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Preface

Global shipping accounts for a significant percentage of global emissions, but is an indispensable

party of our modern society. On the quest to reduce these emissions wind-assisted shipping is being

investigated as a viable, zero-emission propulsion method. This can be done using kites that are

able to generate large amounts of force, but are aerodynamically difficult objects to study. This thesis

investigates these aerodynamic properties by performing Large Eddy Simulations and in doing so

implemented a fast way to study the aerodynamic behavior of complex shapes

The renewed interest in wind-assisted propulsion offers a compelling intersection between modern

engineering and ancient seafaring. As global shipping faces mounting pressure to reduce greenhouse

gas emissions, alternative propulsion methods have come back into focus. Among them, large-scale

kites have emerged as a promising solution, capable of harnessing high-altitude wind energy without

relying on fossil fuels.

As a marine engineer and sailor this object was well fit for me as it combines both these interests. I only

started to my interest in Computational Fluid Dynamics during my Master’s degree. Whether it are the

pretty pictures or how there are seemingly infinite ways to obtain them, it is a branch of engineering that

I fully enjoy and hope to keep using throughout my career. I truly enjoyed working on the MeshBody

package forWaterLily and seeing how it works, both fast and correct.

I sincerely thank Professor G.D. Weymouth for his guidance and keeping this thesis going in the

right direction. Special thanks to Dr. M. Lauber for helping me with technical issues and for patiently

entertaining my many questions.

I would like to start by thanking my parents for being the wind in my ”kite”. Their gentle nudges about

school have finally paid of. I would not know where I would stand without my sister beside me. Our

shared drive has truly made us both better. I am grateful for the example my grandparents set for me,

both in how to live and how to work. I would also like to thank my friends in Delft for making the past

years more than just studying and for the much needed company during all the hours in the faculty and

library.

Rajan Hellemans

Delft, September 2025
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“ As the sail bellied out with the wind, the ship flew through the deep blue water, and the foam hissed

against her bows as she sped onward ”

- Homer, The Odyssey, Book II

(Translated by Samuel Butler, 1900 [28])



Summary

Wind-assisted shipping is one of the oldest forms of marine transportation. In 2025, it has re-emerged as

a promising method for reducing emissions. The atmospheric boundary layer provides a free, renewable

source of energy that produces no greenhouse gases. Large kites are currently being tested both in

the marine propulsion and energy sectors to harness this energy. These kites operate at high speeds,

resulting in high Reynolds numbers and fully turbulent flow. While current methods, such as Reynolds-

averaged Navier–Stokes (RANS) simulations and vortex step models, can model turbulent effects, they

do not resolve them. In this thesis, we perform Large Eddy Simulations (LES) to investigate whether

turbulence significantly affects the lift and drag forces acting on the kite.

To carry out these simulations, we used the WaterLily fluid solver. This implicit LES solver is based

on the Boundary Data Immersion Method (BDIM), which allows for fully Cartesian grids and avoids

body-fitted meshing. However, it requires a signed distance function (SDF) to define the submerged

geometry. While SDFs are trivial for simple parametric bodies, generating them for complex meshes is

computationally expensive. We implemented an efficient Bounding Volume Hierarchy (BVH) approach

to reduce the number of distance calculations, significantly speeding up the submersion process.

The method led to a large reduction in computational cost and was validated for both bounding and

non-bounding geometries. A new force evaluation routine was also implemented, looping over mesh

elements rather than grid points—more efficient when mesh complexity is low relative to grid resolution.

Using this improved framework, we simulated the TU Delft LEI V3 kite. Wall-resolved LES showed good

agreement with existing data for the mean forces, confirming the validity of our results.

The flow field analysis revealed that at low angles of attack, the pressure side exhibited turbulence,

while the suction side produced a strong drag wake. At higher angles, the flow partially reattached on

the pressure side, reducing turbulence locally. Although absolute force fluctuations increased with angle

of attack due to stronger turbulence, the relative fluctuations (compared to the mean) were actually

larger at lower angles. Spectral analysis showed no dominant peaks, indicating an absence of coherent

periodic forcing.

All simulations used an implicit LES model with no explicit subgrid-scale modeling. The non-dimensional

wall-distance, y+, remained on the edge of the theoretical linear sublayer range. In one case, a significant

deviation from validation data was traced to a lack of flow reattachment. This suggests that some

simulations may be under-resolved. Incorporating an explicit subgrid-scale model could help clarify

this. Future work should focus on dynamic simulations, where the Reynolds numbers are even higher.

The current framework supports this through boundary condition manipulation or kite rotation, without

requiring remeshing at each timestep.
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1
Introduction

The global shipping industry is a key enabler of international trade, with over 80% of goods transported

by sea as of 2021 [63]. Its environmental impact is a growing concern, with the sector responsible for

about 3% of global carbon emissions [30]. Regulatory pressure is increasing. The International Maritime

Organization (IMO) adopted a revised greenhouse gas strategy that targets at least a 40% reduction in

emissions by 2030 relative to 2008 [59].

Meeting these targets requires a portfolio of measures. Bouman et al. provide a comparative overview of

options across design, operations and energy carriers [6]. Among renewable auxiliaries, wind assisted

systems are again viable at scale. Rigid sails, Flettner rotors, vertical turbines and kites are all being

deployed. Reported savings for kite assistance exceed 30% in favorable conditions [36]. Kites have

been studied in both the energy sector [15, 17, 26] and in maritime applications [29, 43].

Aerodynamic force prediction remains central. Methods based on potential flow with empirical three

dimensional corrections [65, 43, 13], RANS [39], and fast vortex based solvers [8] capture mean loads

well, but they do not resolve the unsteady turbulence that appears at Reynolds numbers above 105.
These fluctuations matter for control and structural assessment. For this reason we use Large Eddy

Simulation (LES) in the WaterLily solver [68]. WaterLily is based on the Boundary Data Immersion

Method (BDIM) [67] and runs on a Cartesian grid. The method requires a signed distance function

(SDF) to define the fluid–solid interface.

This thesis focuses on the fast and robust construction and use of SDFs for complex triangulated bodies.

The main contribution is a Bounding Volume Hierarchy (BVH) accelerated pipeline that reduces the

number of triangle distance evaluations, together with a traversal strategy and inside–outside test that

remain stable for non watertight meshes. We couple this SDF to BDIM for body submersion inWaterLily,

and we add sampling procedures that recover surface pressure, shear and integrated forces directly on

the original mesh. The result is an end to end workflow that turns a complex mesh into a simulation

ready SDF, advances the flow with implicit LES, and returns time resolved load signals at practical cost.

Where relevant, we reference standard SDF construction and reinitialization tools [33, 4, 19, 57, 44, 50,

53, 71, 47] to position our choices.

Kite propulsion remains as a motivating example rather than the main goal. We use the TU Delft LEI V3

geometry [1] to illustrate the workflow and to demonstrate how the accelerated SDF, BDIM coupling and

force extraction behave across angles of attack. The case shows why fast SDF generation and reliable

mesh based measurements matter when moving from mean load models to time resolved predictions.

The structure of the thesis is as follows. Chapter 2 reviews aerodynamic modeling methods for wind

assisted propulsion and the role of SDFs in immersed methods. Chapter 3 presents the BVH based SDF

pipeline, traversal and sign assignment, and the mesh based force and pressure extraction. Chapter 4

describes the simulation setup and validates the workflow on static test cases. Chapter 5 demonstrates

the full workflow on a dynamic case. Conclusions follow in Chapter ??.

1



2
Literature Review

2.1. Emission goals for the future and kites as a solution
The global shipping industry is a key enabler of international trade, with over 80% of goods transported

by sea as of 2021 [63]. However, the environmental impact of shipping has become a critical concern,

as the sector is responsible for approximately 3% of global carbon emissions [30]. Figure 2.1 shows

how for the past 50 years the emissions have only increased. This has led to increasing regulatory

pressure, including the International Maritime Organization’s (IMO) revised GHG reduction strategy,

which aims to cut emissions by at least 40% by 2030 relative to 2008 levels [59].

These are ambitious, but necessary goals and will require effort and adaptations from the shipping

industry. Many different methods are already present and have been extensively tested. E.A. Bouman

[6] collected and compared the current literature to compare different CO2 reduction methods.

Among the various strategies to achieve these reductions, wind-assisted propulsion has re-emerged as

a viable solution. Specifically, kite-assisted propulsion offers significant fuel savings and CO2 reduction

potential, with some studies estimating a decrease in greenhouse gas emissions of over 30% under

optimal conditions [36]. This is a very promising result compared to other reduction methods as seen in

Figure 2.2. Despite these promising benefits, existing research lacks a detailed understanding of the

aerodynamic forces and control mechanisms required for effective implementation.

Figure 2.1: Global international shipping CO2 emissions 1970-2023, data plotted from Statista [14]

2
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Figure 2.2: CO2 emission reduction potential from individual measures, classified in 5 main categories of

measures [6] .

This study aims to address this gap by conducting a high-resolution Large Eddy Simulation (LES) to

investigate the aerodynamic behavior of kites under realistic operating conditions. The findings will

contribute to improving kite-based propulsion systems, enabling better integration with commercial

shipping operations.

Wind assisted shipping has been around longer than fossil fuel based transport, but it could once again

become a viable option to reduce future CO2 emissions. As the possible fuel savings may lie in excess

of 30% [36], mainly due to the fuel saving during the trip. This means that wind assisted shipping might

also be more economically viable depending on it’s use [61]. In 2007 Naaijen assessed the performance

of auxiliary wind propulsion using kites [43]. In this paper the drag and lift force of the kite are calculated

from the 2D cross-section using Prandtl’s lifting line theory and a 3D correction factor is used to obtain

more accurate results. As expected the fuel saving is greatly dependent on the wind speed and the true

wind direction which can be seen in Figure 2.4. Wind speeds are very seasonally dependent and thus

the potential power saving could vary a lot. A route between the west coast of the US and Asia could

expect ≈ 17 kn of wind in January, but only ≈ 12 kn on the same route in October [73]. Nevertheless,
Naaijen’s research shows that kites are a viable option as an auxiliary propulsion mechanism.
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Figure 2.3: Potential fuel savings thanks to wind-assisted ship propulsion [36]

2.2. Details and research on kite systems
Naaijen’s research focuses mainly on showing the potential fuel savings, but does not include details

about the kite system itself. We will now look farther into the current research and past findings regarding

kite systems. It is already known for a long time that a figure of eight will provide more propulsive power

due to the increased kite velocity [13]. This figure of eight shown in Figure 2.5 is the basis for a lot of

the current research as this dynamic flight is a lot more complex than a kite flying in a steady state. The

figure of eight was initially adopted to avoid tether twisting, as the figure of eight detangles itself after

every loop. A more recent paper by Eijkelhof, Rossi and Schmehl in 2024 comparing the two flight

patterns found that while the circular flight path provides a higher average lift force, the figure of eight

provides a lift force over time with lower peaks (a lower peak-to-average ratio) [15]. In order to make

circular flight paths viable a complex system needs to be designed that prevents the twisting of the

tether lines and control cables going up to the kite. Another possible flight path is referred to as the sine

wave, during the flight he kite is moved up and down so that it resembles a sine wave from an earth

fixed reference point, this particular flight path proves well suited for upwind sailing [13].

The figure of eight flightpath was extensively tested by Dadd, Hudsen and Shenoi [13]. By calculating

the onset velocity of the kite and making use of the kites known drag and lift coefficient (previously

established in this scenario) the total propulsive force is calculated. Testing different parametrized figures

of eight they found that increasing the pole circle size as well as increasing the pole circle separation

reduces the total towing force of the kite. This means that a tighter flying pattern is preferential, but a

tighter turning radius might also mean that smaller scale fluid effect will be of more importance.

Control The figure of eight is a difficult to achieve flight path, thus a lot of research is aimed on the

design of control systems. Kites are typically controlled with flying lines attached to a control box that is

flying with it [12, 43, 54]. The tractive forces on the lines are often calculated based on the estimated

drag and lift and velocity of the kite and used in combination with a PID controller [29]. The problem is

already partially solved as there are currently several systems in place [2, 54], they are however still in

the initial testing phase. SkySails, one of the systems currently being deployed, uses a control system

designed by Erhard [16]. The steering deflection for a LEI kite is achieved by reeling in the steering

lines on one end and providing more slack on the other side. This only deforms the kite slightly and

the main effect is a roll motion around the kites local roll axis, which changes the direction of the total

aerodynamic force vector as seen in Figure 2.6. However the aerodynamics used are substantially

simplified. Based on experimental data they gathered the paper implements a simple turn rate law that

is only dependent on the steering deflection, the onset velocity and a proportionality constant g:

ψ̇m = gkvaδ
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Figure 2.4: Fuel savings of a 50 000 DWT tanker using a propulsive kite [43]

Figure 2.5: Parametrization of figures of eight with different pole circle sizes [13]

Figure 2.6: Schematic drawing of SkySails steering system. Deformation is generally reduced to a minimum and

profile ribs are almost not affected [18]
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Figure 2.7: Contour plots showing the axial induction factor distribution for an instant of a cycle at the kite location.

The white rectangular region in the plots represents the kite [35].

Fluid structure interactions Aside from control a lot of effort is aimed at optimizing the kites structure,

since the FSI’s are very complex due to the strong coupling between the deformation and the aerodynamic

loading. This led to the development of a fast aero-structural model based on the vortex step method

that can be used in the early design phases [8]. While the vortex step method gives better results

compared to classical lifting line theory it does not calculate the full loading over the kite surface or

account for small scale flow features. Another method proposed by Thedens [60] does solve for the full

flow field using a viscous-inviscid interaction method. This method calculates the potential flow solution

around the kite and couples it with an integral method to calculate the boundary layer. This is especially

useful in higher Reynolds number flows with thin boundary layers. The authors improved the existing

methods by improving the handling of separation and reattachment. While the method solves for a

quasi-steady situation and not for dynamical flight it has the main advantage that it can now calculate

the more complex deformations that occur near the attachment points of the lines.

Numerical methods All research presented here is highly dependent on the calculations of the forces

on the kite, which highlights the need for an accurate force prediction method. A lot of research uses

Prandtl’s lifting line theory [45], but this is only a very rough estimations based on lifting line theory and

a correction factor for the neglected three dimensional effects. Other methods are RANS or URANS

simulations. A steady state RANS simulation is able to predict the average air flow around the kite in

its steady state, but is by design unable to account for dynamical or unsteady effects. Using transition

models increases the accuracy and makes it possible to better predict boundary layer transition region

as shown by Folkersma [20].

A large scale Unsteady RANS simulation of a kite like structure with the aim of developing an analytical

model for calculating the downstream wake features was carried out by Khieri in 2022 [35, 34]. For his

simulation the URANS equations are closed by the k-ω model and the kite is flying a circular, prescribed

path. Khieri finds that the induction factor is higher than 1 near the edges of the kite and the author

notes this may indicate a flow reversal The full field can be seen in Figure 2.7. This is the most detail



2.2. Details and research on kite systems 7

Figure 2.8: Lift-over-drag ratio as a function of the angle of attack without side-slip [39].

the URANS method is able to simulate as it is still calculating an average flow field and only models the

effect of turbulence on the flow. As a result, it cannot resolve the intricate small-scale structures and

flow instabilities that could contribute to the observed flow reversal.

Lebesque [39] performed several RANS simulations of the TU Delft LEI V3 kite. The paper is able to

calculate the lift and drag profile of the kite and find the optimal Lift over drag ratio. The L/D results are

shown in Figure 2.8. The RANS results are able to provide accurate results, but can never actually

calculate any fluctuating forces acting on the kite. At the high Reynolds numbers we expect to see a lot

of turbulence that will affect both the pressure distribution on the kite as well as the total force.

As a lot of research uses different kite models a summary of the used kites is presented below, methods

and Reynolds numbers is presented. It is clear a large amount of different methods have been used

to describe kite dynamics at a range of different Reynolds numbers. As seen in table 2.1 a range of

different kite models is currently used. Cherubini [9] made an overview of kites currently used in the

power generation sector. He identifies six different model and shows that that the leading edge profiles

are used the most. The geometry of the kite is often based on extruded wing profiles, which is why

lifting line theory is often used. Naaijen [43] used an extruded NACA profile, making it a foil kite. A more

common profile is the leading edge inflatable profile. Here the profile exists of a large inflated tube at

the leading edge whereas the rest of the kite is simply a canopy. The ram-air kite from Skysails [54]

shown here is the same model used by their marine propulsion department.

Author Kite type Method Rec,U∞

Naaijen & Koster (2007) [43] NACA 4416 Lifting lines 5.25× 106 - 11.85× 106

Eijkelhof, Rosse & Schmehl (2024) [15] MegAWES Predefined 4.52× 106

Dadd, Hudsen & Shenoi (2011) [13] Flexifoil Blade III Lifting lines 2.57× 106 - 4.34× 106

Cayon, Gaunaa & Schmehl (2023) [8] LEI v3 Vortex step −
Thedens ,de Oliveira & Schmehl (2018) [60] Ram-air kite Viscous-inviscid 11× 106

Folkersma, Schmehl & Viré (2019) [20] LEI RANS-SST 100× 103 - 50× 106

Kheiri, Victor, Karakousian & Bourgault (2022)

[35][34]

Clark-Y airfoil URANS-SST 3.1× 106

Haas, De Schutter, Diehl & Meyers (2019) [26] AWES LES (ASM) 10× 106

Lebesque (2020) [39] TU Delft LEI V3 RANS 1× 105 - 1× 106

Table 2.1: Overview of parameters in current research
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Figure 2.9: Different types of aircraft in Ground-Gen systems. (a) LEI SLE (Leading Edge Inflatable, Supported

Leading Edge) Kite; (b) LEI C-kite; (c) Foil Kite, design from Skysails;(d) Glider, design from Ampyx Power; (e)

Swept rigid wing, design from Enerkite; (f) Semi-rigid wing, design from Kitegen. [9]

2.3. Large Eddy Simulations
As discussed RANS and URANS methods are used to simulate average flow fields, they already provide

a better result compared to the lifting line theory, but they have their own set of limitations as described

by Bush [7]. These limitation have lead to the adoption of higher accuracy methods such as DNS and

LES. Direct numerical simulation is a very powerful tool, but it is extremely computationally expensive

making it unpractical for engineering purposes. The computational cost of the simulation is dependent

on the smallest scales in the fluid, the Kolomogorov scales, the grid resolution and time steps need

to be small enough to capture the these scales. Current research by Yang (2021) shows that to total

computational cost for a DNS scales with Re2.91Lx
[72]. DNS is therefore used mainly for research of

turbulence itself on small scales and generally small Reynolds numbers. An example of such might

be turbulent flow over rough surfaces, a paper by Modesti, Sathyanarayana et al. [42], showing the

capabilities of DNS to obtain valuable data on very small scales which can be used as a basis for models

used on larger scales or validation purposes.

Compared to DNS large eddy simulations are cheaper and regarding accuracy lie between RANS and

DNS. Yang [72] also finds that wall resolved LES and wall modeled LES scale with factors of Re2.71Lx

and Re1.14Lx
respectively. A full review of the basics of LES modeling is described by Sarkar [51]. The

idea of LES stems from the turbulent kinetic energy spectrum. Turbulent kinetic energy is generated at

the largest scales, transferred down to the inertial range and finally dissipated at the smallest scales.

LES imposes a cutoff filter somewhere in this spectrum and models the scales below this filter. The

cutoff can be explicitly imposed by using convolution filters, but in finite volume methods the grid size

acts as a cutoff range as scales smaller than a grid cell can never be resolved. The energy spectrum

below the cutoff is then typically modeled using SGS-models such as the Smagorinsky model [55]

which was the first Eddy viscosity model for large eddy simulations. The model is numerically stable

but is dependent on the Smagorinsky constant Cs for which the optimal value varies a lot depending
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Figure 2.10: Turbulent kinetic energy spectrum showing the different energy ranges [51]

Figure 2.11: Phase-averaged spanwise vorticity over a heaving plate by Franck & Breuer [21], contour levels: -10

(blue) to 10 (red)

on flow conditions. Several other models exist such as the dynamic Smagorinsky or scale similarity

models.They are widely used and tested in various test cases [31]but it is also possible to model the

SGS tensor implicitly. This method, appropriately called implicit LES, models the SGS from the terms

emerging from the discritization scheme. Margolin [37] showed that if the right discritization schemes

are used the error resembles the divergence of the subgrid scale tensor.The method has the advantage

that it is easier to implement and that it is not dependent on externally defined parameters that might

invalidate results when employed incorrectly.

Constantinescu & Squires [11] provide an example of how LES and DES can be used to to analyze

oscillating drag forces on a simple cylinder. Franck & Beuer used LES in 2017 to analyze the flow over

a heaving flat plate showing how LES can be used to resolve small flow features and oscillating force

responses. This can be clearly seen as they analyze the fluctuating part of the lift coefficient over two

cycles of heaving as seen in figure 2.12.

A type of LES has already been performed on kites by Haas [26], focusing on the wake field of an array

of flying kites. However the study does not calculate the flow around the kite, rather it uses the actuator

set method [3]. This method, initially developed for wind turbines, is an adaptation of actuator disk

models where the loads of the rotor, or here kite, are added to the momentum equation using a disk

in the mesh. The ASM enhances this method by consolidating the forces not on a disk but on lines

representing the rotors or kite. While this method is capable of calculating the downstream wake of a

kite it can never solve the flow near the kite.
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Figure 2.12: Phase-averaged lift coefficient with the steady lift coefficient subtracted for better comparison. Two

heaving cycles are shown to better display the trend that occurs upon the transition of one cycle to the next. [21]

Large Eddy Simulation resolves the large, energy containing motions of turbulence and models the

smaller subgrid scales that the mesh cannot capture. In a filtered Navier Stokes view, the resolved field

obeys transport equations with an extra subgrid stress term. That term must be modeled to represent

the net effect of unresolved motions on the resolved ones. Classical closures use an eddy viscosity

idea, for example the Smagorinsky model.

Dynamic procedures estimate the model coefficient from the flow itself. Germano, Piomelli, Moin and

Cabot [24] introduced an identity that compares stresses at two filter levels to infer the coefficient from the

resolved field. Lilly [40] proposed a least squares modification that improves stability and performance.

Together these papers established dynamic modeling as standard practice for inhomogeneous and wall

bounded turbulence.

A central caveat for LES is the interaction between numerics and modeling. Ghosal [25] analyzed how

dispersion and dissipation from discrete schemes can contaminate subgrid dynamics and bias energy

transfer if the grid and the scheme are not chosen carefully. In practice it is better to use conservative

and low dispersion discretizations, apply dealiasing where appropriate, and verify energy budgets and

inertial range spectra so that the model, not truncation error, governs dissipation.

At very high Reynolds numbers, resolving the near wall region is often not feasible. Wall modeled LES

(WMLES) replaces the near wall resolution with a model for wall stress or heat flux while resolving the

outer layer. Piomelli and Balaras [46] reviewed equilibrium and non equilibrium wall models and their

performance on canonical cases. Bose and Park [5] surveyed modern WMLES practice, including two

layer zonal approaches that work on unstructured meshes and in separated or shock affected flows.

These models can recover mean loads and key spectral features on coarser near wall grids.

Implicit LES (ILES) is another option. In ILES no explicit subgrid model is added. The carefully designed

dissipation of a monotone or shock capturing scheme acts as the subgrid mechanism. Margolin, Rider

and Grinstein [37] explained how scheme induced dissipation can mimic forward cascade behavior in

high Reynolds number flows and discussed how to tune it for stability and accuracy. Garnier, Mossi,

Sagaut, Deville and Comte [23] examined the use of shock capturing schemes in LES and the conditions

under which their numerical dissipation is compatible with turbulence physics. When using ILES it is

good practice to report grid to integral scale ratios, check spectral ranges and slopes, and compare

transport budgets, so that the effective dissipation stays physically acceptable.

In summary, LES resolves the energy containing motions and models the rest. Dynamic subgrid closures

and wall models extend its reach to complex, high Reynolds number flows. ILES offers a complementary

path that uses numerical dissipation as the subgrid mechanism, provided that spectra and budgets are

verified against theory and reference data.
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2.4. Boundary Data Immersion Method
The Boundary Data Immersion Method (BDIM) embeds body boundary conditions into the governing

equations by an analytic convolution across a thin kernel that spans the fluid solid interface. Weymouth

and Yue [66] derived the method at the level of the continuous equations, then discretized. The result

is a set of mixed equations on a single Cartesian grid that enforces the boundary data and keeps

pressure and velocity behavior stable near the interface. Because the coupling is derived at the equation

level, BDIM is less sensitive to body grid alignment than direct forcing strategies and shows robust

convergence on canonical benchmarks.

A second order extension improves interface accuracy. Maertens and Weymouth [41] introduced a

higher order correction that removes interfacial velocity gradient discontinuities and reduces spurious

pressure fluctuations. They validated moving body and canonical flows up to Reynolds numbers of

order 105. This makes BDIM attractive for unsteady near body aerohydrodynamics where full resolution

of turbulence is not feasible.

BDIM is also available for compressible flow and aeroacoustics. Schlanderer, Weymouth and Sandberg

[52] formulated a compressible version that keeps the same kernel based embedding of boundary

conditions and enables coupled prediction of near body flow and radiated sound on Cartesian grids.

This supports simulations of moving and rotating bodies that produce broadband noise, while keeping

time advancement stable and the near body coupling accurate.

For high Reynolds number applications BDIM is typically used together with LES or with ILES. In the

ILES setting the regularization from the numerical scheme, together with the local filtering implied by

the BDIM convolution near the interface, provides the effective subgrid dissipation. The guidance from

Margolin, Rider and Grinstein [37], from Garnier, Mossi, Sagaut, Deville and Comte [23], and from

Ghosal [25] applies here. It is good practice to document mesh and kernel parameters, show grid

convergence of forces and spectra where feasible, and check energy budgets so that the modeled or

implicit dissipation stays consistent with turbulence theory.

To summarize, BDIM provides an equation level, Cartesian grid coupling between fluid and solid that

enforces boundary data without ad hoc forcing. The second order extension improves accuracy near

the interface, and the compressible variant extends the method to flow acoustics. These properties

make BDIM a practical near body method that fits well with LES and ILES for high Reynolds number

problems where fully resolved simulations are out of reach.

2.5. Signed distance functions
A signed distance function φ(x) gives the distance from a point to a surface and uses the sign to mark

inside or outside. By definition φ = 0 on the interface and |∇φ| = 1 near it. Jones, Baerentzen and
Sramek [33] give a clear overview of why SDFs are useful in simulation and geometry processing. In

our context the value is practical. The zero set locates the interface, ∇φ/|∇φ| gives a normal, and point
queries are cheap.

There are three common ways to build an SDF. The first starts from a triangle mesh and computes

closest point distance, then assigns a sign. Baerentzen and Aanaes [4] show how the angle weighted

pseudonormal yields a robust inside outside test together with the closest point. Wu, Man and Xie [70]

propose a double layer strategy that builds interior and exterior distance layers and combines them,

which is efficient and avoids many non watertight issues.

The second way is grid based. One marks interface cells on a Cartesian grid and runs a distance

transform. Felzenszwalb and Huttenlocher [19] give linear time transforms for common metrics. The

result is an unsigned field on the grid; the sign then comes from an inside outside test such as parity

counting or a winding number. Jones, Baerentzen and Sramek (2006)[33] discuss these choices and

their trade offs.

The third way is PDE based. Sussman, Smereka and Osher [57] introduce reinitialization that relaxes a

generic level set to signed distance while keeping the interface fixed. Peng, Merriman, Osher, Zhao

and Kang [44] make this local and fast near the front, and Russo and Smereka [50] improve accuracy

of the distance reconstruction. When the front advances monotonically, fast marching gives an efficient
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solution of the eikonal |∇φ| = 1 away from the interface, as shown by Sethian [53].

Near walls and contact lines the details matter. Della Rocca and Blanquart (2014)[49] show that naive

reinitialization near a contact line can create errors and propose a fix. Xue, Sun, Adriaenssens, Wei

and Liu [71] give a finite element reinitialization that uses a shifted boundary idea to restore the signed

distance property without moving the zero set.



3
Implementation of mesh based bodies

in WaterLily

This section will discuss the development, validation and benchmarking of the MeshBody package. All

methods heavily rely on the Boundary Data Immersion method that is used in WaterLily so this chapter

will begin by explaining the BDIM and the other methods used with in the current framework. Next the

methodology of the Bounding Volume Hierarchy will be laid out. The generation of signed distance

fields will then be validated an compared to a brute force approach. We will also outline a new method

for calculating the forces acting on the body. This method will work from the mesh instead of the full

flow field. This method will also be validated and it’s shortcomings highlighted.

3.1. Boundary data immersion method
In this section we will explain the BDIM method and how it is used to submerge objects inWaterLily.

This is important as we want to implement a new method to submerge these objects. We will also

discuss how the current forces on submerged objects are calculated. What follows is an overview of the

Boundary Data Immersion method and is a summary of a collection of papers (Weymouth & Font, 2024

[68], Weymouth & Yue, 2011[66] and Maertens & Weymouth,2015 [41])

The BDIM is a method to submerge object in a fluid simulation that only relies on a Cartesian grid and

does not rely on conformal meshes. Instead of explicitly enforcing boundary conditions at the fluid–solid

interface, BDIM smoothly blends the governing equations of the fluid and the solid through a narrow

transition band around the body surface. This is achieved by replacing the separate equations for the

fluid, solid, and interface with a single meta-equation:

M ε(W ) = dεBB(W ) + dεFF (W ) + dεSS(W ) = 0

where:

• W is the state variable,

• B(W ),F (W ) and S(W ) are the governing equations for the body, the fluid, and the interface

condition, respectively,

• dεB ,d
ε
F and dεS are kernel-weighted moments that smoothly blend the respective equations across

the interface region.

The weights are derived from the signed distance function d(x), which measures the distance from each

point x in the domain to the nearest point on the surface of the immersed body.The transition region is
defined by a smoothing width ε, we will use ε = 1 making the transition region 2 cells wide, see Figure
3.1. The kernels are calculated from the signed distance by a cosine function and is defined only at a

13
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Figure 3.1: Conceptual sketch of the problem. Figure (a) is the original two-domain problem P0 with domains Ω b and Ωf and
their interface σs and the respective governing equations and Figure (b) is the equivalent single-domain problem Pε with

governing meta-equation constructed by the boundary data immersion method by convoluting and assembling the equations over

a width ε. The transition between the equations is smooth and located within the small distance ε of the interface σ ; Taken from

Weymouth and Yue, 2011 [66]

Figure 3.2: Smoothing across the immersed boundary. The equations valid in each domain are convolved with a

kernel of radius ε and added together. The gradient of gray illustrates how the contribution of bε and fε to the
smoothed equation changes in the boundary region. The kernel at a point (marked by a dot) that belongs to the

boundary region is represented; Taken from Maertens & Weymouth [41]
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A visual representation of how this kernel looks is shown in Figure 3.2. These kernel moments define

how the behavior inside and outside are blended together. Inside of the body, µ0 → 0 which is used to
suppress any pressure gradient. In the fluid domain where µ0 → 1 the equations are fully ”activated”.
In the transition region then simply uses the intermediate values of µ0, removing the need for explicit

boundary conditions.

While BDIM is very efficient, it requires computing the signed distance from each grid point to the

immersed surface,d. For simple parametric bodies, this is trivial. However, for complex geometries such
as kites, it becomes computationally expensive. In this thesis, an accelerated method is developed

to evaluate signed distance fields more efficiently, which is essential for the practical use of BDIM in

high-resolution simulations.
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In order to obtain the forces on the object we need to integrate the pressure over the surface of the

body, approximated by the kernel moments. In the BDIM, the force contribution from each grid cell is

calculated by multiplying the normal of the closest point on the object by the value of the kernel function

at that location an example of the smoothed z component of the normals can be seen in Figure 3.11.

f(x) = p(x)n(x) · kern
(
d(x)

ε

)
Only locations on the grid with in the transition region contribute to the force as the value of f(x) is zero
farther away. The total force on the object is then sum of f(x over the entire domain Ωε:

Fp =
∑
x∈Ωε

p(x)n(x) · kern
(
d(x)

ε

)

3.2. Methodology for the Bounding Volume Hierarchy
As we have established how the BDIM works and why the signed distance function is important we will

now describe the method used to decrease the computational cost of doing so. In order to reduce the

number of measurements a bounding volume hierarchy is introduced to split up the mesh and quickly

determine whether or not a point is worth evaluating. This method is adapted from computer graphics

where it is used for ray-tracing applications [27]. The method splits the spatial domain into boxes that

are related in a parent/child structure and stores them inside of a tree as seen in figure 3.3. Starting at

the top we check if a point is located inside of a box, if it does we continue by checking its children. If

not, we check remaining siblings and possible children. Only if the point is located in a leaf (8 through

15 in figure 3.3) do we measure its distance to the mesh otherwise we do not need it and can set it

to a large value. We can also reduce the number of triangles we need to check by only measuring to

triangles located inside of the leaf that the point is located in.

Figure 3.3: General tree lay-out witrh 4 levels; 1-7 are nodes, 8-15 are leaves

There are three main steps in building the BVH, the first involves working down and subdividing the

domain. The second step splits the mesh into parts corresponding to the subdivisions and re-snaps the

bounding boxes to fit closer to the mesh parts. Finally the third steps rebuilds the nodes of the tree.

BoundBox type and type-specific operations In order to easily work with the code a custom type

was defined in Julia called BoundBox. This element consist of vectors describing two diagonal points on

a box stored as keywords lo and up. This type is used for all instances of boxes and the syntax allows

for easy to read logic and easy manipulation of the boxes. We define three distinct box-operations.

First expanding a box only requires subtracting an adding a scalar to BoundBox.lo and BoundBox.up

respectively. Splitting a box in half requires calculating the widths of a box, which is the element wise

subtraction of the two vectors, halving the desired direction and calculating the new diagonal points. A

new box can then be constructed using these values. Finally reconstructing a parent box out of two
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boxes is simply taking the minima of the box.lo’s and the maxima of the box.up’s. Figure 3.4 shows a

2d representation of the box-operations.

Figure 3.4: Box operations; in order from left to right: expanding, splitting into children, merging into parent

Generating Subdivisions starts by generating a bounding box around the mesh an slightly expanding

it so that there is a border of a couple cells around it. This is important as we need the signed distance

field on both sides of the mesh in order for the kernel function to work properly. The box is then split

along its longest direction, this is done iteratively until the desired amount of leaf boxes is created. These

subdivision are then slightly expanded so they overlap in order to reduce error. It might happen that the

closest mesh point is located just outside of the box and having overlap between the boxes removes

this problem. A benefit of generating the subdivisions from the top down is that we know for certain that

two boxes that are close to each other in space will also be close to each other in the memory array.

This is beneficial when rebuilding the nodes as we do not need to add any logic determining whether

boxes are clos too each other or not. The resulting subdivisions for a tree with 5 levels can be seen in

Figure 3.5 where we apply to process to the Stanford bunny [62].

Splitting the mesh The subdivision are then used to split the mesh in sub-meshes based on the

locations of the three vertices defining a triangle. If one of the vertices is inside of the subdivision we

add it to the sub-mesh. There are cases where this does not work such as a large triangle element that

intersects a subdivision, but has all three of its vertices outside of the subdivision. For our use case we

assume that in general triangles will be a lot smaller than the subdivision. Since the subdivision overlap

so do the sub-meshes to reduce the chance of missing the closest point. Since leaves that are largely

empty will result in a lot of unnecessary measurements, bounding boxes fitting the sub-meshes are

generated and these are then used as the leaves. In some cases a subdivision might be completely

empty and the bounding box will have an invalid lo an up. It is possible to remove these boxes and

construct an incomplete tree such as by Chitalu et al. [10]. However this complicates traversal, requiring

a map between the tree nodes and the memory index. Instead we leave the tree structure intact and

define that a point can never be inside such a box and is thus not measured. The final leaves can be

seen in figure 3.6 and an example of a sub-mesh is shown in green in figure 3.7

Constructing the nodes Finally the upper nodes are constructed from the leaves by merging two

boxes that are next to each other in space to avoid overly large nodes. Because we build the tree such

that leaves next to each other are next also together in the memory we can use boxes that are located

next to each other in the memory array. Merging two boxes that are far apart does not induce additional

error, but will result in more boxes being checked then necessary leading to a longer traversal time.

This process is repeated for each level until the tree is filled. During this process all boxes are expanded

to make sure there is a solution all around the mesh. Two leafs and their constructed parent node are

shown in figure 3.7
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Figure 3.5: 16 subdivisions on the Stanford bunny from a 5-level BVH tree, expanded to show overlap

Figure 3.6: Leaves around the Stanford bunny for a BVH with 5 levels

Figure 3.7: Two leaves (black) and their constructed parent node (green); part of the mesh inside the left leaf is

shown in dark green
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3.3. Traversing the tree
When constructing the signed distance field we will need to traverse the tree for every grid point. We

will only measure a distance if the point we are measuring is located inside of a leaf. Traversing the

tree consists of checking whether a coordinate, x, is located inside of a node. If it does we continue by
checking the children of that node, this is repeated until we find one, more or no leaves in which the

point is located. In order to traverse the tree we need to be able to jump between boxes based on the

relationship between them. There are three possible relationships: Child, Parent or Sibling. These are

relationships for points that are only one operation away from each other, but farther relationships can

be achieved by using the operations multiple times.

Children The left child of a node is found by doubling the current node index. The right child is then

simply its sibling. Example using figure 3.3: The children of node 7 are 2 · 7 = 14 and 2 · 7 + 1 = 15

Children(i) = 2i & 2i+ 1

Parent The parent of a node is defined as the greatest integer less than or equal to half of its

index.Example using figure 3.3: The parent of node 7 is
⌊
7
2

⌋
= 3

Parent(i) =

⌊
i

2

⌋

Sibling Finally the sibling of a node is found by adding or subtracting 1 depending on whether the

current index is even or uneven. Example using figure 3.3: The sibling of node 7 is 7 + 1 = 8.

Sibling(i) =

{
i+ 1 if i is even

i− 1 if i is odd

We implemented and tested two different traversal algorithms. The first, a classical depth first traversal

and the second a stack-less method that implements a finite state machine. Below both methods will

be described. It is difficult to determine what method is best and it depends on the compiler. The

FSM-based method is ready to run on a GPU whereas for the stack based method this is not possible

as GPU’s do not allow dynamic memory. Adding elements to an array is generally expensive and this

would make the stack based method more expensive. However modern compilers like Julia handle

dynamic memory extremely efficient and don’t always have to allocate new memory when pushing new

values to an array. In practice we have seen that both methods perform equally.

3.3.1. Depth first, stack based traversal
This method starts by creating a stack that only contains the root index, 1 and initializing a best solution,

set to a large value. We then take the first index in the stack and check whether the point we are

checking, x, is located inside of it. If so the children of the box are pushed into of the stack, if not we
check the remaining nodes in the stack. Only when we find x to be inside of a leaf do we measure the
distance to the corresponding sub-mesh. If that solution is better than the one previously found (or set)

we update the best solution and continue working through the stack until it is empty. Since we have

overlap between the leaves the point can be in multiple leaves ands we have to continue, as there is

the possibility that another leaf will give a better solution. This process is repeated until the stack is

empty and we can accept the best solution. If no leaves are found we just return the initial large value

for the distance and the point was not measured at all. A pseudo-code representation of the algorithm

is shown in the algorithm below.

Figure 3.8 shows a possible traversal for a simple 3 level BVH with arrows showing the order in

which the nodes are checked. In this example the point is located in both leaf 7 and 5 so we have

to measure twice. In this small scenario all boxes are checked, but in larger BVH’s this is not be the case.
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Figure 3.8: Stack based traversal for a 3 level BVH; A green node indicates that the point is inside of the box and a

red one indicates that it isn’t

Algorithm 1 Stack based, DFS traversal

function Traverse(x, BVH)
Initialize stack with root index 1
Set best_solution to a large initial value

while stack is not empty do

i← pop(stack)
box← bounding box at node i
if x is inside box then

if i refers to a leaf node then . Leaf node found
d← GetDist(x, mesh[i])
if |d| < |best_solution| then

best_solution← d
end if

else . Internal node
Push children 2i and 2i+ 1 onto stack

end if

end if

end while

return best_solution
end function

3.3.2. Stack-less, finite state machine traversal
The second method is adapted from [27].They have devised a finite state-machine that is able to traverse

a BVH-tree. Their method is designed for ray-tracing it can be easily adapted and even simplified for

our case. Algorithm 2 shows the detailed layout of the method. The method works by defining a state

based on the relationship between the current node and the previous node. Three states are defined

based on the previous node that was checked; fromParent, fromChild and fromSibling.

If the state is fromChild we already know that the point x is inside of the current box so we do not
have to check this again. This means we either have to move to a sibling or farther up if the sibling has

already been checked. Hapala [27] defines a near and far child depending on the direction of the ray.

Since we are only testing points and not rays we can simplify the process just checking whether the

node index is even or odd. From an even node index we move to the sibling and for an odd index we

move to the parent. This distinction is clear in Figure 3.9 with nodes 2 and 3.

In the fromSibling case we have to test whether we are inside of the box as it is the first time at that
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Figure 3.9: FSM based traversal for a 3 level BVH; A green node that the point is inside of the box and a red one

indicates that it isn’t

index. If not we leave the branch and move back up to the parent. If we are in the box we check if

we are in a leaf and update the solution if necessary. If we are in a node we continue down the tree

following the left branch.

The final state fromParent requires checking if the point is inside of the box. Here we deviate from the

method by Hapala et al [27], we do want to check the first bounding box and if we are not inside of it we

immediately stop the traversal. If we are not in the box, but not checking the first box we move to the

sibling. If we are in the box we check if it is a leaf and if so we measure the distance and compare it to

the current best to see if we accept it. If we are in an internal node we move down the tree to the left

child.

This method has to check the same amount of boxes as the stack based method. While it looks like

we are accessing some internal nodes multiple times, the state machine is able to tell whether a box

has already been checked based on the state and does not need to check the point again. Figure 3.9

shows how node 2 is checked once when we enter it coming from node 1. When we get to node 2 again

from node 5 we do not have to check it again, rather we see that it is a left child and simply move to its

sibling, node 3.
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Algorithm 2 Stackless BVH Traversal by Hapala et al. [27]

function Traverse(x, BVH)
current = 1
state = fromParent
while true do

Switch (state) do

Case fromChild
If current == root→ Return

Else if current == leftChild(Parent(current))

→ current = Sibling(current)

→ state = fromSibling
Else

→ current = Parent(current)

→ state = fromChild
Continue

Case fromSibling
If inBox(x,current) == FALSE
→ current = Parent(current)

→ state = fromChild
Else if isLeaf (current) == TRUE

→ MEASURE

→ current = Parent(current)

→ state = fromChild
Else

→ current = leftChild(current)

→ state = fromParent
Continue

Case fromParent
If inBox(x,current) == FALSE AND current ==1

Break

Else if inBox(x,current) == FALSE
→ current = Sibling(current)

→ state = fromSibling
Else if isLeaf (current) == TRUE

→ MEASURE

→ current = Sibling(current)

→ state=fromSibling
Else

→ current = leftChild(current)

→ state=fromParent
Continue

end while

end function
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3.4. Constructing sdf's using the BVH
The final thing we need to do is measure the distance from a point to a triangle. For this two algorithms

are in place. The first one can be used when the triangles of the mesh are small relative to the grid

cells and simply calculates the distance from point x to the center of the triangle. This simple distance
calculation is very fast and thus preferable if it proves to give correct results.

The second algorithm is more robust but is also computationally more expensive. If triangles are large

compared to grid cells we need to check which part of the triangle is closest and use that distance.

This can either be one of the three vertices,on one of the three edges or x can be located inside of
the triangle. When the closest part of a triangle is found we use that distance. For our use case we

have chosen for the fast method as we still assume that mesh elements will be small. When mea-

suring the distance between x and a sub-mesh we simply loop over all triangles and store the best result1.

An added complexity are non-bounding meshes, these are meshes that do not bound of a partition in

space. A sphere is the best example of a bounding mesh as it partitions space into inside or outside

the sphere. A simple plate or the canopy of a kite can be considered a non-bounding mesh as there

is no clear in or outside. When constructing the sdf we have to slightly inflate it around the mesh by

subtracting a desired half thickness from the measured distance as we need a clear in or outside on

order for the solver to work. This minimum thickness is 2 +
√
3 where two is twice the length of the

transition zone ,2ε and
√
3 is the maximum length of a vector in a cell. This thickness is thus defined

such that the transition zones do not overlap and the kernel vectors at the edge of the transition can

never point to another transition zone. Not respecting the minimum distance leads to wholes in the

geometry.

For the force calculation we also need the normal direction of the closest point on the mesh through

the domain. The already implemented force routing uses this field of normal vectors to calculate the

pressure force. While we will be implementing our own force routine later in section 3.7, we still want

the implemented force method to work as intended. Once the closest triangle to a point has been found

we take the normal vector of that triangle and store it for position x. This works for bounding meshes,
but for non bounding meshes it is too simple. Since we simply take the normal of the closest mesh

element this means that at both sides of the mesh the same normal is used This can be seen in figure

3.10 where the z-component of the normal is shown for a low resolution kite at a high angle of attack.

Both sides of the canopy have normals facing downwards which will lead to wrong force calculations. In

order to solve this we need to know which side of the mesh we are on and flipping the normal vector

accordingly. This is done by multiplying the normal with:

sgn (n · (x− c))

Implementing this leads to the z components of the normals in figure 3.11 which shows a kite at a zero

angle of attack and where we can clearly see the difference between the top and bottom side of of the

canopy.

1These methods were already implemented in the MeshBody.jl
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Figure 3.10: z component of wrongly calculated normal vectors; Both sides of the back canopy have normals

pointing in the same direction

Figure 3.11: z component of correctly calculated normal vectors; Both sides of the back canopy have normals

pointing in different directions

3.5. Validation of signed distance functions
In order to validate the method we need to compare it to a know signed distance field that is sufficiently

complex. We use the sdf library by Quilez [48] and used the exact sdf for a link. Making use of the

sdf transformations we generated a signed distance field of two interlocked links, where one is rotated

90◦. This geometry was chosen as it is also easy to replicate the shapes with a mesh. A slice of the

analytical solution can be seen in figure 3.12. Four different meshes with a varying amount of triangles

are generated and are scaled to accommodate three different grid sizes. Five BVH’s with a different

number levels are then constructed and the signed distance field is calculated for each case. The

L1 error norm of the sdf is only calculated close to the mesh as we have not calculated the full field.

Statistical data of the error is collected and below we report the mean error to study the effects of the

resolution and the amount of levels.
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Figure 3.12: Slice of the analytical sdf of the two interlocked links

Table 3.1: Overview of levels, grid cells, and mesh elements used for validation

Levels Grid Cells Mesh Elements

2 50 3,156

4 200 11,220

6 800 28,871

8 – 41,404

10 – –

First we look at the effect of the resolution of the mesh compared to the grid cells. This resolution is

simple defined as the number of mesh elements over the number of grid elements. We see that the

mean error quickly reduces when increasing the resolution and is generally very low. The main reason

for the diminishing error is likely due to a decrease in modeling error. In other words increasing the

resolution reduces the difference between the mesh itself and the exact shape of the links, thus also

decreasing the error in the sdf.

We also look at the mean L1 error compared to the number of levels used. Figure 3.15 shows the

distribution of the mean errors. Note that a box here is defined by all the mean errors of different

combinations of the variables defined in table 3.1. We see that changing the number of levels has little

to no impact on the error in the sdf. This means we can increase the number of levels to speed up

calculations without an increased error in the sdf.
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Figure 3.13: Slice of the numerical sdf of the two interlocked links made with 6 levels

Figure 3.14: Mean L1 errors in the sdf of two interlocked links plotted over the resolution
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Figure 3.15: Mean L1 errors in the sdf of two interlocked links plotted over the resolution

3.6. Benchmarking of sdf generation
To analyze the effect of the method we do not make an actual speed comparison, rather we focus on the

reduction in the number of operations. We define a measurement as finding the distance between a grid

point and a mesh. This involves checking all triangles with in that mesh and finding the shortest distance.

We will investigate three different meshes in 3 different domains, a sphere, the Stanford Bunny [62] and

the Stanford Asian Dragon [56] seen in Figures 3.16a and 3.16b respectively. Each mesh will be placed

in a 3 different domain sizes, a small domain of 128 by 128 by 128 cells, an intermediate domain of

256 by 256 by 256 cells and a large domain of 512 by 512 by 512 cells. The meshes will be scaled

up together with the domain such that the volume ratio between the mesh and the domain remains

the same. For each mesh a MeshBody using 4 different numbers of levels. The reduction factors are

relatively independent on the size of the mesh inside the domain compared to other metrics. When the

object becomes larger in the domain the BVH method will creat boxes that are completely with in the

mesh. These boxes are inside of the mesh, but no actual elements are inside so we do not measure

there leading to a ”hollow” sdf. We normalize all results here by the number of operations that would be

necessary in a brute force approach and by the relative mesh size. In the brute force approach we need

to check N grid points and for each grid point we need to check M mesh elements.
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(a) Render of the Stanford bunny [62] (b) Render of Stanford’s Asian dragon [56]

Figure 3.16: Stanford bunny and Asian dragon used for benchmarking the BVH method and for validating the

hydrostatic pressure routine

We compare the number of operations to a simple bounding box method. This can be seen as building

a BVH with only one level so that a single box is used to check wheter or not we want to measure the

grid point or not. We are only interested in the total number of times that the distance between a triangle

and a point is calculated and we normalize the results to the number of triangles checked when using

the simple method. This is simply equal to the volume of the bounding box times the number of mesh

elements, vol(BBox) ·M . Figure 3.17 shows the reduction factor for a different number of levels and

Figure 3.18 for different domain sizes. We see that the number of triangles reduces rapidly and for a

large number of levels we can expect up to 90% fewer triangles checked. The effect does diminish due

to the overlap between the leaves, once they become sufficiently small the overlap dominates their size

and we are doing extra work. We see a slight added reduction when increasing the domain size, but not

as significant as when increasing the number of levels. This is because when we increase the domain

size the number of measurements reduces, but the effect on the number of triangles is more complex

and depends a lot on the objects geometry.

Figure 3.17: Total saving factor by level
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Figure 3.18: Total saving factor by domain size

Besides calculating the number of triangles that need to be checked we also time the calculation. We

do this using large dragon meshes consisting of ≈ 1.1 × 106 and ≈ 2.5 × 105 faces. We time both

the creation of the BVH and the time required to construct the sdf for different levels and sizes. The

calculations are performed using 2 AMD Ryzen Threadripper PRO 5975WX 32-Cores so we have a

total of 64 cores available. Since in the WaterLily framework the measuring is parallelized over the grid

we take the same approach. Julia does not allow for multiple levels of parallelization, so there is no

need to time our code using different numbers of threads as our code is not parallelized, but rather

gets run in parallel. We use the same domain sizes as before and check for levels 3,5,7 and 9. For

each data point 10 - 50 calculations are performed in order to obtain accurate results, however when

analyzing the results the variance in the data is so small it does not show up clearly so it has been

omitted here. In figure 3.19 we see the total construction time for the BVH. This is important as it is an

extra step that is not required when using a simple bounding box approach. Therefor it is important that

no time is lost on this step. First we see that the construction time is independent of the mesh scaling.

The larger mesh (dragon_1) does take longer to process then the smaller mesh (dragon_5) this is due

to the construction of the sub meshes which is an intensive process. We also see that the construction

time increases with the number of levels. This can be attributed to the same reason, where now we

need to construct more sub meshes. Overall the construction is extremely fast and as we will see now

completely insignificant compared to the time required.

Figure 3.21 show the time spent constructing the sdf. As expected a larger mesh at a larger scale takes

significantly longer. The first data point is the time needed to construct the sdf with a simple bounding

box. We see that even using a small BVH of 3 levels can have a significant impact on the measuring

time. Based on these numbers the construction time that is significantly less than a single second is

acceptable. Besides the absolute time we are more interested in the time saved. Normalizing the time

to the time required using a simple bounding box shows some interesting behavior. First we see that

there is a clear optimal number of levels that depends on the mesh and domain size. The levels tested

here all still result in a time saving, but it is clear that using too many levels might eventually even be

worse than using the bounding box method. Secondly we also see that for both a larger mesh and a

larger domain size there is a larger time savings. This is great as it means that of we encounter larger

meshes and domains we can always increase the number of levels up to a certain point to save more

time.



3.6. Benchmarking of sdf generation 29

Figure 3.19: Construction times for different number of levels, mesh elements and domain sizes

(a) Measurement times for dragon 5 ( ≈ 2.5× 105 faces) (b) Measurement times for dragon 1 ( ≈ 1.1× 106 faces)

Figure 3.20: Measurement times for two different mesh sizes, scales and levels

(a) Time saving factor for dragon 5 ( ≈ 2.5× 105 faces) (b) Time saving factor for dragon 1 ( ≈ 1.1× 106 faces)

Figure 3.21: Time saving factor for two different mesh sizes, scales and levels
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3.7. Pressure probing from a mesh
The current method to extract the pressure an friction forces on an object in WaterLily, outlined at

the start of this chapter, requires looping over the entire computational domain and using the kernel

to determine the approximate location of the submerged object. If we implement a mesh it will be

more efficient to calculate the forces from this mesh as there will often be less mesh elements than

grid cells. In this section we will discuss the method used to extract the pressures and forces on the mesh.

3.7.1. Implementation
In order to obtain the pressure forces on the body we need to account for the working of the boundary

data immersion method. The method takes the problem consisting of two domains, inside the body and

the fluid, and transforms it to just one body by applying a smoothing region of width 2ε on the interface.
The method is described in more detail and validated by Weymouth and Yue (2011) [66] and figure

3.1 shows a general two dimensional example. The kernel function used for this generate a smooth

transition between the inside and outside of the body. When we generate a body from a mesh we have

a clearly defined boundary such as in figure 3.1(a) and the transition region extends away from the

body. We need to take this transition region into account when we calculate the pressure acting on a

mesh element.

The first step is to calculate the center point, c, and the normal, n of the triangle. Depending on the
mesh that is used information of the normals might already be included, in that case these normals

are used instead. We then obtain the pressure at a distance δ1 and (δ1 + δ2) from c in the direction
of n, resulting in two values for the pressure at points q1 and q2. Often q1 and q2 will not coincide with
the grid points of the computational domain so a tri-linear interpolation of the pressure field, already

implemented inWaterLily, is performed to find the pressures pq1 and pq2. These values are then used
to linearly extrapolate the pressure values back to c resulting in the following formula.

pc = pq1 −
pq2 − pq1

δ2
· δ1

This formula gives us the extrapolated pressure at the center of a triangle which we can use to calculate

the force on the triangle by multiplying it with it’s area. This simplification relies on the condition that

the mesh elements are smaller than the grid cells as we can then assume the simulated pressure is

constant over the area of the triangle. Since the pressure in the solver is non-dimensional the exact unit

of this force is cells2 or simply an area. So when changing the force to a force coefficient we divide by
the front facing area and are left with a non-dimensional force again.

Figure 3.22: Vectors and points used to determine the pressure on a triangle element; cq1 is defined by n ∗ δ1 and
q1q2 is defined by n ∗ δ2
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This method only requires the determination of the parameters δ1 and δ2. The main consideration for
δ1 is to be outside of the transition zone, but still as close to the body as possible leading to a choice
of ε

2 . Secondly we want δ2 to be as small as possible because this brings the calculation closer to

the derivative’s limit, which assumes an infinitesimally small distance. However if δ2 is too small, the
difference between pq1 and pq2 may be too insignificant to capture any meaningful variation data, leading
to a slope calculation that approaches zero and results in a value of pq1 at the center of the triangle.
Experimentation resulted in an optimal value of 1e-8. Both points are still located in the transition zone,

but the values where chosen for the best agreement with the existing method.

δ1 =
ε

2
= 0.5

δ2 = 10−8

3.7.2. Validation of pressure probing from a mesh
In order to validate the working of the force extraction we will start by submerging several objects in

a linear pressure gradient representing hydrostatic pressure. The hydrostatic pressure force on the

mesh will be calculated and compared to the volume of the mesh. The correct volume will be calculated

using the volume tool in Rhinoceros 8. A domain of 64 by 64 by 64 grid cells will be created and the

mesh will be placed in the middle of the domain and scaled to make make sure the object is fully inside

of the domain. The applied pressure gradient follows p(x) = −x3. Note that results are the same if
the pressure gradient is applied in a different direction or if the sign is flipped. In table 3.2 we can see

that the error is extremely low and near exact. While these cases give the impression the method

works perfect we cannot validate the chosen values for δ1 and δ2 based on these results. Since a linear
extrapolation of a linear function is exact (see derivation below) we end up with negligible errors and

are not actually using δ1 and δ2 in the calculation as both cancel out in the equations.

p1 = zc + δ1n3

p2 = zc + (δ1 + δ2)n3

∆ =
zc + (δ1 + δ2)n3 − zc − δ1n3

δ2
= n3

pc = p1 −∆δ1

pc = zc + δ1n3 − n3δ1 = zc

Object # of faces Exact volume cells3 Calculated Volume cells3 Error %

Sphere 79,600 17,153.4044 17,153.3665 0.000222 %

Stanford Bunny 5,002 9,165.9713 9,165.9704 0.000010 %

Stanford Asian dragon 1,125,000 2,410.2639 2,410.1892 0.003103 %

Table 3.2: Errors in comparing calculated hydrostatic pressure and volume

In order to validate the functionality of the proposed method and the corresponding values for δ1 and
δ2 , a benchmark case is reproduced from the work of Weymouth and Lauber [69]. This recent study

introduces novel boundary conditions to the WaterLily simulation framework. In order to evaluate the

accuracy and robustness of our approach, we conduct simulations of a sphere in computational domains

of varying sizes, and the drag force exerted on the sphere is measured over the course of the simulation.

This is done using both the existing WaterLily implementation and the new mesh-based method under

investigation.

The test sphere has a radius of 44 grid cells and is modeled using a high-resolution triangular mesh

composed of 79,600 elements. The time evolution of the drag coefficients, as illustrated in figure 3.25,

reveals that the two computational methods produce almost indistinguishable results across the entire

duration of the simulation. This close agreement is a strong indicator of the mesh-based method’s

validity.
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Figure 3.23: Pressure distribution on a spherical mesh

Figure 3.24: Boxplot of errors between current WaterLily method and mesh based method

To further assess accuracy, we examine the relative error with respect to the reference solution provided

by the established WaterLily implementation. The results demonstrate that the median error remains

extremely low for all three tested domain configurations. As depicted in figure 3.24, the boxplots of

the percentage error throughout the simulation confirm this finding. While at some time steps the error

is > 1%, we can see that these are outliers and taking the time averaged quantity will filter these out.
With a median error of approximately ≈ 0.24% in all cases, we conclude with confidence that the new

mesh-based approach performs exceptionally well and is in excellent agreement with the reference

method.

Since we now have an easy way to access parts of the domain from the mesh we can easily create

pressure distributions which was previously more difficult. Figure 3.23 shows the pressure distribution,

rendered in 3d, on the sphere from the smallest domain.
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(a) Time trace for domain size 320 x 128 x 128 .

(b) Time trace for domain size 480 x 196 x 196 .

(c) Time trace for domain size 640 x 256 x 256 .

Figure 3.25: Drag coefficient over time for a sphere at increasing domain sizes: (a) 320x128x128, (b)

480x196x196 (c) 640x256x256 .



3.7. Pressure probing from a mesh 34

Finally we need to address the case of non bounding meshes. Due to the inflation of the sdf the edge of

a plate deforms and gets rounded to a an arc with a radius of the half thickness. Figure 3.26 shows such

an edge and the corresponding layers from the BDIM. The forces on the rounded edge do get included

with the existing method, but when probing from a mesh only forces normal to the mesh elements are

taken into account. The ratio of the area of the curve to the area of the mesh can be expressed as

Sπ thk
2

Asurface

where S is the length of the edge and Asurface the full surface area of the actual plate. For a simple

square plate with a length of 100 cells the ratio equals

4 · 100 · π · (2 +
√
3)

2 · 1002
≈ 0.23

which means the surface area of the 0 iso-contour of the sdf is much larger that the area of the mesh.

When we iterate over all mesh elements we will neglect a significant part of the surface area around

which the flow is calculated. For this reason this method is not fit for non- bounding structures. When

simulating the kite which has a thin canopy structure we will be forced to use the existing method which

will rely on the correct determination of the normal vector field, which we validated in Figures 3.11.

Figure 3.26: Layers on the edge of a submerged object. Green line represents the mesh, full line is the 0

iso-contour of the resulting sdf at the half thickness from the mesh, dotted lines are the edges of the transition zone.

Red lines represent part of the submerged object we can not include with the mesh based method

3.7.3. Obtaining y+ values from mesh
Since we now have a mesh inside of the simulation we can calculate y+ values at the surface in order

to validate the results. The y+ value will be calculated for each mesh element. We do want to note that

together with the BDIM the y+ value is more abstract as the transition between the wall and fluid flow is

not at a discrete location, rather it is blurred out. For the sake of obtaining a value we can say that the

effective wall is located halfway the transition point which is the location of the mesh element in our

case. However this still remains an estimation of y+ and results should not be taken as absolute.

For each triangle two velocity vectors will be taken similarly to how two pressure values were used in

section 3.7. In order to find the shear velocity component we subtract the normal velocity component

and use the magnitude of the remaining vector. Doing this for both velocity vectors allows us to calculate

the shear stress using a simplified second-order finite difference estimate by assuming zero velocity

at the boundary [38]. We cannot use the actual velocity at the mesh center as this will always be in

the transition zone or, for non bounding meshes on the inside of the submerged object. For bounding

meshes we use δ = 1 and for non bounding meshes we add the half thickness making δ = 1 + 2+
√
3

2 .
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ush,i = |ui − (ui · n)n|

τ = ν · 2ush1 − ush2
2δ

y+ =

√
|τ |
ν



4
Static simulations

Since we can now efficiently use meshes within WaterLily, we will use this to simulate the flow around a

kite. We have chosen to use the TU Delft V3 leading edge inflatable kite as a model. This decision was

made due to the existing data that can be used as validation data for our simulations.

In this section we will start by laying out the numerical setup and explaining the details of the WaterLily

solver. Results will then be compared to existing RANS data and the time trace of the forces on the kite

will be investigated in order to find possible oscillating forces.

4.1. Numerical setup
We perform the simulations using the WaterLily solver and using the newly made method described

in the previous chapter. This is an implicit LES solver [37], that uses the Boundary Data Immersion

method [66] to submerge the object [68]. It also makes use of a geometric multi-grid method made

easier by the Cartesian grid. No external wall models are used as we aim for y+ = O(1). Since y+ is
only an estimate and thus not enough to validate the simulation it will be further validated by comparing

to existing experimental and RANS data. We will simulate the kite at a Reynolds number of 1× 105 for
a range of angles of attack between 0◦ and 20◦. Each simulation will run for 45 convective time steps
which was chosen after longer initial simulations showed the simulations were converged. Forces and y+

data will be calculated every 0.25 time steps and the full pressure and velocity field will be stored every

15 time steps for visualization. WaterLily is an incompressible fluid solver however when calculating the

Mach number of the flow using a wind velocity between 13 and 30 knots [43] and an air temperature of

284 Kelvin [58] gives a Mach number of:

M =
U13−30√
γRT

≈ [0.0121, 0.02780]

These are extremely low mach numbers and we can assume that the effect of the compression of air is

negligble.

4.1.1. Boundary conditions
WaterLily only uses a Cartesian grid and while this has many benefits it also has some drawbacks. The

main disadvantage is that it is not possible to locally refine the grid. For detailed geometries or flows

with high Reynolds number this means that the small required cell sizes needs to be used over the

entire domain. Using classical boundary conditions that need to be several body lengths away from the

submerged object leads to several billion cells, which is not very feasible. In order to solve part of this

issue we use Biot-Savart boundary conditions [69]. These boundary conditions allow for the body to be

within half a body length of the edge of the domain. The boundary conditions work by reconstructing the

velocity at the domain boundaries from the vorticity within the domain using the Biot–Savart integral.

These boundary velocities are iteratively coupled into the pressure solver making use of a fast multi-grid

36
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Figure 4.1: Velocity magnitude at the inflow due to the Biot-Savart boundary conditions

Figure 4.2: Velocity magnitude at the top boundary due to the Biot-Savart boundary conditions

method. Figure 4.1 and 4.2 show the velocity at the inflow and the top of the domain respectively for an

initial simulation of the kite. Using these boundary conditions allows for a clearance of up to half a body

length on all sides, but preferably more downstream [69].

4.1.2. Kite geometry and domain size
For the kite geometry we will use the TU Delft V3 LEI kite [1] which is freely available, a detailed layout

of the kite can be seen in Figure 4.3. The available kite model has two separate surfaces that are close

together to define the canopy which will not work in our solver as they are too close together, so we

have removed the back of the bottom surface and consider the top surface as a non bounding surface

that we will slightly inflate. To determine the domain size we used the aspect ratios of the kite. The

maximum domain size for the NVIDIA RTX A6000 48 GB GPU was determined and based on this, the

found aspect ratio’s and required clearance the following domain size and maximum chord length were

determined. The final domain size and clearances can be seen in table 5.1.

A mesh of the kite consisting of 158,282 triangular faces was placed inside of this domain. The kite

was scaled to have a chord length of 205 cells. The sdf is calculated using the new BVH measuring

method. Measuring is done on the CPU and the weights for the BDIM, µ0 & µ1, are copied to GPU. The

back canopy is inflated to a thickness of 2 +
√
3 ≈ 3.73. This does mean that we make a modeling error

as the actual thickness of the kite (when scaled to a chord length of 205) would be 0.885. Accurately

capturing the very thin canopy would require scaling up the kite by a factor of 4.22 which leads to a

chord length of ≈ 863 cells. Scaling the domain in all directions would result in a computational domain
of ≈ 25, 163, 017, 642 cells which, using an estimate of ≈ 6, 990, 506 cells

GB would require ≈ 3, 600GB of

memory. These estimates show that capturing very thin surfaces is difficult using the current method

and thus we are making a necessary modeling error.

Figure 4.4 shows the signed distance field at the centerline and Figure 4.5 shows the field at x = 270 in
domain coordinates which corresponds to halfway the chord length. Grey areas represent locations at

which we did not have to measure due to the BVH based measuring. The amount of grey in the pictures

is a great example of how efficient the method is. We can clearly see we are only measuring very close

to the immerse object. Figure 4.4 shows how the canopy of the kite is slightly inflated to give it more

thickness. Figure 4.6 shows the iso-contour at a distance of 0, the clearest representation of where the

kite is actually located with in the domain. The signed distance function is then used to calculate the

zero-th kernel moment µ0, which is actually used to determine the boundary conditions. An important

part about the kite geometry is how the struts are attached to the kite. Lebesque [39] showed how they

need to be attached smoothly, however the inflation of the signed distance function and the calculation

of the kernel moment already have a smoothing effect requiring no additional smoothing. Figure 4.7

shows a zoomed in detail of where a strut is attached with the iso-contour at |µ0| = 1.5, also visible on
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height/chord ≈ 1.2
width /chord ≈ 3.2
Domain size 640 x 1024 x 512

Number of cells 335,544,320

Chord 205 cells

Clearance in z 131 cells or 0.64 chords

Clearance in y 182 cells or 0.89 chords

Clearance in x (front) 170 cells or 0.83 chords

Clearance in x (wake) 265 cells or 1.3 chords

Table 4.1: Domain parameters

this figure is an ”edge” behind the leading edge. This is the effect of cutting away the bottom canopy

to achieve a non-bounding mesh. This transition may seem abrupt, but it is important to remember

the working of the BDIM [67]. The submerged object is not at a discrete location, rather the boundary

conditions are smoothed out over a region in space. This edge will be smoothed out and is not a discrete

”jump” in the geometry as the figure might suggest. We will see in the results section of this chapter that

the jump does not affect the solution.
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Figure 4.3: Detailed geometry of the TU Delft V3 LEI kite [1]
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Figure 4.4: Signed distance field of the kite at the symmetry plane; Grey areas represent locations that were not

measured

Figure 4.5: Signed distance field of the wing at x/c=0.5; Grey areas represent locations that were not measured
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Figure 4.6: 0 iso-contour representing the location of the kite in the domain, the high resolution makes it almost

identical to surface the mesh

Figure 4.7: Detail of where strut is attached to leading edge and canopy; iso-contour of |µ0| = 1.5
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4.2. Results
In this section the results of the static simulations will be discussed. We will validate the results by

comparing mean forces to validation data and inspecting the estimated y+ values. An inspection of the

flow fields will follow after which we will investigate the fluctuating forces and the effect of turbulence.

We will also analyze the pressure along the chord at the centerline to show how the pressure fluctuates

locally

4.2.1. Mean drag and lift coefficients
The drag an lift coefficients are calculated from the measured forces on the kite. Since both the density,

ρ and the free stream velocity,U∞ are set to one this simplifies to only dividing by half the projected

area,A.

CD =
Fx

0.5A

CL =
Fz

0.5A

The mean coefficient was determined by averaging the force starting from where the solution was

converged. For these simulations we started using data starting from t = 20, shown by a vertical

line in the time traces in Figure 4.8. In all plots in Figure 4.8 we can see the recorded values in blue.

These were sampled every 0.025 time steps or 40 times per time step. This is a fairly high sampling

frequency,fs, which was chosen to find high frequency force oscillations which will be discussed in
subsection 4.2.4. the drawback of this high sample frequency is that it’s more difficult to assess when

the solution has converged. In order to filter out some of the noise we also plot a moving average with

a window size of 100 samples or 2.5 time steps, shown in red. From this we can clearly see that the

mean values do not change significantly after 20 time steps.

Comparing to experimental and wind tunnel data we can see that our calculations agree on the course

of the drag an lift coefficients. Figure 4.9 shows the calculated drag coefficient and the reference data[1].

It appears that we overestimate CD for almost all angle’s of attack, but the difference is mainly visible

for α = 7.5◦ where we obtain almost double the drag compared to RANS or experimental data. This

becomes a larger discrepancy in Figure 4.11, showing the L
D ratio. The increase in drag completely

changes the profile of the curve. While for the reference data a clear optimal working point can be seen

between ≈ 5◦ and ≈ 10◦, this optimum is not as defined anymore.

Looking at CL in Figure 4.10 we see that our results fully agree with the reference data. We are

closer to the wind tunnel results at Re = 5e5 than to the RANS results at Re = 1 × 105. This could
be explained due to an overly attached flow in the RANS simulation [32] that is unable to account for

enough turbulence production [22] and changes the pressure distribution on the leading edge. We will

investigate this discrepancy when analyzing the flow fields.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Time traces of drag (Cd) and lift (Cl) coefficients at Re = 100000 for different angles of attack;
(a,c,e & g) : CD ; (b,d,f & h) : CL
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Figure 4.9: Mean drag force, CD, over angle of attack; Validation data from [1]

Figure 4.10: Mean lift force, CL, over angle of attack; Validation data from [1]
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Figure 4.11: Mean lift over drag force over angle of attack; Validation data from [1]

4.2.2. Estimated wall resolution
In order to validate the results we will start by looking at the y+ values. The y+ data from the final 25

convective time steps was averaged and the data is presented here. For full time traces of the data

see appendix1. In Table 4.2 we can see that for all simulations the median y+ is O(1). The standard
deviation and inter quartile range both show that most of the data points are within acceptable limits.

The minimum measured value rounds down to 0.0 for all simulation showing that on some parts of

the kite the cells are a lot smaller than they need to be. On the other side we see that the maximum

measured value is around or more than 10. This indicates that the first cell is no longer close enough to

be within the viscous sublayer and we would require explicit wall models. However since the calculated

y+ value can only be an estimate for the BDIM method due to the lack of a well defined wall and as the

results agree with existing research we accept the outcome of the simulations.

Table 4.2: Estimated y+ statistics

Simulation Median Std IQR Min Max

Re = 1× 105, α = 0◦ 1.276 2.405 3.341 0.0 11.773

Re = 1× 105, α = 7.5◦ 1.195 2.557 3.748 0.0 13.128

Re = 1× 105, α = 15◦ 1.201 2.71 4.234 0.0 10.514

Re = 1× 105, α = 20◦ 1.569 2.681 4.298 0.0 10.79

4.2.3. Flow Field Analysis
We will take a detailed look at snapshots of resulting flow fields. For simplicity we analyze the fields

at a slice on plane of the centerline of the kite. We provide a 3D rendering of the Q-criterion shown

by iso-contours at Qcrit = 0.01. As the location of the kite is not directly visible in the results we have
added the approximate outline of the kite in blacj for clarity. For the 3D representations we have added

the original mesh to the images. We can confirm the working of the Biot-Savart boundary conditions by

inspecting the pressure fields. The pressure contours follow natural shapes and do not suddenly change

direction when approaching the edge of the domain. Unfortunately some of the data got corrupted

1In Progress



4.2. Results 46

during a data transfer, for α = 0◦ and α = 15◦ the final snapshot at t = 45 are presented. For α = 7.5◦

a snapshot at t = 30 is used, which is still part of the converged solution. For α = 20◦ more data is
missing and we are forced to present a snapshots at t = 15, which represents an unconverged solution2.

At low angle of attack α = 0◦ we see a very attached flow field. The velocity magnitude in Figure

4.13 shows the flow follows the top of the kite. The pressure field in Figure 4.17 shows little difference

between the pressure and suction side of the foil and no well defined downwind low pressure area’s.

This leads to both a low drag and lift as we have observed in Figures 4.9 & 4.10. The Q-criterion in

Figure 4.22 shows that most of the turbulence is generated on the pressure side of the kite as the

flow detaches at the bottom of the inflated leading edge which is visible in the velocity field, but more

apparent in the vorticity field on Figure 4.21. Overall we see a flow with very little turbulence.

Increasing the angle of attack to 7.5◦ shows a clear increase in turbulence and wake structure. The
pressure field in Figure 4.18 shows a larger pressure difference between the pressure and suction side

as well as a larger low pressure area on the suction side. Small vortices are also being shed on both

sides of the kite. We already see a more turbulent flow that only stays attached for a short distance on

the suction side, but still detaches underneath the leading edge which is seen in the vorticity field in

Figure 4.23. The detached flow on the suction side does not reattach leading to high turbulence on

both sides of the kite seen in the iso-contours of the Q-criterion in Figure 4.24. This is different from the

RANS results by Lebesque in 2020[39] which are the basis for the validation data in Figures 4.9& 4.10.

They show RANS results for α = 6◦ that show a recirculation zone that reattaches to the kite shown

here in Figure 4.12. Our flow field shows no signs of reattachment at the approximately same angle of

attack. The faster, reattached flow would result in a lower pressure at the pressure side, decreasing the

drag on the kite. We would like to propose this as the reason for the discrepancy in drag seen in Figure

4.9.

Figure 4.12: Streamlines and magnitude of the velocity field in the wing symmetry plane for Re= 1e5 and α = 6◦

taken from [39]; Streamlines show a recirculation zone, but reattach on the canopy

At an angle of 15◦ the velocity field in Figure 4.15 shows the flow has significantly slowed down behind

the kite. The corresponding pressure wake in Figure 4.19 is even more pronounced now. We also start

to see more pronounced vortex shedding at the suction side coming from the leading edge, as the flow

is now almost completely detached leading to a highly turbulent flow field in the wake which can be seen

from the vorticity magnitude in Figure 4.25. On the pressure side of the vorticity field we see that the flow

detaches from the leading edge, but the produced turbulence hits the canopy farther down and appears

to re-attach which is most visible on the velocity profile in Figure 4.15. The Q-criterion iso-contours in Fig-

ure 4.26 show a highly turbulent suction side, but on the pressure side we see some turbulence is already

dissipated by the time it reaches the trailing edge. For this higher angle of attack we see that the flow

does reattach to the canopy. We confirm this by the dissipation of the turbulence in Figure 4.26 and 4.25.

For the high angle of attach of 20◦ we would like to note again that these flow fields are from the

unconverged solution at t = 15. We will analyze the flow field ignoring this fact for now. The velocity

profile in Figure 4.16 shows an even more turbulent suction side. On the pressure side we see again

2Note to committee: At the time of writing not enough time remained for the simulations to be performed again, but for the final

deadline all data should be available and will be presented in full
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that the flow detaches on the leading edge, but is now re-attached even sooner leading to very little

turbulence on the pressure side as seen in Figure 4.28. The pressure field in Figure 4.20 shows clear

vortex shedding from the leading edge at the suction side and a large pressure difference between both

sides. The vorticity magnitude in Figure 4.27 shows the highly turbulent wake at the suction side as well

as the vortex shedding from the leading edge. The pressure side shows the turbulence coming from the

leading edge and being dissipated by the canopy when the flow reattaches.

Velocity Magnitude and Pressure fields

Figure 4.13: Velocity magnitude in the wing symmetry plane for Re = 1× 105 and α = 0◦
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Figure 4.14: Velocity magnitude in the wing symmetry plane for Re = 1× 105 and α = 7.5◦

Figure 4.15: Velocity magnitude in the wing symmetry plane for Re = 1× 105 and α = 15◦
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Figure 4.16: Velocity magnitude in the wing symmetry plane for Re = 1× 105 and α = 20◦

Pressure Fields

Figure 4.17: Pressure field in the wing symmetry plane for Re = 1× 105 and α = 0◦
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Figure 4.18: Pressure field in the wing symmetry plane for Re = 1× 105 and α = 7.5◦

Figure 4.19: Pressure field in the wing symmetry plane for Re = 1× 105 and α = 15◦
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Figure 4.20: Pressure field in the wing symmetry plane for Re = 1× 105 and α = 20◦

Vorticity and Q-Criterion Fields

Figure 4.21: Vorticity magnitude in the wing symmetry plane for Re = 1× 105 and α = 0◦
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(a) Suction side

(b) Pressure side

Figure 4.22: 3D representation of the Q-criterion iso-contours of Qcrit = 0.01 for Re = 1× 105 and α = 0◦

Figure 4.23: Vorticity magnitude in the wing symmetry plane for Re = 1× 105 and α = 7.5◦
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(a) Suction side

(b) Pressure side

Figure 4.24: 3D representation of the Q-criterion iso-contours of Qcrit = 0.01 for Re = 1× 105 and α = 7.5◦

Figure 4.25: Vorticity magnitude in the wing symmetry plane for Re = 1× 105 and α = 15◦
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(a) Suction side

(b) Pressure side

Figure 4.26: 3D representation of the Q-criterion iso-contours of Qcrit = 0.01 for Re = 1× 105 and α = 15◦

Figure 4.27: Vorticity magnitude in the wing symmetry plane for Re = 1× 105 and α = 20◦
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(a) Suction side

(b) Pressure side

Figure 4.28: 3D representation of the Q-criterion iso-contours of Qcrit = 0.01 for Re = 1× 105 and α = 20◦

Analyzing the flow fields has shown a lot about the kite aerodynamics that RANS or other similar

methods that don’t actually simulate turbulence can’t reproduce. We have clearly seen the effects of

flow separation and reattachment, especially on the pressure side where the flow detaches from the

leading edge and reattaches on the canopy. The effect of the flow reattachment has been identified as

the reason for the discrepancy between other methods and the presented solution. Well defined vortex

shedding is observed, mainly coming from the separation point on the suction side of the kite. We have

seen that increasing the angle of attack, α significantly changes where the flow is turbulent. For low

angles of attack the pressure side is turbulent due to the flow separation at the inflated leading edge.

Increasing the angle of attack leads to flow separation on the suction side and increasing the angle of

attack enough leads to reattachment at the pressure side, making only the suction side turbulent.

4.2.4. Fluctuating forces
In order to determine the degree to which the observed turbulence affects the kite’s drag and lift coeffi-

cients, we analyze the fluctuations in their time traces. All data used in this section is sampled only after

20 time steps to ensure that only the statistically converged portion of the solution is included.

We begin by estimating the power spectral density (PSD) of the drag and lift coefficient time traces

using Welch’s method. Given our sampling frequency, fs = 40 samples per time step, we can resolve
frequencies up to the Nyquist frequency of 20Hz. This approach improves upon the standard Fourier
spectrum by dividing the time signal into overlapping segments, applying a Hann window to each

segment, computing the squared magnitude of the discrete Fourier transform, and averaging the results.

The PSD estimate can be written as (Welch 1967 [64]):
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Figure 4.29: Fourier analysis of the time trace of the drag coefficient for different angles of attack

P̂ (Welch)
xx [m] =

1

K

K∑
k=1

1

U

∣∣∣∣∣
N−1∑
n=0

xk[n]w[n] e
−i2πmn/N

∣∣∣∣∣
2

where:

• xk[n] is the k-th overlapping segment of the signal,

• N = 512 is the window (segment) length,

• w[n] is a Hann window of length N ,

• A 10% overlap is used between segments, corresponding to 51 overlapping samples,

• U =
∑N−1

n=0 |w[n]|2 is the window normalization factor,

• The FFT is computed using the real-input discrete Fourier transform (rFFT),

• K is the number of segments over which the spectrum is averaged,

• m indexes the frequency bins in the one-sided spectrum.

The resulting spectra for both drag and lift show no dominant frequencies across any of the tested

angles of attack. All signals exhibit a broadband shape, with a steep decay in amplitude at the lower

frequencies followed by a relatively flat, noisy distribution. We do not see any narrow peaks that would

indicate the presence of periodic vortex shedding or coherent structures. This means that the small

vortices emitted from the leading edges do not have a significant effect on the drag and lift characteristics.

The energy is spread across the spectrum, which is typical for turbulent flows with no dominant modes.

This confirms that the force fluctuations are stochastic and that the flow is in a fully developed turbulent

regime. The rapid decay of the lower frequencies is seen in both Figure 4.29 and Figure 4.30.

As the angle of attack increases, we observe a clear rise in the overall amplitude of the drag spectrum.

This is consistent with the earlier flow field observations, where higher angles led to earlier flow separation,

slight vortex shedding, and a more turbulent wake all affecting the drag on the kite. At low angles, the

flow remains mostly attached with limited pressure difference and weak vortex activity, resulting in lower

fluctuations. As the angle of attack increases, the flow becomes increasingly detached on the suction

side, producing stronger unsteady aerodynamic forces. This leads to a broadband increase in spectral

energy and a clear rise in turbulence intensity across the entire spectrum.
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Figure 4.30: Fourier analysis of the time trace of the lift coefficient for different angles of attack

To quantify how often and by how much the force on the kite deviates from the mean we calculate a

kernel density estimate, KDE, of the force fluctuations. These plots show a Kernel Density Estimate,

not a histogram. The ”Frequency” axis represents probability density, not actual counts. Unlike a

histogram, the area under each KDE curve integrates to 1, and the height reflects the relative likelihood

of values—not their rate of occurrence. The fluctuations used for the analysis are defined as the

difference between the force at a time and the mean force.

C ′
D,t = CD,t − CD

C ′
L,t = CL,t − CL

Where C ′
D,t and C

′
L,t are the fluctuations at time t and CD,t and CL,t are the total measured force at

that time. We make a KDE of the force fluctuations. This shows us, for each simulation, the likelihood

of a fluctuation.

The fluctuations in lift in Figure 4.31 show a clear dependence on the angle of attack, and supports

earlier findings regarding from the spectral and flow field analysis. For α = 0◦ we see a high peak

centered around 0 and a narrow band around it. This indicates that the total force on the kite is often

close to or exactly the mean (only exact for C ′
L = 0). When the force does fluctuate it does so only

slightly. Increasing the angle of attack leads to more fluctuating forces. Seen by fewer occurrences of

C ′
L = 0 and a more spread out KDE. This also means that the force fluctuates more often, but also that

when it does it has a larger deviation. However if we look at the fluctuations relative to the mean lift

coefficient ,
C′

L

CL
, we see tat the relation flips. In Figure 4.32 we see that for α = 0◦ the relative fluctuations

are a lot higher for the lower angles of attack.

We can also see the effect of the lack of flow reattachment for α = 7.5◦. While we see that the absolute

fluctuations increase with the angle of attack, the fluctuations for α = 7.5◦ are even more spread out
than for the higher angles of attack. This is a clear effect of the lack of reattachment. While the suction

side gets more turbulent the pressure side becomes more laminar due to the reattachment seen for

α = 15◦ & α = 20◦. The large amounts of turbulence on both the pressure and the suction side for
α = 7.5◦ are a likely reason for the more fluctuation forces seen here.

In the fluctuations of the drag coefficient we see fairly similar results. The drag coefficient is more steady

at low angles of attack, where we are extremely likely to have no fluctuation at all, Figure 4.33. Compared

to the lift coefficients the fluctuations in drag are also most steady at low angles of when comparing
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Figure 4.31: Kernel density estimate of the fluctuations in the lift coefficient, C′
L for different angles of attack

Figure 4.32: Kernel density estimate of the fluctuations in the lift coefficient, C′
L relative to the mean lift coefficient

CL for different angles of attack
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Figure 4.33: Kernel density estimate of the fluctuations in drag force, C′
D for different angles of attack

Figure 4.34: Kernel density estimate of the fluctuations in drag force, C′
D relative to the mean lift coefficient CD for

different angles of attack

relative fluctuations in Figure 4.34. This does not go for α = 7.5◦ where the relative fluctuations in drag
are more extreme. We believe this is also a consequence of the detachment underneath the leading

edge.

4.2.5. Pressure probes
For the final part of the analysis we will investigate 15 points along the the pressure and suction side

of the kite. The points ar located on the centerline of the kite and the locations are chosen to be just

outside of the transition zone such that:

|µ0(x)| =
√
3

This means all we are out of the transition zone in all three directions. We use the simulation for α = 15◦

and run it for an additional 15 time steps during which we record the pressure at the points every 0.1

time steps. The location of the points on the µ0,x field can be seen in Figure 4.35.

The time traces in Figure 4.36 of for each point show that the Pressure side has more variation across

space than the suction side which corresponds with the earlier observation that the suction side exhibits a

full turbulent regime while the pressure side has a turbulent region that is largely dissipated farther down.

Applying a Fourier transform to these time traces reveals some interesting phenomena. Figure 4.37

shows only part of the Fourier transform for clarity. Overall we see a clear decay for higher frequencies.

At the Suction side at x = 260, which is near the front of the kite. We see a peak around 3 Hz. This

peak is the result of the regular vortex shedding coming from the leading edge which could be seen in

Figure 4.19. Farther down the chord we only see a steady decay and a low magnitude. We saw that
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Figure 4.35: Points at which the pressure was recorded for 15 additional time steps

(a) Pressure side (b) Suction Side

Figure 4.36: Time traces of the recorded pressure, labels indicate the x position of the point at which the data was

recorded

for higher angles of attack that the suction side gets more turbulent. However we now see that while

the flow is turbulent the pressure at the kites surface is fairly steady. This also explains the low force

fluctuations. At the pressure side we do not see any clear peaks. However we do see that there is more

higher frequency behavior clos to the kite. At x = 300 we see the pressure fluctuates a lot. This point
corresponds to where the turbulence from the leading edge hits the canopy leading to higher frequency

changes. Farther down the kite we see generally very little fluctuations at all indicating the flow has

re-attached itself.

We have also plotted the time averaged pressure over the surface of the kite. We see that at the suction

side the pressure is very steady over the length of the canopy. However at the pressure side we see

the clear effect of the turbulent region behind the leading edge. Close to the leading edge we see a

high pressure area, but farther down the kite where we have already established the flow re-attachment,

the flow runs parallel to the kite again and is able to pick up more speed leading to the lower pressures

we see.
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Figure 4.37: Fourier transforms of the pressure value at different points along the kite

Figure 4.38: Time averaged pressure on the pressure and suction side of the kite



5
Proof of concept: Dynamic simulation

In order to show the benefit of the BDIM we will perform a simulation in which the kite moves around

within the domain. Since the solver relies solely on a Cartesian grid we do not need to construct a new

mesh at every time step, which can be very computationally expensive. Instead we need to reconstruct

the signed distance function and calculate the kernel moments, µ0 and µ1.

5.1. Simulation set-up
We use a small simulation domain of 160 by 256 by 128 cells in which we put a kite with a chord length

of 50 cells at 60 cells from the inflow. This small chord length results in a thick kite due to the minimum

thickness, this is not representative of the actual geometry. This simulation is not meant to provide high

fidelity data, but rather to show the capabilities of the solver and to justify the use of a BDIM solver.

We will force the kite to pitch directly by prescribing the motion. The kite will be pitching between an

angle of attack of ±10◦ with a period of 15 time steps. Since we are simulating at a low resolution we

scale the Reynolds number down to Re = 1e4 to ensure the flow is resolved at the wall. Snapshots

of the µ0,x field at different time steps, at the centerline can be seen in Figure 5.1. We only run the

simulation for the duration of one period.

α(t) = 10 ∗ sin(2π ∗ t/15)

(a) t = 0.0 s (b) t = 4.0 s (c) t = 12.0 s

Figure 5.1: µ0,x field at the centerline of the kite at different timesteps.
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Domain size 160 x 256 x 128

Number of cells 5,242,880

Chord 50 cells

A 7491.908 cells2

Re 10000

Table 5.1: Domain parameters for dynamic simulation

5.2. Results
Figures 5.2a and 5.2b show that we can obtain force readings from the dynamic simulation. Part of

this process is that the normal field has to be remeasured every time we want to calculate the forces

which is optimized using the BVH method but is still has a large computational cost. We see in the time

traces that the force on the kite is highly dependent on the angle of attack and the effect of the pitch

can clearly be seen. Figures 5.3,5.4 and 5.5 show the pressure, velocity in x direction and velocity in z

direction respectively. The main goal of these figures is to show that the solver is able to handle the

changing immersed boundaries at each time step.

(a) Time trace of drag force during one period. (b) Time trace of lift force during one period.

Figure 5.2: Time histories of drag and lift forces during one period of motion.

(a) t = 6.0 s (b) t = 10.01 s (c) t = 14.01 s

Figure 5.3: Pressure field snapshots during dynamic motion.
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(a) t = 6.0 s (b) t = 10.01 s (c) t = 14.01 s

Figure 5.4: Streamwise velocity (ux) field snapshots during dynamic motion.

(a) t = 6.0 s (b) t = 10.01 s (c) t = 14.01 s

Figure 5.5: Vertical velocity (uz) field snapshots during dynamic motion.

This simulation is in no way a good representation of the flow dynamics, but clearly demonstrates the

ability to perform dynamic simulations with the BDIM andWaterLily. We have provided only a proof of

concept here for such future simulations that want to analyze complex movements of the kite or other

immersed objects.



6
Conclusion

The objective of this thesis was to improve the efficiency of submerging complex meshes inWaterLily.

We then applied the approach to a kite geometry as a use case. The motivation is clear. If we can

submerge a complex shape such as a kite in an LES solver at practical cost, we can study the fluctuating

forces that arise at high Reynolds number.

We developed a Bounding Volume Hierarchy based pipeline that reduces the number of distance

evaluations between grid points and mesh elements. This led to a significant speed up while preserving

the accuracy of the signed distance function. The method was validated for both bounding and non

bounding meshes. We also introduced a new pressure force routine that integrates loads by looping

over mesh elements rather than grid points. This routine matches the existing results and is faster

when the grid size is much larger than the mesh size. It does not yet measure forces accurately on non

bounding meshes, which is a limitation.

The pipeline was used to submerge the TU Delft LEI V3 kite [1]. We performed wall resolved simulations

and found that mean forces agree with existing data. The forces fluctuate in time, but the amplitude

is only a few percent of the mean. Increasing the angle of attack makes the flow more turbulent and

increases the absolute fluctuations. Relative to the larger mean forces at higher angles, the fluctuations

are smaller in percentage terms.

The results show that for steady flight, Large Eddy Simulation is consistent with other methods. The

added turbulence resolution affects the forces only slightly. For static performance estimates we

therefore recommend computationally cheaper approaches such as RANS. For dynamic flight, where

the flow is more unsteady, our proof of concept shows that the current framework can handle the

problem. Since turbulence does influence the loads, we recommend further LES studies of dynamic

flight.

Future work should extend the force routine to non bounding meshes, assess grid and bandwidth

sensitivity at higher Reynolds numbers, and explore wall modeled LES to reach larger scales within the

same computational budget.
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