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ABSTRACT 11 

This paper reappraises Perzyna-type viscoplasticity for the constitutive modelling of granular 12 

geomaterials, with emphasis on the simulation of rate/time effects of different magnitude. An existing 13 

elasto-plastic model for sands is first recast into a Perzyna viscoplastic formulation, then 14 

calibrated/validated against laboratory test results on Hostun sand from the literature. Notable model 15 

features include (i) enhanced definition of the viscous nucleus function, and (ii) void ratio dependence 16 

of stiffness and viscous parameters, to model the pycnotropic behaviour of granular materials with a 17 

single set of parameters, uniquely identified against standard creep and triaxial test results. The 18 

comparison between experimental data and numerical simulations points out the predicative capability 19 

of the developed model and the complexity of defining a unique viscous nucleus function to capture 20 

sand behaviour under different loading/initial/boundary and drainage conditions. It is concluded that the 21 

unified viscoplastic simulation of both drained and undrained response is particularly challenging within 22 

Perzyna’s framework and opens to future research in the area. The discussion presented is relevant, for 23 

instance, to the simulation of multi-phase strain localisation phenomena, such as those associated to 24 

slope stability problems in variably saturated soils. 25 

 26 

Keywords: sand, creep, constitutive modelling, Perzyna viscoplasticity, strain localisation, 27 

regularisation 28 

1 INTRODUCTION 29 

There is wide experimental evidence of granular geomaterials responding to external perturbations 30 

rapidly but not instantaneously. The microstructural rearrangements that cause macroscopic 31 

deformations take place over time frames sometimes in the order of minutes – such as in the case of 32 

loose sands [1]. Laboratory investigations regarding strain rate effects, creep and relaxation in sand have 33 

been presented in [1]−[8]. In light of those experimental observations, the mathematical modelling of 34 
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granular soil behaviour may be successfully tackled in the framework of delayed plasticity theories – 35 

also  referred to as viscoplasticity – or through a viscous evanescent relationship. Most viscoplastic 36 

models are formulated according to either of two different approaches: those allowing the stress state to 37 

lie outside the assumed elastic domain [9], [10] and those relying on rate-dependent hardening rules 38 

(consistency viscoplasticity, [11]−[14]). Alternatively, [15]-[16] proposed a viscous evanescent 39 

relationship within a general three-component model framework. Here, the former approach in the 40 

version proposed by Perzyna [9], [17] will be followed due to its proven capability to reproduce the rate-41 

dependence of both fine- and coarse-grained soils [18]−[21], including creep and relaxation phenomena. 42 

Importantly, Perzyna’s viscoplasticity has also proven a suitable conceptual platform for the 43 

interpretation of several soil instabilities ([19], [22]−[25]). 44 

Viscoplasticity has also gained further success over the years as a regularisation technique for strain 45 

localisation simulations. This notable property relates to the intrinsic characteristic length possessed by 46 

viscoplastic media as a consequence of their time-sensitiveness ([11], [22], [26]−[30]). As a 47 

consequence, the ill-posedness of inviscid elasto-plastic problems at the onset of bifurcation can be 48 

remedied [31], as well as the pathologic mesh-dependence of corresponding finite element simulation 49 

results. Enhanced regularisation performance has also been achieved via a non-local reformulation of 50 

standard viscoplastic constitutive equations (e.g. [32], [33]). Such approach is beneficial for materials 51 

whose viscosity-related characteristic length is physically inaccurate, or in fact too small to produce any 52 

regularisation. 53 

This work addresses the less investigated problem of formulating/calibrating viscoplastic models that 54 

can quantitatively capture the rate-dependent behaviour of sands under diverse loading/initial/boundary 55 

conditions. For this purpose, the existing elasto-plastic sand model by Buscarnera and Nova [34] (based 56 

on the previous work of Jommi [35], Jommi and di Prisco [36] and Nova et al. [37]) is reformulated 57 

according to Perzyna’s viscoplastic approach and validated against experimental data from the literature. 58 

Special attention is devoted to the importance of the viscous nucleus definition – main factor affecting 59 

the rate-sensitiveness – and to the intrinsic pycnotropy of sand behaviour (dependence on the void ratio). 60 

The latter aspect is addressed by introducing a straightforward void-ratio dependence of certain soil 61 

parameters (viscosity, stiffness and hardening coefficients), as already explored e.g. by [38].  62 

The ultimate goal of the work is to re-open a discussion on the fundamental requisites of viscoplastic 63 

sand models, not solely in terms of their regularisation performance, but primarily of their physical 64 

soundness predictive capability.   65 
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2 CONSTITUTIVE FORMULATION 66 

The proposed elasto-viscoplastic model is formulated hereafter under the assumption of isotropic 67 

hydro-mechanical behaviour, also including the effects of variation in suction and/or degree of saturation 68 

for generality. The model builds upon the isotropic hardening formulation for unsaturated soils proposed 69 

in [34], based on the previous work of [35]−[37]. Direct notation is adopted, with boldface and lightface 70 

italic symbols denoting tensors/vectors and scalars, respectively. 71 

2.1 Stress/strain variables and elastic law 72 

The small-strain multiaxial formulation of the model is based on the following definition of the 73 

generalised effective Cauchy stress tensor σ' [39], applicable to three-phase porous materials with 74 

incompressible solid grains: 75 

 w g
w wS p S p    σ  σ 1 1  (1) 

where is the total Cauchy stress tensor, pw and pg the pressures of pore liquid water and gas, Sw the 76 

water degree of saturation, and 1 the second-order identity tensor. The cases of dry and water saturated 77 

soil are recovered by setting Sw= 0 and Sw= 1, respectively. 78 

The total strain rate is decomposed additively into elastic/reversible ( eε ) and viscoplastic/irreversible (79 

vpε ) components:  80 

e vp ε ε ε    (2) 

with the latter being by definition time-delayed. The elastic behaviour of the material emerges directly 81 

from a strain energy function  eψ ε : 82 

 e
e

ψ
 


σ ε

ε
 (3) 

and can be than cast into the following rate form: 83 

e vp    σ D ε ε    (4) 

In Equation (4) De is the fourth-order elastic stiffness tensor given by: 84 

 2 e

e
e e

ψ

 

ε
D

ε ε
 (5) 

with  eψ ε being the same stored energy function already adopted by [37], [40], [41] – see Appendix 85 

for more details.  86 
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2.2 Yield function and plastic potential 87 

Yield and plastic potential functions are defined as proposed in [42]: 88 

/ /C 0h 2h hK C K
h h sh

f
A B p p

g
    



1 h  (6) 

with 89 

 
 

 
 

1

2
2

1 4 1
1 1

2 1 1

h h h h h

h h h h

K m m

K m m

α α

α

        
    

 (7) 
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 


  

 (8) 

where the subscript h = f, g is used to indicate either the yield function or the plastic potential. In 91 

Equations (6)−(8) mh and h are constitutive parameters (see Table 1). The interested reader is referred 92 

to [34], [41], [42], where the physical meaning of relevant model parameters is described.  93 

The current stress state is represented through the following three invariants: 94 

3

3/22

tr( )
         sin(3 ) 6

tr( )

1 3
tr( )         

3 2
 S θp  q  

  
   s

s
σ s  (9) 

where p' is the mean effective stress, q the deviator stress (proportional to the norm of the deviator stress 95 

tensor s), and S a trigonometric function of the Lode angle θ (with θ equal to 30° in triaxial compression 96 

and -30° in triaxial extension). The variable Mh (S) in Equation (8) is given after [43]: 97 

     
2

                 
1 1

ch eh
h

ch

cM M
M S c

c c S M
 

  
 (10) 

in which Mc and Me are the values of M(S) associated with triaxial compression and extension, 98 

respectively. The internal variables shp in Equation (6) govern the size of the yield locus and plastic 99 

potential in the effective stress space. In the following, sfp  is simply denoted as sp and termed pre-100 

consolidation stress, while sgp  is a dummy variable that does not affect the stress gradient of g.   101 
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2.3 Viscoplastic flow rule 102 

The rate of viscoplastic strains is obtained according to the well-known approach proposed by Perzyna 103 

[9], [17]: 104 

 vp g
γΦ f




 
ε

σ
  (11) 

where f and g keep denoting yield and plastic potential functions (Equation (6)), and Φ is commonly 105 

referred to as “viscous nucleus”. In the same equation, the so-called “fluidity parameter” γ governs the 106 

rate-sensitiveness of the solid skeleton (γ=1/η, with η viscosity) and specifically the rate at which 107 

viscoplastic strains occur. Increasing γ values reduce the rate-sensitiveness of the material: when γ → ∞ 108 

the mechanical response tends to its elasto-plastic (rate-insensitive) limit. At variance with rate-109 

independent plasticity, the magnitude of the viscoplastic strain rate results directly from the scalar 110 

“distance” Φ between the current stress point and the yield locus (overstress), with no enforcement of 111 

the usual consistency condition. The direction of the instantaneous viscoplastic flow is still governed by 112 

the gradient of the plastic potential g. 113 

The selection of the viscous nucleus function is a distinctive feature of elasto-viscoplastic Perzyna 114 

models. It must be formulated and calibrated to pursue best agreement with experimental data from 115 

standard creep tests, particularly by mobilising in experiments different levels of overstress. It should be 116 

noted that the shape of the viscous nucleus function (and associated parameters) is model-specific, i.e. 117 

affected by all other (elasto-plastic) features of the model. A more comprehensive discussion on this 118 

matter can be found in [1]. Herein, the implications of two different definitions are discussed: 119 

 power-law viscous nucleus, most common in the literature [11]: 120 

  fΦ f
p

f




 
 
 
 
 

 


 (12) 

 exponential viscous nucleus, initially proposed in [1] for loose sands: 121 

  e fΦ f   (13) 

where α is in the above definitions an additional viscous parameter controlling the shape of the viscous 122 

nucleus function (Table 1). The Macaulay brackets < > are used in Equation (12) according their usual 123 

meaning: 124 

      if  0

0          if  < 0

f f
f

f

 










 (14) 
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to make irreversible viscoplastic strains only occur when the stress state lies outside the elastic domain 125 

(i.e. when f > 0). Both expressions (12) - (13) fulfil the relevant theoretical requirements discussed by 126 

[1], while the use of the dimensionless yield function f  is appropriate for pressure-sensitive materials 127 

[44], [45]. 128 

2.4 Hardening rule 129 

Under general hydro-mechanical loading paths, the preconsolidation stress sp  evolves according to 130 

the following hardening rule [34], [35]: 131 

 s s s s sw s w vp vp
v sp p ε ξ ε r p S         (15) 

where ρs, ξs and rsw are material parameters governing mechanical and hydraulic hardening, respectively 132 

(Table 1). In particular, the second term at the right-hand side of Equation (15) models 133 

phenomenologically the hydraulic bonding effect characterising the response of unsaturated soils. In 134 

Equation (15), vp
vε and vp

sε are the rates of volumetric and deviatoric viscoplastic strains respectively: 135 

2 2
;    ;  ;

3 3
v s v sε ε ε ε     ε 1    e ε 1    e     (16) 

where ε is the strain tensor, εv the volumetric strain, εs the deviatoric strain and e is the deviatoric 136 

component of the strain tensor: 137 

1 1
tr( )   ;   tr( )

3 3
   e ε ε 1 e ε ε 1    (17) 

2.5 Influence of relative density 138 

Granular materials respond to mechanical perturbations depending on the current void ratio 139 

(pycnotropy) and effective confining pressure (barotropy). This essential feature has been successfully 140 

captured in the literature through the notion of “state parameter”, which enables to reproduce the 141 

behaviour of loose-to-dense materials with a single set of parameters [46]−[51]. 142 

Herein, the simpler approach proposed in [38] has been preferred to exploit the lack of the so-called 143 

consistency condition. Accordingly, it is possible to incorporate pycnotropy into the viscoplastic 144 

formulation by modulating certain constitutive parameters according to the current relative density (or 145 

void ratio). This allows to describe the main consequences of dense-to-loose transitions (and vice versa), 146 

such as softening and vanishing dilatancy at medium/large strains [32], [38]. As originally proposed in 147 

[38], a linear dependence on the relative density is assumed here for the viscosity η, the representative 148 

elastic shear modulus (G0) and the hardening parameter rsw: 149 
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i ( )Li Di Li rp p p p D    (18) 

in which the value of the generic parameter pi depends on the current relative density Dr and two 150 

bounding values, pLi and pDi, set for the loosest and densest reference conditions – here Dr = 20% and 151 

Dr = 100% respectively. Current Dr value is updated at each integration step based on the evolving soil 152 

volumetric strain [38]. However, such a linear dependence should not be taken for granted, and indeed 153 

the following non-linear relationship has been found to perform better for the constitutive parameters ξs 154 

and ρs (see Section 4.1 and [52]): 155 

 5

i + ( )
e emax min

Li Di Li rDp p p p


   (19) 

where in this case pi represents either ξs or ρs, while emax/emin are the maximum/minimum void ratios of 156 

the sand. In the spirit of the present viscoplastic approach, pycnotropy can be simply reproduced through 157 

density-dependent parameters. Nonetheless, specific Dr–dependences need to be identified by 158 

comparison to experimental results, and may assume the forms exemplified by Equations (18)-(19). 159 

A synopsis of all constitutive parameters and their meaning is given in Table 1. The model as 160 

formulated above is suited for hydro-mechanical processes involving unsaturated conditions and viscous 161 

effects. Its performance in presence of strain localisation problems may be fully regularised by coupling 162 

viscoplasticity and extension to non-locality ([53]−[55]). This can be easily achieved through a non-163 

local reformulation of the viscoplastic flow-rule Equation (11), as successfully attempted in a few 164 

previous works of the authors ([32], [33], [44], [38], [56]−[58]). 165 

The following sections address the calibration and validation of the proposed constitutive model 166 

against the response of clean Hostun sand. Although conceived for generally unsaturated sands, the 167 

model will be solely tested for either saturated or dry conditions, due to the dearth of test data regarding 168 

the rate-sensitiveness of unsaturated sands. The goal is to investigate to what extent a single set of elastic, 169 

plastic and viscous parameters can be identified to capture sand response over a wide range of relative 170 

density, initial/drainage conditions, loading rate and stress paths.  171 

The model described above has been implemented in the finite element code for multiphase porous 172 

media Comes-Geo, developed at the University of Padova ([33], [59]−[66]). All the numerical results 173 

have been obtained via explicit forward Euler stress-point integration [67], [68] after preliminary 174 

verification of the numerical implementation (see [52]) against the simulation results in Buscarnera and 175 

Nova (2009)1. 176 

                                                 
1 It is always possible to compare the performance of a viscoplastic model to the response of its elasto-plastic 
(rate-insensitive) counterpart by simply setting a sufficiently high fluidity parameter  in Equation (11). 
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3 MODEL CALIBRATION FOR LOOSE AND DENSE HOSTUN SAND 177 

All constitutive parameters have been calibrated based on literature triaxial and creep tests on Hostun 178 

sand, allowing a separate identification of elasto-plastic and viscous parameters, respectively. Table 2 179 

summarises the main features (drainage, initial confinement and void ratio) of the reference tests from 180 

[50], [1], [8], [69]−[70] – the same test labels as in the original publications have been kept in the 181 

following. 182 

3.1 Elasto-plastic parameters 183 

The parameters governing the elasto-plastic behaviour have been calibrated by assuming a very high 184 

loading rate, i.e. by artificially forcing the response of the viscoplastic model towards its rate-insensitive 185 

limit. For this purpose the triaxial test results labelled in Table 2 as hos027 d4, batr02 and alert9 have 186 

been best-matched as exemplified in Figure 1. The final set of calibrated elasto-plastic parameters is 187 

reported in Table 3 and Table 4, with the latter providing the loose-to-dense range of Dr-dependent 188 

parameters. 189 

 190 

  
(a) (b) 

(c) (d) 
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Figure 1: Calibration of elasto-plastic parameters against (a), (c) drained and (b), (d) undrained 
triaxial test results for loose (d4, batr02) and dense (hos027, alert9) Hostun sand. 

3.2 Viscous parameters 191 

With the same set of elasto-plastic parameters (Tables 3-4), the viscous parameters of Hostun loose 192 

and dense sand have been separately identified through the drained creep test results from [1] and [8].  193 

di Prisco and Imposimato [1] performed tests on loose Hostun sand (Dr = 20 %) by holding the radial 194 

effective stress constant while increasing the axial component up to attain the target stress obliquity; 195 

subsequent axial stress increments have been then applied with a five minutes time lag to explore the 196 

creep response. Two sets of viscous parameters have been calibrated for the different viscous nucleus 197 

definitions in Equations (12)-(13), namely linear (=1 in the power-law expression) and exponential. 198 

With reference to the last creep step in the original publication (approximately 15 minutes duration), 199 

Figure 2 shows the axial strain vs time performance of the model (solid lines) in comparison to the 200 

experimental data from [1] (circular markers). It is readily apparent that satisfactory agreement can be 201 

achieved in this case regardless of the adopted viscous nucleus, as long as suitable (and nucleus-specific) 202 

viscous parameters are set (see Table 5). 203 

 204 

 205 
Figure 2: Simulation of loose Hostun sand creep by using linear and exponential viscous nuclei 206 

(e0=0.950, p'0=100 kPa): axial strain vs time.  207 
 208 

The viscous parameters for Hostun dense sand (Dr = 71 %2) have been then derived based on the 209 

experimental results from [8] and reported in Table 6. It should be noted that the same value of α (i.e. 210 

same shape of ) has been used for both loose and dense Hostun sand (see Table 5 and Table 6) to 211 

reduce the number of free parameters. Such assumption is reasonably confirmed by data/simulations 212 

presented herein for Hostun sand, although future confirmation for different materials is needed. The 213 

                                                 
2 Given the low viscosity of dense sands, the viscosity identified for Dr = 71 % has been used as pD in Eq. (18). 
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laboratory experiments were performed by initially consolidating the sample under an effective mean 214 

pressure of 80 kPa, then followed by drained triaxial compression; the triaxial compression load path 215 

included three additional stages of creep and cyclic loading, as illustrated in Figure 3.  216 

 

Figure 3: Creep test on dense Hostun sand (after [8]). 

 217 

Experimental and numerical stress-strain curves are presented in Figure 4a for all four creep stages – no 218 

intermediate cyclic loading simulated. For clearer visualisation in Figure 4b, the numerical axial strains 219 

developed during creep after each triaxial compression are compared to the experimental results only 220 

for the case of exponential viscous nucleus.  221 

  
(a) (b) 

Figure 4: Simulation of creep behaviour for dense Hostun sand (e0=0.710, p'0=80 kPa): (a) global 
stress-strain response and (b) time evolution of axial strain. 

The viscoplastic model reproduces with sufficient accuracy the response to all creep stages, though 222 

with some visible deviations from the global stress-strain behaviour (possibly affected by neglecting 223 

intermediate cyclic loading in the numerical simulations). Comparing the creep responses of loose and 224 

dense Hostun sands points out more significant time effects for the former – in expected agreement with 225 

the experimental literature. 226 
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4 MODEL VALIDATION 227 

After the above parameter calibration, the full elasto-viscoplastic model is validated against the data set 228 

overviewed in Table 2. Such a validation is carried out for Hostun sand at two levels: (i) against triaxial 229 

test results already used for the calibration of elasto-plastic parameters (Section 3.1); (ii) against different 230 

experimental results – not previously considered – to produce valuable blind predictions. It should be 231 

noted that the validation level (i) is still necessary to check whether the parameters derived from creep 232 

tests produce appropriate time-sensitiveness when combined with different loading rate and test 233 

conditions. The suitability of assuming Dr-dependent constitutive parameters is also highlighted in this 234 

section.  235 

All numerical simulations have been performed at imposed displacement rates of 1 mm/min and 2 236 

mm/min for drained and undrained triaxial tests, respectively [72] – unless differently specified.   237 

4.1 Drained triaxial compression tests (TXD)  238 

The model is first validated against the experimental results of TXD tests at varying relative density 239 

and effective confinement. The predicted responses arising from the above viscous nucleus definitions 240 

are also critically compared, with all relevant material parameters listed in Table 3 to Table 6. A linear 241 

Dr-dependence (Equation (18)) is in some instances applied to all variable parameters, so as to point out 242 

the better performance the non-linear relationship (19) conclusively applied to the parameters ξs and ρs. 243 

Further insight into the accuracy of the model is provided by comparison to the elasto-plastic predictions 244 

obtained through the kinematic-hardening constitutive model of Gajo and Wood [50]. 245 

4.1.1 Loose Hostun sand 246 

The outcomes of the two different viscous nuclei (Equations (12)-(13)) are compared in Figure 5 for 247 

the TXD response of a loose sample (d4 in Table 2). The results clearly witness the superior performance 248 

of the non-linear/exponential viscous nucleus, which confirms the quite complex dependence of sand 249 

viscosity on the overstress level (i.e. on the value of f). It should be noted that the mismatching TXD 250 

predictions in Figure 5 come after the same level of accuracy achieved by both viscous nuclei in slow 251 

creep tests (Figure 2). This conclusion is also confirmed by the cases of medium dense and dense Hostun 252 

sand discussed in the following. 253 
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(a) (b) 

Figure 5: TXD test on loose Hostun sand (e0=0.945, p'0=300 kPa): (a) deviatoric stress-strain 
response and (b) volumetric behaviour. 

 254 

 

Figure 6: Evolution of the  product for creep (T100a) and TXD (d4) tests on loose Hostun sand. 

The applicability of the exponential viscous nucleus is underpinned by Figure 6, where the evolution of 255 

the  product (fluidity parameter times viscous nucleus) is plotted against the yield function values for 256 

the above TXD (d4) and creep (T100a) tests. Apparently, the linear viscous nucleus leads to very high 257 

values of the yield surface, at variance with the exponential formulation. This stems from the interaction 258 

between the functions assumed in this study for the viscous nucleus and the yield locus [42], with the 259 

latter being in turn a (very) non-linear function of the (over)stress state. The effect of such interaction 260 

stands out under high(er) overstress levels, therefore more clearly under traxial loading than during 261 

creep.  262 

4.1.2 Dense Hostun sand 263 

The comparison between experimental and numerical dense sand behaviour is illustrated in Figure 7 264 

(hos027 in Table 2). As in the loose sand case, the results from the linear viscous nucleus are quite 265 

unsatisfactory: the peak stress is significantly underestimated (Figure 7a), while the predicted volumetric 266 
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strain trend is less dilative than in reality (Figure 7b). Conversely, the use of exponential nucleus allows 267 

to capture correctly both the peak stress and the dilatancy, although the strain softening behaviour can 268 

only be reproduced via the non- linear Dr-dependence of ξs and ρs (Equation (19)). 269 

  
(a) (b) 

Figure 7: TXD test on dense Hostun sand (e0=0.578, p'0=200 kPa): (a) deviatoric stress-strain 
response and (b) volumetric behaviour. 

4.1.3 Medium dense Hostun sand 270 

The TXD tests on medium-dense Hostun sand are well simulated by the model enhanced with non-271 

linear Dr-dependence – see Figure 8. The peak deviator stress is perfectly matched in Figure 8a, as well 272 

as the overall volumetric response in Figure 8b. 273 

  

(a) (b) 

Figure 8: TXD test on medium-dense Hostun sand (e0=0.8, p'0=300 kPa): (a) deviatoric stress-strain 
response and (b) volumetric behaviour. 

4.1.4 Further TXD model predictions 274 

Additional TXD predictions are reported hereafter to further validate the viscoplastic model in its final 275 

version with exponential viscous nucleus and non-linear Dr-dependence of the hardening parameters in 276 

Equation (19). Experimental vs numerical comparisons are given in Figure 9 for TXD tests on loose 277 
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Hostun samples at different confining pressures, namely 100 (CD-1), 300 (CD-2) and 750 (CD-3) kPa 278 

– experimental data from [69].  279 

 
 

(a) (b) 

Figure 9: TXD tests on loose Hostun sand at varying effective confinement (e0=0.954-1.052, 
p'0=100, 300, 750 kPa): (a) deviatoric stress-stress response and (b) volumetric behaviour.  

The stress-strain curves and volumetric trends in Figure 9 confirm that model can capture the intrinsic 280 

pressure-dependence of sand behaviour at a given relative density (Dr≈10%), with rate-effects 281 

spontaneously accommodated by the combination of suitable viscous parameters and realistic TXD 282 

loading rate. Relatedly, Figure 10 presents the model predictions obtained for dense and loose Hostun 283 

samples initially consolidated under the same isotropic pressure of 300 kPa. For the dense sample, both 284 

strain softening behaviour (Figure 10a) and dilation (Figure 10b) are satisfactorily simulated with respect 285 

to the experimental results from [50] – test hos011 in Table 2. Similar conclusions may be extended to 286 

the loose sample case – test hosfl11 (Figure 10c-d). 287 

Figure 11, shows the case of two medium dense Hostun specimens initially consolidated at either low 288 

or medium/high effective pressures, 50 kPa (test hosfl14) and 600 kPa (test hflw10). As expected, the 289 

performance of the model is slightly worse – though not dramatically – for intermediate void ratios, for 290 

which more accurate modelling of barotropy/pycnotropy is likely needed. 291 

The last TXD simulations in Figure 12 allow to further inspect the rate-sensitiveness of the monotonic 292 

triaxial response. For this purpose, the experimental results on air-dried loose Hostun sand from [8] have 293 

been considered, including isotropic consolidation up to 400 kPa followed by axial straining at two 294 

different rates – one 10 times larger than the other. Even though Perzyna-type models are necessarily 295 

sensitive to the loading rate until the inviscid limit, such sensitivity must be quantitatively compared to 296 

experimental evidence. In agreement with previous/related sources (see e.g. [3], [15]), the experimental 297 

results in Figure 12 confirm negligible rate-dependence of Hostun sand at the considered constant strain 298 

rates – note the almost coincident stress–strain curves. Elasto-viscoplastic simulations with unaltered 299 
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constitutive parameters display in this case underpredicted sand stiffness, but confirm the observed low 300 

rate-sensitiveness of the material. The merit for the latter outcome comes mostly from the adopted 301 

viscous nucleus formulation, suitable to capture (drained) rate-sensitiveness over a wide overstress 302 

range. 303 

  

(a) (b) 

  

(c) (d) 

Figure 10: TXD tests on dense (e0=0.574) and loose (e0=0.897) Hostun sand at the same effective 
confinement (p'0=300 kPa): (a)-(c) deviatoric stress-stress response and (b)-(d) volumetric behaviour. 

 304 

 Overall, the results in this section show good ability of the model to reproduce TXD tests at varying 305 

initial void ratio, effective confinement and loading rate, with viscous parameters independently 306 

identified from creep experiments. This achievement is not dramatically affected by the unavoidable 307 

heterogeneity of materials, facilities and operators in the reference experimental studies. 308 
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(a) (b) 

Figure 11: TXD tests on medium dense (e0 = 0.822-0.838) Hostun sand and different effective 
confinement (p'0=50, 600 kPa): (a) deviatoric stress-stress response and (b) volumetric behaviour. 

 
 309 

 

Figure 12: TXD on air-dried loose Hostun sand (e0 = 0.95) performed, respectively, at a strain rate of 0ε

= 0.06 %/min, test 400.95 1i and 0ε = 0.6 %/min, test 400.95 10i (data from [8]3) . 

4.2 Undrained triaxial compression tests (TXU) 310 

In this subsection the undrained triaxial performance of the proposed model is explored with respect 311 

to the TXU tests in Table 2. It is noted that transiting to undrained conditions jeopardises the suitability 312 

of the viscous parameters in Tables 5-6, which leads to envisage f function probably more complex 313 

than the assumed exponential form [56]. The different stress paths characterising TXD and TXU tests 314 

mobilise different ranges of the -f relationship, whose non-linearity should be captured for accurate 315 

simulations over a wide spectrum of loading conditions. Relatedly, simplistic viscous nucleus 316 

                                                 
3 Intermediate relaxation branches in the original data have been removed from the plot, as overlooked in the 
numerical simulations for the sake of simplicity. 
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formulation conceived, for instance, for numerical regularisation purposes, may yield misleading results 317 

when applied to very diverse loading/drainage conditions. 318 

The parameters of the exponential viscous nucleus have been thus recalibrated based on the TXU 319 

results in Figures 13-14, for loose and dense Hostun sand respectively – tests batr02 and alert9 from 320 

[50]. The same figures indicate that the new viscous parameters in Table 7 along with the above elasto-321 

plastic parameters (Tables 3-4) result in reasonable simulations of undrained stress paths and deviatoric 322 

stress-stress responses for both loose and dense samples. It is also worth observing that the Dr-323 

dependence of constitutive parameters is here only relevant to setting proper initial conditions, as the 324 

void ratio does not vary during TXU loading. 325 

  

(a) (b) 

Figure 13: Re-calibration of the viscous parameters against TXU test on loose Hostun sand 
(e0=0.940, p'0=200 kPa): (a) stress path and (b) deviatoric stress-stain response. 

 326 

 

 

 
(a) (b) 

Figure 14: Re-calibration of the viscous parameters against TXU test on dense Hostun sand 
(e0=0.666, p'0=200 kPa): (a) stress path and (b) deviatoric stress-stain response. 

 327 



Lazari et al. (2018) 

 

 
 

18

After the identification of “undrained” viscous parameters, TXU tests on loose and medium-dense 328 

Hostun specimens have been considered for re-validation. The results in Figure 15 concern the tests 329 

from [69] on loose sand at initial confinement equal to 750kPa (ICU-1), 300kPa (ICU-2) and 100kPa 330 

(ICU-3). Encouraging numerical predictions have been found again in all relevant respects, and 331 

particularly in terms of undrained stress path and pore pressure build-up. Similar satisfactory results can 332 

be seen in Figure 16 for the medium dense sand tested by [50] – test batr06.  333 

 334 

  

(a) (b) 

Figure 15: TXU tests on loose Hostun sand at varying effective confinement (e0=1.060-1.083, 
p'0=100, 300, 750 kPa): (a) stress path and (b) normalized pore pressure versus axial strain. 

 
 335 

 
 

 

(a) (b) 

Figure 16: TXU on medium-dense (e0=0.830, p'0=200 kPa) Hostun sand: (a) stress path and (b) 
deviatoric stress-stain response. 

 336 
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4.3 Undrained plane-strain/biaxial compression test 337 

Further validation has been successfully sought against the biaxial undrained test results documented 338 

in [70] – test SHFND05, p'0=800 kPa, axial displacement rate equal to 1.2 mm/min. Similarly to drained 339 

conditions, the model endowed with its “undrained” viscous nucleus is capable to blindly predict other 340 

experimental data not used for calibration. Specifically, Figure 17 illustrates the excellent agreement 341 

achieved in terms of stress path, stress-strain response and pore pressure build up. 342 

4.4 Undrained creep tests  343 

The results of (rare) undrained creep tests on Hostun loose sand are used as a final benchmark – data 344 

from [71]. The original experimental tests were conducted with undrained creep following a preliminary 345 

TXD stage up to target stress obliquity. Such a loading programme (test 20DP13) has been simulated 346 

with the same parameters mentioned in Sections 4.2-4.3. During the TXD phase small load increments 347 

were applied: between two subsequent load increments a time period of 5 minutes elapsed; when the 348 

desired stress level was reached (q = 61 kPa, p' = 120 kPa) a further load increment of 2 kPa was applied. 349 

The predictions in Figure 18 obtained for the creep stage show reasonable agreement in terms of axial 350 

strain and pore pressure. The premature onset of creep instability (inflection point in the pore pressure 351 

curve) is most likely due to the specific yield function shape and the (simplistic) assumption of isotropic 352 

hardening ([25], [75]), rather than to viscous modelling. 353 
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(a) (b) 

 
(c) 

Figure 17: Biaxial test on loose Hostun sand (e0=0.945, p'0=800 kPa): (a) stress path, (b) deviatoric 
stress-stain response, (c) pore pressure build-up. 

 354 

  

(a) (b) 

Figure 18: Undrained creep test on loose Hostun sand (e0=0.900, p'0=100 kPa): time evolution of (a) 
axial strain and (b) pore pressure. 

 355 
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5 CONCLUSIONS 356 

An existing elasto-plastic model for sandy soils was reformulated as a Perzyna viscoplastic 357 

relationship to capture the rate-sensitive, pycnotropic and barotropic behaviour of sands under different 358 

loading/initial/boundary and drainage conditions. In particular, the suitability of two alternative viscous 359 

nucleus definitions, namely linear and exponential, was verified with respect to both creep and triaxial 360 

test data on Hostun sand from the literature. Importantly, the parameters governing the time-dependence 361 

of the material were separately calibrated against creep tests and then found suitable to reproduce the 362 

different loading paths/rates induced during standard triaxial tests. While the need for quite complex 363 

viscous nucleus functions was confirmed, it was also shown how challenging still is to unify the 364 

simulation of both drained and undrained responses under a single analytical formulation with a unique 365 

set of material parameters. Unlike most literature on the subject, this work highlights that simplistic 366 

assumptions about rate-sensitiveness may abruptly reduce the predictive potential of elasto-viscoplastic 367 

models.  368 

From a modelling perspective, it should be noted that quantitative conclusions on the predictive range 369 

are very specific of both the viscous nucleus and yield functions adopted. The non-linearity needed of 370 

the viscous nucleus  for good match with real data relates necessarily to how non-linear the f function 371 

is. When inherited from existing elasto-plastic formulations for granular soils, capped yield loci and 372 

plastic potentials are most often very non-linear, as necessary to capture the response under diverse 373 

loading programmes (including e.g. radial stress paths). This fact not only makes extension to 374 

viscoplasticity less straightforward, but also poses conceptual questions about the effects of convexity 375 

losses experienced by these functions in the overstress regime (i.e. outside the f=0/g=0 loci). Expected 376 

consequences might concern the predicted stability of the constitutive response [23], a subject so far 377 

never explored from this standpoint. When documented, convexity-related issues might be remedied by 378 

resorting to recent convexification techniques ([73], [74]). 379 

The discussion offered in this work also aimed to discourage simplistic use of viscoplasticity as a mere 380 

numerical expedient against mesh-dependence in strain-localisation problems. Conversely, the 381 

viscoplastic framework was reappraised as a physically sound approach to sand modelling, easy to 382 

extend to non-locality whenever also characteristic length effects are relevant. 383 
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APPENDIX 390 

Stored energy function and hyperelastic behaviour 391 

The strain energy function  eψ ε  in Equation (5) is given by the following two-invariant expression: 392 

         2e e e e e e
v s v v s

3
ψ = ψ ε ,ε = ψ ε + + ψ ε ε
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 (20) 

where: 393 
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This model produces pressure-dependent bulk and shear elastic moduli. ˆ, ,0G k a  are constitutive 394 

parameters, pr is a reference mean effective stress, while , e e
v sε ε  are the elastic volumetric strain and the 395 

second invariant of the elastic strain deviator, respectively. When p' < pr the hyperelastic law predicts a 396 

linear elastic behaviour, whereas a fully non-linear pressure dependent behaviour is obtained for p' ≥ pr. 397 

By taking the first and the second derivative of Equation (20) with respect to εe, the following 398 

expressions for the stress and the elastic stiffness tensor are obtained: 399 
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and:  400 
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where, 
1

tr( )
3

 e e ee ε ε 1 is the deviatoric elastic strain and: 401 
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Table 1: List of constitutive parameters. 592 

Hyperelastic law 

k̂  slope of the swelling isotropic compression line  

a  deviatoric-volumetric elastic coupling parameter  

0G  representative elastic shear modulus 

rp  reference pressure 

Yield function 

mf yield function shape parameter 
αf yield function shape parameter 
Mcf stress obliquity for local yield locus maximum in triaxial compression 
Mef stress obliquity for local yield locus minimum in triaxial extension 

Plastic potential 

mg plastic potential shape parameter 
αg plastic potential shape parameter 
Mcg stress obliquity for isochoric plastic flow in triaxial compression 
Meg stress obliquity for isochoric plastic flow in triaxial extension 

Hardening rule 

ρs mechanical hardening of pre-consolidation pressure 
ξs dilatancy at failure 
rsw hydraulic hardening of pre-consolidation pressure 

Viscous nucleus 

γ  fluidity parameter 
α viscous nucleus shape parameter 

 593 

 594 

 595 

 596 

Table 2: Literature experimental tests on Hostun sand used for model calibration/validation. 597 

Test name Drainage p'0 [kPa]   e0 [-]         Reference 

Triaxial compression tests 

hos011 Drained 300 0.574 

Gajo and Wood (1999) [50] 

 

hos027 Drained 200 0.578 

hosfl10 Drained 300 0.800 

hosfl11 Drained 300 0.897 

d4 Drained 300 0.945 

hosfl14 Drained 50 0.838 

hflw10 Drained 600 0.822 

batr02 Undrained 200 0.940 
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batr06 Undrained 200 0.830 

alert9 Undrained 200 0.666 

400.95_1i Drained 400 0.950 Pham Van Bang et al. (2007) [8] 

CD-1 Drained 100 1.052 

Daouadji et al. (2010) [69] 

 

CD-2 Drained 300 0.954 

CD-3 Drained 750 1.010 

ICU-1 Undrained 100 1.086 

ICU-2 Undrained 300 1.060 

ICU-3 Undrained 750 1.083 

Biaxial compression test 

SHFND05 Undrained 800 0.945 Mokni and Desrues (1998) [70] 

Creep tests 

T100a Drained 100 0.950 di Prisco and Imposimato (1996) [1] 

80.71_ci Drained 80 0.710 Pham Van Bang et al. (2007) [8] 

20DP13 Undrained 100 0.900 Alesani and Fantini (1998) [71] 

  598 

Table 3: Dr-insensitive constitutive parameters. 599 

Elastic law Yield locus Plastic potential 
a=0.0 αf=0.99 αg=0.24 

k=0.0046 mf=1.10 mg=1.10 

pr=1 kPa Mcf=0.52 Mcg=1.28 

 Mef=0.44 Meg=1.0 

 600 

Table 4: Dr-dependent constitutive parameters. 601 

Sample Density G0 [kPa] ρs [-] ξs [-] rsw [-] 

Loose  14000 111 0.00 5.45 

Dense  45000 2000 0.480 0.32 

Limit void ratios emax  1.041 emin 0.58  

 602 
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Table 5: Viscous parameters for loose Hostun sand (from drained creep tests). 603 

Viscous nucleus γ [s-1] α [-] 

linear 4ꞏ10-9 1.0 

exponential 2ꞏ10-14 28.90 

 604 

 605 

Table 6: Viscous parameters for dense Hostun sand (from drained creep tests). 606 

Viscous nucleus γ [s-1] α [-] 

linear 1ꞏ10-8 1.0 

exponential 2ꞏ10-10 28.90 

 607 

 608 

Table 7: Viscous parameters for undrained conditions (exponential viscous nucleus). 609 

Sample density γ [s-1]    [-] 

TXU - Loose  2ꞏ10-5 28.90 

TXU - Dense  2ꞏ10-4 28.90 

 610 


