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Abstract

In this report, transport problems are solved with a particle method that takes into
account the Eulerian background flow field. Dispersion and other transport problems can
be solved applying this model, as long as the corresponding transport process is
formulated with a flux gradient relation, i.e., the advection-diffusion equation. The
particle method has been made consistent with such a transport process. Since many 3D
flow models are formulated in general coordinates, the 3D particle displacements are also
given with respect to such a coordinate system. Analytical and numerical aspects of this
particle method have been studied. The effectiveness of the method have been
demonstrated with two academic test cases including streamlines in a recirculation zone
and grid dependency in a discharge problem.
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1 Introduction

Three-dimensional hydrodynamic simulations are often executed because of
transport problems, such as water pollution due to sewer systems, many kind of outfall
problems, oil spill problems, etcetera. These hydrodynamic simulations give insight in the
water movement. Besides the water movement, a mathematical-physical description of the
transport process is needed to develop a transport model that predicts the advection and
dispersion of pollutants in water. Virtually all transport theories assume a linear gradient
transport model, CORRSIN (1974). The corresponding equation is known as the
advection-diffusion equation. It is widely accepted that the solution of this equation gives
a sufficient insight in the advection and dispersion of the evolution of pollutant in water.

In many cases, the solution technique of the transport simulation is based upon
Eulerian methods. Unfortunately, these methods have several drawbacks:

- To avoid negative concentrations, filter techniques have to be used which
introduces numerical diffusion, e.g., Forester-filter, FORESTER (1977).

- In cases of high concentration gradients the Eulerian approach gives inaccurate
results, DRONKERS er al. (1981).

- Using nonorthogonal transformation to represent the physical domain, e.g., the
sigma-transformation, the correct formulation and discretization of the transport
equation often provoke discussion, KESTER er al. (1989).

Another solution technique is known as the particle method. These methods are
frequently used to simulate the dispersion of pollutants in water, HEEMINK (1990).
These models consider particles that represent a certain amount of mass determined by the
initial injected poliutant. The evolution of the concentration distribution is obtained by
simulating sample paths of the particles, where each path represents an independent
realization of the transport process. The sample paths determine a mass distribution,
which approximates the concentration distribution of the pollutant. The drawbacks
mentioned in the previous paragraph are easily overcome and the advantages of such a
particle model are revealed at discharge problems and other applications where high
concentration gradients are present, such as local simulation of dispersion of pollutants in
a course grid. Negative concentrations can not occur and the simplicity of the method
makes it easy to implement the method on a digital computer.

This report will focus on such a particle method, while taking into account the
following aspects:

o] consistency with the advection-diffusion equation,
(ii)  the flow field obtained with a 3D hydrodynamic free surface flow model in
transformed coordinates, and
(iii)  the numerical implementation of:
1) the initial condition,
2) an accurate advection step, and
3) the dispersive step.



In section 2, two question will be discussed:
1) How to formulate a particle method such that consistency with a solution technique

for the advection-diffusion equation is guaranteed?
2) How to compute the particle trajectories using the Eulerian flow information?

These two questions are solved with respect to a Cartesian coordinate system (section
2.1), a curvilinear coordinate system (section 2.2) and a free-surface flow application

including the sigma-transformation (section 2.3).

The numerical implementation of the method is described in section 3. The
numerical aspects will be illustrated with some experiments in section 4.



2. The Particle Method,; Consistency

The advection-diffusion equation describes the transport of mass due to advection
and as a result of random molecular motions (diffusion). In transport models the averaged
turbulent transport is modelled similar to molecular diffusion, and also ends up with an
advection-diffusion equation. Referring to Fick’s law and the conservation of mass, this
equation in an anisotropic medium reads, FISCHER et al. (1979):

3 3 3
aC 2] e} aC
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with C the concentration of transported substance, u; the local flow velocity in x,-
direction and D;; the diffusion coefficient, the rate of dispersal of the contaminant in x;-
direction due to the component of concentration gradient in x;-direction.

The given approach of the advection-diffusion problem has been made from an
*Eulerian’ point of view. It is also possible to make use of a *Lagrangian’ viewpoint.
Then the history of particle movements will be investigated instead of the concentration
and flux at fixed points in space. The consistency of such a statistical approach with the
Eulerian approach expressed in (2.1) will be discussed in section 2.1, 2.2 and 2.3,
including various coordinate systems. The Lagrangian method requires the statistical
theory of Brownian motion. An introduction to these stochastic processes can be found in
e.g., KARLIN and TAYLOR (1975), ARNOLD (1974) or JAZWINSKI (1970).

2.1 The Particle Method in Cartesian Coordinates

When macroscopic particles are moving in a fluid, the molecules of the
surrounding fluid will collide with the particles causing random displacements of the
particles. The migration and fluctuation in the displacement of the particles can be
represented with a so-called Langevin equation, written as, i=1,2,3, RISKEN (1984):

3
LX) = h(X) + Y g (LT @.2)
¢ =t

with X = (X,,X,,X,) the position of a particle, & the drift vector and g the noise
tensor. The superscript T indicates the transpose of the vector. The stochastic Langevin
force T, is assumed to have zero mean and a Gaussian distribution with é-correlation
(Gaussian white noise, KAMPEN (1981b)). White noise does not exist in the real world,
because it has a constant spectral density on the entire real axis, which implies that the
associate energy becomes infinite. It is however a useful mathematical idealization for
describing random influences. The process expressed in (2.2) can also be presented as a
fluctuation equation, written as, i=1,2,3:



3
dX; = h(X,0)dt + 3 g, (X,t) dW() @3
j=t

where equation (2.3) introduces the Wiener process Wj(t) , also referred to as the
Brownian motion process, JAZWINSKI (1570).

Particle displacements can now be computed by integration of the stochastic
differential equation (2.2). Time integration of equation (2.2) over the interval (to,t) s
means that (to,t) is divided into N intervals (t”,tml of length At with ¢, = ¢, + nAt¢,
ty =t, NAt =t - t, and the solution is obtained by successive summation over n of
the integrand multiplied by At evaluated at ¢, + «A¢, 0 < @ < 1. The integrand is
Riemann integrable, if the sum converges to a certain limit, irrespective of e, i.e.,
irrespective of the evaluating point inside the interval. Here (2.2) represents a stochastic
differential equation and I'(#) is neither mean square Riemann integrable, nor Riemann
integrable with probability 1, see KARLIN and TAYLOR (1975). The solution depends
on the choice of « and equation (2.2) becomes meaningful if the integration method is
prescribed. The choice of this prescription gives rise to the It0-Stratonovich problem,
KAMPEN (1981b). The difference between the Itd and the Stratonovich procedure can be
understood by looking again at equation (2.2). Since the strength of the fluctuation in the
position of the particle (E;=l ,;(X,0T,(2)) depends on the position of the particle (X),
one has to decide whether the jump depends on the position before the jump (« = 0
implies 1td) or after the jump (e = 0.5 implies Stratonovich), sece DURBIN (1983).
When the equations are nonlinear the results of the Itd calculus differ from the resuits of

the Riemann calculus.

Now the integration rule determines the properties of the stochastic process (2.2).
Since the Itd interpretation yields an explicit method, the It6 calculus has been chosen to
compute the particle displacements. Then the fluctuation equation (2.3) gives rise to a
stochastic description of a probability density function which defines the probability to
find a particle in an infinitesimal interval at time t per unit volume. The conditional
probability density function of the particle positions, given the measurements, i.e., initial
condition, embodies all the information of the state of the system (Bayesian or
probabilistic viewpoint). The final description is governed by the so-called Fokker-Planck
equation, RISKEN (1984) or KAMPEN (1981a). The three-dimensional Fokker-Planck
equation is given in FELLER (1971), and reads:

ap LI 23 g
—— = — v A + B‘. 2.4
3 ,21: ax‘.( P) ;:JX; ax,.axj( P) 2.4)

with p = p(X,t|X(1,),t,) the transition probability density function with X(z,) the
initial condition at time ¢ = f,, A the drift vector and B the noise tensor. Note that in
fact, the equation should be referred to as the It6-Fokker-Planck equation, to emphasize
that the Ito integration rule has been used. It might seem that the choice of using the Itd
or Stratonovich calculus is not based upon physical arguments. It is however stated that
both integration rules are correct. It only leads to different Fokker-Planck equations. To
guarantee consistency, the Fokker-Planck equation must be matched with the advection-
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diffusion equation, which is based upon physical arguments. A different integration rule
ends up with a different drift, k;, and stochastic influence, g,;, expressed in the local
flow velocity, u;, and diffusion coefficients, D,;.

Prescribing the It6 integration rule, the matching procedure is continued. The
coefficients showing up in (2.3) and (2.4) are related as follows, UFFINK (1990):

k,

Ai
3
Vzkz—l: uli = Bij

(2.53)

The analogy of equation (2.4) with the advection-diffusion equation (2.1) is
obvious. Now the coefficients of the fluctuation equation (2.3) can be properly expressed
in terms of the local flow velocity and the diffusion coefficients, such that consistency is
guaranteed. So, in order to simulate a particle trajectory, determined by (2.3), k; and 8;
must satisfy the following equations:

hyo=u + Y 3;2

J

3 (2.5b)
Vzkzl: 8a8ix = Dg
p=C

Finally the particle method is defined as a summation of successive particle
displacements. Each displacement consists of a deterministic part and a stochastic part.
The simulation is performed at discrete times, say £, + nA¢, with At the chosen time
step. Without loss of generality, ¢, is set to zero and the transition from state nA¢ to
state (n+1)A ¢ is written as, i=1,2,3:

3
AXP = XY - X = B (XP,nADAL + Y g (XP,nAAW,(nAD)  (2.63)

Jj=1

The superscript between parentheses denotes the number of evolved time steps; X
denotes X(nAtr). A WJ is simulated by a Gaussian number generator, with
E[A W]] =0

E[AWA W' = 1At 2.60)

and I the identity mapping.

Because the displacement of the particle contains a stochastic contribution, the
particle method is also often referred to as the random walk method.



2.2. The Particle Method in Curvilinear Coordinates

The description of the random walk method in general coordinates can be obtained
in two different ways. The discrete fluctuation equation can be transformed or the
transformed Fokker-Planck equation can be matched with the transformed advection-
diffusion equation. Both derivations have to yield the same result. Both ideas will be
studied. It results in a description of the random walk method which can be implemented
directly on a digital computer. The mutual connections between the equations are
summarized in the figure depicted below. The figure expresses that the advection-
diffusion equation and the Fokker-Planck equation have to be consistent. To derive a
transformed random walk formulation, two routes are sketched:

(1)  Fokker-Planck equation in Cartesian coordinates ~ Random walk in Cartesian
coordinates ~ Transformed random walk

2) Fokker-Planck equation in Cartesian coordinates ~ Transformed Fokker-Planck
equation ~ Transformed random walk.

Cartesian coordinate system | Curvilinear coordinate system
Advection-diffusion equation Transformed advection-
2.1) diffusion equation (2.14)
o Transformed Fokker-Planck
Fokker-Planck equation (2.4) ﬁ equation (2.15)
@ M
@

Random walk (2.6) ' Transforméi 21‘81)1d0m walk

The objective is to derive the explicit expressions for the particle displacements in terms
of the local flow velocity and the diffusion coefficients relative to a nonorthogonal
curvilinear moving grid.

Since transformation relations are of interest, some relevant remarks about
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transformation relations and the used notation, will be summarized in section 2.2.1. The
necessary computational results are moved to appendix A.

2.2.1 Transformation Relations

Consider a transformation from a Cartesian coordinates system (x,X,,%;) to a
age 1 2 3 .
general curvilinear system (£°,&%,8°). The covariant base vectors, a, the tangent
vectors to the three coordinate lines, and the contravariant base vectors, a', the normal
vectors on the three coordinates surfaces £ = constant , are written as (i=1,2,3):

i agt ~ og?’ ag’
gt = __\/_1: (Qj /\Qk) (i,j,k) cyclic 2.7
G
VG =g -(gAg) |

with A the vector product sign. /G represents the jacobian of the transformation, defined
as a triple scalar product. The dot stands for the scalar product and |-| denotes the
Euclidean norm.

Both coordinates (x) and velocity () are being transformed. Many flow models
make use of grid-oriented, so-called contravariant velocity components (U*) defined as,
i=1,2,3:

U'=4a"-(u- [%) ) (2.8
ot A

which represents the velocity component in £'-direction relative to the moving grid. The
subscript indicates the variable which is held constant. For a treatment of coordinate
transformations, see THOMPSON et al. (1985) or CUVELIER (1987).

2.2.2 Particle Displacement in the Transformed Space

A particle displacement in the original space is denoted with
dX = (Xm,dX2,dX3)T, and the displacement in the transformed space with
E = (dE',dE%,dE%)". The tensor analysis provides that the following deterministic
equations are equivalent:

d =
a d (2.9)
dt dt



Such a deterministic expression can not be used to compute the total displacement
of a random walker in the transformed space. For the stochastic differential equation
(2.2), the stochastic chain rule must be applied, see KLOEDEN and PLATEN (1992). In

correspondence with equation (2.3), i=1,2,3:
. = 3
dE' = h(X,t)dt + E &,;(X,0)dW, (1) 2.10)
j=t

The transformed drift, 5,., and the transformed stochastic forcing, g, are derived
by inserting a Taylor series expansion in:

AL = E(x + Ax,t + AD) - E(x,0) @2.11)

Doing so, the transformed drift components become, for i=1,2,3:

Sy

ox 332 )
(- [a ] F T YT @@
t 1kl =1 GE’
2.12)

* i i [E (a"; "‘E"[(‘l )k]]D;k

71 k=1

The latter contribution, i.e., the curvature term, results from the stochastic chain
rule. This stochastic chain rule takes into account that E[dWdW] = dt. As a
consequence, this first order term may not be neglected. The transformed noise
components satisfy, for i=1,2,3, j=1,2,3:

1/22 88y = E E (@)D, (2.13)

k=1 I=1

Here it is concluded that as soon as the velocity components, the contravariant
base vectors, the diffusion coefficients and the moving grid relations are known, the
particle trajectory can be computed with respect to the computational domain. If the
hydrodynamic model, that gave rise to the transformation, computes the contravariant
velocity components, these components can easily be used to compute the deterministic
displacement, as expressed in (2.12).

2.2.3 Relation with the Transformed Fokker-Planck Equation

In section 2.1, particle displacements have been derived by matching the
advection-diffusion equation with the Fokker-Pianck equation with respect to the Cartesian
coordinate system. In the transformed space an analogue procedure can be followed.
Appendix A gives the derivation of the transformed advection-diffusion equation and the
transformed Fokker-Planck equation. The results from appendix A are copied here. The



transformed advection-diffusion equation reads:

3
oCc _ 1 (i‘_] . E_[‘/—a'(j] _LE .aigi[‘/@gi.ﬂc]
£

% G\ ioF VG 2.14)
3 3 3 3 9 ac
"L LY @D ol
i=1 j=1 k=1 I=1 o€

and the transformed Fokker-Planck equation,

1 (al/Gp)| . 15 8§ gnya . [BE

\/5( o ); \/521: oF’ (Z(Q)A' (a‘]x]ﬁp 2.15)
1 3333 5 N
ﬁzug[u}:azk[( )’as'( )‘B"‘/—p)H

These two equations are again matched by putting, as in equation (2.5), for i=1,2,3 and
j=1,2,3:

VGp = C
3 8D,
A =u + —4 2.16
R @.16)
B; = D,

To show that (2.15) defines the Fokker-Planck equation that corresponds with the
process given in (2.10), equation (2.15) is written as:

3 . 3 3 2
Py 2dp LY - Ep) @.17)

p=+Gp
A = |, f:(a“).A. + EZ .
17 Nee), H7 A ax axk B (2.18)
3 3 ) )
= E E (g.l)k(.‘l])lBu
k=1 I=1

Now, it is readily shown that



i -F,

3
. 2.19
T ‘/sz_; 88

=]
[

This proves the statement that the Fokker-Planck equation that corresponds with equation
(2.10) is given by (2.15).

2.2.4 Summary of the Particle Displacements of a Particle Method in a Transformed
Space

As proved in the previous sections, a random walk in a transformed space can be
formulated in terms of particle displacements. In order to guarantee consistency with the
advection-diffusion equation (2.1), a particle displacement, A &, per time step At
satisfies, for i=1,2,3:

4 . 3 3 .. dD
AE'=g_'-(u-(-£) )at+ Y Y Y @)@ — At
€

3 3
j=1 &1 131 o’

3 3 (3
. .
+ LYY @) ==[@),] DAt (2.202)
j=1 k=1 \1=1 ot
3
* L &AW
=t
and g satisfying, for i=1,2,3, j=1,2,3:
3 3 3
Y &l = 3 Y. (@) (&) Dy, (2.20b)
k=1 ¥ =1

The quantities at the right-hand side of (2.20a) are evaluated at time nA¢, similar to an
Euler explicit integration procedure, which corresponds with the It6 integration rule.

It is noted that with @’ = €', the unit Cartesian base vectors, equation (2.20a)
reduces to (2.6a).

The hydrodynamic model produces the necessary estimates for the input quantities,
such as the local flow velocity, u (or the contravariant velocity U, given by (2.8)), the
diffusion coefficients, D,.j, the contravariant base vectors, &’, and the moving grid,

(ox/ at)i. The time step can be chosen by the user, while the Wiener increment A WJ is
estimated with a Gaussian random number generator, by putting AW, = /ENF with N,
the realization of a normal random number generator with zero mean and unit variance,
e.g., Box-Muller scheme, RIPLEY (1987).
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2.3 The Particle Method in Three-Dimensional Free Surface Flows

Many flow models make use of curvilinear boundary-fitted coordinates. Moreover,
many nonstationary free surface flow solvers make use of the so-called sigma
transformation. The theory developed in section 2.2 will now be applied to a three-
dimensional free surface hydrodynamic application which introduces an orthogonal
curvilinear grid in the horizontal plane and the sigma-transformation in the vertical. Since
the orthogonal curvilinear transformation is only applied in the horizontal plane, it reads:

{xl = x,(£,E) .

x, = x,(E,E%)
The sigma-transformation is defined as in PHILLIPS (1957):

x3 - C(xpxza t)

Tomd 2.22)

=0 =

with H the water-depth and { the water-level elevation above the plane of reference

Jci = 0. Now o-planes may be curved, which implies curved coordinate axes for &' and
§“. More information about the sigma transformation, used in an Eulerian method to
simulate a free surface flow, is found in KESTER er al. (1989).

Introduce,
al = 1 % _i o)
- ogr’ agr’
V& ai ai (2.23)
2. 1 (-ﬁ L 0T
\/‘gj agl ? aEI ?

and let /Gy represent the grid cell length along the coordinate line £377 is constant
(i=1,2), measured in the Cartesian space, expressed as:

ox, 2 ox, 2

o = | &y . (&

el \(851) +(651)
o, 2 ox, 2 (2.24)

G = |(—2) + (=2

e \(662) (652)

@ = ‘/szel \/GEZEZ

The notation g may be confusing. It is emphasized that g represents the two-
dimensional analogue of the jacobian, instead of the square root of the acceleration due to
gravity. The E! - and 2 -axes are assumed to be approximately orthogonal, such that:

11



dx; Ox, dx, Ox,
—

9% =0 (2.25)
JE! 0g?  oE! 9E?

The velocity components, introduced by the hydrodynamic model, are supposed to be
transformed to:

1 1
U = ——a'u
la]
up = — oy 2.26
3 ll2|_ = (2.26)

ax, ox,

1 0%y =
3 ?-;(uzl‘/GElEl—a—E_l + uez Gizzz—a—g—i) - E—

€
]
b

Note that the transformed velocity components do not correspond with the
contravariant velocity components obtained using tensor analysis, as in (2.8). ¥y and 4y
remain horizontal velocity components, while « is the vertical velocity component,
relative to a o -plane. Still, the use of these velocity components will appear to be
convenient in the computation of particle displacements in the transformed space.

Since the horizontal mixing processes are not totally understood in shallow water
flow problems, three-dimensional hydrodynamic models often assume an isotropic
horizontal diffusion. The vertical direction is assumed to be one of the principal directions
of the diffusion tensor. Here the diffusion tensor will be written as:

Dy(x,t) O 0
D = (Dl,') = 0 Dﬂ(lﬁt) 0 (2-2’0
0 0  Dyx1)

Application to a more general diffusion tensor is straightforward and will be left out of
the discussion.

The procedure sketched in section 2.2, gives rise to the following covariant base
vectors:
a = (_af_‘. s .faﬁ s _fafi)T
ooTagt o ogt o og!
_ (<'9xl ox, Ox, y
“7 %% e
QS =(0,0, H(xl(_&),x2(§),l’))r

(2.28)

The jacobian of the transformation is expressed as:
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JG = Hg (2.29)

In general, this transformation is nonorthogonal, since ax3/86‘ # 0, i=1,2.

aad=0
1 1 Ox
id - - & 2.30
HGE‘E‘ 851 ( )
&g = ——1 i)
HGEzEz 652

The random walk in the computational domain (i.e., with respect to (£1,€2,0)) is
defined as the simulation of particle trajectories. A path is determined by a one step
method given by, i=1,2,3:

Ei +l) - Ei m . (A E‘)ggﬁ + (A Ei)(n)
{ e random (2.31)

The start of the sample path is determined by its initial condition corresponding
with the initial condition of the advection-diffusion equation. Therefore the initial
concentration distribution has to be transformed into an initial condition of the stochastic
process (2.3). Details are given in section 3.1.

In this particular case, the dimensionless drift of the particle displacement is given

by,
fori=1,2:
rn'*l
(AZYD = [ ——uy dt
o Gy
| 2P, () 2P|y, 2.322)
DGe"e"s ot do
H d i
+ ——(_;_,E:: a_?[ﬁ(g a’)]At
for i=3:
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(AEHY, = f 1 war

abD, oD, oD
L " Golaa) |G T - a3t
H? 90 Gag aag aD" (2.32b)
1 H
+ Gpp(d-d® + (@) —=| |At
5252( )[GEZE2 azz ( ) au
D 3
_._E i[ g_ -/ ]At
JG i1 a¥
And the dimensionless stochastic displacement becomes,
for i=1,2;
(AEHD, = 2D AW, (2.332)
Gy
for i=3:
1 S
(AEHD = —V2DAW, + 21: (a'a’) /Gy 2Dz A W, (2.33b)

Again the particle suffers a displacement due to the local flow velocity and the
space-varying diffusivity. In addition, in the transformed case, nonorthogonality and
curvature terms have been introduced to guarantee consistency with the advection-
diffusion equation.

Some final remarks:

- The particle displacement in the transformed space is given by

(/Gergt AEL,/Gag AE%LH AE?).

- The expressions given in (2.32) and (2.33) strongly depend on the assumpuons
that (i) the transformation is orthogonal in the horizontal plane, i.e., (a'‘d?) =
and (ii) the diffusion tensor is written as in (2.27), i.e., isotropy in the honzontal
plane.

- In stationary flow problems, the moving grid will become fixed in time. It
simplifies the expression for the ® - velocity.

- An orthogonal transformation, dx, / OF = 0, i=1,2, simplifies the expressions

given in (2.32) considerably. If, in addition, (3/3¥)[/G(a'-a/)] = 0 V i,j then
the transformed relations become very similar to those expressed in Cartesian

14



coordinates. This is achieved for grids that are orthogonal, not curved and
uniformly stretched.

The numerical aspects of the particle method will be discussed in the next section.
The numerical implementation considers:

@ the representation of the initial condition,

(i)  the deterministic displacement, and
(iii)  the stochastic displacement.

15



3. Numerical Implementation

This section will go into the numerical implementation of the particle method,
while using the background flow field, obtained with a hydrodynamic model. The entire
process will be illustrated, starting in section 3.1 with the realization of the initial
condition and the link between a mass distribution and a concentration distribution.
Section 3.2 focuses on the deterministic displacement of particles and finally section 3.3
deals with the stochastic displacement of particles.

3.1 Initial Concentration Distribution

The stochastic process (2.3) is approximated by an ensemble average of sample
paths. Each path represents an independent realization of the transport process. The start
of a sample path is determined by the initial condition corresponding with the advection-
diffusion equation. Therefore the initial concentration distribution has to be transformed to
an initial condition of the stochastic process. Discharge problems are easy to handle. Then
the starting point of each sample path is located at the discharge point. In general,
numerically, the initial concentration distribution will be considered as a sum of delta
functions:

B

Colasty) = Y Clx,5)8(x - x) G.1)
i=1

with n, the number of grid cells, =C (x,,%) the cell averaged concentration value,
derived from the initial concentratwn distribution C, and x, the centre of the grid cell.
Now the concentration distribution has to be converted into a mass distribution.

These two distributions are numerically related by the cell

H

volumes. Therefore the cell volume has to be computed. _ G
E
Here a grid cell is marked by eight corners

(A,B,C,D,E,F,G,H), see figure 3.1, and can be considered —
as a construction of six pyramids with triangular base (e.g., A ' c
ABDE, EBDF, EDFH, CBDG, GBDF, GDFH). Since the
coordinates of the corners are known, the edges of the
pyramids can be determined. Figure 3.1: Grid cell

For the pyramid ABDE, let:

-

a =AB g =AD (3.2)

]
S
oy

Define ¢ : B* -~ R? as:

¢x=(a a a)x (3.3)
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with total derivative

Do =(a g, a) G4

Introduce the open sets U and V (see Figure 3.2: The linear mapping of (3.3)

figure 3.2):
V = {(xl,xz,x3) € R3 I 0<x1<1, 0<x2<1-x1, 0<x3<1—xl—x2} (3 5)
U=o) '

Then, the volume of U is given by:

1 b l-xxy

[laet@e)|ds = [ [ [ |detDo)| ax
v o 0 o0

1dx
'£ (3.6)

1
= |det(D
6[6( 9) |

det(B) denotes the determinant of the matrix B. The volume of a grid cell is approximated
with the sum of the volumes of the given six pyramids. If the sides of the grid cell are
curved, the outcome of the grid cell volume depends upon the choice of the six pyramids.

Returning to the problem of realizing the initial concentration distribution,
particles have to be injected in a grid cell i, i=1,n,, satisfying:

E: = (# of particles in cell i)*(mass of one single particle) / (cell volume) (3.7)

The injection can be performed in various ways. For instance, the particles can be
injected at the centre of each grid cell, x , motivated by (3.1), or a uniform injection
over each grid cell. The latter approximaﬁon corresponds with the approach of deriving a
concentration distribution from a mass distribution, by counting the number of particles
within a cell. In discharge applications the first approach is the most appropriate. If a
continuous initial concentration distribution is given, the second approach is usually
applied. Then a finite number of particles are uniformly injected over cell i (i=1,n,) in
the transformed space. Unfortunately, in general, a uniform distribution over a grid celi
in the transformed space does not imply a uniform distribution over a grid cell in the
original space. To inject the particles in the computational domain correctly, each grid
cell, as in figure 3.1, is again regarded as the sum of 6 pyramids with triangular base and
numerically the initial concentration distribution is considered as the sum of 6n, delta
functions. The number of injected particles in each grid cell is again determined by (3.7).

Consider the linear mapping of (3.3) ¢ : V -~ U. Let X have the uniform distribution f:
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1

xeV
Ax - n) - { [145 )

0 xe¢V

It can be proved, by the change-of-variable technique, that the distribution function
¢(f(X = x)) is also uniform over ¢ (V) = U. It is however stated that if grid cells are
rectangular the grid cell does not have to be divided into the six pyramids; a uniform
injection in the cell is appropriate.

3.2 The Deterministic Displacement

The deterministic displacement of the particle method is defined by equation (2.32)
and contains the influence of the local flow velocity, the space-varying diffusivity and
curvature (grid stretching). The particle positions do not necessarily coincide with the grid
nodes introduced by the grid of the hydrodynamic model. To compute the particle
displacements, a continuous velocity field is needed, as well as continuously defined
diffusion coefficients.

The contribution of the space-varying diffusivity is easily obtained by finite
differencing. For instance, if the diffusivities are known, by the hydrodynamic model, at
all centres of the lateral faces of each grid cell, a first order approximation is obtained by
taking the diffusivity constant at a lateral face of a grid cell and applying a usual first
order finite difference scheme.

As stated, the advection algorithm needs a continuous flow field and various
methods can be used. Frequently the 3D flow field is continuously extended by (tri-)linear
interpolation, BUNING (1989). Unfortunately, such an interpolation procedure does not
guarantee that the continuity equation is satisfied in each point of the continuous space,
which implies inconsistency with the physics. Therefore, an extension of the velocity field
is proposed, such that the continuity equation is satisfied at each point in the continuous
space.
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To illustrate the procedure, a normalized

two-dimensional grid cell is assumed. Without
loss of generality a grid cell is indicated by .
(0,1)x(0,1), see figure 3.3. The continuous yy =1 '
extension of the flow field is now written as,
i=1,2: <+ +
%p
ext aui )’s =0 +
u; (x,t) = (a_x') X + (uiL,=o)mm(3'9) Xp =0 xg =1

where (8u, / 8x,)  corresponds with the Figure 3.3: Grid cell (0,1)x(0,1)

numerical implemenitation of du, / 9x, as

it appears in the continuity equation of the hydrodynamic model. The streamline through
x = x , can now be obtained exactly within a grid cell, by solving the linear ordinary
differéntial equation analytically, i=1,2:

ax.
ey = ul(x,0)
ot

(3.10)
xi(to) = (EP),'
The divergence of the velocity field equals:
2oou™ 2 (o
div(u™) = — = _— =0 3.11
v (u™) § 5%, g(axi)m G.11)

A mass conserving hydrodynamic model, which gives the latter equality of (3.11), now
implies a mass conserving advection step in the particle model. Furthermore, particles are
not able to cross a grid cell boundary where the velocity component normal to this
boundary is equal to zero. Another property of the procedure is that the orbit of a particle
is not necessarily continuously differentiable with respect to space at grid cell boundaries.
The remainder of this section will deal with accuracy and presents some numerical
examples. The extension to three dimensions is straightforward.

For convenience, the one-dimensional analogue of (3.10) will be studied. Equation
(3.10) observed in one dimension reads, with ¢, = 0:

9% _4x+B
at (3.12)
x(0) = x,

with A and B determined by (3.9). Solving this equation analytically, a distinction
between A = 0 and A # 0 has to be made. Here the machine dependent rounding-off
error becomes important. Let u, = Ax, + B. The following table summarizes the
possible solutions of (3.12), where x, and x, express the left(west)- and right(east)-hand
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side of the interval (grid cell), as in figure 3.3 in the two-dimensional case. The three-
dimensional case can be treated similarly.

Cases Time T, > O needed to || position of particle
reach cell boundary after T, time
u, =0 e Xp
x+C
A>0 p+C>0 | lm™E— %
A x,+C
x,+C
x+C<0 B ai. 4 *w
A x,+C
1, **C
A<0 x, +C>0 —_ Xw
A x,+C
x+C
x, +C<0 —l-ln £ Xg
A x+C
XX
A=0 B>0 ETFP X
B
B<0 Iw e Xy
B

where C = BJA. The logarithms and exponents calculated on a computer are very
sensitive for over-flow. Therefore, in computer computations, the different cases have to
be treated more carefully. Distinguish the following cases:

L jup| < ¢ instead of u, = 0
2. |[Al<e instead of A = 0
3. |B| < max{e, , € -Axp} instead of B = 0

The solution of (3.12) reads for 4 = 0:

x(t) = (xp+C)exp(dt) - C (3.13)
and for A = 0:
x(t) = Bt + x; 3.14)

Note that passing the limit if A tends to zero, the solution of (3.13) converges to
that of (3.14). It is concluded that in numerical computations for 0 < |A] <€ andt
fixed, the over-all order of accuracy of the solution can not be better than O(e,), the
machine-dependent rounding-off error.

The coefficients A and B are obtained from a numerical hydrodynamic model and
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therefore contain numerical errors. Let 4 and B represent the analytic values, _4— = A+a
and B = B+p the values produced by the hydrodynamic model. Then C = B/4 = C+y,
y = O(«,pB), and for fixed ¢:

[x() - X()] = |y - (e¥-1)(x,+C-y)e*'| = O(a,p) (3.15)

where a bar indicates the numerical method. So, sample paths are realized with an
accuracy not better than the accuracy of the computed physical quantities obtained from
the hydrodynamic model.

3.3 The Stochastic Displacement

The stochastic contribution of the particle displacement in a free surface flow
including the sigma-transformation, is given in (2.33). The diffusion coefficients, showing
up in (2.33), are approximated at the particle position with a straightforward (tri-)linear
interpolation technique.

1t is emphasized that the stochastic particle displacement is determined by the
diffusion coefficients Dy, and D, with D the isotropic horizontal diffusivity as
expressed in (2.27). If an anisotropic diffusivity is assumed, with principal directions
parallel and perpendicular to the main flow direction, the diffusion tensor has to be
transformed. Then, in general, the off-diagonal elements of (2.27) become non-zero,
which has to be accounted for in the deterministic drift. As a result, the explicit
expressions of (2.32) and (2.33) become more complex.

The random Wiener increment can be realized by using a normal random number
generator with mean zero and variance At, as described in RIPLEY (1987). The
computational effort is reduced by approximating \/ZDHA W, with /6D AtR;, i=1,2
and a similar expression for i=3, UFFINK (1990). Here R, represents a uniform random
number in (-1,1). The accuracy of the method will hardly be infected by this
simplification, since for general nonlinear stochastic differential equations
R(A?) = E( [X(¢+Ar) - X(t+AD)]? ) = O(A?), RUMELIN (1982). A bar is written
to indicate the numerical method. This convergence (in the mean square limit, see
KARLIN and TAYLOR (1975)), can be proved by expanding the sample paths
(X(¢+A1)) in a Taylor series, as in RAO er al. (1974). Higher order schemes are very
hard to get because nonlinear functionals of Gaussian white noise have to be simulated.
Higher order schemes (with respect to convergence in distribution), can be obtained by
expanding the transition probability density function, as in MILSTEIN (1978) or
HAWORTH and POPE (1986). More details about the numerical integration of stochastic
differential equations, can be found in GREINER et al. (1988) and KLOEDEN (1992).

Since R, is produced by a computer and therefore defined in a completely
deterministic way, it is called a pseudo random number. These pseudo random numbers
have to be uniformly distributed, stochastically independent, reproducible, easy to
compute and stored with a minimum of memory capacity. Since the results of a random
number generator are machine-dependent, a good random number generator does not have
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to be good on every computer, €.g., the limited precision of the multiply operation of a
16-bits register computer, differs from the one of a 32-bits register machine.

The mixed congruental generator is given by:

r,=(ar,, +c)mod m with seed 7,

R =2-L-1 (3.16)

Properties of this type of generator together with the stochastic and theoretical tests, have
been described in literature, e.g., LEWIS and ORAV (1989) or RUBINSTEIN (1981).

The numerical experiments of section 4 use (appropriate for small computers):

a= 5243
¢ = 55397 3.17)
= 262139

The computations have been conducted on a workstation HP9000/380 Turbo SRX
and a HP9000/720, both equipped with a 32-bits processor. For these computers the
cycle-length, the maximum period in (3.16), appeared to be equal to 131069 or 1. Three
different cycles can be computed. Starting with the seed 178566 the cycle of length 1
arises. Seed O gives rise to a cycle of length 131069, while seed 2 has the same cycle-
length (131069) but the produced sequence differs from the sequence computed with seed
0.

LEWIS and ORAV (1989) recommend the following prime-modulus multiplicative
generator (¢ = 0, m = 2%-1):

a= 16807
and the five "best" values of a are given by FISHMAN and MOORE (1985):

a = 950706376
a = 742938285

a = 1226874159
a = 62089911
a = 1343714438

Random walk simulations can be infected by an additional drift, due to the pseudo
random number generator. In general, this error can be neglected compared with the
time-integration error, the interpolation error, the truncation error and the stochastic
error.
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4. Numerical Experiments

To demonstrate the effectiveness of the particle method, two tests are performed.
The first one, described in section 4.1, shows the advection step algorithm of section 3.2
by generating streamlines in the recirculation zone of a channel flow. The second one
studies grid-dependency of the particle method applied to a discharge problem in a
curvilinear horizontal grid. This example is subjected to section 4.2.

4.1 Streamlines in a Steady Open Channel Flow.

Here a 2DV-application is demonstrated: a stationary channel flow over a
threshold. The threshold is positioned in a channel which has a total length of 400m as
depicted in figure 4.1. The maximum depth, d, of the channel is 20m and the analytical
expression for the threshold reads (d(x) in m):

20 - E(l-m(fﬁﬁ)) 15m < x < 135m
60 4.1)

d(x) = T
20 elsewhere

The domain of interest is restricted to the recirculation zone behind the threshold,
produced by a hydrodynamic model called TRISULA, TRISULA (1988). The horizontal
spatial increment is set to Sm and the vertical water column is divided into 10 layers. The
maximum fluctuation in the flow rate is 3.1 10* m¥s per unit width (i.e., 0.0024% of
initial flow rate). So the flow field is approximately stationary. Figure 4.2 plots the
trajectories of two particles, one injected in the recirculation zone, the other released
above the top of the threshold. Figure 4.1 shows the computed velocity vectors in the
domain of interest. This domain of interest is marked by two vertical lines in the plotted
computational domain at the lower part of figure 4.1. The domain Om < x < 400m is
used in the TRISULA program to compute the velocity components, the water-level
elevation and the diffusivities with the Prandtl/Schmidt number equal to 1, and a uniform
inflow condition with the horizontal velocity component equal to 0.65 m/s.

Figure 4.2 shows that the plotted streamline of the particle in the recirculation
zone is indeed closed, which confirms the statements made in section 3.2. The still
present fluctuation in the flow rate term does not have any noticeable influence on this
result.

A comparison with an analytical solution of the closed orbit is not possible. The particle
in the recirculation zone needs 1024s to return to its initial position. The other particle,
released above the threshold, left the domain of interest in this time duration. Each
second the particle position is plotted. It is very well shown that a particle can not cross a
grid cell boundary where the velocity component normal to this boundary is equal to
zero, which is valid at closed boundaries, as well as near the centre of a recirculation
zone.
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Figure 4.1:  Upper part:  Velocity field in recirculation zone
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Figure 4.2:  Two particle trajectories in a flow over a threshold
4.2 Grid Dependency in the Simulation of a Discharge Problem
Some hydrodynamic models make use of a curvilinear orthogonal transformation.
In combination with a finite differencing method, the produced solution is infected with

discretization errors. These errors are propagated along the coordinate lines of the
introduced grid. Therefore, the produced solution of a hydrodynamic model depends upon
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the grid. It should be noted that rectangular grids introduce a similar grid dependency.

This section will study a numerical experiment, which describes the discharge of
an initial slug of mass in a 2DH unbounded domain without the presence of a current. If
this problem is solved with a finite differencing method which solves the advection-
diffusion equation in a curvilinear grid, the polluted region becomes curved and oval
shaped, amplified by the steep concentration gradient at initial state. In fact, the solver
should produce a circle-shaped polluted region. Therefore, the particle method has been
tested to see if the produced solution is also infected by the curved grid. Since the exact
solution is known, the particle model will be compared with the analytical solution.

The analytical solution of the (point-) discharge problem, with no mean velocity
and constant diffusivity Dy, reads, FISHER ez al. (1979):

(x,-x, P
4Dt

M/H (x,-x )
exp | - -

C(x,,%,,0) = “4.2)

with M the initial mass, H the constant water-depth and (x;,x; ) the injection point at
t =0. So:

C(x,,%,,0) = % 8 (x, =% ,%,~%y) 4.3

8(x) indicates the Dirac-delta function. The particle method can simulate the discharge
problem by injecting n, particles at the exact discharge location (xf,x{). The numerical
data read:

H = 5m,

D, = 0.1m¥s,
n, = 400000,
M = 76kg and
t = NAt = 100s

The numerical grid is constructed such that the coordinate lines along which £' is
constant, coincide with concentric circles (as observed in the Euclidean space). A part of
the grid is depicted in figure 4.3. The injection point does not coincide with the origin of
the chosen coordinate system. Four tests are conducted:

Test no. ﬁ;-mm ‘/@inm Atins
1) 1.0 7.7 1.0

2) 1.0 7.7 0.25
3) 1.96 13.6 4.0

4) 1.96 13.6 1.0
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It is noted that ‘/Gelel is constant
throughout the grid, while ‘/Gizsz varies
due to curvature. The table contains the
averaged grid cell length (and width) of
the injected cell. Test 3) and 4) almost ,/Gzzez
double the grid dimensions in
comparison with test 1) and 2). It is
reminded that the initial number of
particles is taken 400000. Increasing the
number of particles from 25000 to

100000 resuited in a reduction of the ~J
absolute relative error, with respect to \/GEIEI

test 1), by a factor 2. Therefore the error
in the produced solution was still

dominated by O(n, ). Taking 400000 @ injection point

particles, the error is mainly due to the

time step error. Figure 4.3: Cell dimensions in
curved grid

The produced solutions are discussed by observing contour plots and absolute error-
measures. The depicted figures (figure 4.4) show two contour lines:

1. The measure of spread of the distribution corresponds with, at ¢ = NAz:

. MH 1
aniD, exp (-3) @4

which analytically implies a closed circle as contour line:
(x,=x{ P + (x,-%,)* = 2Dt “4.5)
2. Grid cells, which contain at least one particle, construct a domain of influence. The
boundary of this domain is indicated as a contour line. The corresponding contour
value equals half the computed minimum positive cell-averaged concentration value,
as observed in the particle method.
The numeric error, at ¢ = NAz¢, is written as:
&©) = |C, - C .6)
C, denotes the concentration value generated by the particle method. C; equals the mean
concentration of cell i, obtained by numerical integration of expression (4.2). Results of

test 1) are illustrated in figure 4.4. The error measure has been summarized in the
following table. The contour plots of test 2), 3) and 4) are omitted.
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Test no. =,.€ _¢ ne
C(x; ,x, ,NAL) =
1%2 ‘Zl: lci__cil
1 0.538 0.452

2) 0.541 1.2124
3) 0.421 0.075
4) 0.436 0.088

= (.537 (fine grid, test 1) and 2))

Analytically:  C(x;,x,,NAt)

Now define the factor «, acting as a Courant number, as:

= 0.428 (course grid, test 3) and 4))

C(x;,x, ,NA?t)
4.7

J6AID, = « ieglj'l’lm’(‘/Gzlili,\/GEzizi)

Test 1) and 3) are executed with A¢ such that « = O.78i It will be shown that for a

fixed curvilinear grid, the optimal accuracy can be obtained if At is chosen such that
o« = 1. Observing the error measure of the particle method, time step reduction does not

benefit the final result. It is already noted that the error is not dominated by the (finite)

initial number of particles. So, an increase of n, for test 2) or 4) will not improve the
result. Here the error is due to the horizontal curvature terms. In the particle model these
= 1)

terms are ignored, since (@'-@?) = O is assumed. Decreasing At (still requiring o

will not add more information about the curvature since the defined grid remains
unchanged. Only the computation time will increase proportionally. Locally, the curved

coordinate lines are approximated with straight lines parallel to the covariant base vectors

(the grid cell edges). A particle travels At time in a direction which is a linear
combination of these two base vectors. The base vectors are taken locally constant and

will only be adapted when a particle crosses a grid cell boundary. Therefore, a particle
—
\\

)
.
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Cell averaged concentration isolines for  (a) Particle method
(b) Analytical computations

Figure 4.4:
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that moves within a grid cell, is not aware of the curvature of the grid, although its
position is directly related to the grid. Neglect of curvature during the travelling time At,
will introduce an error. Whenever a particle crosses a grid cell boundary, the particle
continues its walk with respect to the base vectors determined at the intermediate station.
For reasons of resolution, « is also restricted: @ < 1, i.e., a particle crosses at the most
one grid cell boundary per time step. Therefore, optimal results will be obtained for

« = 1, It is concluded that grid dependency can not be avoided, while using approximate
orthogonal curvilinear grids. Note that in a rectangular equidistant grid (in the absence of
curvature terms), grid dependency is determined by equation (4.7).

Grid Dependency of the Plotting Routine

Plots are frequently used to support the interpretation of the computational results.
If a contour plot of constant concentration values shows a grid dependency, it is
sometimes not immediately clear that this is due to the plotting routine or due to the
computational method that solved the concentration field. The previous paragraph explains
that grid dependency is present in the particle method. The plotting routine however
amplifies the grid dependency in the depicted figures (figure 4.4). In general, numerical
methods produce a discrete concentration field specified at the grid nodes. The plotting
routine uses this information and applies a linear interpolation technique within, for
instance, a quadrangle. In a coarse grid, such as the one described in test 1), the contour
line results in a slightly misleading plot. In figure 4.4(b) the analytical information
restricted to the grid nodes has been used. Therefore the expected closed concentric
circles can not be recognized. This deficiency can be overcome if the discrete
concentration field can be continuously extended. Then the plotting routine can be applied
at a much finer grid, without repeating the numerical computations that solves the
concentration field. In the analytical case, the concentration field is known at every point
in space, given by equation (4.2), and a grid refinement in the plotting routine resuits in
figure 4.5(b). It is noted that the contours of the constant concentration values are plotted,
while in figure 4.4 the contour of constant cell-averaged concentrations are depicted.

A continuous concentration can also be obtained while using a particle method.
Cell-averaged concentration values can simply be obtained by counting the number of
particles within a fixed grid, as noted in section 3.1. It is also possible to apply other
methods to convert the mass density of the discrete particles into concentrations. The one
described here sums the significant particle influences in the vicinity of the calculation
point x with a particular mass distribution ¢ centred on the particle locations X7, i.e.,

np
C(z,t) = Y ¢(x-X7(1),1) .8
r=1

In the 2DH discharge application, the following extended continuous concentration field
has been applied:
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np
Y b, oG -X{(1).150,) ¢ (x,-X[(),8;0,) 4.9

p=1

Clx;,x,t) = %

with p, the mass of one single particle and

o) = 1 _1(nY
¢(n,t;0) Jz_noex'p( 2(0)) 4.10)

This, so-called point-spread function ¢ contains one degree of freedom given by ¢. The
variance, o2, still has to be specified. BOOGAARD (1992) states that in one-dimensional
applications, ¢ is proportional to n,™!/* (as n, + «) and moreover ¢ is proportional to
yt. Writing

c=pn 4.11)

B can be approximated by minimizing:

ﬂp
[|c.n -3 e(n-x2(t),80)
p=1

E

2
dﬂ} 4.12)

with respect to o. The expectation E represents an ensemble average of I samples of
X?. C in (4.12) is gaussian distributed with mean zero and variance 2Dyt . A computer
simulation yields, with I = 15, B°® = 1.09308, such that

2Dt
xl - Oxz = opt___.__.(np)lllls (4.13)
It is noted that the choice of P influences the smoothed mass distribution. As
illustrated by MONTMINY ez al. (1992) a small value of B, B < B, does not yield a
smooth concentration distribution, while a large B, p > P, exaggerates the width of
the global distribution. Applying (4.13) gives reasonable and adequate resuits.

Finally the plotting routine can be applied on a much finer grid than the one used
in figure 4.4, since (4.9) and (4.13) approximates the concentration field at every point in
space. This procedure results in figure 4.5 where the contour values are given by

C, = 0.3669227 kg/m?, and
C, = 0.0000307 kg/m®
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5 Conclusions

This paper provides a numerical description for solving the advection-diffusion
equation, by using particle tracking, while taking into account the available discrete flow
information. Formulas for the drift and random particle displacements, computed in a
curved nonorthogonal grid are given. The discrete flow field has been continuously
extended such that the streamlines are solved analytically with respect to the extended
flow field. It has been observed that grid dependency is noticeable in assumed orthogonal
curvilinear applications. Since visualization techniques are also grid dependent, plots can
be slightly misleading in concluding grid-dependency. Using curvilinear grids, the optimal
time step is determined by equation (4.7) with & = 1, with respect to accuracy,
resolution and computation time.
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Appendix A: Transformation Relations

Curvilinear boundary fitted coordinates are frequently used to solve fluid flow
problems. This transformation approach is introduced from a numerical point of view.
Although the transformation from a Cartesian coordinate system to such a curvilinear
coordinate system results in more complex differential equations, it is possible to derive
convenient and accurate discretization methods in the transformed space. If a particle
method is used in combination with a fluid flow solver, dealing with curvilinear
coordinates, the trajectory can be computed in the transformed space, as explained in
section 2. The derivation will be summarized in this appendix by listing the necessary
transformation relations. These relations correspond with those listed in section 2.2.1.
General comments about and derivation of the transformation relations can be found in
THOMPSON et al. (1985) or CUVELIER (1987).

For a scalar function C, such as concentration, partial derivatives with respect to
both coordinate systems, (¥,,%;,%;) and (§',£%,£%), are related by:

3 i 3 3
9-C-=_§;a—§-a—57=§:L—=—‘— 2 [/G@yc] A1

The first equality of (A1) is explained by the chain rule. The second equality uses the
definition of the contravariant base vectors (2.7) and the third equality expresses the
conservative form of the derivative of a scalar quantity with /G the jacobian of the
transformation (2.7). Note that the overall conservation of a transported quantity is
guaranteed when the numerical method deals with a conservative description of the
equations. The following identity has been used to obtain conservative expressions:

35 )
Y =[/Gai] =0 (A2)
=1 OE
This identity can be proved with the divergence theorem applied to an infinitesimal
element and reminding that the vector normal to the faces of this infinitesimal element is

given by the contravariant base vector.

If a moving grid is applied, the time derivatives also have to be transformed. The
expression for the time derivative becomes:

(%)) (3

ot J;
where the subscripts indicate the variable which is held constant. In particular



(] - ook

j=1

Finally (A1) gives rise to the following relations:

3

ve = Ly 2 [/Gaic] (3)
Gi-1 9%
And
1 & 9
=1y 9 6
ﬁzl az'[ ‘ul (A6)

Substitution of these expressions in the advection-diffusion equation (2.1) is
straightforward and it results immediately in the transformed advection-diffusion equation
as expressed in (2.14). The transformed Fokker-Planck equation, given by (2.15), is
obtained similarly.
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