to be uti-
269
lized to discover how many operating modes exist in the data. This
paper proposes a modified version of the SOM that does not
require setting the number of regimes. The goal of the proposed
SOM is to discover and discern among the different operating
regimes given a set of control and ambient variables. Based on
these variables, the SOM learns the regimes and assigns the data
points accordingly.

After associating each data point to a regime, it is possible to
perform data normalization and factor out the influence of the



Fig. 1. The baselining of value data seeks to remove the influence of the different operating conditions on the data. Typical flow consists of first identifying regimes and then
normalizing the data of different regimes to a common scale.
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non-stationary operational and environmental conditions. In clas-
sical normalization approaches, such as standardization, it is nec-
essary to have a hold-out dataset to compute each regime’s
mean and standard deviation before applying the z-score formula.
In applications where the availability of data is scarce, ruling out
data on the grounds of mean and standard deviation computation
can be a significant problem. This difficulty is even more critical for
data-driven prognostics in fields such as aeronautics, where the
availability of large volumes of run-to-failure data can be an issue.
The normalizing MLP proposed in this paper addresses this diffi-
culty. This paper shows that the MLP can be trained on a single
unit’s degradation data and still perform reasonably well. Based
on the SOM regimes, the MLP normalizes the data within each
regime. The goal of the MLP is to preserve each regime’s degrada-
tion trends while normalizing the data.

In technical terms, the contribution of the proposed approach is
twofold:

� The original SOM architecture is subject to adaptations to serve
the purpose of regime clustering. Of note is how the SOM is
combined with a technique of connected component labeling
to group the neurons and discover the clusters corresponding
to the operating regimes. A mechanism is also proposed to
ensure the correctness of the overall clustering method.

� The MLP, due to its unique error function and structure, allows
normalizing unscaled data and the network functions without
supervision.

This paper’s contribution is also to show how neural networks
can be used to address the baselining problem on an engineering
application. The proposed approach is evaluated on two publicly
available datasets generated from CMAPSS. CMAPSS is a turbofan
simulation model developed by the NASA. The two datasets consist
of thousands of run-to-failure trajectories. The goal of these data is
to allow researchers to build, evaluate and benchmark different
approaches to PHM problems.

The remainder of this paper is as follows. Section 2 reviews
related work. A mathematical formulation of the problem is pre-
sented in Section 3. Section 4 describes the proposed approach.
The case study is presented in Section 5. Results are shown in Sec-
tion 6. Section 7 concludes the paper.
2. Related work

Implementing a PHM program involves developing methods,
protocols, or infrastructure to sense, diagnose, and prognosticate
health state changes of engineering equipment [7]. One of the goals
of PHM is to detect at the earliest onset of failure. Here, failure can
270
be defined [8] as the point when degradation reaches a predeter-
mined threshold level. The process of degradation or damage of
an engineering system can have multiple meanings [9]. In civil
engineering [10], for example, changes to the materials or geomet-
ric properties of physical infrastructures such as bridges, towers,
tunnels, dams are typically subject to analysis. In electronics, bat-
tery discharge cycles are examined [11]. In mechanical engineer-
ing, performance or operating limits are considered [9]. In
general, a system is considered to have failed when it no longer
meets its predefined functional requirements such as usage, oper-
ating limits, or other specifications [12].

It is easier to detect and predict failure if the deterioration pro-
cess is naturally correlated with condition monitoring data [13].
However, in practical applications, operational and ambient condi-
tions can produce changes in sensor signals and mask the damage
trajectories. In such cases, the operating differences can influence
the extent and the rate of change of the degradation, obscuring
the fault signatures. Further aggravating the problem, the more
the sensor signals are responsive to deterioration, the more sensi-
tive they are to operational and environmental conditions [9].
Baselining the data to improve its quality and how well the data
represent the degradation process is an essential step for PHM
[14]. Some of the most important contributions to the field are
reviewed hereafter.

Sohn et al. [15] were among the first to study the influence of
ambient conditions on the non-stationary responses of large-
scale structures. The authors ascertained that effective damage
detection of large infrastructure should consider the variability of
modal parameters. A linear four-input filter model was proposed
in Ref. [15] to distinguish between structural damage and temper-
ature changes. The model was applied with success to a case study
of the Alamosa Canyon bridge in New Mexico. However, the gener-
ality of the results was limited, as the model was developed for a
particular bridge considering only one external variable. Also, the
model was static in that it did not take into account thermal
dynamics.

Peeters and De Roeck [16] proposed an ARX model to capture
thermal dynamics and perform damage detection in bridges. ARX
models can represent the dynamics found in data as they relate
current output to past input and output [17]. In their work, Peeters
and De Roeck [16] used ‘‘healthy” data from the Z24-Bridge in
Switzerland to train an ARX and simulate eigenfrequencies. When
a measured eigenfrequency fell outside the estimated confidence
intervals, the model detected damage. Despite the advantages of
ARX models, these approaches assume a linear relationship
between the output and input, which may not always be the case.
Peeters and De Roeck [16] found a bi-linear relation between fre-
quency and temperature. The differences in asphalt stiffness in
colder periods induced nonlinearity. To remove this variable’s
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impact, Peeters and De Roeck [16] considered only data from peri-
ods where the asphalt did not influence the relationship between
the bridge’s natural frequencies and temperature.

Another contribution is the work of Moser and Moaveni [18] for
bridge structures. The authors [18] modeled the relationship
between the natural frequencies and temperature of the Dowling
Hall Footbridge on Tufts University using different models, namely
linear, bi-linear, quadratic, third-order, fourth-order polynomials,
and an ARX model. The fourth-order regression model was able
to achieve the best fit. Another case study by Moaveni and Behma-
nesh [19] on the Dowling Hall Footbridge also used a fourth-order
regression model with positive results.

Other approaches have been proposed to eliminate the effects
of environmental variables (e.g., temperature) while performing
damage detection in large-scale structures. For example, Yan
et al. [20] used a method based on PCA to perform damage detec-
tion on computer-simulated data and experimental data. The tech-
nique was extended in Yan et al. [21] for non-linear cases.
Deraemaeker et al. [22] used modal filters to dissociate structural
damage from environmental effects. The methodology was applied
to a simulated numerical model of a bridge. Other authors, such as
Ni et al. [23], have proposed the use of SVM to detect damage in
bridges under variable operational conditions. Four machine learn-
ing algorithms, namely, an auto-associative neural network, factor
analysis, Mahalanobis distance, and singular value decomposition,
were compared by Figueiredo et al. [9] in their ability to deal with
changing operational and environmental conditions. For a review
of models concerning changes in civil structures’ vibration proper-
ties due to thermal effects, please refer to Ref. [24].

Based on different assumptions and degrees of sophistication
and complexity, several approaches have been proposed over the
last decades to separate changes caused by structural damage from
changes caused by operational and environmental conditions. The
ultimate goal here is typically that of structural damage diagnos-
tics, and not prognostics. Damage prognostics aims not solely to
detect the current damage state but also to forecast system perfor-
mance through health state assessment [25]. In both disciplines,
damage diagnostics or damage prognostics, data baselining is a
critical consideration.

If it is true that research on data baselining in SHM is extensive,
the same is not so for other engineering fields. Specifically, in sys-
tem prognostics, and as some authors such as Gebraeel et al. [26],
and Heng et al. [14], and Peng et al. [27] note, the implications
posed by having different operating regimes continue to be seen
as a peripheral concept. This overlook often hinders the application
of prognostics to real-world scenarios. Most prognostics
approaches are not suited for multi-regime situations and do not
adequately respond to the problem. Some works address regime-
independent prognostics. Some of these contributions are
reviewed below.

Gebraeel and Pan [26] proposed a prognostics stochastic frame-
work for computing the residual life of systems and components
operating under changing operational and environmental condi-
tions. The authors used degradation signals and information
related to the environmental conditions to estimate residual life
distributions in real-time. The performance of the proposed frame-
work was evaluated on a real-world case study of rotating
machinery.

Wang [28] adopted K-means as the technique for clustering
data of different operating regimes. Besides K-means, Wang sug-
gested other clustering algorithms such as Gaussian mixture mod-
els [29], and fuzzy c-means [30] to the same effect. In all the
previous works of Wang, and after clustering the regimes, the sam-
ple mean and standard deviation of each regime were computed
and used to normalize each sensor individually using the standard
rule [31]. Importantly, the author noted that this technique could
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only correctly preserve the original degradation patterns if each
operating condition had an identical probability to occur at each
cycle. The fourth CMAPSS training dataset [32] was used in these
experiments.

Al-Dahidi et al. [33] applied an unsupervised ensemble cluster-
ing approach, previously proposed in Ref. [34], to identify the dis-
tinct degradation states of a homogeneous discrete-time finite-
state semi-Markov model for RUL estimation. These states
described the equipment behavior according to the different oper-
ating conditions. To normalize the data [33] followed the same
approach of Wang [28].

A similar approach to Wang’s [28] was followed by Rigamonti
et al. [35] who used fuzzy c-means algorithm [30] to cluster the
different operating conditions present in the second CMAPSS data-
set [32]. Data normalization was performed also with the standard
rule [31] considering the data ranges of each regime.

Other authors took into consideration operating regimes but
adopted slightly different baselining strategies. For example, Riga-
monti et al. [36] studied the case of capacitor degradation under
variable operating conditions. Baselining was achieved with a rel-
atively simple procedure. The authors proposed a degradation indi-
cator independent of operational temperature. The indicator was
defined as the ratio between the equivalent series resistance mea-
sured at a given temperature and its initial value at the same tem-
perature. The health indicator was applied to estimate the
capacitor RUL on both simulated and real data with satisfactory
results.

Another significant contribution is the work of Ramasso [37]
who proposed a health indicator that was computed at each point
in time considering the current operating regime. The author used
a clustering technique to determine the assignment of the data to
the different regimes. The author showed that among the various
characteristics tested, the operating conditions had the most sig-
nificant impact on RUL estimation. Tests were performed on the
second and fourth CMAPSS datasets.

Bektas et al. [38] also introduced the notion of operating regime
into the construction of a health indicator. Specifically, the authors
proposed a multiple linear regression transformation to reduce
multi-regime data’s dimensionality from the original scales to a
common scale. The method worked by clustering the sensor read-
ings at each operational mode and by performing dimensionality
reduction to these clustered readings. By using this method, the
raw values of the different time series of an asset, often inconsis-
tent with each other, are transformed from a high-dimensional
space to a space of a single wear level dimension.

Siegel and Lee [39] used K-means clustering [6] to take into
account operating regimes while doing prognostics. The K-means
technique was used to partition the wind speed mean values into
two clusters. By clustering these data, the authors showed it was
possible to focus on the samples where the anemometer was lag-
ging and where the fault signature was more evident. The authors
based their work on the empirical findings of Hale et al. [40].

More recently, Bian et al. [41] proposed a Bayesian prognostics
framework for systems operating under dynamic regimes. The
operational and environmental conditions were modeled as a
continuous-time Markov chain. Peng et al. [27] proposed the use
of parametric inverse Gaussian process models to model degrada-
tion rates with monotonic S-shapes. A case study involving a
heavy-duty machine tool’s spindle system was analyzed. Li et al.
[42] considered the effects of time-varying operating conditions
on RUL prediction by analyzing changes in degradation rates and
sudden jumps in degradation rates at condition change-points sep-
arately. Their prediction method included these two factors into a
state-space model. The solution was evaluated on a simulation
study and a case of rolling element bearings.
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Despite the importance of these works to the field, some ques-
tions regarding baselining remain to be addressed. For instance,
most baselining models require some configuration, i.e., the num-
ber of clusters or some statistical properties (e.g., mean and stan-
dard deviation) of a representative dataset. In this work, neural
network approaches are utilized to perform baselining. Notably,
the system does not need to know any specific parameters about
the problem at hand, such as the number of regimes. Also of rele-
vance is that there is no need for a hold-out dataset to extract sta-
tistical information to complete the normalization process.
3. Problem

It is assumed the existence of U units characterized by a set of S
condition monitoring features subject to R operating regimes. For a
given unit u, with a duration of Tu units of time, each feature s is
represented by a vector of measurements

~mu
t ¼ mus

1 ;m
us
2 ; . . . ;m

us
Tu

� � ð1Þ
Each measurement ~mu

t corresponds to a regime Regr from the
set of possible operating regimes

f a ~mus
t

� � 2 Regrf gr¼R
r¼1 ð2Þ

The first objective of a baselining approach is to find a function
f a :ð Þ that can map the condition monitoring data to the operating
regime space. Specifically, the function should classify each data
sample ~mus

t into one of the Regr operating regimes. The result of
this first step is a collection of clusters such that each cluster of
data corresponds to an operating regime

Cr ¼ ~mu
t : f a ~mus

t

� � ¼ Regr

� � ð3Þ
Fig. 1 illustrates the first step of baselining as the first rectangle

with rounded corners. Note that to find the regimes, the input can
be either the original sensor data or some control and ambient
variables. This paper investigates the utilization of a number G of
ambient and control indicators.

The second goal of baselining is to combine the data of the dif-
ferent clusters Cr using a function f b :ð Þ. This function should be
able to transform the condition monitoring data. The parameters
of f b :ð Þ are the mapping discovered in the previous baselining step
and the original health data.

yust ¼ f b ~mus
t ; f a ~mus

t

� �� � 2 R ð4Þ
For each unit u and feature s, the result of this second step is a

vector of data

yust ¼ yus1 ; y
us
2 ; . . . ; y

us
Tu

� � ð5Þ
The conceptual objective here is to factor out the influence of

the different operating regimes without losing any meaningful
information to prognostics. Typically (but not necessarily) this pro-
cedure is accomplished by normalizing the data according to the
corresponding cluster’s range. Fig. 1 summarizes the described
baselining flow.
4. Theoretical background and adaptations

This paper proposes a neural network system based on a SOM
and an MLP to address the baselining problem. The SOM technique
is used in the first step of the baselining flow in Fig. 1. The goal here
is to find a suitable function (Eq. 2) capable of partitioning (cluster-
ing) the condition monitoring data into different regimes given a
set of ambient and control variables. The MLP network is used
for the second step of Fig. 1 to normalize the data (Eq. 4). This net-
272
work receives as input the sensor data and the regimes detected by
the SOM.

SOM and MLP methods share the same theoretical background,
as they are both neural networks. The idea underlying these two
techniques’ choice is to integrate different networks within the
same neural system to have a multi-purpose architecture. The ulti-
mate goal, to which this paper provides essential progress, is com-
bining various neural networks in the same architecture to
perform prognostics in a single iteration. The aim is to advance a
model that can be an integral part of deep learning prognostics sys-
tems. Hereafter follows a description of the theoretical background
of each technique and motivation for their use.
4.1. Self-organizing map

This section describes the theoretical background of the SOM
technique and the adjustments and adaptations performed to fit
the goal and scope of this work.

The Self-Organizing Map (SOM) was originally proposed by
Kohonen in 1982 [43] to solve problems related to data visualiza-
tion and abstraction. Since then, this technique has been used in a
wide range of applications [44]. SOMs are particularly useful [45]
to perform clustering. Clustering’ methods are techniques able to
‘‘divide a set of n observations into g groups so that members of
the same group are more alike than members of different groups”
[46]. In this paper, the clustering capabilities of the SOM are used
to group condition monitoring data into different operating
regimes given an input set of ambient and control variables.

The SOM can be viewed as a two-layer neural network, with an
input layer and a computational layer. The input layer is composed
of P neurons, one for each ambient or control variable (P = G), such
that the input vector is

~p ¼ p1; . . . ;pP½ � ð6Þ
The computational layer forms a grid of geometrically ordered

neurons. Typically, this grid is 2-dimensional such that
sizex � sizey ¼ NSOM . Each neuron in the computational layer
z1; . . . ; zNSOM

� �
is connected to all the source nodes p1; . . . ; pPf g in

the input layer. It is also assumed the existence of a weight vector
~wj 2 RP associated to each computational neural node~z of index j.
The weight vector expresses the connections established between
a computational neuron and all the nodes in the input layer. There
is a time dimension t, such that~p tð Þ is the input vector selected at
time t and ~wj tð Þ is the weight vector at time t of a computational
neuron~zj.

There are a number of variants [47] of SOM. In this work, the
batch version of SOM is used. However, and for clarity, this section
starts by describing the online variant of SOM. In online SOM [47],
a random vector is provided to the network at each time t and the
Euclidean distance between input and weight vectors is computed
as

dj tð Þ ¼ k~p tð Þ � ~wj tð Þk2 ð7Þ
The BMU (c) for a given data sample~p is the j that minimizes the

distance function dj tð Þ. According to theBMU found for the sample
~p; c, the weight vectors are updated at time t:

~wj t þ 1ð Þ ¼ ~wj tð Þ þ a tð Þhcj tð Þ ~p tð Þ � ~wj tð Þ� � ð8Þ

where a tð Þ 2�0;1½ is the learning rate and hcj tð Þ is the neighborhood
function. The learning rate controls the magnitude of the update
and it must converge to zero to ensure convergence of the training
process. The neighborhood function determines the rate of change
according to the BMU neuron.



Fig. 2. A Self-Organizing Map (SOM) is proposed to cluster the different operating
regimes present in the condition monitoring data.
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In this work, the standard Gaussian neighborhood function is
used such that

hcj tð Þ ¼
exp �kmj � mck2

� 	
rSOM tð Þ2

ð9Þ

where mj and mc are the coordinates of neurons j and c BMU on the
SOM grid. The width rSOM of the neighborhood function decreases
during training.

Instead of the online version of SOM, batch SOM [47] is used in
this work due to performance reasons. The batch variant updates
the weight vectors only at the end of each epoch, after a single pass
over the input data using the following formula

~wj tfinal
� � ¼

Xt¼tfinal

t¼t0

hcj tð Þ~p tð Þ

hcj tð Þ ð10Þ

dj tð Þ ¼ k~p tð Þ � ~wj t0ð Þk2ð11Þ
c tð Þ � argmin

j
dj tð Þð12Þ

where t0 and tfinal are the start and end times of the current epoch,
~wj tfinal
� �

the weight vectors at the end of the current epoch and
~wj t0ð Þ are the weight vectors computed at the previous epoch. The
winning node BMU at each time t is c tð Þ. The neighborhood function
hcj tð Þ was previously described in Eq. 9.

The batch version of SOM has several advantages over the con-
ventional online SOM. Since the algorithm works in batch, there is
no dependence upon the input vectors’ order so that data samples
influence the outcome equally. There is also no need for a learning
rate a tð Þ which reduces the probability of non-convergence [48].
The algorithm is also faster and has a more straightforward com-
putation process since it does not include an update step at each
input submission.

The learning process of SOM aims to move the weight vectors of
the winning neuron and its neighbors closer to the input nodes.
The result is a map that discretely represents the input data in a
lower-dimensional space. However, and as noted by Vesanto and
Alhoniemi [49], when the number of neurons in SOM is large,
neighbor neurons might need to be further grouped. In their work,
Vesanto and Alhoniemi [49] review different approaches to this
problem, such as agglomerative clustering [50]. Connected compo-
nents labeling is applied in this modeling approach to perform the
final grouping of the neurons of SOM. Here, by ‘‘connected compo-
nent” it is meant a subgraph of an undirected graph in which any
two vertices are connected by a path [51].

The idea of using the connected components labeling approach
with SOM was inspired by the work of Hamel and Brown [52] who
used a model to connect all the neural elements that lie close
together in data space. However, in this paper, the enhanced ver-
sion [53] of the Hoshen-Kopelman algorithm [54] is used to group
winning neurons at the end of the last epoch. The proposed solu-
tion is different as it is based on 4-connectivity, which means that
a neuron is a 4-neighbor of a given neuron if the neurons share an
edge in the SOM grid.

In the proposed SOM, illustrated in Fig. 2, an input vector (~p)
corresponds to a collection of ambient or control variables
obtained at a given time. The SOM learns the weights of a grid of
NSOM neurons in a certain number of batch ISOM iterations. This
training process results in a set of ‘‘active” neurons (in the compu-
tational layer). These active neurons are the winning neurons
found during the learning process. One or more adjacent active
neurons may represent an operating regime. Connected compo-
nent labeling helps grouping neighbor neurons that belong to the
same regime. Implementation is based on the Python MiniSom
package [55].
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4.2. Normalizing multi-layer perceptron

This section describes the theoretical background of the MLP
technique and chosen architecture. It includes an explanation for
each design option. It also provides a formal description of the net-
work functionality.

The Multi-Layer Perceptron (sMLP) or FFNN is the classical neu-
ral network model. The MLP can be composed of one or more lay-
ers whose neurons are fully connected. The network is fully
connected in the sense that each neuron in a layer is connected
to all the neurons in the previous layer. Despite this forward
dependence between successive layers, neurons (and their
weights) are independent in the same layer.

The specific goal of an MLP is to approximate some function f :ð Þ.
Given, for example, a mapping of input ~x to output ~y, the MLP
attempts to find the function f such that ~y ¼ f ~x; cð Þ, and the best
parameters c for it. In this learning process, there is an important
function, the error (or loss) function (EW ), that is responsible for

determining how much the predicted output (dy nð Þ ) corresponds
to the ground truth (y nð Þ). The lower the error function, the closer
the predicted value is to the actual output, and the better the
approximation is (unless the model has over-fitted). Another core
component of the network is the optimizer. The optimization goal
is to find the set of weights,WMLP , that minimizes the loss function.
The optimizer works by iterating over the search space, usually
moving in the direction defined by the error function’s gradient.
The learning rate (g) defines the extent to which the algorithm
moves in every iteration (epoch).

The MLP specific implementation, here shown in Fig. 3, is not
strictly an MLP, as it works in an unsupervised way. The network
does not approximate the function f based on the labels ~y. Indeed,
the algorithm does not consider any ground truth ~y. Rather, the
error function has the goal of minimizing the square of the predic-

tions (dy nð Þ2). The goal here is to force the network to reduce the
output signal. The square function is used to prevent the network
from receiving a benefit in making the signal negative.

There are other cases, such as the one described in this paper,
where the neural network’s goal is not to approximate a function



Fig. 3. A Normalizing Multi-Layer Perceptron (MLP) is proposed to normalize the
sensor readings under different operating regimes.
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but to optimize some network properties. For example, variational
auto-encoders [56] can learn data distributions in an unsupervised
way by optimizing a Gaussian prior that is solely a function of the
hidden layers [57]. Sparse auto-encoders are also based on the
principle of unsupervised machine learning [58]; they work by
placing a sparsity constraint on the activations of the hidden lay-
ers. In the case of the MLP proposed, a restriction is placed on
the output signal. This restriction allows obtaining a baseline of
the input signal without having to supervise the network. The nov-
elty of the ‘‘normalizing” MLP is the underlying idea that it is pos-
sible to optimize the network using an error function that does not
depend on the difference between network input and output but
only on the output. The authors believe this is an idea of signif-
icance both to prognostics and machine learning in general.

Different network architectures were designed, and the sim-
plest model that was able to produce the desired results for the
case study (Section 5) is shown in Fig. 3. The network has two lay-
ers: (i) input layer with Rþ 1 neurons where R is the number of
regimes and (ii) the output layer with one neuron. The first layer
provides two important sources of information to the network at
each time: i) a non normalized sensor reading (~mus

t 2 R) and ii) a
collection of R inputs, each for an operating regime, indicating to
which operating regime the sensor reading belongs to
(Regr 2 0;1f g; r 2 1;2; . . . ;Rf g) multiplied by a sufficiently large
factor, such as the maximum value of the sensor (max ~xð Þ).

It is necessary to place the regime variables on the same scale as
the (non-normalized) input signal. If the regime values were to be
binary variables, they would be considerably smaller than the sen-
sor reading values (when active). In such a case, the regime vari-
ables’ significance would be lost as the values forwarded through
the network, and these variables would have a small contribution
to the error function. As a result, and due to the way backpropaga-
tion works [59], the associated weights would suffer only minor
adjustments not producing the expected signal normalization
within each regime. All the inputs need to be at a comparable
range to give the same relevance to the data.

The simplest activation function (u zð Þ), the linear one, is uti-
lized. This is the simplest function as it does not change the input
values
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u zð Þ ¼ z ð13Þ
The output is therefore defined as

dy nð Þ ¼ u netð Þ þ bias ¼ u
XRþ1

d¼1

w nð Þ
d x nð Þ

d

 !
þ bias ð14Þ

where x nð Þ
d is the d-th input, u is the activation function, w nð Þ

d is the

weight on the connection from the input unit x nð Þ
d to the output unit,

net is the weighted sum of inputs and bias is the output bias
The optimization of the network is carried by the mini-batch

gradient descent method based on the following error function

EW
dy nð Þ
� 	

¼ dy nð Þ2 ð15Þ

where EW is the decision function,dy nð Þ is the actual output of the last
neuron

For a better understanding of how the MLP network works, it is
presented a derivation of the network gradients. This derivation is
used by the gradient descent method to update the weights of the
network in its backward pass. In order to calculate the partial
derivative of the error function with respect to an input weight

w nð Þ
d , the chain rule is applied twice

@EW

@w nð Þ
d

¼ @EW

@dy nð Þ
@dy nð Þ

@w nð Þ
d

¼ @EW

@dy nð Þ
@dy nð Þ

@net
@net

@w nð Þ
d

ð16Þ

Solving the last factor, only one term in the sum depends on

w nð Þ
d , becoming

@net

@w nð Þ
d

¼ @

@w nð Þ
d

XRþ1

d¼1

w nð Þ
d x nð Þ

d

 !
¼ @

@w nð Þ
d

w nð Þ
d x nð Þ

d

� 	
¼ x nð Þ

d ð17Þ

The derivative of the second factor is the partial derivative of
the activation function which in our case is the linear function

@u netð Þ þ bias
@net

¼ @u netð Þ
@net

¼ @

@net
netð Þ ¼ 1 ð18Þ

The first factor can be derived as

@EW

@dy nð Þ
¼ @

@dy nð Þ
dy nð Þ2 ¼ 2dy nð Þ ð19Þ

Substituting Eq. 17, Eq. 18, and Eq. 19 in Eq. 16

@EW

@w nð Þ
d

¼ @EW

@dy nð Þ
@dy nð Þ

@net
@net

@w nð Þ
d

¼ @EW

@dy nð Þ
@dy nð Þ

@net
x nð Þ
d ¼ x nð Þ

d d ð20Þ

with

d ¼ @EW

@dy nð Þ
@dy nð Þ

@net
¼ 2dy nð Þ � 1 ¼ 2dy nð Þ ð21Þ

Note that at the end of each mini-batch of size K, the weight
adjustment is done by averaging over the gradients. With this in
mind and from the previous equations, it is possible to derive the
weight update equation

Dw nð Þ
d ¼ � 1

K

XK
n¼1

gx nð Þ
d dn ¼ �g 2

K

XK
n¼1

dy nð Þx nð Þ
d ð22Þ

where g is a fixed constant (g > 0) that represents the network
learning rate

Notably, during the first epochs, the first weight (w0), i.e., the
weight associated with the original input signal, will decrease
more rapidly than the other weights. This is because the update
of the other weights, associated with the regime variables, will

consider several batch samples in which the term dy nð Þx nð Þ
d is zero



Fig. 4. Training examples with Multi-Layer Perceptron (MLP).
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due to x nð Þ
d ¼ 0 (meaning the data sample does not belong to that

regime). This different update velocity will cause a weight differ-
ence, with the first weight becoming smaller at a faster pace than
the other weights. This process will cause the signal’s overall scal-
ing down to happen much quicker than the adjustments produced
by the regime variables. When the weight difference reaches a cer-
tain amount, the regime variables’ contribution to the error will be
more significant. At this point, the different regime signals will be
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pushed towards each other so that the loss (the output signal) is
reduced towards zero. After this, the weights become increasingly
small, and few changes occur.

For illustrative purposes, an example is presented in Fig. 4
which shows the output signal of the network at each successive
training epoch, from epoch 1 to epoch 10, 15, and 30. The last
two charts also show the original signals baselined using the stan-
dard rule. From an analysis of the charts, it is possible to see that



Fig. 5. Model overview. A SOM-MLP architecture is proposed to normalize sensors under different operating regimes.

Table 1
Configuration parameters of Self-Organizing Map (SOM) and Multi-Layer Perceptron (MLP).

SOM

Size of grid sizex = sizey Number of neurons per side of grid

MLP

Epochs IMLP Number of epochs to optimize the network
Weight min value vmin Minimum value of uniform distribution used to initialize the network weights
Weight max value vmax Maximum value of uniform distribution used to initialize the network weights
Learning rate g Learning rate of the network
Batch size K Batch size of network
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the first epochs (Fig. 4a to d) cause a scaling down of the signals.
From epochs 5 to 15 (Fig. 4e to Fig. 4k) the network collapses the
fault responses resulting in a baselined signal. From epoch 15 to
30 (Fig. 4k to Fig. 4l), the network performs smaller and smaller
adjustments to the weights resulting in a signal that resembles
the one produced by the standard rule.
4.3. Final model

This section describes the final system and how the two net-
work architectures previously described (Section 4.1 and 4.2 are
combined.

The final model, shown in Fig. 5, is built by combining the two
proposed networks, SOM and MLP. At each time t, the SOM inputs
the operational variables that characterize the regime. From these
features, it is possible to identify the operating regime. According
to the regime to which the data sample belongs, R new input fea-
tures are created. These will serve as input to the MLP. Each of
these features will correspond to an operating regime and will be
set either to zero or be set equal to the maximum value of the sig-
nal. The (already trained) MLP receives as additional input the sen-
sor reading that it should normalize. The output is a normalized
sensor reading. Note that the binary variables are multiplied by
the sensor’s maximum value to ensure the regime variables have
the same weight as the sensor readings so that equal importance
is given to the regime indicators and sensor readings.
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The configuration parameters of the proposed system are
described in Table 1. One advantage of the SOM approach is that
it only needs the setting of the grid size (size ¼ sizex ¼ sizey). In
Section 6.1 a sensitivity analysis is presented, and some general
guidelines are discussed on how to set this parameter. The MLP
has five hyper-parameters to set. It is necessary to set the number
of epochs IMLP . Also, the network weights are drawn from a uniform
distribution between vmin and vmax. The correct setting of these
hyper-parameters is important to avoid the exploding gradients
problem [60]. This problem occurs when large error gradients
accumulate and lead to model instability. Mini-batch gradient des-
cent is a popular variant of the algorithm of gradient descent in the
field of neural networks [61]. This optimizer was selected over
other alternatives, as mini-batch gradient descent uses several
examples from the training dataset (i.e., K > 1) [61], instead of a
single one, to compute the loss and update the network coeffi-
cients. The use of this optimizer allows having a minimum number
of random examples from which to calculate the loss at each step
(Eq. 15).
5. Case study

Complex engineering systems such as jet engines operate under
different operating and environmental conditions. Such differences
can significantly influence the values of condition monitoring vari-
ables such as temperature or vibration. The performance of jet



Fig. 6. C-MAPSS software modules and simplified diagram of turbofan engine.

2 �R is a temperature measurement used in aeronautics.
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engines operating under dynamic regimes is the case study of this
paper.

The steady-state signature of a jet engine varies significantly
with the different operating conditions. The conditions in which
jet engines are operated can be determined by examining their
main parameters such as the thrust and fuel consumption as well
the jet velocity and flight altitude [62]. There are several distinct
operating regimes [62]: take-off mode (with maximum permissi-
ble gas temperature and r.p.m.); continuous climb power mode
(80–85% thrust and 95% r.p.m.); cruising power mode (80–85%
thrust), idling power mode (5–7% thrust) and a holding mode. This
work aims to distinguish among the operating regimes present in a
turbofan engine’s sensor data for posterior data normalization.

Jet engines also operate within considerably different environ-
mental conditions, i.e., temperature and pressure of the intake air.
These conditions also have an indirect impact on engine perfor-
mance. As ambient pressure and temperature change significantly
with altitude, variables such as total temperature and pressure at
engine inlet change with these conditions. Air intake can affect
the performance of the compressor and the combustion chamber
and even result in damage.

The data used in this paper were generated using the state-of-
the-art CMAPSS developed at the NASA Glenn Research Center
[63]. The simulator emulates a large, high-bypass ratio turbofan
engine similar to the GE90. The model is composed of several mod-
ules, as shown in Fig. 6. Six different flight conditions were simu-
lated based on three operational conditions: altitude (0–42 K ft.),
Mach number (0–0.84), and Throttle Resolver Angle (20–100).
The TRA is the angular deflection of the pilot’s power level, varying
between 0% and 100%. The Mach number is the ratio of flow veloc-
ity to the speed of sound at the medium. Altitude relates to atmo-
spheric conditions. Six operating conditions are only a subset of all
possible operating conditions, which can be any combination of
altitude, Mach number, and TRA.

The CMAPSS data consists of a collection of time series of
observables at cruise snapshots produced due to variation of the
High-Pressure Compressor module’s flow and efficiencies from ini-
tial settings (nominal behavior) to failure values. Each degradation
trajectory is characterized by series of observables (features) that
include sensor and operational variables that change over time
from some nominal condition to failure. The data is described in
detail in [32].

In particular, Fig. 7 shows how the different operating regimes
affect the CMAPSS data. The first plot (Fig. 7a shows a time series
of one jet engine in CMAPSS. As depicted, no clear degradation pat-
tern can be visualized. Applying K-means clustering to the opera-
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tional variables of TRA, Mach number, and altitude allows to
discriminate the different six regimes. Looking at the results of
K-means and looking back at Fig. 7, it can be seen that the data
of the different regimes are disposed around different values of
the y-axis. For example, the values of the sixth regime are around
1500�R2 while the values of the fifth regime are around 1300�R.
Fig. 7b shows even more clearly how the data is on different levels
hindering its analysis. However, when the different regimes’ data
are normalized, it is possible to see a clearer degradation pattern.
Fig. 7c show the data after normalizing each regime time series with
the standard rule [31]. A tentative degradation trajectory can be
drawn on top of the new data as Fig. 7d depicts.

This paper analyzes the second and fourth CMAPSS training
datasets. The second dataset comprises simulated data of 260 jet
engines, and the fourth dataset 249 jet engines. These datasets
are subject to six operating regimes. The first and third datasets
of CMAPSS are less complex, having only one regime, which is
not of interest to this study.
6. Results

This section presents and discusses the results of the two exper-
iments, A and B, designed to evaluate the proposed solution’s
baselining capabilities.
6.1. Experiment A

This section describes and discusses the results of experiment A,
whose goal was to investigate the extent to which the proposed
SOM network, previously described in Section 4.1, was able to sep-
arate, i.e., to cluster, the different regimes found in the data from
the CMAPSS.

In experiment A, it was assumed that the regime classification
of the sensor data produced by the K-means baseline method (with
K ¼ 6) was the correct one, i.e., it represented the ground-truth. In
other words, it was assumed that K-means was able to partition
the sensor data into six regime clusters with 100% of accuracy.
The K-means approach to this case study has been validated by a
significant number of works in the field of prognostics [35]. Also,
several authors, such as Rigamonti et al. [35], have visually shown
that the clusters generated by K-means on the CMAPSS case study
are a good fit for the data.Being an unsupervised task and given the
absence of ground-truth data, the classification generated by K-



Fig. 7. KMeans regime detection based on different features vs KMeans regime detection based on C-MAPSS 3 operational condition variables.
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means was assumed to be the best possible classification, and thus
it was considered the correct one. This ensured that the compar-
ison between the SOM method and the other methods was fair.

The regime separation performed by the SOM network was
based on three ambient and control variables: altitude, Mach num-
ber, and TRA. The network, configured with the parameters of
sizex ¼ sizey ¼ 20, clustered the condition monitoring data in two
steps:

� Training stage: the three features of altitude, Mach number, and
TRA were provided as training data to the network. The training
procedure used data of only one randomly selected engine unit.

� Regime clustering stage: to characterize a collection of sensor
measurements m~u

t of an engine u at time t, the features of alti-
tude, Mach number and TRA were utilized. By providing the val-
ues of these three features as input, the SOM predicted each
unit’s operating regimes at each time. The model classified the
sensor readings of each unit into different regimes by iterating
over all sensor data.

The SOM procedure was used on the second and fourth datasets
of CMAPSS. After running the SOM model on the second CMAPSS
dataset, 258 out of the 260 (engine) units were correctly clustered
into the corresponding regimes, which is a success rate of 99.23%.
The procedure yielded seven regimes for two units instead of the
six K-means regimes. This result does not represent a problem to
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the overall process as the baselining of the MLP is robust to such
clustering outcomes. As long as the newly found clusters are
sub-clusters of a single cluster, accuracy is guaranteed. If the sev-
enth cluster data belonged to different ‘‘ground-truth” clusters,
the normalization would not consider the correct data ranges at
the following MLP stage.Recall that the goal here is to have clusters
representing a regime or a representative set of each regime’s data.
If two groups instead of one collection of data are found for one
regime, that is an acceptable result. The aim is to divide the data
for normalization and not necessarily to perform exact regime
discovery.

On the fourth CMAPSS dataset, 247 out of the 249 (engine) units
were correctly clustered.This represents a success rate of 99.20%.
This rate was approximately the same success rate obtained in
the second dataset, which may be explained by the fact that the
data is subject to the same set of operating conditions and regimes
in both scenarios. This result suggests that the difficulty of regime
classification is correlated solely with the number of regimes and
affecting conditions. The number of fault modes does not appear
to influence the SOM outcome. Note that the fourth dataset has
more fault modes than the second dataset.

The two units incorrectly clustered on the fourth CMAPSS data-
set were matched with seven instead of six regimes. Fig. 8 shows
how the first and second top clusters (red and light blue markers
in Fig. 8a) found by SOM corresponded to a single K-means cluster
(red markers in Fig. 8b) for a given engine unit.Again, this lack of



Fig. 8. Example of regime detection by SOM and K-means for a randomly selected sensor of one engine unit. The clustered regimes are shown in different colors. In this
example, the first and second top clusters found by SOM correspond to a single K-means cluster. This disparity between SOM and K-means can occur occasionally but can be
corrected with several runs of SOM where the grid size varies.

Fig. 9. Performance of SOM according to grid size.

Table 2
Performance of Self-Organizing Map (SOM) measured in Mean Absolute Error (MAE)
on datasets 2 and 4 (size ¼ 20) for variable number of regimes.

MAE

Number of regimes Dataset 2 Dataset 4

6 99.23% 99.20%
5 100.0% 100%
4 100.0% 100%
3 99.98% 99.93%
2 99.26% 99.61
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precision of SOM does not necessarily mean a negative result as
long as the SOM’s additional clusters correspond to a single K-
means cluster. This assumption, investigated by visual inspection,
was met in all unit cases.

The only configuration parameter of the proposed SOM was the
grid dimension. Accordingly, a sensitivity analysis was performed
at this level. The classification accuracy of SOM was tested for dif-
ferent grid configurations on the two CMAPSS datasets. For sim-
plicity, we assumed a square grid (sizex ¼ sizey) and varied its
size. Five engine units were tested. Fig. 9 shows the performance
of SOM for different grid sizes. Performance is measured in match-
ing accuracy (%), that is, the degree to which the classification of
SOM matched that of the K-means. As can be seen, when the grid
size is below five, the SOM shows difficulties in clustering the data
correctly. This limitation reflects the grid being too small for the
number of regimes and the neighboring neurons being merged
by the connected component labeling algorithm. For large grids,
the method works well most of the time except for some rare
cases. For example, in Fig. 9, the method correctly determines that
there are six regimes in the data for 42 of the 45 �5 cases when the
grid size is above five. For these success cases, when the number of
regimes is correctly computed, 100% of clustering accuracy is
achieved for all measurements.
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These results indicate that there is a minimum grid size to make
sure the SOM behaves accurately and stably. The grid size depends
on the number of regimes that exist in the actual data. The more
the number of regimes, the larger is the minimum size, and the
contrary is also true. If we set the number of regimes as a large
number, the SOM will tend to operate correctly in all circum-
stances, as the grid will be large enough to accommodate the dif-
ferent clusters. Please note that one cluster can contain several
neurons since adjacent neurons are grouped into a single regime.
Given this, it is necessary to make space for all clusters. As a simple
rule, if the number of regimes is known, R, setting the grid size to R
is sufficient as there will be R� R neurons in the grid.

Nevertheless, even when a sufficiently large grid size is defined,
SOM may, on rare occasions, not achieve 100% accuracy. It may be
necessary to test the SOM with different grid sizes and check
whether the output is consistent in such a situation. By examining
the results of distinct SOM grids, it is possible to have more confi-
dence in the found number of regimes and the data segmentation.
According to the results of the sensitivity analysis of SOM, it is
preferable to use a large grid than a small one and inspect several
grid outcomes instead of a single one. Based on these two strate-
gies, there is a higher probability of clustering all units correctly.

To test the SOM ability’s to accurately detect a different number
of regimes, the fourth and second CMAPSS datasets were used to
construct several subsets. The resulting sets had 5, 4, 3, and 2
regimes. The SOM network was then configured with
sizex ¼ sizey ¼ 20 and ran on the different datasets. For all the
experiments, the detection rate was above 99% as shown in Table 2.
These results suggest that the SOM can have an acceptable perfor-
mance compared to K-means. Again, the aim is not to outperform
the optimal performance of K-means but to provide a comparable
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method that had additional advantages. The investigation of cases
in which the proposed method surpasses K-means’ performance is
out of this paper’s scope, even though it is a future research goal.

The main advantage of SOM over K-means is that it does not
need to know in advance the number of clusters, as long as the grid
size is sufficiently large. Other algorithms such as DBSCAN [64],
HDBSCAN [65] and MeanShift [66] also do not require knowing
the number of clusters a priori. These methods have a good perfor-
mance on C-MAPSS data achieving an accuracy of 100%, 99.91%,
and 100% for DBSCAN, HDBSCAN, and MeanShift, respectively.
However, conversely to the proposed method, these methods do
not have a mechanism to validate the clustering results. By
inspecting results across different SOM configurations, it is possi-
ble to characterize the degree of confidence in the obtained results.
This result is an essential contribution in a scenario of unsuper-
vised learning such as this one.

Another advantage of SOM is that it does not need additional
parameters besides the grid size. Other clustering algorithms are
typically more challenging to configure. One of the simplest clus-
tering algorithms in configuration terms, the DBSCAN, actually
requires two hyper-parameters: e, which determines how close
points should be to be part of a cluster; andminPts, which determi-
nes the minimum number of points to form a group.

Overall, the SOM model had a satisfactory performance on the
second and fourth CMAPSS datasets. Importantly, this approach
does not need the setting of additional parameters to operate cor-
rectly. Also, by observing different SOM configurations, it is possi-
ble to decide with considerable confidence if the SOM result is
close to the ground truth outcome.
6.2. Experiment B

This section describes and discusses the results of experiment B,
whose goal was to study the extent to which the proposed normal-
izing MLP network, described in Section 4.2, was able to perform
the baselining of the CMAPSS data.

The standard rule’s baselining method is a widely used
approach in the field [35]. When standardizing a given set of data
X in real-time, the mean and standard deviation parameters have

to be estimated from an independent representative set Xholdout .
For the standardization to make sense and not lead to misleading

patterns, the set Xholdout needs to have a mean value and a standard
deviation close to the mean and standard deviation values of X.
This requirement is particularly critical when it is necessary to
enforce that within each operating regime subset of X the data is
standardized – it has a mean of zero and a variance of 1. Ensuring
Table 3
Performance of Multi-Layer Perceptron (MLP) measured in Mean Absolute Error (MAE) o
random unit and another using all data as training data.

Dataset 2

All units Random

T24 2.75 � 1.7 5.57 � 1.1
T30 1.18 � 0.7 4.78 � 1.0s
T50 2.59 � 1.2 4.57 � 1.1
Nc 7.71 � 3.1 4.53 � 1.9
Ps30 1.99 � 1.1 4.59 � 0.9
phi 8.90 � 4.0 8.41 � 3.0
NRc 6.96 � 3.1 5.39 � 2.5
BPR 4.9 � 1.2 6.2 � 1.3
htBleed 1.54 � 0.9 4.35 � 0.8
W31 5.90 � 2.7 6.18 � 2.8
W32 5.82 � 2.6 7.47 � 2.0
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this condition can make the degradation trend more transparent
and obvious when the data is combined.

To ensure the fairness of the comparison between the MLP algo-
rithm and the standard rule method, we assumed that the stan-
dardization used the exact parameters of the mean and standard
deviation of the set X. The standardization used X as the hold-out

set Xholdout . The outcome of this unrealistic yet ‘‘perfect” standard-
ization was used to estimate the MAE of the predictions of the
MLP. The goal here was to compare the MLP with the standard rule
in an ideal scenario for the standard rule. Note that the MLP works
without explicitly providing information to the algorithm about
the mean or the standard deviation of the set, which is advanta-
geous, especially when data are scarce. It is shown in this paper
that the sensor data of a single piece of equipment is enough to
baseline the data reasonably well.

The normalizing MLP was trained and executed to produce the
desired outcome as follows:

� Training stage: the network received seven features: one fea-
ture representing a sensor reading and six binary features (mul-
tiplied by the maximum expected value of the sensor)
representing the operating regime of the reading. Note that
each sensor reading is related to a single regime. The six regime
variables were obtained from the output of the SOM network.
Two training conditions were tested: a) training with a ran-
domly selected unit and b) training with all engine units.

� Prediction stage: the network operated on sensor data of each
single engine unit. By iterating over all data points, the MLP
generated baselined sensor data.

The training procedure of the MLP was tested under two differ-
ent scenarios: a) with the data of only one engine unit and b) with
the data of all available engine units. This testing strategy aimed at
analyzing how well the network could operate with less training
data. The lower the necessary volume of data, the faster the com-
putation can be. The goal here was also to investigate the general-
ization of a network trained with fewer data.

After the MLP normalization of all units, results are evaluated
against the reference method of standardization [31]:

mstandardized
t ¼ mt � lr

rr
ð23Þ

where mstandardized
t represents the s standardized sensor feature at

time t given that mt is the original s sensor feature at time t in
the rth operating condition, and lr and rr are the mean and stan-
dard deviation of the feature in the rth operating condition. To eval-
uate the results, it was necessary to put the MLP’s data onto the
n datasets 2 and 4. Two training methods were tested: one using training data of a

MAE

Dataset 4

All units Random

2.57 � 1.5 3.92 � 1.2
1.3 � 0.8 1.59 � 0.7
2.10 � 1.2 2.86 � 1.0
9.27 � 4.1 8.27 � 3.6
1.54 � 1.0 2.52 � 0.9
16.14 � 5.3 17.6 � 7.7
7.84 � 3.7 7.89 � 3.7
2.45 � 1.0 2.94 � 1.1
1.60 � 1.2 3.21 � 0.9
10.64 � 3.8 11.83 � 4.5
10.33 � 3.6 10.93 � 4.0



Fig. 10. Examples of normalization of different units (engines) by the Multi-Layer Perceptron (MLP) and the standard rule.
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same range of the standardized data. To do this we applied mix-
max normalization [31] to the output of both the standard rule
(Eq. 23) and the MLP:

y� tð Þ ¼ x tð Þ �min y tð Þð Þ
max y tð Þð Þ �min y tð Þð Þ ð24Þ

where y� tð Þ represents the new feature at time t given that y tð Þ is
the sensor feature produced by baselining, and max and min are
max and min values of the feature.

After having both signals in the range 0;1½ � we calculated simi-
larity by:

MAE u; sð Þ ¼ 100
T

�
XT
t¼1

jy�MLP u; s; tð Þ � y�SR u; s; tð ÞÞj ð25Þ
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where MAE u; sð Þ is the mean absolute error of sensor s of unit u in
percentage, y�MLP u; s; tð Þ is the MLP output feature at time t (subject
to min-max normalization) and y�SR u; s; tð Þ is the standardized fea-
ture at time t (subject to min-max normalization). We multiply
by 100 so that MAE performance is between 0 and 100. The closer
the MAE is to zero the better.

Quantitative results of experiment B are presented in Table 3.
The second and fourth columns show the similarity between the
standardized signals and the MLP signals when the network is
trained with all unit data. The third and fifth columns show the
similarity between the standardized signals and the signals gener-
ated by the MLP after being trained with data from a random unit.
As shown in Table 3, the results were satisfactory, especially when
the MLP was trained using all the sensor data. The error was for the
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majority of the cases below the 10% threshold. These results sug-
gest the network can approximate the optimal baseline behavior
and can produce improved signals. Having a close to the optimal
method in factoring out the influence of regimes can significantly
impact data’s quality and improve the final RUL estimations.

The MLP showed some limitations that are important to discuss.
For some sensors, such as phi, the MLP exhibited higher errors than
for most features (see Table 3). These results can be explained by
the fact that the phi sensor can assume different shapes for differ-
ent units. For example, in Fig. 10e and Fig. 10f, examples of two
engine units with completely distinct shapes for the phi sensor
are shown. Since the MLP tries to find a model that fits both shapes,
results are not as good for phi as other, more trendable [67] sen-
sors. One way to address this limitation would be to create several
pMLP, one for each shape, and apply the most suitable model
accordingly.

Analyzing Table 3 it can be seen that the MLP generalized well.
The MAE values obtained using one random unit as train data were
not very far from the values obtained with all units. This result sug-
gests that the network has good adaptation capabilities. According
to these results, the network can, after seeing few data, baseline
the future data. This result is of critical significance for prognostics
applications that involve few data samples.
Fig. 11. Parametric analysis of Normalizing Multi-Layer Perc

282
Improving the data quality without needing to hold-out data is
the ideal solution for data scarcity. This characteristic is perhaps
the most advantageous property of the proposed MLP. There is
no need to explicitly compute the standard deviation or mean val-
ues of the data from a large and representative hold-out dataset. In
classical standardization, the designer is required to know or be
able to estimate these values. This limitation prevents these classi-
cal methods from being used in situations where the equipment is
critical, or the equipment is new, and few failure examples are
available. In the MLP method, only a single unit is needed to train
the network and produce nearly optimal results.

A parametric analysis of the normalizing MLP was performed to
understand the effects of parameter setting on model performance
(measured in MAE). The four parameters of Table 1 were consid-
ered. The analysis selected three sensor signals, the worst and
best-performing features of the second dataset, respectively fea-
tures phi and T30, and a randomly selected feature, T50. These
three features were selected as a representative set of the sensor
signals. The results of the analysis are shown in Fig. 11. From an
analysis of Fig. 11b, it can be concluded that if the weight uniform
initialization is within the interval vmin;0½ �, changing the vmin did
not produce significant changes in performance. This result sug-
gests that the network performance is not sensible to the actual
eptron (MLP) on features T30, phi and T50 (dataset 2).
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values of its initial weights. This finding is positive as it suggests
that this hyper-parameter is straightforward to set to obtain the
desired results.

Seemingly, the parameter of the number of epochs (see Fig. 11c)
did not appear to affect baselining performance (measured in
MAE). This result can be explained by the fact that the network
was designed to prevent over-fitting. By not relying on external
ground-truth data, the proposed MLP can more quickly perform
its function in the initial epochs. The batch size parameter also
did not produce a substantial performance change (measured in
MAE).

As depicted in Fig. 11a, the learning rate (g) of the network has
to be selected with caution and is one of the most influential
parameters of the set of four hyper-parameters of the MLP. It
determines each epoch’s step size while moving toward the mini-
mum of the error function (EW ). As shown in Fig. 11a, above a supe-
rior threshold, 10�7 for T24/T50 and 10�6 for phi, the network
produced undetermined output. This behavior may be explained
by the network minimizing the signal too quickly when the step
size is large. Below a low threshold, 10�10 for T24/T50 and 10�9

for phi, the network had a significant decrease in performance. This
behavior may be explained by the network taking too long to min-
imize the signal.
7. Conclusion

Systems are rarely in a steady-state operating mode. Instead,
there are continuous system signatures caused by variations in
the operational and environmental conditions or system dynamics.
The operational and environmental variations are not descriptive
of system degradation, whereas changes in system dynamics are
and need to be further analyzed. Therefore, it is vital to reduce
the influence of operational and environmental conditions (i.e., of
the regimes) on the system’s signals. In this work, we consider a
‘‘baselining” procedure composed of two steps: 1) regime identifi-
cation and 2) data normalization. The product of these steps is a
collection of sensors normalized within the range found in each
regime.

The applications of this work are numerous. In prognostics, the
science of forecasting the equipment’s future health state, it is well
known that the operating conditions significantly impact model
performance. In fact, in the case of CMAPSS, the variations in the
data produced by the different operating conditions are more dra-
matic than the variance introduced by the progressing faults. This
fact is also true for other types of equipment and scenarios. Making
operating data condition-invariant by using advanced methods is
therefore of considerable utility to the general field of PHM. Also,
areas such as SHM could benefit from the analysis of this work,
as it is essential to factor out the influence of operating conditions
before conducting proper structural damage modeling. In general,
this work intends to promote a better understanding of the behav-
ior of engineering systems.

Being able to identify the set of operating regimes of a system is
essential. However, most approaches used in the literature assume
that the number of regimes is known. The proposed self-organizing
map provides for the automatic clustering of the operating
regimes. It does not accept a parameter with the number of
regimes. We evaluate the clustering quality by varying the grid size
and analyzing its effect on the network’s outcome.

It is important to note that the self-organizing map approach’s
contribution is not to outperform the standard clustering methods
such as K-means or DBSCAN neither in accuracy nor in runtime.
See A and B for an analysis of the runtime performance and overall
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time complexity. The actual contribution is the proposal of a
method that can partition the regimes and that:

� Does not require knowing the number of regimes (or clusters)
in advance

� Has a mechanism to detect when a data sample is being incor-
rectly classified

� Is a solution that can inspire integrated neural network solu-
tions for diagnostics and prognostics

According to the regime indicator, aggregating data under dif-
ferent operating regimes into one composite index typically
requires the standardization of the original raw data. However, in
classical normalization, a suitable mathematical formula needs to
be selected, and statistical parameters need to be known or esti-
mated. For example, when using the standard rule, it is necessary
to put aside data to compute the mean and standard deviations
of sensor data in each operating regime. This step can be problem-
atic in many data-driven applications in which the availability of
data is essential. Excluding part of the data for the only purpose
of mean/standard deviation computation is an expensive alterna-
tive. The normalizing multi-layer perceptron proposed in this
paper addresses this difficulty.

A characteristic of the proposed model (self-organizing map
combined with the multi-layer perceptron) is that it does not need
much training data. It works in two stages. First, and for a feature
(sensor) we want to normalize, we provide data of one or more
units. The network is trained with this data. After the network is
trained, the same information is used for prediction. The output
data is normalized. Please note the importance and uniqueness
of the proposed normalizing multi-layer perceptron network. Tra-
ditionally [68], data needs to be normalized before it is fed into a
neural network. The model normalizes the input data according
to the different normalization regimes given as input.

The contribution of the multi-layer perceptron approach is to
show that it is possible to baseline sensor data in a nearly optimal
way while:

� Not requiring large volumes of training data
� Being a neural network solution that works in an unsupervised
manner and can receive non-normalized inputs

� Being again a solution that can inspire integrated neural net-
work solutions for diagnostics and prognostics

This paper considers an unknown set of operating regimes that
influence the overall degradation trajectories shown in the condi-
tion monitoring signals. We assume that, within each regime, the
data forms a clear degradation trajectory, and therefore, the prob-
lem is to combine the data from the different regimes. If this
assumption does not hold, our method is not able to effectively per-
form the baselining. The self-organizing map is designed to handle
a vast number of operating regimes. Nevertheless, when dealing
with a high number of regimes, the designer needs to set the grid
size to that number, and the discovery of the regimes can be a slow
process. We also assume that the operational and environmental
variables are known. The multi-layer perceptron method showed
some difficulty to baseline data displaying different trajectory
shapes within the same fleet. Developing separate models for each
trajectory shape may help achieve higher accuracy.

Future work will further analyze the properties of the model
outcome. An area of improvement is reducing the level of noise
present in the output of the multi-layer perceptron. Also, it would
be interesting to integrate these machine learning steps into a
comprehensive data-driven prognostics approach.



Table B.4
Runtime performance of the Self Organizing Map (SOM) in seconds for dataset 2 and
4. Mean values and the corresponding confidence intervals of 15 replicates are
presented. The confidence intervals are set at 95%.

Self-Organizing Map (SOM) K-Means (Baseline)

Dataset 2 1.70s 95% CI [1.67s, 1.74s] 0.016s 95% CI [0.015s, 0.017s]
Dataset 4 1.71s 95% CI [1.70s, 1.72s] 0.017s 95% CI [0.015s, 0.018s]
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8. Code

The code is open-source and is available at [69,70].
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Appendix A. Computational complexity

Setting some parameters fixed, the time complexity of the
approach can be shown to be linear with the size of the input. It
is important however to note that, at its worst, the time complexity
of the overall model can become quartic. In this work, it is assumed
that the number of operating conditions is small. Hereafter follows
formal proofs.

A.1. Self-organizing map

Let NSOM be the number of units in the SOM, G the dimension of
each input vector, n the number of sample vectors, and ISOM the
number of epochs of the batch version. The dimension of each
input vector G is equal to the number of operating condition indi-
cators. The batch version of the SOM has the complexity of
O NSOM � G � n � ISOMð Þ [71]. The computational cost of the algorithm
depends for the most part on the number of sample vectors. The
running time is linear with the size of the input n setting the other
variables as a fixed number. However, at its worst, when the num-
ber of operating conditions, number of neurons, and iterations
equals the input size, the time complexity of the SOM can become
proportional to O n4

� �
.

A.2. Multi-layer perceptron feed-forward pass

The time complexity of the training and execution stages of the
proposed normalizing MLP are linear in respect to the input size. At
this worst, the algorithm can become quadratic.

Note: In the following calculations we assume that the time
complexity of matrix multiplication for Mih �Mhk is simply
O i � h � kð Þ. There are other approaches with better time complex-
ity but typically feed-forward and back-propagation algorithms
are implemented with matrices.

Since the network is composed of Rþ 1 input neurons and one
single output neuron, a matrix is necessary to represent the
weights between the input layer and the output layer. Let WMLP

denote this matrix which has Rþ 1 rows and h columns. Here,
Rþ 1 is the number of nodes in the input layer, i.e., the number
of operating conditions + 1 sensor measurement, and h is the num-
ber of nodes in the output layer equaling one in the proposed
multi-layer perceptron architecture. It is assumed the existence
of n training examples. The input is represented by the Xin matrix,
where there are n input samples with i ¼ r þ 1 features each. To
propagate from input layer to the output layer the following oper-
ation applies,

Shn ¼ WMLP
hi Xin ðA:1Þ
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This matrix multiplication has O n � i � hð Þ time complexity. Because
h ¼ 1;WMLP is a vector instead of a matrix. To apply the activation
functionu :ð Þ to S in order to complete the feed-forward step the fol-
lowing operation applies,

Zhn ¼ u Shnð Þ ðA:2Þ
This procedure has O hnð Þ time complexity, because it is an element-
wise operation. Note that the activation function u :ð Þ is the linear
function. The overall time complexity for the forward pass algo-
rithm of the proposed network is therefore O n � i � hþ n � hð Þ ¼
O n � iþ 1ð Þð Þ where n is the number of samples and i is the number
of operating conditions plus one. Each data sample is a collection
with one sensor measurement obtained from a monitoring in addi-
tion to several binary variables indicating the measurement operat-
ing condition.

O n � iþ 1ð Þð Þ is not linear for both the variables n and i at the
same time, but it is linear if one variable is set constant and the
other one varies. A running time of O n � iþ 1ð Þð Þ is therefore linear
with the size of the input (n) setting the number of operating con-
ditions (i) as a fixed number. However, at its worst, when the num-
ber of operating conditions equals the input size, the time
complexity of the feed-forward step is proportional to O n2

� �
.

A.3. Multi-layer perceptron back-propagation pass

This section presents the calculations for the time complexity of
the training algorithm of the proposed MLP. Typically, in back-
propagation the following matrix operation is performed:

D outð Þ
hn ¼ Zhn � Yhn ðA:3Þ
In such approach, the matrix D is computed as the difference

between the predicted output (Z) and the expected output (Y).
The expected output is the result that the algorithm tries to
approximate. The delta matrix D is fed backwards through the net-
work when this classical approach is followed. The approach pro-
posed in this paper is however different. The network aims to
minimize the following equation instead of the previous one
(where 	 denotes element-wise multiplication):

D outð Þ
hn ¼ Zhn 	 Zhn ðA:4Þ

In other words, there is no concept of expected output: the network
supervises itself automatically. The matrix that contains the error
signals between the input layer and the output layer is computed
as follows:

D inpð Þ
hn ¼ u0 Shnð Þ 	 D outð Þ

hn ðA:5Þ
The last step is to compute the weight updates:

dWMLP ¼ �gD inpð Þð ÞXT
in

hn ðA:6Þ
In this last equation, the g denotes the learning rate. From Eq.

A.6 it follows that the time complexity of the backward propaga-
tion algorithm is O n � i � hð Þ. The final time complexity of the algo-
rithm involves a multiplication by the number of iterations IMLP

(epochs). The time complexity of the back-propagation is therefore



Table B.5
Runtime performance of the Multi-Layer Perceptron (MLP) in seconds for 3 sensors. Mean values and the corresponding confidence intervals of 15 replicates are presented. The
confidence intervals are set at 95%.

Dataset Sensor MLP MLP Standard Rule

2 phi 14.37s 95% CI [13.50s, 15.25s] 0.48s 95% CI [0.46s, 0.49s] 0.018s 95% CI [0.018s, 0.019s]
4 phi 15.55s 95% CI [15.40s, 15.70s] 0.53s 95% CI [0.55s, 0.57s] 0.019s 95% CI [0.019s, 0.020s]
2 T30 4.23s 95% CI [4.19s, 4.28s] 0.48s 95% CI [0.46s, 0.50s] 0.018s 95% CI [0.018s, 0.019s]
4 T30 4.94s 95% CI [4.77s, 5.11s] 0.54s 95% CI [0.53s, 0.55s] 0.020s 95% CI [0.019s, 0.020s]
2 T50 1.51s 95% CI [1.40s, 1.61s] 0.47s 95% CI [0.45s, 0.50s] 0.017s 95% CI [0.017s, 0.018s]
4 T50 4.94s 95% CI [4.77s, 5.11s] 0.54s 95% CI [0.53s, 0.55s] 0.020s 95% CI [0.019s, 0.020s]
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O IMLP � n � i � hð Þ. Setting the epochs and number of operating con-
ditions fixed, the algorithm is linear with the size of the input (n).
However, at its worst, when the number of operating conditions
and epochs equals the input size, the time complexity of the
feed-forward step is proportional to O n3

� �
.

Appendix B. Runtime

In addition to calculating the time complexity, the exact run-
ning time of the algorithms was measured in a sequence of exper-
iments. All experimental evaluations were performed using a
desktop computer equipped with an Intel Core i7-10875H CPU,
32 GB memory, and a NVIDIA GeForce RTX 2060 (6 GB) GPU card.

The SOM implementation was evaluated for dataset 2 and data-
set 4. Based on the operating conditions indicators (p indicators for
both datasets), the SOM clustered the operating regimes in each
dataset. The performance results are shown in Table B.4. It can
be seen from Table B.4 that the performance of the proposed
SOM solution is significantly worse than that of the baseline model,
the K-means clustering. The long running time of SOM architec-
tures is a well-known limitation [43]. The increase in running time
is compensated by the fact that the proposed SOM adaptation dis-
covers automatically the number of operating conditions, and also
importantly, the proposed SOM has mechanisms in place to vali-
date and ensure that the discovered number of clusters (i.e. num-
ber of operating conditions) is appropriate.

For simplicity, the formal evaluation of the exact running time
of the MLP was performed only on 3 sensors (phi, T30 and T50).
Table B.5 presents the computational performance of the MLP
training and execution processes considering dataset 2 and 4 for
the 3 selected sensors (phi, T30 and T50). As it is shown in
Table B.5, the training time (column 3) is significantly higher than
the running time of the MLP (column 4) for all three considered
sensors for both datasets 2 and 4. This is an expected result for
neural networks: the backward pass repeated over a given number
of epochs usually takes longer than the feed-forward pass.

In order to reduce the MLP computational costs, it has been
shown in Section 6 that the network can be trained on a smaller
set of data. Instead of using the entire dataset, the data of a single
equipment can be used to train the network. This has been shown
in Section 6 to yield slightly worse but overall acceptable results
(see Table 3 of the paper). In terms of computational time and in
our experiments, this approach was shown to reduce by approxi-
mately ten times the training time.

It was also noticed that the more complex a sensor was, such as
phi, the more epochs would be needed to train the MLP network of
the sensor. This ultimately leads to higher computational costs. By
complex sensor it is meant a sensor not showingmonotonic behav-
ior or trendability patterns [67]. As an example consider the third
column of Table B.5. As shown in the Table, the training time of the
MLP for phi, a sensor with low trendability, was consistently higher
than the training time of the MPL for other sensors such as T30 or
T50, which score higher in terms of trendability. This can be seen in
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the third column of Table B.5. To minimize this kind of effects, it is
hypothesized that by improving the monotonicity and trendability
of the sensors, using for example filtering and fusion techniques,
the computational complexity of the proposed MLP algorithm
could be lowered.

The complexity of the sensor does not seem to affect the run-
ning time of the MLP as can be seen in the fourth column of
Table B.5. The different selected sensors (phi, T30 and T50) had
similar running times for dataset 2. The same situation was noticed
for dataset 4. This is possibly explained by the fact that once the
network is trained, it is only necessary to perform a feedforward
step to baseline the data. When training the network, the number
of epochs constrains the process and is dependent on the sensor
complexity.

In regards to execution time, from one dataset to the other there
were however significant differences. This can be explained by the
fact that there are more sample points in dataset 4 than in dataset
2. Since the time complexity of the feed-forward step of the MLP
algorithm has been shown to be linear with respect to the sample
size, this result was expected.
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