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Abstract

Over the past decade, advances in multidisciplinary design optimization (MDO) have enabled the optimiza-
tion of aircraft wings using high-fidelity simulations of their coupled aerodynamic and structural behaviour.
Using RANS CFD and detailed structural finite element wingbox models, the aerodynamic shape and in-
ternal structural sizing of a wing can be optimized concurrently, allowing the optimizer to correctly tailor
the aeroelastic behaviour of the wing, resulting in the optimal trade-off between the competing goals of
minimizing aerodynamic drag and structural mass. This capability makes MDO a key enabling technology
for the next generation of efficient high-aspect-ratio transport aircraft. However, as their aspect-ratios
increase, these wings increasingly exhibit geometrically nonlinear behaviour which cannot be correctly mod-
elled by typical linear structural analysis methods. This thesis aims to bridge the gap between low-fidelity
aeroelastic optimisation frameworks that include geometric nonlinearities and high-fidelity frameworks that
cannot.

To do this, I extend the capabilities of the state of the art high-fidelity MDO framework, MACH, to
include geometrically nonlinear analysis. I develop a Newton-Raphson based solver for the finite element
library TACS which is integrated into MACH to facilitate geometrically nonlinear structural and coupled
aerostructural analysis. The solver features an adaptive load incrementation strategy which includes a
novel strain energy based method for restarting the load incrementation process from a previous solution.
I also implement a load ramping strategy in MACH’s partitioned aerostructural solver which I demonstrate
can speedup a geometrically nonlinear aerostructural analysis by up to 40%.

I then perform comparisons of geometrically linear and nonlinear structural and aerostructural analysis
on models of both a moderate and high aspect-ratio transport aircraft. The results show that, under the
same loading, geometrically nonlinear analysis results in higher bending moments within the wingbox due to
follower force effects, which in turn result in a 10% increase in the stresses in the wing skins in a 2.5 g pull-up
manoeuvre. The nonlinear analysis also shows evidence of Brazier loading, a buckling critical compressive
stress in the wingbox ribs that is not captured by linear analysis methods. In coupled aerostructural analysis,
geometrically nonlinear span shortening effects are at the root of most of the differences between linear
and nonlinear results. Most notably, a forward shift in the wing’s centre of pressure changes the aircraft
trim and the shortening of the effective wing span reduces the bending moment and stresses in the wingbox
by around 5% when the aircraft is trimmed to the same 2.5 g load factor.

Finally I perform what are, as far as I am aware, the first published structural and aeroelastic optimisations
of a geometrically nonlinear high-fidelity wingbox model. The structural optimisations to minimise the mass
of the two wingboxes with respect to 6-700 structural sizing variables, subject to 15 failure constraints
across 3 loadcases and 7-800 linear sizing constraints. In the structural optimisations the increase in
bending due to geometric nonlinearity lead to a 6% increase in the mass of the optimised high aspect-ratio
wingbox, and a smaller but still significant 4% increase in mass in the moderate aspect-ratio model. Brazier
loads also lead to significant changes in the sizing of the wing ribs but a negligible increase in their mass.

The results of the aeroelastic optimisations appear to contradict the observed decrease in stress seen in
the initial aerostructural analysis comparisons with the geometrically nonlinear optimised design being 3%
heavier than the same wing optimised with geometrically linear analysis. It appears that this discrepancy
may be caused by erroneous stress values in distorted structural mesh elements and is a topic that merits
further investigation. Encouragingly, the increase in the computational cost of these high-fidelity aeroelastic
optimisations due to the addition of geometrically nonlinear structural analysis appears to be less than 20%.
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Nomenclature

General Mathematical Notation

F Function of Interest

J Jacobian

O Order of Magnitude

R Residual[
I
]

Identity Matrix[
A

]
Matrix A

ψ Adjoint Variable{
A

}
Column Vector A

u State Variable

x Design Variable

Finite Element and FSI Notation

α Line SearchStep Length

δabs Absolute Convergence Tolerance

δrel Relative Convergence Tolerance

ϵ Strain

λ Load Factor

λstif f Stiffener Pitch[
KT

]
Tangent Stiffness Matrix[

K

]
Stiffness Matrix[

T

]
Load-Displacement Transfer Matrix

θ Under-relaxation Factor{
uA

}
Aerodynamic Surface Displacements

{
w

}
,
{
v

}
BFGS Update Vectors{

XJ

}
Jig Aerodynamic Surface Coordinates{

XS

}
Displaced Aerodynamic Surface Coordinates

E Strain Energy

Fs Fluid Forces on Structural Mesh

Fex External Force

Fin Internal Force

Fx,cr Critical Compressive Load

Fxy,cr Critical Shear Load

hstif f Stiffener Height

TF Force Transfer Process

TX Displacement Transfer Process

tskin Skin Thickness

tstif f Stiffener Thickness

Xf Structural Displacements of Fluid Mesh

Other Symbols

α Angle of Attack

θtai l Tail Rotation Angle

CD Drag Coefficient

CL Lift Coefficient

CM Moment Coefficient

COP Centre of Pressure

MTOW Maximum Take-off Weight
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Glossary

aeroelastic optimisation Optimisation of a wing’s structural sizing only, albeit using coupled aeroelastic
analysis.. , 5

aerostructural optimisation Simultaneous optimisation of the aerodynamic shape and structural sizing
of a wing using coupled aeroelastic analysis..

centre of pressure A point in space at which the total aerodynamic forces acting on a surface can be
represented as a single resultant force vector..

Kreiselmeier-Steinhauser function A function which generates a smooth approximation of the maximum
value of a set of functions fi :

KS (fi (x)) =
1

ρ
ln

(
Nf∑
i

eρfi (x)

)
.

reduced-order model A simplification of a high-fidelity model that preserves essential behaviour and dom-
inant effects, for the purpose of reducing the solution time or storage capacity required for the more
complex model 1.

1Source:ANSYS, 2017, Reduced-Order Modelling How and Why An Overview
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1
Introduction

Whether for environmental or economic reasons, aircraft manufacturers are constantly striving to design
and build more efficient aircraft. One of the conceptually simplest ways to increase the aerodynamic
efficiency of aircraft is to increase the aspect-ratio of their wings. Consequently, the past five decades
have seen a steady increase in the aspect-ratio of commercial aircraft wings.
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Figure 1.1: Commercial transport aircraft wings are increasing in aspect-ratio [1].

These developments are enabled by two distinct areas of innovation. First, the development of novel
airframe technologies such as advanced composite materials, active load alleviation and aeroelastic tailoring
of wing structures, and second, the development of new design techniques to extract the full potential of
these new airframe technologies.

The need for new design methodologies for high-aspect-ratio wings (HARW) stems from two separate
problems. The first is that as the aspect-ratio of wings grow, they naturally become more flexible, leading
to a stronger coupling between their structural and aerodynamic behaviour and thus requiring coupled
analysis techniques. Secondly, many of the novel airframe technologies mentioned above, which are key
enablers of HARW, bring with them an increased number of design parameters, such as ply stacking
sequences for composites or control surface deflections for active load alleviation, further complicating the
already complex task of wing design.

In response to this need, there has been increased interest in the application of multidisciplinary design
optimisation (MDO) methods to the design of aircraft, and in particular to aerostructural wing design.
MDO tackles the two design challenges just mentioned by utilizing multidisciplinary analysis to fully capture
coupled aerostructural behaviour and by using gradient based optimization techniques to efficiently search

1
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complex, high dimensional design spaces. In the past decade, with increases in computational power it has
become possible to perform the concurrent optimization of the aerodynamic shape and structural sizing
of wings with high fidelity, using Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics
(CFD) and detailed wingbox structural finite element models. Such methods have been used to perform
aerostructural optimization of transonic commercial aircraft wings of both traditional design and utilizing
novel technologies such as tow steered composites and wing morphing [2–6]. The end goal of these MDO
techniques is to allow for as large a portion of the aircraft design process as possible to be based on
accurate physics based simulations rather than on empirical data, the lack of which is currently the largest
barrier to the development of novel aircraft.

Due to this replacement of engineering intuition with simulation results, the computational methods used
in MDO frameworks must be capable of modelling the physical phenomena that limit the design space
in reality in order to avoid unrealistic optimal designs. Moreover, the strong interdisciplinary couplings
inherent to MDO problems means that modelling inaccuracies in one discipline lead to design inaccuracies
in many others. This presents a problem for many current aerostructural MDO frameworks, which use linear
structural analysis, as HARW exhibit geometrically nonlinear behaviour due to their large displacements.

Geometrically nonlinear finite element methods for structural analysis are a mature technology available
in most commercial structural analysis codes and have been incorporated into a number of aeroelastic
analysis frameworks in the past two decades [7–20]. More recently, these frameworks have been extend
to perform geometrically nonlinear aeroelastic optimisation1 of HARW [11, 21–23]. The scope of these
optimisation problems is however limited to the sizing of the wing structure to minimise mass, excluding
any geometric parameterisation of the wing. This is because the panel based aerodynamic models used
in these frameworks do not allow for the accurate prediction of drag, especially in the transonic cruise
conditions of most commercial aircraft.

The commonality between all of these geometrically nonlinear approaches is the use of lower fidelity struc-
tural models, either beam finite element formulations or reduced-order models (ROM) of full wingbox2

finite element models. Although these simplified models have been proven capable of accurately predicting
the global deflected shape of a wing, they are not able to predict detailed stress distributions within the
wingbox components due the condensation inherent in their formulation. There is therefore a knowledge
gap in the detailed aerostructural design of HARW resulting from a capability gap between low-fidelity
aeroelastic optimisation frameworks that include geometric nonlinearities and high-fidelity aeroelastic op-
timisation frameworks which cannot.

In this chapter I first review the history and current state of the art in aerostructural design optimisation
to further define the knowledge gap this thesis aims to address. I then review the basics of geometrically
nonlinear structural phenomena before summarising the literature on how these geometrically nonlinear
effects influence the aeroelastic performance and design of highly flexible wings. Finally, I restate the
research problem based on the reviewed literature before forming the aims and research questions of this
thesis.

1.1. Background

1.1.1. Aerostructural Wing Optimisation

In the 1960’s and 70’s interest in design optimisation grew rapidly in the academic aerospace community
although, as described by Ashley [24], most applications were restricted to a single discipline and few, if
any of these techniques were used in industry.

1I reserve the term ‘aerostructural’ for optimisation problems involving both the structural and aerodynamic design of a wing,
whilst aeroelastic optimisation considers only structural design variables.

2Throughout this work, I use the terms ‘full’, ‘detailed’ ‘shell’ and ‘high-fidelity’ to refer to structural models that explicitly
model the 3D geometry (e.g skins, spars, ribs) of a wingbox using shell elements, as opposed to models which condense
wingbox sectional properties, as is done with beam finite elements.
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One of the first applications of optimisation or ‘nonlinear programming’ to multidisciplinary design problems
was in a tool developed by General Dynamics for the US Airforce in the early 1970’s known as TSO
(aeroelastic Tailoring and Structural Optimization) [25, 26]. The code used a Rayleigh-Ritz equivalent plate
structural model and a doublet lattice method (DLM) aerodynamic code to optimise laminate orientations,
thickness distributions and ballast masses subject to constraints on strength, and flutter velocity.

In 1977 Haftka built on his background in structural optimisation by coupling a panel based aerodynamics
model with a basic wingbox finite element (FE) model to perform aeroelastic analysis and optimisation of
a wing structure subject to stress and drag constraints [27]. The code was used to perform wing weight
vs drag tradeoffs for aluminium and composite wings. Unsurprisingly, Haftka found that the composite
wings were lighter and had lower drag (due to the decreased lift required) but that their increased flexibility
resulted in a larger variation in drag along the pareto front.

(a) Optimised laminate orientations and thick-
nesses distributions generated by TSO [25]

(b) Haftka’s wing model [27]

(c) Haftka’s aerostructural pareto fronts [27]

Figure 1.2: The early days of aerostructural design optimisation

In some sense, neither of these works were truly aerostructural as only they concerned only the structural
design of the wing, albeit incorporating aeroelastic interactions. Grossman et al. [28] performed one of the
first examples of truly aerostructural optimisation. Using a lifting line aerodynamics model and analytical
beam equations, they optimised the shape and structural sizing of a sailplane wing. Importantly, they
demonstrated that a sequential aerodynamic and structural optimisation approach yielded worse performing
wing designs than the ‘integrated’ approach. The integrated design approach was also better able to take
advantage of beneficial passive aeroelastic effects, with the authors noting that: ‘The integrated designs
were characterized by less rigid, higher-aspect ratio wings that utilized favourable aerodynamic/structural
interactions.’.

Later, Grossman et al. [29] performed a similar optimisation of a transport aircraft wing, this time using
more complex panel aerodynamics and FE wingbox models. The main focus of that work was on an
efficient method for calculating the derivatives of objective and constraint functions which depended on
these complex multidisciplinary analyses. Indeed, around this time, a number of authors began focusing
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their work on the efficient and accurate calculation of these derivatives [30] as they were increasingly
becoming the bottleneck in both structural and aerostructural design optimisation processes, as Adelman
and Haftka [31] explained:

Early attempts to use formal optimization for large structural systems resulted in excessively
long and expensive computer runs. Examination of the optimization procedures indicated
that the predominant contributor to the cost and time was the calculation of derivatives.

The subject of gradient computation is of great importance in MDO, particularly when using high-fidelity
models. I do not cover the ins and outs of these techniques in this chapter as it not of relevance to this
thesis’s key contributions but a comprehensive overview is given in appendix A. Save to say that when
computing derivatives of functions which depend on the solution of large systems of equations, there
are two primary methods to efficiently obtain accurate results. The direct method, which can efficiently
compute the derivative of many outputs with respect to a few inputs, and the adjoint method, which can
efficiently compute the derivatives of a few outputs with respect to many inputs.

With growing computational power, came a corresponding increase in the fidelity of aerodynamic and
structural models used in aerostructural optimisation. Maute presented some of the first examples of aer-
ostructural optimisations using 3D Euler computational fluid dynamics (CFD). Maute et al. [32] presented
a ‘three-field formulation’ that coupled the solutions of the aerodynamic and structural models to another
system of equations describing the deformation of the CFD mesh. They presented both direct and ad-
joint methods for calculating derivatives of the coupled system and demonstrated the power of the adjoint
method by maximising the lift to drag ratio of a wing using 432 design variables controlling composite
laminate orientations in a plate representing the wing structure. Later the same authors demonstrated
an optimisation of both wing shape and structure using a realistic wingbox structure [33]. However, due
to a large number of stress constraints (one at each node of the FE mesh), the authors used the direct
method for calculating derivatives and were thus limited to using 5 design variables. By aggregating the
stress values into a single constraint using a Kreiselmeier-Steinhauser (KS) function Maute et al. [34] were
able to perform a similar optimisation with 56 design variables. Barcelos built on Maute’s framework,
developing a more robust Newton-Krylov-Schur approach for solving the coupled system and extending
the framework to work with Reynolds-averaged Navier-Stokes (RANS) CFD [35, 36]. However, this work
was limited to direct derivative calculation methods and thus few design variables. Barcelos cites issues
developing an efficient parallel implementation for some aspects of the adjoint derivative calculation as the
reason for this [36].

Around the same time, Martins et al. [37, 38] also developed a coupled adjoint for a coupled Euler CFD
and linear FE model and demonstrated its ability to calculate derivatives with respect to O

(
103
)

variables.
They used their framework to perform the aerostructural optimisation of a supersonic business jet with
respect to 97 wing shape and sizing design variables [39].

In the past decade, the MDO Lab, headed by Martins, has developed the MACH (MDO of Aircraft
Configurations at High-fidelity) framework which represents the current state of the art in high-fidelity
aerostructural optimisation. The framework includes CFD (ADflow) and FE (TACS (toolkit for analysis
of composite structures)) solvers with efficient adjoint derivative implementations along with fully differ-
entiated modules required for coupled analysis and optimisation (e.g. geometry parameterisation, load
and displacement transfer, and mesh warping) [6, 40–43]. Using MACH, Kenway, Kennedy and Mar-
tins were able to perform aerostructural optimisation at a new scale, with O

(
103
)

design variables and
O
(
106 − 107

)
state variables, first with Euler and then RANS CFD [5, 44]. Kennedy and Martins [44]

showed that allowing the optimiser to control the wing’s airfoil profiles whilst using Euler CFD lead to
unrealistically thick wings designs due to the Euler model’s inability to predict shock induced boundary
layer separation, thus demonstrating the importance of using a RANS aerodynamic model in enabling an
accurate aerostructural trade-off. glsmach has since been used to investigate the potential benefits of
some of the new airframe technologies enabling HARW. Burdette studied the effect of wing morphing in
various works [3, 45–49] and Brooks extended the capabilities of TACS in order to study the performance
benefits of tow-steered composite wings [2, 50–54]

Some alternative lower fidelity aerostructural optimisation frameworks include OpenAeroStruct developed
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by Jasa et al [55, 56] and FEMWET, developed by Elham and van Tooren [57]. OpenAeroStruct uses
the common combination of vortex lattice method (VLM) and beam FE models along with empirical
corrections for viscous and wave drag. Although primarily used for educational purposes, it has been shown
to produce similar results to higher fidelity frameworks in some cases [58]. FEMWET couples a ‘quasi 3D’
aerodynamic model to a linear beam model. The ‘quasi 3D’ aerodynamic model uses the VLM code AVL
to compute a lift distribution which provides the lift coefficients for a series of 2D sectional analyses in a
higher fidelity aerodynamic tool such as MSES or XFoil is used to compute parasitic drag. The inclusion
of viscous and compressible flow effects in these sectional analyses allows FEMWET to accurately model
the trade-off between drag and structural mass as is necessary for accurate aerostructural optimisation.

Aeroelastic Optimisation, an Alternate Path

Venkatamaran and Haftka [59] described the complexity of structural design optimisation as having 3 axes:

Model complexity: How detailed is the model used? (e.g what kind of elements and how many of them?)

Analysis complexity: How complex is the analysis performed? (e.g linear vs nonlinear, static vs dynamic
vs spectral)

Optimisation complexity: How complex is the optimisation problem? (How many loadcases, how many
variables etc)

They concluded that any given design optimisation problem can achieve maximum complexity in at most
two of these three measures.

The MACH framework contains elements of all these types of complexity. With model complexity coming
from the use of 3D CFD and full wingbox models, analysis complexity from the use of the RANS equa-
tions for aerodynamic analysis, and optimisation complexity due the large number of design variables used.
However, in achieving this it also sacrifices other types of analysis and optimisation complexity. Optimisa-
tion complexity suffers as only a small (O (1− 10)) number of loadcases can be considered and analysis
complexity is limited by the use of only steady state analysis and linear structural analysis.

A parallel trend has been in the development of aeroelastic optimisation frameworks which use lower
fidelity panel aerodynamic models and often, though not always, beam FE models. These frameworks
cannot be used for true aerostructural optimisation as they cannot accurately predict the transonic and
viscous effects that are critical for drag prediction and thus cannot accurately trade-off drag and structural
mass. They are therefore typically limited to minimising structural mass for a fixed wing shape. By reducing
model complexity however, these frameworks allow for gains in analysis and optimisation complexity, some
examples of which include:

Transient loadcases: Due to the lower cost of these aeroelastic analyses, these frameworks can perform
aeroelastic analysis considering transient loadcases such as gust encounters. For example, Rajpal
et al. [60] used the PROTEUS framework, developed by Werter and De Breuker [21], to perform
aeroelastic optimisation considering around 20,000 different gust encounter simulations. Stanford
[61] optimised a full wingbox model using a stochastic gust analysis technique proposed by Engelsen
and Livne [62].

Fatigue life constraints: The ability to consider such large numbers of loadcases also allows for a more
realistic consideration of fatigue life as a structural constraint. Rajpal et al. [63] developed a fatigue
life failure analysis method for PROTEUS based on the linear wear-out law and the Tsai-Wu failure
criterion. They found that using this fatigue prediction resulted in lighter wings than those where
fatigue was accounted for with a simple knock down factor on strength.

Inclusion of control discipline: Panel based aerodynamic models make the modelling of control surfaces
significantly easier than with CFD models, allowing these lower fidelity aeroelastic frameworks to
include the design of control laws in the MDO problem. For example, as well as optimising the
wingbox structure, Stanford [61] simultaneously optimised control surface laws for manoeuvre and
gust load alleviation.
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Complex Structural Parameterisations: Using high fidelity structural models coupled to low fidelity aero-
dynamics models, has allowed Stanford and collaborators to use more complex structural paramet-
erisations which would otherwise be impractical for higher fidelity studies. These include topology
optimisation of wingbox panels [64, 65], optimisation of the number and location of ribs and stiffen-
ers [66] and curvilinear ribs and stiffeners [67].

Geometrically nonlinear structural models: The UM/NAST framework developed by Cesnik et al and
PROTEUS both use geometrically nonlinear beam models. Lupp and Cesnik [19] used UM/NAST
to perform basic aerostructural optimisation with a geometrically nonlinear flutter constraint whilst
PROTEUS has been used for many aeroelastic optimisation studies [21, 23, 60, 63, 68–70].

Many works in recent years have focused on developing multifidelity methods, which use lower fidelity models
to speed up the convergence of high fidelity models. Dillinger et al. [71] created an aeroelastic optimisation
framework which combined low fidelity linear aeroelastic analysis in NASTRAN with intermittent load
corrections from Euler CFD analysis in order to converge to the same solution as a standard high fidelity
coupled analysis with lower cost. Jovanov [72] extended this method of high fidelity corrections to the
computation of coupled derivatives in PROTEUS. Their method computes a high fidelity correction to
the VLM aerodynamic stiffness matrix using an energy based singular value decomposition (SVD) of the
Euler model’s aerodynamic stiffness matrix. Aeroelastic optimisations performed with these high fidelity
corrections applied to both analysis and gradients converged to a lower mass than cases using only a VLM
model or only applying corrections to the analyses.

1.1.2. Geometrically Nonlinear Structural Phenomena
Linear structural analysis methods rely on the assumption that the displacements, strains, stresses and
forces in a structure are all linearly related to one another. For many engineering applications, where
structures should remain in the linear elastic region and undergo small displacements, this is a good
assumption and simplifies any analysis to the solution of a single system of linear equations. There are
however multiple scenarios in which these assumptions do not hold:

Material nonlinearity: Structures which see large stresses and strains may exhibit nonlinear material be-
haviour which can be elastic (e.g. hyperelasticity) or inelastic (e.g. yielding and plastic deformation).
Modelling this behaviour requires a nonlinear stress-strain relationship.

Contact nonlinearity: The initiation of contact between two surfaces introduces strong discontinuous
nonlinearities. Typically in FE problems, contact is modelled as an external force which has a nonlinear
and discontinuous relationship with nodal displacement.

Geometric nonlinearity: When a structure undergoes large displacements, especially large rotations, the
change in its shape can have a non-negligible effect on both the magnitude and direction of it’s
stiffness and the applied loads. Modelling these effects requires nonlinear displacement-strain and
external force-displacement relationships respectively.

Since a typical wing structure does not see any contact phenomena and we are not concerned with modelling
any post-failure structural behaviour, both contact and material nonlinearity are not considered further in
this work. Geometric nonlinearity, however, is important for the structural analysis of high-aspect-ratio
wings (HARW).

Figure 1.3, shows qualitative examples of the three dimensional stiffness distributions of a point on a cube
and a shell visualised as ellipsoids. The stiffness of the point on a cube is roughly equal in all directions,
resulting in a roughly spherical stiffness ellipsoid, in contrast the shell’s significantly lower out-of-plane
stiffness results in a flattened ellipsoid. Due to the rotational symmetry of a sphere, rotating the cube
has little effect on the stiffness distribution in the global coordinate system. For the shell however, out-
of-plane rotations cause a considerable change in the orientation of the principal stiffness directions and,
consequently, the stiffness distribution as viewed in the global coordinate system. This behaviour is one
reason that shell structures, such as wingboxes, exhibit strong geometric nonlinearity.

Additional large rotation nonlinearities appear when using follower forces, external loads which follow the
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(a) Cube (b) Shell

Figure 1.3: Qualitative examples of the directional stiffness distributions for a cube and a shell element. The large difference
between the in and out-of-plane stiffness of the shell element make its behaviour more sensitive to rotations than the cube.

rotation of the structure they are applied to. Aerodynamic loads can be considered follower forces as they
consist of pressure and shear forces which remain normal and parallel to the wing surface respectively.

Figure 1.4 shows an example of these large rotation nonlinearities in the analysis of a cantilever beam
subject to a uniform pressure load which exhibits follower force effects. In the linear model, the orientation
of both the forces and of the structure’s stiffness are only considered in its undeformed state. As a
result, the model shows purely vertical deformation, resulting in an unphysical stretching of the beam.
The geometrically nonlinear model correctly retains its original length and bends back on itself due to the
rotation of pressure load.

Figure 1.4: Cantilever with uniformly distributed pressure load which follows rotation. The linear model produces highly
unrealistic results due to the large rotations present.

Another geometrically nonlinear effect that stems from the large discrepancy between in and out-of-plane
stiffness of shells is stress stiffening. When highly loaded, the forces resulting from in-plane, or membrane,
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stresses are great enough that they contribute to out-of-plane stiffness when out-of-plane deformations
causes them to become oriented with the out-of-plane external forces. Tensile membrane stresses lead
to increase in out-of-plane stiffness whilst compressive membrane stress causes decrease in out-of-plane
stiffness which can eventually cause buckling.

Figures 1.5 and 1.6 show examples of these two forms of stress stiffening. Figure 1.5 shows a simply
supported plate, again subject to uniform pressure load. In the nonlinear case, as it deflects downwards,
significant tension is induced in the plate which, due to the deformation of the plate, resists the vertical
loads. The linear case does not capture this stress stiffening effect as it does not consider the plate’s
deformed shape. Only the much lower bending stiffness of the plate is considered, resulting in unrealistically
large deformations.

Figure 1.5: Plate subject to a uniform pressure load, linear model shows significantly larger deformation due to absence of
stress stiffening effects.

The final example in figure 1.6 shows a thin walled box section beam subject to a vertical tip load. This
case demonstrates the opposite kind of stress stiffening. As the upper skin is placed in compression, stress
stiffening causes its out-of-plane stiffness to reduce to zero, resulting in buckling.

Figure 1.6: A thin walled box section cantilever beam subject to a tip load (deformations exaggerated 10×). The geometrically
nonlinear model is able to capture buckling of the upper skin.

In thin walled beams subject to bending, stress stiffening due to the compressive and tensile stresses in the
upper and lower surfaces of the beam cause a flattening of its cross section. This effect was discovered
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by engineers building early aircraft wings from thin steel shells and is named after Brazier [73] who first
published work on phenomena and showed how it can lead to the buckling of a beam’s cross section.
In a wingbox, Brazier effects lead to large compressive loads in the wing’s ribs. These Brazier loads are
typically the critical loads in the structural sizing of ribs, particularly for buckling and consequently, structural
optimisation of wingboxes using linear FE models results in unrealistically lightweight rib designs [74]

1.1.3. Geometrically Nonlinear Effects in Aerostructural Analysis and Design

To correctly model aeroelastic phenomena under large deformation, both the structural and aerodynamic
models used must contain geometric nonlinearities. The motivation for geometrically nonlinear structural
models has just been given, but it is equally important that the aerodynamic model used correctly represents
the geometry of the deformed wing in order to correctly model the changes in the magnitude and orientation
of aerodynamic forces that occur under large displacements and rotations.

Linear VLM and DLM aerodynamic models do not explicitly model the twisting of wing sections, instead
adding linearised terms to the non-penetration condition to account for small angles of attack of each
panel. As a result, these models not only incorrectly predict the magnitude of aerodynamic loads under
large rotations but also incorrectly model the aerodynamic forces as acting perpendicular to the undeformed
aerodynamic surface.

Howcroft et al. [15] demonstrated the inaccuracy of this approach in a paper comparing a variety of
different linear and nonlinear aeroelastic models including the academic nonlinear code NeoCASS [11] and
both linear and nonlinear modes from the widely used commercial code Nastran. Figure 1.7a shows the lift
(in the global vertical direction) distributions of linear and nonlinear aeroelastic models of a highly-flexible
wing, trimmed to the same total lift level. The substantial difference in the distributions is due to the
fact that the nonlinear model correctly captures the reduction in useful lift produced by the outboard wing
sections due to the inboard rotation of the lifting surface. As a result, the nonlinear model requires a higher
angle of attack to achieve the same lift and more of the useful lift is produced by the inboard wing sections.
Figure 1.7b demonstrates the same effect from another perspective, showing the total lift produced by a
linear and nonlinear aeroelastic model relative to that produced by a rigid version of the same wing over
a range of flight speeds at a constant angle of attack [75]. At low speeds, both flexible models generate
more lift than the rigid model due to some wash in at the wingtip. However, with increasing flight speed,
the inboard rotation of the lift in the nonlinear model results in a loss in total lift relative to the rigid wing.

(a) Lift distributions of linear and nonlinear aeroelastic models
of an identical wing, trimmed to the same total lift coeffi-
cient [15].

(b) Total lift produced by linear
and nonlinear flexible wings, relat-
ive to rigid wing [75]

Figure 1.7: Examples of poor lift prediction in geometrically linear aeroelastic analysis.

The above effect demonstrates that large structural displacements necessitate the inclusion of geometric
nonlinearity in the aerodynamic model to correctly capture the nature of aerodynamic forces as follower
forces. In turn, these follower force effects necessitate the use of geometrically nonlinear structural models.
Figure 1.8 shows the deflection of multiple nonlinear cantilever models subject to both vertical and follower
tip loads.
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Figure 1.8: Linear and nonlinear cantilever models subject to a tip force, demonstrating the artificial extension of the linear
model and the effect of follower forces on the nonlinear model [15].

The beam subject to the follower force undergoes greater displacement and rotation, resulting in a signi-
ficantly shorter effective span. This is because the tip force remains perpendicular to the beams axis, thus
inducing the maximum possible bending moment. Conversely, in the non-follower force case, as the beam
deforms, the tip force becomes increasingly aligned with the axis of the beam, resulting in a lower bending
moment in the beam and thus lower deflections. Although not shown in figure 1.8, Ritter and Cesnik
[76] demonstrated that the use of a follower force with a linear FE model results in lower deformation.
This is because, in the undeformed configuration, only vertical force components induce bending whilst
any inboard force component acts purely along the axis of the beam, it’s stiffest direction. Each node of
the linear beam therefore undergoes almost purely vertical displacement and as a result there is a fictitious
increase in the overall length of the beam. In aeroelastic models which compute aerodynamic forces on
the deformed wing geometry, this fictitious lengthening and subsequent increase in wing area can result in
unrealistically high aerodynamic forces.

Up to this point, lift has been considered the only aerodynamic force responsible for aeroelastic loading
and deformation. In most cases this is a valid assumption as, in an undeformed configuration, drag forces
attempt to bend the wing in its very stiff chordwise direction. However, when a wing undergoes significant
vertical displacements, drag forces on the outboard portions of the wing gain a moment arm around the
wing root and can result in significant torsional loads. Howcroft et al. [15] demonstrated this effect using
an unsteady VLM method which employs rough drag estimates and showed that their inclusion reversed
the direction of the wing root twisting moment.

Both Garcia [9] and Smith et al. [77] demonstrated this effect at higher fidelity by coupling nonlinear FE
beams to CFD models of highly flexible wings. Garcia modelled an unswept wing with an aspect-ratio of
29 in transonic flow and, as shown in figure 1.9, found that a linear structural model predicted a small
amount of pitch down torsion along the wing. In contrast, the nonlinear structural model showed torsional
moments approximately an order of magnitude greater and in the pitch up direction, resulting in washin
along the wing and increased lift which leads to a roughly 10% increase in total lift and a 25% increase in
wing root bending moment.

Garcia also simulated a version of the same wing with 5° backward sweep. The results from that analysis
showed that due to the inherent bend-twist coupling of a swept wing, the greater bending in the nonlinear
structure results in more geometric washout. This additional washout more or less cancelled out the
torsional drag effects but the nonlinear structure still shows around 10% less washout at the wingtip,
leading to a noticeable increase in loading.
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(a) Garcia [9] found that torsion due to
drag resulted in an order of magnitude
greater pitch up wing root moment in a
nonlinear model.

(b) As a result, the nonlinear model twists
in the opposite direction and by a greater
amount.

(c) In the backward swept wing, the aer-
oelastic twist of the was dominated by the
geometric bend-twist coupling, resulting
in more similar twist distributions.

(d) Verri et al. [78] saw the same effect in
their high fidelity analysis of an Embraer
regional jet. (Featured = nonlinear)

Figure 1.9: Garcia [9] and Verri et al. [78] both demonstrated the important effect of drag forces on wing torsion under large
displacements.

To date, there have been few published examples of aerostructural analysis using both high-fidelity CFD
and high-fidelity geometrically nonlinear structural models. Medeiros et al. [20] developed a method for
constructing geometrically nonlinear reduced order models of high fidelity wingbox structures which were
then coupled to a RANS CFD code for both static and dynamic analysis. The work however offers
little discussion of the differences between linear and nonlinear structural models. To the best of my
knowledge, the recently published work of Verri et al. [78] is the only published work coupling a full-order
geometrically nonlinear wingbox model to high-fidelity CFD. The work considers analysis of an Embraer
regional jet with a wing aspect ratio of 12, around the upper end of current day commercial aircraft aspect-
ratios, and compares aerostructural results from a 2.5g pull-up manoeuvre with both linear and nonlinear
structures. Although the authors state that at this load level the wing deflection is within what would
typically be considered the realm of linear behaviour, the results show some of the same geometrically
nonlinear phenomena discussed to this point although the analysis provided in the paper is somewhat
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limited. The geometrically nonlinear wing shows an 8% lower tip displacement and around 20% less tip
washout. As a result, the aircraft in the nonlinear case is trimmed at a slightly lower angle of attack
and shows a more outwardly shifted lift distribution which results in a more than 10% increase in bending
and shear loads in the outboard sections of the wing. Unfortunately the work offers no analysis of stress
distributions in the wingbox.

All the works mentioned to this point have considered the effects of geometric nonlinearity on aeroelastic
performance. However, for these results to be of practical use we must consider at what point these
nonlinearities necessitate consideration in the design process and how highly flexible wings should be de-
signed to account for them. Although tools like PROTEUS have been used to optimise wing structures
based on geometrically nonlinear aeroelastic analysis, few works have explicitly investigated the differences
in wing designs optimised with and without considering such effects. Lupp and Cesnik [19] performed a
basic aerostructural optimisation using the UM/NAST aeroelastic framework, optimising the structural
thickness and span of a wing subject to constraints on wing root bending moment and flutter speed. The
work’s main focus was on the effect of including geometric nonlinearity in the flutter analysis, finding that
a geometrically nonlinear flutter constraint resulted in a lower aspect-ratio wing.

A far more extensive investigation on the design implications of geometrically nonlinear behaviour was
performed in two recent papers by Calderon et al. [22, 79]. Their investigations were performed using
the low-fidelity aeroelastic framework NeoCASS, which couples geometrically nonlinear VLM and beam
models. Using NeoCASS, Calderon et al performed a series of studies where the sizing of a wing’s panels
and stiffeners was optimised based on failure prediction methods typical of the conceptual aircraft design
stage. The results of the work consistently showed that wings optimised using nonlinear structural analysis
are lighter and longer. For a benchmark wing with an aspect-ratio of 18, the geometrically nonlinear
model experienced lower loads and thus ended up 5% lighter, with a root bending moment 8% less and
root torsion 50% less than the wing sized using the linear structural model, resulting in a modest 1.3%
improvement in Breguet range. It should however be noted that the aerodynamic model used in this study
did not include drag as a structural force and so could not have captured the drag-torsion effects described
earlier in this section which greatly affected wing torsion.

Calderon et al. then performed a series of optimisations with wings ranging from aspect ratios of 10
to 26. As figure 1.10 shows, over the entire range of aspect ratios studied, the wings optimised using
geometrically nonlinear analysis were lighter, achieved the same aerodynamic efficiency, and therefore had
greater ranges than those optimised using the linear model. Also of interest is that the optimum aspect
ratio in terms of range is higher in the nonlinear case and that only the wings at the bottom end of the
aspect ratio range were subsequently found to be critically sized by gust loads. These results suggest that,
although the total gain in range is modest (≈1%), geometrically nonlinear structural analysis does result
in significant differences in structural sizing. When performing sizing using a full wingbox model rather
than a beam model, it could be expected that these differences will be increased by the presence of stress
stiffening effects like Brazier loading.

(a) Mass. (b) L/D. (c) Range.

Figure 1.10: Calderon et al. [22] found that wings optimised using geometrically nonlinear structural analysis were lighter
over the entire range of aspect ratios studied, had roughly equal aerodynamic efficiency, and had a higher optimum aspect
ratio than those optimised based on linear structural analysis.
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1.2. Thesis Motivation and Aims

Table 1.1: A summary of the capabilities of some of the aerostructural and aeroelastic analysis and optimisation work covered
in this review along with the proposed contribution of this thesis.

Author/Tool
Aerodynamic

Model1,2

Structural

Model2,3

Optimisation Variables

Structure Planform Shape

Howcroft et al. [15] VLM/DLM NL Beam

Garcia [9], Bartels et al. [14] RANS NL Beam

Verri et al. [78] RANS NL Shell

Calderon et al. [22, 79] VLM NL Beam 3

OpenAeroStruct [55, 56, 58] VLM Beam 3 3

FEMWET [57] Q3D Beam 3 3 3

PROTEUS [21, 23, 60, 63, 68–70] VLM NL Beam 3

Jovanov [72] Euler NL Beam 3

Stanford et al. [61, 64, 65, 67, 74, 80] VLM Shell 3

Stanford [66] VLM Shell 3 3 3

UM/NAST [19] ST NL Beam 3 3

Dillinger et al. [71] Euler Shell 3

MACH [2–6] RANS Shell 3 3 3

This thesis RANS NL Shell 3 3 3

1 Aerodynamic models: DLM–Doublet lattice method, VLM–Vortex lattice method, ST–Strip theory, Q3D–
Quasi 3D, Euler–Euler CFD, RANS–RANS CFD

2 Fidelity: Low, Mid, High
3 Structural models: NL–Nonlinear

Table 1.1 summarises the capabilities of the aerostructural analysis and optimisation tools just described
and demonstrates the primary motivation for this thesis. There is currently a knowledge gap in the de-
tailed aerostructural design of high-aspect-ratio wings (HARW) resulting from a capability gap between
low-fidelity aeroelastic optimisation frameworks that include geometric nonlinearities and high-fidelity aer-
oelastic optimisation frameworks that cannot.

The work done to date on the effect of geometric nonlinearity on the structural sizing of HARW has either
involved structure-only optimisation using low-fidelity tools [22] or single analyses with high-fidelity tools
which are currently too computationally expensive and lack the gradient calculation capability required for
optimisation. [78]. As such, it is not clear what the effects of geometric nonlinearity are on optimal design
of aircraft wings and at what point they become an important consideration.

The aim of this thesis is therefore twofold:

1. To develop a tool capable of performing high-fidelity aerostructural analysis and optimisation using
RANS CFD and a geometrically nonlinear full wingbox FE models.

2. To use the tool to investigate the consequences of geometrically nonlinear effects on the aerostruc-
tural design of modern transport aircraft.

Specifically, this thesis work has been performed at the Univeristy of Michigan’s MDO Lab and thus the
development portion of this thesis focuses on expanding the MACH framework’s capabilities to include a
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geometrically nonlinear finite element formulation.

To tackle the second aim, the second portion of this thesis involves a series of first structural, then
aerostructural, analyses and optimisation studies of the undeflected common research model (uCRM)s, a
pair of benchmark aerostructural models developed by Brooks et al. [81], representative of both moderate
and high aspect-ratio commercial transport aircraft. These studies will allow for the identification of
differences due to purely structural nonlinearities under fixed loading and their consequences on optimal
designs, before the aerostructural studies assess the consequences of combined structural and aeroelastic
nonlinearities. Of particular interest is whether these nonlinearities result in optimised wings with more or
less passive load alleviation as the work presented so far from Lupp and Cesnik [19], Garcia [9], Verri et al.
[78] and Calderon et al. [22] offer contradictory results.

These aims are combined in the top level research question:

Is it computationally feasible to use geometrically nonlinear finite element formulations in
high fidelity aerostructural design optimisation? And, if so, do geometric nonlinearities have
a significant effect on the optimal aerostructural design of high aspect ratio wings for future
commercial aircraft?

This can be broken down into the following sub-questions:

1. What is the computational cost of performing high-fidelity aerostructural analysis and optimisation
with a geometrically nonlinear structural model and how can this cost be minimised?

(a) How can the robustness and efficiency of a basic Newton-Raphson solver be improved for
geometrically nonlinear analysis of high aspect-ratio wingboxes?

i. Which line search strategy provides the required solver robustness for the minimum addi-
tional cost? Is this choice problem dependent?

ii. Do approximate Jacobian update strategies reduce the solver’s overall computational cost
without sacrificing robustness?

iii. Are load incrementation or arc-length control methods necessary for modelling wingboxes
not undergoing buckling? If so, how can incrementation be controlled to minimise compu-
tational cost?

(b) How can MACH’s aerostructural solver be modified to work with the TACS nonlinear solver?

i. If required for robustness in the structural solver, how can load incrementation be incor-
porated into the aerostructural solver?

(c) What is the overall cost penalty associated with the inclusion of structural geometric nonlinearity
in structural and aerostructural analysis and optimisation?

i. Does the increased cost make aerostructural optimisation with geometrically nonlinear
structural analysis impractical?

ii. Where might the most performance improvements be possible in the future?

2. What effects do structural geometric nonlinearities have on the results of structural and aerostructural
analysis and optimisation of HARW?

(a) How does geometric nonlinearity affect the results of structural and aerostructural analysis?

i. How does geometrically nonlinearity affect the deformations and stresses in a wingbox for
a given loading?

ii. How does geometric nonlinearity affect wing deformation during flight?

iii. How does this affect the wing’s passive load alleviation potential and consequently the load
and stress distribution in the wingbox?

iv. How does this affect the overall lift, drag and trim of an aircraft?
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v. Which of these effects are due to purely structural nonlinearities and which are due to
aeroelastic nonlinearities?

(b) How does geometric nonlinearity affect the results of structural and aerostructural optimisation?

i. How do these effects alter the optimal sizing of a wingbox for a given loading?

ii. How do these effects alter the optimal wing design in terms of structural sizing, wing
planform and wing shape?

iii. Which of these design changes are due to purely structural nonlinearities and which are due
to aeroelastic nonlinearities?

(c) How critical is the inclusion of geometric nonlinearity in the optimal design of HARW for future
commercial transport aircraft?

i. At what point do these effects become important? Is aspect-ratio the main determining
factor? Or are these effects also present in low to moderate aspect ratio wings?

ii. Do the differences in optimised designs make aerostructural optimisation with linear finite
element models invalid for the conceptual, preliminary or detailed design of HARW for
future commercial transport aircraft?

1.3. Thesis Overview
The remainder of this thesis is structured as follows.

Chapter 2 introduces the various tools within MACH used throughout this work.

Chapter 3 gives some background on solution techniques for nonlinear FE and fluid-structure interaction
(FSI) problems before describing the development, validation and testing of the nonlinear solver
developed in this work for MACH’s FE code, TACS and the modifications made to the framework’s
aerostructural solver.

Chapter 4 describes both the setup of the uCRM models and the comparisons of structural and aero-
structural analysis performed on them with linear and nonlinear analysis.

Chapter 5 moves onto to a series structural, and finally aerostructural, optimisations and seeks to link
the differences in optimal designs back to the nonlinear effects demonstrated in chapter 4

Chapter 6 restates the findings from each chapter, draws some overall conclusions in order to answer the
above research questions and makes recommendations for future investigations.



2
The MACH Framework

In the past decade, the MDO Lab has developed the MACH (MDO of Aircraft Configurations at High-
fidelity) framework, which represents the current state of the art in high-fidelity aerostructural optimisation.
The framework includes CFD and FE solvers with efficient adjoint derivative implementations along with
fully differentiated modules required for coupled analysis and optimisation (e.g. geometry parameterisation,
load and displacement transfer, and mesh warping) which are used at various points throughout this work.
Figure 2.1 shows the extended design structure matrix (XDSM) for a typical aerostructural optimisation
problem as will be performed in this work. In this chapter I briefly review the tools used in all stages of this
aerostructural analysis and optimisation chain, where useful for later understanding, I cover the technical
details of some of the tools in more depth.

2.1. Aerodynamic Analysis: ADflow
The flow solver in MACH is ADflow1, a finite-volume CFD solver for structured multiblock and overset
meshes [82]. ADflow solves the compressible Euler, laminar Navier-Stokes, and RANS equations with
a second-order accurate spatial discretisation. The solver employs a variety of numerical methods to
converge to a steady-state solution, including multigrid, approximate Newton-Krylov, and Newton-Krylov
algorithms [83]. The combination of these various iterative methods makes ADflow robust and fast.
ADflow also solves the discrete adjoint equations, enabling efficient computation of derivatives independent
of the number of design variables. The solution of the discrete adjoint in ADflow relies on the ADjoint
approach, which uses algorithmic differentiation (AD) to compute partial derivatives and a Krylov method
to solve the linear system [84].

1github.com/mdolab/adflow
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Figure 2.1: The XDSM for a typical aerostructural optimisation problem in MACH
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2.2. Structural Analysis: TACS
The structural solver used in MACH, and throughout this work, is TACS (toolkit for analysis of composite
structures)2 [42]. TACS was developed specifically for the kinds of poorly conditioned FE problems typical
of thin shell structures like wingboxes, which may have condition numbers of O

(
> 109

)
[85]. This poor

conditioning makes the linear systems representing shell structures difficult or impossible to solve for the
Krylov based iterative solvers typically used for large linear systems. To get around this problem, TACS
forms an essentially perfect preconditioner for a Krylov solver using a direct solution method. For linear
structural analysis, the expensive factorisation of the preconditioner can be performed once for a given
structure and then reused to solve for many different load cases with very little computational cost. This
is a particularly useful characteristic during coupled aerostructural analysis with a linear structure [6].

TACS also computes gradients using the adjoint method but, unlike ADflow, all partial derivative compu-
tations are analytic.

2.2.1. Constraint Aggregation

In a structural or aerostructural optimisation problem, constraints are almost always imposed on the
maximum allowable stress in a structure. Adding an individual constraint for each point in the structure
at which stress is computed would lead to O

(
104 − 107

)
constraints, making optimisation impractical,

while simply constraining the maximum stress value leads to poor optimiser behaviour as the derivative
of the max function is discontinuous [86]. To address this issue, TACS offers a selection of constraint
aggregation techniques in Kreiselmeier-Steinhauser (KS) and P-norm aggregation. All of which aim to
provide a smooth, differentiable approximation of the maximum value of a set of functions. Although
Lambe and Martins [87] recommend the use of the P-norm aggregate, I use KS aggregation throughout
this work as it is the only method implemented in TACS which uses average element stresses rather than
the values computed at integration points. I will show later, in chapter 5, that this is critical for reducing
the adverse effect of stress singularities on optimisation problems.

2.2.2. The bladeFSDT Constitutive Model

As described in chapter 1, buckling is the onset of an instability in a structure and is caused by compressive
stress stiffening effects. Due to their strong stress stiffening behaviour, buckling is a critical failure mode
in thin shell structures such as wingboxes [88, 89]. As a result, the panels in wingboxes are reinforced with
stiffeners (or stringers) whose sizing is almost entirely dictated by buckling behaviour. In TACS, stringers
can either be explicitly modelled using shell or beam elements or, more commonly, using a constitutive
model referred to as the bladeFSDT model. As the name suggests, the bladeFSDT model is based
on first-order shear deformation theory, which assumes that stain components vary linearly through the
thickness of the shell [85]. The model includes the effect of blade stiffeners by adding equivalent stiffness
terms to the skin shell elements, essentially ‘smearing’ the stiffness of stiffeners over the entire panel area.
As shown in figure 2.2, the bladeFSDT model is parameterised by 3 additional design variables per panel
for the thickness, height and pitch of the stiffeners in addition to the original skin thickness variable. This
parameterisation is one of the primary advantages of the bladeFSDT approach over explicitly modelled
stiffeners, which can only easily be given thickness design variables.

Failure criteria are analysed at 3 locations through the thickness of the virtual panel. The upper and lower
surface of the skin, which are in a 2D plane stress state, and at the extrema of the stiffener blade, which
is assumed to be under purely axial stress. The failure criteria evaluated depends on the material being
modelled, with Von Mises stress used for isotropic metallic structures, and either a maximum strain or
Tsai-Wu criterion for composites.

Another advantage of the bladeFSDT model over explicit stiffeners is the ability to predict buckling failure
without the need for any additional eigenvalue based analyses. To do this, TACS defines a force based

2github.com/gjkennedy/tacs

github.com/gjkennedy/tacs
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Figure 2.2: The parameterisation of TACS’ bladeFSDT constitutive model.

failure envelope:
Fx
Fx,cr

+
F 2xy
F 2xy,cr

≤ 1 (2.1)

Based on critical compressive, Fx,cr , and shear, Fxy,cr , loads in the local axis of the panel stiffeners. At each
element these critical loads are calculated using the empirical relations presented by Stroud and Agranoff
[90] for global panel buckling, inter-stringer skin buckling and stringer buckling of an infinitely wide flat
panel of the same length as the wingbox panel the element is a part of.

2.2.3. Python Interface: pyTACS

TACS is written in C++ but interfaces with the MACH framework through a Python interface known
as pyTACS. pyTACS contains all the classes and methods necessary for the definition and solution of a
structural problem, including performing common linear algebra operations on TACS’ distributed vector
and matrix objects. As such the solution process can be controlled in great detail at the Python level,
whilst the intensive numerical work is still handled in a highly efficient and parallelised manner in the C++
layer.

2.3. Load and Displacement Transfer: Rigid Link
Since the meshes used in the aerodynamic and structural analyses typically do not match each other and
are often even non-coincident, a method is required both for transferring structural displacements to the
aerodynamic surface and for transferring aerodynamic forces to the structural mesh. The load-displacement
transfer method used in MACH is known as the rigid link transfer (RLT) and was first proposed by Brown
[91]. Figure 2.3 demonstrates the RLT method for displacement transfer. The method works by first
finding the nearest point on the structural mesh for each aerodynamic surface node. The translation and
rotation of the base of the link is interpolated using TACS’ own shape function before the displacement
of the aerodynamic node is then computed based on the rigid translation and rotation of the link.

Using this method, the aerodynamic nodal displacements can be written as a linear function of the structural
states: {

XS

}
=
{
XJ

}
+
{
uA

}
(2.2){

uA

}
=
{
ut

}
+
{
ur

}
×
{
r

}
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}
=
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T
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u

}
(2.4)

By conserving the work done on both meshes, it can then be shown that the transfer of forces must be
performed using the transpose of the displacement transfer:{

F

}
=
[
T

]T {
FA

}
(2.5)
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Figure 2.3: The RLT method for transferring displacements from the structural to aerodynamic mesh [6].

It should be noted that this method is not accurate for large rotations as the term computing the aero-

dynamic displacement due to structural rotations,
{
ur

}
×
{
r

}
, is a linearised approximation. For large

rotations this term should be replaced by a rotation matrix, R, giving:{
uA

}
=
{
ut

}
+
[
R (ur )

]{
r

}
(2.6)

In this work, however, I retain the linearised form of the displacement transfer scheme as modifying the
source code for the load and displacement transfers and their derivatives was not possible within the time
available. This simplification is not ideal and results in a slight fictitious increase in the chord length of wing
sections under twisting but I consider it acceptable as, for the most part, the structural and aerodynamic
meshes are coincident, rendering the rotational term in equation 2.3 negligible.

The RLT method is implemented within the TACS source code and so, like TACS, computes gradients
analytically.

2.4. Mesh Warping: IDWarp
During aerostructural analysis and optimisation, the aircraft’s outer mould line (OML) deforms due to both
design changes and structural deformations. As these surface deformations occur, the CFD volume mesh
must also be smoothly deformed to maintain high quality cells. This deformation is performed in MACH
by a tool called IDWarp3 [92]. IDWarp uses an inverse-distance weighting method as proposed by Luke
et al. [93]. The advantage of this method is that it maintains good orthogonality in near-wall cells, which
is vital for RANS meshes, at a significantly lower computational cost than elasticity based approaches.
This cost is vital for efficient aerostructural analyses as the mesh must be deformed every time structural
displacements are transferred to the CFD mesh. Derivatives of the volume mesh coordinates with respect
to surface coordinates are computed using reverse-mode AD.

2.5. Coupled Aerostructural Analysis: pyAeroStructure
PyAeroStructure interacts with the aforementioned tools in order to coordinate coupled aerostructural
analyses and gradient computations. The module can perform both the analysis and gradient computa-
tion with either block partitioned Gauss-Seidel or monolithic Newton-Krylov approaches. As is explained

3github.com/mdolab/idwarp

github.com/mdolab/idwarp
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further by Kenway et al. [6], using a matrix free Newton-Krylov method means the monolithic solver never
explicitly forms the full coupled system of equations and can instead reuse the residual evaluation and pre-
conditioning procedures from each individual solver, massively reducing the implementation cost. Similarly,
the monolithic coupled adjoint solver reuses the adjoint solvers of TACS and ADflow.

2.6. Geometric Parameterisation and Constraints: pyGeo
Whilst ADflow and TACS each control a set of design variables that affect only their own models, the
geometric parameterisation of a given aircraft affects the geometry of both the aerodynamic and struc-
tural models and is handled by a separate module, pyGeo4. pyGeo [43] uses a free-form deformation
(FFD) [94] approach for geometric parameterisation. The FFD approach embeds a baseline geometry to
be parameterised in a series of control volumes defined by a set of control points, deformations can then
mapped from the control points to the surface mesh of the geometry using any number of interpolation
or ‘mapping’ schemes. Kenway [95], who implemented the FFD scheme in pyGeo describes some of its
key advantages as the consistency of it’s parameterisation across disciplines and the ability to efficiently
calculate derivatives of deformations with respect to control point displacements. Components of control
point displacements can be controlled individually to offer local shape control and also grouped together
to allow single design variables to control global wing shape parameters like span and sweep. Figure 2.4
demonstrates this global-local geometry parameterisation approach, showing the effect of FFD design
variables which control wing span, sweep, section twist and local shape.

Derivatives in pyGeo are computed using a mixture of analytic and complex-step methods.

(a) Span (b) Sweep

(c) Twist (d) Local

Figure 2.4: Examples of both global and local geometric design variables typically used in MACH [2]

4github.com/mdolab/pygeo

github.com/mdolab/pygeo


3
Solver Development

In this chapter I describe the new solvers developed to enable geometrically nonlinear structural and aer-
ostructural analysis in MACH. Section 3.1 describes the new solver developed for nonlinear analysis in
TACS while section 3.2 covers the modifications made to MACH’s coupled aerostructural solver. I each
section I provide a small amount of background on relevant nonlinear solution methods before describing
the implemented solvers and presenting the results of some performance tests, comparing solution times
between different nonlinear methods and between linear and nonlinear analyses. Finally, in section 3.4 I
summarise the key takeaways from the development of both solvers.

3.1. Structural Solver

3.1.1. Nonlinear Finite Element Equations
In any structural finite element (FE) problem, we seek to solve a system of residual equations which driving
the imbalance between internal and external forces to zero:{

R (u)
}
=
{
Fin (u)

}
+
{
Fex (u)

}
= 0 (3.1)

In a linear structural analysis, the equilibrium of forces is computed in the undeformed configuration of the

structure only. External forces,
{
Fex

}
, are assumed to be constant and, using small strain assumptions,

the internal forces,
{
Fex

}
, can be written as a linear function of the structural displacement states

{
u

}
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K

]{
u

}
=
{
Fex

}
(3.2)

This linear system can be solved extremely efficiently by modern computers and, as is done in TACS, the

expensive factorisation of
[
K

]
can be performed once and the factored version of the matrix reused to

solve for multiple loadings [42]. This is a particularly useful strategy during aerostructural analysis where
the aerodynamic loads are continually updated based on the deformed wing shape.

For a geometrically nonlinear FE problem we must however stick with equation 3.1, where both the internal
and external forces are nonlinear functions of the displacement. The dependence of the external forces on

the displacements
{
u

}
is due to follower force effects, while the nonlinearity of the internal forces comes

from the Green-Lagrange strain tensor:

ϵi j =
1

2

(
∂Ui
∂Xj
+
∂Uj
∂Xi
+
∂Uk
∂Xi

∂Uk
∂Xj

)
(3.3)

Where U is the displacement vector (U =
{
u, v , w

}T
in 3D) and X is the coordinate vector (X ={

x, y , z

}T
in 3D).

22
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To demonstrate the utility of the Greene-Lagrange strain measure consider the case shown in figure 3.1,
where a simple bar, originally aligned with the x-axis undergoes pure vertical displacement at one end.
Intuitively, since the length of the deformed bar is greater than the undeformed bar, we expect to measure
a positive axial strain. As shown in the figure, the deformation U of an arbitrary point on the bar which
started at point (x0, 0) is (u, v) = (0,∆yx0/L). The axial strain at this point is given by the first component
of the Green-Lagrange strain tensor:

ϵxx =
1

2

(
∂u

∂x
+
∂u

∂x
+
∂u

∂x

∂u

∂x
+
∂v

∂x

∂v

∂x

)
(3.4)

ϵxx =
∂u

∂x
+
1

2

((
∂u

∂x

)2
+

(
∂v

∂x

)2)
(3.5)

ϵxx = 0 +
1

2

(
0 +

(
∆y

L

)2)
=
1

2

(
∆y

L

)2
(3.6)

Equation 3.6 shows that the Green-Lagrange strain is positive as expected however, the linearised strain
measure (the ∂u/∂x term in equation 3.5) incorrectly predicts zero strain. Similarly, for a bar undergoing
a rigid rotation, it can be shown that the linearised strain measure predicts a fictitious compressive strain
whereas the nonlinear Green-Lagrange strain measure correctly gives zero strain.

x

y

(0, 0)

(L,∆y)

(L, 0)
(x0, 0)

(
x0,∆y

x0
L

)

Figure 3.1: Bar element undergoing pure vertical displacement

Additionally, for elements with rotational degrees of freedom, such as beam and shell elements, the kin-
ematic relationships which define the contribution of the rotational degrees of freedom to interpolated
displacements inside each element must be accurate for finite rotations. In linear analysis these kinematic
relationships are linearised based on small angle assumptions and are thus invalid for moderate or large
rotations.

TACS contains two geometrically nonlinear shell element formulations. A ‘largerot’ formulation that is
fully geometrically nonlinear and a ‘nonlinear’ formulation that uses the Green-Lagrange strain relationship
but retains the linear kinematic relationships. The ‘nonlinear’ formulation is therefore only valid under
small rotations but still captures stress stiffening effects correctly so would be able to replicate the results
in figures 1.5 and 1.6 but not those shown in figure 1.4. Since the aim of this thesis is to accurately
model HARW under large displacements, I use the ‘largerot’ formulation throughout and any reference to
‘nonlinear’ analysis refers to the use of this formulation.
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3.1.2. Base Newton algorithm
The implemented solver, like almost all algorithms for solving nonlinear FE problems, is based on the
Newton-Raphson method. The Newton-Raphson method is an iterative approach that involves the linear-
isation of the residual equations around the current point:{

R (ui+1)
}
≈
{
R (ui)

}
+
[
KT (ui)

]{
∆ui

}
(3.7)

Where ui+1 = ui +∆ui and the tangent stiffness matrix, KT , is the Jacobian of the residual equations with
respect to the nodal displacement state variables:[

KT (ui)

]
=
[
∂R
∂u

]
|u=ui =

[
∂Fin(u)
∂u

] ∣∣
u=ui
+
[
∂Fex (u)
∂u

] ∣∣
u=ui

(3.8)

Equation 3.7 is then solved for the displacement update, ∆u, that drives the linearised residuals to zero:{
∆ui

}
=
[
KT (ui)

]−1 {
−R (ui)

}
(3.9)

The process above is then repeated, linearising about the new point, ui+1, until the residuals are below an
acceptable tolerance.

Although popular, the Newton-Raphson method is not without its problems, on both robustness and
efficiency grounds:

Non-convergence: The Newton-Raphson method converges reliably at a quadratic rate when in the ‘basin
of attraction’ of a solution. However, because the calculated displacement step ∆u is based on a
linearisation of the residual equations, the method tends to converge very slowly or even diverge
when far away from the solution or in the presence of strong nonlinearities.

Computational Expense: Every iteration of the Newton-Raphson method requires the tangent stiffness
matrix to be recalculated and then factored, making the process very computationally expensive.

In an attempt to mitigate these issues, I implement a series of common improvements for nonlinear FE
solvers.

3.1.3. Load incrementation
For strongly nonlinear problems, applying loads or displacements in increments can improve convergence.
Incrementation is effective because it can ensure that the current state is always close enough to the
solution of the current increment to guarantee reliable Newton convergence. Arc-length methods are an
alternative to pure load or displacement implementation where both the displacement and load step are
treated as unknowns that must be solved for [96]. Doing so allows these methods to stably traverse
unstable sections of a structure’s equilibrium path and are thus necessary for simulating the kind of snap-
through and snap-back behaviour seen in post-buckling analyses. In this work I am concerned only with
modelling pre-buckling structural behaviour and thus I use pure load incrementation. The conservative
nature of the buckling constraints described in chapter 2 ensure that designs produced during optimisation
remain stiff enough that the FE model itself does not explicitly buckle, which would cause non-convergence
issues. I implement load incrementation by redefining the residual to include a load scaling factor λ:{

R
}
=
{
Fin

}
+ λ

{
Fex

}
(3.10)

To control the size of each load increment, I use the adaptive load stepping method of Beluni and Chulya
[97], where the current load step is increased or decreased based on the actual and desired number of
iterations taken to solve previous increment.

λi − λi−1 = ∆λi =

√
Ndes
Ni−1

∆λi−1 (3.11)
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The desired number of iterations, Ndes , can then be used by the user to control how bold the solver should
be with load incrementation.

3.1.4. Convergence criteria/exit conditions
An increment is judged to have reached convergence when either an absolute or relative measure of the
residual norm reaches a specified tolerance. The relative residual norm is normalised by the norm of the
scaled external force vector.

∥R∥ < δabs (3.12)

∥Rrel∥ =
∥R∥
λ ∥Fex∥

< δrel (3.13)

I use looser convergence tolerances for intermediate load increments in order to accelerate overall conver-
gence.

Solver is judged to have finished when above convergence criteria are satisfied and solver is at specified
maximum load scale. If the solution diverges or fails to converge an increment in a specified number of
iterations, the solution is reset to last converged increment, the load increment halved, and then reapplied.
Conversely, if the solver has not finished after a specified number of increments or fails to converge an
increment at the minimum allowable increment size the solution is judged to have failed, in which the solver
returns a failure flag which can be passed to an optimiser.

3.1.5. Line Search Methods
Applying the full displacement step in each Newton-Raphson iteration can lead to little or no convergence,
especially in the early stages of a solution process. To improve this behaviour, the computed step can
instead be used as a direction along which to search for a point which improves the current solution [98].
There are multiple options for both the metric by which to judge the solution improvement and the line
searching algorithm. I implement 3 kinds of line search:

Minimum residual search

This method employs SciPy’s 1D minimisation routine, minimize_scalar , to find the point along the search
direction that minimises the residual norm. Using this pre-existing module greatly decreases implementation
effort and allows for effortless switching in and out of the different line search algorithms provided by SciPy.
In addition to the line search algorithm, the user can specify the maximum number of iterations, tolerance
and upper and lower bounds on the step size.

Backtracking resdidual search

Calculating the residual still has an appreciable computational cost and so it is typically undesirable to use
an exact line search technique which very accurately minimises the residual measure. Additionally it can
often be beneficial to accept a slightly higher residual in return for taking a larger displacement step which
moves the structure closer to the final solution. For these reasons, it is common for nonlinear solvers to use
an inexact line search technique which aims merely to find a step length which reduces the residual measure
‘enough’. A popular method is a backtracking search. This method works by backtracking from the full
step length, until the residual norm satisfies the sufficient decrease, or Armijo-Goldstein [99], condition.
This condition stipulates that the merit function, f , has decreased by at least a specified fraction µ of the
amount predicted by the gradient of the function in the search direction, relative to a reference value Ci :

f (ui + α∆ui) ≤ Ci + µα∆uT
i ∇f (3.14)

Where, in this case, f is the residual norm and the reference value Ci is f (ui). This formulation guarantees
that each step taken by the solver reduces the residual, provided there is no lower limit on step size.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html


26 3. Solver Development

However, always requiring a decrease in the residual can lead to extremely slow convergence. To combat
this I implement a non-monotone backtracking line search. In a non-monotone line search, the reference
value Ci is chosen such that the merit function is allowed to increase within reason from one iteration to
the next. This enables the solver to take some larger steps but not so large that the solver diverges as it
would without a line search, the value of Ci should also gradually decrease with the merit function. There
are two popular methods for choosing Ci :

• Grippo et al. [100] use the maximum value of f from the previous m iterations.

• Zhang and Hager [101] use a weighted average of all previous values of f , with recent terms being
more heavily weighted.

These techniques were invented for optimisation algorithms where the merit function is likely to remain
the same order of magnitude throughout. However, in this case, the merit function is the residual norm
which may change by >6 orders of magnitude over the solution of a given increment. This means that
the average residual norm value will always be dominated by the earlier values. To combat this problem I
also implement a version of Zhang & Hager’s method which uses a geometric weighted mean instead of
an arithmetic mean.

α

f (0) + df
dαα

f (0) + µ dfdαα

Ci

f (α)

1

f (0)

0

minα f

Ci + µ
df
dαα

Figure 3.2: A graphical comparison of the termination criteria for the minimising, backtracking and non-monotone line
searches. The black, green and orange points show the steps taken by the minimising, backtracking and non-monotone
searches respectively.

Minimum energy search

Matthies and Strang [102] proposed using a line search to find the point at which the residual is orthogonal
to the displacement step. In other words, finding the step size α that satisfies:

E =
{
∆ui

}T {
R (ui + α∆ui)

}
= 0 (3.15)

I refer to this method as the minimum energy method as the product of a force and a displacement repres-
ents a measure of energy, even if this energy does not necessarily have an intuitive physical interpretation.
This minimum energy line search is implemented using SciPy’s root_scalar root finding routine. Like
minimize_scalar, root_scalar contains a variety of search methods, a simple secant method was found to
perform well.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html#scipy.optimize.root_scalar
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Line Search Initiation criteria

When initially testing the solver, the addition of line searches lead to robust but extremely slow convergence.
An example of this for a simple tip loaded cantilever problem is shown in figure 3.3. Figure 3.3a provides an
insight into this behaviour, showing the merit functions for both the residual and energy based line search
methods in the first iteration of the initial load increment, where α is the step length as a fraction of the
computed Newton-Raphson step. In this case, the minimum residual occurs below 1% of the original step
length whilst the point of zero energy occurs around a step of 3%. Both line search methods therefore
severely limit the size of steps taken by the solver, as shown in figures 3.3b and 3.3c, where an analysis
using the minimum energy line search takes 108 iterations to converge.

(a) In the first iteration of an increment, the optimal points on both the energy
and residual line search merit functions result in very small step sizes.

(b) Beam deformation histories.

0 10819
Iterations

10 9

10 6

10 3

100

103

|| rel||

(c) Residual norm histories.

Figure 3.3: Skipping line searches on the first iteration of each load increment dramatically speeds up nonlinear solution.

I remedy this problem by forgoing any line searches on the first iteration of each load increment and, in
subsequent iterations, a line search is only performed if the the computed Newton-Raphson step reduces
the relevant line search merit function by less than 50%. As shown in figures 3.3b and 3.3c, these changes
drastically improve the rate of convergence of the solver. In the simple cantilever problem demonstrated
here, after skipping the line search on the first iteration, the majority of subsequent iterations required no
line search, achieving Newton-like convergence and requiring only 19 iterations.
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3.1.6. BFGS Updates
Since updating the tangent stiffness matrix is generally the most expensive operation in a nonlinear FE
solution process, one of the main ways in which researchers have sought to reduce the computational cost
of nonlinear FE solvers is to develop strategies which minimise the number of full order stiffness updates
performed. I implement approximate stiffness updates using the BFGS method as proposed by Matthies
and Strang [102]. Crucially, rather than explicitly updating the tangent stiffness matrix itself, their method
involves only vector-vector products, matrix-vector products and one linear solve with the original stiffness
matrix which has already been factored, all of which are considerably cheaper than updating and refactoring
the stiffness matrix:

∆ui =

([
I
]
+
{
wn

}{
vn

}T
)
. . .

([
I
]
+
{
w1

}{
v1

}T
)[
KT,i−n

]−1
([
I
]
+
{
v1

}{
w1

}T
)
. . .

([
I
]
+
{
vn

}{
wn

}T
){
−R (ui)

}
(3.16)

In testing however, the method, as implemented, proved to have only negative effects on solver perform-
ance, struggling to solve even the basic cantilever problem shown above, even with the assistance of line
searches. As such, BFGS updates are not used in the remainder of this work.

(a) Beam deformation histories.
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(b) Residual norm histories.

Figure 3.4: Approximate stiffness updates with the BFGS method result in poor solver stability, resulting in drastically longer
solution times.

3.1.7. Solution Restarting
During optimisation or coupled aerostructural analysis, the structural solver is called repeatedly, with slightly
different external and/or internal loads. In these cases, the previously converged state, u∗, no longer solves
the system of equations but can be used as a good starting point to drastically speed up the next solution.
The problem in this case is to decide at what load factor to restart the load incrementation process at.
Restarting at λ = 0 would likely waste the useful initial guess u∗ but, if the design or loading has changed
significantly, it may not be possible to converge the problem starting at the full load factor, λ = 1.

To address this problem I present two methods for computing an ‘optimal’ restart load factor, λ∗, both of
which find the load factor that minimises some measure of the solution error. The first method I implement
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finds the load factor that minimises the residual norm, a method first proposed by Bergan [103]. Figure 3.5
shows a simple graphical example of the definition of the residual between an internal and scaled external
force vector.

Fin

Fext

R

λ∗ Fext

Figure 3.5: A geometric representation of the minimum residual restart method.

Viewing the problem this way makes it clear that the magnitude of the residual is minimised when the load
factor is such that the residual is orthogonal to the external force vector. The residual minimising load
factor can then be computed as:

{
Fex

}T {
R
}
=
{
Fex

}T (
λ
{
Fex

}
+
{
Fin(u

∗)

})
= 0⇒ λ =

−
{
Fex

}T {
Fin

}
||Fex ||2

(3.17)

In shell problems, terms representing the in-plane, out-of-plane and rotational residuals can have drastically
different scales, which can make a Euclidean norm a poor indicator of true magnitude of solution error. To
redress this problem, many use an energy based measure of error. In this spirit, I propose a novel method
that minimises the strain energy error, defined as the product of the residual and the displacement step
resulting from that residual:

∆E =
{
R

}T [
KT

]−1 {
R

}
=
{{
Fin

}
+ λ

{
Fex

}}T [
KT

]−1 {{
Fin

}
+ λ∗

{
Fex

}}
(3.18)

Differentiating this expression with respect to the load factor and solving for the minimum energy error
gives:

λ∗ =

−
({
∆ui

}T {
Fex

}
+
{
∆ue

}T {
Fin

})
2
{
∆ue

}T {
Fex

} (3.19)

{
∆ui

}
=
[
KT

]−1 {
Fin

}
,
{
∆ue

}
=
[
KT

]−1 {
Fex

}
(3.20)

This minimum energy restart method does require the expensive factorisation of the current tangent
stiffness matrix but, as explained previously, TACS direct solution method means that this factorisation
can be reused to compute both ∆ui and ∆ue before being reused again for the first iteration of the restarted
solution, meaning that the method does not add a significant cost to the solution process.

If the optimal load factor is closer to the final desired load factor than the user defined initial increment
size then it is used as the initial load factor for the solution process. If the first load increment in the
restarted solution fails to converge the solution is reset and started from the original initial load factor.
In the case the the external loads have reduced or the structure has been made stiffer since the previous
solution, the optimal load factor may be greater than 1, in which case the direction of load incrementation
is reversed.
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3.1.8. Solver validation
Before moving onto any analysis studies, I validate my solver and TACS’ nonlinear formulation on a series
of geometrically nonlinear shell problems defined from the NAFEMS ‘Assembly Benchmark Tests for 3-D
Beams and Shells Exhibiting Geometric Non-Linear Behaviour’ document. Figure 3.6 shows the setup and
results from the first benchmark problem, a simple tip loaded cantilever beam, with the TACS solutions
compared to analytical results and results from the commercial FE code Abaqus, taken from solutions by
Sze et al. [104]. Appendix B contains more details and results of all the benchmarks validated against.
Overall, the TACS solutions match both analytical and Abaqus solutions to within 1% for all problems
tested.

For successful optimisation, the adjoint gradients computed by TACS must also be accurate. The process of
computing adjoint gradients of nonlinear FE formulations is identical to the process for linear formulations,
save for ensuring that the tangent stiffness matrix used is up to date with the converged structural state.
To validate their accuracy, I compute the adjoint gradients of a variety of TACS output functions with
respect to the thickness design variable of the cantilever beam in figure 3.6 with linear and nonlinear element
formulations. I then compare these against the same gradients computed via the complex step method
which, for the step size used in this study (10−100), can be considered the ground truth. Figure 3.7 shows
that the adjoints in the nonlinear case match or exceed the accuracy of the linear formulation adjoints.
The only function whose gradients are not accurate is the MaxFailure function which is expected as the
maximum stress value in the structure is a discontinuous function.
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(a) Definition of the benchmark tip loaded cantilever problem
from [104]
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(b) Equilibrium path of the cantilever tip compared
with results from theory and Abaqus
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Figure 3.6: Validation results for benchmark cantilever beam problem.
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Figure 3.7: When compared to reference values obtained using the complex step method, the adjoint gradients for nonlinear elements match or exceed accuracy of linear elements
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3.1.9. Solver Performance Testing
To test which combinations of solver settings result in the best performance, I run a series of analyses
on two different wingboxes. For each type of line search I run the same analysis whilst sweeping through
different combinations of Ndes and initial load increment size.

The first model I used for this study is a relatively low aspect ratio wingbox, based approximately on a
Boeing 717. The wingbox is subject to a large uniform pressure difference of 140 kPa between the upper and
lower skins, resulting in a tip displacement of roughly 50% of the wing’s 14m semi-span, making it a very
challenging case to converge. The second case is an analysis of the uCRM-13.5 under 2.5 g manoeuvre,
the details of which are described in more detail in the next chapter. The deformed and undeformed shapes
of each wing are shown in figure 3.8. The Boeing 717 analyses are run on 8 cores, resulting in around
1000 elements per core whilst the uCRM analyses are run on 16 cores, with approximately 1500 elements
per core.

(a) The Boeing 717 wingbox model. (b) The uCRM-13.5 wingbox model.

Figure 3.8: The two cases used for solver performance testing.

Figures 3.9 and 3.10 show the solution times in seconds for all combinations of line search methods and
load incrementation settings tested. In the challenging Boeing 717 wing case, for all line search types,
the smallest tested value of desired iterations, 4, results in the lowest solution times, indicating the most
efficient strategy for this case requires maintaining very small load steps throughout the solution process.
Additionally, for all the residual based line searches, the smallest initial load increment, in conjunction with
a desired iteration value of 4 resulted in the shortest solution time, this suggests that the residual based
methods are unable converge the larger initial increments, repeatedly diverging or reaching the increment
iteration limit before reaching a small enough load increment, presumably around 0.01. In contrast, the
minimum energy line search method achieves it’s minimum solution time with an initial increment size
of 0.1, proving the method’s superior convergence rate compared to the residual based methods. Indeed,
over the entire spectrum of incrementation settings, the energy based similarly performs significantly better
than the residual based methods.

The uCRM case proves a much more stable and simpler problem to solve, as indicated in part by the
solution times which are generally 1-2 orders of magnitude lower than for the Boeing case. This stability
is also indicated by the fact that, for all line search types, choosing the smallest initial increment and the
lowest desired iterations results in the longest solution times while increasing the initial increment size and
desired number of iterations reliably results in lower solve times. Even the energy based line search method,
however, is still slower than the method with no line search for most combinations of settings.
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Figure 3.9: Analysis times for the B717 wingbox
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Figure 3.10: Analysis times for the uCRM-13.5 wingbox
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Solver Performance Conclusions

From these results I draw 2 primary conclusions:

It’s hard to beat a straight-forward Newton-Raphson method: All of the implemented line search meth-
ods have the intended effect of improving the stability of the Newton-Raphson solver, but at the cost
of much slower solutions. The energy based line search method of Matthies and Strang [102] stands
out as the best of the implemented methods, able to converge larger loadsteps than the residual
based methods on practical timescales. However, although for a handful of combinations of settings
the energy based is fastest, the base Newton-Raphson method with no line search is fastest for the
vast majority of cases tested and achieves the lowest solution time for both test cases.

Load incrementation is the key driver of solver performance: The greatest influence seen on the solu-
tion time of the Newton-Raphson solver comes from the load incrementation strategy, the aim of
which is to maximise the rate at which the load factor is increased while maintaining fast and con-
sistent convergence in each load increment. For challenging problems, like the Boeing 717 test case,
a very conservative load incrementation strategy, with a small initial load increment and low Ndes , is
key to keeping solver within the basin of attraction of the solution and achieving good solution times.
Performance is most sensitive to Ndes . For more stable problems like the uCRM test case, where
only a few load increments are required, the solver has fewer opportunities to adpat the load incre-
mentation rate and solution time is therefore more sensitive to the size of the initial load increment
than to Ndes .

3.2. Aerostructural Solver Background
Aerostructural or aeroelastic analysis is a subset of the wider field of fluid-structure interaction (FSI),
which studies the coupled behaviour of fluid flows and movable bodies. From a computational point of
view, solving an FSI problem involves satisfying at least two sets of residual equations:{

Rf (uf , Xf (us))
}
= 0 (3.21){

Rs(us , Fs(uf ))
}
= 0 (3.22)

Where the Rf and uf are the fluid residuals and states, and Rs and us are the structural residuals and
states. The coupling of the two systems of equations occurs through the displacements in the boundaries
of the fluid problem, Xf , which are dependent on the motion of the structure, and the external forces
acting on the structure, Fs , which are dependent on the fluid states. These coupling of these variables are
described by force and displacement transfer schemes, TF and TX :{

Fs

}
= TF (uf ) (3.23){

Xf

}
= TX(us) (3.24)

Methods for solving these coupled sets of equations can be classified as either partitioned or monolithic,
each with their own benefits and drawbacks. A partitioned approach involves solving the fluid and structural
problems using separate solvers, occasionally exchanging information between the two in order to converge
to a consistent solution. In a monolithic approach, the fluid and structural problems are combined into a
single system of equations and solved with a single solver. This makes monolithic solvers potentially more
robust and efficient than partitioned approaches, particularly for strongly coupled problems (e.g analysing
flexible aircraft at high load factors). However these benefits is significantly more difficult for a number of
reasons:

1. A new solver must be developed for the coupled system rather than re-using the individual solvers
for each discipline



3.3. Aerostructural Solver Implementation 37

2. Monolithic solvers requires more in depth access to the states of each system than may be available
from commercial codes.

3. Specialised preconditioning is required for good performance in the solution of the coupled linear
system because it is typically very large, badly conditioned, and unstructured [105].

4. When using CFD, each monolithic iteration requires the CFD volume mesh to be deformed and so
the approach requires an efficient mesh deformation algorithm.

5. The off-diagonal blocks in the coupled Jacobian matrix require the derivatives of the load and dis-
placement transfer schemes, which requires additional implementation.

MACH contains both partitioned and monolithic solvers for aerostructural problems [6].

Algorithm 1 presents a simplified version of MACH’s partitioned aerostructural solver which is used through-
out this thesis. The solver employs a Gauss-Seidel iteration scheme, meaning that the CFD and FE solvers
are run sequentially with forces or displacements being transferred between solvers after each solve. An
alternative approach is the Jacobi iteration scheme, in which both solvers are run simultaneously, with
forces and displacements being transferred after the completion of both solvers. Despite the potential
speed-up due to greater parallelisation, this scheme is generally suffers from poorer stability and slower
convergence as each solver is working with out of date information about the state of the other discipline.

An under-relaxation factor θ is used to control the magnitude the displacement update applied in each
iteration. This under-relaxation factor improves the coupled solver’s performance by reducing over-shooting
and can be fixed or chosen adaptively using Aitken acceleration [106]. Kenway et al. [6] found that the
best choice of fixed under-relaxation factor lead to slightly improved performance compared to Aitken
acceleration but cannot generally be predicted a-priori. At increased load factors, the optimum fixed
under-relaxation factor reduces and the performance benefit over the adaptively chosen factor reduce.

Algorithm 1: MACH’s Gauss-Seidel partitioned aerostructural solver [6]

Given:
{
u
(0)
s

}
,
{
u
(0)
f

}
, θ(1);

while Not converged do{
X
(n)
f

}
= TX(u

(n−1)
s ); ▷ Transfer structure displacements and deform aero mesh

Find
{
u
(n)
f

}
s.t

∥∥∥Rf (u(n)f , X
(n)
f

)∥∥∥ ≤ δf ,rel ∥∥∥Rf (u(n−1)f , X
(n)
f

)∥∥∥; ▷ Approximately solve aero{
F
(n)
s

}
= TF (u

(n)
f ); ▷ Transfer aero forces to structure

Find
{
u
(n)
s

}
s.t

∥∥∥Rs (u(n)s , F
(n)
s

)∥∥∥ ≤ δs,rel ∥Fex∥; ▷ Solve structure{
∆uns

}
=
{
u
(n)
s

}
−
{
u
(n−1)
s

}
;

if n > 1 then

θ(n) = 1−

{
∆u
(n)
s − ∆u(n−1)s

}T{
∆u
(n)
s

}
∥∥∥∆u(n)s −∆u(n−1)s

∥∥∥2 ; ▷ Update under-relaxation factor using Aitken

acceleration
end{
u
(n)
s

}
=
{
u
(n)
s

}
+ θ(n)

{
∆u
(n)
s

}
; ▷ Apply under-relaxed displacement increment

end

3.3. Aerostructural Solver Implementation
The FE solver described in the previous section is implemented such that it can be accessed through
the same calls to the pyTACS interface as the linear solver. As such, no modifications to the source of
pyAeroStruct were strictly necessary in order to perform geometrically nonlinear aerostructural analyses.
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I do however implement two new features which aim to reduce solution times when using a nonlinear
structural formulation.

First, because nonlinear systems do not abide by the principle of linear superposition, the structural state

resulting from the aerostructural solver’s displacement under-relaxation,
{
us

}
, is typically not close to a

solution for any scaling of the applied loading. It is therefore typically not efficient, or even possible, to
restart the subsequent structural analysis from this damped state until late in the aerostructural solution
process when displacement updates become very small. To remedy this, I save the converged solution of

each structural analysis before damping,
{
ûs

}
, and restart the next structural analysis from this undamped

state.

The second feature stems from the fact that in the initial iterations of the aerostructural solution process,
the aerodynamic forces are often drastically overpredicted, potentially by a factor of 2-3. This is due in
part to the partial convergence of the CFD solver and the lack of any load alleviation of the wing in its
undeformed state. For a linear structural analysis, this poses no problems as the cost of solving the pre-
factorised linear system is negligible and independent on the magnitude of the loading. However, assuming
a consistent load incrementation rate, the time to solve a nonlinear structural analysis is approximately
linearly proportional to the loading magnitude, meaning the first few structural analyses may take 2-3 times
longer than usual. In the worst case, it may not be possible to solve the problem at all if unrealistically
high aerodynamic forces result in explicit buckling of the FE model.

To avoid this potential issue and hopefully improve the speed of the initial structural analyses, I implement
the load ramping method proposed by Sanchez et al. [107]. This is achieved by ramping the maximum
load scale to which the structural solver increments over the first N Gauss-Seidel iterations following a
smooth polynomial ramping function:

λramp = −2
( n
N

)3
+ 3

( n
N

)2
(3.25)

A fixed under-relaxation factor is used during the load ramp before resuming Aitken acceleration once the
ramp is complete. To enable efficient restarting of the aerostructural solver without restarting the load
ramp from zero, I compute the optimal restart load factor using the same minimum strain energy method
described earlier before each call of the structural solver. This value is then clipped to lie between the
current load ramp value and 1 before being used as the maximum load scale for the structural analysis.
The modified solution algorithm is described in algorithm 2.

To test the effectiveness of this load ramping strategy, I run aerostructural analyses of the Boeing 717
wing used in the structural solver performance tests with and without load ramping. Some of the key
values describing the test case are shown in table 3.1. To make the problem more challenging, I reduce
the elastic modulus of the wingbox to 3GPa to achieve a large vertical displacement of 22% semispan and
to increase the nonlinearity in the aerodynamics I use a transonic Mach number and a relatively high angle
of attack which results in significant flow separation over the wing in the early stages of the solution.

Table 3.1: Key values from the aerostructural solver performance test.

Parameter Value Unit

Altitude 10000 m

α 8 °

Mach 0.85

Tip displacement ≈22 % Semispan

Figure 3.12 shows the time for aerostructural solutions with no load ramping (N = 1) and load ramps of
varying length from 2 to 10 iterations. The load ramping results in a lower solution time in all cases but
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Algorithm 2: MACH’s Gauss-Seidel partitioned aerostructural solver with additions for geometrically
nonlinear analysis highlighted.

Given:
{
u
(0)
s

}
,
{
u
(0)
f

}
, θ(1)

while Not converged do{
X
(n)
f

}
= TX(u

(n−1)
s ) ▷ Transfer structure displacements and deform aero mesh

Find
{
u
(n)
f

}
s.t

∥∥∥Rf (u(n)f , X
(n)
f

)∥∥∥ ≤ δf ,rel ∥∥∥Rf (u(n−1)f , X
(n)
f

)∥∥∥ ▷ Approximately solve aero{
F
(n)
s

}
= TF (u

(n)
f ) ▷ Transfer aerodynamic forces to structure

if Ramping then

λ∗ =

−

{
∆ui

}T{
Fex

}
+

{
∆ue

}T{
Fin

}
2

{
∆ue

}T{
Fex

} ▷ Compute optimal restart load factor

if λ∗ > 0.95 then
λ∗ = 1

Ramping = False ▷ End ramping if λ∗ close to unity
end
λramp = −2

(
n
N

)3
+ 3

(
n
N

)2
▷ Compute ramp load factor

λ(n) = max (λramp, λ
∗) ▷ Choose maximum load factor

else
λ(n) = 1

end

Find
{
û
(n)
s

}
s.t

∥∥∥Rs (u(n)s , λ(n)F
(n)
s

)∥∥∥ ≤ δs,relλ(n) ∥Fex∥ ▷ Solve structure with scaled load{
∆u
(n)
s

}
=
{
û
(n)
s

}
−
{
u
(n−1)
s

}
if n > 1 then

if Ramping then
θ(n) = θ(n−1)

else

θ(n) = 1−

{
∆u
(n)
s − ∆u(n−1)s

}T{
∆u
(n)
s

}
∥∥∥∆u(n)s −∆u(n−1)s

∥∥∥2 ▷ Update under-relaxation factor using Aitken

acceleration
end

end{
u
(n)
s

}
=
{
u
(n)
s

}
+ θ(n)

{
∆u
(n)
s

}
▷ Apply under-relaxed displacement increment

end

there is no clear trend with both short (N = 2) and long (N = 8) ramps achieving a 40% speed-up over a
non-ramped solution.

Figure 3.13 shows the convergence histories from a selection of the analyses, showing the norms of
the aerodynamic and structural residuals and the structural displacement vector. The effect of the load
ramping is clear in the early stages of the displacement norm. The non-ramped case is slower to converge
as the initial structural analyses are solved to the full load scale, which takes significantly longer. The first
iterations of the ramped cases take far less time than the non-ramped case and the wing displacement
magnitude increases gradually over the ramp, whereas the displacement in the non-ramped case shows
significant oscillations. These large oscillations in the deformed wing shape further slow down the solution
as they result in large changes in the flow around the wing. This not only causes the aerodynamic residual
to converge more slowly, but can also result in the structural solution restarting failing, requiring a total
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Figure 3.11: The Boeing 717 wing case used for the aerostructural load ramping test.
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Figure 3.12: Solution time vs load ramp length for the Boeing 717 test case. All load ramps result in a solution speed-up but
with no clear trend.
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Figure 3.13: Both short (N = 2) and long (N = 8) load ramping stages can achieve a 40% speedup over the non-ramped
solution. Most of the gains are made in the early Gauss-Seidel iterations.
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3.4. Chapter Summary
In this chapter I presented the implementation and performance testing of solvers for geometrically nonlinear
structural and aerostructural analysis.

I implemented a Newton-Raphson based nonlinear solver in the python interface to MACH’s high perform-
ance finite element library, TACS. In an attempt improve the performance of the solver I implemented
multiple line search methods and an adaptive load incrementation strategy. After validating the analysis
and gradient computation accuracy of the solver, I performed a large set of performance tests on two
different wingbox analysis test cases of differing difficulty. The results of these tests showed that the en-
ergy based method of Matthies and Strang [102] greatly outperformed all other line search techniques but
was still slower than the baseline Newton-Raphson method. The results also showed that the parameters
controlling the adaptive load incrementation, the initial load increment size and the desired number of
iterations per increment, strongly affect the performance of the solver. For the more challenging wingbox
problem, the fastest solution times were achieved with low values for these two parameters, biasing the
solver towards taking many small load steps while in the more stable test case, the opposite was true.
I also introduced two methods for computing the optimal load factor from which to restart a nonlinear
structural analysis from a previous solution. One based on minimising the structural residual and another
novel method based on strain energy minimisation, designed to eliminate issues with the poor scaling of
shell structure problems.

I then implemented some minor modifications in MACH’s aerostructural Gauss-Seidel solver to improve
its peformance when using the geometrically nonlinear structural formulation. The most substantial of
these modifications was the addition of a load scaling ramp as originally proposed by Sanchez et al. [107]
to reduce the time spent solving unrealistically highly loaded structural analyses in the early Gauss-Seidel
iterations. I tested the load ramping strategy on a highly flexible transonic wing test case and showed that
this ramping method can reduce time to reach a coupled solution by up to 40%.
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Analysis Studies

This chapter focuses on comparing the results of structural and aerostructural analysis using TACS’ linear
and nonlinear formulations. I first describe the undeflected common research model (uCRM)s used for
these analyses, providing both the motivation for the use of these particular aircraft and the details of the
computational models used to represent them. In section 4.2, I describe and present results from a set
of linear and nonlinear structural analyses under fixed loading and discuss the resulting differences in the
stresses and deformations in the structures due to purely structural nonlinearity. Next, in section 4.3 I
describe a similar study, this time using coupled aerostructural analysis, performed both at constant angles
of attack and constant lift. Finally, I consolidate the results of these studies, drawing some conclusions
on the nonlinear effects responsible for the differences seen between linear and nonlinear analyses and,
looking forward, speculate on the influence of these effects on the results of structural and aerostructural
optimisation.

4.1. The uCRM Models
Since 2008, the NASA common research model (CRM) has served as a benchmark aircraft model for the
aerospace community to test their CFD solvers and aerodynamic shape optimisation frameworks on in
realistic transonic aircraft applications [108, 109]. The uCRMs aim to serve the same the same purpose
for coupled aerostructural analysis and optimisation. The models were developed by Brooks et al. [81] and
further description of the design process of the models is given in their work. In this section, I present the
relevant details of the uCRM geometries and computational models used in the remainder of this thesis.

4.1.1. Geometries

Table 4.1 contains some of the key parameters defining the uCRM wing planforms. The uCRM-9 is
designed to be an exact aerostructural replica of the original NASA CRM and thus shares the same
planform definition. Brooks et al. [81] created the model using a combined inverse design and structural
optimisation procedure, to find the jig shape and structural sizing that result in the same deformed wing
shape as the original CRM in a cruise condition whilst also meeting failure criteria in manoeuvre conditions.

The uCRM-13.5 is a high aspect-ratio version of the same aircraft. The wing retains the same reference
area, sweep and 1/4 chord mean aerodynamic chord (MAC) position in order to remain feasible with the
same fuselage, engine and tail configuration. As shown in figure 4.2, while the uCRM-9 is typical of the
aspect-ratios seen in current transport aircraft, the uCRM-13.5 represents the kind of wings which may
be present on the next generation of transport aircraft entering service in the next two decades. For this
reason, I perform all analysis and optimisation studies in this thesis on both the uCRM-9 and 13.5 in order
to study how much the importance of considering geometric nonlinearity in design will increase moving
from current to next-generation transport aircraft.

42
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Table 4.1: Key parameters of the uCRM planforms [81].

Parameter uCRM-9 uCRM-13.5 Unit

Aspect-ratio 9 13.5

Taper-ratio 0.275 0.25

Span 58.76 72.0 m

Root chord 11.92 11.07 m

Tip chord 2.736 2.06 m

Reference area 383.74 383.78 m2

1/4 chord sweep 35 35 °
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Figure 4.1: Schematics of the uCRM planforms [81]
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Figure 4.2: The uCRMs have aspect-ratios representing aircraft typically in service today and those which may enter service
in the coming decades.

4.1.2. Flight Points

Brooks et al. [81] considered a total of 10 different flight conditions including cruise conditions for comput-
ing fuel burn, manoeuvre conditions for constraining structural failure and buffet conditions for constraining
buffet onset at high lift and Mach conditions. In this work I consider only the three manoeuvre conditions
and, in some cases, a single cruise condition, all of which are listed in table 4.2.

The three manoeuvre cases utilised cover the most extreme positive and negative load factor static man-
oeuvres that must be sustained by an aircraft of the uCRM’s mass and a third ‘gust’ condition which serves
as a proxy for two different structural constraints. Kenway et al. [110] found that stresses in the wingbox
became much greater in cruise conditions due to highly effective aeroelastic tailoring when performing
aerostructural optimisation considering only the 2.5 and -1 g manoeuvres just mentioned. These increased
cruise stresses greatly reduce the aircraft’s margin to failure in gust encounters and are detrimental to
the fatigue life of the wingbox. In future works, Kenway and Martins [5] and Brooks et al. [81] therefore
included a third 1 g manoeuvre condition at the Mach crossover point, where an increased safety factor
of 2.67 is applied to the structural failure criteria, compared to the factor of 1.5 used for the other two
manoeuvre cases. This increased load factor is based the FAR 23.341 gust load factor formula as described
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by Mader et al. [111].

Table 4.2: Flight conditions used in this work.

Condition Mach CL/Lift Altitude (ft)

Cruise 0.85 0.5 37000

2.5 g manoeuvre 0.64 2.5×MTOW1 0

-1 g manoeuvre 0.64 −MTOW1 0

1 g ‘gust’ manoeuvre 0.85 MTOW1 27300

1 maximum take-off weight (MTOW)

4.1.3. Structural Model

Wingbox layout

The wingboxes of the uCRMs share an identical topology, with upper and lower skins, trailing and leading
edge spars, ribs oriented perpendicular to the leading edge spar and an additional engine mount panel
between the two ribs at the Yehudi break. To maintain the same inter-rib spacing the uCRM-13.5 has 58
ribs while the uCRM-9 has 49. Each rib and each section of the contiguous skins and spars between the
ribs is considered a separate panel whose sizing variables can take on their own values. In the skin panels,
the longitudinal axis of the smeared blade stiffeners is aligned with the leading edge spar, thus the stiffeners
in the skin sections inside the fuselage are not swept whilst those outside the fuselage are. Note that is a
departure from the work of Brooks et al. [81], who maintained the same swept stiffener orientation over
the entirety of the skins. The stiffeners on the rib and spars are oriented vertically.

Figure 4.3: The root of the uCRM-9 wingbox with lines indicating stiffener orientation and colours distinguishing separate
panels.

Boundary Conditions

Figure 4.4 shows how the uCRM wingboxes are constrained. The rib at the aircraft centreline is clamped
while the the rib at the fuselage junction is fixed in the chordwise and vertical directions.

Loading

A variety of different loads are applied to the structural models:
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Figure 4.4: The boundary conditions applied to the uCRM wingboxes.

Aerodynamic Loads are applied as nodal forces on the structure using the rigid link load transfer scheme
described in chapter 2. During aerostructural analysis, aerodynamic tractions come directly from
ADflow, whilst for purely structural analysis they can be loaded into TACS from a file output by a
previously run analysis in ADflow or pyAeroStruct.

Gravitational Loads are applied to model the inertial relief of the wingbox mass, multiplied by the load
factor of the given flight condition.

External Mass Loads model the inertial relief of externally mounted components on the wing such as
leading and trailing edge devices and the engine. Each leading and trailing edge mass is coupled
to one spar panel whilst the engine is coupled to both the engine mount panel and two panels on
the leading edge spar. For each external mass, a resultant moment and force are computed at the
centre of the coupled panel which and are then uniformly distributed over the panel’s elements. This
technique does not accurately represent the real distribution of loads on the coupled panels but it
does apply the correct total force and moment to the wingbox structure and does not require any
information about how the external mass is mounted to the wingbox. Figure 4.5 shows the location
and magnitudes of the external mass loads and the resulting nodal forces on the engine mount.

Fuel Loads are applied as tractions on the lower skin which depend on the total fuel mass and the volume
of each wingbox bay. For this work I use the same fuel loads as Brooks et al. [81], a full fuel load of
56 000 kg for all manoeuvre conditions and 20% of this value for the cruise condition.

Material

Throughout this thesis I use aluminium with an elastic modulus of 70GPa, Poisson ratio of 0.3, density
of 2780 kgm−3 and yield strength of 420MPa for the wingbox material. Although the latest generation
of transport aircraft sport almost entirely composite wing structures, composites significantly increase the
complexity of the structural design parameterisation and the resulting optimisation problems. Studying only
aluminium structures therefore allows this work to focus solely on differences in analysis and optimisation
results caused by geometric nonlinearity rather than the minutiae of composite design optimisation.

4.1.4. Meshes
Both the FE and CFD models have coarse, medium and fine meshes. The CFD meshes contain approx-
imately 1, 3 and 9 million cells respectively with both multiblock and overset versions. In this work I use
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(a) Locations of external masses, including engine,
for the uCRM-13.5 and inertial force vectors for
the 2.5 g manoeuvre condition.

(b) Resultant nodal forces on the engine mount
and leading edge spar due to engine mass during
2.5 g manoeuvre.

Figure 4.5: External mass loads on the uCRM-13.5.

the multiblock meshes.

The FE meshes consist of 4-node, second order, MITC shell elements, with the coarse, medium and fine
meshes having approximately 1.5, 3.5 and 5.5× 105 degrees of freedom.

4.2. Structural Analysis Studies
In this section I compare the results of linear and nonlinear structural analysis under fixed loading on
both uCRM models. These results allow for the identification and quantification of the effects of purely
structural geometric nonlinearities on the displacements and stresses in the uCRM wingboxes such that in
the later aerostructural analyses, these purely structural nonlinearities can be distinguished from coupled
aerostructural nonlinearities.

4.2.1. Methodology
I generate the aerodynamic loads for the structural analyses by running trimmed aerostructural analyses
of the uCRM models in the three manoeuvre conditions described previously, with a linear FE formulation,
and using the fine FE and CFD meshes. Figure 4.6 shows the aerodynamic traction vectors generated in
the 2.5 and -1 g manoeuvre conditions, superimposed on the undeformed uCRM-13.5. Note that these
traction vectors must be mapped onto the undeformed wing in order to compute the correct rigid link
vectors for the load transfer calculations. The orientations of the tractions are however consistent with
the deformed wing shape, thereby capturing follower force effects. The remaining loads are applied as
described in the previous section.

I use the coarse wingbox meshes for these studies to reduce computational cost. Brooks et al. [81] showed
that stresses were more or less constant across the three structural mesh levels.
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Figure 4.6: The aerodynamic loads used for structural analysis and optimisation, obtained using aerostructural analysis of the
uCRM models with linear structures.

4.2.2. Results
Table 4.3 summarises the maximum failure criteria values in each wingbox component family in the 4
different structural analyses performed. The uCRM-13.5 shows some significant differences in stress and
buckling criteria with a 25-40% increase in the Von Mises stresses in the skins and spars, and the buckling
criteria in the ribs in the nonlinear analysis. The buckling criteria in the skins and spars do not however
show a similar increase, remaining within a few percent of the values in the linear analysis. The uCRM-9
shows some similar trends, but to a lesser extent. The upper skin sees a smaller 8% increase and the
spars an almost identical 24% increase in Von Mises stress while the increase in the maximum rib buckling
criteria reduces to 8%.

Table 4.3: Component-wise comparison of the maximum failure criteria values from the linear and nonlinear structural analyses
of the uCRM models.

uCRM-13.5 uCRM-9

Component Failure Criteria1 Linear Nonlinear ∆ (%) Linear Nonlinear ∆ (%)

Upper Skin
Von Mises 0.784 1.084 38.3 1.145 1.236 7.9

Buckling 0.950 0.953 0.3 0.840 0.837 -0.4

Lower Skin
Von Mises 0.826 1.031 24.9 1.272 1.286 1.1

Buckling2 0.944 0.918 -2.8 0.581 0.564 -3.0

Spars
Von Mises 0.810 1.012 25.0 0.803 0.996 24.0

Buckling 1.183 1.143 -3.4 1.173 1.444 23.1

Ribs
Von Mises 0.369 0.419 13.4 0.798 0.715 -10.3

Buckling 1.148 1.452 26.5 1.752 1.898 8.3

Solution Time (s) 3.616 85.841 2273.9 4.497 81.947 1722.3
1 Failure values shown are the maxmimum element averaged values from each component, normalised

by either the yield stress or critical buckling stress.
2 Lower skin buckling value taken from the -1 g condition.

These differences suggest that the nonlinear analysis produces larger bending moments in the wingbox,
resulting in the increased stresses in the skins and spars, and also that it results in significant Brazier loads
in the ribs, leading to the increase in their buckling loads. However, viewing the maximum stress and
buckling values in each section of the wingbox gives limited insight into the real differences in the stress
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field, particularly when such maxima are very sensitive to unphysical stress concentrations due to modelling
simplifications or poor quality elements. In the next section I therefore compare the stress and buckling
distributions over the whole wingbox.

Also included in the table are the times to compute the 2.5 g solutions on 4 cores of an Intel i7-7700HQ
laptop CPU. The nonlinear solution times for the uCRM-13.5 and uCRM-9 are approximately 23 and 17
times longer than their linear counterparts respectively. This slowdown factor correlates exactly with the
number of Newton-Raphson iterations required for eachnonlinear solution.

uCRM-13.5

Figure 4.7 shows the distribution of the Von Mises stress failure criterion in the uCRM-13.5 wingbox. The
wingbox on the right of the figure shows the linear stress subtracted from the nonlinear stress, leaving red
regions indicating areas with higher stress in the nonlinear case while blue areas show areas where stress is
lower in the nonlinear case.

Figure 4.7: The uCRM-13.5 shows an almost uniform 10-20% increase in stress between the linear and nonlinear analyses.

The presence of almost no blue in the rightmost wingbox indicates that the stresses in the nonlinear analysis
are equal to or higher than those in the linear analysis throughout the entire wingbox. In particular, the
stresses over the majority of the upper and lower skins are higher by approximately 5-10% of the material
yield stress, a roughly 10-20% relative increase over the linear case. There are a number of smaller areas
which show a much larger increase in stress from the linear to nonlinear cases, including the sections of the
skins around the engine mount and in multiple segments of the front and rear spars. These are all regions
subject to external mass loads, which are computed only in the undeformed configuration and do no rotate
with the structure. As such, in the nonlinear case, as the wing deforms and rotates, the previously in-plane
external mass loads develop out-of plane components, resulting in significantly greater stresses. This is
an unrealistic phenomena but developing a geometrically exact method for applying these external loads is
considered outside the scope of this work.

Figure 4.8 compares the value of the buckling failure criterion from the same analyses. The buckling
criterion values in the upper skin are approximately 10-20% higher in the nonlinear case, corresponding
directly to the increase in compressive stress. More interestingly, a large number of the ribs in the midspan
of the wing show a relative increase in the buckling criterion of around 50%, strongly suggesting the
presence of Brazier loading.

To confirm this suggestion, figure 4.9 compares the axial stress in the stiffener-wise direction of the ribs.



4.2. Structural Analysis Studies 49

Figure 4.8: The uCRM-13.5 ribs show around a 50% increase in buckling criteria in the nonlinear analysis, suggesting
significant Brazier loading.

The stress shown is computed at the mid-section of the shell, thus negating any axial stresses due to
bending. The results show a drastic increase in the compressive stress in the ribs, particularly in the region
just outboard of the engine mount where the buckling criteria also increased greatly. The compressive
stresses in the linear analysis, if present at all, are smaller than in the nonlinear case by at least an order
of magnitude.

Figure 4.9: The presence of Brazier loads is confirmed by examining the axial stress in the ribs.

Comparing the deformations of the two wings, shown in figure 4.10 provides some clues into the cause
of the higher stresses seen in the nonlinear analysis. The nonlinear deformed shape shows the expected
tip-shortening effect but also appears to show a higher curvature, particularly in the outboard portion of
the wing. This greater curvature suggests a higher bending moment within the wing which is consistent
with the follower force phenomena described in section 1.1.3 wherein the rotation of the lift forces on
the outboard portion of the wing incorrectly result in a decrease in the bending moment seen by linear
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structural models due to their consideration of only the undeformed configuration of the wingbox. This
increased bending moment is then responsible for the relatively uniform increase in stress seen in the upper
and lower skins of the wingbox.

Figure 4.10: The nonlinear analysis shows the expected tip-shortening phenomenon and shows greater curvature, indicating
a greater bending moment in the wing.

Figure 4.11 shows the chordwise, spanwise and vertical components of the displacement and the wing
twist, all extracted from points along a line on the upper skin of the wingbox. The twist distributions in
the linear and nonlinear case are almost identical, with nonlinear case showing slightly more washout. This
suggests that the higher bending curvature in the nonlinear case results in more washout due to the wing’s
geometric bend-twist coupling and is more than enough to cancel out any decrease in washout due to
drag-torsion effects. Also shown in figure 4.11 are the chordwise (∆X), spanwise (∆Y ) and vertical (∆Z)
components of the displacement. From these curves it is possible to quantify the effective tip-shortening
in the nonlinear case, around 4% of the wing’s semispan. Also of note is that the chordwise deformation
is reversed between the two cases with the wing tip moving forwards in the nonlinear case. This is likely
due mostly to the same bending kinematics that cause the tip shortening effect of the wing, which result
in a chordwise displacement due the wing’s sweep.
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Figure 4.11: Spanwise deformation distributions. The nonlinear wing shows slightly more washout
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uCRM-9

Figures 4.12-4.15 show the same comparisons as above between the linear and nonlinear structural analyses
performed on the uCRM-9. The differences in stresses and deformations in the lower aspect-ratio wingbox
of the uCRM-9 are similar to those seen in the uCRM-13.5 but with a lower magnitude. In the nonlinear
case, the stresses in skins are around 5% higher and the buckling criterion is again approximately 50%
higher in ribs. The nonlinear analysis also again shows slightly more washout but by an essentially negligible
margin and the tip shortening reduces to around 2% of the wing semispan.

Figure 4.12: The uCRM-9 shows an almost uniform 5-10% increase in stress between the linear and nonlinear analyses.

Figure 4.13: The uCRM-9 ribs also show around a 50% increase in buckling criteria in the nonlinear analysis.
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Figure 4.14: Again, the presence of Brazier loads is confirmed by examining the axial stress in the uCRM-9 ribs.
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Figure 4.15: Spanwise deformation distributions from the uCRM-9.

4.3. Aerostructural Analysis Studies

4.3.1. Methodology

Untrimmed Analysis

I perform aerostructural analysis of both uCRM models with both linear and nonlinear structural formula-
tions. In this first study, I analyse both the linear and nonlinear models at the same angle of attack, which
produces the correct 2.5 g load factor with the linear model. I use the fine CFD mesh to maximise the
accuracy with which the aerodynamic forces are computed but retain the coarse FE mesh.
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Trimmed Analysis

In this study, I repeat the aerostructural analyses above, now trimmed such that the linear and nonlinear
models achieve the same lift coefficient and a zero pitching moment coefficient. To this point, the studies
performed have focused only on the effect of geometric nonlinearities in manoeuvre situations. Although
the lower load factor of cruise flight means that any differences in deformed wing shapes should be reduced,
drag can be very sensitive to small geometry changes. I therefore also perform a trimmed analysis at the
cruise condition shown in table 4.2 to assess the necessity of using geometrically nonlinear analysis for
accurate cruise drag prediction. I again use the same combination of fine CFD and coarse FE meshes. In
this case the fine CFD mesh is particularly important for accurate cruise drag prediction.

To trim the aircraft fully, the rotation of the horizontal tail is parameterised using the free-form deformation
(FFD) approach described in section 2.6. Figure 4.16 shows the FFD volumes used to parameterise the
full uCRM-13.5 geometry. To rotate the tail, the highlighted FFD volume surrounding the tail is rotated
rigidly around the global Y axis.

Figure 4.16: The FFD volumes used to parameterise the uCRM-13.5, with the volume controlling tail rotation highlighted.

Each aerostructural analysis is judged to have converged when the residual norms of both the CFD and FE
problems has reduced by a factor of 10−8. The trimmed solver is judged to have converged when both the
lift and moment coefficients are within 10−4 of their respective targets. I run the nonlinear aerostructural
analyses with a 5 iteration load ramp and use a conservative initial under-relaxation factor of 0.1 for all
analyses in order to avoid the formation of negative volume CFD cells in the early Gauss-Seidel iterations.

4.3.2. Results

Table 4.4 summarises the lift, drag and pitching moment coefficients (CL, CD and CMy ) from the four
untrimmed analyses along with the coordinates of the centre of pressure (COP) of the wing relative to
the uCRM’s centre of gravity (COG)1. Each of the aerodynamic coefficients are also broken down into
the individual contributions from the wing, fuselage and horizontal tail. Also included are the chordwise
spanwise and vertical wingbox tip displacements, demonstrating the span shortening effect in the nonlinear
analyses.

Untrimmed Analysis

In both uCRM models, span shortening has a small but noticeable effect on a number of the aerodynamic
quantities. The lift coefficient for both models is 1.7-1.8% lower, with the vast majority of the decrease in
lift coming from the wing. These decreases in lift are slightly smaller than the decrease in effective span of

1The COP is not a unique point and can be defined anywhere along the line of the resultant aerodynamic force. In this work
I compute the location of the COP in the same horizontal plane as the COG
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Table 4.4: Aerodynamic functions of interest from the untrimmed aerostructural analysis studies

uCRM-13.5 uCRM-9

Value Linear Nonlinear ∆ (%) Linear Nonlinear ∆ (%) Units

CL 0.595 0.585 -1.7 0.629 0.618 -1.8

CL,wing 0.519 0.510 -1.8 0.545 0.535 -2.0

CL,f use 0.087 0.087 0.4 0.092 0.092 -0.5

CL,tai l -0.011 -0.012 8.1 -0.009 -0.009 0.2

CD 298.4 301.6 1.1 323.3 324.2 0.3 cts

CD,wing 137.5 141.0 2.5 158.7 159.5 0.5 cts

CD,f use 152.8 152.1 -0.5 155.7 156.1 0.3 cts

CD,tai l 4.2 2.9 -30.1 4.5 5.0 10.4 cts

CMy 0.173 0.204 17.8 0.040 0.056 40.6

CMy ,w ing -0.036 -0.010 -70.9 -0.111 -0.095 -14.4

CMy ,f use 0.160 0.160 0.3 0.118 0.118 0.1

CMy ,tai l 0.049 0.054 8.9 0.033 0.033 0.4

COPwing,x 0.402 0.117 -71 1.454 1.270 -12.6 m

COPwing,y 13.78 13.35 -3.1 12.89 12.65 -1.9 m

∆∆∆Xtip 0.41 -0.49 -220.5 0.28 -0.10 -135.7 m

∆∆∆Ytip -0.23 -1.60 593.1 -0.02 -0.64 2591.5 m

∆∆∆Ztip 10.39 9.61 -7.5 6.00 5.70 -5.1 m

the wing, this is likely due to the fact that most of the span shortening occurs in the outboard sections of
the wing whilst most of it’s lift is generated on the inboard portion. As explained in the previous section,
because of the backwards sweep of the uCRM wing, the span shortening in the nonlinear cases shifts the
centre of pressure not only inwards but also forwards. This leads to significant increases in the total nose
up pitching moment of the aircraft, with 18 and 40% increases in the uCRM-13.5 and 9 respectively. It
should be noted, however, that the 40% change in the uCRM-9 pitching moment represents a smaller
absolute change than seen with the uCRM-13.5.

The spanwise lift distributions, when plotted in absolute coordinates as in figure 4.17, are almost indis-
tinguishable on the inboard half of the span whilst the nonlinear cases show lower lift on the outboard
half of the wing. It is unclear from these plots, however, whether this decrease in lift at a given spanwise
station is purely a result of the nonlinear span shortening or if it is due to the nonlinear analysis exhibiting
more passive load alleviation. Plotting the normalised lift distributions against the normalised spanwise
coordinate in figure 4.18 removes differences in the curves due to different spans and different total lift
levels, allowing a more straightforward comparison of the relative spanwise distribution of lift. With these
differences accounted for, the linear and nonlinear lift distributions become even less distinguishable. The
slight differences in the uCRM-13.5 curves show that the linear case produces a greater normalised lift over
the inboard 30% whilst the nonlinear wing produces a greater a greater normalised lift over the 30-75%
span section. This suggests that the nonlinear case sees less passive load alleviation, although the differ-
ence appears to be almost negligible. Another observation in support of this theory is that the inboard shift
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in the COP in the nonlinear case (3.1%) is slightly less than the relative reduction in wing span (3.8%).
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Figure 4.17: Comparison of the lift and twist distributions from the untrimmed aerostructural analyses, plotted against the
absolute spanwise coordinate.
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Figure 4.18: Normalising the lift and spanwise coordinate shows that there is very little difference in the relative spanwise lift
distributions in the linear and nonlinear analyses.

Table 4.5 shows the number of Gauss-Seidel iterations required for each solution and the solution times,
including the breakdown of the time spent in the 3 most time consuming portions of the solver, the
CFD analysis, FE analysis and the mesh warping. Of the 4 untrimmed analyses run, only the nonlinear
analysis on the uCRM-9 achieved the specified convergence tolerance, while the other 3 analyses all took
the maximum allowable number of Gauss-Seidel iterations. Both linear cases ran in similar times with
almost all of the difference in time spent in the CFD solver. The time spent on mesh warping and FE
analysis is almost identical for the two case as, once the linear stiffness matrix has been factorised, both
are fast explicit calculations. The nonlinear analysis of the uCRM-13.5 takes just under 40% longer than
the linear analysis. 73% of this additional time is spent in the nonlinear FE analysis, a 14-fold increase in
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the total FE analysis time compared to the linear case. Although significant, this increase is smaller than
the approximately 20-fold increase seen in the structural analysis studies which indicates that, for at least
some Gauss-Seidel iterations, the nonlinear structural solver is able to save time by restarting from the
previous structural solution.

The two uCRM-9 analyses take approximately the same time to complete. Correcting for the lower number
of iterations required for the nonlinear solution however gives the same time increase per Gauss-Seidel
iteration for the nonlinear solution, around 40%.

It should be noted that, due to the use of the fine CFD meshes, these analyses were run on 192 CPU
cores. This is well beyond the optimum number of cores for the structural analysis due to the significantly
smaller number of elements in the structural mesh. As a result, it is possible that the solution time could
be decreased by running the structural analyses a smaller subset of the cores used by the aerostructural
solver.

Table 4.5: Solution times from the untrimmed aerostructural analysis studies

uCRM-13.5 uCRM-9

Value Linear Nonlinear ∆ (%) Linear Nonlinear ∆ (%) Units

GS iterations 60 60 0.0 60 36 -40.0

Total Solve time 1184 1638 38.3 1112 1134 1.9 s

CFD Time 933 1059 13.6 854 760 -10.9 s

FE Time 22 343 1443.4 23 231 912.2 s

Warp Time 22 22 0.2 23 13 -41.1 s

Trimmed Analysis

Table 4.6 summarises the same quantities of interest as table 4.4 for the trimmed 2.5 g manoeuvre analyses,
with the addition of the angle of attack and tail rotation angle required to trim each case. Consistent
with the reduction in lift due to span shortening seen in the untrimmed analyses, the trimmed nonlinear
analyses require higher angles of attack to achieve the target lift coefficient, although the differences are
on the order of 1%. There is, again, a noticeable shifting forward and inboard of the COP which causes
most of the largest relative changes to be in quantities related to the pitching moment of the aircraft. For
example, in both models, the nonlinear cases produce around 1% less lift from the wing than the linear
cases. This is partially due to a small increase in the lift generated by the fuselage at the higher angle of
attack and partially because the forward shift in the COP of the nonlinear wings necessitates more lift, or
less downforce, from the horizontal tail. In the uCRM-13.5, this results in around half of the 8 count drag
increase coming from the tail.

As with the untrimmed results, however, what appear as large relative changes in some values are, in
reality, fairly small absolute changes. For example, the 55% increase in the tail angle required to trim the
nonlinear uCRM-13.5 case amounts to only 0.3° rotation.

I omit any comparison of the lift and twist distributions from the trimmed analyses as they are largely indis-
tinguishable from those from the untrimmed analyses shown in figures 4.17 and 4.18. This is unsurprising
given the relatively small changes in angle of attack and tail rotation required to trim the uCRM models.
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Table 4.6: Aerodynamic functions of interest from the trimmed aerostructural 2.5 g manoeuvre analyses

uCRM-13.5 uCRM-9

Value Linear Nonlinear ∆ (%) Linear Nonlinear ∆ (%) Units

α 5.545 5.582 0.7 5.527 5.608 1.5 °

θtail 0.554 0.863 55.7 -0.872 -0.678 -22.2 °

CL 0.587 0.587 0 0.587 0.587 0

CL,wing 0.487 0.482 -1.1 0.506 0.501 -0.8

CL,f use 0.083 0.084 1.6 0.084 0.085 1.2

CL,tai l 0.017 0.021 24.3 -0.003 0.000 -105.7

CD 277.8 285.5 2.8 281.5 288.1 2.4 cts

CD,wing 113.0 115.5 2.3 131.9 134.2 1.7 cts

CD,f use 136.8 138.2 1.1 136.9 138.7 1.3 cts

CD,tai l 24.3 28.0 15.2 9.6 11.8 22.8 cts

CMy 0 0 - 0 0 -

CMy ,w ing -0.041 -0.020 -50.7 -0.110 -0.097 -11.4

CMy ,f use 0.124 0.123 -1.2 0.100 0.100 0.1

CMy ,tai l -0.083 -0.103 23.3 0.010 -0.003 -131.2

COPwing,x 0.490 0.244 -50.2 1.548 1.383 -10.7 m

COPwing,y 13.758 13.398 -2.6 12.893 12.684 -1.6 m

∆∆∆Xtip 0.384 -0.419 -209.2 0.268 -0.071 -126.6 m

∆∆∆Ytip -0.217 -1.415 551.9 -0.027 -0.562 1981.9 m

∆∆∆Ztip 9.614 9.027 -6.1 5.544 5.344 -3.6 m

Figures 4.19 and 4.20 show the same comparisons of the Von Mises and buckling failure criteria in the
uCRM-13.5 wingbox as were shown in the structural analysis studies, now for the trimmed 2.5 g manoeuvre
cases. In stark contrast to the results from the structural analysis studies, the Von Mises stresses resulting
from the nonlinear aerostructural analyses are lower than for the linear analysis. As was the case in the
structural analysis studies, the difference in Von Mises stress is relatively uniform over the upper and lower
skins of the wingbox and of a similar magnitude, varying from 2-5% of the material yield stress, representing
a relative decrease of 4-10%. The stresses in the ribs and spars remain higher in the nonlinear case, as do
the stresses around the engine mount which, as explained during the structural analysis studies is due to
inaccuracies in the way that the external mass loads are modelled in these analyses.

The differences in the buckling criteria between linear and nonlinear analyses are more similar to those seen
in the structural analysis studies. The decrease in buckling loads in the upper skin of the wingbox is on
the order of 1% in the buckling critical areas near the wing root. Although this difference grows towards
the wing tip, these areas are not buckling critical. As was the case in the structural analysis studies, the
buckling loads in the ribs are again approximately 50% higher in the nonlinear case due to Brazier loads.
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Figure 4.19: The nonlinear aerostructural analysis results in a significant reduction in the wingbox bending moment and
resulting stresses, in stark contrast to the results of the pure structural analyses.

Figure 4.20: The buckling loads in the upper wing skin are more similar between the linear and nonlinear cases than the Von
Mises stress. The ribs again see a 50% increase in buckling loads in the nonlinear case due to Brazier loads.

The most obvious explanation for the stress decreases seen in the nonlinear analysis is the inboard shift
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in COP induced by the nonlinear analysis’s span shortening. Combining the relative reductions in the lift
produced by the wing and the spanwise coordinate of the COP of the uCRM-13.5 gives a rough approxim-
ation of the relative decrease in the lift induced bending moment in the wingbox of 3.7%. Accounting for
the reduced lift force moment arm due to the constraint on the wingbox at the fuselage junction increase
this value to 4.6%, which correlates with the lower end of the range of observed stress decreases in the
nonlinear analysis. This explanation also goes some way to accounting for the 6% decrease in the wingtip
vertical deflection seen in the nonlinear case. An lower level explanation of the same phenomena is that,
in the linear analyses, the linearised bending kinematics cause the outboard portions of the wing to be
artificially stretched, this increase in area then results in increased forces in the outboard section of the
wing when integrating the aerodynamic pressure over the wing’s surface, causing the observed increase in
the wing bending moment.

Finally, in table 4.7 I compare the results of the trimmed analyses performed at the cruise flight condition,
the purpose of which is to assess the effect of geometric nonlinearity on cruise drag prediction. Perhaps
unsurprisingly, the differences between the linear and nonlinear results are similar to those seen in the man-
oeuvre condition analyses but significantly smaller. For both uCRM models, between linear and nonlinear
analyses, the difference in drag coefficient is below 1 drag count, in tail rotation below 0.1°, and in angle
of attack below 0.02°.

Table 4.7: Functions of interest from the trimmed aerostructural cruise analyses

uCRM-13.5 uCRM-9

Value Linear Nonlinear ∆ (%) Linear Nonlinear ∆ (%) Units

α 2.197 2.202 0.2 2.194 2.208 0.6 °

θtail -0.036 0.094 -364.1 -0.788 -0.736 -6.6 °

CL 0.500 0.500 0 0.500 0.500 0

CL,wing 0.462 0.460 -0.6 0.472 0.471 -0.2

CL,f use 0.058 0.058 0.9 0.060 0.060 0.5

CL,tai l -0.020 -0.018 -10.1 -0.032 -0.031 -2.7

CD 216.2 217.1 0.4 244.9 245.5 0.2 cts

CD,wing 113.6 113.8 0.2 148.8 149.1 0.2 cts

CD,f use 95.5 95.5 0.1 92.8 93.0 0.2 cts

CD,tai l 4.9 5.4 10.9 1.9 2.0 4.7 cts

CMy 0 0 - 0 0 -

CMy ,w ing -0.160 -0.150 -6.7 -0.174 -0.171 -2.1

CMy ,f use 0.066 0.065 -1.5 0.051 0.050 -0.3

CMy ,tai l 0.094 0.084 -10.3 0.123 0.120 -2.8

COPwing,x 2.000 1.876 -6.2 2.602 2.555 -1.8 m

COPwing,y 15.51 15.33 -1.2 14.11 14.05 -0.5 m

∆∆∆Xtip 0.232 -0.088 -138.1 0.115 0.034 -70.5 m

∆∆∆Ytip -0.125 -0.603 383.6 -0.001 -0.132 20357.9 m

∆∆∆Ztip 5.651 5.497 -2.7 2.627 2.598 -1.1 m
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4.4. Chapter Summary
In this chapter I presented the results multiple studies investigating the effects of including geometric
nonlinearity in structural and aerostructural analysis of modern transport aircraft with moderate and high
aspect-ratio wings using the undeflected common research model (uCRM)s. I posited that the uCRMs
represent excellent test cases for such studies as they both the aspect-ratios typical of current day transport
aircraft and those entering service in the next two decades.

In the first study I performed linear and nonlinear structural analysis of the two uCRM wingboxes using a
fixed set of loads generated from the same set of geometrically linear aerostructural analyses. I showed
that, in the high aspect-ratio uCRM-13.5 wingbox, the nonlinear analysis results in greater bending stresses
throughout, particularly in the upper and lower skins where increases of around 10% are observed in the
Von Mises stress. Greater stress increases are seen locally around areas subjected to loads from external
masses which, I propose, are due to the fact that such loads are not applied in a geometrically exact manner
in these analyses. I demonstrated the presence of Brazier loads in the nonlinear analyses which are evident
from a substantial increase in the compressive axial stress and buckling failure criteria in the wingbox
ribs. Comparing spanwise deflection distributions, I showed that the correct modelling of large bending
kinematics in the geometrically nonlinear analysis results in a significant inward and forward deflection of
the wingtip. I also showed that any geometrically nonlinear drag-torsion effects, if present, have little effect
on the twisting deformation of the wing, which is dominated by the geometric bend-twist coupling caused
by wing sweep. I proposed that the observed stress bending stress increases and the slightly increased
washout in the nonlinear case are due to the nonlinear analysis correctly maintaining the bending moment
caused by the lift forces on the outboard portions of the wing which are rotated inboard. This conclusion is
consistent with previous works demonstrating that linear analyses underpredict bending deformation when
subject to follower forces.

I also showed that similar differences in stress distributions are seen when performing nonlinear structural
analysis on the moderate aspect-ratio uCRM-9 wing, albeit to a lesser extent. In this case, the increase in
bending stresses is roughly halved, whilst the increase in the rib buckling criteria remains around 50%.

I then presented the results of a series of coupled aerostructural analyses of the same models, again using
geometrically linear and nonlinear structural analyses. Performing untrimmed aerostructural analyses at
the same angle of attack, I demonstrated that when using nonlinear structural analysis, the span shortening
behaviour resulting from correctly modelled bending kinematics shifts the centre of pressure (COP) of the
wing inboard and forwards, resulting in a 20-40% change in the untrimmed pitching moment of the aircraft.
This span shortening also decreases the total lift produced by the wing by almost 2%. Comparing normalised
lift distributions between the linear and nonlinear analyses, I showed that there is almost no difference in
the amount of passive load alleviation achieved in the linear and nonlinear analyses. Comparing solution
times, I demonstrated that the inclusion of nonlinear structural behaviour increases the computational cost
of each coupled aerostructural analysis iteration by 40%.. In contrast, the solution slowdown of nonlinear
structural analysis is almost exactly equal to the number of Newton-Raphson iterations taken to converge
the analysis which, for the presented analyses is on the order of 20×.

I then performed aerostructural analyses in the same 2.5 g manoeuvre condition, with all analyses trimmed
to the same lift coefficient and zero pitching moment. I demonstrated again that span shortening is the
main cause of difference between the linear and nonlinear analysis results, with the nonlinear analyses
requiring a small increase in angle of attack to achieve the same lift coefficient. This angle of attack was
however mitigated by the need for less downforce from the horizontal tail to trim the aircraft due to the
forward shift in the wing’s COP, as a result, the lift produced by the wing in the nonlinear cases was still
approximately 1% smaller than in the linear cases.

I then compared the wingbox stress distributions from the trimmed aerostructural analyses and showed
that the nonlinear analysis resulted in 5-10% lower bending stresses in the wing skins, the opposite of the
results seen in the structural analysis studies. To a first order approximation I proposed that this reduction
in bending moment in the wingbox is due to a combination of the small reduction in lift produced by the
wing and the inboard shift in the wing’s COP. Buckling loads in the wing skins showed a similar decrease
whilst the ribs saw a similar increase in buckling loads as seen in the structural analysis studies.
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Finally, I ran similar trimmed aerostructural analyses in a transonic cruise condition.. The differences in
key values such as the drag coefficient and trim angle of attack differed by 0.5% or less, indicating that
aerostructural analysis with linear structural models is sufficient for accurate cruise drag prediction.

Looking forward, to the following optimisation, these results suggest that:

In structural optimisation, wingboxes optimised using nonlinear analysis will be heavier due to the
higher stresses observed in the nonlinear structural analyses under fixed loading.

In aeroelastic optimisation, wingboxes optimised using nonlinear analysis will be lighter due to the
reduction in stresses caused by nonlinear span shortening. This prediction is less certain as it re-
mains unclear whether geometric nonlinearity will allow the optimiser to achieve more or less passive
aeroelastic tailoring.

Ribs will show the greatest difference in sizing between linear and nonlinear optimised designs due
to the presence of nonlinear Brazier loads.



5
Optimisation Studies

In this chapter I finally apply the developed geometrically nonlinear structural and aerostructural capabilities
to structural and aeroelastic design optimisations. In doing so I aim to assess, first, the increase in
computational resources required to perform design optimisation with nonlinear structural analysis and,
secondly, how geometrically nonlinear phenomena affect the optimal structural and aeroelastic design of
high-aspect-ratio wing (HARW). In all optimisations I continue to use the uCRMs, for reasons already
described.

Section 5.1 covers a series structural optimisations performed under the same fixed aerodynamic loads used
in section 4.2. I perform a baseline optimisation and present the results before highlighting some potential
issues in the results, performing further optimisation studies to investigate the issues further. Next I
perform aeroelastic optimisation of the uCRMs, using an identical problem formulation but utilising coupled
aerostructural analysis and adjoint gradients which allows the optimiser the opportunity to aeroelastically
tailor the wing structure to favourably influence the distribution of aerodynamic loads. Finally, in section 5.3
I summarise the findings of the optimisation studies.

5.1. Structural Optimisation Studies

5.1.1. Baseline structural optimisation
The first optimisation study I perform aims to mimic the formulation used by Brooks et al. [112] in their
latest publication on the aerostructural optimisation of the uCRM-9. It should be noted that the results
of these optimisations are not directly comparable to Brooks et al.’s work due to the slight difference in
stiffener orientations I use and the fact that the aerodynamic loading used in these cases is generated on
the fine CFD mesh whereas Brooks et al. use the coarse mesh for their work.

In all optimisation cases presented herein, the objective function to be minimised is the mass of the wingbox.

Design Parameterisation

In total, the uCRM-9 and 13.5 wingboxes are parameterised using 586 and 694 design variables respectively.
Figure 5.1 and table 5.1 summarise these parameterisations. Each panel in the wingbox is parameterised
by four design variables controlling the thickness of the panel skin and the thickness, height and pitch of
the smeared panel stiffeners as described in section 2.2.2. In this parameterisation, I give each panel in the
upper and lower skins its ow local design variables for the skin thickness, stiffener thickness and stiffener
height, while the stiffener pitch across all panels on each skin is assigned to a single global design variable.
Similarly, I give each rib and spar panel local skin and stiffener thickness variables, while stiffener height
and pitch are controlled globally.

62
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Figure 5.1: Baseline structural parameterisation

Table 5.1: Summary of the design variables used for the baseline uCRM structural optimisation studies

Components Quantity Bounds

Variable Description Lower Skin Upper Skin Ribs Spars uCRM-9 uCRM-13.5 Lower Upper Scaling Factor

tskin Local Skin Thicknesses 3 3 3 3 242 287 3 mm 250 mm 10000

tstif f Local Stiffener Thicknesses 3 3 3 3 242 287 2.5 mm 250 mm 10000

hstif f Local Stiffener Heights 3 3 96 114 25 mm 200 mm 1000

λstif f Global Stiffener Pitch 3 3 3 3 4 4 150 mm 300 mm 10

hstif f Global Stiffener Height 3 3 2 2 25 mm 200 mm 1000

Total 586 694

Constraints

I apply constraints on the Von Mises buckling failure criteria in the 2.5 g, -1 g and 1 g ‘gust’ manoeuvre
conditions described in section 4.1.2. I split the wingbox into four separate regions, upper skin, lower skin,
ribs and engine mount, and spars, within which, the element Von Mises and buckling values are combined
into a single constraint values using KS aggregation. In the 2.5 and 1 g load cases I apply Von Mises
constraints to all regions and buckling constraints on all regions except the lower skin. In the -1 g case I
constrain only the lower skin buckling value. As explained in section 4.1.2, I apply a safety factor of 1.5
to the failure constraints in the 2.5 and -1 g loadcases a safety factor of 2.67 to the 1 g constraints. This
gives a total of 15 failure and buckling constraints.

To enforce a realistic structural design, I apply a series of constraints to the panel design variables. On
all panels, I constrain the stiffener and skin thicknesses to be within 2.5mm of each other. Additionally,
to avoid abrupt changes in panel sizing I apply adjacency constraints to limit the change in skin thickness,
stiffener thickness and stiffener height between adjacent skin panels to be ≤0.5mm and ≤2mm on adjacent
spar panels. These constraints, although numerous, are linear and are therefore handled efficiently by the
optimiser used for these studies, SNOPT, without the need for repeated gradient calculations.

Optimiser

I use SNOPT [113], a high performance sequential quadratic programming (SQP) optimiser well suited
to large, sparse, constrained optimisation problems. SNOPT handles linear and nonlinear constraints
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Table 5.2: Constraints applied to the baseline structural optimisation problem.

Components Quantity

Constraint Description Lower Skin Upper Skin Ribs Spars uCRM-9 uCRM-13.5

1.5KSvm,2.5g 2.5 g Von Mises failure 3 3 3 3 4 4

1.5KSbuckl ing,2.5g 2.5 g buckling failure 3 3 3 3 3

2.67KSvm,1g 1 g Von Mises failure 3 3 3 3 4 4

2.67KSbuckl ing,1g 1 g buckling failure 3 3 3 3 3

1.5KSbuckl ing,−1g -1 g buckling failure 3 1 1

tskin,i − tstif f ,i Stiffener-skin thickness difference 3 3 3 3 242 287

tskin,i − tskin,i+1 Skin thickness adjacency 3 3 3 183 219

tstif f ,i − tstif f ,i+1 Stiffener thickness adjacency 3 3 3 183 219

hstif f ,i − hstif f ,i+1 Stiffener height adjacency 3 3 92 110

Total 715 850

separately and, after satisfying them in the initial iteration, guarantees feasibility of all linear constraints
at every subsequent iteration. In all optimisations I use feasibility and optimality tolerances of 10−7 these
correspond to a maximum constraint violation of around 10−5 and a reduction in the norm of the Lagrangian
of 4-5 orders of magnitude.

Results

Table 5.3 shows the number of optimiser iterations and the runtime for each of the baseline structural
optimisations on 16 cores of a 3.0GHz Intel Xeon Gold 6154 processor. Performing structural optimisation
with nonlinear analysis appears to increase the computational cost of each optimiser by approximately a
factor of 10. In the case of the uCRM-13.5 this increase is slightly reduced as the nonlinear optimisation
converges in 24% fewer iterations, the runtime is however still almost an order of magnitude greater than
the linear case.

Table 5.3: Comparison of time and number of optimiser iterations required for each baseline structural optimisation.

uCRM-13.5 uCRM-9

Value Linear Nonlinear ∆(%) Linear Nonlinear ∆(%) Units

Major Iterations 441 336 -24 485 475 -2

Function Evaluations 1084 841 -22 1087 1044 -4

Time 1497 13060 772 1728 22702 1214 s

Time per Major iteration 3.4 38.9 1045 3.6 47.8 1242 s

Time per Function Evaluation 1.4 15.5 1024 1.6 21.7 1268 s

The following graphs compare the results of the linear and nonlinear structural optimisations of the uCRM-
13.5. Figure 5.2 compares the histories of the feasibility, optimality and total wingbox mass for each
optimisation and figure 5.3 compares the histories of the masses of each component group.

Both the linear and nonlinear optimisations achieve a significant decrease in mass over the baseline uCRM
wingbox design and satisfy both the optimality and feasibility convergence criteria. The wingbox optimised
with nonlinear analysis is 6.1% heavier than the linear optimised design, an increase that is consistent with
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Figure 5.2: Structural optimisation of the uCRM-13.5 with nonlinear structural analysis converges in fewer iterations but
results in a 6.5% greater mass than with linear analysis.

the increased bending stresses observed in the structural analysis studies. This mass increase from linear
to nonlinear optimised wingbox is greatest in the lower skin, followed by the upper skin, ribs and then spars,
again suggesting that the cause of the mass increase is primarily due to bending stresses.
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Figure 5.3: The majority of the mass difference between linear and nonlinear optimised designs is in the upper and lower skins.

In figures 5.4 I plot the spanwise distribution of the structural sizing of each wingbox component group. In
order to effectively display the effective stiffness of each component, I plot what I refer to as aggregated
sizing values, which combine the stiffness contribution of both the panel skins and stiffeners into a single
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value. The ‘axial effective thickness’ is the thickness of an equivalent unstiffened panel with the same axial
stiffness (in the stiffener-wise direction) as the stiffened panel and the ‘bending effective stiffness’ follows
the same rationale but for bending stiffness. Note that the axial effective thickness is directly proportional
to the cross-sectional area of each panel and can thus also be seen as a proxy for the mass of each panel.
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Figure 5.4: The increase in skin stiffness in nonlinear optimised design is almost uniform, similar to increase in stress seen in
the structural analysis studies.

0.005

0.006

0.007

0.008

0.009

0.010

0.011

Axial
Effective
Thickness

Linear

Nonlinear

0.006

0.008

0.010

0.012

0.014

RootFuselage
Junction

Engine
Mount

Fuel Tank
End

Tip
0.026

0.028

0.030

0.032

0.034

0.036

0.038

Bending
Effective
Thickness

LE_SPAR

RootFuselage
Junction

Engine
Mount

Fuel Tank
End

Tip
0.026

0.028

0.030

0.032

0.034

0.036

0.038 TE_SPAR

Figure 5.5: Spar sizing is highly effected by external mass loads in the nonlinear case, bending stiffness also increased to resist
buckling.

The increase in the axial effective thickness of the upper and lower skins from linear to nonlinear optimised
designs is relatively uniform along the entire wingspan which is again consistent with the uniform increase
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Figure 5.6: Brazier loading has no clear effect on rib sizing due to limited parameterisation.

in bending stresses observed in the structural analysis studies. The spanwise variation of axial effective
thickness is almost perfectly linear, rising from the wing root to engine mount and falling from engine mount
to wingtip. This suggests that the rate of reduction reduction of the thickness of the skins away from the
engine mount region is limited by the applied adjacency constraints and that further mass savings could
be made by loosening them. There is significantly less difference in the bending stiffness distributions of
the linear and nonlinear optimised designs, with the bending stiffness of the upper skins being almost equal
over large portions of the span. On the lower skin, more significant differences are observed, the bending
stiffness of the linear optimised lower skin is significantly higher over the portion of the wing between the
fuselage junction and engine mounting location, perhaps indicating that the compressive stresses seen in
the -1 g manoeuvre condition are greater in the linear case. In contrast, the bending stiffness of the lower
skin of the centre wingbox (inside the fuselage) is more than 8×1 greater in the nonlinear optimised design.

Both the leading and trailing edge spars are thicker in the nonlinear case over the majority of the wing
span. There are a series of prominent spikes in the effective axial thickness of both spars in the nonlinear
case which correspond to the spar panels subject to loads from the external leading and trailing edge
masses. These reinforcements are then a symptom of the previously discussed issues with the application
of these external mass loads which causes unrealistic out of plane loading on the spar panels in the nonlinear
analyses. Also noticeable is an almost completely uniform increase in bending stiffness in both the nonlinear
optimised spars, indicating a uniform increase in buckling loads. This is likely due to an increase in the
global spar stiffener height variable. Without further analysis of the critical buckling loads in the spars it is
not possible to draw any conclusions on whether this increase is driven by a uniform increase in buckling
loads over the spar or simply by the sizing of one of the more highly loaded spar panels around the wing
root or engine mount.

Despite earlier evidence of significant Brazier loading increasing the rib buckling loads in the nonlinear
analyses, the majority of the ribs are sized identically in the linear and nonlinear analyses. The likely
explanation for this is that the stiffener pitch and height variables, shared by all ribs in this parameterisation
are driven by the fuselage junction rib, which is loaded drastically more highly than any of the other ribs.
As a result, the stiffeners on the remaining ribs are oversized for the loads they experience in both the linear

1The bending effective thickness is only greater by a factor of 2 but bending stiffness is proportional to the cube of thickness.
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and nonlinear analyses. The only exception to this rule is the rib adjacent to the engine mount which is
significantly stiffer in the nonlinear optimised design. This again is likely due to the geometric inaccuracies
in the application of the engine loads in the nonlinear analysis.

Below, I present the same graphs as above for the linear and nonlinear structural optimisations of the
uCRM-9.
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Figure 5.7: The mass increase due to structural nonlinearity is the uCRM-9 is smaller than with uCRM-13.5 but still significant.

4000

45002.5g Upper
Skin Mass

4.4%

Linear Nonlinear

4250

4500

47502.5g Lower
Skin Mass

4.4%

2200

2300

24002.5g
Rib+mount
Mass

3.2%

0 485475
Major Iterations

760

7802.5g Spars
Mass 2.1%

Figure 5.8: Again, majority of the mass difference between linear and nonlinear optimised uCRM-9 designs is in the upper
and lower skins.

In the uCRM-9, the differences between linear and nonlinear and nonlinear optimised designs are similar
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Figure 5.9: The increase in skin stiffness in nonlinear optimised design is less uniform in the uCRM-9 than the uCRM-13.5.
Most of the additional stiffness is added near wing root.
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Figure 5.10: Spar sizing in the uCRM-9 is again highly effected by external mass loads in the nonlinear case but no significant
increase in bending stiffness indicating spars are less buckling critical in uCRM-9.

and slightly smaller than those seen in the uCRM-13.5, but still significant. The mass difference between
the linear and nonlinear optimised designs reduces to 4% and again, the upper and lower skins see the
largest changes in mass, followed by the ribs and then spars.

The increase in the thickness of the upper and lower skins in the nonlinear optimised design is less uniformly
distributed in the uCRM-9 than in the uCRM-13.5 with the greatest differences seen in the centre wingbox
and the areas surrounding the engine mount. The linear and nonlinear optimised spar sizing distributions
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Figure 5.11: Again, Brazier loading has no clear effect on rib sizing in the uCRM-9 due to limited parameterisation.

are more similar than in the uCRM-13.5. The thickness peaks due to external mass loads are only present in
the leading edge spar and the uniform increase in bending stiffness seen in the nonlinear optimised uCRM-
13.5 design is not seen. Once again, the majority of the ribs are oversized due to the parameterisation
issues described above and there is consequently no difference in the sizing of most of the ribs.

Interestingly, same large discrepancy in the bending stiffness of the lower skin of the centre wingbox is seen
in the uCRM-9 designs, but in this case the linear optimised design is the one being significantly reinforced.
To explore this phenomena, figure 5.12 shows the buckling criteria distributions in all 4 optimised designs.
However, viewing these results, the rationale for the changes remains somewhat unclear as in both designs
where the centre wingbox lower skin is strongly reinforced, it is reinforced far beyond the level required
to resist buckling. It is possible therefore that the optimiser chooses this drastically increased bending
stiffness in order to reduce the stresses in surrounding regions of the wingbox, rather than reducing the
stress in the centre wingbox lower skin itself.

(a) uCRM-13.5. (b) uCRM-9.

Figure 5.12: Comparison of lower skin buckling constraint values from the -1 g loadcase in the linear and nonlinear optimised
uCRM wingboxes.
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5.1.2. Optimisation with Greater Design Freedom

I now run a set of optimisations with increased design freedom, allowing the optimiser to correctly size
each of the rib and spar panels in order to assess the effect of Brazier loading on wing mass. Figure 5.13
summarises the new design parameterisation, in which each rib and spar panel is given it’s own stiffener
height and pitch design variable. Additionally, I loosen the adjacency constraints to 2.5mm, this value
is based on values used in previous works [61, 110] and these loosened adjacency constraints are also
applied to the new local rib and spar stiffener design variables. This change is motivated by the fact that
the majority of the adjacency constraints in the previous optimisation were active, heavily restricting the
optimiser and resulting in the primarily linear spanwise variations in the sizing of the upper and lower skins.

Figure 5.13: Structural parameterisation with separate stiffener design variables for each rib and spar patch.

Results

All results presented below are for the uCRM-13.5, results from the uCRM-9 optimisations are not shown
as they follow the same trends. Figures 5.14 and 5.15 compare the optimisation histories of the baseline
and increased freedom optimisations for the linear and nonlinear structural formulations respectively, while
figures 5.16 and 5.17 compare the histories of the linear and nonlinear increased design freedom optimisa-
tions.

All of the increased design freedom optimisation reach the specified feasibility tolerance but none reach
the required optimality value before reaching the set major iterations limit. However, looking at the mass
histories of each case it is clear that little change in the designs would be seen had the optimisations
continued. The additional design freedom leads to a 7.9% decrease in mass in the nonlinear case and
5.6% decrease in the linear case. As a result, the difference between the linear and nonlinear optimised
designs decreases to 3.8%. As expected, the additional design freedom given to the ribs and spars means
they now show larger relative mass differences between linear and nonlinear optimised designs, with the
ribs becoming the component group that is effected most by the nonlinearity.

Figure 5.18 compares the rib sizing distributions from the nonlinear baseline and increased design freedom
optimisations. The oversizing of the ribs in the baseline case is clearly demonstrated by the fact that the
bending stiffness of most of the ribs is reduced by an order of magnitude in the increased design freedom
case. In figure 5.19, the impact of Brazier load on the rib sizing are clear, with the ribs between the fuselage
junction and engine mount having noticeably greater bending stiffness in the nonlinear optimised design.
It is worth noting, however, that the axial effective thickness of these ribs does not increase significantly,
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Figure 5.14: Greater design freedom results in a further 5.6% mass reduction in the linear case

10 6

10 4

10 2

Optimality

Optimality Tolerance

Nonlinear Nonlinear
SepRibSparDVs

10 9

10 6

10 3

Feasibility
Feasibility Tolerance

0 336 800
Major Iterations

13000

14000

15000

2.5g Mass
-7.7%

Figure 5.15: Greater design freedom results in a further 7.9% mass reduction in the nonlinear case

meaning that the optimiser chooses to shift material in the rib panels from the skin to the stiffeners,
without increasing their overall mass. It is likely that the majority of the difference in rib mass between
the linear and nonlinear optimised designs occurs in the fuselage junction rib.

Similar effects are seen in the sizing of the spars. As shown in figure 5.20, giving each spar panel control
over its own stiffener design variables allows the optimiser to drastically reduce the spar’s stiffness over
the majority of the wingspan. This supports the earlier assertion that the increase in spar bending stiffness
seen in the nonlinear baseline optimisation was driven by the stiffener sizing required by one of the highly
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Figure 5.16: Increased design freedom reduces the gap between the masses of the wingboxes optimised with linear and
nonlinear analysis
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Figure 5.17: With increased design freedom, the ribs and spars now show the largest relative difference in mass between linear
and nonlinear optimised designs.

loaded spar panels at the wing root. Figure 5.21 compares the spar sizing from the linear and nonlinear
increased design freedom cases, the largest deviations occur in the final 10% of the wingspan, where the
linear optimised design requires greater bending stiffness. A similar phenomena is seen in the ribs in this
section of the wing but I leave further investigation of the cause to future work.
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Figure 5.18: When given their own stiffener sizing design variables, the majority of the ribs can be significantly lightened.
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Figure 5.19: Brazier loads require greater bending stiffness in the ribs between the engine mount and fuselage junction.
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Figure 5.20: Giving each spar panel control over its own stiffener design variables allows the optimiser to drastically reduce
the spar’s stiffness over the majority of the wingspan.
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Figure 5.21: As seen in the ribs, the wingbox optimised with linear analysis and increased design freedom requires greater
bending stiffness in the spar panels towards the wingtip.
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5.1.3. Bi-level Optimisation
I now run two sets of optimisations using a bi-level approach which aims to accelerate the process of
achieving a geometrically nonlinear optimised structural design. The approach works by first optimising
the wingbox using linear analysis, before using the linear optimised design as the starting point for an
optimisation with nonlinear analysis. The motivation of this approach is to use the fast linear analysis to
perform the exploratory phase of the optimisation, before the nonlinear analysis is used to fine tune the
design for the increased stresses seen in the nonlinear case. I test this approach on the baseline optimisation
formulation covered at the beginning of this section, in one case starting from the same reasonably good
baseline uCRM wingbox design as the previous optimisations and, in a second case, starting from a poor
initial design with uniform sizing throughout the wingbox. This poor initial design is not only heavier than
the good starting design used previously, but also violates the failure constraints by a much greater margin,
making the optimisation problem significantly more challenging.

Results

Figure 5.22 shows that, when starting from the good initial design, the bi-level approach is 7% slower than
optimising with only nonlinear analysis.
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Figure 5.22: When starting from the ‘good’ baseline uCRM design, the bi-level approach is 7% slower

However, when starting from the poor design, as shown in figure 5.23, the linear phase of the optimisation
is able to quickly produce a reasonable design which greatly reduces the number of iterations required in
the nonlinear phase. As a result, the bi-level approach is 37% faster.

Crucially, figure 5.24 shows that both the standard and bi-level optimisation approaches converge to the
same optimised design, including the large increase in the bending stiffness of the centre wingbox lower
skin. The ability of both these optimisation to reach the same optimum from such different initial points
suggests that the design space for this optimisation problem is well formed and does not contain local
optima.
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Figure 5.23: When starting from a very poor initial design, the bi-level approach is 37% faster.
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Figure 5.24: The optimisations starting from the baseline uCRM and starting from the linear optimised design converge to
identical optima.

5.2. Aeroelastic Optimisation Studies
Finally, in this section I perform aeroelastic optimisation of the uCRM wingboxes. Although the initial aim
of this thesis was to perform aerostructural optimisations, where the optimiser controls both the structural
sizing and shape of the wing, it was discovered during the course of the thesis that the source code for
computing partial derivatives of the nonlinear element residuals with respect to nodal coordinates contains
fatal errors. The consequence of this is that derivatives with respect to design variables that alter the
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geometry of the wingbox structure cannot be computed when using TACS’ nonlinear element formulations.
The optimisations presented here are therefore limited to optimising structural sizing considering coupled
aeroelastic behaviour. These optimisations still provide useful insight as, unlike in the previously performed
structural optimisations, when using coupled aerostructural analysis and adjoint derivatives, the optimiser
is able to tune the stiffness distribution of the wingbox in order to positively influence the aerodynamic
loads it experiences.

5.2.1. Methodology

As with the structural optimisations, I perform these aeroelastic optimisations on both uCRM models and
with both linear and nonlinear structural formulations. The formulation of the aeroelastic optimisation
problem is identical to the baseline structural optimisation formulation with the following exceptions:

• Functions of interest are computed using coupled aerostructural analysis at the 3 manoeuvre condi-
tions described in section 4.1.2 and gradients are computed using MACH’s coupled adjoint solver.

• Two additional trim constraints for each flight condition ensure that the generated lift matches the
aircraft maximum take-off weight (MTOW) and that there is zero pitching moment.

• To satisfy these constraints, the angle of attack and tail rotation at each flight condition are added
as design variables.

• To increase the aerostructural coupling of the optimisation problem, with the hope of accentuating
any differences in linear and nonlinear optimised designs. I assume that the mass of the wingbox
affects the aircraft’s MTOW and consequently the lift required in each flight condition. As was done
by Brooks et al. [81], I multiply the wingbox mass by 1.25 to produce an estimate of the total wing
mass. I then add this mass to a reference mass which is calibrated such that the baseline uCRM
wingbox design results in the original uCRM MTOW of 268× 103 kg.

With the introduction of RANS CFD, the cost of computing each coupled aerostructural solution, and
particularly each adjoint derivative, is far higher than in pure structural optimisation. I therefore take a
number of steps to keep the runtime of each aeroelastic optimisation practical:

• I use the coarse FE and CFD meshes and run the three flight conditions in parallel on 144 cores
each, giving a total of 432 cores.

• I use the structural designs from the baseline structural optimisations are used as the initial designs
for the aeroelastic optimisations.

• Before starting each optimisation, trimmed aerostructural analyses are run to compute angle of
attack and tail rotation values that correctly trim the aircraft for each flight condition.

5.2.2. Results

Unfortunately, I am unable to present results from the aeroelastic optimisations of the uCRM-13.5 in
this section. Although the geometrically nonlinear aeroelastic optimisation of the uCRM-13.5 made good
progress towards an optimised design, the linear aeroelastic optimisation exited significantly earlier due to
numerical difficulties, not converging to an optimal design. It is therefore impossible to draw any valid
conclusions about the effects of geometric nonlinearity by comparing the results of these optimisations and
I therefore present only the results of the uCRM-9 optimisations in this section.

Figure 5.25 shows the optimality, feasibility and objective function histories from the two aeroelastic
optimisations of the uCRM-9. Both optimisations ended with a SNOPT 40-41 exit code which indicates
that SNOPT reached a point it could not improve but had not reached the specified optimality tolerance.
This failure to reach the same optimality value as achieved in the structural optimisations is somewhat
expected as it is not currently possible to achieve the same accuracy in the coupled adjoint gradients
as is achieved in the pure structural or aerodynamic adjoints[6]. Better luck may be had re-running the
optimisations with a tighter convergence tolerance on the coupled adjoint solver but this would significantly
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increase the required computation time, which is already dominated by the coupled adjoint computation.
Both optimisations do however achieve the desired feasibility and the structural mass shows almost no
change over the second half of the optimisations which is an encouraging if not conclusive indication that
the optimiser has converged to an optima.
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Figure 5.25: Convergence histories of the uCRM-9 aeroelastic optimisations.

The difference in mass between the linear and nonlinear aeroelastically optimised designs is 3.2%, slightly
less than the 4% difference seen in the structurally optimised designs. The skin and rib sizing distributions,
shown in figures 5.27 and 5.28 are very similar to those seen in the structurally optimised designs. As with
those designs, the main increase in skin thickness from linear to nonlinear optimised designs is in the upper
skin around the engine mount and in the centre wingbox, and the majority of the ribs are identically sized
in the linear and nonlinear cases due to the previously discussed issues with the baseline structural design
parameterisation.

The most striking difference between the structurally and aeroelastically optimised designs is in the sizing
of the spars, shown in figure 5.29. In both the linear and nonlinear cases, the optimiser greatly reinforces
the leading edge spar in order to shift the elastic axis of the wing forwards and induce more passive
load alleviation under bending. Although this is a significant difference between the structurally and
aeroelastically optimised designs, the spar mass is the least affected of the four component groups by the
addition of nonlinearity. The lift and twist distributions in figure 5.30 show that the linear and nonlinear
optimised designs achieve almost identical levels of passive load alleviation.

The fact that the geometrically nonlinear optimisation still produces the heavier design is somewhat surpris-
ing given the results of the aerostructural analysis studies, which showed that adding geometric nonlinearity
decreased the bending stresses in the wing, and the fact that the above results show no significant dif-
ference in the level of passive load alleviation achieved by the two designs. The most likely cause for
this unexpected result is the unphysical stress peaks present in distorted elements in the FE mesh. To
demonstrate this, figure 5.31 shows the Von Mises failure criterion distributions in the upper skin of the
uCRM-9 taken from the trimmed 2.5 g aerostructural analysis studies. Dispersed sparsely over the skin
are quadrilateral elements which are distorted and exhibit unrealistically high stresses. Despite seeing lower
stresses over the majority of the skin, it appears that the nonlinear analysis also amplifies unrealistic stress
peaks and, as a result, the aggregated stress constraint value is slightly higher in the nonlinear analysis.
Consequently, panels in the wingbox with these distorted elements are significantly oversized by the op-
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Figure 5.26: Component mass histories of the uCRM-9 aeroelastic optimisations.
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Figure 5.27: The skin sizing distributions in the linear and nonlinear aeroelastically optimised wings look very similar to those
from the purely structurally optimised designs.

timiser and, if tight adjacency constraints are used, so too are adjacent panels despite their lack of stress
peaks. This unfortunate oversizing will be present in both the linear and nonlinear optimised designs but,
crucially, it appears that this effect is stronger in the nonlinear case, thus resulting in a heavier optimised
wingbox despite generally experiencing lower bending stresses.

Another possible explanation is that the aeroelastic design space contains local optima and that each
aeroelastic optimisation has converged to a different local optimum nearest it’s initial structurally optimised
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Figure 5.28: As seen in the structural optimisation studies, there is no significant difference in rib sizing between the linear
and nonlinear optimised designs when using the baseline parameterisation that uses the same stiffener height and pitch on all
ribs.
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Figure 5.29: The leading edge spar is significantly reinforced in the aeroelastically optimised designs in order to increase
passive load alleviation.

design. This could be investigated by repeating the linear and nonlinear optimisations starting from the
same initial design but the explanation seems unlikely, given the results shown in the previous section,
where the standard and bi-level structural optimisation approaches converged to the same optimum from
very different initial designs.
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Figure 5.30: The spanwise lift and twist distributions in the two optimised uCRM-9 wings are virtually identical.

Figure 5.31: In a trimmed aerostructural analysis, even though the majority of the wingbox sees lower stresses, unrealistic
stress peaks in distorted elements result in a higher failure constraint value in the nonlinear case.

Table 5.4 compares the number of optimiser iterations and function evaluations and the runtimes of the
linear and nonlinear uCRM-9 aeroelastic optimisations. The geometrically nonlinear optimisation takes 26%
more major iterations before exiting, but only requires 19% more runtime resulting in a 6% lower average
time per major iteration. This does not indicate that the nonlinear aerostructural analysis process is any
cheaper than the linear analysis but simply that in the nonlinear optimisation, fewer function evaluations
were required per major iteration, this is expected as the optimiser typically requires fewer line searches
in the later stages of the optimisation. The actual increase in the computational cost of each function
evaluation due to the addition of the nonlinear structural formulation is only 14%, a far lower increase than
seen in the analysis studies or the structural optimisations.

The reasons for this relatively small penalty associated with geometric nonlinearity during aeroelastic op-
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Table 5.4: Comparison of time and number of optimiser iterations required for each aeroelastic optimisation.

Value Linear Nonlinear ∆∆∆(%) Units

Major Iterations 147 185 26

Function Evaluations 558 581 4

Time 53510 63592 19 s

Time per Major Iteration 364 343 -6 s

Time per Function Evaluation 96 109 14 s

timisation are threefold:

1. With the mesh sizes used here, the aerostructural solution time is still dominated by the time spent
in the CFD solver.

2. Most times structural solver is called it can be restarted efficiently from the previous solution.

3. The coupled adjoint gradient computation, which dominates the computational cost of the aeroelastic
optimisation, is no more expensive in the nonlinear case.

5.3. Chapter Summary
In this chapter, I performed structural and aerostructural optimisations of the undeflected common research
model (uCRM)s using both linear and geometrically nonlinear structural analysis formulations in order to
asses the effects of geometrically nonlinear behaviour on the optimal design of high-aspect-ratio wings
(HARW).

In section 5.1, I perform structural optimisation of both uCRM wingboxes under fixed loading. The optim-
isations minimised mass with respect to 6-700 structural sizing variables, subject to 15 failure constraints
across 3 loadcases and 7-800 linear sizing constraints. With the baseline problem formulation, using geo-
metrically nonlinear structural analysis lead to a 6% increase in the mass of the optimised high aspect-ratio
uCRM-13.5 wingbox, and a smaller but still significant 4% increase in mass in the moderate aspect-ratio
uCRM-9. These mass increases occurred mostly in the skin and are consistent with the increases in bending
stresses seen in the structural analysis studies presented in chapter 4. I demonstrated that, given sufficient
design freedom, the optimiser was able to correctly size all the ribs in the wingbox and a significant increase
in bending stiffness is seen in the ribs sized using nonlinear analysis due to the presence of Brazier loads.
The mass penalty due to these loads is however relatively small. I also demonstrated that the cost of
geometrically nonlinear structural optimisation is roughly an order of magnitude greater than when using
linear analysis. When starting from a poor initial design, I showed that this slowdown can be reduced by
up to 40% by using a bi-level approach in which an initial optimisation using linear analysis is performed
to generate a good starting point for a subsequent geometrically nonlinear optimisation.

In section 5.2 I presented the results of an aeroelastic optimisation of the uCRM-9, using the same
optimisation formulation as in the baseline structural optimisation but this time using coupled aerostructural
analysis and gradient computation, allowing the optimiser control over the aerodynamic load distribution
through aeroelastic tailoring of the structural sizing. I showed the significant differences in the sizing of the
aeroelastically and structurally optimised wingboxes, with the leading edge spar being significantly reinforced
in the aeroelastically optimised designs in order to increase passive load alleviation. The mass increase from
linear to nonlinear aeroelastically optimised wingboxes was smaller than seen in the structural optimisations
but remains inconsistent with the overall decrease in bending stresses demonstrated when comparing
geometrically linear and nonlinear aerostructural analysis results in chapter 4. I posited that this unexpected
mass increase is caused by unrealistic stress peaks in distorted elements within the structural mesh. These
stress peaks appear to be amplified more, relative to the stresses in surrounding elements, in the nonlinear
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structural analyses which causes the wingboxes optimised with nonlinear analysis to be more conservatively
sized. I compared the spanwise lift and twist distributions of the two optimised designs and concluded
that, at least for wings of a moderate aspect-ratio such as the uCRM-9, geometrically nonlinearity has a
negligible effect on passive load alleviation. Finally, I demonstrated that including geometric nonlinearity
only incurs a 14% in the computational cost of the aeroelastic optimisation.



6
Conclusions

This thesis was motivated by the current knowledge gap concerning the optimal aerostructural design of
high-aspect-ratio wings (HARW) resulting from a capability gap between low-fidelity aeroelastic optimisa-
tion frameworks that include geometric nonlinearities and high-fidelity aeroelastic optimisation frameworks
that cannot. The work done to date on the effect of geometric nonlinearity on the structural sizing of
HARW has either involved structure-only optimisation using low-fidelity tools [22] or single analyses with
high-fidelity tools which are currently too computationally expensive and lack the gradient calculation cap-
ability required for optimisation. [78]. As such, it is not clear what the effects of geometric nonlinearity
are on optimal design of aircraft wings and at what point they become an important consideration.

In this thesis, I therefore aimed to do two things:

1. To develop a tool capable of performing high-fidelity aerostructural analysis and optimisation using
Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) and a geometrically
nonlinear full wingbox finite element (FE) models.

2. To use the tool to investigate the consequences of geometrically nonlinear effects on the aerostruc-
tural design of modern transport aircraft.

Throughout this thesis I develop and use the MACH (MDO of Aircraft Configurations at High-fidelity)
framework, developed at the University of Michigan MDO Lab, which represents the current state of the
art in high-fidelity aerostructural MDO.

6.1. Contributions and Findings
To achieve the first of these aims, I implemented a Newton-Raphson based nonlinear solver in the python
interface to MACH’s high performance finite element library, TACS. In an attempt improve the performance
of the solver I implemented multiple line search methods and an adaptive load incrementation strategy.
After validating the analysis and gradient computation accuracy of the solver, I performed a large set of
performance tests on two different wingbox analysis test cases of differing difficulty. The results of these
tests showed that the energy based method of Matthies and Strang [102] greatly outperformed all other
line search techniques but was still slower than the baseline Newton-Raphson method. The results also
showed that the parameters controlling the adaptive load incrementation, the initial load increment size
and the desired number of iterations per increment, strongly affect the performance of the solver. For the
more challenging wingbox problem, the fastest solution times were achieved with low values for these two
parameters, biasing the solver towards taking many small load steps while in the more stable test case,
the opposite was true. I also introduced two methods for computing the optimal load factor from which
to restart a nonlinear structural analysis from a previous solution. One based on minimising the structural
residual and another novel method based on strain energy minimisation, designed to eliminate issues with
the poor scaling of shell structure problems.

85
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I then implemented some minor modifications in MACH’s aerostructural Gauss-Seidel solver to improve
its peformance when using the geometrically nonlinear structural formulation. The most substantial of
these modifications was the addition of a load scaling ramp as originally proposed by Sanchez et al. [107]
to reduce the time spent solving unrealistically highly loaded structural analyses in the early Gauss-Seidel
iterations. I tested the load ramping strategy on a highly flexible transonic wing test case and showed that
this ramping method can reduce time to reach a coupled solution by up to 40%.

With these solvers developed and tested, I presented I presented the results multiple studies investigating
the effects of including geometric nonlinearity in structural and aerostructural analysis of modern transport
aircraft with moderate and high aspect-ratio wings using both versions of the undeflected common research
model (uCRM)s which represent the aspect-ratios typical of current day transport aircraft and those
entering service in the next two decades. In the first study I performed linear and nonlinear structural analysis
of the two uCRM wingboxes using a fixed set of loads generated by geometrically linear aerostructural
analyses. I showed that, in the high aspect-ratio uCRM-13.5 wingbox, the nonlinear analysis results in
greater bending stresses throughout, particularly in the upper and lower skins where increases of around
10% are observed in the Von Mises and buckling failure criteria. I demonstrated the presence of Brazier
loads in the nonlinear analyses which cause a substantial increase in the compressive axial stress and
buckling failure criteria in the wingbox ribs. Comparing spanwise deflection distributions, I showed that the
correct modelling of large bending kinematics in the geometrically nonlinear analysis results in a significant
inward and forward deflection of the wingtip, on the order of 5% of the wing semispan. I also showed that
any geometrically nonlinear drag-torsion effects, if present, have little effect on the twisting deformation
of the wing, which is dominated by the geometric bend-twist coupling caused by wing sweep. I proposed
that the observed stress bending stress increases and the slightly increased washout in the nonlinear case
are due to the nonlinear analysis correctly maintaining the bending moment caused by the lift forces on
the outboard portions of the wing which are rotated inboard, a conclusion consistent with previous works
demonstrating that linear analyses underpredict bending deformation when subject to follower forces. I
also showed that similar differences in stress distributions are seen when performing nonlinear structural
analysis on the moderate aspect-ratio uCRM-9 wing, albeit to a lesser extent. In this case, the increase
in bending stresses is roughly halved, whilst the increase in the rib buckling criteria remains around 50%.
The computational cost of the nonlinear analyses was greater than that of a linear analysis by a factor of
20 but depends highly on the load factor of the analysis.

Comparing the results of geometrically linear and nonlinear aerostructural analyses, both at equal angles
of attack and at equal lift coefficients, I showed that steady-state aerodynamic performance values are in-
sensitive to the levels of geometric nonlinearity seen in the uCRMs. The strongest effect of the nonlinearity
on aerodynamic behaviour was seen in the pitching moment due to the span shortening and subsequent
shift in the wing’s centre of pressure (COP) under large bending deformations. This resulted in large
relative changes in the tail rotation required to trim the aircraft but the absolute values of the changes
were on the order of fractions of a degree. Changes in quantities such as the lift and drag coefficients
of the aircraft were on the order of 1-4% in the highest load factor manoeuvre conditions and below 1%
in a transonic cruise condition. The increase in the cost of the aerostructural analyses due to the use of
nonlinear structural models was around 40%.

I then compared the wingbox stress distributions from the trimmed aerostructural analyses and showed that
the nonlinear analysis resulted in 5-10% lower bending stresses in the wing skins, the opposite of the results
seen when comparing structural analyses under fixed loading. To a first order approximation I proposed
that this reduction in bending moment in the wingbox is due to a combination of the small reduction in lift
produced by the wing and the inboard shift in the wing’s COP. Buckling loads in the wing skins showed
a similar decrease whilst the ribs saw a similar increase in buckling loads as seen in the structural analysis
studies due to Brazier loading. Geometric nonlinearity did not appear to have a significant effect on the
level of passive load alleviation achieved by either uCRM wing.

I then ran what, as far as I am aware, are the first published examples of structural and aeroelastic
wingbox design optimisation using high-fidelity, geometrically nonlinear structural analysis. I performed
structural optimisations to minimise the mass of the uCRM wingboxes with respect to 6-700 structural
sizing variables, subject to 15 failure constraints across 3 loadcases and 7-800 linear sizing constraints.
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With the baseline problem formulation, the increase in bending stresses seen in the structural analysis
studies lead to a 6% increase in the mass of the optimised uCRM-13.5 wingbox, and a smaller but still
significant 4% increase in mass in the uCRM-9. I also demonstrated in a subsequent optimisation that,
when the optimiser is given sufficient design freedom, a significant increase in bending stiffness is seen in
the ribs sized using nonlinear analysis due to the presence of Brazier loads. The mass penalty due to these
loads is less than 5%. I also demonstrated that the cost of geometrically nonlinear structural optimisation
is roughly an order of magnitude greater than when using linear analysis. When starting from a poor initial
design, I showed that this slowdown can be reduced by up to 40% by using a bi-level approach in which
an initial optimisation using linear analysis is performed to generate a good starting point for a subsequent
geometrically nonlinear optimisation.

Finally, I presented the results of an aeroelastic optimisation of the uCRM-9, using the same optimisation
formulation as in the baseline structural optimisation but this time using coupled aerostructural analysis
and gradient computation, allowing the optimiser control over the aerodynamic load distribution through
aeroelastic tailoring of the structural sizing. I showed the significant differences in the sizing of the
aeroelastically and structurally optimised wingboxes, with the leading edge spar being significantly reinforced
in the aeroelastically optimised designs in order to increase passive load alleviation. The mass increase from
linear to nonlinear aeroelastically optimised wingboxes was smaller than seen in the structural optimisations
but remains inconsistent with the overall decrease in bending stresses demonstrated when comparing
geometrically linear and nonlinear aerostructural analysis comparisons. I posited that this unexpected mass
increase is caused by unrealistic stress peaks in distorted elements within the structural mesh. These
stress peaks appear to be amplified more, relative to the stresses in surrounding elements, in the nonlinear
structural analyses which causes the wingboxes optimised with nonlinear analysis to be more conservatively
sized. I compared the spanwise lift and twist distributions of the two optimised designs and concluded
that, at least for wings of a moderate aspect-ratio such as the uCRM-9, geometrically nonlinearity has a
negligible effect on passive load alleviation. Finally, I demonstrated that including geometric nonlinearity
only incurs a 14% in the computational cost of the aeroelastic optimisation.

6.2. Answers to Research Questions
In order to assess the success of this work in achieving its original aims, I now briefly answer some of the
higher level research questions posed at the start of this thesis.

1. What is the computational cost of performing high-fidelity aerostructural analysis and optim-
isation with a geometrically nonlinear structural model and how can this cost be minimised?

(a) How can the robustness and efficiency of a basic Newton-Raphson solver be improved
for geometrically nonlinear analysis of high aspect-ratio wingboxes? Of the line search
strategies implemented in this work that were intended to improve the stability of the nonlinear
structural solver, the energy based method of Matthies and Strang [102] is the top performer,
being able to converge larger load increments than the pure Newton-Raphson approach in far
fewer iterations than any of the residual minimisation approaches tested. The strength of this
method is that it naturally accounts for the poor scaling of the translational and rotational
degrees of freedom in shell problems. However, for the large deformation wingbox analyses
tested in this work, foregoing any line searches and allowing the base Newton-Raphson method
to take more, smaller load steps results in the fastest convergence. The BFGS updates imple-
mented and tested in this work drastically reduced the stability of the structural solver. As a
result, solutions using these approximate stiffness updates were either unobtainable or far slower
than using full-order stiffness updates. Arc-length methods were not required for this work as I
did not intend to explicitly model the onset of buckling in the wingbox. Buckling prediction is
handled using TACS’ force based buckling failure criteria. As this method provides a very con-
servative prediction of the wing’s critical buckling modes, applying buckling failure constraints
during optimisations is sufficient to avoid the optimiser producing any designs that do explicitly
buckle and would not be possible to converge with the simple load incrementation method I
implemented. Solving the kinds of analyses performed in this work without load incrementation
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would likely be possible using a very conservative line search approach such as the minimum
residual method, such an approach would however likely require 100’s or 1000’s of iterations
to converge while using the adaptive load stepping method of Beluni and Chulya [97] allows a
Newton-Raphson solver to converge the same problem in 20-30 iterations.

(b) How can MACH’s aerostructural solver be modified to work with the TACS nonlinear
solver? No modifications were required in the partitioned Gauss-Seidel aerostructural solver as
this solver simply calls the implemented nonlinear structural solver, which handles the nonlinear
structural solution process, including load incrementation, internally. I did however show that
the aerostructural load ramping method of Sanchez et al. [107] can significantly speed up the
aerostructural solver. In order to use nonlinear structural formulations with pyAeroStructure’s
monolithic aerostructural solver, some form of load incrementation would most likely need to
be built into pyAeroStructure.

(c) What is the overall cost penalty associated with the inclusion of structural geometric
nonlinearity in structural and aerostructural analysis and optimisation? For a standalone
structural analysis, the addition of geometric nonlinearity increases the computational cost by
a factor of around 20 compared to a linear analysis. However, when performing structural
optimisation, the nonlinear structural solver can be restarted from the last converged solution
each time it is called which reduces this slowdown factor to around 10. When performing
aerostructural analysis, the nonlinear cost increase is further reduced to a factor of around 1.4
as the majority of the solution time is spent in the CFD solver. In the aeroelastic optimisations
performed in this work, the computation time is dominated by the coupled adjoint solver which
is no more expensive when using a nonlinear structural formulation and the penalty factor for
adding nonlinearity therefore reduces to around 1.15.

2. What effects do structural geometric nonlinearities have on the results of structural and aer-
ostructural analysis and optimisation of HARW?

(a) How does geometric nonlinearity affect the results of structural and aerostructural ana-
lysis? In structural analysis with a fixed, realistic aerodynamic load, the primary effects of
geometric nonlinearity are:

i. An increased bending moment in the wingbox which leads to higher stresses in the wing
skins and greater vertical deflection of the wingtip, due to the correct consideration of the
effect of the rotated aerodynamic forces on the outboard portions of the wing.

ii. Compressive loads in the ribs caused by the Brazier effect.

iii. A shortening of the effective wingspan caused by geometrically correct bending kinematics.

I do not consider the increased stressing around the mounting points of the external mass loads
to be a correct nonlinear effect as it is primarily caused by the method for applying these loads
not being suitable for geometrically nonlinear analysis. In aerostructural analysis, the primary
differences seen are caused by the shortening of the effective wingspan:

i. At the same angle of attack, the geometrically nonlinear analysis will result 1-2% less lift
being produced by the deformed wing or, when trimmed to the same lift coefficient, will
require a 1-2% increase in angle of attack.

ii. In swept wings, the wing’s COP shifts forward, requiring less down force or more lift from
the tail to trim the aircraft. As a result the wing is required to produce less lift for the
same overall aircraft lift coefficient and the drag produced by the tail can change by up to
4-5 drag counts.

iii. The lack of the unrealistic stretching of the outboard portions of the wing seen with linear
structural models reduces the bending moment in the wing for the same amount of lift,
resulting in lower stresses in the wingbox.

Any drag torsion effects that may be present have no visible effect on the twisting of the wing
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which is largely dictated by the chordwise stiffness distribution of the wingbox and the geometric
bend-twist coupling caused by wing sweep. Moreover, the outboard portions of a well designed
wing often produce very little drag or even a small amount of thrust, which would lead to
increased washout in the wing.

(b) How does geometric nonlinearity affect the results of structural and aerostructural op-
timisation? During structural optimisation, the increased stresses resulting from the nonlinear
effects described above lead to heavier optimised wingboxes. Most of this mass increase is
seen in the wing skins, whose primary role is to resist bending loads in the wing. Brazier loads
cause a noticeable increase in the bending stiffness of the optimised ribs but in the optimisa-
tions performed in this work, the optimiser is able to achieve this increase without much of an
appreciable increase in mass, presumably by shifting material from the rib panel skins to their
stiffeners. The majority of the increase in rib mass seen in the nonlinear optimisations comes
from the fuselage junction rib which is subject to far more complex loading that I have not
investigated in detail.

Due to issues with the computation of geometric derivatives with TACS’ nonlinear elements, I
was unfortunately unable to perform any true aerostructural optimisations with geometric design
variables to investigate how geometric nonlinearity affect the optimal planform of HARW. I
was therefore limited to using structural sizing and trim variables, performing what I refer
to as aeroelastic optimisation. Optimising structural sizing considering coupled aeroelastic
behaviour. Moreover, in the time available I was only able to successfully complete aeroelastic
optimisations of the moderate aspect-ratio uCRM-9 which shows much weaker geometrically
nonlinear behaviour than the uCRM-13.5. The results obtained showed a similar but slightly
smaller increase in the mass of the uCRM-9 wingbox than was seen in the pure structural
optimisations. However, based on the decrease in stress seen in the nonlinear case when
comparing trimmed aerostructural analyses, it is my assertion that the geometrically nonlinear
aeroelastic optimisation should result in a lower mass wingbox and that the increase in this case
is caused by poor quality elements in the structural mesh as discussed above. Therefore, it is
hard to draw any conclusions on the effect of geometric nonlinearity on the results of aeroelastic
optimisation without further investigation.

(c) How critical is the inclusion of geometric nonlinearity in the optimal design of HARW for
future commercial transport aircraft? Based on the results presented in this work, it appears
that, although geometric nonlinearity has noticeable effects on even moderate aspect-ratio
transport aircraft wings like the uCRM-9, these effects have relatively minor influence on the
design of even the next generation of high aspect-ratio transport aircraft wings. This conclusion
is however limited in scope as this work only considers a limited number of static aeroelastic
loadcases on commercial transport aircraft wings. There are many aircraft flying today, such
as sail planes or high altitude, long endurance (HALE) aircraft that have far greater aspect-
ratios than the uCRM-13.5. A few of these aircraft, such as NASA’s Helios and Facebook’s
Aquila protoypes, have famously suffered catastrophic failures due to geometrically nonlinear
effects not considered during their design Additionally, other phenomena that are important
for HARW design may be affected more critically by geometric nonlinearity, including control
surface effectiveness, flutter and flight dynamics.

6.3. Recommendations for Future work
There are many avenues for future work improving and applying the geometrically nonlinear capabilities
introduced to MACH in this work, including:

Quantifying the effect of poor quality structural meshes: In order to substantiate some of the claims I
made about the effect of the distorted elements in the current uCRM structural meshes, the wingbox
geometries should be remeshed, taking great care to avoid such distorted elements, before re-running
the optimisations performed in this thesis.
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Making MACH fully geometrically nonlinear: As I have mentioned already in this work, both RLT load-
displacement transfer scheme and the method used for applying external mass loads are both still
not valid under large deformations. Upgrading these methods to be geometrically exact may increase
the effect of geometric nonlinearity on the kind of optimisations performed in this work. During
the course of this thesis, I successfully implemented a geometrically nonlinear version of the RLT
displacement transfer method but extending this to the load transfer scheme and moreover the
relevant gradient computation routines is a more challenging implementation task.

Integrating nonlinear structural formulations with MACH’s montolithic aerostructural solver: In this
work I used only the partitioned Gauss-Seidel solver due to the ease of including nonlinear structural
analysis to the solver. As a next step, efforts should be made to modify MACH’s monolithic coupled
Newton-Krylov aerostructural solver to work with nonlinear structural formulations due to the po-
tential performance benefits. As mentioned above, this may require integrating some form of load
incrementation into the aerostructural solver.

Enabling true aerostructural optimisation: The original end goal of this thesis was to perform simul-
taneous optimisation of the uCRM’s structural sizing and wing shape with geometrically nonlinear
aerostructural analysis and in doing so, gain an understanding on the effect of geometric nonlinear-
ities on the optimal aspect-ratio of the next generation of transport aircraft. To enable this, the
geometric derivative errors in TACS’ current nonlinear elements must be overcome. This could be
done either by fixing the current errors in the MITC shell elements used in MACH, or by integrating
the newer version of TACS into MACH and using it’s MITC9 shell elements which do not suffer from
this error.

Aerostructural optimisation of extermely flexible wings: Previously, the vast majority of published work
using MACH has focused on optimising commercial transport aircaft. With geometrically nonlinear
capabilities added it would be interesting to apply MACH to the aerostructural design of an extremely
flexible HALE aircraft. This may pose a significant challenge for MACH as the ADflow CFD code is
specialised for supersonic and transonic flows and thus loses much of it’s robustness and efficiency
when simulating subsonic flows.

Validation of nonlinear aerostructural solver: To date, MACH’s aerostructural solver has not been val-
idated against any aeroelastic benchmark problems. An excellent candidate for such a validation case
is the highly flexible Pazy wing, designed for the large deflection working group of the aeroelastic
prediction workshop, which is currently undergoing a wind tunnel test campaign.
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A
The Importance of Gradients in High-Fidelity

MDO

For MDO to be useful for aerostructural design, it must be able to capture the physical phenomena
responsible for constraining the design in reality, for commercial aircraft this means using computationally
expensive high-fidelity RANS CFD coupled to detailed structural models. Additionally to allow for the
optimiser to have control over the design at a detailed level, we want to use large numbers of design
variables. These two requirements are responsible for the major challenges in the application of MDO to
aerostructural design.

A.1. Optimisation Algorithms
Optimisation algorithms can be categorised by numerous characteristics, perhaps the most stark distinction
is between gradient-based and gradient-free algorithms. As the name suggests, gradient-based algorithms
use both the values and gradients of the objective and constraint functions at a given point to decide
which point to sample next, whilst gradient-free methods require only the objective and constrain function
values. Although all optimisation algorithms use some form of heuristic which pushes the solution in the
direction of reducing the objective, and could therefore arguably be defined as quasi-gradient-based, it is
the explicit use of gradient values which separates the two categories.

In order for it to be practical to perform MDO using expensive high-fidelity analysis, it is critical that the
chosen optimisation algorithm requires the fewest possible objective and constraint function evaluations
to reach an optimum, especially as problems scale to large numbers of design variables. Lyu et al. [114]
compared a selection of gradient-free algorithms with gradient-based algorithms using both analytic and
finite difference gradient calculation methods on the multi-dimensional Rosenbrock function, a simple but
non-trivial benchmark optimisation problem [115]. Their results, shown in figure A.1, show that even for
moderately sized problems with O (10− 100) design variables, the gradient-free genetic algorithm and
particle swarm methods require O

(
106 − 108

)
function evaluations, making them completely impractical

for any problem where function evaluations take more than a fraction of a second to evaluate. In contrast,
the gradient-based methods exhibit much better scaling with the number of design variables however, as
the problem size scales, the disparity between the methods using analytic gradients and finite difference
gradients grows, to extent that using finite differences is also impractical for cases with expensive function
evaluations and large numbers of design variables. The only remaining choice then is to use a gradient
based optimiser with an efficient method for computing analytic derivatives with respect to many design
variables.
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Figure A.1: Lyu et al. [114] showed that gradient based optimisation techniques using analytical derivatives require
orders of magnitude fewer function evaluations than both gradient-free methods and gradient-based methods
using finite differences, making them the only viable option for large scale, high-fidelity design optimisation.

A.2. Gradient Calculation

A.2.1. Perturbation Based Methods

The previously mentioned finite difference method estimates derivatives by re-evaluating a function with
a small perturbation, h, to one input, using a Taylor series expansion, the derivative can be shown to be
approximated by:

df

dx
=
f (x + h)− f (x)

h
+O (h) (A.1)

Whilst this method requires no modification to an existing calculation code and is thus very simple to
implement, it suffers from multiple accuracy problems. As shown in equation A.1, the truncation error due
to the ignored nonlinear O (h) terms grows with step size however but, when the step size becomes too
small, the derivative can be dominated by subtractive cancellation errors and possibly numerical noise in
the function f . There is thus an optimal perturbation size which minimises the sum of these two errors
which must be determined for a given function. This size is by no means guaranteed to be the constant
across all design variables or even across the entire domain of the function, significant a priori analysis is
therefore required in order to correctly tune it for a given problem. These accuracy problems can be solved
by using the complex step method [116]:

df

dx
=
Im (f (x + ih))

h
+O

(
h2
)

(A.2)

Again using Taylor series, the complex step’s truncation error can be shown to be O
(
h2
)

superior to that
of the finite-difference method and, crucially, the method does not suffer from subtractive error, making it
accurate for arbitrarily small perturbations. The disadvantages of the method relative to finite-differences
are that it often requires extensive code modification to allow the use of complex numbers and that it
is typically significantly slower than finite-differences due to the complex arithmetic required. The bigger
issue with both these methods is that, as mentioned in the previous section, both require one additional
function analysis per input variable and thus render large scale MDO impractical.
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A.2.2. Analytical Differentiation
The two approaches just presented are often described as ‘black box’ approaches as they rely solely on
the inputs and outputs of a function, requiring no knowledge of the calculations performed within. In
contrast, the two remaining approaches for calculating derivatives rely on implementing additional code to
explicitly calculate derivatives. Analytical methods involve manually differentiating the original equations
behind a piece of code and implementing new code to calculate these derivatives. This is generally the
most computationally efficient and accurate method for calculating derivatives but requires a great amount
of effort to implement. A particular challenge occurs when the derivative is required of a function which
depends on the solution of a system of equations, such as the solution of a CFD or FE analysis, the
challenge being that the calculation of such a function cannot typically be written as an explicit function.
To calculate such derivatives analytically, two methods exist, the direct method and the adjoint method.

Consider a set of Nf functions of interest,
{
F
}

, used for the computation of the objective and constraint

functions of an optimisation problem. We want to calculate the derivatives of the function values with

respect to a set of Nx design variables,
{
x

}
, also known as the Jacobian:

J =
[
dF
dx

]
(Nf×Nx )

=


dF1
dx1

· · · dF1
dxNx

...
. . .

...
dFNf
dx1

· · · dFNf
dxNx

 (A.3)

Each function of interest, F (x, u) is an explicit function of both the design variables and a set of Nu state

variables,
{
u

}
. The state variables are an implicit function of the design variables through a set of residual

equations which describe the physical system being simulated:{
R (x, u(x))

}
(Nu×1)

=
{
0

}
(A.4)

The Jacobian depends both on the explicit change in F due to the changes in x and due to the change in
u required to satisfy the residual equations, using the chain rule:

[
dF
dx

]
(Nf×Nx )

=
[
∂F
∂x

]
(Nf×Nx )

+
[
∂F
∂u

]
(Nf×Nu)

[
du
dx

]
(Nu×Nx )

(A.5)

Since we know that the residual equations must always be satisfied we can write:[
dR
dx

]
(Nu×Nx )

=
[
∂R
∂x

]
(Nu×Nx )

+
[
∂R
∂u

]
(Nu×Nu)

[
du
dx

]
(Nu×Nx )

=
[
0

]
(A.6)

[
∂R
∂u

]
(Nu×Nu)

[
du
dx

]
(Nu×Nx )

= −
[
∂R
∂x

]
(Nu×Nx )

(A.7)

Rearranging A.7 and inserting into A.5 gives:

[
dF
dx

]
(Nf×Nx )

=
[
∂F
∂x

]
(Nf×Nx )

−
[
∂F
∂u

]
(Nf×Nu)

[
∂R
∂u

]−1
(Nu×Nu)

[
∂R
∂x

]
(Nu×Nx )

(A.8)

The blue partial derivative terms in A.8 are relatively cheap to compute, the red term involves inverting the
Jacobian of the residual equations or, in reality, solving a system of linear equations the same size as the
original system of residual equations. Since the residual equations describe our high-fidelity analysis, solving
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this system for a single right hand side vector can be thought of as having roughly the same computational
cost as the original high-fidelity analysis. As written in A.8, calculating our Jacobian requires the solution
of the system of equations for Nx right hand side vectors, in other words, one expensive computation per
design variable. This is known as the direct method and clearly shows the same poor scaling with the
number of design variables as the finite difference and complex step methods.

The adjoint method tackles this problem by transposing the some of the terms in A.8:

[[
∂F
∂u

] [
∂R
∂u

]−1]T

=
[
∂R
∂u

]−T

(Nu×Nu)

[
∂F
∂u

]T
(Nu×Nf )

=
[
ψ

]
(Nu×Nf )

(A.9)

[
dF
dx

]
(Nf×Nx )

=
[
∂F
∂x

]
(Nf×Nx )

−
[
ψ

]T
(Nf×Nx )

[
∂R
∂x

]
(Nu×Nx )

(A.10)

A.9 clearly shows that using the adjoint requires solving the transpose of the direct methods system of
equation with Nf right hand sides. Assuming an MDO problem contains a large number of design variables
(O
(
103
)
) and a small number of functions of interest (O (10)), the adjoint method therefore offers an

orders of magnitude reduction in computational cost over the direct method.

This derivation assumed that the governing equations of our physical system had already been discretised
to form the residual equations R, this form of the adjoint is therefore referred to as a discrete adjoint. A
continuous adjoint can be formed by applying a similar technique to the underlying governing equations and
then discretising the resulting continuous adjoint equations. Both methods provide their own advantages
and disadvantages. The continuous method can be solved using the same solver as the original equations
and is therefore typically more efficient but requires the manual differentiation of the relevant governing
equations which is a significant challenge and tends to suffer from lower accuracy and other numerical
issues [84]. The discrete adjoint, although less computationally efficient, has become more popular in
recent years, because differentiating the discretised equations retains consistency between the behaviour
of the gradient and the original function [84]. The other key advantage of the discrete approach is that
the partial derivative terms (shown in blue in the above equations), do not necessarily need to be hand
differentiated, instead, it is possible to compute them using automatic, or AD.

A.2.3. Algorithmic Differentiation

AD is essentially the same as the analytical approach exept that an algorithm is used to differentiate a piece
of code, line by line, calculating total derivatives using the chain rule. By moving through the derivative
chain from either direction, AD can be performed in forward or reverse modes, which are analagous to the
direct and adjoint methods respectively. AD can be implemented using source code transformation, where
the algorithm generates new code for calculating the derivatives, or through operator overloading, where
elementary operations are altered to work with a new variable type which adds derivative information to a
typical floating point variable. Source code transformation is generally the preffered method as it can be
as efficient as analytic methods in terms of speed and memory but such tools are not available for some
popular languages such as C++ [84, 117].

A.2.4. Coupled Adjoints

The power of MDO lies in its ability to correctly consider multidisciplinary tradeoffs, a task which requires
the accurate calculation of multidisciplinary derivatives. Just as coupling analysis tools from different
disciplines is a challenge, efficiently computing multidisciplinary derivatives represents a key obstacle to
large-scale MDO. To explain this challenge, consider a system of N disciplines, each one of which is
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defined by it’s own system of residual equations, state variables and adjoint variables:

{
R
}
=



{
R1
}

...{
RN
}
 ,

{
u

}
=



{
u1

}
...{
uN

}
 ,

[
ψ

]
=


[
ψ1

]
...[
ψN

]


Assuming that all disciplines are coupled to each other, equation A.9 then becomes:[
∂R
∂u

]T [
ψ

]
=

[
∂R
∂u

]T
(A.11)


[
dR1
du1

]
· · ·

[
dR1
duN

]
...

. . .
...[

dRN
du1

]
· · ·

[
dRN
duN

]


T 
[
ψ1

]
...[
ψN

]
 =


[
dF
du1

]
...[
dF
duN

]


T

(A.12)

The diagonal terms of the Jacobian in A.12 are simply the Jacobians of each system of residual equations,
just as appeared in the single-discipline adjoint equation. The off-diagonal terms however, describe the
derivative of the residuals of one discipline with respect to the state variables of another discipline, for
example the derivative of a structural solver’s residuals with respect to the velocity and pressure states of
a CFD code. Computing these terms adds significant complexity to the derivative calculation process as
it requires the additional communication of derivatives between disciplines and the differentiation of any
operations involved in coupling the disciplines. As will be described in the next section, the first coupled
adjoint implementations therefore required extensive development effort and were highly specialised for the
2-3 disciplinary codes they were developed for.

Martins and Hwang [118] presented the unified derivatives equation, a common equation from which all
methods for computing derivatives can be derived. Using this equation, in collaboration with Gray et al,
they developed an automated method for computing the coupled derivatives of arbitrary numbers and
arrangements of disciplines [119, 120] and implemented the method in NASA’s open source OpenMDAO
framework [121]. Hwang et al. [122] used this framework to perform a satellite design optimisation involving
7 disciplines, 25000 design variables and >2 million state variables.



B
Structural Solver Validation Cases

This appendix contains the results from 4 benchmark geometrically nonlinear shell problems used to validate
TACS’ nonlinear analysis capabilities. The four problems are originally defined in the NAFEMS publication
‘Assembly Benchmark Tests for 3D Beams & Shell Exhibiting Geometric Non-Linear Behaviour’ but have
also been used and described in numerous publications since. I compare the results from TACS with the
results published by Sze et al. [104] who provide results from both the commercial FE code Abaqus and,
for the simpler problems, analytical theory. All analyses are performed using isotropic material properties.

Where relative errors are presented for both TACS and Abaqus, these errors are computed relative to the
analytical solution data. Where only TACS errors are displayed, an analytical solution is not available and
thus the errors presented are computed relative to the Abaqus solution.

In some of the problems presented, I present multiple sets of TACS results, each with a different ‘drilling
parameter’. By default, most shell finite elements have zero stiffness to rotations around the shell surface
normal vector, often referred to as the ‘drilling’ degree of freedom. To avoid numerical issues, an artificial
stiffness term is added to the elements which penalises any deviation of the nodal drilling rotations from the
average in plane drilling rotation of the element. The scaling of this penalty term in TACS is determined
by a drilling regularisation parameter. Setting this value too low can result in spurious in-plane rotational
buckling modes appearing during nonlinear solutions, whilst setting it too high can degrade the accuracy of
the solution by overly stiffening the structure. While performing these benchmark analyses, I occasionally
found it necessary to change the drilling regularisation parameter from its default value of 10, either needing
to increase it to overcome stability problems or to decrease it in order to compute accurate solutions.

104
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B.1. Case 1: Cantilever Subjected to End Shear Force

(a) Problem definition.

(b) Force-displacement curves. (c) Relative solution errors.

Figure B.1: Case 1: Cantilever Subjected to End Shear Force.
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B.2. Case 2: Cantilever Subjected to End Moment

(a) Problem definition.

(b) Moment-displacement curves. (c) Relative solution errors.

Figure B.2: Case 2: Cantilever Subjected to End Moment.
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B.3. Case 3: Hemispherical Shell Subject to Alternating Radial Forces

(a) Problem definition.

(b) Force-displacement curves. (c) Relative solution errors.

Figure B.3: Case 3: Hemispherical Shell Subject to Alternating Radial Forces
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B.4. Case 4: Semi-cylindrical Shell subject to Pinching Force

(a) Problem definition.

(b) Force-displacement curves. (c) Relative solution errors.

Figure B.4: Case 4: Semi-cylindrical Shell subject to Pinching Force
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