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Systematically Structured H2 Optimal Control for
Truss-Supported Segmented Mirrors

Reinier Doelman , Sander Dominicus, Renaud Bastaits, and Michel Verhaegen , Member, IEEE

Abstract— A systematic distributed optimal control design
procedure is proposed for the rejection of wind load-induced
disturbances on a truss-supported segmented mirror. The dis-
tributed nature of the controller is achieved by weighing of
the interaction matrices between local (per-segment) controllers
in a global H2 optimization. The procedure allows a tradeoff
analysis between the controller implementation complexity versus
the improved performance the extra communication brings.
The procedure is demonstrated on a finite element model of
a segmented mirror on a flexible supporting truss to which
we apply the combined closed-loop performance and local
controller interconnection structure optimization. The result-
ing set of controllers is compared to a set of baseline con-
trollers including linear–quadratic–Gaussian control, singular
value decomposition control, and a distributed controller where
local controllers of neighboring segments communicate. The
tradeoff analysis for the segmented mirror demonstrates that
the communication between the local controllers can be greatly
reduced without significantly compromising the rejection of
wind-induced wavefront errors.

Index Terms— Active optics, distributed control, optimal
control, segmented mirror, structured control.

I. INTRODUCTION

THE primary segmented mirror in large ground-based
astronomical telescopes requires active control to com-

pensate for the dynamic disturbance of wind loading on the
segments.

As such, the modeling of segmented mirrors, the mod-
eling of dynamical disturbance, design of controllers, and
the evaluation of the closed-loop performance are studied
during the design phase of telescopes (see [1] for the Keck
Telescope, [2]–[4] for the European Extremely Large Tele-
scope (E-ELT), or [5]–[8] for the Thirty Meter Telescope).

The dynamics of the identical segments are not necessarily
decoupled. If the segments are mounted on a supporting truss,
the backstructure causes interaction between the dynamics
of the individual segments. This backstructure interaction is
taken into account in the control design [2], [6]. The effect of
the backstructure interaction increases with telescope size [9]
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and depends too on the structural damping in the supporting
truss.

From the perspective of the entire closed-loop system, not
only the backstructure causes spatial dynamics. A second
source of the dynamical interaction is the way the posi-
tion of the mirror segments is measured, which is through
edge sensors that measure the relative displacement between
neighboring segments. A third source is spatial correlation in
the disturbance model (the force of the wind acting on the
segments).

A fourth source is the dynamics of the control loop.
For example, References [2] and [10] feature singular
value decomposition (SVD)-based modal controllers. In [11],
local (per-segment) controllers are designed that are con-
nected to the controllers of neighboring segments. In [12],
a centralized H2 optimal controller is designed and a dis-
tributed controller based on spatial invariance assumptions.
We observe that, conceptually, the choice of the structure of
the controller (centralized, decentralized, and hierarchical) is
made first, and subsequently the controller is designed to meet
a performance criterion. We propose in this brief to see the
choice of the segmented mirror controller structure and the
meeting of a performance criterion as something that should
and could be done in a single controller design procedure.
In this procedure, there is a multicriterion optimization that
results in a tradeoff curve of controller complexity versus
performance.

Even if current design methods can reach the desired
performance, the use of an optimal control theory and con-
troller structure optimization might open up the possibility
of less stringent design criteria for other parts of the sys-
tem, or might improve the end result of the whole optical
system.

Several related approaches for static (state or output) feed-
back that search for a sparse controller structure regardless
of a model structure can be found in [13]–[16]. Instead of
static output feedback, we focus our attention on dynamic
output feedback. We analyze the closed-loop performance of
the system in the case that each segment has a local, low-
order, dynamic output feedback controller, and a decision has
to be taken on if and how these local controllers should be
interconnected.

If the structure of the controllers is fixed up front, then the
existing nonconvex (gradient descent) optimization methods
could be applied [17], [18] to optimize the controller.

We can apply the relevant theory in [13] on appropriate
addition of regularization on the decision variables to the
objective function to induce sparsity in the resulting controller
matrices.
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We build on the work in [13], [17], and [18] to derive ana-
lytic expressions to compute the gradients of the multicriterion
performance measure with respect to the controller matrices.

The result of this approach is that the offline, up front
computational cost to design the controller is high, but the
online computations are light (see also Section VI). The
gradient descent procedure requires the solution of Lyapunov
equations, whose computational complexity grows cubically
with the number of states of the closed-loop system. The
online computations are of a computational complexity that
grows linearly with the number of interconnections between
the local controllers, and quadratically with the number of
states in a local controller. If the computations are done
centrally, the optimization of the interconnection structure
leads to scalable online computations as well. This is an
advantage over a standard optimal linear–quadratic–Gaussian
(LQG) controller, whose online computational requirements
grow with the number of segments and system states.

In this brief, we discuss the multicriterion design procedure
in Section II. The controller design procedure is demonstrated
on an accurate, but numerically challenging the finite element-
based virtual model of a segmented mirror on a flexible
supporting truss. The model is discussed in Section III, and the
necessary adaptations and transformations for optimal control
design in Section IV. The complete model includes edge
sensors, backstructure interaction, and a spatially correlated
wind disturbance model. In Section V, we show the results of
the multicriterion tradeoff analysis for this segmented mirror
model. The results are discussed in Section VI.

II. DISTRIBUTED CONTROL APPROACH

As will be discussed in Section IV, the combined segmented
mirror and wind loading model used for control design can be
transformed into the following standard discrete-time system
description:

⎛
⎝

x[k + 1]
z[k]
y[k]

⎞
⎠ =

⎛
⎝

A B1 B
C1 0 0
C F 0

⎞
⎠

⎛
⎝

x[k]
w[k]
u[k]

⎞
⎠ (1)

with x ∈ R
n, z ∈ R

rz , y ∈ R
ry , w ∈ R

mw, and u ∈ R
mu .

For notational simplicity, time postscripts will be dropped, i.e.,
x is short for x[k], z, y, w, and u are defined similarly, and
x+ is short for x[k +1]. The system matrices have dimensions
that can be inferred from the signal dimensions. The vector
y contains the edge sensor measurements, and the vector u is
the segment position actuator inputs. For the segmented mirror
system, the disturbance vector w is the white Gaussian noise
that drives the wind model and the sensor noise. The output
vector z describes the mirror shape. The global mirror shape
is determined by the top position of each hexagonal segment’s
three position actuators, and the channels of z comprise the
deviation of the position of the top of each actuator from the
mean of the top positions of all the actuators.

For a system driven by white noise, w ∼ N (0, I ), with
rz output channels (indexed z j ), the squared H2 norm of the

system equals the output variance

‖Tw→z‖2
H2

=
rz∑

j=1

E
[
z2

j

]

where Tw→z is the transfer function from the disturbance
vector w to performance channel z. If we use the linear approx-
imation of the wavefront error of segmented mirrors [19], then
the rms wavefront error e is related to the H2 norm by

e = 2√
rz

‖Tw→z‖H2

where the factor of 2 comes from the fact that the rms
wavefront error is twice the rms surface error. Standard LTI
optimal control methods can be used to minimize the effects
of wind on the error e.

We concentrate on dynamic output feedback controllers
without a direct feedthrough term, i.e., controllers of the form

(
x+

c
u

)
=

(
Ac Bc

Cc 0

) (
xc

y

)
(2)

where xc ∈ R
nc is the controller states. By closing the loop,

we obtain the system
(

x+
z

)
=

(A B
C 0

) (
x
w

)
(3)

where
(A B
C 0

)
=

⎛
⎝

A BCc B1
BcC Ac Bc F
C1 0 0

⎞
⎠

and x = (x T x T
c )T .

With a closed-loop transfer function Tcl,w→z , the optimiza-
tion problem becomes

min
Ac,Bc,Cc

J (Ac, Bc, Cc) (4)

where J (Ac, Bc, Cc) := ‖Tcl,w→z‖2
H2

.
With Ac, Bc, and Cc known, the controllability and observ-

ability Gramians Wc and Wo are, respectively, determined by
solving the Lyapunov equations

AWcAT − Wc + BBT = 0

AT WoA − Wo + CTC = 0. (5)

The squared H2 norm of this system can be computed as
follows (see in this context [17], [18])

‖Tcl,w→z‖2
H2

= (CWcCT ) = (BT WoB).

Equation (5) shows that this criterion is not convex in the
controller parameters, even if the controller parametrization
is affine. Transformations exist that render the computation
of an H2 controller a convex problem [20] through appropri-
ate substitution of products of decision variables, but such
a substitution would hamper imposing a desired sparsity
structure on the controller matrices.

The squared H2 norm of the system is, however, dif-
ferentiable and analytical expressions which can be derived
for the gradients of the norm with respect to the controller
matrices in (2). This also allows us to iteratively update the
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controller matrices during a gradient descent optimization.
The disadvantage is that due to the nonconvex nature of the
problem, it cannot be guaranteed that the global optimum
will be found. This consequence can be mitigated by trying
multiple different starting points for the optimization.

A. Optimization Approach

Using the results in [17] and [18], we can derive the
following gradients of J (Ac, Bc, Cc) in (4) with respect to
the controller matrices:

∂ J (Ac, Bc, Cc)

∂ Ac

= 2(0 I )WoAWc

(
0
I

)

∂ J (Ac, Bc, Cc)

∂ Bc

= 2(0 I )WoAWc

(
CT

0

)
+ 2(0 I )WoBFT

∂ J (Ac, Bc, Cc)

∂Cc

2(BT 0)WoAWc

(
0
I

)
+ 2ET CWc

(
0
I

)
. (6)

The derivation of these expressions can be found in the
Appendix.

The gradients in (6) can be used in a gradient descent
scheme to find a locally optimal dynamic output feedback
controller

In our implementation, we used the accelerated gradient
descent method ADAM [21], because the method selects the
step sizes automatically, and the method is efficient in both
memory usage and the amount of required additional compu-
tations. For a gradient descent procedure with nv variables,
the required computations are of O(nv ) complexity and the
additional required memory of O(nv ) size. The advantage
of a gradient-based optimization is that the structure can
be imposed on the controller system matrices. This will be
discussed in Section II-B.

B. Discovering a SparseLy Connected Controller in
a User-Motivated Global Structure

From a distributed controller design point of view, we can
assume that there are N subsystems, with either one or more
mirror segments per subsystem, and we would like to assign
a local controller to each subsystem. If we assume that each
local controller is connected only to the inputs and outputs
of its own subsystem and controller states of other local
controllers, then we can state that the matrices Bc and Cc have
a block diagonal structure after proper renumbering of system
inputs and outputs. Denote this as Bc ∈ KBc and Cc ∈ KCc .

The matrix Ac can be written in the form

Ac =
⎛
⎜⎝

Ac,11 · · · Ac,1N
...

...
Ac,N1 · · · Ac,N N

⎞
⎟⎠ (7)

where Ac,ii , i = 1, . . . , N constitutes the local controller
dynamics of subsystem i and Ac,i j , i �= j describes together
with Ac, j i the interaction between local controllers i and j .
That is, the local controller update x+

c,i can be described as

x+
c,i = Ac,ii xc,i +

N∑
j=1, j �=i

Ac,i j xc, j + Bc,i yi (8)

where xT
c = (x T

c,1 · · · x T
c,N ) is the controller state, yi is

local measurements, and Bc,i is the appropriate block on the
diagonal of Bc. The number of connections between the states
of local controllers is computed by

1

2

∑
i, j, i �= j

card

(∥∥∥∥
(

Ac,i j

AT
c, j i

)∥∥∥∥
F

)
(9)

where the function card (·) denotes the cardinality operator

card (q) =
{

1 q �= 0,

0 q = 0.

The argument of the cardinality operator in (9) accounts for
the fact that the local controller state information can flow
both ways if there is an interconnection between the states of
controllers i and j .

To find a distributed controller, one could force the matrix
Ac to have blocks equal to zero, indicating that there is no pos-
sibility for communication between the two local controllers.
Two examples are decentralized control and controllers where
states of local controllers of neighboring segments are con-
nected.

Based on [16] and [22], we propose to add the block sparsity
promoting term

H (Ac) := 1

2

∑
i, j, i �= j

�i, j

∥∥∥∥
(

Ac,i j

AT
c, j i

)∥∥∥∥
F

as a weighted convex relaxation of (9), to the objective
function (4), in order to tradeoff performance of the closed-
loop system with the number of interconnections between
the local controllers. The block weights �i, j influence the
optimization’s preference for having certain blocks put to 0.
Using this weighting term, it is possible to systematically
weigh the relative ease of implementation of connections
between local controllers against an improved performance of
the closed-loop system by varying the parameter γ .

The resulting optimization problem is

min
Ac,Bc,Cc

J (Ac, Bc, Cc) + γ H (Ac)

s.t. Bc ∈ KBc

Cc ∈ KCc (10)

where γ is a regularization term, whereby we can influence
the (general) level of block sparsity in Ac.

The derivative of H (Ac) with respect to the blocks in
Ac is

∂ H (Ac)

∂ Ac,kl
= �k,l Ac,kl∥∥∥∥

(
Ac,kl

AT
c,lk

)∥∥∥∥
F

, l �= k,

∥∥∥∥
(

Ac,kl

AT
c,lk

)∥∥∥∥
F

�= 0.
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From the derivatives with respect to the blocks of Ac,
the entire gradient of the objective function in (10) with respect
to Ac can be constructed.

When in addition to the sets KBc and KCc , the set KAc is
similarly defined as the nonzero block pattern of the matrix Ac,
(10) can be optimized with γ = 0 and the additional constraint
Ac ∈ KAc :

min
Ac,Bc,Cc

J (Ac, Bc, Cc)

s.t. Ac ∈ KAc

Bc ∈ KBc

Cc ∈ KCc . (11)

The sets KAc ,KBc , and KCc can be specified by the user.
However, the set KAc can also be derived from the solution to
(10) by thresholding the Frobenius norm of the blocks of Ac.
The subsequent optimization is called “polishing” [13].

III. SEGMENTED MIRROR ON A FLEXIBLE

SUPPORTING TRUSS

A. Mirror Model

We use the mirror model as described in [9] and [10] and
Section IV-C. The mirror model has segments with a diameter
of 1.8 m and consists of two rings and 18 segments.

The model is created using SAMCEF Finite Element
Method (FEM) software and a Craig–Bampton reduction. The
FEM model reads
(

M̂11 M̂12

M̂21 I

)

︸ ︷︷ ︸
M̂

(
ẍ1
α̈

)
+

(
C11 0
0 0

)

︸ ︷︷ ︸
Ĉ

(
ẋ1
α̇

)

+
(

K̂11 0
0 �2

)

︸ ︷︷ ︸
K̂

(
x1
α

)
=

(
F1
0

)
. (12)

The state x1 contains the bottom and top positions of the
actuators, x1 = (x T

bottom x T
top). α is the vector of modal

amplitudes of the fixed boundary modes resulting from the
Craig–Bampton reduction.

Forces F1 are external forces on the truss, either through
loading of the mirror segments or reaction forces in the truss
support. Modal damping is added to the model as in [10] with
a damping ratio of 1%, which is a standard value in segmented
mirror research [9], [11], [23].

The matrices M̂11, M̂12, M̂21,�, and K̂11 are obtained from
the Craig–Bampton reduction. The diagonal matrix � contains
the natural frequencies of the fixed boundary modes.

The three actuators that suspend each segment are mounted
on top of the supporting truss. The edge sensors are located
on the edges of the mirror segments. Up to six sensors are
present per segment, depending on the number of neighboring
segments. All sensors measure the relative displacement with
respect to the neighboring segment, in the out-of-plane direc-
tion. The six sensors pointing toward the middle, where there
is no segment, measure the displacement with respect to the
supporting truss.

B. Wind Load Disturbance and Control Objective

The control objective is to minimize the effect of wind
loading on the shape of the mirror.

Many different disturbances act on the telescope structure,
e.g., wind loading, edge sensor noise, and structural vibra-
tions [4], [12], [24], [25]. From these, we incorporate only
wind loading and edge sensor noise in the model. Other
disturbances can be dealt with by the adaptive optics systems,
separate control systems, or are of very little influence on the
wavefront.

The wind disturbance considered is the along-wind response
of the mirror, modeled with a classic random vibration
approach. The turbulent wind force is assumed to follow
Davenport’s spectrum [26] and act on the model through the
force F1 in (12). The reference mean velocity of the wind
is 10 m s−1 in the direction perpendicular to the mirror with
a constant wind profile over the height of the mirror, and
cross correlation of the disturbance on the different segments
is assumed to be nonzero and computed according to [9].
The analytically computed cross power spectral density of
Davenport’s spectrum is approximated by a ninth-order band-
limited white Gaussian noise-driven LTI system using the
method in [27]. The edge sensors are assumed to have a
noise level of 1nm/

√
Hz.

The Maréchal criterion [28] states that the performance of
an optical element is limited by diffraction when the rms
wavefront error is lower than (λ2

l /180)1/2 ≈ λl/13.4, where
λl is the wavelength of light. Since the smallest λl observed
by the science instruments in, for example, E-ELT [29] is
λl = 370 nm, the objective for the controller design is a
closed-loop rms wavefront error below 27.6 nm. Any perfor-
mance below this value we consider to be sufficient, though
lower values indicate that other system requirements could
be set more lenient. We do not consider frequency weighting
of errors or the possibility of subsequent error compensa-
tion through adaptive optics in the performance comparison
between different controllers.

IV. MODEL ADAPTATIONS FOR OPTIMAL

CONTROL ENGINEERING

We can write the FEM model into a descriptor (with the
subscript d) state-space form

Ed ẋ = Ad x + Bdu + Bvv

y = Cd x + e

Ed =

⎛
⎜⎜⎝

M̂11 M̂12 0 0
M̂21 I 0 0

0 0 I 0
0 0 0 I

⎞
⎟⎟⎠, Bd =

⎛
⎜⎜⎝

Saka

0
0
0

⎞
⎟⎟⎠

Ad =

⎛
⎜⎜⎝

−C11 0 −K̂11 0
0 0 0 −�2

I 0 0 0
0 I 0 0

⎞
⎟⎟⎠ Bv =

⎛
⎜⎜⎝

I
0
0
0

⎞
⎟⎟⎠

Cd = (0 0 Sy 0). (13)

Here, x ∈ R
nd is the system state of the descriptor system,

Ad , Ed ∈ R
nd×nd , y ∈ R

ny is the measurement, e is the
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sensor noise, and u ∈ R
nu is the input. The matrix Saka in Bd

describes the actuator topology and the influence of actuator
inputs (displacements) u on the system. v is the output of the
LTI wind model. The matrix Sy in Cd describes the sensor
topology. The descriptor system in (13) is from a numerical
point of view badly conditioned and not immediately suit-
able for simulation, optimization, and control with standard
MATLAB toolboxes. We use the toolbox by Binder et al. [30]
to transform a system (13) in series with the wind model that
produces v, into the staircase canonical form, which transforms
the matrix Ed into a diagonal matrix. The resulting state-space
mirror model can be simulated accurately but still has a badly
conditioned E matrix. We make a minimal realization of the
system which removes all uncontrollable and unobservable
poles. Since for these mirror models at hand, this removes
the generalized eigenvalues at infinity, Ed is no longer badly
conditioned and the model can be rewritten into a standard
continuous-time state-space model.

Since the implementation of a controller is expected to be
in discrete time, the model is converted to a discrete-time
model. All dominant dynamics are contained in a bandwidth
of 200 Hz, so the model is discretized with a sampling
frequency of 1 kHz.

After this series of transformations, the model is in the form
of (1) and the techniques outlined in Section II can be applied.
A (numerically stable) square-root covariance filter [31] is
used to compute a Kalman gain.

V. NUMERICAL RESULTS

The gradient descent procedure described in Section II was
applied to a model of the segmented mirror with two rings,
for a total number of N = 18 segments. This gives n = 221
system states, ry = 78 sensors, and rz = mu = 54 actuators.
Several baseline controllers are generated for comparison
purposes.

1) A (globally optimal) LQG controller was created.
2) Then, an SVD controller similar to the controller in [9]

was implemented to compare the performance of the
optimal controllers to a controller based on a modal
approach.

A range of differently structured dynamic output feedback
controllers were obtained.

3) A dynamic output feedback controller with full matrices
Ac, Bc, and Cc and a reduced number of controller
states were designed using the gradient descent proce-
dure. Since each segment has six degrees of freedom,
we choose each local controller to have three states, for
a total nc = 3N = 54 controller states. We refer to this
controller as an unstructured reduced order controller.

4) All the structured reduced order (nc = 54) controllers
have block diagonal matrices Bc and Cc. The fully inter-
connected version (all local controllers are connected to
all other local controllers) therefore has a full matrix Ac,
and block diagonal matrices Bc and Cc.

5) Finally, a structured reduced order (nc = 54) controller
is created where local controllers are connected to those
local controllers that are associated with neighboring

TABLE I

PERFORMANCE OF DIFFERENT CONTROL STRATEGIES OF THE TWO-RING
MIRROR MODEL. THE SYSTEM MATRIX COLUMNS FEATURE AN “ f ”

FOR “FULL MATRIX,” “b” FOR “BLOCK DIAGONAL” OR “s” FOR

“BLOCK SPARSE”

Fig. 1. Tradeoff between number of interconnections and wavefront error.
Controllers marked by “x” obtained using (10). Controllers marked by a
diamond are solutions to (11). The horizontal axis gives the value of (9)
(the number of interconnections between local controllers). The vertical axis
is the rms wavefront error as explained in Section III-B. The penalty paid for
the use of the L1 norm as stand in for the cardinality operator is indicated by
the vertical dotted lines.

segments, which is reflected in the block structure of Ac.
The matrices Bc and Cc are still block diagonal.

Table I records the rms wavefront errors of controllers 1–5.
Fig. 1 displays the performance of the structured reduced

order controllers obtained through optimization of (10) for
different values of γ , resulting in the points marked “x.”
The values �i j we chose to increase proportional to the
square root of the Euclidean distance between the centers
of segments i and j . A square root was used to not overly
penalize the formation of longer distance connections but
reflect a preference for shorter connections. The structure of
Bc and Cc are fixed to block diagonal.

For the optimization of (10) using gradient descent, different
initialization strategies can be applied. First, stabilizing con-
trollers with near-zero values in the system matrices are used.
In this way the closed-loop system is stable, and a solution
to the Lyapunov equations in (5) can be found. Second,
instead of a controller with near-zero matrices, the matrices
of baseline controller 4 could have been used. A third option
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Fig. 2. Example of an interconnection pattern generated by the discovery
procedure.

is that the value of γ could have been gradually changed and
the optimization started with the controller from the previous
optimization. We found that the second option gave the best
results.

Once the gradient descent procedure converged, blocks with
Frobenius norm below a threshold of 10−4 were deemed not
to be in the interconnection structure. That is, there is no
connection between segments i and j if

∥∥∥∥
(

Ac,kl

AT
c,lk

)∥∥∥∥
F

< 10−4. (14)

The resulting interconnection structure defines KAc , and (11)
can be used to compute a locally optimal value for the perfor-
mance of the structured controller. However, given that proper
initialization can make a difference for the result in nonconvex
optimization, we utilized the availability of the matrices of
baseline controller number 4. By setting γ high and �i j to zero
if segments i and j should be connected according to KAc , and
initializing the gradient descent procedure with the matrices
of baseline controller 4, the “fully interconnected” controller
transforms into a controller with the proper structure during
the gradient descent procedure. The resulting performance is
marked in Fig. 1 by a diamond marker. The corresponding
“discovery” and “polishing” controllers are connected by a
vertical dotted line. Apart from this initialization, a gradient
descent method for problem (11) could also have been initial-
ized, like the method for (10), with a controller with near-zero
matrices, or the controller found in the “discovery” procedure.

In the same figure, some of the baseline controllers are also
indicated by horizontal lines, and baseline controller number 5
is indicated with a star. Even though the “fully interconnected”
controller should be plotted by a point in this graph, for
comparison with controllers with a sparser interconnection
structure, a line is drawn.

In Fig. 2, one of the discovered interconnection pat-
terns (with 18 connections) is plotted on top of an image of the

segmented mirror. A dashed line between two segment centers
indicates that the local controllers are connected according to
the sparsity structure in Ac.

VI. DISCUSSION

Immediately apparent from Table I is the small differ-
ence between the global optimum (controller 1 and the
LQG controller) and the reduced order unstructured controller
(controller 3). When controller 3 is compared with controller
number 4, where the difference is the structure in Bc and Cc,
we see the wavefront error more than doubles.

The points marked with “x” are the performances of the
best controllers found by optimizing (10) for different values
of γ and different initial guesses for the controller matrices.
A tradeoff can clearly be seen between the number of inter-
connections and performance. The identified interconnection
structures for these controllers were used in a structured con-
troller optimization (11), and the resulting performances are
indicated with diamond markers. The difference between the
tradeoff curves for the discovery procedure (marked with “x”)
and the subsequent structured optimization (diamond markers)
is relatively large and the resulting curves are not smooth. The
large differences in performance clearly show the penalty paid
for using the Frobenius norm as a differentiable substitute for
the cardinality operator. What is clear from the “polished”
curve is that fewer than half of the interconnections between
the mirror segment controllers are not necessary for approx-
imately the same performance as baseline controller 4. This
observation is not clear from the “discovery” curve, and neither
is it from fixing the controller structure heuristically like in the
baseline controllers.

The relatively small degradation in performance for con-
trollers with approximately a third of possible interconnections
not only justifies a search for optimal interconnection struc-
tures in distributed systems but is also relevant for situations
where the online computation time of the input signal is
critical. Even though the block sparse matrices Ac have an
interpretation as being a controller that is distributed (see (8))
one might choose to do the controller computations in a
centralized manner. Let nlc be the dimension of the local
controller, such that nc = Nnlc , and let p be the maximum
number of blocks on a block row of Ac

p = max
i

N∑
j

card(‖Ac,i j ‖F ).

The multiplication of Acxc has a computational complexity of
O(n2

c) = O(N2 n2
lc) for a dense matrix Ac. For a block sparse

matrix Ac, it is possible to exploit the sparsity and parallellize
the computation as in (8), and compute the result with the
computational complexity O(pn2

lc). The multiplication Bcy
can be computed with computational complexity O(ncry) =
O(nlc Nry). However, for block diagonal Bc, this can be
efficiently parallelized and computed in O(nlcrly), where
rly is the maximum number of measurements per segment.
A similar argument can be given for the computation of Ccxc.
Through an efficient use of the sparsity in the controller
matrices in a centralized implementation of the controller,
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the online computation time is not related to the number of
subsystems, but to the prechosen number of states nlc , and
through p to the introduced level of sparsity. We see that
for the analyzed segmented mirror, there can be a strong
improvement in online computation time with only a small loss
in performance. By optimizing the interconnection structure,
the online computation time can be traded off against system
performance.

In Fig. 2, one of the discovered sparsity patterns is dis-
played. One thing to notice is the absence of (rotational)
symmetry and difference with a controller where neighbor-
ing segments are connected. In a sense such a symmetry
was expected, since the segment configuration is rotationally
symmetric, all segments are the same, and a flat mean wind
velocity profile perpendicular to the mirror plane was assumed
for the disturbance. We do see that for this sparsity level,
optimization (10) resulted in a master–slave type of controller,
where the controller of segment 11 connects to nearly all other
controllers, and there are only a few connections among the
other local controllers. Similar master–slave type of controllers
can be observed for larger number of interconnections, with a
few more local controllers with a “master” role.

Another interesting property of the controllers is that the
computation of the control action does not feature the numer-
ical issues of the original model.

Finally, it is important to note that many of the structured
controllers in Fig. 1 have a remaining wavefront error that is
lower than the maximum allowed wavefront error of 27.6 nm,
meaning that the tradeoff analysis can and should play a role
in the system design.

VII. CONCLUSION

We demonstrated how the performance—the residual wave-
front error of the closed-loop system—of a structured con-
troller, with an interpretation as a distributed controller, can
be systematically traded off with the complexity of the distrib-
uted controller—interpreted as the number of interconnections
between the local controllers. The method was applied to
a challenging virtual model of a segmented mirror on a
flexible support truss and a wind disturbance model with
spatial correlation. For this system, a range of structured
controllers were computed. The results show that compared
to the performance of fully interconnected local controllers—
controller 4 in Table I—the amount of interconnections can
be greatly reduced without a significant loss of performance.
Furthermore, for small amounts of interconnections and the
particular weighting of interconnections we chose, controllers
with a centralized aspect seem to be preferred over controllers
where interconnections are distributed in a spatial sense.

For many different amounts of interconnections, the
designed controllers have residual wavefront errors below the
maximum allowed error and a performance improvement can
be found by optimizing the interconnection structure of local
controllers with respect to heuristic interconnection structures.

VIII. FUTURE WORK

As future work, we recommend that robustness against
modeling uncertainty is investigated. That is, do the resulting

interconnection patterns change if model uncertainty is taken
into account? Or if the mirror design parameters change?
Furthermore, is the centralized character of the optimal inter-
connection pattern, observed in Fig. 2, also present in the
interconnection pattern of mirrors with more segments? The
gap in performance between the controllers with (nearly) full
Ac matrices and structured Bc and Cc matrices on the one
hand and the unstructured reduced order controller on the
other hand would motivate the further inclusion of block
sparsity promoting terms in Bc and Cc in the objective function
of optimization in the discovery procedure. It also leads
to the question whether this inclusion affects the identified
interconnection structures to a significant degree.

APPENDIX

GRADIENTS OF THE H2 NORM WITH RESPECT TO

THE CONTROLLER MATRICES FOR THE

DISCRETE-TIME CASE

Using [17] and [18], we can derive that for the discrete-time
case, the gradients of the squared H2 norm with respect to the
closed-loop system matrices are

∂(CWcCT )

∂A = 2WoAWc

∂(CWcCT )

∂B = 2WoB
∂(BT WoB)

∂C = 2CWc.

Using matrix calculus as described in [32], we have

∂ vec (B)

∂ vec (Bc)
=

∂ vec

((
0
I

)
Bc F

)

∂ vec (Bc)
= F ⊗ (0 I )

and similarly

∂ vec (A)

∂ vec (Bc)
= (C 0) ⊗ (0 I ).

Using the Generalized Chain Rule (see [32, Th. 5.3]),
we arrive at

∂(CWcCT )

∂ Bc
= 2(0 I )WoAWc

(
CT

0

)
+ 2(0 I )WoBFT .

The results for the matrices Cc and Ac in (6) can be derived
along the same lines.
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