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ABSTRACT

Conditional Markov chain (CMC) models have proven to be promising building blocks for stochastic

convection parameterizations. In this paper, it is demonstrated how two different CMCmodels can be used as

mass flux closures in convection parameterizations. More specifically, the CMC models provide a stochastic

estimate of the convective area fraction that is directly proportional to the cloud-base mass flux. Since, in one

of the models, the number of CMCs decreases with increasing resolution, this approach makes convection

parameterizations scale aware and introduces stochastic fluctuations that increasewith resolution in a realistic

way. Both CMC models are implemented in a GCM of intermediate complexity. It is shown that with the

CMCmodels, trained with observational data, it is possible to improve both the subgrid-scale variability and

the autocorrelation function of the cloud-base mass flux as well as the distribution of the daily accumulated

precipitation in the tropics. Hovmöller diagrams and wavenumber–frequency diagrams of the equatorial

precipitation indicate that, in this specific GCM, convectively coupled equatorial waves are more sensitive to

the mean cloud-base mass flux than to stochastic fluctuations. A smaller mean mass flux tends to increase the

power of the simulated MJO and to diminish equatorial Kelvin waves.

1. Introduction

Deep convection is an atmospheric process of major

importance in Earth’s weather and climate system. Lo-

cally, it transports heat, moisture, and momentum ver-

tically in the atmosphere (Arakawa 2004). Globally,

it affects the large-scale circulation (Randall et al.

1989). Further, deep convection largely determines

precipitation in the tropics. Of specific interest is its

coupling to equatorial waves (e.g., equatorial Kelvin

waves, Rossby waves, and the MJO) that largely de-

termine the variability of precipitation (Kiladis et al.

2009; Wheeler and Kiladis 1999). Most GCMs do not

resolve deep convection. Instead, this process is repre-

sented by parameterizations, assuming, for example, a

cumulus ensemble that is in quasi equilibrium with the

large-scale forcing (Arakawa and Schubert 1974).

Availability of larger computational resources allows

GCMs to be run at finer resolutions. At horizontal grid

resolutions below ;100 km, and especially in the Grey
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Zone (1–10km), where convection becomes partially

resolved, the quasi-equilibrium assumption breaks

down. As a result, the assumption that there is a unique

relation between the cumulus ensemble and the large-

scale conditions is not reasonable anymore, because the

ensemble in the GCM grid column is too small, and life

cycles of individual cumulus clouds cause large fluctua-

tions in the convective response and associated subgrid

fluxes. Therefore, convection parameterizations should

become scale aware (Arakawa et al. 2011) and stochastic

ingredients are required in absence of quasi equilibrium

at increasing resolutions (e.g., Palmer 2001; Plant and

Craig 2008). Stochastic physics have been introduced in

GCMs for various reasons: to more realistically repre-

sent the subgrid-scale variability (Lin and Neelin 2000),

but also to enlarge the model spread in ensemble pre-

diction systems (e.g., Buizza et al. 1999; Teixeira and

Reynolds 2008; Bengtsson et al. 2013).

The stochastic subgrid-process parameterization ap-

proach used in this paper has been introduced by

Crommelin and Vanden-Eijnden (2008). The main idea

behind this approach is to represent subgrid processes of

an atmosphere or ocean model by stochastic processes

of which the properties are inferred from high-

resolution data prior to implementation. More specifi-

cally, the processes are represented by finite-state

Markov chains with transition probability matrices

that are estimated from data and are conditioned on the

resolved model variables. In Crommelin and Vanden-

Eijnden (2008), the conditional Markov chains (CMCs)

were shown to adequately represent subgrid-scale vari-

ables in the Lorenz ‘96 model (Lorenz 1996). Using the

same CMC approach in a GCM to parameterize con-

vection is a challenging task.

In a GCM, both the large-scale and the subgrid-scale

state are not single scalars as is the case in the Lorenz ‘96

model but, instead, are formed by various vertical pro-

files of resolved and subgrid variables respectively.

Another difficulty is the availability of high-resolution

data of convection. As explained by Crommelin and

Vanden-Eijnden (2008), Markov chains can be inferred

from high-resolution convection resolvingmodel data as

well as observational data. Inferring CMCs from high-

resolution model data has been explored by Dorrestijn

et al. (2013b) and Dorrestijn et al. (2013a).

Inspired by the stochastic multicloud model of

Khouider et al. (2010), Dorrestijn et al. (2015) con-

structed a stochastic multicloud model on a two-

dimensional square lattice, using CMCs inferred from

observational data. The model was inferred from an

extensive dataset, consisting of a combination of high-

resolution data of deep convection (Kumar et al.

2013) and large-scale reanalysis data improved with

observational data (Davies et al. 2013). The high-

resolution (2.5 3 2.5 km2) data originated from a rain

radar located in the tropics (Darwin, Australia) and

were available every 10min for several months in a

region of size ;1.58 3 1.58. Thresholds for the cloud-

top height and the rain rate were used for classification

into a finite number of convective or stratiform cloud

types (Dorrestijn et al. 2013a; Khouider et al. 2010).

Observations of cloud-type transitions were used to

estimate the transition probabilities of the CMCs.

When conditioned on the large-scale vertical velocity

and choosing 100 CMCs, the cloud-type area fractions

of the scheme were comparable to the observational

fractions in the radar domain. By varying the number of

CMCs, the multicloud model could be adapted to the

size of a GCM column, thereby making the parame-

terization scale aware.

In Gottwald et al. (2016), a similar data-driven sto-

chastic scheme has been developed. Observational

datasets from Darwin and Kwajalein were used to

construct parameterizations of the convective area

fraction sc, also conditioned on the large-scale vertical

velocity. The convective area fraction was obtained

by sampling directly from the area fraction distribu-

tion that was estimated from the data before, con-

ditioned on the large-scale state. Introducing time

correlation was explored as well by using CMCs. The

scheme was able to adequately reproduce observational

time series of sc.

Testing the schemes in a dynamical environment, in

which the CMCs are interacting with the resolved model

variables in a GCM, is a necessary step in the develop-

ment of the CMC-based schemes for the usage in state-

of-the-art GCMs. Therefore, in the present paper, we

show results of the implementation of the stochastic

multicloud model of Dorrestijn et al. (2015), referred

to as Dor15, and a scheme similar to the CMC scheme

of Gottwald et al. (2016), referred to as Gott15, in a

GCM of intermediate complexity; the climate model

Simplified Parameterizations, Primitive Equation Dy-

namics (SPEEDY) (Molteni 2003; Kucharski et al.

2006, 2013).

The stochastic schemes produce sc, which serves as a

closure for the cloud-basemass-fluxMb in the convection

parameterization scheme. So, SPEEDY’s traditional de-

terministic convection scheme, a simplified Tiedtkemass-

flux scheme (Tiedtke 1989), ismade stochastic by usingsc

as stochastic input for the determination of Mb. This is a

crucial step in the coupling of the stochastic schemes to

the convection scheme of SPEEDY. The coupling of a

stochastic scheme to the convection scheme of a NWP

model, via sc and Mb, has been successfully applied

earlier by Bengtsson et al. (2013).
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Our paper is organized as follows. In section 2, we

describe the Dor15 scheme, followed by a description of

the Gott15 scheme in section 3. Then, we explain how

we implement the schemes in SPEEDY in section 4. We

specify the observational datasets in section 5, and we

present model results in section 6. A discussion follows

in section 7.

2. The Dor15 scheme

The stochastic multicloud model consists of a 2D

square lattice with N nodes, with at each node a CMC,

denoted Yn (1# n#N), that switches, every 10min, be-

tween the following states: 1) clear sky, 2) moderate

congestus, 3) strong congestus, 4) deep convective cloud,

and 5) stratiform cloud. We refer to these states as cloud

types. In Fig. 1, we illustrate how the multicloud square

lattice, or ‘‘microgrid,’’ can be embedded in a GCM grid.

In the figure, we see four GCM columns with N5 25

CMCs for each column. The value N5 25 has only been

chosen for the sake of illustration and results will be

presented for N5 100 and N5 500.

The transition probabilities of the CMCs depend on

the large-scale state of the atmosphere: they are condi-

tioned on the vertical velocity averaged over the lower

part of the troposphere defined by

hvi:5 1

p
0
2p*

ðp0
p*

v(p) dp ,

in which v is the large-scale vertical velocity (hPah21),

p0 is the pressure at the surface, and p* is the pressure

level at 340hPa. We condition the CMCs on hvi, because
in Dorrestijn et al. (2015) this variable was shown to have

the largest correlation with deep convection; see Davies

et al. (2013) and Peters et al. (2013) for similar findings.

Since the CMCs have 5 states, the transition probability

matrices are of size 5 3 5 and since we bin all possible

values of hvi into 25 intervals, we obtain 25 matrices; for

each interval there is a different 5 3 5 matrix.

In a GCM grid column, the N CMCs yield area frac-

tions sm for each cloud type 1#m# 5, which are de-

fined by

s
m
5

1

N
�
N

n51

1[Y
n
5m] , (1)

in which 1[�] is the indicator function (1[Yn 5m]5 1 if

Yn 5m and 1[Yn 5m]5 0 if Yn 6¼ m). Previous studies

based on observational data (Dorrestijn et al. 2015;

Gottwald et al. 2016) show that the expectation value of

s4 is an increasing function of hvi, with a maximum of

around 0.03 for hvi’ 15 hPa h21.

Ideally, one would like to choose N such that the size

of the microgrid cells corresponds to the typical size of a

convective updraft areaL2
conv. This implies thatN should

be the ratio between the GCM horizontal grid size area

DX2 and L2
conv; that is, N’DX2/L2

conv. The parameter N

is a scaling parameter enabling the Dor15 scheme to

adapt to the GCM grid resolution and determines the

magnitude of the stochastic fluctuations of the area

fractions sm: the larger N, the smaller the deviations

from the expectation values, to which the fractions

converge if N/‘. This gives a deterministic version of

the model. Previous offline studies (Dorrestijn et al.

2015) showed that forN5 100 the temporal fluctuations

of the deep convective fractions resemble the observa-

tional fluctuations on an area of size 1703 170 km2, and

therefore, L2
conv ’ 172 km2. The value N5 100 is ideal

for usage in a GCM with grid size DX2 5 1702 km2. We

test the multicloud model in SPEEDY for the relatively

small value N5 100, referred to as Dor15–100, to be

able to assess the impact of stochastic fluctuations. As an

extra sensitivity test, we do an additional experiment

withN5 500, referred to as Dor15–500, which is a more

appropriate value for SPEEDY.

FIG. 1. Illustration of the stochastic multicloud model (the Dor15 scheme). The thick black lines indicate the

GCM grid of which we see four columns from a top view. Inside the four columns, the thin black lines form the 2D

microgrid of themulticloudmodel. Here, eachGCMgrid column containsN5 25 nodes, with a CMCon each node,

switching between the five cloud types. A snapshot from the discretized radar data fromDarwin is included to point

out that the transition probabilities of the CMCs are estimated from observational data.
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For the implementation in SPEEDY we use the sum

of the strong congestus and deep convective area frac-

tions to estimate the convective area fraction:

s
c
5s

4
1s

3
, (2)

which is used in the closure for Mb in the convection

scheme, explained in detail in section 4.

More information about multicloud models can

be found in, for example, Ajayamohan et al. (2014),

Deng et al. (2015), Dorrestijn et al. (2013a, 2015), Frenkel

et al. (2013), Khouider and Majda (2006), Khouider et al.

(2010), Majda et al. (2007), and Peters et al. (2013).

3. The Gott15 scheme

In the Gott15 scheme, the CMCs switch between sc

values instead of cloud types, and only one CMC is used

for each GCM column (by contrast, the multicloud

model has N CMCs in each GCM column). Thus, the

scheme is less complex than the multicloud model but it

is not scale aware. The fluctuations of sc cannot be

adapted to the GCM resolution.Wewill now describe in

detail how we construct the Gott15 scheme.

Again, we use the discretized Darwin radar dataset.

The deep convective area fractions s4 are added to the

strong congestus area fractions s3 forming sc. We clus-

ter the fractions with k means (MacQueen 1967; Gan

et al. 2007) usingK5 10 cluster centroids. This results in

10 possible sc values, which are the states of the CMCs.

We use the observational sc to estimate transition

probability matrices of size 10 3 10. As in Dor15, the

CMCs are conditioned on the 25 intervals of hvi, so we

estimate 25 matrices; for each interval of hvi there is a

different 103 10 matrix. The transition probabilities of

the CMC correspond to a time step of 10min, since

observational fractions are available every 10min, and

to an area size of ;1.58 3 1.58, which is the size of the

radar domain.

The Gott15 scheme is implemented in SPEEDY in

the same way as the multicloud model: sc is used as a

closure for Mb. We stress that the main difference be-

tween the Gott15 scheme and the Dor15 scheme is that

the Gott15 scheme does not make use of a multicloud

model; instead, its CMCs make transitions between

sc values.

4. Implementation in SPEEDY

SPEEDY is a GCM of intermediate complexity: only

the most important processes are incorporated in the

model, they are represented in a simplified way, and the

GCM’s resolution is coarse (Kucharski et al. 2013). It is a

hydrostatic spectral model that solves the primitive

equations on the entire globe. The prognostic variables

are vorticity, horizontal divergence, absolute tempera-

ture, surface pressure, and specific humidity. The time

integration is performed by a leapfrog scheme and the

time step in the standard version of SPEEDY is 40min.

In our version, the horizontal resolution is T30, referring

to a triangular truncation at total wavenumber 30. The

prognostic model fields are expanded into series of

spherical harmonic functions of total wavenumber 30

and smaller. Along latitude circles these functions cor-

respond to cosine and sine functions with maximum

zonal wavenumber 30. This corresponds to a size of

;3.758 3 3.758 for each of the 96 3 48 5 4608 vertical

columns. In the vertical, the model has eight pressure

levels. SSTs are prescribed by using observational cli-

matological fields, while land skin temperatures are

prognosed using a soil model. SPEEDY has a seasonal

cycle but no daily cycle. Simplified parameterizations

are used to represent shortwave and longwave radiation,

deep convection, clouds, surface heat and moisture

fluxes, large-scale condensation, and vertical diffusion

(representing, e.g., shallow convection). Precipitation is

the sum of the large-scale and convective precipitation.

The large-scale precipitation is derived from a large-

scale condensation scheme and the convective pre-

cipitation is derived from the deep convection scheme.

The reason why we choose such a simplified GCM is

that it provides a perfect playground to explore new

stochastic concepts in convection parameterizations and

the impact on the representation of intraseasonal vari-

ability caused by equatorial waves. In that respect this

explorative study should be considered as a natural in-

termediate step from recent offline studies (Dorrestijn

et al. 2015; Gottwald et al. 2016) toward an im-

plementation into the state-of-the-art GCMs.

a. The relaxation closure (CTRL)

The deep convection scheme is a simplified Tiedtke

mass flux scheme (Tiedtke 1989). Convection in a grid

column is triggered if the atmosphere is conditionally

unstable with respect to the lowest model level and if the

relative humidity in the two lowest model levels

exceeds a critical value (Molteni 2003). In the standard

version of SPEEDY, the cloud-base mass flux Mb

is estimated by a relaxation closure. This closure

determines a value of Mb such that the convection

scheme relaxes back to a prescribed relative humidity

threshold in 6 h. The control experiments are done using

this relaxation closure and are referred to as CTRL. In

the vertical, the mass, heat, and moisture fluxes are

modified by a prescribed entrainment profile, while

detrainment is assumed only to occur at the highest level

where the convection scheme is active by depositing the
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convective updraft mass, heat, and moisture into the

environment.

b. Implementation of the stochastic schemes

The stochastic schemes are implemented by replacing

the standard relaxation closure for Mb, which can in-

stead be estimated by using the definition

M
b
5 rw

c
s
c
, (3)

with a typical prescribed value of the updraft momen-

tum at cloud base, rwc 5 1 kgm22 s21 (Möbis and

Stevens 2012). For the multicloud model, we will also

test the influence of this particular choice by varying this

updraft momentum. In one experiment, we set rwc at

0.5 kgm22 s21 while using N5 100, referred to as

Dor15–100w0.5, and later we choose other values of rwc.

When the multicloud model is used, we evolve

N5 100 or N5 500 CMCs in every vertical column of

SPEEDY, yielding cloud-type area fractions sm for each

cloud type at every model time step. The convective

area fraction sc is calculated with (2) and used in (3).

Note that we also evolve the CMCs for columns without

deep convection (in case the trigger function did not

activate convection) to be sure that the Markov chains

do not have to spin up when convection is activated.

Since the transition probabilities of the CMCs corre-

spond to a time step of 10min, we set the time step of

SPEEDY at 10min for all runs.

In each vertical column, the input of the CMCs is the

large-scale vertical velocity hvi. The value hvi is as-

signed to one of the 25 interval numbers and the CMCs

will all use the same transition probability matrix that

corresponds to this interval number. Given its cloud

type, each CMC will switch to another cloud type (or

does not change cloud type), and after that, the new area

fractions sm are calculated using (1). In the present

study, we only use s4 and s3. In Dorrestijn et al. (2015),

the possible usage of the other cloud-type area fractions

is described.

When the Gott15 scheme is used, we evolve only 1

CMC in every column of SPEEDY, which directly yields

sc. The value of hvi in a model column determines

which transition probability matrix is used by the CMC.

5. Observations

We will compare the model behavior of SPEEDY

with observations. We will use two observational data-

sets. The first dataset is the Darwin radar dataset. We

will compare Mb at time step level (10min) of the two

stochastic schemes and CTRL with Mb observed in

Darwin. We emphasize that we do not have observations

ofMb; however, since we use sc of the stochastic schemes

directly asMb in (3), we will also use the observational sc

as a proxy for the observational Mb by assuming again

that rwc is equal to 1kgm22 s21.

The second observational dataset is the daily accu-

mulated precipitation GPI dataset (18 3 18) (Huffman

and Bolvin 2013). Since SPEEDY has a resolution of

;3.758 3 3.758, we average the observational pre-

cipitation values over blocks of this size.

6. Results

We run SPEEDY several times for 11 yr with different

closures for Mb. To avoid spinup effects, data from the

first year are excluded. We store variables (e.g., Mb and

precipitation values) at every time step and for all ver-

tical columns around the equator between 158N and

158S, which are eight vertical columns for each

longitude.

a. Mb at time step level

To get a first impression of the convective behavior of

SPEEDYwith the several closures, we showMb at time-

step level for 2 weeks for a vertical column located at

;138S, 1308E in Fig. 2. We choose this particular grid

column because it is closest to Darwin, Australia, for

which we can show the time series of Mb using sc as a

proxy in Fig. 2a. The time series should be compared in a

statistical sense. The goal is not to give an identical re-

production of the time series observed in Darwin; in-

stead, we show ‘‘typical’’ time series of the several

closures during the rainy season.

In Fig. 2b, we see that the mass flux of CTRL is non-

zero for specific time intervals, only when the trigger

function is active (an inactive trigger function is in-

dicated by a red dot at the horizontal axis). If the trigger

function allows for convection, the mass flux is always

close to 0.03 kgm22 s21; CTRL has small variability.

Further, there are periods when the trigger function

switches convection on and off too rapidly—for exam-

ple, from day 2 until day 5. The too-intermittent be-

havior of CTRL is due to the trigger function.

In Fig. 2c, we clearly see the discrete character of

Dor15–100: only values that are integer multiples of

1/1005 0:01 are attained, because N5 100 CMCs are

used to calculate sc. If only one CMC is in a convective

state (state 3 or 4), sc 5 1/1005 0:01, if two CMCs are

in a convective state, then sc 5 2/1005 0:02, etc. The

mass flux fluctuates between 0 and 0.07 kgm22 s21, in

this period of this particular realization, which suggests

that the variability has improved compared to CTRL.

Note that a zeromass flux can be the result of an inactive

trigger function or a convective area fraction sc equal to
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zero. For example, from day 2 until day 5, the zero Mb

is a result of an inactive trigger function. The character

of the time series is too intermittent compared to the

series observed in Darwin, which cannot be exclusively

attributed to the trigger function.

In Fig. 2d, we see the mass flux produced by Dor15–

500. Mass-flux values higher than 0.04 kgm22 s21 are

rare. Deviations from the expectation values are ex-

pected to be smaller compared to the N5 100 experi-

ment. By increasingN evenmore, the time series start to

resemble the series of CTRL.However, note that for the

deterministic limit N/‘, the closure still differs from

the standard relaxation closure and, therefore, conver-

gence of the stochastic closure to CTRL should not be

expected.

In Fig. 2e, we see that Dor15–100w0.5 produces lower

Mb values than Dor15–100 and that the values are

multiples of 0.005. Lower mass fluxes imply that con-

vective instabilities are less quickly removed, leading to

prolonged periods of convective activity. As opposed to

Dor15–100 the trigger function is active for almost the

entire period: it is only inactive around day 12.

Finally, the Gott15 scheme (Fig. 2f) produces Mb time

series that are similar to the series as observed in Darwin.

The highest value of Mb lies between 0.07 and

0.08 kgm22 s21. The general shape of the convective

peaks looks quite realistic for this scheme. It is less in-

termittent than the multicloud and CTRL time series.

Clearly, compared to CTRL, the two stochastic

schemes (Dor15 and Gott15) are better reproducing the

fluctuations as observed in Darwin.

b. The distribution of Mb

In Fig. 3, the distributions of Mb are visualized by

showing histograms of the relative frequency of occur-

rence of the nonzero Mb and the corresponding mean

and standard deviation observed inDarwin (Fig. 3a) and

for model data between 158N and 158S based on the

different closures (Figs. 3b–f). The y axes are scaled

logarithmically to make the tails of the distributions

better visible. The Darwin histogram corresponds to a

distribution that is approximately exponential with a

maximum Mb of around 0.10 kgm22 s21.

In Fig. 3b, we see that the mass flux of CTRL has a

peak value at 0.03 kgm22 s21 and that the relative fre-

quencies are rapidly decreasing to zero for larger mass

fluxes. The maximum value lies below 0.05 kgm22 s21.

The mean mass flux of CTRL is larger than the mean

mass flux observed inDarwin and the standard deviation

is smaller. This is also the case if we evaluate the model

data near Darwin instead of the entire tropical belt.

The mass flux of Dor15–100 (Fig. 3c) can attain values

up to 0.10 kgm22 s21. The discrete character of the

FIG. 2. Typical time series of Mb (kgm22 s21) (a) observed in

Darwin (sc observations used as a proxy for Mb, assuming rwc 5
1 kgm22 s21) and produced by SPEEDY at 138S, 1308E for

(b) CTRL, (c) Dor15–100, (d) Dor15–500, (e) Dor15–100w0.5, and

(f) Gott15. An inactive trigger function is indicated by a red dot at

the horizontal axis.
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scheme is visible, with only integer multiples of

0.01 kgm22 s21. The mean flux is close to the mean flux

of CTRL and its standard deviation is slightly larger.

Dor15–500 (Fig. 3d) displays a histogram that resembles

the histogram of CTRL, except that a higher maximum

mass flux is possible. The histogram looks smoother

than the histogram of Dor15–100, since integer mul-

tiples of 0.002 kgm22 s21 can be attained. The mean

mass flux is lower than the mean mass flux of Dor15–

100 and it has a smaller standard deviation. Dor15–

100w0.5 produces lower Mb than Dor15–100 and the

histogram suggests that Mb is approximately expo-

nentially distributed.

Gott15 (Fig. 3f) attains 10 different mass flux values,

which are exactly the values of the 10 cluster centroids.

Its maximummass flux is around 0.07 kgm22 s21; higher

maximum values can be obtained, for example, by

using a larger number of cluster centroids. This last

option would, however, need reconstruction of the

Gott15 scheme through a revised estimation of the

transition matrices. The relative frequency of the bins of

Gott15 seems to decrease approximately exponentially.

The mean and standard deviation are close to the

observational values.

We conclude that, compared to CTRL, the stochastic

schemes (Dor15 and Gott15) produce mass flux distri-

butions that are more similar to the Darwin distribution.

However, the discrete character of the stochastic

schemes is not very realistic.

c. Autocorrelation functions

Deep convection is correlated in time and probabili-

ties of the occurrence and strength of convection depend

strongly on earlier time instances. This is one of the

reasons why we choose to parameterize convection

with Markov chain models: to be able to capture this

correlation. How well the several closures reproduce

observational correlations can be assessed by calculat-

ing autocorrelation functions (ACFs) (Dorrestijn

et al. 2015).

In Fig. 4a, we plot ACFs of Mb averaged over 158N–

158S for 1 yr of model data with the Gott15 scheme, the

multicloudmodel (N5 100 andN5 500), andCTRLand

compare them to the ACF of Mb observed in Darwin.

Compared to the observations, the ACFs of all models

except Gott15 decrease too rapidly initially as a result

of the intermittent character and too slow thereafter.

In contrast, the ACF of Gott15 is close to the obser-

vational ACF and the discrepancies can be partly

contributed to the absence of a daily cycle in SPEEDY.

The absence of a daily cycle in SPEEDY contributes

to a slower decay of the ACFs and the absence of a peak

after 1 day.

FIG. 3. Histograms showing the relative frequency of occurrence

of the nonzero Mb, the mean Mb, and the standard deviation for

(a) the Darwin observations (using sc as a proxy) and for SPEEDY

(1 yr of model data between 158N and 158S) using (b) CTRL,

(c) Dor15–100, (d) Dor15–500, (e) Dor15–100w0.5, and (f) Gott15.
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d. Precipitation

The daily accumulated precipitation is an important

output of GCMs. We will assess the different mass flux

closures by comparing the model’s precipitation output

with observations. In Fig. 4b, we show the PDFs of the

nonzero daily accumulated precipitation for 10yr of data

between 158N and 158S. Note the logarithmic scale of the

y axis.We see that the PDFproducedwhile usingGott15 is

very close to the PDFof theGPI observations (18 3 18) for
precipitation values less than 50mmday21 and that higher

values are too frequent. Its PDF is not so close to the GPI

observations that are averaged over blocks of size 3.758 3
3.758; only for precipitation values below 20mmday21

there is a good fit. Gott15 has been trained with data cor-

responding to an area of ;1.58 3 1.58, which may explain

why it is closer to GPI 18 3 18 than to GPI 3.758 3 3.758.

The PDFs of Dor15–100, Dor15–500, and CTRL are

similar, but not close to the observational PDFs. Above

45mmday21, the PDFs decrease with the correct slope

compared to GPI (3.758 3 3.758). The PDF of Dor15–

100w0.5 differs from the PDF of Dor15–100, but it is still

not close to the observational PDFs. For values higher

than 50mmday21, the PDF is close to the PDF ofGott15.

In section 6f, we will further examine the impact of rwc.

In Fig. 5, we show 10-yr-averaged equatorial pre-

cipitation. The general patterns produced by SPEEDY

(Figs. 5b–f) are somewhat similar to the GPI observa-

tions (Fig. 5a): a narrow ITCZ in the northeastern Pa-

cific Ocean and a wide one over the Maritime Continent.

However, there are some major errors: for example, the

precipitation in CTRL, Dor15–100 and Dor15–500 in the

northeastern Pacific Ocean, is twice as high as in GPI.

Also SPEEDY’s spatial patterns in the Indian Ocean

differ significantly from the patterns in GPI.

Dor15–100 (Fig. 5c) and Dor15–500 (Fig. 5d) do

hardly change the precipitation patterns of CTRL

(Fig. 5b). So, the schemes, based on different closures,

produce similar 10-yr-average precipitation. This can be

explained by realizing that precipitation scales with

mass flux at cloud base. Inspection of Figs. 3b–d shows

that the different closures give similar mean mass flux

values of 0.02 kgm22 s21. Dor15–100w0.5 and Gott15

produce significantly lower mean mass flux values,

which explains the reduction of the intensity of the

precipitation patterns (Figs. 5e–f). These schemes do not

improve the patterns in general. Only the ITCZ in the

northeastern Pacific Ocean seems to improve. Pre-

cipitation in the warm pool (1408E) is still too intense

and too localized compared to the observations. We

conclude that the intensity of Mb, rather than the vari-

ability of Mb, seems to have a major impact on mean

precipitation in SPEEDY.

e. Equatorial waves

At the equator, the Coriolis force vanishes, and it in-

creases north and south of the equator. This results in

dynamics that are typical for the tropics. The governing

equations of atmosphere and ocean admit solutions that

describe waves traveling along the equator. It is possible

to discern atmospheric waves in satellite observations of

precipitation because of their tendency to couple to

deep convection.

A distinction can be made between waves that are

mainly symmetrical with respect to the equator—for ex-

ample, equatorial Kelvin waves traveling eastward with

15ms21 (or ;3608month21), equatorial Rossby waves

(ER) traveling westward, westward inertio-gravity (WIG)

waves, eastward inertio-gravity waves, and the MJO

traveling eastward with 5ms21 (or ;1208month21) and

FIG. 4. (a) The autocorrelation function of Mb for Darwin ob-

servations and for SPEEDY (158N–158S) with CTRL, Dor15–100,

Dor15–500, Dor15–100w0.5, and theGott15 scheme. (b) The PDFs

of the nonzero daily accumulated precipitation for GPI and for

SPEEDY (158N–158S) with the same closures.
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waves with an antisymmetric structure with respect to the

equator (e.g., mixed Rossby–gravity). For a comprehen-

sive treatise on equatorial waves, we refer to Wheeler and

Kiladis (1999). State-of-the-art GCMs should be able to

reproduce these waves. Producing realistic equatorial

waves (especially the MJO) is one of the major challenges

for weather and climate modelers (Kiladis et al. 2009;

Biello and Majda 2005).

Exactly as in Zhang (2005), we show in Fig. 6

longitude–time plots, also known as Hovmöller dia-

grams, of the equatorial daily precipitation averaged

over 158N–158S for 1 yr of GPI observations and for the

SPEEDY experiments. Hovmöller plots are useful to

get a first insight in the model’s ability to produce

equatorial waves.

The eastward-moving Kelvin waves are clearly visible

for CTRL, Dor15–100, and Dor15–500 (Figs. 6b–d). In

the observations (Fig. 6a), these Kelvin waves are visible

but not as prominent. The Hovmöller diagrams of the

multicloud model and CTRL are in general very similar.

The multicloud model seems to produce slightly larger

coherent structures of heavy rainfall, which are visible as

tiny red blobs—for example, in January at 908 and 1508E
in Fig. 6d. TheMJO events in theGPI observations—for

FIG. 5. Mean equatorial precipitation (10-yr averaged) for (a) the GPI observations (3.758 3
3.758) and SPEEDY (3.758 3 3.758) with (b) CTRL, (c) Dor15–100, (d) Dor15–500, (e) Dor15–

100w0.5, and (f) Gott15.
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example, in February (608E–1808)—are prominent and

aremissing in CTRL,Dor15–100, andDor15–500. In the

Hovmöller diagram of theGott15 scheme (Fig. 6f), large

convective events are present (e.g., the red blobs

between 1208E and 1808), considerably more than in

CTRL. We even see that MJO-like waves are present

between 608E and 1808 in January. These MJO-like

waves are, however, not as strong as in GPI, which

FIG. 6. Hovmöller diagrams (Zhang 2005) of the daily precipitation (mmday21) averaged over 158N–158S for (a) the GPI observations

(18 3 18) from June 2000 to May 2001 and a typical year of SPEEDYwith (b) CTRL, (c) Dor15–100, (d) Dor15–500, (e) Dor15–100w0.5,

and (f) Gott15. Note that the diagrams should be compared in terms of general patterns; e.g., equatorial Kelvin waves are better visible in

(b) than in (e).
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indicates that the representation of spatial organization

of convection is still inadequate.

The Hovmöller diagram of Dor15–100w0.5, with

rwc 5 0.5 kgm22 s21, differs from the Hovmöller dia-

gram of CTRL: the Kelvin waves are less prominent and

structures of heavy rainfall can be seen (mainly between

608E and 1808) that are similar to the structures of

Gott15. Also the MJO-like waves are present (608E–
1808, July–August) but are even weaker than for Gott15.

To further examine the model’s ability to produce

equatorial waves and investigate intraseasonal variabil-

ity, we calculateWheeler–Kiladis diagrams (Wheeler and

Kiladis 1999) of the equatorial precipitation.We focus on

the symmetric part of the precipitation, since we are

mostly interested in equatorial Kelvin waves and the

MJO—the waves with the largest contributions to intra-

seasonal variance in precipitation. We calculate zonal–

wavenumber–frequency diagrams of the symmetric part

of the equatorial precipitation (158N–158S) divided by the
background spectrum, for which we apply smoothing

with a 1–2–1 filter.

In Fig. 7, we plot the diagrams for the GPI observa-

tions (Lin et al. 2006) and the SPEEDY experiments.

Note, first of all, that all the SPEEDY model results

differ significantly from the GPI diagram. This is, be-

sides the differences in the power of the waves, caused

by the different background spectra by which the

spectra are divided. In the observations (Fig. 7a), we

clearly see the MJO peak (around zonal wavenumbers

1–5 with a period between 32 and 96 days) and the

Kelvin waves for positive wavenumbers. Further, we

see the ER and the WIG less prominently. The diagrams

of CTRL, Dor15–100, and Dor15–500 (Figs. 7b–d)

are very similar to each other and show too-prominent

Kelvin waves while the MJO is essentially missing

in these diagrams. These are typical model mis-

representations that occur in many state-of-the-art

GCMs (Lin et al. 2006). Our multicloud scheme is not

able to improve the MJO. Successful MJO-like simula-

tion with similar stochastic multicloud models is

possible as demonstrated by Deng et al. (2015).

In the diagram of the Gott15 (Fig. 7f), we see an MJO

peak and the Kelvin waves are less prominent as in

CTRL. The tropical depressions (TD type) are too

prominent. For Dor15–100w0.5 (Fig. 7e), the Kelvin

waves slightly diminish in comparison to Dor15–100, the

TD type are even more prominent than in Gott15, and

the MJO peak is missing.

f. The updraft momentum at cloud base

In the implementation of the stochastic schemes in

SPEEDY,Mb was calculated bymultiplying sc by rwc5
1 kgm22 s21 in (3). We find that changing rwc has a

major impact on the model behavior. If we lower rwc,

then the equatorial Kelvin waves get less prominent and

the MJO strength increases. Also the time-averaged

equatorial precipitation changes (Fig. 5e) as compared

toCTRL (Fig. 5b). To examine the influence of rwc, wedo

additional runs with Dor15–100 with rwc values over the

range 0# rwc # 1:5 kgm22 s21 and calculate the power of

the equatorial Kelvin waves and MJO as a function of

rwc.We define the power of the equatorial Kelvin waves

and the MJO as the average powers of the corre-

sponding wave regions in the Wheeler–Kiladis diagram

as defined in Fig. 6 of Wheeler and Kiladis (1999).

Figure 8a displays the result of 12 independent 11-yr

runs of SPEEDY using the Dor15–100 scheme with

different values of rwc. We see that rwc has indeed an

impact on the power of the equatorial Kelvin waves and

the MJO. The equatorial Kelvin waves tend to have less

power for smaller rwc values. The GPI observational

power is 0.08, so the figure suggests that the equatorial

Kelvin wave power is only correct when rwc ’
0.45 kgm22 s21. The MJO power tends to increase for

smaller updraft momentum values but never reaches the

MJO observational power of 0.14. Note that for rwc 5 0,

the convection scheme is essentially switched off, and all

precipitation is formed by large-scale precipitation. The

relative contributions of the large-scale and convective

precipitation as a function of rwc is plotted in Fig. 8b.

The general idea we get is that equatorial Kelvin waves

are more prominent for schemes with a larger mean

Mb and consequently a larger contribution of convective

precipitation, and MJO-like features are more prom-

inent for schemes with a smaller mean Mb and

consequently a larger contribution of large-scale pre-

cipitation. The ratio between convective and large-scale

precipitation seems to play a role in the type and the

scale of organization of tropical convection in themodel.

Deng et al. (2016) similarly find that the strength of

stratiform heating affects the formation of MJO-like or

equatorial Kelvin wave structures in an aquaplanet

GCM.

With this novel method of calculating the power of the

MJO and equatorial Kelvin waves, it is possible to ex-

press the model’s ability to simulate these waves in a

single scalar. This enables modelers to directly tune

parameters for optimal simulation of these waves. Note,

however, that even if the powers are exactly equal to the

observational powers, it is not yet sufficient to conclude

that the model simulates the waves perfectly. Other re-

quirements have to be fulfilled as well (Zhang 2005). The

power only gives an impression. For example, CTRL

gives a too-high equatorial Kelvin wave power, 0.12, and a

too-low MJO power, 0.02, which is consistent with the

patterns found in the Hovmöller diagrams (Figs. 6a,b).
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7. Discussion

We have implemented two different stochastic pa-

rameterizations for the convective area fraction sc in the

convection scheme of the intermediate complexity

GCM SPEEDY and evaluated the impact in the tropics.

In both stochastic parameterizations sc is estimated

with CMCs of which the transition probabilities are

FIG. 7. Zonal wavenumber–frequency diagrams (Wheeler andKiladis 1999; Lin et al. 2006) of the symmetric part

of the equatorial precipitation (158N–158S) divided by the background spectrum for (a) GPI observations,

(b) CTRL, (c) Dor15–100, (d) Dor15–500, (e) Dor15–100w0.5, and (f) Gott15.
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conditioned on the large-scale vertical velocity hvi, as
this is the large-scale variable that displays the largest

correlation with the occurrence of deep convection

(Dorrestijn et al. 2015). Note that a closure based on hvi
effectively resembles a moist convergence closure, but

because of the stochastic aspects our closures are not so

hardwired as the more traditional deterministic moist

convergence closures (e.g., Kuo 1965; Tiedtke 1989).

Although it is difficult to disentangle convergence and

convection in terms of causality, there is no reason not to

use the large-scale vertical velocity to condition the

transition probabilities of the CMCs.

On a local grid point level, both stochastic schemes

producemass flux time series that aremore realistic than

the series produced by the standard CTRL version

(Fig. 2). This is also reflected in a broader and more

realistic frequency of occurrence distribution of the

cloud-base mass flux (Fig. 3). Gott15 and to a lesser

extend Dor15 also improve the daily accumulated

tropical precipitation compared to CTRL (Fig. 4b).

Substantial improvement of the temporal autocorrela-

tion function for Mb is only observed for Gott15

(Fig. 4a).

Wheeler–Kiladis diagrams show that the equatorial

Kelvin waves are too prominent in SPEEDY for CTRL

and that the MJO is missing entirely. Gott15 signifi-

cantly improves the representation of both theMJO and

the equatorial Kelvin waves. Dor15 is only able to im-

prove on this issue by strongly reducing rwc. By in-

creasing the relaxation time scale of the relaxation

closure in CTRL, similar changes are to be expected

(Frierson 2007). For Dor15, it seems that changing the

mean Mb has a larger impact on the representation of

the equatorial waves than changing the magnitude of

stochastic fluctuations of Mb on a time step level.

How many of the model errors are due to the con-

vection schemes and how much due to the large-scale

forcings of SPEEDY? The range of hvi values produced
by SPEEDY compares well with the range observed

around Darwin. The time series of Mb in Figs. 2c and 2f

compare well with time series produced by the same

schemes using observed hvi values (Dorrestijn et al.

2015; Gottwald et al. 2016). In addition, the large range

in different mass flux behavior displayed in Figs. 2b–f

suggests that most of the discrepancies between the

Darwin time series and the model time series are due to

the convection parameterizations and not the large-

scale forcings of SPEEDY. The too-intermittent char-

acter of, for example, the Dor15–100 scheme is due to

the scheme itself and not to SPEEDY.

An advantage of the Dor15 scheme over the Gott15

scheme is that it can be adapted to the scale of the GCM

grid column, whichmakes it more universal in usage.We

have, however, seen that the results for the Gott15

scheme are better than for the more involved Dor15

scheme. The main difference between the two methods

is that the Gott15 scheme has been trained with the

macroscopic data (i.e., averaged sc over the entire radar

domain), while the Dor15 scheme has been trained on a

finer scale: individual radar pixels. The Gott15 scheme

works with only one CMC that directly yields sc corre-

sponding to the size of the radar domain, while the

Dor15 scheme works withNCMCs for which each CMC

corresponds to the size of a convective updraft and sc is

calculated later with (1) and (2). The main reason why

Gott15 performs better is that it implicitly inferred

spatial interactions between neighboring radar pixels,

which are not captured by the independently evolving

CMCs of Dor15. This could also be the reason that the

Gott15 scheme is less intermittent than the multicloud

schemes (Fig. 2) and has a more realistic ACF (Fig. 4a).

Including local interactions between neighboring cells

in the Dor15 model could improve its performance but

FIG. 8. (a) The average power of the equatorial Kelvin waves

(line with asterisks) and the MJO (line with circles) in the

Wheeler–Kiladis diagram of SPEEDY, using Dor15–100, as

a function of rwc. Comparewith theGPIKelvin (red solid line) and

MJO (blue dashed line) average power. (b) The relative contri-

butions of the large-scale and convective precipitation as a function

of rwc.
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lies beyond the scope of this paper. Including spatial

interactions makes the model more complicated, be-

cause for every configuration of the neighboring cells a

different transition probability matrix is needed. For

successful inclusion of spatial interaction we refer to

Bengtsson et al. (2013), in which a cellular automata

approach (deterministic and stochastic) is applied to

make convection interact spatially between different

grid boxes of a NWP model, leading to a more realistic

representation of convective organization. Further, in

Dorrestijn et al. (2013a) locally interacting CMCs have

been inferred fromLES data and in Khouider (2014) the

multicloud model of Khouider et al. (2010) is extended

by including spatial dependencies.

The Dor15 multicloud model is inspired by the mul-

ticloud model of Khouider et al. (2010). The models are

similar because in both models CMCs are positioned

on a microgrid and randomly switch cloud type with

probabilities that depend on the large-scale forcing. The

main difference between the models is that the transi-

tion probabilities of the Dor15 scheme are estimated

from data while the transition probabilities used in

Khouider et al. (2010) are derived by choosing typical

time scales of formation of clouds, conversion between

cloud types, and decay of clouds, which are based on

physical intuition. Furthermore, in themulticloudmodel

of Khouider et al. (2010), probabilities are conditioned

on CAPE and middle-troposphere dryness instead of

large-scale vertical velocity for Dor15. In Khouider et al.

(2010), a stochastic coarse-grained birth–death system is

derived for the multicloud model, such that each GCM

column only uses one CMC, which makes the method

very effective. Further, the model of Khouider et al.

(2010) is scale aware because the number of lattice sites

in the microgrid can be adapted to the GCM gridbox

size. We conclude that the beneficial properties of both

methods could be combined to obtain an even better

model. Especially the inclusion of spatial dependencies

as in the extension in Khouider (2014) is promising.

In some recent studies (Ajayamohan et al. 2014;

Ragone et al. 2015), new convection parameterizations

have been implemented in aquaplanetGCMs. SPEEDY

can also run in aquaplanet mode, but for comparison to

satellite observations, we have chosen to include land in

the experiments.

A final remark on computational costs of the new

stochastic schemes. The multicloud scheme, for which N

CMCshave to be evolved for each grid column (including

the generation of random numbers) increases the com-

putational costs of the convective scheme substantially,

while the computational burden of Gott15 is marginal. In

Table 1, we list these computational costs. In GCMs

with a large number of grid columns, using a large num-

ber of CMCs (N. 100) for each column could become

computationally problematic. Khouider et al. (2010)

showed that the usage of birth–death-like processes, with

the same characteristics, is a solution to this problem.
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