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Christian Neumeyerm, Mario Bijelic3, Dariu M. Gavrila!

Abstract— We show how to design a motion prediction
algorithm that works with 3D object detections and map
locations. In particular, we obtain object id’s — even though
the training data does not contain any object id’s — across
multiple time-steps into the future by propagating a Gaussian
Mixture of likely object (e.g., vehicle) locations through time.

We validate our approach on the nuScenes dataset. First, we
find that a motion prediction algorithm without tracking id’s
performs as well as motion prediction algorithm with tracking
id’s in the training data. Second, the 3D labels of an on-board
perception system are inferior (e.g., loss of detections, positional
uncertainty) to those generated by offline labelling (automatic
labelling pipeline, manual labelling). Even so, we find that a
moderate increase in the size of the training data offsets the
deterioration in prediction performance (with no additional
offline labelling).

I. INTRODUCTION

Autonomous vehicles need to anticipate what other traffic
participants will do in order to safely and efficiently navigate
in complex urban environments. Challenges include other
vehicles taking turns and pedestrians stepping on the street.
Companies and research institutions published multiple data
sets to address this challenge. nuPlan [1] is the most extensive
publicly available data set containing 0.2 years of driving
data. This is still a fraction of the driving time of the cars
produced by any major OEM on any given day.

Deep learning algorithms are the state-of-the-art in human
motion prediction and benefit from ever more data. It is
likely that privately owned vehicles (not research vehicles)
will provide the bulk of the training data, with Tesla being
an early example. However, raw sensor data (e.g., camera) is
large compared to, e.g., raw 3D object detections (3d-position
and orientation). One would also need to label the raw sensor
data, the costs of which easily exceed those of training a
neural network. Collecting raw sensor data might also violate
the privacy of the vehicle owner and bystanders. Finally,
a domain gap is introduced when training the prediction
algorithm on perfectly labelled data that it will not get as an
input in the real world.

We cannot say for sure which sensor setups will dominate
commercial autonomous vehicles: Waymo currently pursues
a fusion of multiple sensor types, while Tesla believes
mono-camera input is all we need. Therefore, we want a
representation that is agnostic to the type of sensor used, be it
lidar, stereo-camera, mono-camera, radar or any combination
of these. An intuitive choice is the output of the on-board
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perception system (e.g., 3D object detector only or 3D object
detector+tracker), i.e., the three-dimensional position (and
orientation) of an object (car, pedestrian). Two advantages
stick out: The representation is data-efficient, and it respects
the privacy of others.

Transferring and processing multiple GB of data from
each privately owned car every day would be unacceptable.
So, how much can we expect? We consider 2.000.000 cars
— close to the annual production of Mercedes-Benz cars —
where every car runs detection algorithms in the background
even if no autonomous systems are engaged. A quick back-
on-the-envelope calculation tells us how much data these
vehicles may stream back to Mercedes-Benz every day. We
assume 43 minutes of average driving [2] (Germany), around
ten objects in each frame, ten frames a second, 3-d position,
orientation for each object and location coordinates of the
Mercedes-Benz car. We arrive at around 16.5 TB of data
which amounts to 8.25 MB per vehicle each day. The total
equates to 163 years of driving compared to 0.2 years of
driving for the most extensive public driving data-set (nuPlan
[1]) — every day. Also, the training data is identical to the
data that the prediction algorithm sees when deployed in the
real world. It is the same on-board perception system that
we use in production cars that generates the labels of the
training data-set. There is no domain gap.

One major drawback remains: The labels from an on-board
perception system are noisy while existing work [3], [4], [5],
[6], [7], [81, [9], [10], [11], [12], [13], [14] considers data-
sets with near-perfect labels. We will address how to leverage
noisy data from an on-board perception system to learn to
predict the future motion of traffic participants. We show
how to adapt a convolutional neural network to the task and
analyse the performance gap between high-fidelity labels and
those from an on-board perception system.

II. RELATED WORK

Human motion prediction received much attention in recent
years. Examples include predicting a cyclist turning left [15],
a pedestrian stepping on the street [16] and the motion of a
vehicle [6]. [17] provides a good overview of human motion
prediction.

We can distinguish between an object-centric approach
to human motion prediction and object-agnostic approaches.
Object-centric methods predict, e.g., the 3D position of a
vehicle, while object-agnostic predict, e.g., raw sensor data
with no notion of individual objects. Examples of the former
include methods based on convolutional neural networks [3],
[4], [51, [6], [7], [8], [9], [10], [14], graph neural networks
[11], [12] and PointNet/Voxels [13]. The latter considers the
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evolution of an occupancy grid map (with or without semantic
information), e.g., [18], [19] or the evolution of sensor data,
e.g., [20].

Object-agnostic methods appear promising — occupancy
grid maps do not need any labelling for the training data-
set. They use a high-level representation of the environment
— though they lack major benchmarks. At the same time,
there is a wealth of benchmarks for object-centric methods.
The performance of object-agnostic methods on long-term
prediction tasks (4+ seconds) compared to object-centric
methods is not well established either.

Object-centric trajectory prediction usually follows the
detection-tracking-prediction paradigm, where we have three
separate modules that need to be optimized individually.
[11], [20], [21] recently challenged that paradigm with
empiric evidence that small amounts of noise in the tracking
algorithm can severely impact the prediction module during
deployment [21]. They propose to get rid of tracking as
an intermediate step for the prediction task. They compare
different convolutional neural network based architectures
that either use tracking id’s as an input or not. It is important
to note that their tracking-free convolutional neural network
still uses track ids during training to calculate the prediction
loss. [11] show state-of-the-art performance on tracking and
motion prediction when optimizing both on a shared neural
network backbone. They execute the tracking and prediction
task in parallel. Thereby, they eliminate the sequential order of
tracking and then prediction. During training, tracking id’s are
essential to get prediction and tracking to work. Also, they
use recurrent neural networks in the network architecture.
It is unclear how we could employ a similar architecture
where tracking ids are missing during training. [20] invert
the traditional pipeline by starting with the prediction step
(forecasting a lidar point cloud) and then detecting and
tracking objects. While the results are not state-of-the-art, the
approach appears to work well.

Recently, research on auto-labelling pipelines, e.g., [22],
[23], weakly-, e.g., [24] and self-supervised algorithms, e.g.,
[25] for object detection intensified to suppress the need for
massive human labelling efforts that cause significant delays
between data gathering and training, potential quality issues
with those labels, while also incurring high costs. While auto-
labelling does reduce the labelling effort significantly, the
initial setup and maintenance absorb engineering talent and
add complexity and costs to the development of autonomous
vehicle software. Also, just like manual labelling, we need
to collect raw sensor data.

We can use various methods to predict the behaviour of
humans in traffic situations. Not all of these apply directly
to the case where the tracking-id of an object is unreliable
and where we encounter false positive and false negative
detections. We consider a recurrent neural network as an
example. At each time step, it consumes the current position
of an object and integrates that into its hidden state. The fusion
of these hidden states happens at a later stage (using, e.g.,
social pooling [26] or graph neural networks [27]). We need
to know the identity of every object through time. Otherwise,

Fig. 1. We used the nuScenes dev-kit to create this image. The convolutional
neural network receives a 512 x 512 pixel (240 meters x 240 meters)
rasterized image as an input. The image is centred at the data-capturing
vehicle (red rectangle) at ¢ = 0 and includes a 120-meter radius. The vehicles
are yellow rectangles with their histories (one second into the past at 2Hz,
i.e., two time-steps) as yellow rectangles with a darker shade. Orange blobs
correspond to pedestrians. The colours of the lanes indicate the driving
direction, and walkways are coloured in blue. The only information needed
to create this image is the location of the data-capturing vehicle and the 3D
locations (including yaw) of other vehicles/ pedestrians and cyclists.

we cannot assign the correct object to its hidden state. We
consider a scenario where the identities are unknown (we
use pure 3D object detections) or uncertain (output of an
on-board perception system).

Convolution neural networks, on the other hand, do not
need tracking id’s in the input [21]. Multiple authors apply
convolutional neural networks to the motion prediction task
with great success [3], [4], [5], [6], [7], [8], [9], [10], [14].
While the input can be agnostic to the tracking id, the output
still relies on an association between the prediction and the
ground truth. We do not know the association, so it is unclear
which ground-truth detections our prediction corresponds to.

Contributions

e We present a convolutional neural network motion
prediction algorithm that can use noisy 3D object labels
(location, orientation) during training and inference.
We do not provide any tracking ids during training or
inference. Nevertheless, the motion prediction algorithm
can reason about specific objects (i.e., tracking id’s) and
their evolution through time.

o We show that the tracking id in the loss function may
not be relevant to the prediction performance

« We analyse how detector noise (loss of labels, positional
noise) will affect the prediction performance and give
an intuition of how much data we need to compensate
for that

ITIT. PREDICTION WITHOUT TRACKING

We will now design a neural network architecture and a
loss function for learning predictions without any tracking
id’s. First, we discuss an architecture and loss function that
uses tracking id’s and that is similar to, e.g., [21]. We do
not claim any novelty on the setup. However, specifics like
using Unet as a backbone [28] may be unique. We use the
Unet [28] architecture that we truncate down to the second
deconvolutional layer, and then we add a 1x1 convolution
on top. In line with existing approaches such as [3], [5], [6],
[71, [8] we convert the high-definition map into a colourized
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Yij

512x512 Unet* 128x128x(Tx2)

Fig. 2. Motion prediction with tracking id. A Unet* (truncated to 128x128
output layer) receives the 512 x 512 input (240 m x 240 m). We take a
known object (yellow box) and identify which of the 128 x 128 grid cells it
corresponds to. Then we obtain the prediction §;; for the next T time-steps.

image where colours have semantic meaning. Additionally,
we visualize the detections into the image like [5], [6], [7].
Figure 1 gives an example of the input. The convolutional
neural network encodes the rasterized image of size 512 x
512 and then decodes it again to a tensor of size 128 x 128
x T x 2 — the predictions of all objects in the rasterized
image. Each grid cell 75 contains the uni-modal prediction
¥ij = [Uijo, -, Yijr) of the position over a time-horizon of
T time-steps for an object in that grid cell (see figure 2).
Note that we know the ground-truth y = [y1, ..., y7] of every
object from one second of the past to six seconds into the
future (e.g., manual labels).

We can optimize the neural network with the following 12
loss function.

T
1 X
L:TZHyt—yithZ (1
=1

We identify the position 7j of the ground-truth y, object
at time ¢ = 0 (the current time-step). Then we extract the
prediction §;; = [Uij1, ..., Yijr) that corresponds to that grid-
cell and calculate the 12 loss starting at t = 1 up to the end
of the prediction at t = T'.

Unfortunately, we cannot use this architecture and loss if
the tracking id’s are unknown. We will propose adaptations
to the neural network architecture and loss. Unlike previous
work, we do not need a tracking id during training and
inference. We visualize the architecture in figure 3. The
main difference to the tracking-based case in figure 2 is an
additional prediction step at t = 1. The convolutional neural
network predicts the likely location of detections at ¢ = 1
using a Gaussian Mixture with modes arranged on a 128 x
128 grid (like anchors in object detection). Each grid cell
with indices m, n corresponds to a 0.5 m x 0.5 m area. If
an object is likely to be detected in one of the grid cells, the
Gaussian Mixture mode is active ¢, > 0.

On top of the prediction at time-step ¢ = 1, the convolu-
tional neural network predicts how the mean of each mode

~
Pmn Ymn
n.
i a
m
512x512 Unet* 128x128 128x128x((T-1)x2)
e
A
.:ql-l. —

Fig. 3. Motion prediction without tracking id. A Unet* (truncated to
128x128 output layer) receives the 512 x 512 input (240 m x 240 m). It
predicts ¢m,n, the likely location of objects at time-step ¢t 4 1 (red), in a 128
x 128 grid of Gaussian Mixture modes with weights ¢,,». Additionally, we
predict the mean shift for the m, n mode in the 128 x 128 grid and propagate
it through time (blue). The (cropped) image at the bottom illustrates the
result. The neural network identifies objects (red rectangle) and predicts
their motion (blue arrow).

t=0 ‘t=1

Fig. 4. t = 0: Two vehicles move from the top down (1) and the bottom
up (2). The grey boxes indicate past detections; the yellow box indicates a
current detection (at t = 0). Our prediction algorithm receives past detections
and the detections at ¢ = 0. It needs to identify the object locations during
training, but we cannot use the ¢ = 0 detections as ground-truth labels as
they may be missing (1) or exhibit positional noise (2). Instead, we predict
detections at ¢ = 1 (red) that are not part of the input. This forces the neural
network to reason about false negatives, object identities and positional
noise, i.e., the task that a tracking module usually performs. Typical on-
board perception systems run at 10 Hz so that the predictions at ¢ = 1 will
be close to the ground-truth position at ¢ = 0.

of the Gaussian Mixture model propagates through time.
Thereby, we obtain object identities that are not explicitly
labelled in the training data-set, which only contains raw 3D
object detections or unreliable tracking id’s. Note that we do
not need to know the number of objects in advance, some
detections up to ¢ = 0 may be missing, and new objects may
appear later.

First, we predict the position of all objects at ¢t = 1 using a
Gaussian Mixture. Why do we not do this at ¢ = 0? Because
if there was a false negative, then we do not have a ground
truth that would tell us that there is a false negative. t = 0
is part of the input, i.e., the neural network sees if it exists
or not, while ¢ = 1 is part of the prediction, i.e., the neural
network does not get to see it even if it exists. Figure 4
illustrates the distinction further.

Since we have no associations (no tracking id’s), we need
a loss function that deals with all ground-truth objects (i.e.,
noisy detections) and every prediction (Gaussian modes) at
the same time (see figure 5). The following loss function
does that (log-likelihood loss).
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Fig. 5.  We consider the predictions at a future time-step. On the left,
we have tracking information and can associate the ground truth (yellow)
and the prediction (blue). One prediction matches one ground truth. The
remaining ground-truth objects (grey) are irrelevant as their identities differ.
On the right, we have multiple ground-truth objects and multiple predictions
(significant Gaussian Mixture modes). The loss function should not assume
an association as we do not have any tracking information but include all
ground-truth objects and predictions at the same time.

T I
1 1 .
L= T Zlog ([2 Z ¢mnNmn(yt|ant§ o= 1))
t=1 m,n=1
(2

We do not propagate the gradient into the Gaussian mode
weights ¢, for £ > 1. We use only the first time-step £ = 1
to predict objects. There are two reasons for that: (1) Training
is much more stable, and the prediction performance is much
better (2) We want to reason about objects that exist close to
t = 0, not objects that might appear 6 seconds later that we
have not detected yet.

Final Displacement Error

We evaluate the long-term prediction performance with the
final displacement error.

FDE = |lyr — grl| 3)

yr is the ground-truth position at the last time-step and g
is the predicted position at the last time-step.

It is not straightforward to compare the tracking based
architecture (figure 2 and loss (1)) and detection based
architecture (figure 3 and loss (2)). For the tracking-based
case, a tracking algorithm tells us where an object is at ¢ = 0.
Then we predict the motion T time-steps into the future.
Without the tracking component, we first need to identify
objects at t = 1 (from the ground-truth) and then predict their
motions 7'—1 time-steps into the future, i.e., we evaluate over
a prediction horizon of ¢ = [2, ..., T for both methods. One
approach takes the object identity at £ = 0 and the other at
t = 1. To compensate the advantage (of the method without
tracking id), we subtract the tracking-based approach’s final
displacement error for ¢ = 1.

IV. EXPERIMENTS

In this section we answer five questions:

1) How do predictions change when we do not use the
tracking id in the loss function?

2) How do the predictions change when we drop a
significant amount of labels?

3) How do predictions change if the 3D-positions have a
positional uncertainty?

4) How do predictions change if we assume realistic

detector noise?

5) How much additional data would we need to com-

pensate for any performance decrease in 2), 3) and
4)?

In 1) we consider the architecture changes in figures 2, 3
and loss functions (1), (2) for a model that uses a tracking
id in the loss vs one that does not.

In 2) we simulate detector noise by removing 20% of the
ground-truth labels at random (uniform). Since nuScenes has
a sampling rate of 2 Hz, missing labels can drastically affect
the performance compared to, e.g., 10 Hz, where it is much
easier to interpolate missing information. Dropping a label
in the middle of a sequence corresponds to a full second
without any detections.

In 3) we add Gaussian noise with a standard deviation
of 0.5 m to the ground-truth locations. This simulates the
positional noise of a 3D object detector. Since we consider
at most three data points in the input (at 2 Hz), the neural
network cannot easily recover the ground-truth locations.

In 4) we infer reasonable noise values from the literature.
Namely, 15 % of labels missing and a positional uncertainty
of 0.3 m.

In 5) we reduce the data-set size by excluding a certain
number of scenes — 20-second sequences—in the training data.
We evaluate the performance on 30 % 50%, 57.5 %, 65 %,
80% and 100% of the data and see how 2), 3) and 4) compare.

NuScenes Dataset

We evaluate our method on the large-scale public data-
set nuScenes [29]. It contains 1000 selected sequences from
Boston (right-hand driving) and Singapore (left-hand driving),
each 20 seconds long. We use the train/validation split of the
official nuScenes prediction challenge, which divides the data
into sequences with one second of history and six seconds
of future at a sampling rate of 2 Hz. Note that the official
leaderboard evaluates any method on the validation set. We
create rasterized images using the official nuScenes devkit
that include objects within a 120-meter radius around the data-
capturing vehicle (at the “current” time step between history
and future) (see figure 1). The image is centred at the position
of the data-capturing vehicle and oriented into the driving
direction. We will not consider the data-capturing vehicle in
the prediction task but all other vehicles (vulnerable road
users are not part of the validation set). We include the data-
capturing vehicle in the input in case its behaviour influences
another driver that we want to predict.

Hyper-parameters

The Unet takes an input feature size of 60, with 0.01 weight
decay and a batch size of 20 for all experiments. We use
AdamW [30] for optimizing the loss function. The learning
rate for the tracking-based architecture and loss is 0.001, with
a subsequent drop to 0.0001 after the final displacement error
does not improve on the validation set for 30 epochs. We
wait for at least another 30 epochs of no improvement before
we finish training. The learning rate for the architecture and
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TABLE I
FINAL DISPLACEMENT ERROR (METERS) OF OTHER METHODS BASED ON
CONVOLUTIONAL NEURAL NETWORKS ON THE PUBLIC NUSCENES
BENCHMARK. ALL METHODS INCLUDING OURS (FIGURE 2 AND LOSS (1))
USE TRACKING ID’S IN THE LOSS FUNCTION.

Time ours | P2T[8] Multipath[7] Covernet[6] MTP[3]
6s 10.4 10.5 10.4 9.3 9.2

loss without a tracking id is 0.0001 for the whole time. We
waited for at least 30 epochs where the final displacement
error did not improve on the validation set before finishing
the training.

Comparison to Benchmark

Before exploring the effects of 3D object detector noise,
we compare our tracking-based algorithm with other convo-
lutional neural network based prediction methods on the
nuScenes benchmark. Table I shows the other recently
published methods next to ours. We want to stress that we
investigate a new setup with noisy labels. It is not our primary
goal to outperform state-of-the-art methods, but it is essential
to show that we experiment with a method comparable to
others.

A. No Tracking ID in Loss

We ran the model with and without tracking information.
We did not find a meaningful difference in performance with
both approaches at around 10.1 m final displacement error
(see table II). The tracking id itself may not be relevant
to the performance of the prediction algorithm if the 3D
object detections are free of noise. [21] also found a weak
dependence of the prediction performance in the input (loss
is tracking-based). The winning team of the Lyft challenge on
Kaggle also remarked! that their convolutional neural network
did not show a meaningful difference in performance when
switching tracking id’s off in the input (loss tracking-based).
As our experimental result indicates, the same may be true
for the loss function as well.

B. Removing Labels

We want to understand how noisy 3D object detections
from an on-board perception system affect our prediction
algorithm. In our first experiment, we remove 20 % of the
labels at random in the training set, i.e., the label information
is permanently lost. The validation set remains untouched.
This corresponds to a detection recall of 80 %.

While the tracking id appears to be of minor importance,
a loss of 3D labels does decrease the prediction performance
from 10.1 m to 11.1 m final displacement error — a 10%
decrease (see table II).

Uhttps://www.kaggle.com/c/lyft-motion-prediction-autonomous-
vehicles/discussion/201493 (as of January 31st 2021)

TABLE 11
FINAL DISPLACEMENT ERROR (METERS) WHEN TRAINING ON NOISY
LABELS (B, C, D) AND PERFECT LABELS (A, AND OURS). THE CAPITAL
LETTERS CORRESPOND TO THE SUBSECTIONS IN THE EXPERIMENTAL
SECTION. ’OURS’ REFERS TO THE SAME METHOD AS IN TABLE I.

Time A B C D ours (with track id)
55 10.1 | I1.1 | 109 | 11.6 10.1

C. Adding Positional Noise

A 3D object detector provides noisy estimates of the
position of a vehicle. We add Gaussian noise with a standard
deviation of 0.5 m around the ground-truth positions in the
training set to simulate this effect. The validation set remains
untouched. We assume the typical vehicle bounding box to
be 3.5 m x 6 m (as suggested by [14]), and we only consider
detections with an intersection over union of at least 0.7
as true positives. Then 0.5 m positional noise corresponds
to a precision of 56%, i.e., 44% of detections end up as
false positives. Note that the convolutional neural network
receives only three labels for the current time-step and the
past, making it hard to filter the noise. We find that the
prediction performance degrades from 10.1 m to 10.9 m final
displacement error — an 8% decrease (see table II).

D. Realistic Detector Noise

A typical 3D object detector would achieve a recall of at
least 83 % and a precision of at least 90% at an intersection
over union of at least 0.7 [14]. We simulate these performance
metrics by removing 15% of the labels and adding a positional
noise of 0.3 m (on training set, not validation set). These two
sources of noise result in a recall of 83% and a precision of
88 % given an intersection over union of at least 0.7 and a
typical vehicle bounding box of 3.5 m x 6 m. We find that
the prediction performance degrades from 10.1 m to 11.6 m
final displacement error — a 16% decrease (see table II).

E. How Much Data Do We Need?

The original motivation for detection based prediction is the
large amount of low band-with data that a fleet of millions of
cars can provide. So how much data do we need to compensate
for a performance decrease of 16 % (realistic detector noise)?
To get an intuition, we train the same algorithm with the
same hyper-parameters> on 30 % - 100 % of the data (we
remove scenes — 20-second sequences — at random). We
visualize the results in figure 6 and compare them to the
noise experiments in the previous subsections. As we can
see, 100 % of noisy training data results in a similar motion
prediction performance as 50 % - 70 % of high-fidelity labels
(depending on the experiment). That is remarkable given the
data efficiency of 3D object detections to raw sensor data.
Not to mention the additional effort of labelling the sensor
data.

2A smaller data set leads to over-fitting. We would need to adjust the
hyper-parameters such as network capacity, batch size and learning rate.
However, we believe the differences would not change the interpretation.
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Fig. 6. Red: We evaluate B, C and D on 100 % of the data. In B, 20 % of 3D detections are missing, and in C, all 3D detections have a positional
uncertainty of 0.5 m. In D, we have: 15 % of 3D detections are missing, and all the remaining detections have a positional uncertainty of 0.3 m. D is of
particular interest as this is similar to the performance of a real-life 3D object detector. Blue A: prediction model without tracking id’s trained on 30%-100
% of the training data. The intersection of the blue and red graphs is between 50%-70 %. Implications: We can get the same result on 100 % of noisy 3D
detections as with at least 50 % of high-fidelity labels. The former needs only an on-board perception system and transfers efficient 3D labels. The latter
needs separate manual or automated labelling pipelines, and we have to transfer inefficient raw sensor data from data-gathering vehicles.

V. CONCLUSIONS

We discussed how to design a human motion prediction
algorithm to train on noisy data (missing detections, positional
uncertainty, no tracking id’s or unreliable tracking id’s)
from an on-board perception system. First, we explored the
difference between a method that uses tracking id’s and
our proposed method that does not use any tracking id’s in
the training data. We did not find a significant difference.
Detector noise affects our training data, and we analyse the
performance degradation. Missing labels (removing up to 20%
of labels at random) and positional uncertainty (adding up to
0.5 meters Gaussian noise) affected the performance. However,
we can show that increasing the training set size by a factor of
two should compensate for that degradation in performance
(100 % of noisy labels equals 50 % of high-fidelity labels).
While we need to increase the training set size to compensate
for the noise introduced by an on-board perception system,
that increase is multiple orders of magnitude smaller than
the amount of low-bandwidth data (3D-detections and map
locations) that we can collect from a large fleet of vehicles.

In future work, we would like to expand the analysis to
multi-modal motion prediction algorithms and investigate
methods other than convolutional neural networks such
as ones based on PointNets/Voxels, e.g., [13] that look
promising.
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