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Background & Aim
 Lane detection is crucial for Automated Vehicles and ADAS

Available vision based methods usually use one image to do lane detection

 Traditional methods usually adopted cumbersome hand-crafted features

Deep learning based methods in literature still can not make full use of

spatio-temporal information

Available methods can not handle challenging driving scenes

The main aim of this study is:

 To develop robust detection model handling challenging driving scenes

 To deliver better feature extraction in every single image

 To make the most of spatio-temporal information in continuous frames

 End-to-end Encoder-decoder Structure

 Single Image Feature Extraction Module

 Spatial-temporal Feature Integration Module

 Implementation with widely-used neural network backbones

 Tested and verified on two commonly used data set

 12 proposed model variants and 6 baselines are evaluated and compared

Proposed  Deep Learning Model Architecture 

Ablation Study Conclusions

FIGURE 1. Examples of Challenging Driving Scenes.

FIGURE 2. The architecture of the proposed hybrid spatial-temporal deep neural network
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Pooling indices reuse for SegNet-based backbone.
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 Constructed by spatial-temporal recurrent neural network (ST-RNN)

 ConvLSTM and ConvGRU are employed and compared

 Encoder equipped with the spatial convolutional neural network (SCNN)

 SegNet, UNet and its light version UNetLight are adopted 

 TuSimple and tvtLANE

Evaluation Metrics
 Accuracy

 F1-Meassure

 Precision

 Recall

 Parameter Size

 MACs (Multiply-accumulate operations)
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Baseline Models: (c) SegNet; (d) UNet; (e) SegNet_ConvLSTM; (f) UNet_ConvLSTM

Proposed Models SegNet-based: (g) SCNN_SegNet_ConvGRU1; (h) SCNN_SegNet_ConvGRU2;  

                      (i) SCNN_SegNet_ConvLSTM1; (j) SCNN_SegNet_ConvLSTM2 

Ground truth: (b)

Input images: (a)

Proposed Models UNet-based: (k)  SCNN_UNet_ConvGRU1;    (l) SCNN_UNet_ConvGRU2;

                                  (m) SCNN_UNet_ConvLSTM1;  (n) SCNN_UNet_ConvLSTM2 

Proposed Models UNetLight-based: (o) SCNN_UNetLight_ConvGRU1; 

(p) SCNN_UNetLight_ConvGRU2; (q) SCNN_UNetLight_ConvLSTM1; (r) SCNN_UNetLight_ConvLSTM2 
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Baseline Models: (c) SegNet; (d) UNet; (e) SegNet_ConvLSTM; (f) UNet_ConvLSTM

Proposed Models SegNet-based: (g) SCNN_SegNet_ConvGRU1; (h) SCNN_SegNet_ConvGRU2;  

                      (i) SCNN_SegNet_ConvLSTM1; (j) SCNN_SegNet_ConvLSTM2 

Ground truth: (b)

Input images: (a)

Proposed Models Unet-based:  (k) SCNN_UNet_ConvGRU1;    (l) SCNN_UNet_ConvGRU2;

                                 (m) SCNN_UNet_ConvLSTM1;  (n) SCNN_UNet_ConvLSTM2 

Proposed Models UNetLight-based: (o) SCNN_UNetLight_ConvGRU1; 

(p) SCNN_UNetLight_ConvGRU2; (q) SCNN_UNetLight_ConvLSTM1; (r) SCNN_UNetLight_ConvLSTM2 
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Params 
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Models 

using 

single 

image  
as input 

Baseline Models 
U-Net 96.54 0.790 0.985 0.877 15.5 13.4 

SegNet 96.93 0.796 0.962 0.871 50.2 29.4 

SCNN* 96.79 0.654 0.808 0.722 77.7 19.2 

LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7 

Models 

using 
continuous  

images 

sequence 
as inputs 

SegNet_ConvLSTM** 97.92 0.874 0.931 0.901 217.0 67.2 

UNet_ConvLSTM** 98.00 0.857 0.958 0.904 69.0 51.1 

Proposed Models (SegNet-Based) 
SCNN_SegNet_ConvGRU1 98.00 0.878 0.935 0.905 219.2 43.7 

SCNN_SegNet_ConvGRU2 98.05 0.888 0.918 0.903 221.5 57.9 

SCNN_SegNet_ConvLSTM1 98.01 0.881 0.935 0.907 220.0 48.5 

SCNN_SegNet_ConvLSTM2 98.07 0.893 0.928 0.910 223.0 67.3 

Proposed Models (UNet-Based) 
SCNN_UNet_ConvGRU1 98.13 0.878 0.957 0.916 77.9 27.7 

SCNN_UNet_ConvGRU2 98.19 0.887 0.950 0.917 87.0 41.9 

SCNN_UNet_ConvLSTM1 98.18 0.886 0.948 0.916 81.0 32.4 

SCNN_UNet_ConvLSTM2 98.19 0.889 0.950 0.918 93.0 51.3 

Proposed Models (Light Version UNet-Based) 
SCNN_UNetLight_ConvGRU1 97.83 0.850 0.960 0.902 19.6 6.9 

SCNN_UNetLight_ConvGRU2 98.01 0.863 0.950 0.905 21.9 10.5 

SCNN_UNetLight_ConvLSTM1 97.71 0.830 0.950 0.886 20.4 8.1 

SCNN_UNetLight_ConvLSTM2 97.76 0.840 0.953 0.893 23.4 12.8 
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FIGURE 4. Visualization of lane-detection results on 

8 challenging driving scenesFIGURE 5. Case study of challenging scene 10 shadow-dark

                       Testing Datasets 

 

 
Testset #1 

(Normal Situations) 

Testset #2 

(Challenging Scenes) 

 
Location 

of SCNN 

Test_ 

Acc 

(%) 

Precisi

on 
Recall 

F1-

Measure 

Test_ 
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SegNet_ConvLSTM Without 97.92 0.874 0.931 0.901 97.83 0.756 0.765 0.761 

SCNN_SegNet_ConvLSTM2 
Conv1_1 98.00 0.884 0.921 0.902 97.92 0.757 0.757 0.757 

Conv2_1 98.07 0.893 0.928 0.910 97.90 0.767 0.766 0.767 

UNet_Conv LSTM Without 98.00 0.857 0.957 0.904 97.93 0.778 0.660 0.714 

SCNN_UNet_ConvLSTM2 
In_Conv_1 98.28 0.896 0.939 0.917 98.08 0.776 0.593 0.672 

Conv1_1 98.19 0.889 0.950 0.918 97.95 0.778 0.640 0.702 
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 The proposed model architecture is
effective and robust beating SOTA
baseline models with large margins in
both normal and challenging cases

FIGURE 6. Visualization of extracted low-level features


