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Introduction

This thesis contains five papers on option pricing; four of them on equity
options and one on option pricing for commodities. Each paper should be
accessible to both financial mathematicians in academics and quantitative
analysts in banks and insurance companies.
Today the area of financial mathematics is rapidly growing, which is a con-
sequence of the increasing complexity of the financial products traded and
regulated by the industry and the governments respectively. The major-
ity of these complex products contain optionality, i.e., they can be viewed
as derivatives of one or more underlying basic products. Throughout the
thesis the terms options, derivatives and products that contain optionality
are used as synonyms and the same is true for the terms basic product and
underlying. Consider the convertible bond as an example of such a complex
product. If certain conditions are satisfied - mostly stated in terms of the
price process of the stock of the issuing company - the issuer can decide to
convert the nominal value of the bond from a cash amount into a number
of stocks. Therefore the value of this bond depends on the development of
the stock price and interest rate, i.e., the underlying basic products. Many
other financial products ranging from structured products to mortgages and
insurances are examples of products containing some kind of optionality and
therefore, the issue of option or derivative pricing attracts a lot of interest
within the financial mathematics community. Research activity is in the
direction of both extending the set of different derivative contract types one
can value, and extending the set of models of the underlying basic products
that can be used for the derivative valuation. The earliest attempt of mod-
eling such an underlying basic product goes back to Bachelier, see [8], in the
year 1900, whereas the actual increase in financial mathematical research
activity was triggered by [14], the famous 1973 paper of Black and Scholes.
They present the concept of the replicating portfolio for which they obtained
the Nobel prize in 1997, see [23] for a short and accessible history.
As usual in the option community, different types of option contracts are
labeled by a variety of geographical locations. Examples are European,
American, Asian, Russian and Parisian options. The difference is almost
always in the pay-off of the option. A pay-off specifies the rule used to
calculate the amount of cash the derivative pays out, given a path of the
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2 INTRODUCTION

underlying basic product(s). A typical example is the pay-off of a standard
call option with strike K given by (ST −K) in case ST , the value of the stock
at expiry time, exceeds K and zero otherwise. There are several standard
techniques that one can use to value a derivative, given its pay-off and the
model for the underlying. In case of a stock option, geometric Brownian
motion (GBM) is the standard way of modeling the underlying stock price
process as introduced by Black-Scholes in their famous paper [14]. Using
GBM as a model for the stock it is possible to derive closed-form expressions
for several types of European options like the plain vanilla put and call and
the path-dependent barrier options. For the Parisian option it is not pos-
sible to derive a closed-form expression. Moreover, the standard numerical
techniques used in option pricing perform badly if applied to the Parisian
option. This is why a significant part of this thesis is about Parisian op-
tions. Three papers contain three different solutions to this pricing problem
using methods based on implied parameter pricing, Fourier transforms and
Monte Carlo simulation. Although the solution to the valuation problem of
another non-Parisian path-dependent option may need different modifica-
tions of one of these methods, the methods presented in the Parisian option
papers might be extended to the pricing problem at hand. Research on the
topic of Parisian option pricing was mainly initiated by Chesney, Jeanblanc
and Yor in their paper [30] of 1997.
The fourth paper is on double-sided barrier option pricing, where the loga-
rithm of the underlying value process follows a compound Poisson process
with positive drift and negative exponential jumps. Actual markets exhibit
the so-called volatility smile, which in fact reflects that the actual stock price
processes do not behave like a GBM. It is nowadays popular to use a Lévy
process to model the stock price behavior and calibrate this model to the
volatility smile given by the market. The compound Poission process is an
example of such a Lévy process. The reason to consider double-sided bar-
rier options is that these options are a degenerate case of the double-sided
Parisian option without losing the ability to derive pricing formulas for the
non-GBM underlying in terms of Laplace transforms. The paper shows that
if the parameters of the compound Poisson process are calibrated to the
market, the prices of the double-sided barrier options also exhibit a volatil-
ity smile. This is a motivation to do further research into the direction of
Parisian option pricing for non-GBM stock price processes.
The fifth paper is about oil option pricing, where the oil price process fol-
lows a different model, i.e., not GBM. The connection between the Parisian
papers and this paper is obviously the option pricing part. However, the
paper adds the different view needed to price options on commodities. Well-
known concepts in the equity world, i.e., the world of stocks, like short selling
and replication do not have obvious counterparts in the commodity world.
Therefore option pricing in the commodity world is quite a different business
as is illustrated by the paper on oil option pricing.
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Outline of the thesis

The thesis consists of five self-contained papers preceded by a first chapter
containing the preliminaries. This chapter gives an elaborate introduction
on Parisian options. Its second section concerns concepts of option pric-
ing: option pricing is about a fair price, but what is the definition of a
fair price and how is this price related to the market price. The concept
of no-arbitrage plays a central role, which informally stated comes down to
the impossibility of making risk-free profits by trading the derivative or the
underlying assets. The first chapter is concluded by a section on numeri-
cal Laplace or Fourier inversion, mainly based on the papers of Abate and
Whitt [4] and Den Iseger [53].

The chapters two, three and four cover the papers about Parisian option
pricing. Chapter two is about the concept of implied parameter pricing.
The idea behind this concept is roughly that pricing formulas of slightly dif-
ferent options are used to calculate the value of the derivative of interest. A
standard example taken from [52] is the calculation of the value of a forward
start call, which can be done using the formula for the plain vanilla call. In
practice traders use values of a standard barrier option with a slightly higher
barrier for calculation of the Parisian option prices. Chapter two elaborates
on what barrier should be taken in order to approximate the Parisian option
price.
The paper in chapter three gives a derivation of the Fourier transforms of
probabilities which are all one needs to compute the double-sided Parisian
option prices. In order to arrive at these Fourier transforms, the Laplace
transform of the Parisian stopping time is needed which is obtained by ex-
ploring the properties of Brownian meander. The reason for considering
double-sided Parisian options is that the double-sided contract type can
serve as a general Parisian contract. Many other Parisian contract types,
like the one-sided up-and-out call, can be derived from this double-sided
contract. The paper concludes with numerical examples comparing the var-
ious types of Parisian option contracts. These numerical examples show that
Parisian option behave very different from plain vanilla options.
The next chapter considers Monte Carlo simulation of Parisian options. It is
justified by experiments that straightforward path-simulating Monte Carlo
techniques will converge very slowly. The slow convergence in straightfor-
ward path-simulating is a result of the typical behavior of Brownian motion.
In this paper a method of simulating hitting times is developed, which can-
not only be used for Parisian option pricing, but it is also very useful for
simulating standard barrier options in a discrete dividend environment. For
the latter type of options closed-form formulas do not exist. The chapter
ends with a detailed treatment on tuning the algorithm that translates the
simulated hitting times into a value for the Parisian option.
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The paper in chapter five is about pricing double-sided barrier options in
case the logarithm of the stock price process is modeled by a compound
Poisson process with positive drift and negative jumps. The paper applies
general results on two-sided exit problems for Lévy processes to the Poisson
process and uses these results to derive one and two dimensional Laplace
transforms for the double-sided barrier prices. The numerical section of the
paper shows that, although the compound Poisson process can be considered
as a toy model, it can be calibrated to the actual option market rather well.
The calibrated model is used to compute prices for the double-sided barrier
options and to show that these prices exhibit their own volatility smile. The
actual computation of these prices is done by numerical inversion of a two-
dimensional Laplace transform.
The last chapter contains a paper on derivative pricing in the commodity
world. The paper starts modeling the underlying oil price process by a
stochastic differential equation (SDE), built from a potential function that
can be estimated from the data. A discussion on the relevance of the no-
arbitrage argument follows and results in the incorporation of storage costs
into the option pricing problem. Finally, the commodity pricing problem is
connected to the equity world by pricing options on oil futures instead of
options on oil itself. As there are no storage issues considering the future
contract, the no-arbitrage argument holds again.
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Publication details
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University. The paper is still in a working-paper stage.
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Chapter 1

Preliminaries

As the Parisian option is not daily traded on the exchange,
its contract specifications might not be well-known. This pre-
liminary chapter introduces this option contract to the reader
by describing the contract specifications and the practical rele-
vance of the contract. The second section treats very briefly the
concepts of derivative pricing, which are necessary to appreciate
chapter 6 on commodity option pricing. The final section gives
a quick overview of numerical Laplace and Fourier inversion pro-
cedures, used throughout the thesis.

1.1 Introduction

Since this thesis consists of a set of self-contained papers, it is not neces-
sary to read the chapters in a certain order. Readers with a background in
financial mathematics will not find anything new in the first two sections
of the preliminary chapter. The introduction to the Parisian option can be
skipped, because the self-containment of the other chapters guarantees a
brief introduction of the Parisian option in each of these chapters. The sec-
ond section on key ideas of derivative pricing is added to this thesis for people
with a background in probability rather than in financial mathematics who
want to appreciate the commodity option pricing discussion in chapter 6.
In fact it is a brief summary of the concepts as laid out in well-known text-
books as [12], [52] and [57] and therefore it contains nothing new for the
financial mathematician. The final preliminary section gives an overview of
numerical inversion techniques of Laplace and Fourier transforms. These
transforms are almost equal from a numerical point of view, because most
of the Laplace inversion algorithms start using a complex continuation of
the Laplace transform as input for a Fourier inversion algorithm. This final
section is mainly based on [4] and [53].

7



8 CHAPTER 1. PRELIMINARIES

1.2 The Parisian Option

1.2.1 Contracts, pay-offs and path-dependency

The most basic options are options on one asset that do have a pay-off that
is a function Φ of the value of the asset at time T only, the so-called T -
maturing options. Let (Ω,F ,P) be a given probability space with filtration
{Ft}t≥0 and let {St}t≥0 be a non-negative right continuous stochastic process
with left limits (RCLL) with respect to this filtered probability space. Here
the process S represents the asset price evolution in time and the pay-off
function Φ : R → R+ is Borel measurable and maps ST , the value of the
asset price at maturity, into the pay-off of the option. The definition of
Φ implies that the pay-off Φ(ST ) is FT -measurable. The non-negativity
of the pay-off is a result from the following: as the option-buyer will only
exercise his option in case it is advantageous to him, the final value of the
option (i.e., the pay-off of the contract) should have a non-negative value.
Although the stock price process can only be positive, the option’s pay-off
can be defined on a spread, i.e., the difference of two stock prices, which is
the reason for allowing for negative numbers in the domain of the pay-off
function. Examples of the basic options are European standard1 calls and
puts with strike K. The pay-offs are given by (ST − K)+ and (K − ST )+

respectively. The term European is used to indicate that the option can only
be exercised at maturity time T . Option contracts that can be exercised at
any time are called American contracts.
So far the option contracts treated are not path-dependent, i.e. the terminal
pay-off only depends on the value of the stock price at time T and not on
the behavior of the stock price path up to time T . Path dependent contract
types do incorporate the behavior of the stock price path into their pay-off
specification. Pay-off functions of ST the value of the asset at maturity then
become pay-off functionals of {St}0≤t≤T the stock price path up to time
T . A typical example is the barrier option, which is a contract paying off
like a call or put in case some barrier is crossed or not. For example the
down-and-in call with maturity T , barrier L and strike K has pay-off Φcdi,

Φcdi({St}0≤t≤T ) = (ST −K)+1{TL≤T}, (1.1)

where TL is the first hitting time of L by the process S. In the equity
world barrier options are almost nowhere exchange traded, although they
are used as building blocks in structured products like convertible bonds
and guaranteed products. A simplified version of the barrier type contracts
are the nowadays very popular Turbos and Speeders 2. The next paragraph

1In the finance industry the standard options are mostly labeled plain vanilla after the
most basic taste of ice cream.

2Turbos are issued by ABN Amro and Speeders by Commerzbank, more in-
formation can be found on the respective websites www.abnamromarkets.com and
www.speeders.commerzbank.com.
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introduces the Parisian contract type, which is in some sense an extended
version of the standard barrier contract.

1.2.2 The Parisian pay-off

Assume the probability space and the asset price process as given in the
previous paragraph. Define the random time γL+

T by,

γL+
T := sup{0 ≤ t ≤ T |St− ≤ L ∧ St+ ≥ L}, (1.2)

which corresponds to the last time the process S crosses the level L in the
upward direction. In order to keep track of crossing the level L into the
downward direction γL−

T analogously to γL+
T is defined by,

γL−
T := sup{0 ≤ t ≤ T |St− ≥ L ∧ St+ ≤ L}. (1.3)

Here the definition of γ is different from that in [30], where the authors
consider S to be a continuous process. For S continuous the random times
γL±

T are equal and correspond to the last time before T the price process S
equals L,

γL±
T = γL

T = sup{0 ≤ t ≤ T |St = L}. (1.4)

Now define TL+
D the Parisian upward and TL−

D the Parisian downward stop-
ping times as follows,

TL+
D := inf{t > 0|1{St>L}(t− γL+

t ) ≥ D}, (1.5)

TL−
D := inf{t > 0|1{St<L}(t− γL−

t ) ≥ D}. (1.6)

The upward and downward Parisian stopping times correspond to the first
time the stock price process consecutively 3 spends timeD above respectively
below level L. It is clear that the γ’s defined in (1.2)-(1.4) are not stopping
times as the occurrence of the event {γL

T ≤ t} cannot be determined from Ft,
the information up to time t. The following explicit construction of the set
{TL+

D ≤ t} shows that the random times defined in (1.5) and (1.6) actually
are stopping times,

{

TL+
D ≤ t

}

=

∞
⋂

N=⌈ t
D
⌉

N−⌊DN
t

⌋
⋃

i=0

i+⌊DN
t

⌋
⋂

j=i

{

Sj t
N

≥ L
}

,

for which the RCLL property of the process S is essential.

3In this section the consecutive Parisian contract is introduced. It is also possible to
define a Parisian stopping time by looking at the cumulative time a stock price process
spends below or above some level. The cumulative Parisian option is treated in chapter 4.



10 CHAPTER 1. PRELIMINARIES

Like in the standard barrier pay-off (1.1), typical Parisian pay-offs are con-
structed from the standard put and call pay-off multiplied by an indicator
function of the Parisian stopping time. Consider as an example Φcpdi the
pay-off of a Parisian down-and-in call with strike K, barrier L, time to
maturity T and length of period to stay below the barrier D,

Φcpdi({St}0≤t≤T ) := (ST −K)+1{T L−
D ≤T}.

This option pays off like a call option in case the stock price path has been
below level L for a consecutive time period of length D. Figure 1.1 contains
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S
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(S
T
−K)+

K

L

D

Figure 1.1: Example of Parisian pay-off.

two simulated sample paths of the stock price process S, both with a terminal
value of 125. Consider as a first example the standard European call with
time to maturity T = 1 and strike K = 100. For the sample paths plotted in
the graph, this European call is paying off the positive value ST −K = 25,
regardless of which of the two stock price paths has been realized. Now
consider the Parisian down-and-in call with level L = 90, period to stay
below this level D = 0.2 year and same strike and time to maturity as
the European standard call. In case the lower sample path is realized, the
Parisian option pays off like the European call because the Parisian stopping
time TL−

D occurs before maturity as is marked in the graph. Realizing the
upper sample path does not trigger the Parisian option, so in that scenario
it will not pay off anything. Suppose now the level L is lowered to 80, then
none of the plotted sample paths would trigger the Parisian option because
the lower sample path does not stay long enough below the level 80. A
standard barrier down-and-in call option with same strike, time-to-maturity
and knock-in level would still pay off like the European call in case the lower
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Table 1.1: Parisian contract types.
Call

in

out

down-and up-and

(ST −K)+1{T
L−

D
≤T} (ST −K)+1{T

L+

D
≤T}

(ST −K)+1{T
L−

D
≥T} (ST −K)+1{T

L+

D
≥T}

in

out

(K − ST )+1{T
L−

D
≤T} (K − ST )+1{T

L+

D
≤T}

(K − ST )+1{T
L−

D
≥T} (K − ST )+1{T

L+

D
≥T}

down-and up-and
Put

sample path is realized and L = 80.
Combining standard put and call pay-offs with indicators of the Parisian
stopping times (1.5) and (1.6) results in different types of Parisian option
contracts. Table 1.1 gives an overview of the various Parisian contract types
and their pay-offs.
The Parisian options introduced so far are of the one-sided type. It is a
natural extension to consider double-sided Parisian option contracts. This
contract will be triggered by the following double-sided Parisian stopping
time,

TL1−,L2+
D1,D2

:= min
(

TL1−
D1

, TL2+
D2

)

.

Double-sided Parisian options are triggered by staying long enough below
some lower level or long enough above a certain upper level. As a result up
and down types of double-sided Parisian contracts do not exist, so there are
only four of them given by the combinations of put or call and in or out.

1.2.3 Applications of Parisian optionality

The Parisian option as such is not an exchange traded instrument, so, at
first glance there is no need to price it for market making purposes. The ex-
changes serve their investing customers by offering them liquidity. In order
to guarantee liquidity in options, i.e., guarantee filled order books such that
investors easily can enter into or unwind an option position, the exchanges
make agreements with market makers. The market makers should quote
almost continuously in their option series. This quoting incorporates a risk
for the market makers, for example if markets move fast, and therefore they
receive certain privileges like low transaction costs, high bandwidth connec-
tions to the exchange or a different priority in the order book. The regula-
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tions and privileges vary per exchange, but they are all based on giving the
market maker something in return for being visible in the market. Nowadays
a lot of derivative exchanges, like EuroNEXT Liffe and EURex, are screen
trading environments and the open-outcry systems, like the Chicago Board
of Trade (CBOT), are under pressure. For the screen trading market maker
it is absolutely necessary that he disposes of a real-time option pricing en-
gine. Therefore theoretical valuation of exchange traded option contracts
should be very fast, i.e., pricing techniques with computation times of sev-
eral minutes are useless in this situation.
Consulting the first papers on Parisian option pricing, [29] and [30], it is
suggested that Parisian options have been traded in the over-the-counter-
market (OTC) by an Australian and a French bank. Large banks do not
trade every derivative through an exchange, instead they trade a huge num-
ber of contracts directly with other banks in the OTC market. The OTC
market is only accessible to large banks, because the counter party risk is
not eliminated by an exchange. The reason for banks to trade the Parisian
option instead of the standard barrier option was supposed to be in the dif-
ficulty of triggering the option by market manipulation, which is of course
an issue in case of an illiquid underlying product.
Real option theory, see [38], is the theory of incorporating option valuation
into the field of optimal investment decisions. Especially taking into account
the value of postponing the investment, the timing of the investment can
be optimized. The resulting strategy can be of the type where the investor
starts the investment as soon as some economic quantity exceeds a certain
level. Real option theory then uses the standard barrier option to compute
the value of this investment strategy. However, as pointed out by [43], af-
ter exceeding the level time passes by before the start of the investment is
actually made. This can be a result of raising funds, convincing the board
or hiring people. Now assume that this process will be interrupted as soon
as the economic quantity drops below the level and as soon as the quantity
exceeds the level again, the process will be re-initiated. In this case, where
there is some delay between the exceeding of the level and the actual invest-
ment, from a real option perspective it is necessary to valuate a Parisian
option instead of a standard barrier option.
Another example from practice is given by the convertible bond, see [61]
and [48]. A convertible bond is a bond that can be converted by the bond-
holder into some amount of stock of the issuer at the contractual conversion
price. The issuer has usually the possibility to call the bond, upon which
the holder can either redeem the bond at the call price or convert it into
stocks. To protect the holder’s conversion privilege, the convertible bond
contract contains a hard and a soft call constraint. The hard call constraint
ensures that the issuer cannot call the bond during its early life. The soft
call constraint usually requires the stock of the issuer to trade above some
trigger level for a consecutive period of time. As a result of this soft call



1.3. KEY IDEAS OF DERIVATIVE PRICING 13

constraint, the ability to price Parisian options is of great use for pricing
convertible bonds.
Finally there are applications of Parisian options in the valuation of corpo-
rate liabilities. In [66] and [27] the authors explain that the Parisian behavior
is a result of the law. After the default event happens, the court can give
a company a so-called grace period. During this grace period a company
has the time to recover from default by either reorganizing its activities or
negotiating with debt and equity holders. If the company does not succeed
in recovering during this grace period liquidation follows. So, the liquidation
event will be triggered by a Parisian stopping time which is the first time
that the value of the firm spends below the default threshold longer than
the grace period. In [26] the authors model the firm’s cash position by a
standard Brownian motion to obtain a model for the time of default. The
time of default occurs as soon as the cash position doubles in magnitude
after it has been below zero for some period of time, which is equivalent to
the first hitting time of zero after a Parisian stopping time has occurred.

1.3 Key ideas of derivative pricing

Option pricing problems in the literature are usually presented as the prob-
lem of calculating the expected value of the pay-off under a martingale
measure Q. This section explains the connection between this expectation
and the underlying concepts of derivative pricing. Recall the stock price
process S as defined in paragraph 1.2.1 and make the extra assumption that
it is a continuous semi-martingale. The derivative that needs to be priced
with pay-off Φ lives on the finite time interval [0, T ] and its price at time
0 ≤ t ≤ T is denoted by Vφ(t).

1.3.1 Trading, the bank-account and the market

During the opening hours of the exchanges a lot of financial instruments are
traded almost continuously. For very liquid stocks, like Microsoft, the BBO4

is updated more than once a second. That is why modeling the stock price
and the trading strategy by continuous time stochastic processes is not too
far from reality.
If you start trading stocks, it is natural to consider the concept of a strategy,

4The Best B id Offer line is the top line within the orderbook. Every order that cannot
be matched directly is stored in the orderbook on a FIFO bases. The order depth consists
of prices for which traders want to buy or sell the stock and the total volume that can be
traded on that price. The highest bid price and the lowest ask price together with their
respective volumes is called the BBO. The difference between the highest bid price and
the lowest ask price is called the spread. The smallest possible price difference is defined
by the tick size. A spread of one tick size usually indicates that the stock is very liquid,
i.e., very heavily traded.
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a stochastic process representing your buy and sell decisions. To put it
formally, a strategy {φt; 0 ≤ t ≤ T} is a predictable stochastic process
denoting the number of stocks in your portfolio. For example, the strategy
φt = H0/S0 for every t represents the buy and hold strategy, where the
amount H0 > 0 is the initial amount you invest in the strategy. A stochastic
process φ is predictable if as a mapping φ : [0, T ] × Ω 7→ R it is measurable
w.r.t. the σ-algebra generated on [0, T ]×Ω by all left-continuous processes.
Later on, when discussing the no-arbitrage assumption, an example will
make clear why a strategy should be a predictable process. Consider the
simple strategy,

φt(ω) =

N−1
∑

i=0

Ci(ω)1(ti ,ti+1](t),

where 0 = t0 < t1.. < tN = T is a partition of [0, T ] and Ci ∈ Fti . The
process φt is predictable and the profit Pφ arising from this strategy can be
computed by the sum,

Pφ =
N−1
∑

i=0

φti(Sti+1 − Sti) =
N−1
∑

i=0

Ci(Sti+1 − Sti), (1.7)

which converges to the Itô integral w.r.t. S for all bounded predictable pro-
cesses φ. Recall that for a continuous integrand φ that can be approximated
by simple integrands φ(n) with decreasing mesh-size of the partition of the
time interval [0, T ] sums like (1.7) converge to the Itô integral if the inte-
grand is evaluated at the starting point of the interval. In general the profit
Pφ(t) generated by stock-trading according to strategy φ until time t is given
by

Pφ(t) =

∫ t

0
φu dSu for t ∈ [0, T ].

The world consists not only of stocks, but it is also possible to keep a pos-
itive or negative amount of money on a bank account. By definition on a
bank-account the interest rate for keeping positive and negative amounts
on the bank account is equal, deterministic with value r and continuously
compounded. The dynamics of the bank account B are given by

dBt = rBt dt, (1.8)

and together with the assumption B0 = 1, this results in Bt = erT . Like
φt, the number of stocks in the portfolio, a strategy also has to specify the
number of units bank account in the portfolio, denoted by the stochastic
process {ψt; 0 ≤ t ≤ T}. The value of the portfolio at time t is denoted by
Ht and given by

Ht = ψtBt + φtSt. (1.9)
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Now consider only the self-financing strategies, i.e., strategies that need no
extra investment after the initial amount H0. For a self-financing portfolio
it is only possible to redistribute its value between the stock and the bank
account, which results in the following equation

ψt−Bt + φt−St = ψtBt + φtSt,

where t− = t−∆t for some small ∆t. Now the mutation on the bank-account
follows

Bt(ψt − ψt−) = −St(φt − φt−)

= −(St − St−)(φt − φt−) − St−(φt − φt−).

Adding and subtracting St−(φt − φt−) is necessary to get Itô differentials
in the limit. Letting ∆t → 0 gives the dynamics of ψt in terms of φt for a
self-financing strategy,

dψt = − 1

Bt
(St dφt + dSt dφt) . (1.10)

An application of the Itô formula gives the dynamics of Ht, the value of the
portfolio at time t given in (1.9), and for a self-financing portfolio plugging
(1.10) into this dynamics gives the result

dHt = d(ψtBt + φtSt) = ψt dBt + φt dSt. (1.11)

A self-financing strategy is completely specified by the pair (H0, {φt}0≤t≤T ),
where H0 denotes the initial investment and φt for t ∈ [0, T ] the number of
stocks the portfolio should contain. The number of units bank account ψt

for t ∈ [0, T ] directly follows from the self-financing property. Note, that
in case of an interest rate of zero, the value of the portfolio constructed
from the self-financing strategy (H0, {φt}0≤t≤T ) at time t equals the initial
investment H0 plus the profit Pφ(t) at time t,

Ht = H0 +

∫ t

0
φu dSu.

So far the market contains two tradable assets: money on the bank-account
and stocks. The strategies one can trade on the market need to be of the
predictable type, i.e., one can only use information at time t to make a buy
or sell decision at time t+ ε for any ε > 0.

1.3.2 No arbitrage assumption

Crucial in the theory of derivative pricing is the no-arbitrage assumption,
which states that the market is free of arbitrage possibilities. A market
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contains an arbitrage possibility if there exists a self-financing strategy
(H0, {φt}0≤t≤T ) such that,

H0 = 0, P[HT ≥ 0] = 1 and P[HT > 0] > 0. (1.12)

So an arbitrage possibility is a strategy that needs no initial investment,
has zero probability of losing money, and a positive probability of ending
up with more than zero. Note that in case the market model contains a
bank account, putting money on this account that grows with the risk-free
interest rate is not an arbitrage possibility, because although you are sure
you end with more money than you initially invested, the initial investment
is not zero. A strategy that does require an initial investment is an arbitrage
possibility if the value of the corresponding portfolio at time T is at least
the initial investment H0 plus interest and with positive probability even
more.
The no-arbitrage assumption puts restrictions on the assets that can be in
the model of the market and on the trading strategies that are allowed.
Consider for example a market model with two bank accounts with differ-
ent risk-free interest rates, then keeping a negative amount −H0 on the
bank account with the lower interest rate and a positive amount H0 on
the account with higher interest rate is an arbitrage possibility. Allowing
all stochastic processes φ in a strategy also introduces arbitrage possibili-
ties. Recall from the previous section that a strategy should already be a
predictable process, so what arbitrage possibility arises for example from a
right-continuous strategy, i.e., a strategy that is not predictable? Consider
the following model for the stock price process S,

St =

{

2 t ∈ [0, T
2 )

X t ∈ [T2 , T ]
, where P[X = 3] = p and P[X = 1] = 1 − p.

The following strategy is adapted and right-continuous,

φt =







0 t ∈ [0, T
2 )

1 t ∈ [T2 , T ] and X > 2

−1 t ∈ [T2 , T ] and X < 2

,

and causes an arbitrage possibility as we have for the profit the following
Itô integral, which equals the Stieltjes integral as the process X is of finite
variation (see [75] for details),

Pφ =

∫ T

0
φtdSt = φT/2∆ST/2 = 1

which is a sure profit generated by foreseeing the jumps of the stock price
process. In reality it is of course not possible to anticipate a jump in the
stock price process, it is only possible to adjust your strategy just after the
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jump, which is adequately represented by a left-continuous process, which
is the kind of process that generates the class of predictable processes as
described in the previous section. Restricting the strategies to predictable
processes is not enough, because it is still possible to create a strategy that
is similar to the doubling strategy in the casino. The idea is to invest at
times tn = T − T/n, n = 1, 2, .. and increase your investment as long as the
gain from the previous investments is not enough, where the investments
are financed by a loan on the bank account. This type of strategies are not
possible in reality, simply because you will not have an infinite credit line.
From now on the only strategies (H0, {φt}0≤t≤T ) that are admitted are the
strategies for which a real number α > 0 can be specified such that the losses
never exceed −α,

∫ t

0
φu dSu > −α a.s. for t ∈ [0, T ]. (1.13)

It is now a natural question whether it is possible to check whether a market
model satisfies the no-arbitrage assumption. The answer involves the con-
cept of a equivalent martingale measure (EMM). A measure Q is an EMM
on [0, T ] for the bank account B if Q is equivalent with P on FT , i.e., P

and Q assign zero measure to the same sets in FT , and the discounted stock
price process S̃t := St/Bt is a Q-martingale on [0, T ]. The following meta-
theorem answers the question,

The market model (B,S) essentially satisfies the no-arbitrage
assumption if and only if there exists an EMM.

Arriving from the EMM at the no-arbitrage assumption is the easy part
of the theorem. Assume for simplicity that the risk-free rate r = 0, resulting
in Bt ≡ 1 for t ∈ [0, T ]. Suppose that Q is an EMM and (H0, {φt}0≤t≤T ) is
an arbitrage possibility. Then under Q the stock price process is a martin-
gale and therefore a stochastic integral w.r.t. the stock price process also is
a martingale, giving the following equation,

0 = H0 = EQ

[∫ T

0
φt dSt

]

. (1.14)

Now from Q ∼ P it follows by (1.12), the definition of an arbitrage possibility,
that H0 > 0, which is a contradiction to (1.14).
The other way around, i.e., proving that there should exist an EMM if the
market model satisfies the no-arbitrage assumption is very technical. A more
subtle version of the arbitrage possibility is involved, which is the reason for
including the word essentially in the meta-theorem. A rigorous proof of this
result can be found in [37]. In [12] an almost complete picture of the proof
is given in a very accessible way.
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There are two reasons for the no-arbitrage assumption to be a key concept
in derivative pricing. On itself, the no-arbitrage assumption seems quite
reasonable in practice. Market participants are not spending money they
do not need to spend, so for you, there will be no arbitrage possibility.
It is therefore practically relevant to assure that if you have a method to
price a derivative that your market model, extended with the derivative as a
tradable following the price process you have computed with your method,
still satisfies the no-arbitrage assumption. On the other hand, suppose you
can find a self-financing strategy (H0, {φt}0≤t≤T ) resulting in a portfolio
with a terminal value HT that equals the pay-off Φ of the derivative you
want to price. Then, by the no-arbitrage assumption, the price VΦ(0) of the
derivative at time 0 should equal H0.

1.3.3 Pricing and replicating strategies

Assume you extend the tradables in the market model already containing the
stock and the bank account by the derivative itself. Pricing the derivative
is straightforward once you assume that the extended market models still
satisfies the no-arbitrage assumption. By this assumption there exists a
measure Q such that all discounted tradables are martingales, which should
in particular be true for Vφ(t)/Bt, the price process of the derivative. So,
VΦ(t) is given by the following conditional expectation,

VΦ(t) = BtEQ

[

Φ(ST )

BT

∣

∣

∣

∣

Ft

]

. (1.15)

Pricing the derivative by (1.15) guarantees that there exists no strategy of
buying or selling the derivative for this price that generates an arbitrage
possibility. Then, what to do when the market price is different from this
price? Will that give you an arbitrage possibility? The existence of a so-
called replicating strategy is crucial in answering this question. The self-
financing strategy (H0, {φt}0≤t≤T ) is a replicating strategy for the derivative
with pay-off Φ at time T if the following equation holds,

HT = H0 +

∫ T

0
ψt dBt +

∫ T

0
φt dSt = Φ(ST ) a.s.

In words this equation states that in all possible scenarios of the stock price
process, you know how to redistribute the initial investment H0 between
stocks and the bank-account such that the value of your portfolio at time T
exactly equals the pay-off of the derivative. Suppose such a strategy exists,
then in case the market model is arbitrage-free, the price of the derivative
VΦ(t) should equal the value of the portfolioHt a.s. for all t ∈ [0, T ]. Suppose

there exist two such strategies, (H
(1)
0 , {φ(1)

t }0≤t≤T ) and (H
(2)
0 , {φ(2)

t }0≤t≤T ),

then by the no-arbitrage assumption H
(1)
t = H

(2)
t for all t ∈ [0, T ]. The
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remaining question now is whether such a strategy exists. A market model
in which there exists a replicating strategy (H0, {φt}0≤t≤T ) for every pay-off
Φ is called complete. It is again a meta-theorem that answers the question:

A market model (B,S) that satisfies the no-arbitrage assumption
is complete if and only if the EMM is unique.

Again one direction is easy to show. Suppose there exists a replicating
strategy and there are two different EMMs generating two different price
processes by (1.15). For at least one of these EMMs, trading the derivative
price process against the portfolio value Ht constructed by the replicating
strategy generates an arbitrage possibility which is assumed not to exist.
The other way around is more technical and in the zero interest rate case it
comes down to showing that for each martingale M being the price process
of the derivative, there exists a stochastic integrand {φt}0≤t≤T , being the
replicating strategy, such that the following equation holds,

Mt − E[Mt] =

∫ t

0
φu dSu.

So showing that the existence of a unique martingale measure ensures the
existence of a replicating strategies boils down to using a martingale rep-
resentation theorem that is suitable for both the class of pay-offs and the
model for the stock price process you are considering.

1.3.4 The Black-Scholes formula

The famous Black-Scholes formula is a pricing formula for a T -maturing
European call option with strike K on a single stock, where the stock price
process S is given by a GBM, so its dynamics under the objective measure
P are given by,

dSt = µSt dt+ σSt dWt, S0 = s0, t ∈ [0, T ]. (1.16)

Here µ is the drift and σ the volatility of the stock price process. The volatil-
ity introduces risk into the future values of the stock price process. Note
that the bank account B as given in (1.8) is governed by the same type of
dynamics with zero volatility, i.e., zero risk. The rational investor demands
µ > r as a compensation for this risk.
By Girsanov’s theorem for every real α there exists an FT -equivalent mea-
sure Q such that the process {Zt}0≤t≤T given by Zt = Wt + αt is a Q-
Brownian motion. Together with the equality dWt = dZt − α dt, equation
(1.16) translates for α = µ−r

σ into

dSt = rSt dt+ σSt dZt. (1.17)
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Now Z is a Q-Brownian motion and therefore the discounted stock price
process St/Bt is a Q-martingale on [0, T ]. Under the measure Q the process
given by (1.17) is not the actual, real-world stock price process anymore, it is
artificial and it is a process with uncertain future values and a drift equal to
the risk-free rate. Suppose this process represents the stock price evolution
in reality, then the only people who are interested are the investors who do
not need a compensation for the risk. These investors do not bother about
risk, so they are risk-neutral. Therefore the dynamics given by equation
(1.17) are denoted by the risk-neutral dynamics, Q is called the risk-neutral
measure and S governed by the risk-neutral dynamics is called the risk-
neutral stock price process. By the pricing formula (1.15) the price VC(t, St)
of a standard call option at time t and the corresponding stock price value
St is given by

VC(t, St) = e−r(T−t)EQ

[

(

St e
(r− 1

2
)σ2(T−t)+σZT−t −K

)+
]

. (1.18)

Showing that (1.18) is the fair price, i.e., the only price that does not
introduce an arbitrage opportunity, is similar to showing that there ex-
ists a replicating strategy (H0, {φt}0≤t≤T ). A replicating strategy assures
Ht = VC(t, St) a.s. for t ∈ [0, T ], which is assured by dHt = dVC(t, St)
and H0 = VC(0, S0). From (1.18) it follows that VC(t, St) is a continuous,
twice differentiable function, so by Itô’s formula the dynamics of VC(t, St)
are given by

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
σ2S2

t dt, (1.19)

where the notation is simplified by writing V instead of VC(t, St). By com-
paring the dynamics of the price in (1.19) with the dynamics of a self-
financing strategy (1.11) it follows that computing the number of stocks in
the replicating strategy by

φt =

[

∂V (t, S)

∂S

]

s=St

, (1.20)

is consistent with (1.19). One can also obtain the number of units bank
account ψt at time t from (1.19). If this ψ turns out to be the same as the
ψ that follows from the self-financing property given by (1.10) then the self-
financing strategy (H0, {φt}0≤t≤T ) with φ given by (1.20) is a replicating
strategy for the T -maturing European call option. Guessing ψ directly from
(1.19) might not be enough, because (1.19) holds for any twice continuously
differentiable V . More specific information on V comes from (1.18) and can
be exploited by the Feynman-Kac theorem, see [69] for background and [12]
for applications, which results in the following equation,

∂V

∂t
dt+

1

2
σ2S2

t
∂2V

∂S2
= r

(

V − St
∂V

∂S

)

, (1.21)
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and the following guess for ψt,

ψt =
1

Bt

(

V − St
∂V

∂S

)

.

Using Itô and another application of (1.21) shows that dφt satisfies (1.10).
Therefore, the self-financing strategy (H0, {φt}0≤t≤T ) with φ given by (1.20)
is the replicating strategy for a European call option and (1.18) gives the fair
price of this derivative. The actual formula for the price that follows from
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Figure 1.2: Two realizations of the stock and option price process, replicating
strategy and absolute error.

computing (1.18) can be found in many textbooks, see for example [52]. In
practice the number of stocks in the replicating strategy φt given by (1.20) is
called the delta of the option. Figure 1.2, where the upper and lower part of
each subgraph correspond to the right and left hand axis respectively, shows
this delta for two simulated paths of stock price process starting at S0 = 100
with volatility σ = 0.25 and drift µ = 0.08. The option for which the delta
and the option price are computed is a call option with strike K = 100 and
time to maturity T = 1. The risk-free rate on the bank account is set to
r = 0.035. The two simulated stock price paths differ in the sense that the
upper one that ends above the strike corresponds to the option ending “in
the money”, whereas the lower one ends below the strike and corresponds
to the option ending “out of the money”. The left-hand graphs in the figure
show that the delta for an in-the-money option approaches one, whereas
it approaches zero for the out of the money option. This corresponds to
the fact that an option seller only has to deliver one share of stock to the
buyer in case the option ends in the money. The right-hand graphs give
an idea of the evolution of the option price process and the absolute error
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between the option price following from (1.18) and the value of the self-
financing portfolio constructed from H0 the initial option price and φt given
by (1.20). According to the theory the value of the replicating portfolio and
the option price should be the same at each point in time, so the absolute
error should be zero everywhere. Remember that the replicating strategy
φ allows to trade continuously, whereas in this simulation the time of one
year is divided into 1000 time steps. It is this discretization of time that is
responsible for an absolute error different from zero. However, note that a
division of one year into 1000 time-steps corresponds to only four trading
moments each day. The power of the Black-Scholes formula and the reason
that in practice it is used everywhere lies in the fact that you have to trade
the stock only four times a day to replicate a one-year option in order to
obtain an acceptable final error. So you can act as a market maker because
you have a recipe to produce your option and you know your production costs
with sufficient certainty. For this to be really true, the stock price process
has to follow a GBM in the market. All traders agree that the market does
not follow a GBM and that is the reason for numerous modifications of the
Black-Scholes framework.

1.3.5 Incomplete markets

For the derivation of the Black-Scholes formula, the following assumptions
were made:

• The stock price process follows a GBM.

• Borrowing money and saving money goes against the same continu-
ously compounded risk-free interest rate.

• It is possible to trade stocks continuously and in arbitrary fractions.

• Short-selling is allowed without extra costs.

• There are no trading costs.

• The underlying can be stored without costs and without deterioration.

In actual stock markets, only the first assumption is a real issue. The last
assumption might even sound trivial as only stocks are considered up to
here. However, if the underlying is a perishable commodity this can be a
real issue, which is then also the case for the short-selling assumption. In
the remainder of this subsection there will be discussion on the GBM as-
sumption. People in practice believe that stock price processes do not follow
a GBM. Now, what happens if the underlying process is changed to another
process, like a jump-diffusion process?
One approach is to directly model the stock under a martingale measure,
i.e., given your model, you choose your parameters in such a way that your
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stock price is a martingale and you assume that an equivalent objective mea-
sure does exist. Using this approach implies that you have to calibrate your
model to option prices, which are determined by the risk-neutral measure.
You cannot calibrate your model to historical price information of the un-
derlying stock price process, because then you would be using observations
from the physical measure. An arbitrage-free option price can still be ob-
tained by (1.15), but it is no longer ensured that this option price is unique.
No unique price means no replicating strategy for the option and you are
no longer in a complete market, which is, as explained in the previous para-
graph, the real power of the Black-Scholes model.
First it is natural to consider the cheapest self-financing strategy that gen-
erates a terminal value that is maybe more, but never less than the option’s
pay-off. The set-up costs of this strategy is an upper bound for the op-
tion price, otherwise it is possible to generate an arbitrage by selling the
option. The initial investment of a self-financing strategy with a terminal
value maybe less and never more than the option’s pay-off is a lower bound
for the option price, otherwise buying the option generates an arbitrage pos-
sibility. This concept is known as super hedging and results in an interval
of possible option prices. For the class of exponential Lévy models, i.e.,
St = S0e

Xt where {Xt}0≤t≤T is a Lévy process the lower bound is at least
the Black-Scholes price and the upper bound is S0, the stock price at time
0. A detailed discussion for different cases can be found in [40] and [9].
Super hedging gives almost trivial bounds for the option price, so there is a
need for another approach, quadratic hedging. This quadratic hedging ap-
proach minimizes the variance of the hedging error. Minimizing the variance
at the final time T is called mean variance hedging, whereas minimizing the
variance of the one step ahead hedging error is called local risk minimization,
see [80] for an overview. In this setting the self-financing strategy defined
by (1.20), the partial derivative of the option price at time t with respect to
St, is sub-optimal.
Finally, another approach is to enrich the model with the investor’s prefer-
ences by introducing a utility function. A general treatment of this concept
can be found in [42]. The advantage of this approach is that investors with
different preferences assign different values to options, which makes clear
why people trade with each other in the markets. The drawback of the
method is that it is hard for a trader to specify his utility function and in
general this function will depend on his entire position in stock and options.
In practice market makers in standard equity options do not like models
without hedging strategy. They prefer a modification of the Black-Scholes
model where the volatility is given by a function σ(t, St) rather than a con-
stant. Parametrization of this function allows the model to be calibrated
to the option market, without giving up completeness. The use of the in-
complete non-GBM models is that these models can be calibrated to the
standard option market and then be used for risk management and pricing
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of exotic options. Both areas are growing as a result of increasing regulation
and increasing complexity of financial products.

1.4 Numerical inversion

In this section the numerical inversion of Laplace and Fourier transforms is
discussed. From a probabilistic point of view, it turns out to be convenient to
use Fourier or Laplace transforms for the valuation of quantities of interest.
In this thesis examples of these quantities are given by pricing formulas for
Parisian options and double-sided knock-in calls. The transform needs to be
numerically inverted in order that the method has a practical application.
This section is mainly based on the papers of Abate and Whitt [4] and Den
Iseger [53] describing the use of Euler summation and Gaussian quadrature
respectively. The Euler summation method is straightforward and works
quite well in case a one dimensional transform needs to be inverted. The
Gaussian quadrature method is rather complicated. It has the advantage
that it is possible to obtain numerical values for two dimensional transforms
within acceptable time. An application of two dimensional Laplace inversion
is given in the chapter on double-sided barrier options in a compound Poisson
setting. The section starts by a paragraph defining Fourier and Laplace
transforms. The second and third paragraph then treat Euler summation
and Gaussian quadrature respectively.

1.4.1 The Fourier and Laplace transform

For a rigorous treatment of the Fourier transform and its properties see [76].
Assume that the function f : R → R is in L1, then its Fourier Transform
f̂ : R → C is defined by

f̂(t) =

∫ ∞

−∞
f(x)eitx dx. (1.22)

Assuming that f̂ ∈ L1 results in the inversion formula given by

f(x) =
1

2π

∫ ∞

−∞
f̂(t)e−ixt dt a.e. (1.23)

The inversion formula gives an almost everywhere equation because the in-
version integral differs from the original f at points where f jumps. It
follows directly from (1.22) that the real and imaginary parts of f̂ are even
and odd respectively. As f itself is a real function, the inversion formula
(1.23) translates into

f(x) =
1

π

∫ ∞

0
f̂(t)e−ixt dt a.e. (1.24)
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Let g : R+ → R a function in L1. Then its Laplace transform ĝ is defined
by

ĝ(s) =

∫ ∞

0
e−sxg(x) dx, (1.25)

where s ∈ R+ such that (1.25) exists. For the remainder of this section the
functions f and g are always defined on R and R+ respectively, where f̂ and
ĝ denote their respective Fourier and Laplace transforms. For numerical
inversion of the Laplace transform the Fourier inversion formula (1.23) can
be used by plugging the complex continuation of the Laplace transform into
it. In order to simplify (1.24) the help function h : R → R is defined as
follows,

h(x) := g(|x|).
The Fourier transform ĥ of h is given by

ĥ(t) =

∫ ∞

−∞
g(|x|)eitx dx

= 2

∫ ∞

0
g(x) cos(tx) dx = 2ℜ{ĝ(−it)} = 2ℜ{ĝ(it)}.

Plugging ĥ into (1.24) results into the following inversion formula for the
Laplace transform ĝ and x ≥ 0,

g(x) =
2

π

∫ ∞

0
ℜ{ĝ(it)} cos(tx) dt a.e. (1.26)

Suppose g itself is not in L1, then the Laplace transform of the damped
version gα of g given by gα(x) = e−αxg(x) can be used if there exists an
α > 0 such that gα is in L1. By the complex continuation of (1.25) the
following equality holds

ℜ{ĝα(−it)} = ℜ{ĝ(α+ it)},
translating (1.26) into

g(x) =
2eαx

π

∫ ∞

0
ℜ{ĝ(α+ it)} cos(tx) dt a.e. (1.27)

One crucial ingredient for both the Euler summation and the Gaussian
quadrature method is the Poisson summation formula (PSF). It relates a
sum of transformed function values to a sum of function values. Let f be
in L1 and of bounded variation, then for all h > 0 the Poisson summation
formula is given by,

∞
∑

j=−∞
f

(

t+
2πj

h

)

=
h

2π

∞
∑

j=−∞
f̂(−jh)eijht. (1.28)

An accessible treatment of the PSF can be found in [36] and a more detailed
treatment in [83].
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1.4.2 Euler summation

The Fast Fourier Transform (FFT) is the most popular numerical inversion
method for Fourier transforms. A straightforward way of numerically in-
verting the Fourier transform is discretization and truncation of the integral
in (1.24). The FFT is an efficient algorithm that computes a vector ~w of
length N from a vector ~x of length N such that for each element wk of ~w
the following holds,

wk =

N
∑

j=1

e−i 2π
N

(j−1)(k−1)xj, where k = 1, .., N.

The algorithm is efficient in the sense that it takes order N logN time to
compute the vector w instead of order N2.
Abate and Whitt propose in [4] a method to invert Laplace transforms.
Their method is mainly based on truncation and discretization of (1.26).
They obtain a numerical value gn,h(x) using the trapezoidal rule,

gn,h(x) =
heαx

π
ℜ{ĝ(α)} +

2heαx

π

n
∑

j=1

ℜ{ĝ(α+ jhi)} cos(jhx). (1.29)

Let like in the previous paragraph gα(x) = e−αxg(x). Using f(x) = gα(|x|)
it again holds that

f̂(t) = 2ℜ{ĝ(α+ it)} = f̂(−t).

Plugging this equation for f̂ into the PSF in (1.28) yields the following
alternative Poisson summation formula,

∞
∑

j=−∞
gα

(∣

∣

∣

∣

x+
2πj

h

∣

∣

∣

∣

)

=
h

π
ℜ{ĝ(α)} +

2h

π

∞
∑

j=1

ℜ{ĝ(α+ jh)} cos(jhx).

Comparing this version of the PSF to (1.29) shows that the discretization
error can be obtained in the following way,

g(x) − lim
n→∞

gn,h(x) = eαx
∞
∑

j=−∞,j 6=0

gα

(∣

∣

∣

∣

x+
2πj

h

∣

∣

∣

∣

)

. (1.30)

The next step is to eliminate the cosine terms in (1.29) by setting h = π/x
resulting in

gn(x) =
eαx

x
ℜ{ĝ(α)} +

2eαx

x

n
∑

j=1

(−1)jℜ
{

ĝ

(

α+
jπ

x
i

)}

, (1.31)

where gn(x) is shorthand notation for gn,π/x(x). If there exists a n0 such

that ℜ
{

ĝ
(

α+ jπ
x i
)}

is of constant sign for j > n0, then gn is an alternating
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series. Abate, Choudhury and Whitt show in [1] that under some regularity
conditions both the real and imaginary parts of a Fourier transform f̂(v) are
of constant sign for v > 0 large enough. Now Abate and Whitt propose the
use of Euler summation in order to exploit the alternating series property
and speed up the convergence. The Euler summation En,m(x) is a binomial
average over the partial sums gn(x), gn+1(x), .., gn+m(x) given by

En,m(x) =
m
∑

k=0

(m
k
)

2−mgn+k(x). (1.32)

More details about Euler summation can be found in [70]. In practice one
might want to calculate the partial sums in (1.31) and control the error by
first tuning α resulting in an acceptable discretization error given by (1.30).
The second step involves the use of explicit knowledge of f or g to obtain
an estimate for the truncation bound. Unfortunately this truncation bound
is very often too large, i.e., the number of terms that need to be evaluated
to get the desired accuracy is huge. A way out might be the use of Euler
summation, however, one has to be careful. The error bounds provided by
the literature on Euler summation are only valid for alternating series. The
series {gn(x)} of partial sums given by (1.31) is not an alternating series
in general, even in case some regularity conditions are satisfied, the series
{gn(x)} becomes alternating for n > n0 and unknown n0. Abate and Valkó
argue in [2] that it is not possible to come up with error bounds for general
transforms and they recommend to use two algorithms, each with empirical
error estimates.

1.4.3 Gaussian quadrature

In the previous section the PSF is used to get insight into the discretization
error of numerical computation of the integral (1.27). The method of Den
Iseger as presented in [53], uses the PSF in a different way and is based
on an alternative representation of the PSF. This subsection summarizes
the main ideas, for the one dimensional case, with just a few lines on the
extension to two dimensions. Details on the multidimensional extension,
numerical examples and fine tuning of the algorithm in order to deal with
discontinuities are all in the original paper. Let the function g, defined on
R+, be in L1 and of bounded variation. The Fourier transform of f , defined
by

f(x) = 1{x≥0}e
−(α+2πiv)xg(|x|),

is related to the complex continued Laplace transform of g in the following
way,

f̂(t) = ĝ(α+ i(2πv − t)). (1.33)
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Now plug (1.33) into (1.28) and choose t = 0 and h = 2π to obtain an
alternative form of the Poisson summation formula

∞
∑

j=0

e−(α+2πiv)jg(j) =

∞
∑

j=−∞
ĝ(α+ i2π(v + j)). (1.34)

The left hand side of this equation represents the discrete Fourier transform.
The key idea is now to view the infinite sum as an integral and compute
numerical values for this sum by applying Gaussian quadrature to the inte-
gral. A more detailed treatment of the summary on Gaussian quadrature
than is given here can be found in [70]. For a function f and a measure µ
the following approximation of the integral,

∫

I
f(x)µ( dx) ≈

n
∑

j=1

Hjf(aj), (1.35)

is called a Gaussian quadrature of µ on the interval I if the sets of weights
Hj and evaluation points aj are chosen in such a way that the approximation
is exact for f a polynomial of degree 2n − 1 or less. Let {qi}i=0,1,..,n be a
set of orthogonal polynomials w.r.t. the usual inner product defined on I
by the measure µ. Then the evaluation points aj in (1.35) are given by the
zeros of qn and the weights Hj are given by

Hj =

(

n−1
∑

k=0

|qk(aj)|2
)−1

. (1.36)

Now the problem is to choose a measure µ and an interval I to write the
right-hand side sum in (1.34) by an integral and, thereafter, to identify the
corresponding set of orthogonal polynomials needed to compute the evalu-
ation points and the weights. One needs to be careful choosing the interval
and measure, because polynomials of any degree should be integrable. Den
Iseger makes in [53] the following choice,

µ(A) =

∞
∑

k=−∞

1

(π(2k − 1))2
1A

(

1

π(2k − 1)

)

, (1.37)

and with the notation

g̃α,v(x) := ĝ
(

α+ iπ(2v + 1) + ix−1
)

,

the sum in (1.34) can be written as an integral over I = R in the following
way,

∞
∑

j=−∞
ĝ(α+ i2π(v + j)) =

∫ ∞

−∞
x−2g̃α,v(x)µ( dx).
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The choice of µ in (1.37) might look arbitrarily. The choice of the indicator
function argument (π(2k − 1))−1 is motivated by the necessity of integrat-
ing polynomials on the entire interval. The (π(2k − 1))−2 in front of the
indicator is put there to take care of the integrability of the polynomials
of degree one and zero. The reason to leave the v out of the measure, and
put it into the function g̃, is that one does not need to come up with a
different set of orthogonal polynomials for every v. Therefore, by leaving v
out of the measure it is possible to pre-calculate the weights and evaluation
points and reuse them for every v in the approximation one wants to have of
(1.34). Identifying the set of orthogonal polynomials starts from the Legen-
dre polynomials on [0, 1] denoted by pn. By Parseval’s equation the Fourier
coefficients p̂n(k) of the Legendre polynomials pn are orthogonal w.r.t. the
inner product on the sequence space. Relating the sum representing this
inner product to an integral w.r.t. the measure µ shows that the set of
polynomials {qi}i=1,2,.. is orthogonal, where each qn is given by

qn(x) = hn(−ix) + (−1)nhn(ix),

and hn denotes the following polynomial

hn(x) =
√

2n+ 1
n
∑

k=0

(k + n)!

(n− k)!

(−x)k
k!

.

For some N the zeros of qN are the evaluation points aj for j = 1, .., N
and the weights Hj are computed corresponding to (1.36) resulting in the
following approximation,

Gα(v) =

∞
∑

j=0

e−(α+2πiv)jg(j) ≈
N
∑

j=1

Hj

ĝ
(

α+ iπ(2v + 1) + ia−1
j

)

a2
j

,

where Gα is the discrete Fourier transform or z-transform of e−αxg(x). Den
Iseger uses in [53] the results of Abate and Whitt in [3] to obtain values for
g by

g(k) ≈ eαk

M

M−1
∑

j=0

cos

(

2πjk

M

)

ℜ
{

Gα

(

j

M

)}

.

Tuning the algorithm is equivalent to choosing values for the damping factor
α, the number of points in the Gaussian quadrature N and the number of
points in the discrete Fourier transform inversion M . Again it is very hard
to come forward with error bounds, but for smooth functions the quadra-
ture rule is very accurate. Den Iseger shows that for a specific choice of
parameters the algorithm returns numerical values with an accuracy which
is near machine precision and the algorithm does it surprisingly quickly. It
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is also possible to evaluate g at the non-integer points k∆ for k = 0, 1, .. by
inverting the Laplace transform ĝ∆ given by,

ĝ∆(s) =
1

∆
ĝ
( s

∆

)

.

The surprising speed of the algorithm in one dimension makes it possible
not only theoretically but also practically to extend the algorithm to two
dimensions. Starting from a two-dimensional Poisson summation formula
and using the same idea of approximating the double sum of two dimen-
sional Laplace transforms via a double integral by Gaussian quadrature one
arrives at an algorithm for two dimensional numerical inversion. This two
dimensional numerical inversion is applied in the paper on double-sided bar-
riers, which can be found in chapter five.



Chapter 2

The implied barrier concept

Research into the direction of specific exotic options - like
the Parisians - is often driven by the analysis of structured prod-
ucts. These products contain features that are similar to exotic
options. Exchange-trading of the pure exotics is very rare. In
the period of rising stock markets, investors were less interested
in buying bonds. In order to regain their interest, firms added
extra features to the bonds they wanted to issue. One of these
features is the right of the bond holder to convert the bond into a
given number of stocks under certain conditions. Bonds with this
feature are called convertible bonds and are nowadays very com-
mon. Most convertible bonds can be re-called by the issuer when
the convertible trades above some level for some period. Model-
ing this feature corresponds to valuation of a Parisian option. In
this paper we will point out how we quickly can approximate the
Parisian option price by using a standard barrier option with a
modified barrier. This is common practice for traders; they in-
crease or decrease the barrier a bit. Here we want to argue what
that bit should be. First we will introduce the Parisian contract.
Thereafter we list the methods of valuing the Parisian, followed
by a section about the implied barrier method. Here we will
use concepts from the theory on Brownian excursions and ex-
ploit them to derive prices for Parisians that are already in the
excursion. We will conclude with a numerical example.

2.1 The Parisian contract

Let {St,Ft; t ≥ 0} be a process defined on the filtered probability space
(Ω,F ,Ft,P). According to the Black-Scholes model we have for the risk
neutral price process

St = s0 exp
(

(r − 0.5σ2)t+ σBt

)

,

31
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where {Bt,Ft; t ≥ 0} denotes a standard Brownian motion, s0 the initial
value of the stock, r the interest rate and σ the volatility. We can use this
risk-neutral stock price process to calculate the price of a derivative VΦ with
some (path dependent) pay-off Φ ((St)0≤t≤T ) at time T by,

VΦ = e−rT E [Φ ((St)0≤t≤T )] .

Here Φ is the contract function. A standard barrier option is a derivative
that pays off like a put or a call that knocks in or out as soon as the stock
price hits some level. The Parisian option is like a barrier, but we do not
only assume the stock price to hit some level, but also to stay above or below
that level for a given time. For a given t let γt be the last time before t that
the process was at level L,

γt := sup
s≤t

{Ss = L}.

Now we can use this random time to define T−
D , the first time (St)t≥0 is below

L longer than D and T+
D the equivalent random time for staying above L by

T−
D := inf

t>0
{t− γt > D;St < L} and T+

D := inf
t>0

{t− γt > D;St > L}.

For an up and down Parisian we use T+
D respectively T−

D . If it is a knock in
we consider the set {T±

D ≤ T} otherwise we consider its complement. With
this notation we can write pricing formulas for all kinds of Parisian options,
e.g. the Parisian down and in call is given by

VPDIC = e−rT E

[

(ST −X)+ 1{T−
D≤T}

]

,

where X denotes the strike of the call. By changing the set of the indicator,
we can calculate all variations of down/out and up/in. By changing the left
part of the pay-off, we can compute prices for Parisian puts instead of calls.

2.2 Valuation methods for Parisians

There are two well-known methods for valuing Parisians. One method
[49] uses the Black-Scholes PDE with boundary conditions adapted to the
Parisian contract. This modified PDE is then solved by numerical methods.
The advantage of this method is, that the pricing framework is flexible, i.e.
it is possible to deal with discrete dividends and early exercise. The dis-
advantage is that the convergence is slow. There are methods using some
pre-calculated values [47] to increase this convergence. This method is rel-
atively time-consuming in the sense that it is inappropriate for real-time
option pricing.
Another method calculates the Laplace Transforms of these option prices
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[30]. There exist quick inversion algorithms [4] to obtain the prices within
a given error bound.
Here we propose another method, the so-called implied barrier method. This
method consists of coming up with an implied barrier L∗. Then the stan-
dard barrier option with barrier L∗ and the remaining parameters equal to
the Parisian has the same price as the Parisian. This method only uses stan-
dard barrier formulae for the European case and obtaining prices is neither
difficult nor time-consuming.

2.3 The implied barrier

Explaining the implied barrier method is threefold. At first we define the
implied barrier and give a numerical example. Then we come up with heuris-
tics about what the implied barrier should be and use excursion theory to
obtain a formula for it. Finally, we will show for a practical example that
prices are quite close. Denoting the first time (St) hits L by TL, the price
of a call with barrier L∗ is given by

VDIC := e−rT E
[

(ST −X)+ 1{TL∗≤T}
]

.

We know that for L = L∗ the Parisian option should have a value smaller
than this standard barrier, but positive. By decreasing L∗ we can have the
value of this barrier every value between the (L∗ = L)-case and 0, so for
some particular L∗ the standard barrier has the same price as the Parisian.
This particular value of L∗ is defined as the implied barrier and can formally
be stated as:

Definition

Let Φ(ST ) the vanilla part of the pay-off of a Parisian Up contract. Then
for L > S0 the implied barrier L∗ is defined by

E[Φ(ST )1{T+
D,L≤T}] = E[Φ(ST )1{TL∗≤T}].

For L < S0 we define the implied barrier L∗ by

E[Φ(ST )1{T−
D,L≤T}] = E[Φ(ST )1{TL∗≤T}].

By continuity it is clear that L∗ always exists. In the graph in figure 2.1 we
show the implied barrier for a down-and-in Parisian call for different times
to maturity and different values of s0. The Parisian prices we needed for
finding this barrier are computed by a numerical inversion of the Laplace
Transforms. For this particular option the graph shows that the implied
barrier is in the same range for different T and s0. However, by basic mono-
tonicity arguments we have the following proposition.
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Proposition

Let Φ(ST ) be the vanilla part of a Parisian contract. Suppose for a down
contract with L < S0 that for some finite T > D > 0 we have

E[Φ(ST )1{T−
D,L≤T}] > 0.

Then L∗(t, s), the implied barrier for this contract with maturity t and ini-
tial stock price s cannot be the same for every t ∈ [D,T ] and fixed s = s0.
Moreover L∗(t, s), cannot be the same for every s > L and fixed t = T .

Considering the scale of the vertical axis figure 2.1, we will try to approx-
imate this implied barrier by a constant. In the next section we arrive
intuitively at the approximation. Using this approximation we come up
with a numerical example.

2.4 Approximating the implied barrier

In order to arrive at the approximation, we argue that the implied barrier
should be - whether the contract is of the up or down type - the minimum
or maximum we expect (St) to attain, given that the stock follows a path
in the Parisian set. For the Parisian
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Figure 2.1: Implied Barrier vs s0 and T

contracts we are interested in the set {T±
D ≤ T} and its complement. So,

either the realizations of (St) do contain an excursion in the right direction
w.r.t. to L longer than D or not. If we consider for example the down
and in version and divide the stock path into its excursions from L, we can
compute the expected minimum that is attained in each separate excursion
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below L. The minimum the stock path attains up to time T is the minimum
of all these expected minima per excursion. We know from excursion theory
that the expected minimum of an excursion decreases when the length of
the excursion increases. In this down and in case we know that we need
to have at least one excursion longer than D, so the expected minimum of
the knocking-in stock paths should be below the minimum that we expect
to attain during an excursion below L of length D. Using Brownian excur-
sion theory [31, 39] we have for the expected minimum mD of a Brownian
excursion with length D

E[mD] = −
√

Dπ

2
.

As we are dealing with geometric Brownian motion, this term will appear
within an exponential. Furthermore we are considering an excursion around
the level L, so we find the following approximation L̃∗ for the implied barrier
L∗

L̃∗ := L exp

(

−σ
√
De−

m2

2
D

√

π

2

)

where m :=
r − 0.5σ2

σ
.

Here the m is introduced as a consequence of the Girsanov transformation,
that is needed in cases where r 6= 0.5σ2. The same argumentation holds for
the other types of Parisians (up/down, out/in), where the minus sign in the
exponent disappears for the up-variant of the Parisian contract. Now we use
the L̃∗ to approximate the value VPDIC(L) by VDIC(L̃∗). In the next section
we show how we deal with Parisians that are already in the excursion.

2.5 Valuing Parisians that are already in the ex-

cursion

Here we valuate a Parisian option at time t > 0. Suppose we are interested
in the PDIC with some barrier L. In the case St < L, the excursion of the
stock path below L has already started and this effects its value. Define d
as the time the stock already spent below L by

d := t− γt.

Here we are interested in the case where d < D and another excursion longer
than D did not happen yet. It is clear that we have two possibilities now.
Either we return to the level L too early to knock in, i.e. we are in the set
{TL ≤ D − d}, or, we are in the complement of this set, and so stay long
enough to knock in. Here we abuse the notation TL for the amount of time
we have to wait after time t to hit the level L, that we should write as T t

L

given by
T t

L = inf
s>0

{Ss+t = L}.
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In the same way we will abuse the notation of T−
D,L. Considering these two

cases we could be in, the value of a PDIC is given by

VPDIC(d) = e−r(T−t)E
[

(ST −X)+1{TL>D−d}|Ft

]

+

e−r(T−t)E

[

(ST −X)+1{T−
D,L<T−t}1{TL≤D−d}|Ft

]

.

So, in the case that we stay long enough below L we get a standard call,
otherwise we get a fresh PDIC for the remaining time to expiry. If we write
1{TL>D−d} = 1 − 1{TL≤D−d}, we find for VPDIC(d)

VPDIC(d) = VBSC−
e−rT ′

E
[

(Ste
(r−σ2/2)T ′+σBT ′ −X)+1{T−

D,L>T ′}1{TL≤D−d}
]

.

Here VBSC is the value of a standard call with time to expiration T ′ := T − t
and we used the Markov property to remove the conditioning. Now we
change our measure to Q in the same way as above. Conditioning on FTL

gives

VPDIC(d) = VBSC−
e−r̃T ′

EQ

[

1{TL≤D−d}EQ

[

emZT ′ (Ste
σZT ′ −X)+1{T−

D,L>T ′}|FTL

]]

,

where r̃ is defined by r̃ := r − 0.5m2. Using the Markov property again, we
recognize VPDOC(T ′ − TL) apart from the proper discounting, so we get

VPDIC(d) := VBSC − emlEQ

[

1{TL≤D−d}e
−r̃TLVPDOC(T ′ − TL)

]

,

where l is defined by l = σ−1 ln L
St

. Using the distribution of the hitting
time [31] we can calculate the expectation. If we furthermore approximate
VPDOC(T ′ − TL) by VDOC(L̃∗, T ′ − TL) we obtain

VPDIC(d) := VBSC −
∫ D−d

0
VDOC(L∗, T ′ − u)

|l|eml−r̃u− l2

2u√
2πu3

du.

This integral should be computed numerically. In the example later on we
will show that a relatively small number of steps is sufficient to obtain a
value close to the true Parisian price. The same way of reasoning could be
used to derive prices for the other types of Parisian contracts.

2.6 Numerical examples

As we presented our method as one that can be very useful in practice, we
will give some numerical results. Table 2.1 contains a comparison between
implied barrier prices and Laplace prices.
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Table 2.1: Prices for PDIC at t = 0
D = 10/365 D = 20/365 D=200/365

S0=100, L=90 Laplace Imp Bar Laplace Imp Bar Laplace Imp Bar
X

80
r=4.5% 90
σ=30% 100

110

ImpBar

80
r=2.5% 90
σ=40% 100

110

ImpBar

T=1 T=2 T=1 T=2

6.54 11.36 6.55 11.36
3.84 8.23 3.84 8.23
2.18 5.92 2.18 5.92
1.21 4.25 1.21 4.25

84.57 84.57

8.53 14.38 8.54 14.38
5.74 11.30 5.75 11.31
3.84 8.91 3.84 8.91
2.55 7.04 2.56 7.04

85.45 85.45

T=1 T=2 T=1 T=2

4.97 9.42 4.99 9.43
2.79 6.69 2.80 6.69
1.52 4.72 1.52 4.72
0.81 3.32 0.81 3.32

82.42 82.42

6.51 11.98 6.53 11.99
4.24 9.27 4.25 9.28
2.74 7.20 2.75 7.20
1.77 5.61 1.78 5.62

80.04 80.04

T=1 T=2 T=1 T=2

0.26 1.68 0.35 1.77
0.08 0.99 0.14 1.06
0.02 0.58 0.05 0.64
0.01 0.34 0.02 0.39

68.13 68.13

0.35 2.21 0.48 2.35
0.15 1.48 0.24 1.60
0.06 1.00 0.12 1.10
0.03 0.68 0.06 0.77

62.22 62.22

Table 2.2: Deltas for PDIC at t = 0
D = 10/365 D = 20/365 D=200/365

S0=100, L=90 Laplace Imp Bar Laplace Imp Bar Laplace Imp Bar
X

80
r=4.5% 90
σ=30% 100

110

ImpBar

80
r=4.5% 90
σ=30% 100

110

ImpBar

T=1 T=2 T=1 T=2

-0.34 -0.40 -0.34 -0.40
-0.23 -0.32 -0.23 -0.32
-0.15 -0.26 -0.15 -0.25
-0.09 -0.20 -0.09 -0.20

84.57 84.57

-0.29 -0.32 -0.29 -0.32
-0.23 -0.28 -0.22 -0.28
-0.17 -0.24 -0.17 -0.24
-0.12 -0.20 -0.12 -0.20

85.45 85.45

T=1 T=2 T=1 T=2

-0.27 -0.35 -0.27 -0.35
-0.18 -0.28 -0.18 -0.27
-0.11 -0.21 -0.11 -0.21
-0.06 -0.16 -0.06 -0.16

82.42 82.42

-0.24 -0.28 -0.24 -0.28
-0.18 -0.24 -0.18 -0.24
-0.13 -0.20 -0.13 -0.20
-0.09 -0.17 -0.09 -0.17

80.04 80.04

T=1 T=2 T=1 T=2

-0.03 -0.09 -0.03 -0.09
-0.01 -0.06 -0.01 -0.06
0.00 -0.04 0.00 -0.04
0.00 -0.02 0.00 -0.02

68.13 68.13

-0.03 -0.08 -0.03 -0.08
-0.01 -0.06 -0.02 -0.06
-0.01 -0.04 -0.01 -0.04
0.00 -0.03 0.00 -0.03

62.22 62.22

Here we see that prices are close to the inverse Laplace prices for D relatively
small compared to T . Furthermore we see that the implied barrier that is
found in the upper left corner (i.e. 84.57), is recognized in the implied barrier
graph in figure 2.1 for the same case as shown above. As we would like to
use the prices for relatively small D, we also need deltas for D relatively
large compared to T . Table 2.2 shows that the error in the deltas is much
less than that in the prices.

We also computed prices for Parisians based on a stock path that is already
in the excursion. Table 2.3 lists these prices.

As these computations involved numerical integration we have to choose a
number of integration steps. In this numerical approximation the interval is
divided into 25 steps for D = 10/365 and D = 20/365. We divided it into
250 steps for D = 200/365. The results are analogous to the former price
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Table 2.3: Price for PDIC at t > 0 and d > 0
r=4.5%, σ=30% D = 10/365 D = 20/365 D=200/365
S0=100, L=90 Laplace Imp Bar Laplace Imp Bar Laplace Imp Bar

X d

80 0.2D
100 0.2D
80 0.6D
100 0.6D

ImpBar

T=1 T=2 T=1 T=2

13.04 18.56 13.04 18.56
5.44 10.77 5.45 10.77
13.98 19.52 13.97 19.52
5.99 11.46 5.99 11.46

84.57 84.57

T=1 T=2 T=1 T=2

11.02 16.40 11.02 16.41
4.34 9.26 4.35 9.26
12.59 18.05 12.59 18.05
5.22 10.43 5.22 10.43

82.42 82.42

T=1 T=2 T=1 T=2

1.40 4.16 1.51 4.24
0.27 1.75 0.31 1.81
2.79 5.92 2.95 5.99
0.82 2.82 0.86 2.88

68.13 68.13

Table 2.4: Deltas for PDIC at t > 0 and d > 0
r=4.5%, σ=30% D = 10/365 D = 20/365 D=200/365
S0=100, L=90 Laplace Imp Bar Laplace Imp Bar Laplace Imp Bar

X d

80 0.2D
100 0.2D
80 0.6D
100 0.6D

ImpBar

T=1 T=2 T=1 T=2

0.03 0.02 0.02 0.02
0.02 0.02 0.02 0.02
0.28 0.29 0.28 0.29
0.16 0.21 0.16 0.21

84.57 84.57

T=1 T=2 T=1 T=2

-0.25 -0.28 -0.25 -0.28
-0.12 -0.19 -0.12 -0.19
-0.19 -0.21 -0.19 -0.21
-0.09 -0.14 -0.09 -0.14

82.42 82.42

T=1 T=2 T=1 T=2

-0.15 -0.26 -0.14 -0.26
-0.04 -0.13 -0.03 -0.13
-0.40 -0.58 -0.39 -0.57
-0.14 -0.33 -0.13 -0.32

68.13 68.13

table. The prices are quite good for D relative small compared to T . Again
we will compute for this particular case the deltas to show that they do not
differ that much, as is shown in table 2.4.

2.7 Conclusion

Valuation of Parisian options is important as popular investment tools like
convertible bonds exhibit the Parisian option feature. Well known methods
for calculating its price are either computationally slow (PDE method) or
inflexible (Laplace method). Here we provide a way to use standard barrier
models with an implied barrier for calculating prices. The advantages of
this method for trading firms are threefold. First, no new model has to be
implemented. Moreover it is possible to value the American options with a
Parisian constraint, by using the implied barrier in the standard American
barrier option. Discrete dividends can be taken into account. Finally a
lot has been done pricing barriers in a non-constant volatility environment.
Using the implied barrier concept again might yield an approximation of the
Parisian price in such an environment.



Chapter 3

Double-sided Parisian

options

In this paper we derive Fourier transforms for double-sided
Parisian option contracts. The double-sided Parisian option con-
tract is triggered by the stock price process spending some time
above an upper level or below some lower level. The double-sided
Parisian knock-in call contract is the general type of Parisian
contract from which also the single-sided contract types follow.
We also discuss the Fourier inversion in the paper and conclude
with a series of numerical examples, explaining the Parisian op-
tionality by studying price behavior and peculiar behavior of the
Greeks.

3.1 Introduction

The Parisian option is a kind of a barrier option with the difference that
the contract is not specified in terms of touching a barrier, but in terms of
staying above or below the barrier for a certain period of time. The interest
in these options is motivated by the study of structured products, insurance
and investment problems. Convertible bonds and problems in real options
contain Parisian optionality; the Parisian option contract itself is at present
time not exchange traded. Details about the practical differences between
standard barrier options and Parisian options are discussed in [30], the first
paper on Parisian options. The way Parisian options turn up in real option
problems is treated in [43], for an application in the direction of convertible
bonds see [61]. For applications in credit risk and life insurance see [66]
and [27] respectively. The authors in [30] derived Laplace transforms for the
single-sided version, which is extended in [43] to a Parisian type of contract
that is triggered by staying a period of time above the barrier or hitting a
level exceeding this barrier. Chesney and Gauthier treat American Parisian

39
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options in [28]. Here we treat the pricing of the double-sided Parisian op-
tion and, like the papers previously mentioned, we use Fourier (or Laplace)
transforms to achieve this. The calculation of Fourier transforms instead of
Laplace transforms is motivated by the fact that a lot of numerical Laplace
inversion algorithms are using the complex continuation of Laplace trans-
forms to Fourier transforms for the actual inversion, see e.g. [53]. As we
want to conclude our paper by a section on numerical examples, we have
to invert the Fourier transforms we will calculate. In [49] the authors treat
a PDE method approach to solve the Parisian option pricing problem, but
convergence turns out to be rather slow, which is a result of the local be-
havior of Brownian motion.
The reason to treat double-sided Parisian options, apart from that there
may be practical applications to this type of optionality, is that this contract
type is rather general. After analyzing the double-sided Parisian knock-in
call contract, we are able to give prices for the single-sided versions as well.
We do not need to derive separate formulas for Parisian down-and-out calls,
Parisian up-and-in puts and so on. Prices for all of these contract types can
be computed from the Fourier transform of the double-sided Parisian knock-
in call. The concluding numerical examples will show the reader how the
various Parisian option types, that can be constructed from the double-sided
Parisian knock-in call, behave. The double-sided Parisian option treated by
[60] differs from the one treated here as will be pointed out in the next sec-
tion.
The paper is organized as follows. In the first section we introduce the
double-sided Parisian option and the relevant notation. In order to price
the contract, we rewrite the pricing problem into the problem of calculating
a probability. In the second section we derive Laplace transforms for the
double-sided Parisian stopping time and the value of the standard Brownian
motion at that stopping time. The third section treats the actual Fourier
transform calculation, where some technical details are deferred to the ap-
pendix. The next section treats the case where the life of the option has
been started and we are possibly for some time period already below the
lower barrier or above the upper barrier. The author in [78] has extended
the results of the original paper of [30] to incorporate this case. Section 3.6
discusses the Parisian put contract type, and section 3.7 summarizes all the
contract types that can be derived from the double-sided Parisian knock-
in call. In this section we touch upon the double-sided barrier option, of
which pricing by transforms has been done in [44]. More on the relation
between double-sided barrier and standard barrier options can be found in
[58], where we use the algorithm in [73] to obtain double-sided barrier prices
in our numerical examples. In section 3.8 we discuss the Fourier inversion
and propose an alternative algorithm. We conclude by a section on numer-
ical examples showing various features of the double-sided Parisian option
price and Greeks.
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3.2 The Parisian contract

Let (Ω,F ,P) be a probability space with filtration {Ft} and (Wt)t≥0 be a
standard Brownian motion with respect to this filtration. By (St)t≥0 we
denote the risk-neutral stock price process, given by the classical geometric
Brownian motion,

St = S0e
(r− 1

2
σ2)t+σWt ,

where r and σ are the risk-free interest rate and the volatility respectively. In
this setup P is the risk-neutral measure or, equivalently, the pricing measure
and not the physical measure. Assuming that there exists a bank-account
that pays the risk-free interest rate r in a continuously compounded way,
the price of an option with a (random) pay-off is given by the discounted
expectation of that pay-off under the pricing measure. The random time
γL

T (S) measures the last time before T that a process S has been equal to
L and is given by,

γL
T (S) :=

{

sup{0 ≤ t ≤ T |St = L} TL(S) ≤ T,
0 TL(S) > T.

(3.1)

Here TL(S) denotes the hitting time of the level L by the process S. Note
that γL

T is not a stopping time. In case the process is a standard Brownian
motion, we suppress the W between brackets that you would expect to
appear in (3.1). Now we define the double-sided Parisian stopping time
TL1−,L2+

D1,D2
(S) for the levels L1 < L2 by,

TL1−,L2+
D1,D2

(S) := min
(

TL1−
D1

, TL2+
D2

)

, (3.2)

where the single-sided Parisian stopping time TL±
D is given by,

TL±
D = inf

{

t > 0|(t− γL
t (S))1

{St

>
<L}

> D

}

.

The stopping time TL1−,L2+
D1,D2

(S) is the first time that the process S stays

longer than time D1 below level L1 or1 longer than time D2 above level
L2. The double-sided Parisian knock-in call is a contract that pays off like a
standard call only in the scenarios where the double-sided Parisian stopping
time occurs before the time of expiry. The value VDPIC of this double-sided
Parisian knock-in call can be computed by,

VDPIC = e−rT E

[

(ST −K)+1{T L1−,L2+
D1,D2

(S)≤T}

]

. (3.3)

1In [60] the double-sided contract type is treated where the process S should stay longer
than time D1 below level L1 and longer than time D2 above level L2.
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As in [24] we are going to split this expectation into two probabilities, where
we use the Girsanov transform to obtain the result. In order to shorten the
notation, we replace the indicator by a functional I that maps the paths on
the time interval [0, T ] of S into either the value 0 or 1, so we write,

E
[

(ST −K)+I(S)
]

=

E
[

ST I(S)1{ST >K}
]

−KP [I(S) = 1;ST > K] . (3.4)

Transforming the expectation on the right-hand side into a probability is
the step based on the Girsanov theorem. If we construct a new measure Q

by,
dQ

dP

∣

∣

∣

∣

FT

=
ST

S0erT
= e−

1
2
σ2T+σWT ,

then the process Wt − σt is a Brownian motion under Q and therefore S
rewritten by,

St = S0e
(r+σ2− 1

2
σ2)t+σ(Wt−σt),

is a GBM under Q with drift r+σ2 instead of r. We recognize the stochastic
part of the Radon-Nikodým derivative in (3.4) and rewrite it into,

E
[

(ST −K)+I(S)
]

= S0e
rT Q [I(S) = 1;ST > K]−KP [I(S) = 1;ST > K] .

The last equation states that the double-sided Parisian knock-in call can be
priced in terms of the following probability,

Pµ(T ) = Pµ

[

ST ≥ K;TL1−,L2+
D1,D2

(S) ≤ T
]

, µ ∈ R, (3.5)

where µ stands for the drift of the geometric Brownian motion S. By (3.5)
we obtain for VDPIC the following expression,

VDPIC = S0Pr+σ2(T ) −Ke−rTPr(T ). (3.6)

The problem of pricing this double-sided Parisian knock-in call is equivalent
to computing the probability as given in (3.5). The stochastic properties
of the stock price process S are entirely determined by the behavior of the
underlying Brownian motion, so it is a natural choice to solve the problem
in terms of the Brownian motion. If we introduce the process (W̃t)t≥0 by,

W̃t :=
r − 1

2σ
2

σ
t+Wt = mt+Wt, (3.7)

then we can write St the stock price at t as S0e
σW̃t . The events in terms of

S can be rewritten into events in terms of W̃ like,

{ST > K} = {W̃T > k} where k =
1

σ
ln

(

K

S0

)

.
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In the same manner for i = 1, 2 the levels Li transform into li resulting in
γLi

T (S) = γli
T (W̃ ). A change of measure allows us to compute the quantity

Pr(T ) by,

Pr(T ) = e−
1
2
m2T E

[

emWT 1{WT >k}1{τ≤T}
]

, (3.8)

where we used τ as a shorthand notation for T l1−,l2+
D1,D2

(W ). The same kind of

notation we introduce for τ+ and τ− abbreviating respectively T l2+
D2

(W ) and

T l1−
D1

(W ). By replacing r by r + 1
2σ

2 we have to change m in (3.7) to turn
(3.8) into a formula for Pr+ 1

2
σ2(T ), which we need in the pricing formula

(3.6). In the next section we derive formulas for the Laplace transforms of
the double-sided Parisian stopping times for a standard Brownian motion.

3.3 The Laplace transform of the double-sided hit-

ting times

We start recalling the Brownian meander from the Appendix in [30]. The

process (m
(t)
u )0≤u≤1 can be defined for every t > 0 by

m(t)
u =

1√
t− γt

|Wγt+u(t−γt)|, u ≤ 1,

where we suppressed the 0 in the notation of γ0
t . For t = 1 this process is

the Brownian meander. Here we are only interested in m
(t)
1 , the final value

of the meander which we denote by nt given by,

nt =
1√
t− γt

|Wt|.

The σ-algebra F+
γt

is generated by the random variable sgn(Wt) and the
variables ξγt , where ξ is a predictable process w.r.t. the natural Brownian
filtration. As pointed out in [30], nt is for every t > 0 independent of F+

γt
and

therefore independent of the pair (γt, sgn(Wt)). Moreover, nt
d
= N , where

N has the following density,

P[N ∈ dx] = xe−
x2

2 1{x≥0} dx, (3.9)

and for later on it is useful to define the function Ψc for c ≥ 0 by

Ψc(z) := E
[

ezN1{N≥c}
]

= e−
c2

2
+zc + z

√
2πe

z2

2 N (z − c), (3.10)

where N is the CDF of the standard normal distribution. We will abbreviate
Ψ0 by Ψ and Ψ−Ψc by Ψ̃c. Now consider the meander at time t away from
level l and denote its final value by nl

t given by

nl
t =

1{Tl<t}
√

t− γl
t

|Wt − l|,
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where Tl denotes the first hitting time of the level l by the Brownian motion.
It follows from the strong Markov property and the independence of nt and
the pair (sgn(Wt), γt) that for all bounded, measurable functions f and g,

E

[

f(nl
t)g(sgn(Wt − l), γl

t)1{Tl<t}
∣

∣

∣FTl

]

= 1{Tl<t}E
l



f





|Wt−s − l|
√

t− γl
t−s



 g(sgn(Wt−s − l), γl
t−s)





s=Tl

= 1{Tl<t}E

[

f

( |Wt−s|√
t− γt−s

)

g(sgn(Wt−s), γt−s)

]

s=Tl

= 1{Tl<t}E [f(N)] E [g(sgn(Wt−s), γt−s)]s=Tl
. (3.11)

Here El denotes the expectation under the measure under which the Brown-
ian motion W starts from level l. Hence, conditional on hitting level l before
time t, nl

t has the same distribution as N and nl
t is independent of the pair

(sgn(Wt − l), γl
t). Now we can construct another process µl

t by,

µl
t = 1{Tl<t}sgn(Wt − l)

√

t− γl
t,

which is, given Tl < t conditionally independent of nl
t, so we can use it to

decompose the Brownian motion into two independent parts,

1{Tl<t}(Wt − l) = nl
tµ

l
t. (3.12)

Now we construct the σ-algebra Hτ that contains the information of the
processes µli and γli for i = 1, 2 at the random time τ by,

Hτ = σ(µl1
τ , µ

l2
τ , γ

l1
τ , γ

l2
τ ).

Note that the events {τ+ < τ−} and {τ− < τ+} can be constructed from
these random variables in the following way,

{τ− < τ+} = {µl1
τ < 0}, {τ+ < τ−} = {µl2

τ > 0}, (3.13)

and therefore they are Hτ measurable. The equation

τ = (γl1
τ +D1)1{τ−<τ+} + (γl2

τ +D2)1{τ+<τ−},

shows that τ is also Hτ measurable. The following lemma states conditional
independence between nl2

τ and Hτ .

Lemma 3.3.1. The following equation holds for any bounded measurable
function f ,

E

[

1{τ+<τ−}f(nl2
τ )
∣

∣

∣Hτ

]

= 1{τ+<τ−}E [f(N)] a.s. (3.14)
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Proof. We have to show that for any H ∈ Hτ we have
∫

H
1{τ+<τ−}f(nl2

τ ) dP = E [f(N)] P
[

H; τ+ < τ−
]

, (3.15)

and directly following from the construction of Hτ this is equivalent to show-
ing that for any bounded measurable function g we have,

E

[

1{τ+<τ−}f(nl2
τ )g(γl1

τ , γ
l2
τ , µ

l1
τ , µ

l2
τ )
]

=

E [f(N)] E
[

1{τ+<τ−}g(γ
l1
τ , γ

l2
τ , µ

l1
τ , µ

l2
τ )
]

.

On the set {τ+ < τ−} we have µl2
τ =

√
D2 and µl1

τ can be expressed in terms

of γ
l1,2
τ in the following way

µl1
τ =

√

D2 + (γl2
τ − γl1

τ ).

So we can rewrite the function g as function g̃ of γ
l1,2
τ only. After replacing

{τ+ < τ−} by {µl2
τ > 0} as in (3.13) it remains to show,

E
[

1{µl2
τ >0}f(nl2

τ )g̃(γl1
τ , γ

l2
τ )
]

= E [f(N)] E
[

1{µl2
τ >0}g̃(γ

l1
τ , γ

l2
τ )
]

. (3.16)

Now by (3.11) both µl2
τ and γl2

τ are conditionally independent of nl2
τ , so

(3.16) would hold if g̃ had been a function of γl2
τ only. Therefore it remains

to prove that on the set {µl2
τ > 0} also γl1

τ is independent of nl2
τ . Define the

following sequence of stopping times T (n), n = 0, 1, .. by T (0) = 0 and

T (n+1) = inf
{

t > T (n)|Wt = 0 and Ws ∈ {l1, l2} for some T (n) ≤ s ≤ t
}

,

then τ+ is always in between two of these stopping times T (n) and T (n+1).
Moreover τ− cannot be in between the same two stopping times as τ+ is, so
we can write for any bounded measurable functions f and h

E

[

1{µl2
τ >0}f(nl2

τ )h(γl1
τ )
]

=
∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ<T (n+1)}1{µl2
τ >0}f(nl2

τ )
∣

∣

∣
FT (n)

]]

,

where we used that on the set {τ+ < τ−} ∩ {T (n) < τ < T (n+1)} we have
γl1

τ < T (n) and therefore γl1
τ = γl1

T (n) . Now we can use the strong Markov

property to restart the Brownian motion in zero at time T (n),
∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ<T (n+1)}1{µl2
τ >0}f(nl2

τ )
∣

∣

∣FT (n)

]]

=

∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ<T (1)}1{µl2
τ >0}f(nl2

τ )
]]

=

∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ+<T (1)}f(nl2
τ+)
]]

,
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where we used in the last equality that the event {τ+ < T (1)} equals the
intersection of the events {τ < T (1)} and {τ+ < τ−}. By (3.11) we can get
the expectation of nl2

τ+ out of the sum,

∞
∑

n=0

E
[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ+<T (1)}f(nl2
τ+)
]]

= E [f(N)]

∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))E

[

1{τ+<T (1)}

]]

= E [f(N)]

∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))1{τ+<T (n+1)}

]

,

where the equality of the last two lines can be established by conditioning

the expectation on the last line on F (n)
T . In the final step we use that set

{T (n) < τ} ∩ {τ+ < T (n+1)} is equal to {T (n) < τ < T (n+1)} ∩ {τ+ < τ−}.
Moreover, on this set the level l1 is not touched within the time interval
(T (n), T (n+1)). Therefore we can replace γl1

T (n) by γl1
τ , altogether resulting in

E [f(N)]
∞
∑

n=0

E

[

1{T (n)<τ}h(γ
l1
T (n))1{τ+<T (n+1)}

]

= E [f(N)] E
[

h(γl1
τ )1{µl2

τ >0}

]

,

which yields the desired independence result.

We are interested in the Laplace transforms of τ and we have the following
theorem on E+(λ) and E−(λ), the restricted Laplace transforms of τ denoted
by,

E+(λ) := E

[

e−
1
2
λ2τ1{τ+<τ−}

]

and E−(λ) := E

[

e−
1
2
λ2τ1{τ−<τ+}

]

.

Theorem 3.3.2. For the restricted Laplace transforms E+(λ) and E−(λ) of
τ the following holds,

E+(λ) =
eλl1Ψ(−λ1) − e−λl1Ψ(λ1)

eλ(l1−l2)Ψ(−λ1)Ψ(−λ2) − eλ(l2−l1)Ψ(λ1)Ψ(λ2)
(3.17)

E−(λ) =
e−λl2Ψ(−λ2) − eλl2Ψ(λ2)

eλ(l1−l2)Ψ(−λ1)Ψ(−λ2) − eλ(l2−l1)Ψ(λ1)Ψ(λ2)
, (3.18)

where we used λi = λ
√
Di for i = 1, 2 to shorten the notation.

Proof. The first step of proof consists of the following application of the op-
tional sampling theorem to the martingale M defined by Mt = e−

1
2
λ2t+λWt ,

1 = E

[

e−
1
2
λ2τ+λWτ

]

= E

[

e−
1
2
λ2τ+λWτ 1{τ+<τ−}

]

+ E

[

e−
1
2
λ2τ+λWτ 1{τ−<τ+}

]

, (3.19)
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where the optional sampling theorem holds because by the appendix 3.11.3
M τ

t , the τ -stopped version of the martingale M is an uniformly integrable
martingale. The expectation in (3.19) on the left-hand side can be computed
as follows,

E

[

e−
1
2
λ2τ+λWτ 1{τ+<τ−}

]

= E

[

e
− 1

2
λ2τ+λ

“

µ
l2
τ n

l2
τ +l2

”

1{τ+<τ−}

]

= eλl2E

[

e−
1
2
λ2τ1{τ+<τ−}E

[

eλ
√

D2nτ

∣

∣

∣
Hτ

]]

= eλl2E

[

eλ
√

D2N
]

E

[

e−
1
2
λ2τ1{τ+<τ−}

]

= eλl2Ψ(λ
√

D2)E+(λ), (3.20)

where lemma 3.3.1 is used to obtain the third line from the second. By the
symmetry of Brownian motion the following expression can be found for the
right-hand side expectation in (3.19),

E
[

e−
1
2
λ2τ+λWτ 1{τ+>τ−}

]

= E

[

e
− 1

2
λ2τ+λ

“

l1−
√

D1n
l1
τ

”

1{τ+>τ−}

]

= eλl1Ψ(−λ
√

D1)E−(λ). (3.21)

Note that E+(λ) and E−(λ) are even functions of λ and the theorem is proved
by solving the set of equations obtained by plugging (3.20) and (3.21) into
(3.19) for ±λ.

By taking the limit for λ→ 0 in (3.18), we can derive the following corollary
from the theorem.

Corollary 3.3.3. The probability that a Brownian motion will spend time
D1 below level l1 before it spends D2 above level l2 is given by the following
formula,

P
[

τ− < τ+
]

=
l2

√

2
π +

√
D2

(l2 − l1)
√

2
π +

√
D1 +

√
D2

l1 < 0 < l2. (3.22)

Remark 3.3.4. By taking the limits l2 ↓ 0 and l1 ↑ 0 in (3.22), we get for a
Brownian motion that the probability that a positive excursion of length D2

happens before a negative excursion of length D1 is equal to
√
D1√

D1 +
√
D2

,

which is a remarkably simple expression. In the same way as in [77] one
could use excursion theory as another way to obtain this probability.

Now we have computed the Laplace transforms of the Parisian stopping
times for a standard Brownian motion, we return in the next section to the
original problem of deriving Fourier transforms for the probabilities related
to the double-sided Parisian knock-in call option contract.
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3.4 Calculating the Fourier transform

We recall that the relevant quantity to compute in order to price Parisian
options maturing at time T is the probability Pr(T ) given by (3.5). Also
note, that formulas for Pr+ 1

2
σ2(T ) appear to be similar, except that a differ-

ent value for m is needed. Here we calculate its Fourier transform φ in the
parameter T and actual numbers can be obtained by numerical inversion.
In this section we assume L1 ≤ S0 ≤ L2 or, stated in terms of the standard
Brownian motion, l1 ≤ 0 ≤ l2. The case where the initial stock price S0 is
above L2 or below L1 is treated in section 3.5. As a function of time, the
probability Pr(T ) is non-decreasing, and in order to assure integrability we
introduce an exponential damping factor a > 0. We have for φ,

φ(v) =

∫ ∞

0
eivT e−aTPr(T ) dT. (3.23)

Now we can substitute (3.8) for Pr, use α = a+ 1
2m

2 and split up the event
{τ ≤ T} in the parts where the Parisian constraint is fulfilled above the
upper level or below the lower level,

φ(v) =

∫

e(iv−α)T E
[

emWT 1{WT >k}1{τ≤T}
(

1{τ+<τ−} + 1{τ−<τ+}
)]

dT

=: φ+(v) + φ−(v). (3.24)

Of course φ depends on the value of the strike, the barriers and the times that
have to be spent below or above these barriers, so a more precise notation
would be φ(v; k, l1,D1, l2,D2). Here we try to keep the notation as simple
as possible without being ambiguous. The following lemma links the results
from the previous section to φ+ and φ−.

Lemma 3.4.1. The Fourier transforms φ+ and φ− can be written as,

φ+(v) = E+(ṽα)E

[∫ ∞

0
e(iv−α)ρh

(

ρ, l2 +
√

D2N
)

dρ

]

, (3.25)

φ−(v) = E−(ṽα)E

[∫ ∞

0
e(iv−α)ρh

(

ρ, l1 −
√

D1N
)

dρ

]

, (3.26)

where N is the random variable with density (3.9) and

h(ρ,w) = E

[

em(Wρ+w)1{Wρ+w>k}
]

and ṽα =
√

2(α − iv).

Proof. We give the proof for φ+, which, after an application of Fubini, the
substitution ρ = T − τ and the strong Markov property of Brownian motion
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can be written as,

φ+(v) =

∫ ∞

0
e(iv−α)T E

[

emWT 1{WT >k}1{τ+<τ−}1{τ≤T}
]

dT

=

∫ ∞

0
e(iv−α)T E

[

1{τ+<τ−}1{τ≤T}E
[

emWT 1{WT >k} | Fτ

]]

dT

= E

[

1{τ+<τ−}

∫ ∞

τ
e(iv−α)T EWτ

[

emWt1{Wt>k}
]

t=T−τ
dT

]

= E

[

1{τ+<τ−}

∫ ∞

0
e(iv−α)(ρ+τ)E

[

em(Wρ+w)1{Wρ+w>k}
]

w=Wτ

dρ

]

Given τ+ < τ−, by lemma 3.3.1, the stopping time τ and the value of the

Brownian motion Wτ are independent and, moreover, Wτ
d
= l2 +

√
D2N ,

which proves the lemma for φ+. By symmetry of the Brownian motion, the
proof for equation for φ− proceeds along the same lines, where we remark

that now Wτ
d
= l1 −

√
D1N , given τ− < τ+.

The quantities E+ and E− in equations (3.25) and (3.26) are given by the-
orem 3.3.2, so we proceed to calculate the remaining expectations. Let c1
and c2 be real numbers and denote by E(c1, c2) the for lemma 3.4.1 relevant
expectation,

E(c1, c2) = E

[∫ ∞

0
e(iv−α)ρh (ρ, c1 + c2N) dρ

]

, (3.27)

The following lemma computes this expectation for special case of c1 and
c2.

Lemma 3.4.2. The following holds for the expectation E(c1, c2),

E(c1, c2) =











e(m−ṽα)k+ṽαc1

ṽα(ṽα−m) E
[

eṽαc2N
]

, k > c1; c2 < 0

2emc1

ṽ2
α−m2 E

[

emc2N
]

− ek(m+ṽα)−c1ṽα

ṽα(m+ṽα) E
[

e−ṽαc2N
]

, k < c1; c2 > 0

Proof. The expectation E(c1, c2) can be written out as follows,

E(c1, c2) =

∫ ∞

0
ue−

u2

2

∫ ∞

0
e(iv−α)ρ 1√

2πρ

∫ ∞

k−c1−c2u
em(x+c2u+c1)e−

x2

2ρ dxdρdu

=

∫ ∞

0
ue−

u2

2

∫ ∞

k−c1−c2u
em(x+c2u+c1)

∫ ∞

0

e(iv−α)ρ

√
2πρ

e−
x2

2ρ dρdxdu,

where we integrate over the densities of Wρ and N and change the order of
integration with Fubini. Calculation of the inner ρ-integral yields,

∫ ∞

0
e(iv−α)ρ 1√

2πρ
e−

x2

2ρ dρ =

∫ ∞

0
e(iv−α)ρ

∫ ∞

|x|

y
√

2πρ3
e−

y2

2ρ dy dρ

=

∫ ∞

|x|
e−y

√
2(α−iv) dy =

e−|x|ṽα

ṽα
. (3.28)
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Here we used the complex continuation of the Laplace transform of the first
hitting time of y by a standard Brownian motion, see [55] for example. Now
we combine the previous two equations to arrive at

E(c1, c2) =
emc1

ṽα

∫ ∞

0
ue−

u2

2
+c2mu

∫ ∞

k−c1−c2u
emx−ṽα|x| dxdu. (3.29)

The inner integral of (3.29) converges as a result of the definition of α just
below equation (3.23) and must be computed for each of the cases k >
c1, c2 < 0 and k < c1, c2 > 0 separately. For the case k > c1, c2 < 0 we
have that k − c1 − c2u ≥ 0 for every u ≥ 0 resulting in

∫ ∞

k−c1−c2u
emx−ṽα|x| dx =

e(m−ṽα)(k−c1−c2u)

ṽα −m
,

which plugged back into (3.29) gives

E(c1, c2) =
e(m−ṽα)k+ṽαc1

ṽα(ṽα −m)

∫ ∞

0
ec2ṽαuue−

u2

2 du,

where the integral contains the density of N as given in (3.9) and therefore
equals the expectation as stated in the lemma. For the case k < c1, c2 > 0
we have that k − c1 − c2u ≤ 0 for every u ≥ 0 resulting in

∫ ∞

k−c1−c2u
emx−ṽα|x| dx =

2ṽα

ṽ2
α −m2

− e(m+ṽα)(k−c1−c2u)

ṽα +m
,

which again by plugging back into (3.29) proofs the lemma.

We have now all the ingredients we need to calculate ψ+ and ψ− in the
following special cases.

Corollary 3.4.3. The following expressions hold for ψ+ and ψ− in case
l1 ≤ 0 ≤ l2 and l1 ≤ k ≤ l2,

φ+(v) = E+(ṽα)

(

2eml2Ψ(m
√
D2)

ṽ2
α −m2

− ek(m+ṽα)−l2ṽαΨ(−ṽα

√
D2)

ṽα(m+ ṽα)

)

, (3.30)

φ−(v) = E−(ṽα)
e(m−ṽα)k+ṽαl1Ψ(−ṽα

√
D1)

ṽα(ṽα −m)
. (3.31)

Proof. The corollary directly follows by plugging the result of lemma 3.4.2
into lemma 3.4.1 and using the special function Ψ defined in (3.10) for the
expectation in lemma 3.4.2.

Adding φ− and φ+ gives an expression for φ. We remark that the expressions
are only valid for L1 ≤ K,S0 ≤ L2. In order to get expressions for the general
case, we need a formula for φ+ in case k > l2 and a formula for φ− in case
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k < l1. In order to get there, we need to extend lemma 3.4.2 to the cases
k < c1, c2 < 0 and k > c1, c2 > 0, which is rather involved and therefore
deferred to the appendix. Here we just state the results as the follow from
lemma 3.11.1 in appendix 3.11.1 for φ+,

φ+(v) = E+(ṽα)

(

e(m−ṽα)k+l2ṽαΨ̃u∗
2
(ṽα

√
D2)

ṽα(ṽα −m)
+

2eml2Ψu∗
2
(m

√
D2)

ṽ2
α −m2

−
e(ṽα+m)k−l2ṽαΨu∗

2
(−ṽα

√
D2)

ṽα(ṽα +m)

)

k > l2, (3.32)

and for φ−,

φ−(v) = E−(ṽα)

(

e(m−ṽα)k+l1ṽαΨu∗
1
(−ṽα

√
D1)

ṽα(ṽα −m)
+

2eml1Ψ̃u∗
1
(−m√

D1)

ṽ2
α −m2

−
e(m+ṽα)k−l1ṽαΨ̃u∗

1
(ṽα

√
D1)

ṽα(m+ ṽα)

)

k < l1, (3.33)

where the constants u∗1 and u∗2 are given by,

u∗1 =
l1 − k√
D1

and u∗2 =
k − l2√
D2

,

based on the constant u∗ in (3.39). The Fourier transforms we have com-
puted so far are valid in case the stock price process starts in between the
two barriers. We do not derive transforms for the Greeks, because their
transforms are already rather complicated for the single-sided Parisian op-
tions as given in [30]. For the double-sided Parisian option the derivation
will be very confusing because the Fourier transform is a product of E± and
E(c1, c2), where both terms have dependencies on l1, l2 and k. The alterna-
tive of numerical differentiation of the inverted Fourier transform delivers
accurate Greeks as is shown in the section on numerical examples. The next
section treats the case in which the stock price process is already above the
upper or below the lower barrier for some time, i.e., the stock price process
is ”already in the excursion”.

3.5 Already in the excursion

Suppose the stock is already trading above level L2 for a couple of days
and it will only take an extra period of length d for the Parisian to knock
in. Denoting the remaining time to expiry by T , the option knocks in if
the stock price process S stays above level L2 longer than this time d. If
the stock price process hits level L2 before time d has gone by, the contract
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knocks in as soon as the stock spends either time D2 above L2 or time D1

below L1. So it knocks in if τd ≤ T , where,

τd = d1{TL2
>d} + τ1{TL2

≤d},

Now the probability we are interested in becomes for T > d,

P[ST > K; τd ≤ T ] = P[ST > K;TL2 > d] + P[ST > K;TL2 ≤ d; τ ≤ T ].

We remark that in the first probability on the right-hand side we should
add the constraint that T > d, otherwise the Parisian knock-in has not
taken place. The reason for leaving this out here, is that we know the
value of the Parisian knock-in contract to be zero in case of T < d and we
would not invert the Fourier transform in this situation. First, we restate
the problem in terms of the standard Brownian motion and recognize that
the stock trading above level L2 translates into the case l1 < l2 < 0. We
start calculating the Fourier transform φ1 of the first probability on the
right-hand side and after that we will compute φ2, the Fourier transform of
the second probability on the right-hand side. We want to use the strong
Markov property later on, so we have to rewrite the probability and split
the Fourier transform into two parts,

φ1(v) =

∫ ∞

0
e(iv−α)T E

[

emWT 1{WT >k}(1 − 1{Tl2
≤d})

]

dT

=: φ1,1(v; k) − φ1,2(v; k),

where we explicitly add the k to the notation of φ1,1 and φ1,2, because we
want to use k as a parameter. The first part φ1,1 can be computed as follows,

φ1,1(v; k) =

∫ ∞

0
e(iv−α)T 1√

2πT

∫ ∞

k
emxe−

x2

2T dxdT =

=
1

ṽα

∫ ∞

k
emx−|x|ṽα dx =

{

e(m−ṽα)k

ṽα(ṽα−m) , k ≥ 0,
2

(ṽ2
α−m2)

− e(m+ṽα)k

ṽα(m+ṽα) , k < 0.

Where we used the same type of arguments as in (3.28). Now for φ1,2 we
get after conditioning on FTl2

and multiple applications of Fubini,

φ1,2(v) =

eml2E

[

e(iv−α)Tl2 1{Tl2
≤d}
]

∫ ∞

0
e(iv−α)T E

[

emWT 1{WT >k−l2}
]

dT. (3.34)

The integral on the right-hand side of this equation equals φ1,1(v; k − l). In
Appendix 3.11.2 we compute the expectation on the right-hand side given
in (3.42). Adding the results gives,

φ1(v) = φ1,1(v; k) −
(

el2(m+ṽα)N (cup
+ ) + el2(m−ṽα)N (cup

− )
)

φ1,1(v; k − l2),
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where,

cup
± =

l2 ± ṽαd√
d

,

and the superscript up is used in this notation to denote that the initial
stock price is above both barriers. We still have to compute φ2, which we
can re-write by conditioning on FTl2

. We use the complete, rather elabo-
rate, notation for the Parisian stopping time to explain the strong Markov
property in more detail,

φ2(v) =

∫ ∞

0
e(iv−α)T E

[

emWT 1{WT >k}1{Tl2
≤d}1{τ≤T}

]

dT

= eml2

∫ ∞

0
e(iv−α)T E

[

1{Tl2
≤d}E

[

emWτ 1{Wτ >k−l2}1{τ̃≤t}
]

t=T−Tl2

]

dT,

where
τ = T l1−,l2+

D1,D2
and τ̃ = T

(l1−l2)−,0+
D1,D2

.

Again by substitution and multiple Fubini we get an equation for φ2 like
(3.34),

φ2(v) =

eml2E
[

e(iv−α)Tl2 1{Tl2
≤d}
]

∫ ∞

0
e(iv−α)T E

[

emWT 1{WT >k−l2}1{τ̃≤T}
]

dT.

We recognize immediately the first part of φ1,2 given in (3.34) in this equa-
tion. The integral on the right-hand side is in fact nothing else than the
original problem we are solving for different barriers. So finally we have,

φ(v) = φ1,1(v; k)+
(

el2(m+ṽα)N (cup
+ ) + el2(m−ṽα)N (cup

− )
)

×
(φ(v; k − l2, l1 − l2, 0) − φ1,1(v; k − l2)) , l1 ≤ l2 < 0,

where φ(v; k − l2, l1 − l2, 0) denotes the Fourier transform as defined in the
previous section for the strike k− l2, lower level l1− l2 and upper level 0. For
the case where the initial stock price is below both levels, i.e., 0 < l1 < l2
we introduce the down version of the c constants,

cdown
± =

−l1 ± ṽαd√
d

.

Following the same steps we can derive the Fourier transform for this case
is given by,

φ(v) = φ1,1(v; k)+
(

el1(m−ṽα)N (cdown
+ ) + el1(m+ṽα)N (cdown

− )
)

×
(φ(v; k − l1, 0, l2 − l1) − φ1,1(v; k − l1)) , 0 < l1 ≤ l2.

For now, we are able to price the double-sided Parisian knock-in call for
all combination of initial stock price value, strike and barriers. The next
section relates the Fourier transforms computed so far to the double-sided
Parisian knock-in put.
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3.6 The Parisian put

For the put option, we need in analogy with (3.5) to calculate the following
probability,

Pr

[

ST ≤ K;TL1−,L2+
D1,D2

≤ T
]

.

In [30] the authors use an alternative type of put-call parity. Here we suggest
the approach taken in [12], i.e. writing the probability as the difference of
two probabilities,

Pr

[

TL1−,L2+
D1,D2

≤ T
]

− Pr

[

ST ≥ K;TL1−,L2+
D1,D2

≤ T
]

,

where the right-hand side probability is exactly the probability given in
(3.5) and the left-hand side probability can be obtained by taking the limit
of (3.5) for K ↓ 0. So we have to take k → −∞ in equations (3.30) and
(3.33) resulting in,

φ(v) =
2eml2Ψ(m

√
D2)

ṽ2
α −m2

E+(ṽα) +
2eml1Ψ(−m√

D1)

ṽ2
α −m2

E−(ṽα) for k → −∞.

Note that we used the equation for φ in which we assume that L1 ≤ S0 ≤ L2.
Prices for the Parisian put option for the case where it is already in the
excursion can be obtained by taking k → −∞ in the formulas for φ as given
in section 3.5. Now we have Fourier transforms for double-sided Parisian
knock-in options, both put and call, we continue discussing the other types
of Parisian contract types we can construct from the double-sided Parisian
contract.

3.7 Other types of Parisian contracts

Recall the way we defined φ+ and φ− in (3.24), where φ+ is the Fourier
transform w.r.t. the parameter T of the probability of the intersection of
the following events:

• the event that the stock price at time T exceeds the strike price;

• the event {τ+ ≤ T}, which states that the stock price made an excur-
sion of length D2 above level L2 at some time before T ;

• the event {τ+ < τ−}, which represents the stock price process paths
that spend time D2 above level L2 before spending time D1 below level
L1.

For φ− the last two events are replaced by {τ− ≤ T} and {τ− < τ+} respec-
tively, with analogue interpretation. Now we can construct different types
of contracts, like the single-sided Parisian option, by different selections of
φ+, φ− and parameter sets in the following way:
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• Type 1. φ = φ+ + φ−. The double-sided Parisian contract that is
paying off when S stays longer than consecutive time D1 below level
L1 or D2 above level L2.

• Type 2a. φ = φ+ + φ− and l1 → −∞ or D1 → ∞. The single-sided
Parisian up-and-in call. Taking these limits in the equations for φ gives
the formulas in [30], where we remark that we compute transforms of
the probabilities needed to calculate the Parisian option value, where
the authors of [30] compute transforms of the non discounted pay-off.

• Type 2b. φ = φ+ + φ− and l2 → ∞ or D2 → ∞. Analogously to the
previous case, this is the single-sided down-and-in call.

• Type 3a. φ = φ+ The Parisian contract that pays off when S stays
above level L2 for a consecutive period of length D2, without having
been below L1 for a period D1 before. This contract type is called the
double-sided Parisian up-before-down-in call.

• Type 3b. φ = φ− The Parisian contract that pays off when S stays
below level L1 for a consecutive period of length D1, without having
been above L2 for a period D2 before, denoted by the double-sided
Parisian down-before-up-in call.

A very rough upper bound for the prices of the specified contract types is
the plain vanilla call. A less rough upper bound is given by the double-
sided knock-in barrier call. We continue discussing the price ordering of the
contracts above. For double-sided barriers this has already been done in
[58]. We remark that for given levels L1, L2 and periods D1,D2 the contract
type 1 is strictly most expensive, because given one of the contract types
2a, 2b, 3a or 3b there exist stock price paths that do trigger contract type 1
without knocking in the given contract type. Less expensive are the single-
sided Parisian options denoted by contract types 2a and 2b. For the one
sided Parisians there is only one level for the stock price process that can
cause a knock-in of the contract. However, the behavior of the stock price
above the other level cannot cause the Parisian option to knock out, which is
the case for the cheapest contract types 3a and 3b. This type of double-sided
Parisians do not only have just one stock price level that can cause a knock-
in, but it also contains another level for the stock price process that knocks
out the contract if the stock price process spends a certain time above or
below this level. Note that it is possible to obtain (numerical) values for the
single-sided Parisian contract without actually taking the limits as proposed
in the description of types 2a and 2b. For a given time to expiry T the value
of the single-sided Parisian down-and-in call can be obtained by inverting
the Fourier transform of the double-sided Parisian contract for some L2 and
D2 > T . Similarly we get the value of the single-sided up-and-in by inverting
the transform for some L1 and D1 > T . We will illustrate these remarks in
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the section on numerical examples. Figure 3.1 shows the relations between
the double-sided and single-sided Parisian contracts, where we abbreviate
the double-sided Parisian in call by DPIC and the out call by DPOC. The
single-sided contracts are either up (PU..) or down (PD..) and either in
(P.I.) or out (P.O.) contracts. The same type of scheme could be drawn for
the Parisian put contracts. Now we have computed and discussed various
types of Parisian contracts, we discuss the Fourier inversion in the next
section.

φ IFT 
DPIC DPOC

IO−Par

L
1
 ↓  0, D

1
 → ∞

L
2
 ↑  ∞, D

2
 → ∞

PDIC

PUIC

L
1
 ↓  0, D

1
 → ∞

PUOC

L
2
 ↑  ∞, D

2
 → ∞

IO−Par

IO−Par
PDOC

Figure 3.1: Relations between different types of Parisian contracts

3.8 Fourier inversion algorithm

3.8.1 General Fourier inversion

Apart from deriving Fourier transforms for the relevant probabilities for the
double-sided Parisian option contracts, we are also interested in numerical
values for these options. We have to obtain these values by inversion of the
Fourier transform for the probabilities we need to construct the contract,
where we recall formula (3.6). In (3.23) the definition of φ, the Fourier
transform of the probability Pr(T ) is stated and values for Pr(T ) can be
obtained by the following standard Fourier inversion formula,

Pr(T ) =
eaT

2π

∫ ∞

−∞
eivTφ(v) dv =

2eaT

π

∫ ∞

0
cos(vT )ℜ{φ(v)}dv,

where ℜ{φ(v)} denotes the real part of φ(v). We recall that a is the damping
factor to assure integrability in (3.23) and the α we are using in all the
derivations is given by α = a− 1

2m
2, where m is a constant coming from the

Girsanov transform, implicitly defined in (3.7). To arrive at the integral over
the positive real line on the right-hand side we refer to [4], where the key
idea is that from Pr(T ) with domain on the positive real line a symmetric
function f on the whole real line can be constructed by f(t) := Pr(|t|). Now
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it is straightforward to obtain numerical values for Pr by discretizing and
truncating the integral,

Pr(T ) =
2heaT

π

N
∑

j=0

cos(vjT )ℜ{φ(vj)} + ǫt + ǫd, (3.35)

where h is the stepsize, Nh the level of truncation and ǫd and ǫt respectively
the discretization and the truncation error. Following [4], we analyse the
discretization error ǫd using the Poisson summation formula which assumes
an Euler approximation for the integral in (3.35). In appendix 3.11.4 we
derive for the discretization error,

ǫd ≤ 2e−a( 2π
h
−T )

1 − e−α 2π
hT

for h <
2π

T
.

In appendix 3.11.5 we analyze the truncation error and find,

ǫt ≤ arctan

(

a

h(N − 1)

)

, (3.36)

which is very slowly going to zero. Experiments show that the number of
terms needed for a given accuracy is much less than indicated by the bound
on ǫt. This suggests that the bound presented in (3.36) is not strong enough.
The next section elaborates on the truncation error bound in order to come
up with a better estimate for the accuracy.

3.8.2 Remarks on the truncation bound

The arctan(·)-term in (3.36) is very slowly going to zero, resulting in an
impractical number of terms we have to compute in the truncated sum of
(3.35) in case we want to obtain a reasonable error of e.g. 1%. We could try
to solve this by using alternative inversion algorithms as Euler summation,
which is proposed by [4], or approximation of the Fourier transform by
polynomial-like functions of which the inverse is known as has been done
by [10] instead of the standard FFT. Here we introduce a slightly modified
version of the Euler summation, the average summation, because it seems to
fit better to limiting the properties of the Fourier transform, but it has the
same drawback as the other methods, which is that it is not possible to give
a reasonable bound for the truncation error, without using heuristics. In
[2] the authors conclude that it is often difficult to provide reasonable error
bounds and therefore they suggest to use two ”good” methods and compare
the results for an error estimate. By numerically studying the behaviour of
the sum in (3.35) it appears that this sum as a function of N oscillates for
N big enough around its limiting value with a double frequency. A high
frequency determined by T and a low frequency determined by D, which is
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the smallest number divisible by both D1 and D2. For the Fourier transform
of a single-sided Parisian contract one can actually show this by making a
Taylor expansion of the Fourier transform. For the double-sided Parisian
option it is very complicated to obtain this Taylor expansion and here we
just assume it to be true. In order to get rid of the high-frequency oscillation,
we propose to average the sum over the last M terms as follows,

∞
∑

j=0

cos(vjT )ℜ{φ(vj)} ≈ SN,M :=
1

M

M
∑

k=1

SN+k, where M =
2π

Dh
,

and SN is the partial sum of the first N terms. Now, for n large enough,
also the partial averaged sums Sn,M will oscillate around the limiting value
but with a much smaller amplitude. In the following algorithm we use this
oscillating behavior to come up with an estimate for the error, because we
know that the local maxima and minima are all above respectively below
the limit we are interested in. If y is a N -dimensional vector containing the
partial averaged sums, i.e.,y[k] = Sk,M for 0 ≤ k ≤ N , the local extrema are
defined by,

y[i] is a local max ⇔ y[i− 1] < y[i] > y[i+ 1]

y[i] is a local min ⇔ y[i− 1] > y[i] < y[i+ 1],

for i ∈ {1, .., N − 1}. The inversion algorithm now becomes,

• n = 2, y[0] = 0, y[1] = 1.

• Choose α and h such that the discretization error is ǫd.

• Determine M .

• Repeat

y[n] = Sn,M

Pmax = min{y[i], 0 ≤ i ≤ n|y[i] is a local max}
Pmin = max{y[i], 0 ≤ i ≤ n|y[i] is a local min}

• Until Pmax − Pmin < 2ǫd

• P = (Pmax + Pmin)/2 with truncation error ǫt < ǫd.

Experiments show that by using this algorithm we obtain a given accuracy
much quicker than the truncation bound in (3.36) suggests. They even show
that averaging over M terms diminishes the amplitude of the sum drastically
compared both to plain summation and Euler summation. As we are now
able to obtain numerical values from the Fourier transforms we previously
calculated, we will conclude the paper with a section on numerical examples.
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3.9 Numerical examples

In this section we illustrate the inversion of the Parisian option prices.
Throughout the examples we use, if not mentioned otherwise, S0 = K = 100,
L1 = 90, L2 = 110, D1 = D2 = 10/250, T = 1, r = 3.5%, σ = 25% and
h = 0.2, which for α ≥ 0.65 will give a discretization error less than 10−8.
If we denote quantities in units of days, then n days correspond to n/250
years. We use Fourier inversion as described in the previous section and
obtain prices typically within one second. Simulation of Parisian options
usually is much slower, like the order of minutes for the same accuracy, be-
cause one needs to choose a really fine grid in order to capture the local
behavior of the underlying Brownian motion.

3.9.1 Double-sided Parisian prices

In this example we show how the double-sided Parisian knock-in option price
behaves. First we vary the time that should be spend by the stock price
process below or above the respective barriers L1 and L2.
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Figure 3.2: Double-sided Parisian knock-in call option prices for various times D1

and D2 with S0 = 100 (left) and S0 = 90 (right).

Figure 3.2 shows that the prices of the Parisian knock-in call decrease as the
time D1 to spend below L1 or D2 to spend above L2 increase. The graph on
the left-hand side shows that in case the stock price is exactly in between
the levels L1 and L2 the time D2 has more influence on the price than D1.
This is a result of the fact that knocking in via the upper level and ending
up above the strike is more likely than knocking in via the lower level and
ending up above the strike. In the right-hand graph we changed the initial
stock price to S0 = 90. As we are now more in the neighborhood of the lower
level L1, the influence of D1 in comparison to D2 increases, which clearly
follows from the graph.
Instead of computing pricing for various D1 and D2, we can also vary the
barriers L1 and L2. The graph in figure 3.3 shows the behavior of the
double-sided Parisian knock-in call for different levels. Just like the previous
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Figure 3.3: Double-sided Parisian knock-in call option prices for various barriers
L1 and L2 with S0 = 100.

example, the Parisian option price is much more sensitive to the upper level
L2 than the lower level L1.

3.9.2 Delta

As mentioned at the end of section 3.4 the most practical way to obtain
the Greeks is by numerical differentiation. Here we give an example of the
delta, the partial derivative of the double-sided Parisian knock-in call price
with respect to the initial stock price value S0. The left-hand side surface
plot in figure 3.4 shows the delta for different times D1 = D2 that should
the stock price spend below L1 or above L2 to knock in. The notation on
the D1 = D2-axis is in days. The surface plot shows that increasing periods
D sharpen the shape of the delta curve w.r.t. the initial stock price value.

The delta in the surface plot looks still quite familiar to the plain vanilla
delta. For example the gamma, i.e. the partial derivative of the delta w.r.t.
the stock price, seems to be always positive. More spectacular behavior of
the delta can be observed if we widen the barriers to L1 = 80 and L2 = 120
and we look at the region S0 ≤ L1. In that case we need the formulas
from section 3.5, because the stock is already in the excursion. Recall that
d denotes the time that the stock price process still has to stay below L1

before the Parisian actually knocks in. The right-hand side graph of figure
3.4 shows how delta behaves for different d. Note that there actually exist
values of d for which the gamma becomes negative.
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Figure 3.4: Double-sided Parisian knock-in call option deltas for various times
D1 = D2 and S0 (left) and for various d and S0 in case the barriers are set to
L1 = 80 and L2 = 120 (right).

3.9.3 Various contract types

In this numerical example we compare the prices of the double-sided Parisian
contract types as listed in section 3.7. We add the double-sided barrier op-
tion to this comparison and we implement the method described in [73] to
obtain the prices. Table 3.1 contains prices of the various contracts for dif-

Table 3.1: Prices of various option contracts.
Contract type S0 = 90 S0 = 95 S0 = 100 S0 = 105 S0=110
Plain-vanilla 6.362 8.768 11.591 14.800 18.349

Double-sided knock-in 6.362 8.767 11.591 14.799 18.349
Double-sided P knock-in (1) 6.236 8.568 11.371 14.608 18.226

Single P up-in (2a) 5.792 8.218 11.113 14.435 18.129
P up-before-down-in (3a) 3.568 6.844 10.284 13.957 17.886

Single P down-in (2b) 2.676 1.742 1.123 0.719 0.457
P down-before-up-in (3b) 2.668 1.723 1.087 0.651 0.339

ferent values of the initial stock price. The numbers refer to the contract
type numbers in their description in section 3.7 and P denotes Parisian. The
plain vanilla call is the most expensive contract, very closely followed by the
double-sided knock-in call barrier option. The double-sided Parisian knock-
in call is again cheaper than its standard version, where the price difference
is determined by D1 and D2 as is shown in figure 3.2. Both the single-sided
Parisian contracts are cheaper than the double-sided in version, whereas the
double-sided up-before-down-in and down-before-up-in contracts are again
cheaper than the single-sided up-and-in and down-and-in contracts respec-
tively.
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3.9.4 Theta in the tails

In this example we consider the evolution in time of the double-sided Parisian
knock-in call option for values of the initial stock price S0 below the lower
barrier L1 or above the upper barrier L2, which we will denote by the lower
and upper tail respectively. We need to invert the Fourier transform as
given in section 3.5, which treats the case that the stock price process is
already in the excursion. The partial derivative of the option price with
respect to the time to maturity is called the theta. The price of plain vanilla
call options on non-dividend paying stocks always decreases as the time to
expiry decreases. In practice traders with a long position in an option try
to make a profit from trading their hedging portfolio. This profit should
compensate the theta they are loosing in the option’s long position. We
start calculating prices of options that expire in T = 1 year. Then we let
time run in steps of one day, so the remaining time the Parisian option needs
to stay away from the barrier decreases by one day. In table 3.2 we give this
price evolution for S0 ≤ L1 and the barriers L1 = 80, L2 = 120, where d is
printed in days. The columns Par and Plain contain the Parisian and plain
vanilla option values respectively. The table shows that for S0 = 76 and
S0 = 78 the theta is negative for the Parisian option, i.e., the value of the
option increases as the time to maturity decreases. This effect is the result
of the stock price spending extra days below L1 which leads to an increase of
the probability of knock-in. The table also shows that theta of a Parisian is
not always negative for any S0 < L1. For S0 = 74 theta eventually becomes
positive again and the Parisian option price tends to the plain vanilla prices.
The reason for this behavior is that S0 is so far below L1 that the Parisian
is going to knock in with high probability and therefore its price is almost
equal to the plain vanilla price. For S0 = 80 the excursion has not started
yet, so the Parisian option price is strictly below the plain vanilla price.

Table 3.2: Price evolution for various values of S0 ≤ L1, L1 = 80 and L2 = 120.
S0 = 74 S0 = 76 S0 = 78 S0 = 80

d Par Plain Par Plain Par Plain Par Plain

10 1.474 1.547 1.737 1.923 1.987 2.358 2.257 2.856
9 1.474 1.536 1.740 1.911 1.984 2.344 2.240 2.841
8 1.475 1.525 1.744 1.898 1.982 2.330 2.222 2.825
7 1.476 1.514 1.750 1.885 1.984 2.316 2.205 2.809
6 1.476 1.503 1.759 1.873 1.988 2.302 2.187 2.794
5 1.475 1.492 1.770 1.860 1.997 2.288 2.170 2.778
4 1.472 1.481 1.783 1.848 2.014 2.274 2.152 2.762
3 1.467 1.470 1.797 1.835 2.041 2.260 2.135 2.747
2 1.459 1.459 1.809 1.823 2.087 2.245 2.117 2.731
1 1.448 1.448 1.809 1.810 2.164 2.231 2.100 2.715

Table 3.3 shows that also in the upper tail theta can become negative. The
effect is not so strong as in the lower tail, because the probability of the
intersection of ending up above the strike and knocking in via the upper
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Table 3.3: Price evolution for various values of S0 ≥ L2, L1 = 80 and L2 = 120.
S0 = 120 S0 = 122 S0 = 124 S0 = 126

d Par Plain Par Plain Par Plain Par Plain

10 25.57 26.28 27.43 27.98 29.33 29.70 31.21 31.46
9 25.54 26.26 27.42 27.95 29.32 29.68 31.21 31.43
8 25.51 26.23 27.40 27.93 29.31 29.66 31.21 31.41
7 25.48 26.21 27.39 27.91 29.31 29.63 31.21 31.39
6 25.45 26.18 27.38 27.88 29.31 29.61 31.21 31.36
5 25.42 26.16 27.37 27.86 29.32 29.58 31.21 31.34
4 25.39 26.13 27.38 27.83 29.33 29.56 31.22 31.32
3 25.36 26.11 27.39 27.81 29.36 29.54 31.24 31.29
2 25.33 26.08 27.43 27.78 29.40 29.51 31.25 31.27
1 25.30 26.06 27.53 27.76 29.46 29.49 31.24 31.25

tail is much bigger than ending up above the strike and knocking in via the
lower tail. Therefore the Parisian knock-in call will behave more like a plain
vanilla for S0 > L2 than it does for S0 < L1.

Table 3.4: Price evolution for various values of S0 ≤ L1, L1 = 90 and L2 = 110.
S0 = 84 S0 = 86 S0 = 88 S0 = 90

d Par Plain Par Plain Par Plain Par Plain

10 4.028 4.051 4.702 4.751 5.436 5.521 6.236 6.362
9 4.012 4.032 4.686 4.731 5.416 5.500 6.212 6.340
8 3.997 4.014 4.669 4.711 5.397 5.479 6.188 6.317
7 3.981 3.995 4.653 4.691 5.378 5.457 6.164 6.295
6 3.966 3.976 4.638 4.671 5.360 5.436 6.140 6.272
5 3.950 3.958 4.623 4.651 5.343 5.415 6.116 6.250
4 3.935 3.939 4.610 4.631 5.328 5.394 6.092 6.227
3 3.919 3.920 4.597 4.611 5.315 5.372 6.068 6.205
2 3.901 3.902 4.585 4.591 5.307 5.351 6.044 6.182
1 3.883 3.883 4.570 4.571 5.308 5.329 6.019 6.160

Tables 3.4 and 3.5 contain the same information as tables 3.2 and 3.3, except
that the Parisian are now calculated for narrower barriers L1 = 90 and
L2 = 110. The tables show that the negative theta effect disappears in this
case. The prices of both the Parisian knock-in call option and the plain
vanilla call decrease as time goes by. The Parisian is very likely to knock in
for these narrow barriers and therefore it behaves much more like the plain
vanilla call.

3.10 Conclusion

In this paper we derived the Fourier transform for the probabilities related
to the double-sided Parisian in options. These Parisian options are trig-
gered by a double-sided Parisian stopping time. In order to get the Fourier
transforms of the options, we derived the Laplace transform of the Parisian
stopping time, for which we used excursion theory. We also treated the case
that the Parisian option already has spent some time in the excursion. The
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Table 3.5: Price evolution for various values of S0 ≥ L2, L1 = 90 and L2 = 110.
S0 = 110 S0 = 112 S0 = 114 S0 = 116

d Par Plain Par Plain Par Plain Par Plain

10 18.23 18.35 19.76 19.85 21.34 21.40 22.95 22.99
9 18.20 18.32 19.73 19.83 21.32 21.38 22.93 22.97
8 18.17 18.30 19.71 19.80 21.29 21.35 22.91 22.94
7 18.14 18.27 19.68 19.77 21.27 21.32 22.89 22.91
6 18.11 18.24 19.66 19.75 21.25 21.30 22.87 22.89
5 18.08 18.21 19.64 19.72 21.23 21.27 22.84 22.86
4 18.05 18.19 19.61 19.69 21.21 21.25 22.82 22.84
3 18.03 18.16 19.59 19.67 21.19 21.22 22.80 22.81
2 18.00 18.13 19.58 19.64 21.18 21.19 22.78 22.79
1 17.97 18.11 19.58 19.61 21.16 21.16 22.76 22.76

Fourier transform of the double-sided Parisian in call could also be used to
obtain the Fourier transform of the equivalent Parisian put. Furthermore we
could derive the single-sided Parisian contract types from the double-sided
Parisian as well as a down-before-up contract type. The numerical example
treats the behavior of the double-sided Parisian knock-in call contract. In
order to obtain actual values, we use average summation as inversion tech-
nique. Apart from the prices, we show that the Greeks can be behave rather
peculiar, in the sense that the Parisian contract can have a negative gamma
and theta.
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3.11 Appendix

3.11.1 Calculation of φ+ for k > l2 and φ− for k < l1

Here we derive the expressions for φ+ and φ− as given by (3.32) and (3.33).
The first step is to come up with a formula for E(c1, c2) for the cases not
covered by lemma 3.4.2, which is done in the following lemma. The equations
(3.32) and (3.33) now follow as a corollary from this lemma in the same way
as corollary 3.4.3 follows from lemma 3.4.2.

Lemma 3.11.1. Let E(c1, c2) be defined by (3.27) in lemma 3.4.2 for the
real numbers c1 and c2, then the following formulas hold,

E(c1, c2) =
2emc1

ṽ2
α −m2

E
[

ec2mN1{N≤u∗}
]

− e(m+ṽα)k−ṽαc1

ṽα(ṽα +m)
E
[

e−c2ṽαN1{N≤u∗}
]

+
e(m−ṽα)k+ṽαc1

ṽα(ṽα −m)
E
[

ec2ṽαN1{N≥u∗}
]

, k < c1, c2 < 0, (3.37)

and

E(c1, c2) =
e(m−ṽα)k+ṽαc1

ṽα(ṽα −m)
E
[

ec2ṽαN1{N≤u∗}
]

+
2emc1

ṽ2
α −m2

E
[

ec2mN1{N≥u∗}
]

− e(m+ṽα)k−ṽαc1

ṽα(ṽα +m)
E
[

e−c2ṽαN1{N≥u∗}
]

, k > c1, c2 > 0, (3.38)

where

u∗ =
k − c1
c2

. (3.39)

Proof. The starting point is equation (3.29) in lemma 3.4.2, which we can
write as,

E(c1, c2) =
emc1

ṽα

∫ ∞

0
ue−

u2

2
+c2muIk−c1−c2u du, (3.40)

where Ia is for real a given by,

Ia =

∫ ∞

a
emx−|x|ṽα dx =

{

e(m−ṽα)a

ṽα−m a ≥ 0
2ṽα

ṽ2
α−m2 − e(m+ṽα)a

m+ṽα
a < 0

.

Now we split up the integral in (3.40) into two parts, separated by u∗ given
by (3.39), resulting in

E(c1, c2) =
emc1

ṽα

(

∫ u∗

0
ue−

u2

2
+c2muIk−c1−c2u du+

∫ ∞

u∗
ue−

u2

2
+c2muIk−c1−c2u du

)

. (3.41)
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For the case k < c1 and c2 < 0 the subscript of I is negative for left-hand
side integral and positive for the right-hand side integral, giving

E(c1, c2) =
emc1

ṽα

(

∫ u∗

0
ue−

u2

2
+c2mu

(

2ṽα

ṽ2
α −m2

− e(m+ṽα)(k−c1−c2u)

ṽα +m

)

du

+

∫ ∞

u∗
ue−

u2

2
+c2mu e

(m+ṽα)(k−c1−c2u)

ṽα −m
du

)

.

Now put in this equation every non-u term in front of the integral and
rewrite the remaining integral as an expectation using the density of N
given in (3.9) to arrive at (3.37). For the case k > c1 and c2 > 0, except
that the subscript of I is positive for the left-hand side integral in (3.41)
and negative for the right-hand side integral. By symmetry we arrive at the
same formula, except that the indicator sets {N ≤ u∗} and {N ≥ u∗} are
interchanged, which gives (3.38).

3.11.2 The Laplace Transform of Tl occurring before d

We define ψl(λ; d), the Laplace transform of the distribution of the hitting
time of level l by a standard Brownian motion W restricted to the set where
this hitting time occurs before d by,

ψl(λ; d) := E

[

e−λTl1{Tl≤d}
]

λ ≥ 0,

Now we construct a stopping time H = Tl ∧ d and use the martingale

Mt = e−
z2

2
t+zWt for our computation. As H is a bounded stopping time, we

can use optional sampling to arrive at,

1 = E[MH ] = ezlE

[

e−
z2

2
Tl1{Tl≤d}

]

+ e−
z2

2
dE
[

ezWd1{Tl>d}
]

.

The second expectation on the right-hand side can explicitly be calculated
as the density P[Wd ∈ dx;Tl > d] is well-known (see e.g. [31]),

E
[

ezWd1{Tl>d}
]

=
1√
2πd

∫ b

−∞
ezx

(

e−
x2

2d − e−
(x−2l)2

2d

)

dx

= e
z2d
2

[

N
(

l − zd√
d

)

− e2lzN
(−l− zd√

d

)]

.

Here we assumed l ≥ 0. The calculations of l ≤ 0 proceed in the same way
and we can write a general result for all l and λ ≥ 0 by,

ψl(λ; d) = e−|l|
√

2λN
(

−|l| +
√

2λd√
d

)

+ e|l|
√

2λN
(

−|l| −
√

2λd√
d

)

. (3.42)
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3.11.3 UI property of e−
1
2
λ2(t∧τ)+λWt∧τ

In order to prove the UI-property we need the following two lemmas, where
the first one is on the distribution of the stopped Brownian motion.

Lemma 3.11.2. Let τ+ the Parisian stopping time of the upper level, then
the following holds for any t > 0 and x ≥ l2,

P [Wt∧τ+ > x] ≤ P [Wτ+ > x] . (3.43)

Proof. First, recall that Wτ+ − l2 is distributed as
√
D2N and by (3.9) we

can compute the probability on the right-hand side

P [Wτ+ ≥ x] =

∫ ∞

x−l2√
D2

ye−
y2

2 dy = e
− (x−l2)2

2D2 . (3.44)

Now rewrite the left-hand side probability in (3.43) by,

P [Wt∧τ+ > x] =

P
[

Wτ+ > x|t ≥ τ+
]

P
[

t ≥ τ+
]

+ P
[

Wt > x|t < τ+
]

P
[

t < τ+
]

,

so we have to find a bound for the second conditional probability on the

right-hand side. Assume that t ≥ D2 and let for s ≥ 0 the random time T
(s)
l2

be given by

T
(s)
l2

= inf{t ≥ s|Wt = l2},
denoting the first time that the Brownian motion hits the level l2 after time
s. We can write for the conditional probability,

P
[

Wt > x|t < τ+
]

= P

[

Wt > x|τ+ /∈ [0, t−D2) ∩ T (t−D2)
l2

∈ [t−D2, t)
]

= P

[

Wt > x|T (t−D2)
l2

∈ [t−D2, t)
]

=

∫ t

t−D2

P
[

Wt−t̃ > x− l2
]

P

[

T
(t−D2)
l2

∈ dt̃|T (t−D2)
l2

∈ [t−D2, t)
]

≤ P [WD2 > x− l2] , (3.45)

where we used the strong Markov property to restart the process after T
(s)
l2

.
Now we have to show that the probability in (3.45) is smaller than that in
(3.44),

P [WD2 > x− l2] =
1√

2πD2

∫ ∞

x
e
− (y−l2)2

2D2 dy

=
e
− (x−l2)2

2D2√
2πD2

∫ ∞

x
e
− (y−l2)2−(x−l2)2

2D2 dy

≤ e
− (x−l2)2

2D2√
2πD2

∫ ∞

x
e
− (y−x)2

2D2 dy =
1

2
P [Wτ+ ≥ x] .
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For t < D2, we have that

P
[

Wt > x|t < τ+
]

= P [Wt > x] ≤ P [WD2 > x] ≤ P [WD2 > x− l2] .

For the last probability we have already shown that it satisfies the necessary
inequality to prove the lemma.

The following lemma relates the inequality of the distribution of the previous
lemma to an inequality of the expectations.

Lemma 3.11.3. Let X and Y be random variables for which for every
x > x0 the following inequality holds,

P [X > x] ≤ P [Y > x] , (3.46)

then the following inequality of the expectations is satisfied for any l > x0,

E
[

X1{X>l}
]

≤ E
[

Y 1{Y >l}
]

.

Proof. Let h(n) = 2−n, then the following approximation shows the lemma,

E
[

X1{X>l}
]

= lim
n→∞

E

[

l1{X>l} + h(n)
∞
∑

k=1

1{X>l+kh(n)}

]

≤ lim
n→∞

E

[

l1{Y >l} + h(n)
∞
∑

k=1

1{Y >l+kh(n)}

]

= E
[

Y 1{Y >l}
]

,

where we get from the first to the second line by using (3.46).

Now we have the tools to proof the UI property of the stopped martingale
(M τ

t )t≥0 given by,

M τ
t = e−

1
2
λ2(t∧τ)+λWt∧τ .

Consider λ > 0, then we have

M τ
t ≤ eλWt∧τ a.s.,

so it remains to show that eλWt∧τ is UI. By lemma 3.11.2 we have that for
x ≥ eλl2 the following inequality holds

P

[

eλWτ∧t > x
]

≤ P

[

eλWτ+∧t > x
]

≤ P

[

eλWτ+ > x
]

,

which results by lemma 3.11.3 for H > eλl2 and h = λ−1 ln(H) in

E

[

eλWt∧τ 1{eλWt∧τ >H}

]

≤ E

[

eλWτ+1{Wτ+>h}
]

.

The distribution of Wτ+ is known, so we have for h′ = D
− 1

2
2 h

E

[

eλWτ+1{Wτ+>h}
]

= eλl2E

[

eλ
√

D2N1{N>h′}
]

= eλl2Ψh′(λ
√

D2).

The expression on the right-hand side can be made arbitrary small by in-
creasing h′, which proves the UI property for λ > 0. For λ < 0 the proof is
symmetric, where have to formulate lemma 3.11.2 in terms of τ−.
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3.11.4 Discretization error

If we define the function f by,

f(t) = e−atPr(t)1{t≥0},

then the Fourier transform φ we compute throughout the paper is in fact
the Fourier transform of this function f . Now define the periodic function
fp by,

fp(t) :=

∞
∑

j=−∞
f

(

t+
2πj

h

)

. (3.47)

This sum is uniformly bounded in t by,

fp(t) ≤
∞
∑

j=0

e−a 2πj
h ≤ h

2π

∫ ∞

− 2π
h

e−ax dx =
h

2πa
e

2πa
h .

Now fp is periodic with period 2π
h , so we obtain its Fourier series by,

fp(t) =
∞
∑

n=−∞

h

2π
cne

inht where cn =

∫ π/h

−π/h
fp(t)e

−inht dt (3.48)

Calculation of the coefficients cn gives,

cn =

∫ π/h

−π/h
fp(t)e

−inht dt =

∫ π/h

−π/h

∞
∑

j=−∞
f

(

t+
2πj

h

)

e−inht dt

=

∞
∑

j=−∞

∫ π/h

−π/h
f

(

t+
2πj

h

)

e−inht dt

=

∫ ∞

−∞
f(t)e−inht dt = φ(−nh) (3.49)

The interchange of sum and integral is allowed by dominated convergence.
Using the coefficients in (3.49) and the equality between (3.48) and (3.47)
we obtain the Poisson summation formula,

∞
∑

j=−∞
f

(

t+
2πj

h

)

=
h

2π

∞
∑

n=−∞
φ(−nh)einht. (3.50)

We can derive the same result for the symmetric function g defined by
g(t) = f(|t|). For a fixed t > 0 we can set h = δ

t and obtain,

∞
∑

j=−∞
g

(

t

(

1 +
2π

δ
j

))

=
δ

2πt

∞
∑

n=−∞
φg(−nh)einht

=
δ

πt
ℜ{φ(0)} +

2δ

πt

∞
∑

n=1

ℜ
{

φ

(

nδ

t

)}

cos(nδ).
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Using f(t) = g(t) for t > 0 we have,

f(t) = g(t) =
δ

πt
ℜ{φ(0)} +

2δ

πt

∞
∑

n=1

ℜ
{

φ

(

nδ

t

)}

cos(nδ)

−
∑

|j|>0

g

(

t

(

1 +
2π

δ
j

))

. (3.51)

In order to get an estimate for the error, we need to control the last sum
term. Suppose we choose δ < 2π, then we have for this error term ǫ,

ǫ =
∑

|j|>0

g

(

t

(

1 +
2π

δ
j

))

≤
∑

|j|>0

exp

(

−at
∣

∣

∣

∣

1 +
2π

δ
j

∣

∣

∣

∣

)

≤ 2
∞
∑

j=1

exp

(

−at
(

2π

δ
j − 1

))

≤ 2e−a( 2π
δ
−1)t

1 − e−a 2π
δ

t
(3.52)

3.11.5 Truncation error

If we approximate the integral by a sum, we have

∫ ∞

0
cos(vT )ℜ{φ(v)}dv ≈ h

∞
∑

j=1

cos(vjT )ℜ{φ(vj)}.

Here vj = h(j − 1). To get a bound on the truncation error ǫ, we have to
calculate,

ǫ =

∣

∣

∣

∣

∣

∣

h

∞
∑

j=N+1

cos(vjT )ℜ{φ(vj)}

∣

∣

∣

∣

∣

∣

≤ h

∞
∑

j=N+1

|ℜ{φ(vj)}| = h

∞
∑

j=N+1

ǫj

For the ǫj we can write,

ǫj =

∣

∣

∣

∣

ℜ
∫ ∞

0
eivjtf(t) dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

0
cos(vjt)e

−αt dt

∣

∣

∣

∣

= e−αt vj sin(vjt) − α cos(vjt)

α2 + v2
j

]t=∞

t=0

=
α

α2 + v2
j

.

As the term α
α2+v2

j

is decreasing in vj we can write,

ǫ ≤ h

∞
∑

j=N+1

α

α2 + v2
j

≤
∫ ∞

vN

α

α2 + v2
dv = arctan

(

α

h(N − 1)

)

(3.53)



Chapter 4

Pricing Parisians and

barriers by hitting time

simulation

Parisian options are not exchange traded, but there are vari-
ous applications of Parisian optionality in the fields of real option
theory, convertible bond valuation and credit risk. Especially
the valuation of consecutive Parisian options is complicated and
there exist no explicit formulas for these contracts. So far valua-
tion can be done by numerically inverting Laplace transforms or
by PDE methods. This paper develops a Monte Carlo method
by exploiting the Markovian nature of the underlying value pro-
cess. As a result, the Parisian option value can be written as
an expression that can be solved by Monte Carlo integration,
where the Parisian times are the random variables that need to
be simulated. The Parisian times cannot be simulated directly
as there exists no explicit distribution function. Therefore these
times are approximated by the simulation of hitting times in a
special way. The quality of this approximation can be controlled
and is a trade-off between accuracy and computation time.

4.1 Introduction

The Parisian option is a path-dependent option that is triggered by the
first time the underlying value process spends a given time period below or
above some level. The additional stay-above-or-below feature extends the
notion of a standard barrier option, for which just hitting a level is enough
to trigger the contract. The standard barrier is governed by the hitting time
and we denote the time that governs the Parisian contract by the Parisian
time. This time can be measured in a consecutive or a cumulative way. In

71
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the consecutive case the measurement of the time period below or above
the barriers starts from zero each time the barrier is crossed, whereas these
periods are added up in the cumulative case. Although Parisian options
are nowadays not exchange traded, there are a number of applications of
Parisian optionality in mathematical finance. They turn up in real option
problems as treated in [43]. Parisians are the building block of the soft-call
constraint in convertible bonds as in [61]. For applications in credit risk
and life insurance see [66] and [27] respectively. As a result of this variety
of applications, the valuation problem of Parisian options is of interest to a
broad range of financial fields, where risk-management, investment theory
and credit risk are just a few that we mention.
The valuation of cumulative Parisian options has to do with occupation time
densities and there are useful results in [35], [65] and [72]. The valuation of
the consecutive Parisian option is more complicated and it has been initiated
by [30]. These authors did derive Laplace transforms for various consecutive
Parisian contracts. We will use their Laplace transforms and the numerical
inversion techniques in [4] to obtain reference prices for our numerical ex-
amples. In [10] the authors use polynomial approximation of the Laplace
transforms of [30] to obtain prices. The authors in [49] use a PDE approach
to value Parisians, but convergence appears to be very slow. In [6] the au-
thors also formulate a PDE and construct a trinomial lattice from it. The
author in [33] constructs a clever combinatorial approach to count the paths
in a binomial tree that satisfy the Parisian constraint. For all of these lattice
methods the local behavior of Brownian motion makes it necessary to choose
the step size of the lattice carefully. In this paper, we are going to develop
a Monte Carlo method for Parisian option pricing, as this method seems to
be missing in the literature. The reason to consider Monte Carlo valuation
for Parisian options is in the flexibility of Monte Carlo methods. Once a
Monte Carlo has been developed it might be possible to modify it for the
cases of a more complicated pay-off or more sophisticated underlying value
model. Note, that the literature on Parisian options we cite here only deals
with the classical geometric Brownian motion as model for the underlying
value process.
As a result of the local behavior of Brownian motion, the main ingredient of
the underlying value process, straightforward path-simulation of this process
will not result in a Monte Carlo method that converges within reasonable
time. Therefore we construct an alternative Monte Carlo algorithm, which
we base on hitting time simulation. Using the Markovian structure of the
underlying process, we can write the valuation of a Parisian option as an ex-
pression that can be solved by Monte Carlo integration, where the Parisian
time is the random variable that needs to be simulated. A similar expression
for standard barrier options has already been derived in [82]. We obtain ap-
proximations of samples of the Parisian time by an algorithm that simulates
hitting times in a special way. The algorithm contains a parameter ǫ that
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determines the quality of the approximation. As always, there is a trade-off
between the quality of the approximation and the computation time.
In this paper we start with the explanation of the idea of hitting time simu-
lation. We will use the standard barrier option in a particular case to explain
the method and show the accuracy of it. Once the concept is presented, the
hitting time simulation algorithm will be extended to the valuation of a gen-
eral barrier, which is in fact an application of Girsanov’s theorem. After that
we show that we can value both the cumulative and the consecutive Parisian
option using this concept and also illustrate the presented recipe with an
example. Finally we make some numerical remarks about the parameter ǫ
that is important in the approximation of the Parisian time.

4.2 Model of the economy

The economy we are going to use for option pricing consists of a bank-
account and an asset price process. Assume that on the bank-account the
interest rate r is calculated in the continuously compounded way and equal
for positive and negative amounts of money. Let {St; t ≥ 0} be the asset
price process defined on the filtered probability space (Ω,F ,Ft,P). We
assume the price process S to be given by a geometric Brownian motion as
it is within the Black-Scholes model. It is well-known that, in case a set
conditions is fulfilled, this economy is complete, which means that for every
pay-off Ψ at time T that can be expressed in terms of the asset price path
up to time T , there exists a replicating self-financing trading strategy. A
self-financing trading strategy is called replicating for a pay-off Ψ if at time
T the (random) value of the portfolio constructed by this strategy equals
the pay-off Ψ. It is also well-known that this economy is arbitrage-free, i.e.,
it is not possible to have a positive probability of a return on your money
bigger than the risk-free interest rate r without having a positive probability
of a return less than r. If an economy is complete and arbitrage-free, the
replicating strategy should be unique and the price of a derivative should
be given by the initial investment of the replicating strategy. In order to
calculate this initial investment, we introduce the risk-neutral asset price
process given by

St = s0 exp

{(

r − 1

2
σ2

)

t+ σWt

}

,

where {Wt; t ≥ 0} denotes a standard Brownian motion, s0 the initial value
of the stock, r the risk-free interest rate and σ the volatility of the asset.
The initial investment of the replicating strategy, which is the price VΨ of a
derivative with pay-off Ψ((St)0≤t≤T ) and maturity T can be computed by,

VΨ = e−rT E [Ψ((St)0≤t≤T )] . (4.1)
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The previously mentioned conditions that ensure arbitrage-freeness and com-
pleteness of an economy are conditions like the ability of short-selling, con-
tinuous trading and absence of transaction costs. In the equity markets for
example, these conditions are almost fulfilled. Professional institutions are
allowed short-selling, they can trade continuously around the globe and their
transaction costs are negligible in comparison to the size of their trades. An
intuitive discussion on these conditions can be found in [52] and a more
formal treatment is given in [12].
A standard barrier option is an option that pays off like a standard call or
put with strike X in cases where a predefined barrier L is hit or not. Barriers
that do not pay off once the barrier L is hit, are called knock-out barriers
and their counterparts are denoted by knock-ins. In the sequel we look at
the value DIC of a down-and-in call, this is a knock-in contract, where the
barrier L is below the initial asset price s0. The value DIC is calculated by,

DIC = e−rT E
[

(ST −X)+1{TL≤T}
]

, (4.2)

where TL denotes the hitting time of the level L by the process S:

TL := inf{t ≥ 0;St = L}. (4.3)

There is a closed form solution to (4.2), for example in [12]. In the next
section we will show how we can use samples of (4.3) and Monte Carlo
integration to calculate the barrier price.

4.3 Hitting time simulation for the standard bar-

rier option

In this section we show how we obtain a Monte Carlo integration method
for a special parameter set of the standard down-and-in call by using the
strong Markov property for Brownian motion. For a general introduction
on Monte Carlo methods in finance, see [46]. The approach we take here of
integrating over the hitting time density has been followed by [56] and [82].
Thereafter we rely on Girsanov’s theorem to generalize the method for all
parameter sets. First we start with the special case r = 0.5σ2, which gives,

St = L ⇔ Wt = σ−1 ln
L

s0
=: l.

Defining τl as the hitting time of l by the Brownian motion W in the same
way as in (4.3), we have TL = τl. LetBSC(s0, T ) be the value of a vanilla call
with time to maturity T and initial asset price s0. Now we use conditioning
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and the strong Markov property of Brownian motion to obtain,

DIC = e−rT E
[

(ST −X)+1{TL≤T}
]

= e−rT E
[

1{τl≤T}E
[

(s0e
σWT −X)+

∣

∣Fτl

]]

= E

[

1{τl≤T}e
−rτle−r(T−τl)E

[

(LeσWs −X)+
]

s=T−τl

]

= E
[

1{τl≤T}e
−rτlBSC(L, T − τl)

]

. (4.4)

From (4.4) we have that, once we can simulate τl, we immediately have a
Monte Carlo algorithm for the valuation of the standard barrier price. In
fact, solving (4.4) by Monte Carlo is called Monte Carlo integration. In
order to speed up the algorithm, we write

DIC =

∫ T

0
e−rtBSC(L, T − t)P[τl ∈ dt]

= P[τl ≤ T ]

∫ ∞

0
e−rtBSC(L, T − t)P[τl ∈ dt|τl ≤ T ]. (4.5)

We use the reflection principle (see e.g. [55]) to obtain Fτl
, the distribution

function of τl and obtain:

Fτl
(t) = P[τl ≤ t] = 2P[Wt ≤ l] = 2Φ

(

l√
t

)

, (4.6)

where Φ is the standard normal distribution function. Note, that (4.6) is
actually a distribution function as for the case L ≤ s0 we have l ≤ 0. In
order to draw the samples, we need the inverse distribution function F−1

τl
,

F−1
τl

(y) =

(

l

Φ−1(y
2 )

)2

. (4.7)

Now we compute the expectation (4.4) by constructing a Monte Carlo inte-
gration algorithm for (4.5). So, we have to sample random variables from
the distribution of the hitting time, conditional on the event that this hit-
ting time does happen before T . We use the hitting time distribution and
its inverse to do so and construct the following algorithm.

Algorithm 1 (Simple DIC)

• Take α = Fτl
(T ), Res = 0.

• Repeat N times :

Sample u from U [0, α].

Obtain the sample τ by τ = F−1
τl

(u)

Res = Res+ e−rτBSC(L, T − τ)

• Res = N−1 · α · Res
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Figure 4.1: Normalized histogram generated by 1000 runs of the algorithm for the
(r = 1

2
σ2)-case of the down-and-in call. Each individual run consists of 104 samples

and the reference price is 4.7792

Here we used α to obtain only relevant samples in the region TL ≤ T . We
implemented the algorithm for a DIC with L = 90, s0 = 100, X = 100,
T = 1, r = 4.5% and σ = 30%. The exact price of this contract up to 4 digits
is 4.7792. Figure 4.1 gives the distribution of the Monte Carlo values around
this exact value for N = 104, where we used 1000 runs of the algorithm to
obtain the histogram. Note that the frequencies are normalized, such that
the total area below the histograms equals one. The rate of convergence
is shown in figure 4.2, where we did run the algorithm 1000 times and plot
the 95%, 90% and 50% emperical quantiles of the absolute error distribution.

In algorithm 1, we are only able to simulate prices in case r = 0.5σ2. We can
extend this to general values for r and σ using the Girsanov transformation,
without that it is necessary to sample values from a Brownian hitting time
with drift. We define a process {Zt, t ≥ 0} and a constant m by,

Zt :=
r − 0.5σ2

σ
t+Wt =: mt+ σWt (4.8)

Now we denote by τl the hitting time of the level l by the process Z. We
know from Girsanov’s theorem that there exists an equivalent measure Q

such that Z is a standard Brownian motion under Q. Furthermore this
theorem gives the Radon-Nikodým derivative connecting P and Q, so we
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Figure 4.2: Rate of convergence graph containing plots of the 95%, 90% and 50%
emperical quantiles of absolute error distribution versus number of hitting time
simulations, generated by 1000 runs of the algorithm for the (r = 1

2
σ2)-case of the

down-and-in call. Each individual run consists of 104 samples.

can valuate a claim Ψ as in (4.1) by,

VΨ = e−rT E

[

Ψ((s0e
(r−0.5σ2)t+σWt))0≤t≤T )

]

= e−rT E
[

Ψ((s0e
σZt)0≤t≤T )

]

= e−rT e−
m2

2
T EQ

[

emZT Ψ((s0e
σZt)0≤t≤T )

]

. (4.9)

Here we used the definition in (4.8) of the process Z and the change-of-
measure to get rid of the drift part of the Brownian motion. It is possible
to obtain directly the distribution of τl under P, see e.g. [12]. As we are
also interested in the inverse of the hitting time distribution, we will simu-
late under Q, using the fact that we know the connecting Radon-Nikodým
derivative. If we proceed along the same lines as we did for the derivation
of (4.4), we find:

DIC = e−rT e−
m2

2
T EQ

[

emZτ 1{τl≤T}EQ

[

em(ZT −Zτ )(s0e
σZT −X)+

∣

∣

∣Fτl

]]

= emlEQ

[

e−(r+ m2

2
)τl1{τl≤T}e

−(r+ m2

2
)(T−τl)EQ

[

emZt(LeσZt −X)+
]

t=T−τl

]

= emlEQ

[

e−(r+ m2

2
)τl1{τl≤T}BSC(L, T − τl)

]

. (4.10)
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Here we used Zτl
= l. Now we can use the distribution of τl we already

computed for the algorithm, because under Q the process Z is a standard
Brownian motion, just as W is under P and it is therefore not necessary to
sample from the distribution of the hitting time of a Brownian motion with
drift. Also in this case it is possible to draw conditional samples, like we
showed by deriving (4.5) from (4.4). The modified algorithm is given below.

Algorithm 2 (DIC)

• Take α = Fτl
(T ), Res = 0.

• Repeat N times :

Sample u from U [0, α].

Obtain the sample τ by τ = F−1
τl

(u)

Res = Res+ e−(r+0.5m2)τBSC(L, T − τ)

• Res = N−1 · eml · α ·Res
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Figure 4.3: Normalized histogram generated by 1000 runs of the algorithm for
the (r <> 1

2
σ2)-case of the down-and-in call. Each individual run consists of 104

samples and the reference price is 4.4213

We implemented the algorithm for a DIC with L = 90, s0 = 100, X = 100,
T = 1, r = 1.5% and σ = 30%. The exact price of this contract up to 4
digits is 4.4213. Figure 4.3 gives the distribution of the Monte Carlo values
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Figure 4.4: Rate of convergence graph containing plots of the 95%, 90% and 50%
emperical quantiles of absolute error distribution versus number of hitting time
simulations, generated by 1000 runs of the algorithm for the (r <> 1

2
σ2)-case of

the down-and-in call. Each individual run consists of 104 samples.

around this exact value for N = 104. Figure 4.4 gives insight in the rate of
convergence by estimating the quantiles of the absolute error distribution in
the same way as in the previous example.

4.4 The consecutive Parisian contract

In the previous section we used Monte Carlo integration for barrier option
pricing and, as the distribution of the relevant hitting time is explicitly
known, we could directly sample from this distribution to perform the Monte
Carlo integration as described in the algorithms 1 and 2. Here we are going
to consider a Parisian option and the stopping time that determines the
Parisian pay-off does not have an explicit density or distribution. So again
we can use the strong Markov property as in (4.4) and (4.10), but we have
to do extra work to obtain samples from the stopping time distribution.
The consecutive Parisian option contract is very much like a barrier contract,
except that it does not only need to touch the barrier, but it also needs to
stay above or below this barrier for some consecutive period H. Define ΓL

t

to be the last time before t that S equals L,

ΓL
t = sup{s ≤ t;Ss = L}.
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Then, using the process S again, we can define γl
t as the last time before t

that the process Z hits the level l and we have γl
t = ΓL

t . Let us consider
PDIC, the Parisian down-and-in call, for which we can write,

PDIC = e−rT E[(ST −X)+1{T L,−
H

≤T}],

where TL,−
H is given by,

TL,−
H = inf {t > 0;St < L ∧ (t− ΓL

t ) ≥ H}
= inf {t > 0;Zt < l ∧ (t− γl

t) ≥ H}.

We are now looking for a way to obtain samples for TL,−
H . There are the-

oretical results on this stopping time, see for example [30] and [43], but
these results are in terms of Laplace transforms, explicit distributions are
not given. A first intuition would be to simulate a hitting time for the bar-
rier L, then simulate the length of the excursion below L and repeat this
until the length of the excursion is larger than H. Unfortunately the first
excursion after hitting the level L is not properly defined as a consequence
of the local behavior of Brownian motion. Here we suppose the strike X
above the barrier L, such that we can define τ l,−

H the first time after TL,−
H

the process Z hits the level l again by,

τ l,−
H := inf{t > TL,−

H : Zt = l}.

The idea is now to approximate τ l,−
H , because using the strong Markov prop-

erty and Girsanov again we can derive,

PDIC = e−rT E

[

(ST −X)+1{T L,−
H ≤T}

]

= emlEQ

[

e−(r+ m2

2
)τ l,−

H 1{τ l,−
H ≤T}BSC

(

L, T − τ l,−
H

)

]

. (4.11)

Here we exploited the fact that X > L and the continuity of the asset price
process that gives,

{ST > X} ∩ {TL,−
H ≤ T} = {ST > X} ∩ {τ l,−

H ≤ T} a.s. (4.12)

The approximation of τ l,−
H will be done in the following way. We fix an

ǫ > 0 and and take l′(ǫ) such that hitting the level L− ǫ by S is equivalent
to hitting the level l′(ǫ) by Z. In the sequel we will write l′ whenever it
is clear that ǫ is fixed. Now we simulate τ1 from F0,l′ , the distribution of
hitting times of Z hitting l′ starting in 0. Then we simulate τ2 from Fl′,l

the distribution of hitting times of Z hitting l, starting in l′. Now we have
three possibilities:
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• If τ1 + τ2 ≥ T , then the asset price path does not exceed the barrier
within the interval [τ1, T ] and therefore at time T it is certainly below
the strike. For this sample the PDIC expires worthless and we throw
it away.

• In case of τ2 > H we have a sample of τ l,−
H and we stop, keeping the

sample.

• If case of τ2 < H we are at l and need to get back to l′ again in
order to fulfill the Parisian constraint. So we simulate τ3 from Fl,l′ ,
the distribution of hitting times of Z hitting l′, starting in l. Now we
start again as if we simulated a hitting time τ1 of τ1 = τ1 +τ2 +τ3. We
keep on repeating this until we either have to throw away the sample
(the first bullet) or we can keep it (the second bullet).
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Figure 4.5: Normalized histogram generated by 1000 runs of the algorithm for the
consecutive Parisian down-and-in call. Each individual run consists of 104 samples
and the reference price is 1.712.

We need to know the distribution Fl,l′ and Fl′,l. We recall that we are
simulating under Q. So we know that Z is a standard Brownian motion and
the symmetry of this object ensures that Fl,l′ = Fl′,l. Furthermore we can
use the stationarity to obtain that Fl′,l = F0,(l′−l), where the last one we can
derive from (4.6) by,

F0,(l′−l) = Fτ(l′−l)

Transforming this in an Monte Carlo algorithm we obtain the algorithm on
the next page for the Parisian down-and-in call. Within the while loop, we
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simulate time periods that the asset price process needs to travel from L− ǫ
to L and back. We keep on doing this until either the cumulative time is
larger than expiry or we have stayed below L long enough. The first case
corresponds to a sample path that did not manage to fulfill the Parisian
condition and we have τ l,−

H > T . In the second case we have an approxima-

tion of τ l,−
H . If the simulated hitting time of level L is too small, we did not

spend enough time below the barrier and we have to go back to the level
L− ǫ to start over again.

Algorithm 3 (Consecutive PDIC with X ≥ L)

• Take α = Fτl
(T ), Res = 0.

• Repeat N times :

Sample u from U [0, α].

Obtain the sample τ by τ = F−1
τl

(u)

h = 0

While τ < T AND h < H,

Sample w from U [0, 1].

Obtain the sample h by h = F−1
τ(l′−l)

(w)

τ = τ + h

If h < H,

Sample w from U [0, 1].

Obtain the sample h′ by h′ = F−1
τ(l′−l)

(w)

τ = τ + h′.

end If

end While

If τ < T ,

Res = Res+ e−(r+0.5m2)τBSC(L, T − τ)

• Res = N−1 · eml · α ·Res

We implemented the algorithm and simulated for a PDIC with L = 90,
ǫ = 0.5, H = 10/250, s0 = 100, X = 100, T = 1, r = 1.5% and σ = 30%.
We use a reference price for this Parisian option denoted by the Laplace
price, which is obtained by numerical Laplace inversion using a method of
[4] of the Laplace transforms given in [30]. The Laplace price of this contract
- significant up to 3 digits - is 1.712. Figure 4.5 gives the distribution of the
Monte Carlo value around this Laplace price for N = 104, where figure 4.6
shows the rate of convergence.
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Figure 4.6: Rate of convergence graph containing plots of the 95%, 90% and 50%
emperical quantiles of absolute error distribution versus number of hitting time
simulations, generated by 1000 runs of the algorithm for the consecutive Parisian
down-and-in call. Each individual run consists of 104 samples.

4.5 The cumulative Parisian contract

In analogy to the consecutive Parisian option contract, we can define the
cumulative contract. Here the asset price process S should also stay below
or above some barrier for a certain period H, but this period need not to
be a consecutive period of time. Again we are interested in the cumulative
Parisian down-and-in call (CPDIC), so we look at TL,c−

H the first time that
the cumulative time spent by the asset price process S below the barrier L
is of length H,

TL,c−
H := inf

{

t > 0;

∫ t

0
1{Su≤L}du = H

}

= inf

{

t > 0;

∫ t

0
1{Zu≤l}du = H

}

. (4.13)

The second equality shows that we can define TL,c−
H also in terms of Z.

The integrals in (4.13) represent the occupation time of a Brownian motion.
Cumulative Parisian option pricing is therefore linked to occupation time
density problems. A representation of the cumulative Parisian option in
terms of these occupation time densities can be found in [30] or [35]. More
on the application of occupation time densities in finance can be found in
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[72]. Here we proceed pricing the cumulative Parisian options in the same
way we priced the consecutive contracts, although other methods might
perform better. Like the consecutive Parisian case, we assume the strike X
to be above the barrier L, so it makes sense to define τ l,c−

H by,

τ l,c−
H := inf{t > TL,c−

H ;Zt = l}.

Using again the continuity of the asset price process and X > L we have an
equality similar to (4.12),

{ST > X} ∩ {TL,c−
H ≤ T} = {ST > X} ∩ {τ l,c−

H ≤ T} a.s.

The computation of the cumulative Parisian down-and-in call CPDIC is by
the same arguments we used to derive (4.11) given by,

CPDIC = emlEQ

[

e−(r+ m2

2
)τ l,c−

H 1{τ l,c−
H ≤T}BSC

(

L, T − τ l,c−
H

)

]

.

From this expectation we can construct a Monte Carlo algorithm, where
the key ingredient is a recipe for simulation of τ l,c−

H . We still are using the
same notation as in the previous section where we developed the recipe for
simulating τ l,−

H . We also introduce the extra variable τ∗, that is initially
zero. Like in the previous section, we initially simulate τ1 from F0,l′ and
then simulate τ2 from Fl′,l. In addition we set τ∗ = τ∗ + τ2 and consider the
following three possibilities:

• If τ1 + τ2 ≥ T the PDIC expires without pay-off, we throw away the
sample.

• In case of τ∗ > H we have a sample of τ l,c−
H and we stop, keeping the

sample.

• If case of τ∗ < H we need to get back at l again in order to fulfill the
Parisian constraint. So we simulate τ3 from Fl,l′ , the distribution of
hitting times of Z hitting l′, starting in l. Now we start again as if we
simulated a hitting time τ1 of τ1 = τ1 + τ2 + τ3. We keep on repeating
this until we either have to throw away the sample (the first bullet) or
we can keep it (the second bullet).

The recipe given here is only slightly different from the recipe in the previous
section and the corresponding Monte Carlo algorithm of the CPDIC given
below is just a slightly modified version of that of the PDIC. In figure 4.7 we
show the distribution of Monte Carlo prices for number of samples N = 104.
The contract we are pricing is the CPDIC with L = 90, ǫ = 0.5, H = 10/250,
s0 = 100, X = 100, T = 1, r = 1.5% and σ = 30%. Here we gerenerated
a Monte Carlo price of 2.305 as reference price using 108 samples giving
enough precision up to 4 digits.



4.6. NUMERICAL REMARKS 85

Algorithm 4 (Cumulative PDIC with X ≥ L)

• Take α = Fτl
(T ), Res = 0.

• Repeat N times :

Sample u from U [0, α].

Obtain the sample τ by τ = F−1
τl

(u)

h∗ = 0

While τ < T AND h∗ < H,

Sample w from U [0, 1].

Obtain the sample h by h = F−1
τ(l′−l)

(w)

τ = τ + h

h∗ = h∗ + h

If h∗ < H,

Sample w from U [0, 1].

Obtain the sample h′ by h′ = F−1
τ(l′−l)

(w)

τ = τ + h′.

end If

end While

If τ < T ,

Res = Res+ e−(r+0.5m2)τBSC(L, T − τ)

• Res = N−1 · eml · α ·Res

Here we keep track of the cumulative time spend below the barrier L by the
extra variable h∗ which is represented in the recipe by the variable τ∗.

4.6 Numerical remarks

Calculating (cumulative) Parisian prices with the recipe presented here in-
volves the choice of a value for ǫ. In the first part of this section we treat the
effects of taking different values for ǫ. In the second part we give a numerical
example of the relationship between the standard barrier, the consecutive
Parisian and the cumulative Parisian.
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Figure 4.7: Normalized histogram generated by 1000 runs of the algorithm for the
cumulative Parisian down-and-in call. Each individual run consists of 104 samples
and the reference price is 2.305.

4.6.1 The parameter ǫ

From the construction according to the recipe of both τ l,−
H and τ l,c−

H by
hitting a barrier of level L − ǫ it is clear that this recipe results in an ap-
proximation for the true random variable. Suppose we are considering a
barrier of level 90 and ǫ = 10, here we take ǫ rather large for the sake of
argument. Then, as a result of the procedure of simulation, we are consider-
ing excursions below the barrier of level 90 with length bigger than H that
also touch the level 80, so every sample path with an excursion of length H
that does not hit 80 will be ignored by the recipe. Furthermore we measure
the length H as the time the excursion needs to reach 90 again after hitting
80, ignoring the time that has already been spent in the excursion since
the last exit of 90. Taking these properties of the recipe into account, the
values of the times of interest we are simulating are upper bounds for the
true values. These upper bounds become worse as epsilon becomes larger.
An upper bound for the hitting time, transfers into a lower bound for the
(cumulative) Parisian down-and-in call price. Figure 4.9 shows on the left
axis the dependency of the PDIC price on the value of ǫ and exhibits the
relationship of larger epsilon resulting in lower PDIC prices. We use the
same values as in the former Parisian examples and N = 106.

The larger the value of ǫ, the more asset price paths that actually fulfill the
knock-in condition are ignored by the simulation recipe, so we should take ǫ
reasonably small. Taking ǫ too small results in very lengthy computer times.
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Figure 4.8: Rate of convergence graph containing plots of the 95%, 90% and 50%
emperical quantiles of absolute error distribution versus number of hitting time
simulations, generated by 1000 runs of the algorithm for the cumulative Parisian
down-and-in call. Each individual run consists of 104 samples.

The right-hand axis of the figure above illustrates that property. For small
ǫ the probability that the simulated τ2, the first hitting time of the asset
price process of L starting in L − ǫ exceeds H is smaller than for larger ǫ.
Using formulas we have,

l′(ǫ1) < l′(ǫ2) ⇒ 1 − Fl′(ǫ1),l(H) > 1 − Fl′(ǫ2),l(H) for ǫ1 > ǫ2.

This results into more ”new starts” of the algorithm, taking more computa-
tion time. Moreover the algorithm terminates as soon as either the knock-in
condition becomes true or the sum of simulated times exceeds the time to
maturity of the option. Taking ǫ smaller results on average in smaller simu-
lated times, so it will also take more ”new starts” before a sample is thrown
away.

Summarizing, the value of ǫ affects the price in two ways:

• Sample paths that stay long enough below the barrier L not hitting
the level L− ǫ are thrown away.

• The time from the last exit of the level L up to the first hitting of level
L− ǫ is not taken into account.
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Figure 4.9: Normalized prices for consecutive Parisian down-and-in call options
vs the parameter ǫ. The behavior clearly differs for different H , the time that the
asset price process should spend below the barrier before the contract knocks in.
The normalized CPU time shows that one has to pay for increasing accuracy.

From [31] we use the distribution of the minimum value of a Brownian
motion in an excursion given the length of the excursion. The probability
that we are throwing away a sample path that actually is paying off is smaller
than the probability that an excursion of length H has a minimum bigger
than L− ǫ. If we denote the minimum of an excursion of length H by MH ,
the probability distribution is given by,

P[MH > L− ǫ] =

1 + 2

∞
∑

n=1

(

1 +
4n2 ln2

(

L−ǫ
L

)

σ2H

)

exp

(

2n2 ln2
(

L−ǫ
L

)

σ2H

)

(4.14)

If we keep this probability below 10−4S−1
0 we are sure that the error is

(very roughly) bounded by 10−4, so precision up to 4 decimals. Here we use
that the option price is bounded by the asset price, a smaller bound could
be obtained using that the Parisian price is bounded by the price of the
standard call. Computing (4.14) for the examples throughout the text, we
have that it is smaller than 10−15, so the error introduced to this particular
choice of epsilon is negligible.
The time described in the second item we denote by γT ǫ

L
and is defined by,

γT ǫ
L

= sup{0 ≤ t < TL−ǫ;St = L}.
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We can compute its expected value, using (4.20) from the appendix, by

E[γT ǫ
L
] =

1

3

(

ln L−ǫ
L

σ

)2

As we are averaging over the sample paths, we are valuing Parisians with
excursions of length H + E[γT ǫ

L
]. If we want this to be a small fraction α of

H we have an upper bound for epsilon by,

ǫ ≤ L
(

1 − exp(−σ
√

3αH)
)

. (4.15)

Here we choose α to be 5 promille, so for the 10 days examples we used
throughout the text, we are in fact valuing Parisians of 10 days and 70 min-
utes.

4.6.2 Standard barrier versus cumulative and consecutive

Parisian

We can argue that each sample path that fulfills the consecutive Parisian
knock-in condition also fulfills the cumulative one, where the other way
around is not true. Moreover it is clear that each sample path for which the
cumulative knock-in condition is satisfied also hits the barrier L and here
again the other way around is not true. So we have the obvious inequality,

PDIC ≤ CPDIC ≤ DIC ≤ BSC.

Furthermore both the price of the cumulative and the consecutive Parisian
down-and-in call are increasing for decreasing H, where we have that in
the limit for H → 0 the Parisians should equal the standard barrier price.
This is illustrated in figure 4.10. The prices computed for this figure are all
with initial asset price S0 = 100, strike X = 100, barrier L = 90, volatility
σ = 30%, interest rate r = 1.5% and time to maturity T = 1. Here we used
106 simulations and for ǫ we used the bound as given in (4.15) for α = 0.001,
where we verified that the relevant error probability as given in (4.14) does
not introduce an error bigger than 10−4. We recall that the standard barrier
price for these contract specifications is 4.4213.

4.7 Conclusion

In this paper we developed a Monte Carlo algorithm for pricing Parisian
options, which are options that are triggered by the Parisian time which
occurs as soon as the stock price process spends a given time below or
above some barrier. A standard Monte Carlo procedure that simulates the
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Figure 4.10: Prices for cumulative and consecutive Parisian down-and-in call op-
tions for different lengths of the excursion, i.e., the time that the underlying value
should spend below the barrier before the contract knocks in.

underlying stock price path in a straightforward way does not result into
a method that converges within acceptable time. The method we propose
here, consists of two steps. First the Markovian nature of the underlying
value process is used to arrive at an expression that can be computed by
Monte Carlo integration. The random variable that needs to be simulated
is the Parisian time. Unfortunately there exists no explicit distribution
formula for the Parisian time. Therefore we approximate it by simulating
hitting times in a special way, where the accuracy of the approximation can
be controlled, where increasing accuracy results in increasing computation
times.
The reason to come up with a Monte Carlo algorithm for Parisian options
is the flexibility of Monte Carlo methods. There are various applications
of Parisian optionality and if one wants to change the pay-off structure or
the model of the underlying value process the flexibility of the Monte Carlo
method is very useful. For example, this method can serve as a starting
point for the valuation of Parisian options in the case where the underlying
value process is given by a variance gamma process. This can be done as
soon as one is able to compute vanilla options in the variance gamma model
and simulate variance gamma based hitting times.
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4.8 Appendix

4.8.1 The average of γτδ

We recall that the simulation procedure of the relevant hitting times for the
Parisian contracts consists of the simulation of a hitting time of the level
L − ǫ. As discussed in the numerical remarks paragraph hitting the level
L− ǫ by a asset price path St(ω) implies that this sample path did already
spent some time in the excursion away from the level L. If we translate this
into the sample path of the underlying Brownian motion Z, we can express
distributional properties of the time that is already spent in the excursion
in terms of the time that a standard Brownian motion B on a probability
space (Ω,F ,P0) is already traveling in the excursion below 0 at the moment
it hits the level −δ, where we can compute δ by,

δ =
1

σ
ln

L

L− ǫ
.

By the symmetry of the standard Brownian motion the distributional prop-
erties of hitting −δ are similar to those of hitting δ. By τδ we denote the
first time that B hits δ and by γτδ

the last time the process B was zero
before it hit δ,

γτδ
= sup{0 ≤ s < τδ;Bs = 0}.

So τδ − γτδ
is the time that the B is away from zero, which is in distribution

equal to the time that S is already below L when it hits L− ǫ. We use the
notation as in [55] and denote by Px the probability measure for which B−x
is a standard Brownian motion, i.e. B is with respect to Px is a standard
Brownian motion that starts in x. For the density of τδ − γτδ

we have,

P[τδ − γτδ
∈ dt] = lim

x↓0
Px[τδ ∈ dt|τδ < τ0]

= lim
x↓0

δ

x
√

2πt3

∞
∑

n=−∞
((2n + 1)δ − x) exp

(

−(2nδ + δ − x)2

2t

)

dt.

Here the first equality states that the time already spend in the excursion
is time it takes for B just after leaving zero to reach δ before reaching zero
again. The second inequality is the result of the combination of (8.26) and
exercise 8.13 on page 100 of [55]. Now we calculate the distribution of τδ−γτδ

by,

P[τδ − γτδ
≤ T ] = lim

x↓0
δ

x

∞
∑

n=−∞

∫ T

0

(2n+ 1)δ − x√
2πt3

e

„

− (2nδ+δ−x)2

2t

«

dt. (4.16)

The first interchange of limit and integral is because for every 0 < x < δ the
part of the equation on the right of the limit is a positive function (because it
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is a density) that is integrable for every x and can be bounded for x < 0.5δ.
For the second interchange, we define the constants cn(x) by,

cn(x) = (2n + 1)δ − x.

Then we have for each 0 ≤ x ≤ δ the inequality,

c−n(x) > −cn(x).

Now we define a sequence of functions fm that converges for m→ ∞ to the
probability density we want to integrate by,

fm(t, x) =
δ

x

m
∑

n=−m

(2n + 1)δ − x√
2πt3

e

„

− (2nδ+δ−x)2

2t

«

.

Now we can compute the m-th term of the sum for m > 1, 0 ≤ x ≤ δ and
0 ≤ t ≤ T by,

fm(t, x) − fm−1(t, x) =
cm(x)√

2πt3
e−

cm(x)2

2t +
c−m(x)√

2πt3
e−

c−m(x)2

2t

≥ cm(x)√
2πt3

e−
cm(x)2

2t − cm(x)√
2πt3

e−
(−cm(x))2

2t ≥ 0.

So we have an increasing sequence of positive functions fm that for fixed
x converges to the probability density we are interested in. By monotone
convergence we can interchange sum and integral. The integral in (4.16) is
apart from the sign similar to the calculation of the probability distribution
of the hitting time of the level |cn| by a standard Brownian motion, see (8.5)
on page 96 of [55]. Using (4.6) we can rewrite (4.16) by,

P[τδ − γτδ
≤ T ] = lim

x↓0
2δ

x

∞
∑

n=−∞
sign((2n + 1)δ − x)Φ

(

−|(2n + 1)δ − x|√
T

)

= lim
x↓0

2δ

x

∞
∑

n=0

Φ

(

(2n + 1)δ + x√
T

)

− Φ

(

(2n + 1)δ − x√
T

)

.

= lim
x↓0

2δ

x

∞
∑

n=0

2x√
2πT

exp

(

−((2n+ 1)δ)2

2T

)

.

In the last step we approximate the probability that a standard normal r.v.
X is in the interval [(2n+1)δ−x, (2n+1)δ+x] by 2xf((2n+1)δ), where f is
the density of a standard normal random variable. Using the property that
this density f(u) is decreasing for u > 0 it is easy to derive upper and lower
bounds for the approximation given that x is smaller than some constant.
It can be shown that the approximation becomes exact for x → 0. So we
end up with,

P[τδ − γτδ
≤ T ] = 2δ

√

2

πT

∞
∑

n=0

exp

(

−((2n + 1)δ)2

2T

)

. (4.17)
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We are interested in the average time of the excursion of the asset price
process. Computing the average E[τδ − γτδ

] gives,

E[τδ − γτδ
] =

∫ ∞

0
P[τδ − γτδ

> t] dt

=

∫ ∞

0

(

1 − 2δ

√

2

πt

∞
∑

n=0

exp

(

−((2n+ 1)δ)2

2t

)

)

dt.

Here arises the problem of interchange of limit (the sum to infinity) and
integral. If we just cut of the sum at the M -th term we are allowed to inter-
change. However, the computation of the integral is op to a constant similar
to the computation of the expectation of the hitting time for a standard
Brownian motion, which is infinite. So the reason that just cutting of the
sum at the M -th term does not work is due to the fact that (4.17) becomes
very inaccurate for large T . Now we use the fact that in our Monte Carlo
recipe we throw away all simulated hitting times bigger than the expiry, so
the expected time we have to add to our excursion length is bounded by
E[(τδ −γτδ

)1{τδ−γτδ
≤T}] which we will denote hereafter by µδ(T ), where T is

the time to maturity of the option. Now we can use this fixed T to estimate
the error we make in the summation by truncating at M and interchange
limit and integral to obtain,

µδ(T ) ≈ T − 2δ
M
∑

n=0

∫ T

0

√

2

πt
exp

(

−((2n+ 1)δ)2

2t

)

dt

= T − 4δ

M
∑

n=0

√

2T

π
e−

((2n+1)δ)2

2T − 2((2n + 1)δ)Φ

(

−(2n + 1)δ√
T

)

. (4.18)

Now we continue giving heuristic arguments, in the sense that we do not
precisely give error bounds for all statements. So for the first part of the
sum we have for large T and M ,

4δ
M
∑

n=0

√

2T

π
e−

((2n+1)δ)2

2T = 4T
M
∑

n=0

1√
2π

2δ√
T
e−

((2n+1) δ√
T

)2

2

≈ 4T
1√
2π

∫ ∞

0
e−

x2

2 dx = 2T.

Furthermore we expect that we have chosen T large, such that the expression
(4.18) is independent of T . Considering the second part of the sum as a
function of T , its derivative with respect to T should be equal to one as can
be shown,

∂

∂T

M
∑

n=0

8δ((2n + 1)δ)Φ

(

−(2n+ 1)δ√
T

)

=
2

T

M
∑

n=0

2δ
((2n + 1)δ)2√

2πT
e−

((2n+1)δ)2

2T

≈ 2

T

1√
2πT

∫ ∞

0
x2e−

x2

2T dx = 1
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So we can write for (4.18),

µδ(T ) ≈ −T + 8δ2
M
∑

n=0

(2n + 1)Φ

(

−(2n+ 1)δ√
T

)

. (4.19)

Suppose we want to calculate the expectation for δ′ = cδ, where c > 0. We
have,

µδ′(T ) ≈ −T + 8c2δ2
M
∑

n=0

(2n+ 1)Φ

(

−(2n+ 1)cδ√
T

)

= c2

{

−T ′ + 8δ2
M
∑

n=0

(2n + 1)Φ

(

−(2n + 1)δ√
T ′

)

}

≈ c2µδ(T
′).

Here T ′ = Tc−2 and as we expect T large enough, we have the relation,

µcδ = c2µδ.

Moreover it is obvious that for δ = 0 we have µδ = 0, so there should exist
a constant α such that,

µδ = αδ2. (4.20)

In order to determine this constant, we compute numerically (4.19) for δ = 1
and sufficiently large T and M and obtain α = 1/3.



Chapter 5

Double-sided knock-in calls

in an exponential compound

Poisson framework

In the present paper we consider the exponential compound
Poisson process with exponential jumps to model the stock price
process. We will determine the Laplace transforms for the plain
vanilla call option and the double-sided knock-in call option and
then we will numerically invert them to generate actual prices.
Several numerical examples will be given, which show the calibra-
tion of the exponential compound Poisson model to the market,
the behavior of prices of the double-sided knock-in call. We will
also discuss the implied volatility smile that is produced by the
model.

5.1 Introduction

A well-known problem of the Black-Scholes framework in option pricing,
i.e., the use of the geometric Brownian motion for modeling the stock price
process, is the inability to calibrate this model to the volatility smile in the
option market. In practice this is solved by allowing different volatilities
for each strike, which in turn leads to the problem of pricing exotic options
consistently with this smile. In this paper we address this problem for the
double-barrier knock-in call options, options that become plain vanilla calls
as soon as a lower or upper level has been reached by the stock price pro-
cess. We model the stock price by an exponential compound Poisson process
and numerically invert a Laplace transform to obtain plain vanilla option
prices and, furthermore, even a two-dimensional Laplace transform to ob-
tain the double-sided knock-in call prices. After calibrating the exponential
compound Poisson model to the market we compute implied volatilities for

95
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the double-sided knock-in calls to show that there can exist a substantial
difference between the implied volatility in the plain vanilla option market
and the implied volatility of an exotic option that is priced in a to this mar-
ket calibrated non-GBM model for the stock price process. The exponential
compound Poisson process is one of the simplest processes in the class of
exponential Lévy processes, which are popular for modeling the underlying
value process in option markets that exhibit the volatility smile and term
structure. The well-known examples are the variance gamma process in [63]
or the Kou’s jump-diffusion model as in [59], where the exponential com-
pound Poisson model is a special version of the Kou’s model. Our model
serves as a toy model, because it does not meet the standards people usually
set for a realistic model, see for a discussion on these standards Rama and
Cont [32].
Lipton treats in [62] the case of pricing a derivative with a single barrier,
where the logarithm of underlying is modeled by a double exponential jump-
diffusion model. He also uses fluctuation theory to derive transforms, which
he inverts to obtain prices. Our work is close to Lipton’s work, except that
we look at double-sided exit problems and therefore at double-sided barrier
options instead of standard barrier options. See also [7] for an application of
fluctuation theory to single barrier option pricing. The Laplace transforms
of first passage times can be very natural in case one considers problems in
credit risk. For example, in [34] the Laplace transform is part of the explicit
solution of the debt value the authors want to price. In [18] the authors
use methods like psuedodifferential operators, which are much more com-
plicated than fluctuation theory, but allow for more general processes like
Feller processes.
The reason for us to use the toy model, is that it is very tractable, without
losing the capability of calibrating to the actual option market. The compu-
tation of the various Laplace transforms involves the computation of zeros of
an expression of the Laplace exponent of the process. In our model the com-
putation of these zeros is straightforward, whereas complicating the model
may eventually create a need for a numerical procedure to determine these
zeros. The technique we use to compute prices is the Laplace transform. For
the double barrier options in the GBM case this approach has been taken
by Geman and Yor in [44]. The difference is that they can, using the density
of Brownian motion, explicitly compute a certain expectation which results
in the one-dimensional Laplace transform. For Lévy processes this density
does not need to have an explicit formula and that is why we end up with
a two dimensional Laplace transform. We use the results of Kadankov and
Kadankova for general Lévy processes in [54] relying on fluctuation theory
and Wiener-Hopf factorization to incorporate the information of the double-
sided passage times into the Laplace transform. The authors in [67] show
how prices of exotic options can be expressed in terms of the Wiener-Hopf
factors of the underlying Lévy process. We actually compute these factors
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to come up with numerical examples. In order to produce these numerical
examples, we use the algorithm of Den Iseger in [53] to numerically invert
one and two-dimensional Laplace transforms. The paper shows how to use
the Laplace transform to price exotic options in the exponential Lévy setting
and this approach will work if the exponential compound Poisson model is
replaced by a more sophisticated model, however then some numerical ef-
fort will be needed because the explicit roots do not exist anymore. In [81],
the author takes a less probabilistic approach by using the method of partial
integro-differential equations of which he computes Laplace transforms w.r.t.
time. He considers a double-exponential jump diffusion and has therefore to
deal with an equivalent numerical problem as the root-finding problem we
discussed earlier.
The paper is organized as follows. We start with a section that describes the
exponential compound Poisson model, followed by a section on the theoret-
ical background. The theoretical section is rather brief and the details can
be found in the Appendix. Section 3 derives the Laplace transforms needed
to price plain vanilla calls and double-sided knock-in calls. In Section 4 we
use the computed transforms of section 3 to calculate Laplace transforms
for the option prices. The final section contains three numerical examples
showing the calibration of the exponential compound Poisson model to the
market, the behavior of prices of the double-sided knock-in call and finally
the implied volatility smile that is produced by the model.

5.2 Description of the model

Let (Ω, F ,P) be a probability space equipped with a filtration {Ft}t≥0 that
satisfies the usual conditions of right-continuity and completion. We assume
that all random variables and stochastic processes are defined on this proba-
bility space. Furthermore we assume that P is the pricing measure. The toy
model for the stock price process {St; t ≥ 0} we use throughout the paper
is given by

St = S0e
−αXt , (5.1)

where X = {Xt; t ≥ 0} is given by

Xt =

Nt
∑

k=1

Yk − t, (5.2)

where {Nt; t ≥ 0} is the Poisson process with intensity λ and the jump
sizes Yk for k = 1, 2, .. are independent, exponentially distributed random
variables with parameter µ. This model is in fact a special version of the
Kou’s model in [59], which has exponential jumps in both negative and
positive directions. The reason for simplifying the Kou’s model in this way
is that the formulas for the Laplace transform of the double-sided passage
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times are much more tractable in case the Lévy process is spectrally one-
sided, i.e., it has either positive or negative jumps. The sample paths of
S will not look like the sample paths of a stock price process in reality,
however, as we are modeling directly under the pricing measure we do not
care so much whether the structure of the paths resembles reality. We do
care whether the plain vanilla option prices can be calibrated to the market
prices, which is essentially the ability of the model to describe the volatility
smile and term structure. Numerical example 5.5.1 elaborates on calibrating
the model to the actual option market. The Laplace transform of Xt can be
written in terms of the Laplace exponent k(p) of the process X,

E
[

e−pXt
]

= etk(p), ℜ{p} ≥ 0,

where the Laplace exponent is given by,

k(p) = p+ λ
(

E
[

e−pY1
]

− 1
)

= p− λp

p+ µ
. (5.3)

Define for every s the numbers c1(s), c2(s) > 0 such that c1(s) and −c2(s)
are the roots of the equation

k(p) − s = 0, (5.4)

which gives for k(p) given by (5.3)

c1(s) =
λ+s−µ+

√
(λ+s−µ)2+4sµ

2 ,

c2(s) = −λ+s−µ−
√

(λ+s−µ)2+4sµ

2 .
(5.5)

In the general theory that is used as a base for the theoretical background we
present in the next chapter, these c1,2(s) play an important role. It is a merit
from the exponential compound Poisson model that the explicit expression
(5.5) for the roots exist. This property is lost as soon as one complicates
the model, and numerical techniques are needed to obtain values for c1,2(s).
Note, that the stock price process is an exponential Lévy process since the
underlying X in (5.2) is a Lévy process. As we model the stock price by an
exponential Lévy process with jumps, the market is not complete, i.e. there
exists no replicating portfolio, and hence we avoid the term risk-neutral
measure and assume P to be the pricing measure instead. Under the pricing
measure P the market should be arbitrage-free, see section 1.3.2, and thus
for every t ≥ 0 the following equation should hold

E [St] = S0e
rt. (5.6)

Once the parameters µ and λ of the processX are determined, the parameter
α in the stock price process S needs to be chosen such that (5.6) holds. This
can be achieved by setting α = c1(r). Finally, note that ST the stock price
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process at time T is a random variable taking values in (0, S0e
αT ] with one

atom given by

P
[

ST = S0e
αT
]

= P [NT = 0] = e−λT , (5.7)

whereas ST has a density on (0, S0e
αT ), or equivalently, XT has the density

fX(x) for x ∈ (−T,∞).

5.3 Theoretical background

In this section we will study the two-boundary characteristics of the process
X as given in (5.2), which is in fact a study of the two-sided exit problem
from an interval [−y, x] by the process X for x, y > 0. The solution for this
problem will enable us to price double-barrier options on a stock modeled
by the stock price process defined in the previous section. The results of
this section are derived from the results for more general Lévy processes
presented in the paper of Kadankov and Kadankova [54], which are based
on fluctuation theory, probabilistic methods and Wiener-Hopf factorization.
Denote the first time that the process X leaves the interval [−y, x] for x, y >
0 by τ given by

τ = inf{ t > 0 : Xt /∈ [−y, x] }.
Then τ is equivalent to the minimum of the first passage times T−

y = inf{t >
0 : Xt < −y} and T+

x = inf{t > 0 : Xt > x} of the lower level −y and
upper level x by the process X. Define the following events

Ax = {Xτ > x } and Ay = {Xτ < −y },

where Ax and Ay denote an exit through respectively the upper and lower
boundary. Since τ < ∞ a.s. we have P [Ax ∪ Ay ] = 1. Now we have the
following theorem on Laplace transforms of the first exit time.

Theorem 5.3.1. Let {Xt; t ≥ 0}, X0 = 0 be the compound Poisson process
with drift as given in (5.2) and x, y > 0. Then for s > 0 the Laplace
transforms of the distribution of τ satisfy the following equalities

E
[

e−sτ ; Ax
]

= e−xc2(s)

(

1 − c2(s)

µ

)

1 − e−yc(s)

1 −K(s,B)
,

E
[

e−sτ ; Ay

]

=
1 −K(s, x)

1 −K(s,B)
e−yc1(s); (5.8)

where B = x + y, c1,2(s) are the roots of k(p) − s = 0 as given in (5.5),
c(s) = c1(s) + c2(s) and K(s, x) is given by

K(s, x) =
µ− c2(s)

µ+ c1(s)
e−xc(s), x ≥ 0. (5.9)
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Remark 5.3.2. The proof of Theorem 5.3.1 follows from the general the-
orem on the first exit time for Lévy processes [54] and is given in the Ap-
pendix.

Corollary 5.3.3. The probability that the first exit from the interval [−y, x]
by the compound Poisson process with drift given in (5.2) happens through
the upper boundary is given by,

P [Ax] =















(

1 − e−y(λ−µ)
) (

1 − µ
λ e

−B(λ−µ)
)−1

, λ > µ;

1 −
(

1 − λ
µ e

−x(µ−λ)
)(

1 − λ
µ e

−B(µ−λ)
)−1

, µ > λ;

µy(1 + µB)−1, λ = µ,

(5.10)

Proof. Take the limit s→ 0 in the expressions of theorem 5.3.1.

For the double-barrier option pricing problem, we are interested in the fol-
lowing two-dimensional Laplace transform

l(s, p) =

∫ ∞

0
e−sT E

[

e−pXT 1{τ≤T}1{XT >−T}
]

dT. (5.11)

In view of the general results in [54], it is more convenient to derive B(s, p)
given by,

B(s, p) =

∫ ∞

0
e−sT E

[

e−pXT 1{τ>T}
]

dT

=

∫ ∞

0
e−sT E

[

e−pXT 1{X−
T >−y}1{X+

T <x}

]

dT,

where X−
T and X+

T are the infimum respectively supremum of the process
X up to time T . The following theorem leads to the result for B(s, p).

Theorem 5.3.4. Let {Xt; t ≥ 0}, X0 = 0 be the Poisson process with a drift

as in (5.2). Then the integral transform Qs(p) =
∞
∫

0

s e−st E [ e−p Xt ; −y <

X−
t , X

+
t < x ] dt is given by the following formula

Qs(p) =
Cs

c(s)

[

µ+ c1(s)

p− c1(s)
[1 − e−B(p−c1(s))] − µ− c2(s)

p+ c2(s)
[1 − e−B(p+c2(s))]

]

−

s

c(s)

[

µ+ c1(s)

p− c1(s)
[1 − e−x(p−c1(s))] − µ− c2(s)

p+ c2(s)
[1 − e−x(p+c2(s))]

]

, (5.12)

where C is given by

C = epy (µ+ c1(s))e
xc1(s) − (µ− c2(s))e

−xc2(s)

(µ+ c1(s))eBc1(s) − (µ− c2(s))e−Bc2(s)
.
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Remark 5.3.5. The proof of this theorem is based on applying the general
result from [54] and it can be found in the Appendix.

The expression for the integral transform Qs(p) from the theorem is every-
thing we need to derive an expression for l(s, p) in the following corollary.

Corollary 5.3.6. The two-dimensional Laplace transform l(s, p) as defined
in (5.11) is for ℜ{s} > ℜ{p} given by,

l(s, p) =
1

s− k(p)
− 1

s
Qs(p) − 1

s+ λ− p
e−(s+λ−p)y. (5.13)

Proof. We can write

l(s, p) =

∫ ∞

0
e−sT E

[

e−pXT 1{τ≤T}
]

dT−
∫ ∞

0
e−sT E

[

e−pXT 1{τ≤T}1{XT =−T}
]

dT.

Note that for the first integral on the right-hand side we can write

∫ ∞

0
e−sT E

[

e−pXT 1{τ≤T}
]

dT =

∫ ∞

0
e−sT E

[

e−pXT
]

dT −B(s, p)

=
1

s− k(p)
− 1

s
Qs(p),

and for the right-hand side integral we use the following equation to complete
the proof,

E
[

e−pXT 1{τ≤T}1{XT =−T}
]

= 1{−T<−y}e
pT e−λT .

5.4 Option Pricing

Here we will show how we use Laplace transforms for option pricing. First
we focus on the standard T -maturing European call option with strike K
and value VC(T ) given by,

VC(T ) = e−rT E
[

(ST −K)+
]

= S0e
−rT E

[

(

e−αXT − e−k
)+
]

, (5.14)

where k = ln(S0/K). The option price VC(T ) is only bigger than zero for
K ≤ S0e

αT or equivalently k ≥ −αT . In the end we need to invert the
Laplace transforms to obtain actual option prices. The numerical inversion
method we are going to use works well for smooth functions, so we have to
be careful if the random variables of interest have atoms. Recall (5.7), that
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shows that the stock price process has an atom. Denote the expectation on
the right-hand side of (5.14) by ET (k), where for k ≥ −αT this expectation
can be computed as follows,

ET (k) = E

[

(

e−αXT − e−k
)+
]

=

∫ k/α

−T
(e−αy − e−k)fX(y) dy + e−λT (eαT − e−k)

=: ẼT (k) + e−λT (eαT − e−k).

Define the Laplace transform of XT restricted to values where it has the
density fX by

lT (p) := E
[

e−pXT 1{XT >−T}
]

= E
[

e−pXT
]

− epT P [XT = −T ] = eTk(p) − e(p−λ)T .

We note that ẼT (k) is positive and bounded for all k. The Laplace transform
of ẼT (k − αT ) can be computed in the following way,

φT (p) =

∫ ∞

0
e−pkẼT (k − αT ) dk

=

∫ ∞

0
e−pk

∫ (k−αT )/α

−T
(e−αx − e−(k−αT ))fX(x) dxdk

=

∫ ∞

−T

∫ ∞

α(x+T )
e−pk

(

e−αx − e−(k−αT )
)

dkfX(x) dx

=

(

1

p
− 1

p+ 1

)

e−αpT

∫ ∞

−T
e−α(1+p)xfX(x) dx

=

(

1

p
− 1

p+ 1

)

e−αpT lT (α(1 + p)).

If we now want to compute a standard T -maturing call option price with
strike K, we first compute k, then numerically invert φT to obtain ẼT (k),
calculate ET (k) and finally use the result in (5.14) to obtain VC(T ). Nu-
merical example 5.5.1 follows this procedure.
The next step is to consider double-barrier options, for which we need to
introduce the double-sided passage time TL1,L2 given by

TL1,L2 = TL1 ∧ TL2 , (5.15)

where TLi
, i = 1, 2, is the first passage time of level Li of the stock price

process S. The definition of TL1,L2 only makes sense if there is no a.s. strict
ordering between TL1 and TL2 , that is, S0 is in between L1 and L2. The
value VDBIC of a double-barrier in call option can be computed by,

VDBIC = e−rT E

[

(ST −K)+1{TL1,L2
≤T}

]

= S0e
−rT E

[

(e−αXT − e−k)+1{τ≤T}
]

=: S0e
−rTE(k, T ),
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where τ is a shorthand notation for τl1,l2 , which is given analogously to
(5.15), τli , i = 1, 2 is the first crossing time of the level li by the process
X, and the levels li are given by li = α−1 ln(S0/Li). Again we have to deal
with the atom of the stock price process,

E(k, T ) = E

[

(

e−αXT − e−k
)+

1{τ≤T}1{XT >−T}

]

+

(

eαT − e−k
)

P [τ ≤ T ;XT = −T ]

:= Ẽ(k, T ) + 1{−T≤l−}
(

eαT − e−k
)

e−λT ,

where l− = min(l1, l2) and we assume k ≥ −αT . We derive the two-
dimensional Laplace transform of Ẽ(k − αT, T ) in the following way,

φDBIC(p, s) =

∫ ∞

0

∫ ∞

0
e−pk−sT Ẽ(k − αT, T ) dk dT

=

∫ ∞

0

∫ ∞

0
e−pk−sT E

[

(

e−αXT − e−(k−αT )
)+

1{τ≤T}1{XT >−T}

]

dk dT

=

∫ ∞

0
e−sT E

[

1{τ≤T}1{XT >−T}

∫ ∞

α(XT +T )
e−pk

(

e−αXT − e−(k−αT )
)

dk

]

dT

=

(

1

p
− 1

p+ 1

)
∫ ∞

0
e−(s+αp)T E

[

e−(p+1)αXT 1{τ≤T}1{XT >−T}
]

dT

=

(

1

p
− 1

p+ 1

)

l (s+ αp, (p + 1)α) ,

where l(s, p) is the two-dimensional Laplace transform given by corollary
5.3.6 in the formula (5.13). Actual prices can again be obtained via nu-
merical Laplace inversion of this two dimensional transform. The numerical
inversion method we use in our examples has been treated in detail in section
1.4 of the introduction.

5.5 Numerical Examples

The first numerical example shows that the exponential compound Poisson
model with drift can be calibrated to the real-life option market. The cal-
ibration result is shown in terms of the implied volatility smile for a fixed
expiry date and there is also a plot of the density resulting from the cali-
brated parameter values. The second numerical example shows option price
behavior of the double-barrier option for different barriers. The last numer-
ical example focuses on the implied volatility of the double-barrier options
for both different barriers and different strikes.
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5.5.1 Calibration of the model

As the first numerical example, we calibrate our toy model to the real-life
option market. The reason for doing this is to show that, although the
model is very simple, it is possible to capture the volatility smile in the
real-life market. We choose the Amsterdam option market with options on
the Dutch AEX index and use data of 20th of October 2006 for options that
expire on 19th of October 2007, so we use T = 1. We use an interest rate
r = 0.035 and a dividend yield of q = 0.03. The option price formulas we
presented so far, do not deal with a dividend yield. Therefore we set in
these formulas the interest rate to r − q and multiply our final option price
by e−qT .
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Figure 5.1: Calibration of the toy model to the Amsterdam option market with
volatility smile (left) and resulting density (right)

The value of the AEX index at the moment of calibration was 492.19. As a
result we did obtain λ = 3.101 and µ = 2.9883 and from (5.6) follows that
α = 0.1945. In figure 5.1 we show on the left-hand side the implied volatility
smile of the market and the calibrated model and remark that the model
fits the smile quite well. On the right-hand side of the figure we show by
the solid line the density for the parameters λ and µ as they result from the
calibration. The dotted line is the density of a stock modeled by a standard
GBM with volatility set to the at-the-money level of 0.15. The picture shows
that the toy model has fatter tails than the GBM model, which one expects
of a model that matches the volatility smile. Finally, we remark that our
stock price toy model has an atom at ST = 492.19e0.1945 ≈ 597 and no
support for the values above 597, which is also shown in the figure. The
probability that corresponds to that atom is e−3.101 = 0.045.

5.5.2 Price behavior for double-sided barrier options

Now we use the parameters we found in the previous example to get an
idea about behavior of the double-barrier prices. In this example we use the
double-sided knock-in call, for which we derived two-dimensional Laplace
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transforms in Section 5.4. In figure 5.2 we show the prices of a double-
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Figure 5.2: Behavior of the prices of double barrier options for different values
of the lower and the upper barrier(left) and probability of exit through the upper
barrier (right).

sided knock-in call with strike 480. The lower barrier seems to have less
effect on the price than the upper barrier. This suggests that knocking in
happens much more often continuously by hitting the upper level, than with
a jump crossing the lower level. We use equation (5.10) in Corollary 5.3.3
to calculate the probability of exiting through the upper level and plot the
results in the right-hand side graph confirming that it is more likely to exit
via the upper barrier.

5.5.3 Implied volatility for double-sided barrier options

In the final numerical example we will calculate implied volatilities for the
double-sided knock-in call. Suppose you are going to price this kind of dou-
ble barrier option in the classical Black-Scholes framework and you want to
do it consistently with the volatility smile in the market. Immediately the
problem of choosing a volatility arises; do you have to let your volatility
depend on the strike or the barriers? In this numerical example we price
the double barrier using the exponential compound Poisson model and ob-
tain the implied volatility from these prices. We show in fact the implied
volatilities that follow from the GBM model for prices produced by the expo-
nential compound Poisson model. Again, we use the calibrated parameters
from the first numerical example. The prices and implied volatilities for the
double-sided knock-in call options in case the underlying is modeled by a
geometric Brownian motion are obtained after implementing the method of
Pelsser as discussed in [73]. The implied volatility does exist as the double-
sided knock-in call price is an increasing function of the volatility. In the
left-hand graph of figure 5.3 we show a plot for the double-sided knock-in
call with strike 480 and the different values of both the upper and the lower
barrier. This graph is very similar to the surface graph of the previous
numerical example, only it shows implied volatilities instead of prices now.
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Figure 5.3: Implied volatility for double-sided knock-in call options for fixed strike
and different barriers (left) and for fixed barriers and different strikes (right).

This graph reveals that the prices produced by the exponential compound
Poisson model are structurally below the prices produced by the geometric
Brownian motion with the volatility set to the implied volatility that be-
longs to the 480 strike according to the market as given in the left-hand side
of figure 5.1. The right-hand side of figure 5.3 shows the volatility smile for
the double-sided knock-in calls and the fixed barriers as produced by the
exponential compound Poisson model. It is remarkable that by widening
the barriers the smile changes from its original form to a parabolic form,
something you do not expect. This example illustrates that although it is a
toy model that is calibrated to the option market, the implied volatility of
the double-sided barrier option can be really far from the implied volatility
of the plain vanilla options.

5.6 Conclusions

In this paper we use the exponential compound Poisson process with expo-
nential jumps to model the stock price process. For this stock price model
we derived the Laplace transforms for the plain vanilla call option and the
double-sided knock-in call option, which we numerically invert to generate
actual prices. The numerical examples show that it is actually possible to
calibrate even this toy model to the plain vanilla options market, and that
the implied volatility for double-barrier options generated by this toy model
is not trivial. As pointed out, the results still hold for a more sophisticated
model and it is future work to solve the numerical problems that will arise
in equation (5.4).
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5.7 Appendix

5.7.1 One-boundary characteristics

Before we are able to give a proof of theorem 5.3.1 we will compute the
one-boundary characteristics of the compound Poisson process X given in
(5.2). For x > 0 we define the following quantities

X+
t = sup

s≤t
Xs, T+

x = inf{t > 0 : Xt ≥ x}, O+
x = XT+

x
− x

X−
t = inf

s≤t
Xs, T−

x = inf{t > 0 : Xt ≤ −x}, O−
x = −XT−

x
− x,

where X±
t denotes the supremum or infimum up to time t, T±

x the first
passage time of the level ±x and O±

x the overshoot through this level. Let νs

be a random time which is exponentially distributed with parameter s. The
Wiener-Hopf factorization, see [11] states that the characteristic function
of Xνs can be uniquely decomposed as the product of two characteristic
functions, one supported on (−∞, 0] and one on [0,∞) of infinitely divisible
distributions with zero drift. This factorization allows us to write

E
[

e−pXνs
]

= E

[

e−p(X+
νs−Xνs )

]

E

[

e−pX+
νs

]

, ℜ{p} = 0,

as in [11] it is shown that the distributions ofX+
νs

and X+
νs
−Xνs are infinitely

divisible with zero drift and the right support to fit into the Wiener-Hopf
factorization. The process −X is also a Lévy process and therefore we have
from the Wiener-Hopf factorization

E
[

e−pXνs
]

= E

[

e−pX−
νs

]

E

[

e−pX+
νs

]

, ℜ{p} = 0. (5.16)

Now we can compute the left-hand side of (5.16) and refactor it to the
product of two characteristic functions that fulfill the conditions as follows

E[e−pXνs ] =
s

s− k(p)
= − s(µ+ p)

p2 + p(µ− s− λ) − sµ

=
s(µ+ p)

(c1(s) − p)(p+ c2(s))
=

c1(s)

c1(s) − p
× c2(s)

µ

µ+ p

p+ c2(s)
. (5.17)

Recall that c1(s) and −c2(s) are the roots of the equation k(p)− s = 0 from
which it follows that c1(s)c2(s) = sµ and c2(s) > µ for λ > 0. Combining
(5.16) and (5.17) results in the following expressions for the Wiener-Hopf
factors

E

[

e−pX−
νs

]

=
c1(s)

c1(s) − p
, ℜ{p} ≤ 0,

E

[

e−pX+
νs

]

=
c2(s)

µ

µ+ p

p+ c2(s)
, ℜ{p} ≥ 0.



108 CHAPTER 5. A COMPOUND POISSON FRAMEWORK

So, −X−
νs

is exponentially distributed with parameter c1(s) and by partial
integration we have

E

[

e−sT−
x

]

= P
[

X−
νs
< −x

]

= e−xc1(s).

We are not interested in O−
x as the crossing of the lower level will hap-

pen continuously. The Spitzer-Rogozin identity, see [71], relates the triple
Laplace transform of the level, the first passage time and the overshoot to
the Wiener-Hopf factors, giving the following equation for ℜ{p} > 0 and
ℜ{s},ℜ{z} ≥ 0

∫ ∞

0
e−pxE

[

e−sT+
x −zO+

x

]

dx =
1

p− z

(

1 − E[e−pX+
νs ]/E[e−zX+

νs ]
)

=
µ− c2(s)

(p+ c2(s))(µ+ z)
. (5.18)

Now invert this transform with respect to p to obtain for ℜ{s},ℜ{z} ≥ 0

E

[

e−sT+
x −zO+

x

]

= e−xc2(s) µ− c2(s)

µ+ z
.

Inverting once more, this time with respect to z yields for ℜ{s} ≥ 0,

E

[

e−sT+
x ; O+

x ∈ du
]

= e−xc2(s)

(

1 − c2(s)

µ

)

µe−µu du,

which, after integrating out the overshoot O+
x , finally results in

E

[

e−sT+
x

]

= e−xc2(s)

(

1 − c2(s)

µ

)

.

5.7.2 Proof of Theorem 5.3.1

First, we state the theorem for a general Lévy process and then derive the
specific results for the Poisson process with a drift we are considering. We
introduce the following notation

F x( du, s) =

E [e−sT+
x ;O+

x ∈ du] −
∫ ∞

0
E [e−sT−

y ; O−
y ∈ dv] E [ e−sT+

v+B ;O+
v+B ∈ du ],

and

Fy( du, s) =

E [e−sT−
y ;O−

y ∈ du] −
∫ ∞

0
E [ e−sT+

x ;O+
x ∈ dv] E [e−sT−

v+B ;O−
v+B ∈ du].

Recall that the events Ax and Ay denote an exit from the interval [−y, x]
through the upper and lower boundary respectively. The following theorem
is theorem 1 in [54].
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Theorem 5.7.1. Let {Xt; t ≥ 0} be a Lévy process, B ≥ 0, x ∈ [0, B],y =
B − x, X0 = 0, and

τ = inf{ t > 0 : Xt /∈ [−y, x] }, O = (Xτ − x) 1{A x} + (−Xτ − y) 1{Ay}

the first exit time from the interval [−y, x ] by the process Xt and the value
of the overshoot through one of the boundaries at the moment of the exit.
Then the Laplace transforms of the joint distribution of { τ,O} for s > 0
satisfy the following equalities

E [ e−sτ ;O ∈ du, Ax] = F x( du, s) +

∫ ∞

0
F x( dv, s)K

s
+(v, du),

E [ e−sτ ;O ∈ du,Ay ] = Fy( du, s) +

∫ ∞

0
Fy( dv, s)K

s
−(v, du), (5.19)

where

K
s
±(v, du) =

∞
∑

n∈N

K
(n)
± (v, du, s), v, u > 0, N = {1, 2, . . . } (5.20)

are the series of the successive iterations and

K
(1)
± (v, du, s) = K±(v, du, s),

K
(n+1)
± (v, du, s) =

∫ ∞

0
K

(n)
± (v, dl, s)K±(l, du, s) (5.21)

are the successive iterations (n ∈ N) of the kernels K±(v, du, s), which are
given by the defining equalities

K+(v, du, s) =

∫ ∞

0
E [e−sT−

v+B ;O−
v+B ∈ dl] E [e−sT+

l+B ;O+
l+B ∈ du],

K−(v, du, s) =

∫ ∞

0
E [ e−sT+

v+B ;O+
v+B ∈ dl] E [e−sT−

l+B ;O−
l+B ∈ du]. (5.22)

We apply now the formulas of theorem 5.7.1 to the exponential compound
Poisson model with drift that we are considering. This application should
result in theorem 5.3.1. We start with the first formula in (5.19) and calcu-
late the kernels (5.22) and the iterations (5.21) for this process, where we
recall that c(s) = c1(s) + c2(s) and we use the one-boundary characteristics
from the previous section,

K+(v, du, s) =

∫ ∞

0
e−(v+B)c1(s)δ(l) dle−(l+B)c2(s)

(

1 − c2(s)

µ

)

µe−µu du

= e−vc1(s)

(

1 − c2(s)

µ

)

e−Bc(s)µe−µu du,
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so that

K
(2)
+ (v, du, s) =

∫ ∞

0
K+(v, dl, s)K+(l, du, s)

=

∫ ∞

0
µe−µle−lc1(s) dle−vc1(s)

(

1 − c2(s)

µ

)2

e−2Bc(s)µe−µu du

= K(s,B)K+(v, du, s),

where we recall that K(s,B) is given by (5.9). From the recursion relation
it is now clear that for n ∈ N

K
(n)
+ (v, du, s) = K(s,B)n−1K+(v, du, s).

As c1,2(s) > 0 it follows that 0 < K(s,B) < 1 and therefore

K
s
+(v, du) =

∞
∑

n∈N

K
(n)
+ (v, du, s) =

K+(v, du, s)

1 −K(s,B)
.

The next step is to compute the F x( du, s), again by using the one-boundary
results from the previous section,

F x( du, s) = e−xc2(s)

(

1 − c2(s)

µ

)

µe−µu du−
∫ ∞

0
e−yc1(s)δ(v) dve−(v+B)c2(s)

(

1 − c2(s)

µ

)

µe−µu du

= (µ− c2(s))e
−xc2(c)

[

1 − e−yc(s)
]

e−µu du.

It remains to calculate the integral in the first formula of (5.19) for which
we have now all the ingredients,

∫ ∞

0
F x( dv, s)K

s
+(v, du) =

1

1 −K(s,B)

∫ ∞

0
F x( dv, s)K+(v, du, s)

= e−xc2(c)

(

1 − c2(s)

µ

)

[

1 − e−yc(s)
] K(s,B)

1 −K(s,B)
µe−µu du

= F x( du, s)
K(s,B)

1 −K(s,B)
,

so that we can add up the results to arrive at

E [e−sτ ;O ∈ du, Ax] = F x( du, s)

(

1 +
K(s,B)

1 −K(s,B)

)

= e−xc2(s)

(

1 − c2(s)

µ

)

1 − e−yc(s)

1 −K(s,B)
µe−µu du.

Integrating out the overshoot O gives the first formula of (5.8) in theorem
5.3.1.
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In order to calculate the quantities in the second formula of (5.19) we start

calculating K−(v, du, s) and K
(2)
− (v, du, s) to arrive at K

(n)
− (v, du, s). Using

the one-boundary characteristics from the previous section we get analogous

results to the K
(·)
+ case,

K−(v, du, s) =

∫ ∞

0
e−(v+B)c2(s)

(

1 − c2(s)

µ

)

µe−µl dle−(l+B)c1(s)δ(u) du

= e−vc2(s)K(s,B)δ(u) du

K
(n)
− (v, du, s) = K(s,B)n−1K−(v, du, s),

and, also analogously,

K
s
−(v, du) =

∞
∑

n∈N

K
(n)
− (v, du, s) =

K−(v, du, s)

1 −K(s,B)
.

Now compute Fy( du, s),

Fy( du, s) = e−yc1(s)δ(u) du

−
∫ ∞

0
e−xc2(s)(µ− c2(s))e

−µv dve−(v+B)c1(s)δ(u) du

= e−yc1(s) [1 −K(s, x)] δ(u) du.

For the integral we get a similar expression as for the first formula,
∫ ∞

0
Fy( dv, s)K

s
−(v, du)

=

∫ ∞

0
e−yc1(s)[1 −K(s, x)]δ(v) dv e−vc2(s) K(s,B)

1 −K(s,B)
δ(u) du

= Fy( du, s)
K(s,B)

1 −K(s,B)
.

Thus, the second formula of (5.19) becomes

E
[

e−sτ ;O ∈ du, Ay

]

= Fy(du, s)

(

1 +
K(s,B)

1 −K(s,B)

)

= e−yc1(s) 1 −K(s, x)

1 −K(s,B)
δ(u) du.

It is again by integrating out the overshoot O that we obtain the second
formula of (5.8) in theorem 5.3.1.

5.7.3 Proof of Theorem 5.3.4

We first state a theorem for a spectrally positive Lévy process, i.e. a Lévy
process with positive jumps only and then derive the formulas of theorem
5.3.4 given in (5.12) by computing the quantities in the stated theorem for
our process. The following theorem is lemma 2 and equation (23) of [54].
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Theorem 5.7.2. Let {Xt; t ≥ 0},X0 = 0 be a spectrally positive Lévy
process. Then the integral transform

Qs(p) =

∞
∫

0

s e−st E [ e−p Xt ; −y < X−
t , X

+
t < x ] dt

obeys the following representation

1

s
Qs(p) = eyp Rs(x)

Rs(B)

∫ B

0
e−upRs(u) du−

∫ x

0
e−upRs(u) du, (5.23)

where

Rs(x) =
1

2πi

∫ γ+i∞

γ−i∞
exp 1

k(p) − s
dp, γ > c(s) (5.24)

is the scale function of the spectrally positive Lévy process as in [11].

The process (5.2) has only upward jumps, so it is a spectrally positive Lévy
process and the theorem applies. The scale function of the process (5.2)
follows by calculating the residuals and is given by

Rs(x) =
1

c(s)

[

(µ+ c1(s))e
xc1(s) − (µ− c2(s))e

−xc2(s)
]

, Rs(0) = 1.

Now we calculate the integral over the interval [0, B] in (5.23)
∫ B

0
e−puRs(u) du

=
1

c(s)

∫ B

0

[

(µ+ c1(s))e
uc1(s) − (µ− c2(s))e

−uc2(s)
]

e−pu du

=
1

c(s)

[

µ+ c1(s)

p− c1(s)
[1 − e−B(p−c1(s))] − µ− c2(s)

p+ c2(s)
[1 − e−B(p+c2(s))]

]

,

immediately resulting in an expression for the integral over the interval [0, x].
Denote the multiplier in front of the first integral in (5.23) by C for which
we can compute

C = eyp Rs(x)

Rs(B)
= epy (µ+ c1(s))e

xc1(s) − (µ− c2(s))e
−xc2(s)

(µ+ c1(s))eBc1(s) − (µ− c2(s))e−Bc2(s)
.

Now we can compute (5.23) as follows

1

s
Qs(p)

= C × 1

c(s)

[

µ+ c1(s)

p− c1(s)
[1 − e−B(p−c1(s))] − µ− c2(s)

p+ c2(s)
[1 − e−B(p+c2(s))]

]

−

1

c(s)

[

µ+ c1(s)

p− c1(s)
[1 − e−x(p−c1(s))] − µ− c2(s)

p+ c2(s)
[1 − e−x(p+c2(s))]

]

,

which is, after multiplication of both sides by s the formula (5.12) of theorem
5.3.4.



Chapter 6

Commodity volatility

modeling and option pricing

with a potential function

approach

We consider a novel approach to modeling of commodity
prices and apply it to commodity option pricing and volatil-
ity estimation. This approach is particularly suited for prices
with multiple attraction regions: such as crude oil and other en-
ergy and agricultural commodities. The price is modeled as a
diffusion process governed by a potential function with minima
at the attraction points. When applied to crude oil prices, the
method captures characteristic behavior of the prices remarkably
well. Pricing of European options on spot and futures commod-
ity contracts is developed within the potential model, and com-
pared to the Black-Scholes framework. The approach provides a
new way of estimating the volatility, which is particularly use-
ful when option prices (and hence implied volatilities) are not
readily available; this is often the case for commodity markets.
European options on physical commodities and commodity fu-
tures are priced using the volatility forecasts obtained from the
model. The performance of the model is evaluated on the basis
of the hedging costs of an option. For options on crude oil, the
method outperforms - in terms of hedge costs - the Black-Scholes
approach with historical volatility.
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6.1 Introduction

Commodity markets have experienced dramatic growth recently, in terms of
the volumes and variety of traded contracts, the number of exchanges and
market participants. The most dramatic expansion in the last decade has
been in the trading of commodity options. Exchanges such as London In-
ternational Petroleum Exchange (IPE) and New York Mercantile Exchange
(NYMEX) continuously introduce options on various commodity contracts.
At the same time, over-the-counter trading in physical commodity options
and sophisticated option-like contracts is growing rapidly. However, the spe-
cial characteristics of commodity prices require new tools to efficiently deal
with this increased flow of traded derivatives. The existing pricing, hedg-
ing and volatility modeling techniques are not always directly applicable to
commodities. Hence, analytical and modeling tools that take into account
specific features of commodity prices are needed.
One such characteristic feature is the tendency of many commodity prices
to concentrate in a number of attraction regions, preferring some values over
others. A striking example is the series of daily prices of crude oil. The left-
hand side graph in figure 6.1 shows the plot of daily spot prices for Brent
North Sea oil, for the period from 1994 to 1999. The phenomenon of price
clustering (around approximately 12, 18 and 23 dollars per barrel in this
period) can be seen on the histogram of daily oil prices on the right-hand
side of the same figure. Such price clustering is a well-known phenomenon in
commodity markets and traders know which price levels are more persistent
than others.
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Figure 6.1: Daily spot oil prices plot (left) and histogram (right), 1994-1999.

Spot as well as futures prices of several other energy commodities (heating
oil, gasoline) and agricultural commodities (coffee, cocoa, soybean) exhibit
similar behavior. Figure 6.2 shows histograms of heating oil prices and cocoa
prices, both clearly exhibiting price clustering. Commodity market partici-
pants are well aware of this price clustering phenomenon. For agricultural
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Figure 6.2: Histograms of heating oil prices (left) and cocoa prices (right).

commodities, the explanation for the peaks in the histogram of prices is
straightforward: these correspond to good and bad harvest years (whose
occurrence is not periodic). For energy commodities, the explanation is not
as simple, and there is a significant body of research in economic litera-
ture concerned with this issue. Possible explanations involve such factors
as the global balance of oil supply and demand, OPEC quotas and target
price bands, economic planning in the petroleum industry, the cyclic de-
velopment of new exploration technologies and the strategic importance of
oil. Economists are searching for theoretical explanation of oil price multi-
stability in terms of macroeconomic factors, and there is a vast literature
on the subject (see e.g. [25], [74], [5], [22],[68]). Another, more empirical
approach, adopted by some econometricians, is to build mathematical non-
linear models of price dynamics with two or more attracting regions. Brock
and Hommes analyze in [20], [21] and [51] how the assumption of hetero-
geneous beliefs can lead to complicated (chaotic) dynamics of prices with
strange attractors and multiple attracting regions.

For the commodities mentioned above, prices regularly move between at-
traction regions, although the time spent at a given region can be long (and
unpredictable). This relates to the well-known property of mean-reversion.
Mean-reverting diffusion models have been widely used to model commodity
prices, see [19] and [79]. However, mean-reverting models postulate the ex-
istence of just one (possibly time-varying) mean, and hence cannot generate
processes with multiple attraction regions. Standard time series analysis
techniques (linear AR and ARMA models with Gaussian innovations) or
(G)ARCH models are also unable to model the phenomenon of multiple at-
traction regions. Thus, an alternative model to mean-reversion is needed to
preserve a multimodal invariant distribution that reflects multiple attracting
regions.

The approach suggested by the author in [50] employs a nonlinear model
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that admits the possibility of changes in regime, i.e. occasional discrete
shifts in the parameters governing the behavior of the time series. A novel
approach to modeling continuous as well as discrete time processes that
exhibit ”preferred” regions was introduced in [16]. In this approach the price
is governed by a potential function with (local) minima at the attracting
values with perturbation by random fluctuations. This gives rise to a process
with a multimodal invariant distribution, such as an observed price series.
The resulting model is as simple and tractable for estimation and option
pricing purposes as traditional mean-reverting models. However, it is more
versatile, as it allows modeling of multiple stable price levels (attracting
regions) and encompasses a mean-reverting model as a special case.

Here we explore the pricing of European options on commodities whose
prices behave as the diffusion governed by the potential function. We focus
in particular on the stochastic part of the price process, which characterizes
the volatility. The volatility estimated from the potential function model
can then be used as an alternative to the historical or GARCH volatility for
option pricing and other applications.

The paper is organized as follows. First, we describe the potential function
model in more detail, discuss its economic motivation and statistical esti-
mation. Then we introduce the volatility estimation within the potential
model. Section 6.3 is devoted to pricing options on spot and futures com-
modity contracts. Section 6.4 describes the model application to oil markets
and addresses the robustness of the model with respect to the potential func-
tion specification. Section 6.5 briefly outlines the multivariate extension and
section 6.6 concludes.

6.2 Volatility and the potential function model

6.2.1 The potential function model

A detailed treatment of the potential function approach, of which this section
is a summary, is given in [16]. Let (pt)t≥0 be a continuous-time price process
in R (the observed price series is its realization at discrete time points). We
postulate that pt evolves according to the stochastic differential equation

dpt = −U ′(pt) dt+ σ dWt, (6.1)

where U : R −→ R is a potential function, i.e., it is twice continuously
differentiable. The process Wt is a standard Brownian motion, and σ is
the scalar factor that measures the magnitude of random fluctuations, i.e.,
the influence of the Brownian motion on the evolution of the process. We
assume that the potential function and the parameter σ are constant, and
we interpret σ as the average, or long-term volatility.
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Equation (6.1) is an example of a diffusion process with drift. If the potential
is a quadratic function, then the drift term is linear in pt and (6.1) becomes
the Langevin equation and (pt) the well-known Ornstein-Uhlenbeck process.

The following, by the Euler scheme discretized, version of the continuous-
time model (6.1)

pi+h − pi = −U ′(pi)h+ ǫi, (6.2)

provides some insight. In this discrete model h is the discretization step and
the (ǫi) are the increments of the process σ dWt, so they are independent
normally distributed random variables with mean 0 and variance hσ2. Since
here we analyze daily prices and volatilities, we take the discretization step
h = 1 (one day). In words, the next value of the series tends to move in
the direction of the nearest minimum of the potential function with respect
to the current value. The random fluctuations (ǫn) ensure that the series is
not trapped in a local minimum but continues to move between minima.

This evolution is illustrated in figure 6.3. Here a one-dimensional ”bowl”
plays the role of the potential function with dips at local minima, and the
observed process is the horizontal coordinate of a ball moving along the
bowl’s walls, subject to gravity and some random impulses. The ball has a
natural tendency to move downhill into the dips, but random shocks prevent
it from settling there and force it up the walls and move it from one dip to
another. Note that the deeper a minimum (i.e. a dip), the longer the process
spends there. So in a series of observations on such a process, there are more
observations near the minima of the potential than at other locations.

 e

U

y

Figure 6.3: Evolution governed by a potential function

We mention in passing that this model has been inspired by the application
of diffusions to global optimization as in [45], which in turn are related to
an optimization technique called simulated annealing.

For an observed price series, neither the potential function U nor the long-
term volatility σ are known. However, the following distributional result
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from [64] allows us to estimate the potential (and subsequently σ) from
the historical data. If pt evolves according to (6.1), then, under suitable
conditions on U , the distribution of pt approaches (weakly) an equilibrium,
which is a Gibbs distribution with density

πσ(p) =
1

Zσ
exp(−2U(p)/σ2), (6.3)

where Zσ is the normalization constant. As pointed out in [16] for every
potential function U there exists a potential function Ũ such that the equi-
librium distribution is the same as for U and the normalization constant
Zσ = 1, so we will consider Zσ = 1 in the sequel. Inverting (6.3), we find
that the potential function can be expressed via the density of the invariant
distribution as

U(p) = −σ
2

2
log(πσ(p)). (6.4)

We can estimate the density of the invariant distribution from the observed
prices in numerous ways, e.g. by using a kernel density estimator, fitting a
mixture of Gaussian densities or a high-degree polynomial to the histogram.
This alone does not give us the estimate of the potential yet, since (6.4) also
involves the unknown parameter σ. So we first estimate the scaled potential

Gσ(p) =
2

σ2
U(p) = − log(πσ(p))

by Ĝσ(p) = − log(π̂σ(p)), where π̂σ is the estimated density of the observa-
tions. Then σ2 can be estimated by the least-squares procedure, observing
that

pi+1 − pi = −σ
2

2
Ĝ′

σ(pi) + ǫi, (6.5)

i.e. σ2 is the parameter of a linear regression of the price increments (pi+1−
pi) on (−Ĝσ(pi)/2) without an intercept term. The variance of the (ǫi)
should also equal σ, which should be taken into account if one want to
enhance the estimation procedure.
We estimated the model parameters for historical daily prices of Brent oil
from 1994 to 1999. The potential function is estimated by taking the log
of a to the histogram of prices fitted 10th degree polynomial. Figure 6.4
shows the resulting potential function on the left. The estimated value of
σ is 0.22 (recall that this is the estimate of the average volatility of daily
price increments). This corresponds to an annualized volatility of daily price
returns of approximately 20% (for an average price level of 18$/bbl), which
is indicative of the average volatility in oil markets in that period. Figure
6.5 shows in the left-hand side graph the autocorrelation function of the
model residuals, which confirms that the residuals are uncorrelated. In the
middle it shows the histogram of the residuals, which has a slightly more
peaked shape than the normal density.
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Figure 6.4: Potential function estimate (left) and copy of the oil prices series
(right).
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Figure 6.5: Autocorrelation function (left) and histogram (middle) of the model
residuals of the potential model and histogram of the residuals of the mean-reversion
model (right).

Possible applications of the potential model are forecasting the next day’s
price move or its direction and generating copies of the observed price series
with the same invariant distribution. A copy of the oil price series generated
with the model is shown in the right-hand side graph in figure 6.4, which
indeed resembles the actual observed price path seen in figure 6.1; distribu-
tional characteristics such as skewness and kurtosis are also close to those
for the real data. Forecasting the direction of the next day’s price move with
the potential model leads to correct forecasts in 57 % of days (for historical
dataset), outperforming a simple delta-method (correct forecasts in 51% of
days) or neural networks (53%), where a detailed description of these study
can be found in [16].

Here we fitted a polynomial of a high degree (10) to the histogram of oil
prices, and the potential function was obtained by taking the log-inverse
of the fitted polynomial (i.e. by using the distributional result (6.3)). The
choice of the polynomial degree is a matter left to the model builder, as is the
bin size of the histogram to which it has to be fitted. We believe this degree
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should be high enough to model significant peaks in the histogram (here the
bin size is important), but not too high, so as not to model features of the
histogram caused by noise, i.e., those that have no meaningful significance.
For example, the histogram in figure 6.1 has three peaks, these correspond
to three stable price levels well-known to oil traders. So in this case, the
minimal polynomial degree should be 6; using a polynomial of lower degree
would lead to missing one (or more) peaks. For example, if we fit a standard
mean-reversion model with a constant mean (i.e. a quadratic polynomial)
to the data in figure 6.1, the histogram of the model residuals still contains
three peaks (figure 6.5), since the mean-reverting model is unable to extract
these from the price distribution. We shall investigate further the influence
of the polynomial degree on our results in the section on option pricing and
show that the model is robust to the choice of the polynomial degree, as
long as it is high enough.

Other methods of fitting the histogram or the potential function are feasi-
ble. For example, one can postulate some parametric form of the invariant
price distribution or of the potential function, e.g. a mixture of Gaussian
kernels, and fit the model by means of the maximum likelihood method.
The latter way of fitting the model is particularly useful in multivariate ex-
tension of the model, briefly addressed in section 6.5. Fitting a mixture of
three Gaussian densities to the distribution in figure 6.1 provided a potential
function undistinguishable from that in figure 6.4. However, we found that,
in univariate case, the method we described in this section is the easiest
to implement, fastest and though rather accurate way to apply the model,
since it allows for fast calculation of the potential’s derivative. It is also
possible to start from a polynomial with given degree and use the maximum
likelihood method to obtain the coefficients from the historical data. The
rather indirect method we use here has the advantage that the elements of
the implementation are readily available. Nonparametric methods such as
kernel density estimation can be slow and do not provide the expression for
the derivative of the potential, which needs to be quickly and accurately
evaluated.

The characteristic features of the modeled process (such as multiple attrac-
tion points and the long-term volatility) are learned from historical data.
So the question arises, how well the potential reflects the current state of
the market. The model remains valid as long as attraction points and the
overall volatility do not change in time. However, shifts in market funda-
mentals can lead to the formation of new attraction points and to different
volatility levels, which happened in the oil market in the past few years.
The resulting non-stationarity of price series can seriously limit the appli-
cability of the approach. In practice, the non-stationarity can be dealt with
by regularly re-fitting the model, incorporating new price levels within the
new fitted potential and new volatility levels within the parameter σ.
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6.2.2 Volatility estimation in the potential function model

We assumed that the parameter σ is constant and interpreted is as a long-
term average volatility of daily price moves. This parameter, together with
the potential function, can be estimated from historical data, using the pro-
cedure outlined above. Like in the Black-Scholes case, we made a model with
a constant volatility but suspect the actual volatility to be non-constant.
Suppose that we apply the procedure of the previous section once and after
that consider the potential function U as given. We can now construct the
daily estimate of the volatility as follows

σ̂2
i =

(

pi − pi−1 + U ′(pi−1)
)2
, (6.6)

where pi is the price on day i. Recall that this is a measure of variability
of daily price moves, rather than of daily returns which we are used to in
the Black-Scholes case. It can be easily translated into a daily volatility of
returns by means of re-scaling: σret

i = σi/pi. However, in the next section
we shall see the benefits of using the volatility of price increments, rather
than of returns, for option pricing.

The volatility estimate (6.6) can be used for derivatives pricing (which is
addressed in the next section), risk management (Value-at-Risk in particu-
lar), portfolio management and other applications, as an alternative to the
historical or GARCH volatility (see [15]).

We applied this approach to estimating the volatility of daily oil prices.
Figure 6.6 shows the series of the realized volatility of daily returns on the
left-hand side and on the right-hand side it shows the series of daily price
moves volatility estimated by (6.6). Recall that the difference in scale be-
tween the graphs in figure 6.6 is due to considering daily price increments
for the potential function volatility rather than daily returns. For option
pricing one usually considers a series of data points, representing a time pe-
riod equivalent to the time to expiry of the option, to estimate the historical
volatility as has been done in figure 6.9.

According to the discrete-time model (6.2), the magnitude of the daily price
increments (and hence, the spread of their distribution) is partly determined
by the derivative of the potential and partly by random fluctuations. The
presence of a deterministic component, given by the potential’s derivative,
is what distinguishes the daily volatility measure (6.6) from the historical
volatility. The deterministic component explains a part of the daily price
increments’ variability, while another part is due to stochastic fluctuations.
The deterministic component plays a more significant role if the current price
is far from one of the attracting points (i.e. the local minima, where the
derivative of the potential is higher in absolute value). Near the attraction
points the derivative of the potential is close to zero, so the random fluctu-
ations are predominantly responsible for price movements. This is in good
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Figure 6.6: Historical (left) and potential function (right) daily volatility.

agreement with economic arguments (such as convergence to an equilibrium
price) and with the market’s perceptions.

Recall that, for constant parameter σ, the invariant distribution of the pro-
cess (6.1) is given by the Gibbs distribution. An interesting theoretical
question is whether the result on convergence of the distribution of pt to the
Gibbs distribution continues to hold, if the the volatility σ = σt(ω) is a sta-
tionary stochastic process (such as stationary GARCH process or a process
arising from most of stochastic volatility models).

6.3 Option pricing within the potential function

framework

6.3.1 Potential versus Black-Scholes models

Recall that in the Black-Scholes framework, a general model for the under-
lying value (pt)t≥0 is given by

dpt = µ(pt, t) dt+ σBSpt dWt,

where the function µ : R+×R+ −→ R is a deterministic drift and σBS is the
Black-Scholes volatility. The Black-Scholes model is characterized by the
normality of price (log)returns. On the other hand, the potential function
model belongs to the class of models of the general form

dpt = ν(pt) dt+ σpot dWt, (6.7)

with the specific drift term ν(p) = −U ′(p) (where U : R −→ R is the
potential function and σpot is the potential model volatility). This class of
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models is characterized by the normality of the price increments (and not
of the log-returns, as in Black-Scholes’ model).
Models of the type (6.7) are often suggested for commodity prices as an
alternative to the Black-Scholes model. For instance, mean-reversion price
models often belong to this class. The main criticism of such models is that
they allow zero or even negative prices. However, in the potential function
model, the potential function is chosen in such a way that the price regions
which have never been observed are assigned almost zero probabilities. This
is the consequence of the fact that the invariant distribution of the price
process is determined by the potential function and vice versa.
The model (6.7) has some nice and intuitive volatility properties. In the
Black-Scholes model, the diffusion term coefficient σBSpt varies proportion-
ately to the underlying value pt. This is not the case in for the model (6.7).
If we assume the equivalence between the magnitude of the fluctuations in
both models and let σpot be constant, we see that it corresponds to increas-
ing of σBS if the underlying value pt decreases and to decreasing of σBS if
pt increases. Consequently, the model (6.7) satisfies the well-known option
market’s rule of thumb:

• An increase in the underlying value leads to a decrease in the Black-
Scholes volatility σBS . (In traders’ terms: ”The volatility floats out of
the market”).

• A decrease in the underlying value leads to an increase in the Black-
Scholes volatility σBS . (In traders’ terms: ”The volatility shoots into
the market”).

This rule of thumb is reflected in the so-called ”volatility smile” observed in
the market, which is intrinsically embedded in the model (6.7).
In derivatives pricing, the volatility is an important parameter, and often the
only one not directly observable in the market. In fact, the value of volatility
used to price an option should be a forecast of the volatility over the entire
period from the present time until the option’s expiry. The implied volatility
is often used, i.e. market option prices are observed and the volatility is
calculated by inverting the expression for the option price (for a discussion
of the implied volatility surface in oil markets see e.g. [17]). Unfortunately,
this approach is not always feasible, especially for commodities options.
Commodities option markets are not as developed and as liquid as stock
option markets. Moreover, over-the-counter (OTC) options constitute a
large part of traded commodities options. So in this case the observed
option prices are often either not reliable or not available.
One way to deal with this is to use the historic (i.e. realized) or the GARCH
volatility, averaged over a certain past period. The duration of the averaging
period usually equals to the time to the option’s expiry. For example, if
we price an option expiring in 3 months, the historical data of the past 3



124 CHAPTER 6. COMMODITY OPTION PRICING

months is used to forecast the next-3-months average volatility. We shall
use the same principle for option pricing in the potential model framework:
estimate the daily volatility by (6.6) and then average these estimates over
a past period of the same length as the option’s time to expiry.

6.3.2 hedge costs

In the next section we compare option pricing in the potential model and in
the Black-Scholes framework. For the comparison criterion we use the hedge
cost of an option. This is one of the most important practical consequences of
how well options are priced and how good the volatility forecast is. If option
prices are not very liquid (as it is the case for many commodity options),
option traders calculate their hedge costs and, by comparing them to quoted
option prices, they decide whether to take a position in a particular option.
Let pt be the underlying value at time t, K the strike price of a European
option and T the time to option’s expiry. The replication argument of option
pricing assures that there exists a hedging strategy that allows the option’s
seller to replicate the option. The seller’s portfolio at expiry will consist of
one unit of the underlying in case of pT > K and it will be empty in case
of pT ≤ K. The costs involved in hedging are the same for every possible
path of the underlying. Therefore, by the no-arbitrage argument, the option
price should be equal to the discounted hedge costs. The hedging strategy
consists of buying an amount of underlying and borrowing the money at the
current interest rate to do so. The amount of underlying in the portfolio at
time t is given by the option’s delta (∆) which is the partial derivative of
the option price at time t with respect to the underlying value pt.
Ideally, the portfolio should be re-balanced continuously. In practice this
cannot be satisfied, as it would lead to high transaction costs. So we assume
the portfolio is re-balanced daily (which is often the case in practice). If the
expiration time T of the option is N days ahead, the portfolio is re-balanced
at the time points 0 = t0 < t1 < ... < tN = N/365. The discounted hedging
costs H then are

H((∆t)t=t0,t1,...,tN ) = ∆t0pt0 +

N
∑

k=1

e−krδptk(∆tk − ∆tk−1
) − ∆tNK, (6.8)

where δ = 1/365. The equation (6.8) summarizes the following hedging
strategy: at time t0 buy ∆t0 of the underlying for the price pt0 , then re-
balance the portfolio at every time instant tk by buying (∆tk −∆tk−1

) at the
price ptk and discount the costs back for k days. In the end, we have either
∆tN = 0 or ∆tN = 1, the later meaning that the option is in the money at
expiration. In that case we have to sell the underlying to the option holder
for the strike K.
By the replication argument, the total hedge costs H should be equal to the
option price. In practice, this is not the case for several reasons. First, the
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hedging portfolio is not re-balanced continuously. Most importantly though,
the model for the underlying and the volatility forecast used to calculate the
option price are inaccurate. So the difference between the option price and
the hedge costs (the so-called the hedging error) is a good measure of both
the model performance and the volatility forecast.

6.3.3 Options on physical commodity

Theory of option pricing relies heavily on the ability of an investor to hedge
a contingent claim with the underlying asset, i.e. to construct a riskless
portfolio which replicates the claim’s pay-off. If the underlying asset is a
commodity, many hedging arguments are not valid anymore. See [41] for a
detailed treatment on commodity options. For instance, it might be impossi-
ble to take an arbitrary long or short position in the underlying commodity,
or a long position might involve significant storage costs. Some commodities
(such as electricity) cannot be stored at all, and others (such as agricultural
commodities) can loose their value if stored. Moreover, complicated delivery
issues can arise. In such cases a contingent claim cannot be hedged with
the underlying asset, so we then speak of an incomplete market. When it
is impossible to construct a riskless portfolio replicating a claim’s pay-off,
the risk associated with the underlying cannot be hedged away. As a con-
sequence, the so-called market price of risk enters all pricing and hedging
equations.

To avoid dealing with the market price of risk (which is essentially an un-
known model parameter), here we shall assume that the underlying com-
modity closely resembles a traded asset in the usual sense, i.e. that we can
hedge (some) contingent claims with the underlying. More precisely, we
make the following assumptions:

• A commodity can be stored without quality loss, for a period up to
the option’s expiration.

• Storing a commodity leads to storage costs u, expressed in dollars per
unit of commodity, per time unit. We assume that these storage costs
are constant during the lifetime of an option.

These assumptions are quite realistic for commodities such as crude oil,
metals (and, more recently, for natural gas), while clearly unappropriate for
e.g. electricity and some agricultural commodities. We also assume that we
cannot take short positions on a physical commodity. This means that we
can only hedge two types of claims: short calls and long puts. Here we deal
with pricing and hedging of short European call options. For simplicity, we
assume everywhere that the risk-free interest rate r is constant.

The way to calculate the option price is to first find the expression for
the dynamics of the underlying (pt)t≥0 under the risk-neutral probability
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measure. Using standard financial calculus arguments as in [12] and the
above assumptions, we find that the risk-neutral process for the underlying
value is given by

dpt = (rpt + u) dt+ σBSpt dW ∗
t (6.9)

in the Black-Scholes framework, and by

dppot
t = (rppot

t + u) dt+ σpot dW ∗
t (6.10)

in the potential model framework. Here (W ∗
t )t≥0 is the Brownian motion

under the risk-neutral probability measure and u is the storage cost per unit
of commodity.

Note that the deterministic drift of the price dynamic under the real prob-
ability measure is replaced in both cases by (rpt + u) under the risk-neutral
measure. Hence, the potential function does not explicitly enter the risk-
free dynamic of the underlying. However, when pricing an option, σpot is
calculated using the potential model. So the potential function is implicitly
contained in the risk-free dynamics via the corresponding volatility measure.

For risk-neutral process evolving according to (6.10) the explicit solution is

ppot
t = ert

{

p0 + u
1 − e−rt

r
+ σpot

∫ t

0
e−rs dW ∗

s

}

.

Hence, ppot
t is normally distributed with mean mt and standard deviation st

given by

mt = ert
(

p0 + 1−e−rt

r u
)

st = ertσpot

√

1−e−2rt

2r .

Evaluating the expected discounted pay-off under the risk-neutral measure,
we get that the European call option price is

C(pot)(T,K, p0, σpot, r, u)

= e−rT

{

sT√
2π
e
− (mT −K)2

2s2
T − (K −mT )Φ

(

mT −K

sT

)

}

, (6.11)

where Φ is the cumulative distribution function of the standard normal
distribution. Differentiating (6.11) with respect to the underlying value, we
get the delta:

∆
(pot)
t =

∂C(pot)

∂p
= Φ

(

mT−t −K

sT−t

)

.

In the Black-Scholes framework, the solution of (6.9) is

pt = e(r−0.5σ2)t+σWt

{

p0 + u

∫ t

0
e−(r−0.5σ2)s−σWs ds

}

, (6.12)
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and it is not clear what the distribution of pt is. The expression (6.12)
simplifies considerably if instead of u (storage costs per unit of commodity)
we use a ”storage cost rate” ũ (storage costs per dollar of the spot price).
In that case the risk-neutral dynamic (6.9) becomes

dpt = (r + ũ)pt dt+ σBSpt dW ∗
t ,

which is the Black-Scholes equation for a stock paying dividend at the rate
−ũ. The European call option price is then the well-known expression

C(BS)(T,K, p0, σBS , r, ũ) = p0e
ũT Φ(d1) −Ke−rTΦ(d2),

where

d1 =
ln(p0/K) + (r + ũ+ 0.5σ2

BS)T

σBS

√
T

and d2 = d1 − σBS

√
T ,

and the corresponding delta is

∆
(BS)
t =

∂C(BS)

∂p

= eũ(T−t)Φ

(

ln(pt/K) + (r + ũ+ 0.5σ2
BS)(T − t)

σBS

√
T − t

)

. (6.13)

Figure 6.7 shows the option’s deltas versus the spot price, computed from
Black-Scholes and potential models, for a 1-year European call option with
the strike price of 20.

Note that, in contrary to stock options, ∆(BS) can now become greater than
one. This is the consequence of the storage costs proportional to the spot
price. In absence of storage costs, rising spot price leads to the rise in the call
option price, but proportionately, this rise cannot exceed one. In presence
of storage costs rate ũ, it becomes more expensive to reproduce the call: in
addition to the ”regular” delta, the amount that has to be paid to store the
commodity also increases. This leads to an extra rise in call option price
(expressed by the exponent in (6.13)) and hence can lead to ∆ > 1.

Defining storage costs as a ”rate” is very common; however, it has a major
drawback: in the real world commodity storage costs are quoted per unit
of commodity and not per dollar of the spot price. Moreover, while it is
realistic to assume that u is constant during the lifetime of an option, it is
certainly not true for ũ as it changes together with the spot price: ũ = u/pt.
Note that another advantage of the potential function framework is that we
can use the real storage costs u directly in the pricing formula instead of the
storage cost rate ũ.
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Figure 6.7: Option’s delta vs. spot price in BS and potential models.

6.3.4 Options on futures

Options on commodity futures are easier to price and hedge than options
on physical commodity, since futures are the same type of assets as stocks:
they are liquid ”paper” contracts traded on exchanges. So all storage and
delivery problems encountered for physical commodities are not relevant for
futures. This is the main reason why options on commodity futures are
more popular than options on a physical commodity.

A common approach to pricing of futures is to assume some dynamic for
the spot price (e.g. mean-reverting diffusion process) and derive from it the
futures price dynamic by traditional risk-neutral pricing arguments (e.g. by
using the fact that futures price is the expected spot price under the risk-
neutral probability measure), or by a cost-of-carry relationship. Here we
shall not use the spot-futures prices relationship and model futures prices
directly. We postulate that the futures contract is itself an underlying traded
asset. This approach is particularly suited for commodities, where futures
price is not closely related to the spot price, and for markets where is no
good proxy for the spot price. This is the case in e.g. electricity markets,
where the quoted spot prices are often unreliable (or non-existent), and
there may be a large discrepancy between the futures and the spot prices.
So when pricing futures options in the framework of the potential model,
we shall not pay attention to the spot price but instead assume that, for a
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fixed expiry date, the futures price evolves as the diffusion governed by the
potential function.
The fundamental difference between futures and stocks is that entering a
futures contract does not require an initial investment. A futures contract
behaves as a stock paying continuous dividend yield at the rate equal to the
risk-free interest rate (for discussion on this general result see e.g. [52]. Since
it costs nothing to enter a futures contract, the expected growth rate of a
futures price is zero, and Black’s model (see [13]) for the risk-free dynamics
of a futures contract is given by

dpt = σBpt dW ∗
t , (6.14)

where σB denotes the volatility within Black’s model. By the same argu-
ments, for the potential model the futures price dynamic under the risk-
neutral probability measure is

dppot
t = σpot dW ∗

t , (6.15)

where σpot is the potential model volatility. The explicit solution of (6.15)
is

ppot
t = p0 + σpotWt.

Again, the difference between (6.14) and (6.15) is in the volatility term.
Standard risk-neutral valuation leads then to the following European call
option price:

C(pot)(T,K, p0, σpot, r)

= e−rT







√

σ2
potT

2π
e
− (K−p0)2

2σ2
pot

T − (K − p0)Φ

(

p0 −K

σpot

√
T

)







, (6.16)

and the corresponding delta is given by

∆
(pot)
t = e−rT Φ

(

pt −K

σpot

√
T − t

)

. (6.17)

Compare (6.16) to the Black model’s European call option price:

C(B)(T,K, p0, σB , r) = e−rT [p0Φ(d1) −KΦ(d2)],

where

d1 =
ln(p0/K) + 0.5σ2

BT

σB

√
T

and d2 = d1 − σB

√
T ;

and (6.17) to the corresponding delta:

∆
(B)
t = e−rT Φ

(

ln(pt/K) + 0.5σ2
B(T − t)

σB

√
T − t

)

.
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6.4 Applications to oil spot and futures markets

6.4.1 Option pricing and hedging

We apply the above approach to options on crude oil for physical delivery
(i.e. the spot market oil) and on oil futures. We price and hedge the Euro-
pean call option with N = 60 days to expiry and the at-the-money strike,
K = p0 (in order to reduce skew effects).

In our simulation study, we use historical price series of Dated Brent and IPE
Brent futures, front month expiry (both from 1994 to 1999). For every day
in the dataset starting with the 61st observation, we calculate the Black-
Scholes and the potential model option prices. For the potential model,
we use the potential model volatility estimates (6.6), and for Black-Scholes
model - the realized volatility, both averaged over the preceding 60 obser-
vations. The call options are hedged daily for 60 days (until expiry), using
the corresponding deltas. This setup is schematically shown in figure 6.8.

Figure 6.8: The setup of the simulation study.

In the end, we obtain samples of hedge errors (differences between the hedge
costs and the corresponding option prices) for options priced on each day
in the dataset. The distribution and, in particular, the average hedge error
measure the model’s performance and the volatility forecast’s accuracy.

For spot prices, figure 6.9 shows the 60-days annualized averaged historical
volatility of daily returns in the left-hand side graph and the 60-days aver-
aged potential function volatility on the right-hand side graph. These are
the volatilities that we used for option pricing.

For simulations, we take storage costs u = 2 $/bbl per year (this is a realistic
number in oil industry), and to compute the Black-Scholes option price on
day t, we take ũt = u/pt. Figure 6.10 shows the histograms of the hedge
error in both cases.

The histograms of the hedge costs are quite similar and both skewed to the
left. In both cases, hedge errors are very small, so the hedge is almost perfect.
The average hedge error is smaller for the potential function model: at 0.007
it is below 0.009 for the Black-Scholes model with historical volatility. The
variance of the hedge errors is also smaller for the potential model: 0.08 vs.
0.1 for Black-Scholes. For further comparison, we also show the histogram
of the differences in hedge costs between the Black-Scholes with historical
volatility and potential models (right-hand side graph of figure 6.10).

For options on oil futures, the results are quite similar. The average hedge
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Figure 6.9: 60-days historical (left) and potential (right) volatility.
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Figure 6.10: Histogram of Black-Scholes (left) and potential function (middle)
hedge error and difference in hedge error (right).

errors are at 0.01 for the Black’s and 0.009 for the potential models, and the
variances of the hedge errors are respectively 0.11 and 0.09. The histograms
of the hedge errors are shown in figure 6.11.

The simulation results show that for options on physical oil, in terms of
hedge costs, the potential model outperforms the Black-Scholes model with
historical volatility. For options on oil futures the results are comparable.

6.4.2 Robustness of option prices in the potential framework

When deriving the option price formula in the potential model framework,
we pointed out that the potential function does not directly enter the ex-
pression for the option price. However, given (an estimate of) the potential
function, one is able to estimate the daily volatility by the equation (6.6).
Here we want to consider the robustness of the potential model from the
option pricing point of view. For that we only have to study the impact of
changes in the potential function specification on the estimated volatility.

We assumed that the potential function U is approximated by a polyno-
mial of some degree k, so it is interesting to investigate whether different
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Figure 6.11: Histogram of future hedge error for potential model (left) and Black’s
model (right).

values for k significantly affect the volatility estimates. We are interested
in whether changes in the polynomial degree affect 60-days volatility esti-

mates shown in the right-hand side graph of figure (6.9). Let σ̂
(k)
i be the

60-days volatility estimate on the day i obtained by the potential model
with the potential function being a polynomial of degree k. In order to
compare volatility estimates corresponding to degrees k and j, we introduce
the average absolute difference measure δ(k, j) given by

δ(k, j) =
1

N

N
∑

i=1

|σ̂(k)
i − σ̂

(j)
i |.

We computed δ(k, k−1) for polynomial degrees k = 4, 5..12, for Brent crude
oil spot prices during 1994-1999, and plotted it against k in figure 6.12. This
figure shows that increasing the polynomial degree of the potential function
by one changes the volatility estimate by less than 0.2 (i.e. under 10%) on
average. Hence the volatility estimate is not very sensitive to the degree
of the potential function, as long as this degree is higher than 3, i.e. the
polynomial degree allows for more than one attracting region.
Changes in the volatility estimate affect the option prices via the so-called
vega, the measure of the option price sensitivity with respect to the volatility.
Although vega depends on other parameters such as the time to maturity
and the strike price, we argue that the changes in volatility estimates are so
small that option prices are almost unaffected. This strongly indicates that
the model is very robust with respect to the potential function specification.

6.5 Multivariate extension

The potential function approach naturally extends to the case of multivari-
ate time series (price series of related commodities, such as crude oil and
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gasoline). For this we replace the potential function by a potential field in
Rk. If (pt)t≥0 is a continuous time process in Rk, then the potential field
model is

dpt = −∇U(pt) dt+B dWt, (6.18)

where U : Rk −→ R is a potential field, Wt is the k-variate standard Brow-
nian motion, and B = (βij)k×k - a k-by-k matrix describing the effect of
the multivariate Brownian motion on the process. B can be interpreted
as the (right-triangular) Choleski root of the covariance matrix Σ, so that
Σ = B′B.

This model can be estimated from historical data in a way similar to that
for the univariate model. We can assume some parametric form of the
potential (e.g. a weighted sum of multivariate Gaussian kernels). Then
we obtain a discrete-time model from (6.18) using the Euler scheme, and
estimate the parameters of the potential field and the matrix Σ directly
from observations by the maximum likelihood method. For an application
of a bivariate potential field model to oil market data see [16]. However,
as with all multivariate methods, some computational difficulties can arise,
especially if k > 2.

The particular usefulness of the multivariate model is that the covariances
between the price series, as well as individual volatilities, are in part ac-
counted for by the potential field and in part by the matrix B. Hence, after
the potential field and long-term covariance matrix B are estimated from
the historical data, the model can be used to estimate daily volatilities and
covariances, just as in the one-dimensional case. These estimates are useful
for applications such as portfolio and risk management, e.g. the computa-
tion of Value-at-Risk for commodity portfolios. Also, these estimates can
be used when pricing options on inter-commodity spreads, since there the
correlations are needed, together with the volatilities.

This extension to multivariate models and their application to real-life data
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seem rather straightforward. However, it raises some interesting computa-
tional issues which require more attention and will be investigated further.

6.6 Conclusions and future work

We have applied the potential function model to commodity prices exhibiting
multiple attraction regions and used it to develop a new volatility estimate.
We priced and hedged European options on commodity spot and futures
contracts within the model’s framework. For the application to crude oil, we
have demonstrated that the resulting hedge costs are lower than those within
the Black-Scholes model with the historical volatility. We have also shown
that the model is robust with respect to the potential function specification.
It would be interesting to compare option prices and the volatility forecasts
obtained by the potential function model with the market option prices
and the implied volatilities (which are widely considered the best volatility
forecasts in practice). However, for many commodities, options trading
(especially in options on physical commodities) is is only done over-the-
counter, if at all. Options on futures are traded on exchanges such as IPE
and NYMEX, hence they are more liquid and transparent than those on
physical commodities. However, it is still difficult to obtain historical option
prices in commodity markets.
In addition to derivatives pricing, other applications of the model’s volatility
estimate include risk management (in particular, Value-at-Risk), portfolio
management and other areas where volatility estimation and forecasting is
required.
The potential function approach extends naturally to multivariate series,
allowing for incorporation of correlations between price series within the
model. This is useful for applications such as VaR computation and risk
management of commodity portfolios.
An underlying assumption of the model is that the potential function and
the long-term volatility do not change with time. The non-stationarity of
price series can seriously limit the applicability of the approach. We applied
the model to oil prices up to 1999. Significant changes affected the oil
market after 1999: the oil price reached high levels rarely observed before.
In such cases new attraction regions can form, changing the shape of the
potential. Also the long-term volatility can change in new market conditions.
In practice, the non-stationarity can be dealt with by regularly re-fitting
the model, for instance, every six to twelve months. It will be interesting
to investigate changes of the potential function for oil prices over a longer
observation interval, e.g. from 1970’s until today. This is an issue which we
will address in the future.
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Samenvatting

Methodes uit de kansrekening voor het prijzen van

exotische opties

J.H.M. Anderluh

Moderne investeerders beleggen niet alleen in obligaties, aandelen of grond-
stoffen, maar zoeken ook naar mogelijkheden op de derivatenmarkten. Op
deze derivatenmarkten worden contracten verhandeld waarvan de uitbeta-
ling gespecificeerd is in termen van één of meer onderliggende waarden. De
meest bekende derivaten zijn de opties. Dit zijn contracten waar de onder-
liggende waarde uit een aandeel of een index bestaat. De meest bekende
opties zijn de puts en calls zoals die bijvoorbeeld verhandeld worden op
LIFFE, hier worden o.a. de opties op de AEX index verhandeld. De tegen-
woordige populariteit van opties is mede het gevolg van de ideeën van Black
en Scholes. Zij hebben een methode bedacht volgens welke het mogelijk is
de prijs van een optie nauwkeurig te bepalen. De prijs wordt bepaald door
het construeren en onderhouden van een risicoloze portefeuille bestaande uit
een steeds veranderende hoeveelheid onderliggende aandelen en één optie.
Risicoloos betekent hier dat een infinitesimale (heel kleine) verandering van
de waarde van het gedeelte belegd in aandelen te niet wordt gedaan door een
gelijke verandering van de waarde van de optie. Aangezien de portefeuille
alleen risicoloos is voor kleine veranderingen van de waarde van het aan-
deel, moet de portefeuille voortdurend, namelijk na iedere verandering van
de waarde van het aandeel, worden bijgesteld. Het bijstellen van deze por-
tefeuille betekent handelen in het onderliggende aandeel. Black en Scholes
hebben in hun paper van 1973 laten zien, dat onafhankelijk van de manier
waarop de koers van het aandeel zich binnen het door hen gekozen kansmo-
del ontwikkelt, de kosten voor het onderhouden van de portefeuille hetzelfde
zijn. Deze kosten leggen de optieprijs vast als gevolg van de no-arbitrage
veronderstelling die inhoudt dat het niet mogelijk is een groter rendement
op een investering te behalen dan de rente zonder daarbij een risico te lopen.
Revolutionair aan het idee van Black en Scholes is het achterliggende con-
cept van de replicerende portefeuille. Voor ieder type optie met een eindige
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looptijd en een zogenoemde meetbare uitbetaling kan de replicerende porte-
feuille bepaald worden en daarmee ligt de prijs van die optie vast. Een optie
heeft een meetbare uitbetaling als het mogelijk is aan het eind de waarde
van de optie te berekenen aan de hand van de koersontwikkeling van het
onderliggende aandeel gedurende de looptijd van de optie. Exotische opties
hebben een meetbare uitbetaling en kunnen dus op de Black-Scholes manier
geprijsd worden. Het berekenen van deze replicerende portefeuille en de bij-
behorende optieprijs kan aan de hand twee methoden. Vanuit de numerieke
wiskunde is het gebruikelijk om een partiële differentiaalvergelijking op de
stellen en die met numerieke technieken op te lossen. Vanuit de kansrekening
wordt de verwachte waarde van de uitbetaling berekend onder de zogeheten
martingaalmaat, waarbij de martingaalmaat een theoretisch concept is dat
het berekenen van optieprijzen in een arbitrage-vrije omgeving vereenvou-
digt. Het is de stelling van Feynman-Kac die de martingaalmaat benadering
en de partiële differentiaalvergelijkingen benadering met elkaar verbindt. In
dit proefschrift worden exotische opties geprijsd aan de hand van methodes
in de kansrekening, hetgeen betekent dat de opties geprijsd worden door
de verwachting onder de martingaalmaat te berekenen. Deze berekening
leidt niet in alle gevallen tot expliciete formules en in dit proefschrift wordt
gebruik gemaakt van Laplace en Fourier getransformeerden of een Monte
Carlo methode om tot een daadwerkelijke prijs te komen. Zowel de getrans-
formeerden als de Monte Carlo methode zijn gebruikelijke gereedschappen
binnen de kansrekening.
De Parijse optie is een voorbeeld van een exotische optie. Deze optie heeft
een vaste looptijd en betaalt alleen maar uit als de koers van het onderlig-
gende aandeel gedurende die looptijd wel of juist niet aan de bij de optie
behorende Parijse voorwaarde heeft voldaan. Aan de Parijse voorwaarde
is voldaan op het moment dat het aandeel achtereenvolgens langer dan een
vooraf bepaalde periode boven of onder een bepaald niveau heeft genoteerd.
Neem als voorbeeld de Parijse up-and-in call met een niveau van 120, een
periode van 10 dagen en een looptijd van een jaar. De optie betaalt over
een jaar uit als een call indien het onderliggende aandeel 10 dagen achtereen
boven de 120 genoteerd heeft ergens gedurende dat jaar. Andere varian-
ten zijn down-and-in, down-and-out en up-and-out Parijse opties, waarbij
ook nog gevarieerd kan worden met put en call. Parijse opties worden niet
verhandeld op een optiebeurs, maar kennen toepassingen in het prijzen van
converteerbare obligaties, het waarderen van de kredietwaardigheid van le-
vensverzekeringsmaatschappijen en het bepalen van investeringsmogelijkhe-
den volgens de zogenoemde real options methode. In het eerste, inleidende
hoofdstuk van dit proefschrift worden de werking en de toepassingen van de
Parijse optie in detail behandeld.
In dit proefschrift worden de Parijse opties op drie manieren gewaardeerd.
Bij deze waarderingsmethoden wordt telkens de geometrische Brownse be-
weging als kansmodel voor het onderliggende aandeel gebruikt. De eerste
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manier is om uit te gaan van de standaard barrier optie. Deze optie is een
eenvoudige versie van de Parijse optie, want hier hoeft het onderliggende
aandeel het niveau alleen maar te raken en niet een bepaalde periode eron-
der of erboven te noteren. In tegenstelling tot de Parijse optie zijn er voor de
standaard barrier optie expliciete formules beschikbaar. Aangezien het ra-
ken van een niveau met een grotere kans voorkomt dan de combinatie van het
raken en er een tijdje boven verblijven, zal bijvoorbeeld de Parijse up-and-in
call minder waard zijn dan de standaard up-and-in call optie. Immers, het
niveau kan eenmalig geraakt worden (de barrier optie gaat uitbetalen als een
call), zonder dat het aandeel een langere tijd boven dat niveau noteert (de
Parijse optie loopt waardeloos af). De eerste waarderingsmethode bepaalt
de zogenoemde implied barrier. De implied barrier is het (hogere) niveau
dat ingevuld moet worden in de expliciete formule van de standaard barrier
optie zodat deze optie dezelfde waarde heeft als de Parijse optie. Hoofd-
stuk twee van dit proefschrift behandelt de hier beschreven implied barrier
methode.
Een andere mogelijkheid om Parijse opties te waarderen bestaat uit het be-
palen van expliciete formules voor de Laplace of Fourier getransformeerde
van de waarde van Parijse optie. Om tot een daadwerkelijke prijs te ko-
men, moet deze getransformeerde numeriek worden gëınverteerd. Details
van de numerieke inversie worden in het inleidende hoofdstuk gegeven. De
expliciete formules voor de getransformeerden worden berekend met behulp
van excursie theorie, waarover veel literatuur bestaat op het gebied van de
standaard Brownse beweging, de bouwsteen van de geometrische Brown-
se beweging, het proces waarmee het onderliggende aandeel gemodelleerd
wordt. De kern van hoofdstuk drie vormt de uitbreiding van de getrans-
formeerde van enkelzijdige Parijse opties naar dubbelzijdige Parijse opties.
De dubbelzijdige Parijse opties betalen uit als een put of een call indien het
aandeel ofwel een bepaalde tijd boven een niveau hoger dan de startwaarde,
of een (andere) bepaalde tijd onder een niveau lager dan de startwaarde
genoteerd heeft. In hoofdstuk drie worden bekende resultaten op het ge-
bied van enkelzijdige Parijse opties gebruikt om expliciete formules voor
getransformeerden van dubbelzijdige Parijse opties af te leiden. Numerieke
voorbeelden geven inzicht in het gedrag van de (dubbelzijdige) Parijse optie.
De Monte Carlo methode is de laatste methode die gebruikt wordt om Pa-
rijse opties te waarderen. Het puntsgewijs in de tijd simuleren van het
onderliggende aandelen proces levert een uiterst langzame convergentie op,
dit betekent dat bijzonder veel simulaties gedaan moeten worden voordat
de prijs van de Parijse optie voldoende nauwkeurig bepaald is. Dit is het
gevolg van het lokale, wilde gedrag van de standaard Brownse beweging. In
hoofdstuk vier wordt een methode ontwikkeld waarbij raaktijden van een
niveau direct gesimuleerd worden. Het simuleren van deze raaktijden wordt
vervolgens gebruikt om te bepalen of een gesimuleerde koersontwikkeling
van het onderliggende aandeel aan de voorwaarde van de uitbetaling van
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een Parijse optie voldoet.
Voor het waarderen van Parijse opties is telkens de geometrische Brownse
beweging als model voor de onderliggende waarde gebruikt. Dit is het model
dat Black en Scholes ook hebben gebruikt bij de afleiding van hun optieprijs
formules. In de praktijk is de zogenoemde volatility smile en de volatility
term structure aanwezig in de optie markten. Beide verschijnselen zijn niet
consistent met de keuze van de geometrische Brownse beweging. Als gevolg
hiervan worden Lévy processen gebruikt om modellen voor het onderlig-
gende aandeel te bouwen. De Brownse beweging behoort ook tot de Lévy
processen, maar deze klasse is groter. Zo zijn er ook processen met sprongen
die tot de Lévy processen behoren, terwijl de Brownse beweging een continu
proces is. Als een eerste, kleine stap in de richting van het gebruik van Lévy
processen bij het berekenen van een Parijse optieprijs wordt in hoofdstuk
vijf een eenvoudig model met sprongen gebruikt om dubbelzijdige barrier
opties te prijzen. De prijzen worden berekend via de methode van de Lap-
lace getransformeerde. Om expliciete formules voor deze getransformeerde
af te leiden, worden resultaten op het gebied van twee-zijdige exit proble-
men uit de theorie van Lévy processen gebruikt. De numerieke voorbeelden
in het hoofdstuk laten zien hoe het model aan de volatility smile gecali-
breerd kan worden en hoe die volatility smile er uitziet als de prijzen van de
dubbelzijdige barrier opties, geprijsd aan de hand van het sprongmodel, als
uitgangspunt worden genomen.
Tot slot behandelt dit proefschrift het prijzen van opties op grondstoffen
en dan met name opties op olie. Olie wordt als grondstof verhandeld op
de spot markt. Termijncontracten oftewel futures worden verhandeld op de
termijn markt. Zowel de spot als de future kunnen als onderliggende waar-
de voor de optie fungeren. Hoofdstuk zes behandelt eerst het potentiaal
model voor grondstofprijzen. Veranderingen van de grondstofprijzen zijn
binnen dit model gedeeltelijk stochastisch en gedeeltelijk door een potenti-
aal functie bepaald. De potentiaal functie kan zo gekozen worden dat het
prijsproces van de grondstof zich bij voorkeur binnen bepaalde intervallen
bevindt, de zogeheten attractiepunten. Dit potentiaal model wordt gebruikt
om optieprijs formules af te leiden, waarbij uitgebreid ingegaan wordt op
de toepasbaarheid van de optieprijsprincipes uit de aandelenwereld op de
grondstoffenwereld. Hierbij wordt een verschil gemaakt tussen opties op de
spot of opties op de future en worden opslagkosten in de discussie betrokken.



Summary

Probabilistic methods in exotic option pricing

J.H.M. Anderluh

State-of-the-art investors do not only invest in bonds, stocks or commodities,
they are also looking for opportunities in the derivative markets. The pay-off
of the contracts traded on the derivative markets is specified in terms of one
or more underlying values. Options are the most widely known derivatives.
Options are contracts of which the underlying value consists of a stock or an
index. The call and the put option are very well-known option types, which
are for example traded on LIFFE, the derivative exchange where the AEX
option series are traded. The popularity of options nowadays is mainly the
consequence of the ideas of Black and Scholes. They invented a method that
makes it possible to determine the price of an option accurately. The price is
determined by constructing and maintaining a risk less portfolio containing
a continuously changing amount of stocks and one option. In this case risk
less means that an infinitesimal (very small) change in the value of the part
of the portfolio invested in stock is neutralized by the change in value of the
option. Since the portfolio is only risk less for very small changes in value
of the underlying stock it needs to be continuously rebalanced. Rebalancing
the portfolio is done by trading the stock. Black and Scholes showed in
their 1973 paper that the costs of continuously rebalancing the portfolio are
the same, independent of the way the stock price evolves within the prob-
ability model they choose. These rebalancing costs determine the option
price uniquely as a result of the no-arbitrage assumption, which states that
it is impossible to obtain an excess return over the interest rate without
taking risk. This replicating portfolio is what made the ideas of Black and
Scholes revolutionary. It is possible to determine this replicating portfolio
and therefore the price for every option with a finite time to maturity and
a measurable pay-off. An option’s pay-off is measurable if it is possible to
compute the value of the option at maturity by looking at the evolution of
the underlying stock price process during the lifetime of the option. Exotic
options do have a measurable pay-off and therefore they can be priced in
the Black-Scholes setting. There are two ways of computing the replicating
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portfolio and the option price. In the field of numerical mathematics people
derive a partial differential equation and solve it with numerical techniques.
Probabilists compute the expected value of the option’s pay-off under the so-
called martingale measure, which is a theoretical concept that simplifies the
computation of option prices in an arbitrage-free environment. The theorem
of Feynman-Kac connects the martingale measure approach and the partial
differential equation approach. In this dissertation exotic option prices will
be computed by using probabilistic methods, which means that the martin-
gale measure approach will be followed. It is not always possible to arrive at
explicit formulas and in this thesis Laplace and Fourier transforms or Monte
Carlo methods will be used to obtain actual prices. Transforms and Monte
Carlo methods are very common tools of the probabilist.
The Parisian option is an example of an exotic option. The Parisian option
has a fixed time to maturity and it is paying of in case the for the option
specific Parisian constraint is satisfied. In order to satisfy the Parisian con-
straint, the underlying stock price process has to trade for a consecutive
period of time above or below some specified level. Consider for example
the Parisian up-and-in call with level 120, consecutive period of 10 days and
a time to expiry of 1 year. This option pays off like a call in one year if
the stock has traded 10 consecutive days above 120 within that year. Other
Parisian option types are the down-and-in, down-and-out and up-and-out
Parisian options of which exist call and put versions. Parisian options as
such are at present not exchange traded, but they can be applied to convert-
ible bond pricing, the valuation of liabilities of life insurance companies and
the real option way of solving investment problems. The first preliminary
chapter of this thesis treats the pay-off structure and the applications of
Parisian options in detail.
This thesis presents three ways of valuing Parisian options. All of these
valuation methods take the geometric Brownian motion as model for the
underlying stock price process. The first method starts from the standard
barrier option. This option is a simple version of the Parisian option, as it
pays off as soon as the stock price process hits some level, without the extra
condition to stay above or below that level for some time. In contrast with
the Parisian options, there exist explicit formulas for the standard barrier
options. Whereas hitting a level happens with a higher probability than
hitting a level and staying above it for some time, it follows that for example
the Parisian up-and-in call will have a lower price than the standard up-and-
in barrier option. It is after all possible that the stock price process hits the
level once (the standard barrier will pay off as a call), without staying above
that level for some time (the Parisian option expires worthless). The first
valuation method determines the implied barrier. The implied barrier is the
(higher) level that goes into the standard barrier option price formula such
that the standard barrier option has the same value as the Parisian option.
Chapter two of this dissertation treats the implied barrier method.
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Another approach to Parisian option pricing consists of deriving explicit
formulas for the Laplace or Fourier transform of the Parisian option value.
To arrive at an actual price one needs to invert this transform numerically.
Details of the numerical inversion are given in the preliminary chapter. The
explicit formulas for the transforms are computed with help of excursion
theory on which a big amount of literature is available for the standard
Brownian motion, the building block of geometric Brownian motion which
is used to model the underlying stock price process. The essence of chapter
thee consists of the extension of the transform of the (one-sided) Parisian
option to the transform of the double-sided Parisian option. The double-
sided Parisian option pays off like a put or call in case the stock trades
for a given time above some level above the initial stock price or for some
(other) given time below some level lower than the initial stock price. In
chapter three well known results on one-sided Parisian options are used to
derive explicit formulas for the transforms of double-sided Parisian options.
Numerical examples show the way (double-sided) Parisian options behave.
Monte Carlo simulation is the last method that is used in this thesis to value
the Parisian option. Simply simulating the underlying stock price process on
a discrete time grid results in a very slow convergence, which means that one
needs to simulate many times before the Parisian option price is determined
with sufficient accuracy. The slow convergence is a result of the local, wild
behavior of standard Brownian motion. Chapter four presents a method
based on direct simulation of hitting times. Simulating of hitting times is
used to determine whether a simulated stock price evolution satisfies the
Parisian constraint of the option.
So far the geometric Brownian motion has been used to model the underlying
stock price process, like Black and Scholes did in deriving their option price
formulas. In practice the option markets exhibit the so-called volatility smile
or volatility term structure. Both phenomena are not consistent with a stock
price process modeled by the geometric Brownian motion. In order to solve
this problem, people use Lévy processes to build models for the underlying
stock price. The Brownian motion actually is a Lévy process, but the class of
Lévy processes is bigger. There exist for example processes with jumps that
are Lévy processes, wheras the Brownian motion is a continuous process. A
first, small step in using Lévy processes for Parisian option pricing is the use
of a very basic jump model to price double-sided barrier options in chapter
five. The method of Laplace transform inversion is used to obtain prices. In
order to derive explicit formulas for this transform, results on two-sided exit
problems for Lévy processes are used. Numerical examples show that the
model can be calibrated to the market and what the volatility smile looks
like if it is computed from the double-sided barrier prices generated by the
jump model.
The last chapter of this thesis treats the valuation of options on commodi-
ties, especially on oil. Oil as a commodity is traded on the spot market and
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futures are traded on the futures market. Both spot and future can serve
as an underlying for a commodity option. Chapter six introduces the po-
tential model for the commodity price process. Changes in the commodity
price are partially determined by randomness and partially by a potential
function. It is possible to choose the potential function in such a way that
the commodity price process prefers to stay within certain intervals, which
are located around the so-called attraction points. The potential model is
used to derive option pricing formulas and the chapter contains a detailed
treatment on the applicability of option pricing principles used in the equity
world to the commodity world. Options on the spot and on the future are
treated separately and storage costs are part of the discussion.
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Propositions

belonging to the dissertation

Probabilistic methods in exotic option pricing

by Jasper Anderluh

1. The computation of a Parisian option price is a nice example of the appli-
cation of theoretical results in probability to the field of derivative pricing.
(Chapters 2,3 and 4 of this dissertation).

2. The following result is a corollary of the computation of the Laplace trans-
form of the double-sided Parisian stopping time.
The probability that a standard Brownian motion W makes an excursion
longer than D2 above zero before it makes an excursion longer than D1

below zero is given by √
D1√

D1 +
√

D2

.

(Chapter 3 of this dissertation).

3. In general a renewal-reward process is not a Lévy process.

4. The following theorem is true for general renewal reward processes and is
very similar to equation (5.18) of this thesis, which was deduced from a
general result on Lévy processes.
Let {X(t), t ≥ 0} be a renewal-reward process, and let {(Tj , Yj), j ≥ 0}
the i.i.d. sequence of pairs of inter renewal times and rewards, where H
denotes the distribution function of the pair (T0, Y0) and F the distribution
function of the time T0 . Then, for u, s > 0 and τh the first passage time
of level h the following equation holds

∫ ∞

0

e−shE(e−uτh) dh =
LF (u) − LH(u, s)

s(1 − LH(u, s))
,

where LF and LH denote the Laplace-Stieltjes transforms of F and H , i.e

LF (u) = E
(

e−uT
)

and LH(u, s) = E
(

e−uT−sY
)

,

for all u, s ≥ 0. (J.A.M. van der Weide, J.H.M. Anderluh and M. Pandey,
Models for wear, submitted paper.)



5. Although everybody admits that the assumptions made by Black and
Scholes in deriving their formula are violated in practice, it is still the
Black-Scholes way of option pricing that is used almost everywhere in
that same practice.

6. Private investors taking positions in options almost always face an unre-
alized positive return on their investment before turning it, as a result of
their greed, into a real loss.

7. Since in reality options are quoted in tick sizes of five cents, increasing the
accuracy of option prices up to, e.g., 10 digits is a non-issue.

8. Unfortunately the no-arbitrage axiom prevents the financial mathemati-
cian from getting almost surely infinitely rich.

9. The enormous amount of literature on calibration stresses the fact that
the market is always right.

These propositions are considered defendable and as such have been approved
by the supervisor prof.dr. F.M. Dekking.



Stellingen

behorende bij het proefschrift

Probabilistic methods in exotic option pricing

van Jasper Anderluh

1. Het berekenen van de prijs van een Parijse optie is een mooi voorbeeld
van de toepassing van theoretische resultaten uit de kansrekening op het
gebied van het prijzen van derivaten. (Hoofdstukken 2,3 en 4 van dit
proefschrift).

2. Het volgende resultaat is een corollarium van de berekening van de Laplace
getransformeerde van de dubbelzijdige Parijse stoptijd.
De kans dat een standaard Brownse beweging W een excursie langer dan
D2 boven nul maakt voordat er een excursie langer dan D1 onder nul heeft
plaatsgevonden wordt gegeven door

√
D1√

D1 +
√

D2

.

(Hoofdstuk 3 van dit proefschrift).

3. In het algemeen geldt dat een vernieuwings-beloningsproces geen Lévy
proces is.

4. De volgende stelling geldt voor een algemeen vernieuwings-beloningsproces
en is vergelijkbaar met vergelijking (5.18) van dit proefschrift die afgeleid
is uit een algemeen resultaat op het gebied van Lévy processen.
Zij {X(t), t ≥ 0} een vernieuwings-beloningsproces en {(Tj , Yj), j ≥ 0}
het onafhankelijk gelijkverdeelde rijtje van paren van tussentijden en aan-
groeiingen met H de verdelingsfunctie van het paar (T0, Y0) en F de verde-
lingsfunctie van de tijd T0. Dan geldt voor u, s > 0 en τh de eerste over-
schrijdingstijd van niveau h de volgende vergelijking

∫ ∞

0

e−shE(e−uτh) dh =
LF (u) − LH(u, s)

s(1 − LH(u, s))
,

waar LF en LH de Laplace-Stieltjes getransformeerden van F en H zijn,
gegeven door

LF (u) = E
(

e−uT
)

en LH(u, s) = E
(

e−uT−sY
)

voor alle u, s ≥ 0. (J.A.M. van der Weide, J.H.M. Anderluh and M.
Pandey, Models for wear, submitted paper.)



5. Hoewel iedereen het erover eens is dat de aannames van Black en Scholes
niet gelden in de praktijk, is het met name de Black-Scholes manier van
opties prijzen die bijna overal in diezelfde praktijk gebruikt wordt.

6. Particulieren die beleggen in opties hebben bijna altijd een ongerealiseerd
positief rendement voordat ze, als gevolg van hebzucht, een daadwerkelijk
verlies lijden.

7. Aangezien opties in de praktijk gesteld worden in stapjes van vijf cent
is het opvoeren van de nauwkeurigheid van optieprijs berekeningen tot
bijvoorbeeld 10 cijfers achter de komma volkomen zinloos.

8. Helaas weerhoudt het geen-arbitrage axioma de financieel wiskundige er-
van om bijna zeker oneindig rijk te worden.

9. De grote hoeveelheid literatuur op het gebied van calibratie geeft nog eens
aan dat de markt altijd gelijk heeft.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotor prof.dr. F.M. Dekking.


