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Summary

Automatically deriving 3D representations of buildings is a challenging problem which is at the base of
a wide range of applications. The DE-RISC project aims to generate a 3D model of the entire city of Rot-
terdam in The Netherlands, enabling many of these applications. Generating a 3D model of a building
can be done in a variety of ways, of which only few are robust, scalable and generalizable. Recognition
and reconstruction of architectural floor plans is such a scalable method long researched in literature.
Although these methods generalized poorly initially, recent breakthroughs in computer vision have al-
lowed for the application of deep learning based approaches. Recent floor plan processing methods
have shown promising results on single-unit floor plans. Single-unit floor plans are floor plans of single
apartments of relatively low complexity. In contrast, multi-unit floor plans describe entire buildings, and
are thus significantly larger and of higher complexity. Applying single-unit floor plan processing methods
to multi-unit floor plans is not trivial, and results in insufficient accuracy. These methods can therefore
not be applied to an entire city, limiting the scalability and generalizability.

This thesis proposes a novel multi-scale floor plan recognition and reconstruction method designed
to transform floor plans of arbitrary size into their 3D representations. As no multi-unit floor plan datasets
exists, a novel floor plan dataset MURF is presented based on multi-unit floor plans from buildings in
Rotterdam. MUREF considers seven boundary and opening semantic classes, each with distinct physical
properties. The recognition part of the method relies on an FCN employing multi-scale skip-connections,
an attention mechanism, and a multi-task training objective to reinforce the learning of multi-scale fea-
tures. The reconstruction part refines predictions from the recognition step by applying post-processing,
vectorization, and visualization in Blender.

The proposed method is compared to floor plan processing models from literature and general state-
of-the-art segmentation models by a quantitative and qualitative evaluation. Experimental results show
that the proposed method is significantly outperforms existing floor plan processing methods, and per-
forms best out of general segmentation models. A case study on the EMC in Rotterdam demonstrates the
generalizability of the proposed method.

Our code is available at: https://github. com/TheOnlyError/2d3d.
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Introduction

Over the recent years, 3D representations of buildings have become increasingly useful across several do-
mains such as indoor remodelling [1], construction [2], facilities management [3], and emergency mod-
els [4]. The DE-RISC! project is an example of an initiative heavily relying on the information contained
in 3D models. The DE-RISC project aims to develop a fully integrated 3D model of Rotterdam called the
Digital Twin, combining static building information with real-time data. Examples of static and real-time
data include 3D representations of all buildings, infrastructure, traffic data and population crowd density.
With support of the Municipality of Rotterdam and the Rotterdam-Rijnmond Security Region (VRR), the
digital twin of Rotterdam represents a future-proof solution for the manageability of the continuously
changing environment. Such a digital twin can be used in various domains, for example security, plan-
ning, traffic control and construction. A Proof of Concept using 3D point clouds of the digital twin has
been developed for a single building, which showed that scaling this approach to the entirety of Rot-
terdam is difficult due to, among others, model complexity and limited data availability. Creating a 3D
representation of the entirety of Rotterdam is the first step in creating a digital twin, and what this thesis
will focus on.

1.1. Problem Statement

Various approaches for generating 3D models of buildings of various levels of detail have been proposed,
making use of different data sources to do so. Among others, these include 3D point clouds [5, 6, 7], 3D
annotations obtained through Virtual Reality (VR) [8], Computer Aided Design (CAD) drawings [9, 10],
and architectural floor plans [1, 11, 12]. Although effective for single buildings, the majority of these ap-
proaches are not scalable to an entire city due to data availability, required human intervention, privacy
sensitivity, cost or complexity. Data availability is a crucial part of scalability, as many methods require
extensive data of a building in order to automatically generate its 3D model [5, 6, 7, 8, 10]. However,
getting sufficient data is costly and sometimes impossible [13, 14]. This thesis opts to use architectural
floor plans as its sole source to generate 3D models, as these are widely available and require no further
human intervention [15].

Architectural floor plan are dense 2D representations of the geometric and semantic information of
floors of buildings. The level of complexity in floor plans varies significantly, and can range from describ-
ing the material and structure of each wall, to considering all wall properties and structure equal. The
conversion of 2D floor plans into 3D models has long been a topic of active research [1, 8, 16, 17] and
been shown to be a challenging problem [18]. The main difficulty of generating a 3D representation lies
in generalizing across varying drawing notations and increasing levels of unrelated noise in drawings [1].
It is also important to note that generating an actual 3D representation from a single floor plan is im-
possible, as height information regarding walls is almost always omitted. The height of walls and other
elements in generated 3D models is often assumed, and thus a 2.5D representation would be a more ac-
curate description. However, to prevent confusion this thesis will refer to 2.5D representations as 3D for
the remainder of the content.

https://convergence.nl/nl/how-do-we-protect-a-large-city-with-many-high-rise-buildings-against-emergencies/



1.1. Problem Statement 2

Initial floor plan analysis relied on a predefined set of heuristics used to determine the semantic el-
ements in floor plans [19, 20, 21, 22]. Since the rules were derived from the input data, these solutions
generalized poorly and required significant human intervention to process a different floor plan dataset.
To automatically derive an effective set of heuristics from a dataset, and thus eliminating the need for
human intervention, machine learning based methods were later applied [23, 24]. Although less hu-
man interaction was required, these solutions still required retraining before processing a new floor plan
dataset.

With recent advances in computer vision, deep learning based approaches have been proposed for
floor plan analysis [16, 17, 25, 26, 27]. Convolutional Neural Networks (CNNs) in particular have been
shown to be very effective at identifying the semantic elements in floor plans required for 3D visualiza-
tion. The main advantage of using a neural network to process floor plans is that the inference on such
a network can be scaled significantly better compared to traditional processing techniques. This thesis
will thus also focus on developing a CNN to process floor plans.

The main limitations of existing approaches lie in their constraints on input size and considered se-
mantic elements in floor plans. The current state-of-the-art solutions are trained on datasets where the
size and complexity of floor plans is limited. The floor plans in these datasets are often sourced from
single-unit apartments in residential areas [1, 16, 17, 26, 28]. The complexity of single-unit residential
apartments is significantly lower compared to other types of floor plans, for instance rural floor plans [27].
Although more complex, rural floor plans are still limited regarding their size. Multi-unit floor plans are
distinct from single-unit floor plans, as they represent entire building floors instead of single apartments.
Single-unit floor plans are often more aligned with the axes of the plan, and thus provide a more regular
set of room shapes and boundary elements. In contrast, multi-unit floor plans almost always contain
elements not aligned with the axes or contain non-rectangular shapes. As a result, multi-unit floor plans
are significantly larger and more complex than single-unit floor plans, presenting a more difficult image
segmentation task. Although geometric approaches have been proposed, multi-unit floor plans have not
been evaluated in a deep learning setting in literature [14, 29].

Effectively processing floor plans of arbitrary size and complexity is especially important to convert
a city of different buildings into their respective 3D representations. A naive solution would be to apply
an ensemble of segmentation models that operate on different floor plan scales. This approach would,
however, not scale well with increasing floor plan size. Figure 1.1 shows the differences between two
examples of a single-unit and multi-unit floor plan. In addition to the significantly larger size, the multi-
unit floor plan contains more annotations unrelated to the structural elements that can be identified.
Compared to the single-unit floor plan, the size of structural elements, such as windows, varies more in
the multi-unit floor plan. The size, level of noise and feature complexity all contribute to the difficult
segmentation case multi-unit floor plans present.

The semantic classes that state-of-the-art methods consider also limit the generalizability across
other types of floor plans. Although recent works consider sufficient objects in floor plans, the struc-
tural elements important for a representative 3D model are lacking [17, 27]. For emergency related ap-
plications, different types of walls (e.g. glass walls) and openings (e.g. sliding doors) may be crucial for
a realistic generated 3D model. No model in recent literature has attempted to detect these structural
elements in single-unit or multi-unit floor plans.

Another limitation of current state-of-the-art floor plan processing models is that they have been
trained on a fixed input resolution. A resolution of 512 x 512 is often used for the proposed networks [16,
17, 27]. Fixing the floor plan size for a model can have three disadvantages. In the case that a dataset
is not sampled (e.g. larger floor plans divided into smaller ones), all floor plans in a dataset have to be
resized for training. Resizing the floor plans reduces the level of detail significantly, which the model can
now no longer capture. The second disadvantage is that fixing the input size drastically limits learning
multi-scale features. For instance, features of walls that relate across different samples can no longer be
learned. The third disadvantage is related to the architecture and hyperparameters of a model with a
fixed input size. State-of-the-art floor plan processing methods often use a Fully Convolutional Network
(FCN), because of their ability to process inputs of arbitrary size. However, if some component of an FCN
requires a predefined shape, the model is now restricted to one size. This limits the scalability of the
model significantly. In addition to this, values for hyperparameters of a model are often found empiri-
cally, but could harm performance if the model is tasked to detect larger features than originally trained
for. A model that can learn from floor plans of various resolutions can thus help to learn multi-scale
features essential for effectively processing multi-unit floor plans.
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This thesis aims to fill this gap by proposing: (1) a novel multi-unit floor plan dataset, and (2) a multi-
scale CNN architecture that can detect the necessary structural elements in both single-unit and multi-
unit floor plans to generate accurate 3D representations. Concretely, the objective of this thesis is to
answer the following three research questions:

1. How can a multi-unit floor plan dataset best be defined for effective learning and visualization?

2. What CNN architecture can effectively detect semantic information in architectural floor plans of
arbitrary size in a scalable manner?

3. How can produced segmentation masks best be transformed into a 3D representation?
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Figure 1.1: Examples of single-unit and multi-unit floor plan.

1.2. Contribution

The answers to the proposed research questions are formalized by the following three contributions:

1. Introduce MURF, a novel multi-unit floor plan dataset consisting of high-quality architectural floor
plans with varying degrees of complexity to train and evaluate the proposed model on. Refine
existing public datasets in order to create a combined dataset and evaluate generalization across
different types of floor plans.

2. Propose anovel multi-task FCN able to effectively process architectural floor plans of arbitrary type,
size and complexity.

3. Develop an efficient reconstruction pipeline to transform produced segmentation masks into 3D
models.

This thesis will evaluate the proposed model against the state of the art, also considering newer mod-
els that have not been evaluated in the floor plan processing domain yet.



Related Work

The conversion of 2D floor plans into 3D models has long been an active research topic in the domain
of computer vision. Solving this problem requires solving a number of sub-problems, which include
noise removal, symbol recognition, vectorization and 3D transformation [17]. In order to derive a 3D
representation of a floor plan, the appropriate elements such as walls and openings must be identified.
Initially, manual techniques were employed to do so [19, 20, 21, 22]. Over time, the improved access to
computational resources allowed for more complex automatable approaches. The research focus of floor
plan analysis shifted from feature engineering derived from low-level image processing to deep learning
methods that have been shown to generalize better [25, 26].

In addition to detecting the necessary elements to construct a 3D model of a floor plan, other el-
ements in a floor plan can be identified. Existing models described in literature have been trained to
detect the room types or fixed furniture in a floor plan.

While a plethora of methods exist for single-unit floor plans, i.e. floor plans of single apartments,
there is a distinct lack of scalable approaches for multi-unit floor plans, i.e. floor plans of entire floors
of buildings. The majority of the existing methods in literature were designed for and applied to single-
unit floor plans. Although multi-unit plans are fundamentally different from single-unit plans, there are
semantic similarities between them. Such similarities include the overlap of semantic classes in both
types of floor plans. The complexity of multi-unit floor plans in particular is higher, conveying more
information than single-unit floor plans. Reviewing the single-unit floor plan processing methods can
thus still provide valuable insights, which this thesis will consider.

This chapter first presents an overview of relevant single-unit and multi-unit floor plan processing
methods and related datasets. As the focus of this thesis is to develop a scalable solution, only semi-
automatic methods are considered. More recent developments in semantic segmentation have not yet
been evaluated in the floor plan processing domain. These state-of-the-art segmentation models will be
briefly discussed in the end.

2.1. Early Methods

Initial methods of floor plan analysis mainly revolve around extracting the walls and separating text from
graphics in single-unit floor plans. The extracted walls can then be combined in a post-processing step
to derive the rooms in a floor plan. Under the assumption that walls are of similar notation, the walls can
be extracted by analysing low-level image features.

Dosch et al. combined a classical Hough transform with image vectorization to generate a 3D rep-
resentation of a single-unit floor plan [19]. In order to overcome memory limitations, a tiling method
was proposed that divides the images into partially overlapping segments. The visualization method was
later improved by Or et al. by generating polygon meshes [20]. This method was applied to multi-unit
floor plans. Both solutions were hand tailored to the used floor plans, and thus generalized poorly.

Macé et al. designed a system to detect rooms in single-unit floor plans [21]. This system first ex-
tracted walls from the floor plan by similar coupling of Hough transform and vectorization as in [19].
The walls and openings are then used in a room segmentation strategy, which refines room polygons by
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measuring concavity. The limitation of this approach is that the room detection focused on rectangular
rooms, and thus performed degraded on more complex floor plans.

Ahmed et al. proposed a sequence of morphological operations to group walls in a single-unit floor
plan into thin, medium and thick lines [22]. The rooms could be identified by combining the extracted
walls with a text/graphics segmentation method based on connected components [30]. Ahmed et al. later
proposed an extension that also detects the room labels using Optical Character Recognition (OCR) [31].
An obvious limitation of this approach is that it can only be applied to floor plans of similar style in which
the walls are represented by thick lines, i.e. bold and of solid filled color.

2.2. Machine Learning Methods

Conventional methods of floor plan analysis rely on heuristics derived from floor plans to recognize el-
ements in it. Since these solutions are tailored to specific datasets, they generalize poorly to a larger
range of drawing notations. Walls alone can be represented in different ways, for instance by varying
thickness, texture or number of parallel lines. Examples of different wall drawing notations are depicted
in Figure 2.1. This means that low-level heuristics have to be redefined for different datasets, which is
expensive and limits the scalability. This motivated the development of machine learning methods that
could overcome these difficulties.

.

Figure 2.1: Examples of various drawing notations for walls [32].

De Las Heras et al. introduced a patch-based segmentation method to overcome the variability of
notations in single-unit floor plans [23]. This method produced a pixel-wise prediction of walls in single-
unit floor plans. This prediction is based on the K-Means clustering of patch features that are extracted
using Principal Component Analysis [33]. De Las Heras et al. later provided an extension to additionally
segment doors and windows [24]. It is important to note that this method still required retraining the
parameters for a new dataset, but meant that the method itself would no longer have to be modified as
well. The requirement of retraining is the biggest limitation of this approach, as improved adaptability of
the solution is not sufficient to generalize well to different drawing notations. Another notable limitation
is that walls are assumed to consist of straight lines, meaning curved walls can not be detected.

2.3. Deep Learning Methods

While machine learning methods allowed for more adaptable solutions, generalizability on different
drawing notations still proved to be challenging. With the development of deep learning technology, re-
lated methods have proved to be more effective at generalization on floor plans. CNNs have been shown
to perform well in floor plan analysis in particular. This section will discuss its uses and results.

Dodge et al. were one of the first to use an FCN for wall segmentation in single-unit floor plans [25].
A separate object detection method based on faster R-CNN [34] was employed to determine room sizes.
Performance was significantly better compared to earlier methods relying on shallow learners. The re-
training for machine learning methods was also no longer required.

Liu et al. trained a neural network to detect junction points in single-unit floor plans [1]. These were
combined by integer programming to derive the walls and room types in floor plans. A novel dataset
was proposed for evaluation, in which shows that the model outperforms the previous state-of-the-art
proposed by Ahmed et al. [31]. The main limitation of this work is the Manhattan assumption, which
assumes all lines are either horizontal or vertical. This means recognizing complex elements such as
curved walls is impossible.

Zeng et al. proposed a multi-task CNN to detect the room boundaries and room types in single-unit
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floor plans [16]. Walls and openings (e.g. windows and doors) were considered as room boundaries. The
main contribution was to use an improved loss function and novel room-boundary attention mechanism.
This attention mechanism reused the room boundary features when determining room types. A limita-
tion of this network is that it is not fully convolutional, and might therefore have problems processing
larger mult-unit floor plans.

In recent work, Lv et al. proposed a segmentation architecture that utilizes a combination of deep
segmentation and detection networks [17]. An FCN variant of DeepLabV3+ [35] was used to detect walls.
A heatmap regression task was proposed to improve the detection of openings. YOLOvV4 [36] was used to
detect objects and annotations in a floor plan. A novel scale calculation was also proposed, which relies
on annotations in a floor plan to determine the size of the 3D representation. Compared to [16], this
method increased accuracy for wall and room type segmentation. The architecture was also evaluated
on a new single-unit floor plan dataset. Although the results are promising on single-unit plans, the
model was not evaluated on multi-unit floor plans.

2.4. Datasets

Over the recent years, several floor plan datasets have been proposed, each with distinct properties. This
thesis aims to propose a scalable and generalizable multi-unit floor plan processing approach. The gen-
eralizability refers not just to the variability of drawing notation in floor plans, but also regarding their
size and complexity. Combining several floor plan datasets for learning and evaluation can help achieve
this goal. This section will thus discuss several floor plan datasets.

Recent literature has published the floor plan datasets shown in Table 2.1 [14]. The datasets have been
selected based on their published date, annotation, complexity, resolution and number of floor plans.
Datasets R3D [26], R2V [1] and CubiCasa5K [28] have been evaluated extensively in related work [17, 27,
37]. Zeng et al. proposed expanded variants of R3D and R2V with pixel-wise labels instead of vectorized
ones. Eighteen circularly shaped floor plans were also added to R3D. Although the annotations of R2V
are publicly accessible, the floor plans are not [14]. Lv et al. recently published a novel dataset RFP, but
this has unfortunately not been made public. The same applies to RuralHomeData introduced by Lu et
al. [27]. No further other evaluation on RFP and RuralHomeData has been presented yet apart from the
original works.

To the best of our knowledge, no multi-unit floor plan dataset exists in literature. Since there are se-
mantic similarities between single-unit and multi-unit floor plans, the datasets are still useful for learn-
ing. This thesis opts to use the extended R3D and CubiCasa5K datasets for its learning and evaluation,
because these are publicly available and of distinct size and complexity.

The original R3D dataset contains 214 floor plans crawled from a London rental site [26]. The source
of the 18 round-shaped floor plans added by Zeng et al. is not specified, although the annotations are in
English [16]. Compared to R2V, the walls in R3D are more complex as they are of nonuniform thickness.
This nonuniform representation is essential for a model to learn multi-scale features, crucial for predic-
tion generalizability. In addition to the round-shaped floor plans, this is why R3D has a higher complexity
than R2V. Zeng et al. introduced the annotations for R3D that are used in this thesis. The annotations are
pixel-wise masks for each structural class and room type.

The CubiCasa5K dataset is based on a large sample of 5000 floor plans sourced from real estate mate-
rial from Finland [28]. The majority of source floor plans are raster scans of original floor plan drawings.
The annotations of floor plans are SVG files, containing a large number of structural elements, room types
and objects. It is important to note that while the annotations in CubiCasa5K contain many classes, only
a small subset of classes was evaluated by merging them [28]. Another important note is that labels in
CubiCasa5K sometimes deviate from the source floor plans, in the case where the real-world state of a re-
spective apartment is different [28]. The level of noise introduced by raster scans, large number of classes,
and label deviations are the main reasons why the complexity of CubiCasa5K is considered high.

2.5. State-of-the-Art Segmentation Models

The field of image segmentation is developing quicker than the floor plan processing domain can match
with. Several CNNs have been proposed that showed promising results in other domains such as medical
image segmentation.

The majority of the state-of-the-art CNNs are improved versions of U-Net [38]. U-Net is one of the
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Dataset (year) Annotation Complexity Resolution Number Public
min-max  ofplans access

R3D (2015) [26] Walls, openings, and 6 room types Low 175-1104 214 v

R2V (2017) [1] Walls, doors, windows, stairs, other Low 96-1920 815 X
object types, and 12 room types

R3D* Same as R3D but includes circular Medium 175-1104 232 v

(2019) [16] shaped plans

CubiCasa5K Walls, doors, windows, and 80 other High 50-8000 5000 v

(2019) [28] object categories

RFP (2021) [17] Walls, doors, windows, and 7 room Low 180-3615 7000 X
types

RuralHomeData Walls, doors, windows, stairs, slopes, Medium 1600-2560 800 X

(2021) [27] text, and 21 room types

Table 2.1: Overview of datasets available in recent literature. *R3D has been extended with 18 images by Zeng et al. [16]. The
complexity of a dataset is based on the type, annotation and resolution of corresponding floor plans. R2V is not considered
publicly accessible, because only the annotations without respective floor plans are available [14].

first FCNs based on an encoder-decoder architecture that utilized skip connections to fuse high-level
semantic feature maps with low-level detailed feature maps. The main limitation of the skip connections
in U-Net is the large semantic gap between the fused feature maps [39].

U-Net++ [39] was one of the first segmentation models to improve the original design of U-Net. The
main improvement of U-Net++ was to replace the plain skip connections of U-Net with nested and dense
connections, reducing the semantic gap between the encoder and decoder [39].

U-Net3+ [40] was proposed as an improvement over U-Net++ and introduced full-scale skip connec-
tions. These were designed to make full use of multi-scale features by directly fusing the feature maps
from different scales. In addition to improved accuracy compared to U-Net++, U-Net3+ requires less
network parameters.

The disadvantage of directly aggregating multi-scale feature maps is that this assumes their weights
are equal. MACU-Net [41] introduces channel attention blocks in order to combine multi-scale features
effectively. MDA-UNet [42] utilized similar channel attention blocks, designed to significantly reduce the
network parameters required.

One downside of removing the intermediate neurons of U-Net++ is that the performance of small
targets with a small number of samples is limited. U-Net# is designed to combine U-Net++ and U-Net3+,
utilizing all three types of skip connections: nested, dense and full-scale connections.

Although MACU-Net, MDA-UNet and U-Net# have been shown to outperform U-Net3+ individually,
an analysis evaluating the models against each other has not been performed yet. Thus no clear best
architecture is known, and should be decided based on context.



MURF

This chapter contains an extensive description and evaluation of the novel Multi-unit Rotterdam Floor
plan (MURF) dataset proposed in this thesis. The design of MUREF is related to RQ1: determining how a
multi-unit floor plan dataset can best be defined for effective learning and visualization. The last section
will reflect on MURF and the first research question. Note that ‘MUFP’ in the figures for the remainder of
this chapter refers to the MURF dataset.

3.1. Data Source

The MUREF dataset is a novel multi-unit floor plan dataset consisting of large, high-quality floor plans of
varying complexity. Multi-unit floor plans are distinct from single-unit floor plans as they contain the
architectural information of the entire floor of a building, compared to a single apartment. As a result,
multi-unit floor plans are larger and more complex than single-unit floor plans. MURF consists of 8 floor
plans provided by two industrial partners: the Municipality of Rotterdam and the Rotterdam-Rijnmond
Security Region (VRR). The floor plans are of various buildings which include hospitals, schools and large
luxury apartment buildings.

MUREF consists of rasterized versions of the source floor plans created using Adobe Photoshop. Since
the source floor plans were always provided in a PDF file format, the rasterized images could be simply
be generated by converting the PDFs into a PNG image. The resolution of a rasterized PNG floor plan was
set large enough so that all details of the PDF were captured with sufficient quality. Figure 3.1 contains 3
examples of multi-unit floor plans in MURE

3.2. Annotation

Annotation of the multi-unit floor plans was manually done using Labelbox! by a small group of three
Computer Science students at TU Delft (2 BSc and 1 MSc). In an iterative process, the set of semantic
classes, annotation guidelines for each class, and resulting annotations were continuously refined. This
process involved consulting industrial partners, such as the Fire Brigade of Rotterdam or floor plan ex-
perts from TU Delft with sufficient architectural knowledge. The Fire Brigade and similar parties were
important to determine which information of a building is useful in a generated 3D model, and thus
which semantic classes need to be identified in the 2D floor plan. Floor plan experts helped determine
which regions in floor plans actually correspond to a certain semantic class, proving useful in order to
create guidelines in order to identify the semantic elements. Since the floor plans in MURF are large, a
single annotation took from 7 to 10 hours depending on the complexity of the floor plan. Each floor plan
was labelled by one annotator, and reviewed and corrected separately by the other two persons.

Table 3.1 contains the final list of semantic elements considered in MURE The corresponding colors
will be used for visualization for the remainder of this thesis. The boundary and opening descriptions
are related to loss functions that will be discussed in a Section 4.1.4. Glass walls refer to walls that are
breakable and see-through, but can not be opened like windows. Railings refer to half height walls that

Ihttps://labelbox.com/
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can be traversed over. Sliding doors refer to doors that open in a distinct manner without a swing path,
including both sliding doors that open automatically and doors that do not. The reason for including
glass walls and railings in addition to regular walls is related to their semantic difference and distinct use
case. The same reason applies to sliding doors, which are added in addition to regular doors. The features
of glass walls, railings and sliding doors differ sufficiently for a model to be able to learn to detect them
separately. Including glass walls, railings and sliding doors in generated 3D models also improves the
overall accuracy, since the 3D representations are now ‘closer’ to the real-world state of buildings. This in
turn improves the applicability of generated 3D models. Railings could for instance help the fire brigade
identify the best route for a building by taking the traversable walls into account. Figure 3.2 contains 3
examples of ground-truth multi-unit floor plan labels in MURE

To generate the masks, the Labelbox API was used to export all annotations. The annotations were
further processed and combined into a single mask by assigning each pixel in the mask a distinct integer
value based on the semantic class. The values per class are shown in Table 3.1. Further processing was
only necessary for some of the larger multi-unit floor plans, which could not be fully exported using the
API due to unforeseen size restrictions. For these larger plans, the annotation paths from Labelbox had
to be manually converted into class polygons used for the generated mask.

Description Color Value Boundary Opening

Wall 1 v X
Glass wall 2 v X
Railing 3 v X
Door 4 X v
Sliding door - 5 X v
Window 6 X v
Stairs 7 X X

Table 3.1: Structural element classes of MURF with colors, boundary and opening descriptions.
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3.3. Dataset Statistics

This section presents statistical information about MURF by discussing three aspects: (1) the distribution
of floor plan sizes, (2) the number of class pixels, and (3) the distribution of classes. Since MURF contains
a distinct list of semantic classes compared to other floor plan datasets, it will be discussed independent
of the others first.

Figure 3.3 shows the different resolutions of the floor plans in MURE The smallest floor plan consists
of 3100 x 9700 pixels, while the largest floor plan has 28160 x 11850 pixels.

MUFP

.

o
S
L

Width (pixels)

6x10° 7x10° 8x10° 9x10° 1|04
Height (pixels)

Figure 3.3: Source image resolution of floor plans in MURE

Figure 3.4 shows the total number of pixels of the semantic classes of MURE Although there is no
distinction between instances of a given class in the annotations, the number of pixels is equal to the
area of the combined instances. The area of background pixels make up the large majority of floor plans,
causing significant class imbalance. The number of sliding doors pixels in the multi-unit floor plans is
especially low, due to both their scarce presence and small dimensions. Stairs occur as often as sliding
doors, but make up a larger portion of floor plans in comparison.

Figure 3.5 contains the normalized frequency for each semantic class in MURE Since there are 8 data
points, only a few histogram bins are necessary to represent the results. The class imbalance is also
visible here as the background pixels constitute the majority, averaging around 90%. All of the railing and
opening classes follow a similar distribution, where the frequency of the higher areas decreases. For the
glass walls and stairs the highest frequency is centered around the middle, due to the fact that these class
pixels are not present in all the floor plans. For the background and wall pixels the distribution is more
uniform-like, since each floor plan has a varying number of them.
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3.4. Comparative Analysis

This section provides a comparison of MURF and the two public datasets R3D [16] and a refined ver-
sion of CubiCasa5K [28] named CubiCasa. CubiCasa is proposed to improve the annotation quality of
CubiCasa5K and will be discussed further in the next section. The dataset comparison is based on the
joint statistics of all datasets. For each dataset three statistics are reported: (1) the distribution of floor
plan sizes, (2) the number of class pixels, and (3) the distribution of classes. The set of classes consid-
ered for a comparison depends on the datasets included. In the case of R3D, only walls and openings
are considered. For the refined version of CubiCasa5K, only walls, railings, doors, windows and stairs
are considered. Table 3.2 describes the conversion of MURF labels to the labels of CubiCasa or R3D. The
conversion of CubiCasa to R3D is also indirectly shown in Table 3.2. MURF will be compared to R3D and
CubiCasa separately in the following subsections. Appendix A contains supplementary examples of floor
plans from the two public datasets.

MURF label CubiCasalabel R3D label

Wall Wall Wall
Glass wall Wall Wall
Railing Railing Wall
Door Door Opening
Sliding door Door Opening
Window Window Opening
Stairs Stairs -

Table 3.2: Mapping of semantic classes of MURF to CubiCasa or R3D. Symbol ‘-’ denotes that a class is ignored.

Figure 3.6 shows the different resolutions of the floor plans in MURF compared to R3D [16] and Cu-
biCasa. The center points of the three dataset clusters show that while R3D and CubiCasa somewhat
overlap, the floor plans in MUREF are significantly larger. The data points of R3D are more structured
compared to CubiCasa, likely due to manual preprocessing of floor plans beforehand. The range of R3D
is also much smaller compared to CubiCasa, which contains floor plans of a larger range of sizes. The
range of floor plan sizes in MURF is limited to large dimensions, but still describes a relatively large range
considering it only contains 8 data points.
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Figure 3.6: Source image resolution of floor plans in MURF compared to R3D [16] and CubiCasa.

3.4.1. Refined CubiCasa5K

The overall annotation quality of the CubiCasa5K dataset [28] is significantly lower compared to the qual-
ity of R3D. Class labels are often incorrect, incomplete or contain many unrelated artifacts. For a few floor
plans, the annotations do not match due to differences in the current real-world state of apartments [28].
These differences would, however, only confuse a model learning to identify its elements. Figure 3.7 con-
tains examples of common annotation problems. The quality of railings annotations in the floor plans is
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especially poor. Although not mentioned in the original work [28], stairs have been scarcely labelled in
the floor plans.

To improve annotation quality, a manual selection of 560 floor plans of varying size and complex-
ity was made to remove duplicates and find annotations that would be relatively cheap to correct. For
each floor plan, all labels were manually corrected. Stairs annotations were added to the floor plans that
missed them. This thesis proposes CubiCasa as a refined version of CubiCasa5K, which will be used in
the remainder of this thesis. Lu et al. showed that a labelled subset of CubiCasa5K can provide sufficient
information for effective learning and evaluation [27].

Along with the annotation improvements, CubiCasa also contains rasterized labels in a PNG file for-
mat instead of the original SVG files. This was necessary to facilitate a fair comparison between the Cubi-
Casa5K model and the model proposed by this thesis, and to create a combined dataset for learning and
evaluation. The former part can be considered fair because the original model proposed by Kalervo et al.
effectively rasterized the SVG annotations as well when they are converted into tensors for learning [28].

To generate PNG representations of the source SVG annotations, a small SVG parser was written. The
annotations in CubiCasa5K contain many classes and nested relations, of which only a few are evalu-
ated [28]. In order to extract the semantic classes in Table 3.2, the following objects were identified in the
SVGs: Stairs, Railing, Wall, Window, Door and Column. The majority of the objects was accompanied by
a set of points, which was used to determine the location of the object in the floor plan. When a column
was represented by a circular SVG object, the corresponding center point and radius was used. Column
objects were merged with wall objects, as they are semantically identical to each other. The parsed SVG
files were further processed to generate the PNG masks.

Transforming the parsed SVG files into PNG representations was not trivial due to overlapping class
labels. For instance, windows are contained in walls in the annotations, which could result in small
wall pixels along the boundaries of windows in generated PNG masks. Another example are railings,
which are sometimes contained in stairs classes in the annotations. These overlapping labels had to
be corrected because they do not represent the ground-truth accurately and can inhibit the learning
process. Two measures were taken to achieve this: (1) a small dilation operation with a 3 x 3 kernel was
applied to all windows, and (2) the annotations were then combined into a single mask, relying on a
predefined ‘drawing’ order to fix part of the overlap. The drawing order used to convert the SVG files into
PNG representations is shown in Table 3.3.

CubiCasa5Klabel Drawing order

Wall 1
Stairs 2
Railing 3
Door 4
Window 5

Table 3.3: Drawing order of CubiCasa5K labels applied to fix overlapping classes. The lowest value is drawn first.
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== (¢) Unrelated artifacts due to incorrect
cropping (i.e. all the windows related artifacts
(a) Incorrect label (b) Incomplete label (missing stairs) that should have been removed)

Figure 3.7: Three examples of annotation inconsistencies in the CubiCasa5K dataset.

3.4.2. R3D Comparison
To compare the statistics of MURF and CubiCasa to R3D, the mapping in Table 3.2 is first applied. Fig-
ure 3.8 shows the number of pixels per semantic class of each dataset. CubiCasa contains the most data
on each of the classes, followed by MURF and R3D. The important observation to make here is that the
number of floor plans does not solely dictate the amount of data in a dataset. The size and content of
the floor plans are equally important. MURF contains 8 high resolution floor plans, resulting in a compa-
rable number of pixels compared to CubiCasa which is 70 times larger. MURF also exceeds the number
of pixels in R3D, which contains 225 floor plans respectively. The ratios of the number of class pixels are
identical for the three datasets; the background class has the most pixels followed by walls and openings.
Figure 3.5 shows the normalized frequencies of each dataset considering the three semantic classes
of R3D. The distributions of all semantic classes are similar for the three datasets. The distribution of
CubiCasa is most varied, followed by R3D and MURE This variance is partly due to the dataset sizes.

== R3D
B CubiCasa
10% = MUFP

=

(=]
)
1

Number of pixels

=

(=)
—
1

108 4

Figure 3.8: Number of pixels per semantic class in MURF compared to R3D [16] and CubiCasa.
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Figure 3.9: Normalized frequencies of all semantic classes of MURF compared to R3D [16] and CubiCasa.

3.4.3. CubiCasa Comparison

This section compares MURF to CubiCasa by applying the mapping in Table 3.2. Since R3D does not have
sufficient semantic classes for this mapping, it is left out of the comparison. Figure 3.10 shows difference
in the number of class pixels between MURF and CubiCasa. The ratios of class pixels are almost identical,
apart from stairs and door pixels which are swapped with a small difference.

Figure 3.11 shows the normalized frequencies of each semantic class of MURF compared to CubiCasa.
The distributions for each class are similar, except for the center points of the background pixels and door
pixels in MURE which are shiften more to the right and left respectively compared to CubiCasa. The
frequencies of class pixels in CubiCasa are distributed over a larger range, which is likely due to the large
difference in the number of floor plans.
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3.5. Reflection on RQ1

This chapter introduced MURF: a novel multi-unit floor plan dataset. This chapter described its data
source, annotation process and relevant statistics compared to existing floor plan datasets. RQ1 was
posed to answer the following: how can a multi-unit floor plan dataset best be defined for effective learn-
ing and visualization? This chapter showed the following:

¢ Arelatively small number of 8 multi-unit floor plans provides sufficient annotation data, compared
to R3D and CubiCasa, for a model to generalize on its features in a realistic learning setting.

¢ The semantic elements in Table 3.1 were determined to be sufficiently semantically distinct for
learning, and most useful for related applications of visualized 3D models. The use case of these

elements is based on their properties and interaction (e.g. see through, has swing path, traversable,
connected to other floors).



Method

This chapter discusses the network architecture of the model and its variants proposed in this thesis,
including relevant loss functions. Figure 4.1 contains a schematic overview of the entire floor plan pro-
cessing pipeline, which shows that the proposed method is divided into a recognition (bottom) and re-
construction (top) part. The recognition part focuses on identifying semantic elements in the floor plan.
The reconstruction part further processes the detected elements in order to transform them into a 3D
model. The recognition and reconstruction parts focus on RQ2 and RQ3 respectively, for which a reflec-
tion is discussed in the last section.

4.1. Recognition

This section elaborates on the relevant semantic classes considered in floor plans and the proposed
model architectures responsible for the recognition part of the model. The recognition part relies on
an FCN based on U-Net3+ [40], and a multi-task training objective designed to capture pixel, patch and
multi-scale losses. A deeply supervised version of the proposed architectures will also be discussed.

4.1.1. Semantic Classes

The model proposed in this thesis only considers the detection of structural elements in floor plans.
Room types are not considered for two reasons: (1) their definition is often unclear in multi-unit floor
plans, and (2) they are not necessary to generate 3D models. Object types such as furniture are not con-
sidered for identical reasons. Table 3.1 contains the list of semantic elements the model supports, in
addition to the boundary and opening categories which will be used in the training objective for the
recognition part.

4.1.2. Proposed Architectures

To develop an effective model architecture, an extensive literature review has been conducted to evalu-
ate 11 recently published state-of-the-art segmentation models [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].
The goal of this literature review was to create an overview of differences between segmentation models,
design choices made, and ultimately come up with a set of potential architectures for models that could
prove effective at floor plan analysis. The segmentation models that were considered in the literature
review can be separated into two types: FCNs and typical non-fully convolutional CNNs. Two widely
used models of both types are U-Net [38] and Mask R-CNN [50], which are able to perform semantic
segmentation or instance segmentation respectively. Instance segmentation can be seen as a more chal-
lenging task than semantic segmentation, since it treats multiple objects of the same class as a single
entity. To determine what type of model architecture might perform best, U-Net and Mask R-CNN were
first examined. Only boundary and opening classes were considered for the initial evaluation.

Initial results on Mask R-CNN showed that there are two main disadvantages of using a CNN. The first
disadvantage is that the generated masks of Mask R-CNN are of insufficient quality, even when perform-
ing semantic segmentation. This is a known side effect of Mask R-CNN, due to the fixed size of 28 x 28
pixels for regions that are used to generate masks [51]. This produces inaccurate results for objects larger
than this size, which is often the case since multi-unit floor plans contain objects of arbitrary size. For

22
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Figure 4.1: Schematic diagram illustrating the steps of the proposed floor plan processing method. The recognition step (bottom
part) produces a segmentation mask of the floor plan by using a custom FCN relying on an EfficientNet-B2 encoder. The
segmentation mask is subsequently refined through the reconstruction step (top part), which applies post-processing,
vectorization and, finally, visualization using Blender.

instance, walls surrounding an entire building are significantly larger than a single door serving as its
entrance. The second disadvantage of Mask R-CNN that a non-fully convolutional network cannot infer
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a mask of larger floor plans than it has been trained on. This means that a sampling approach has to be
used to process much larger multi-unit floor plans, limiting scalability. PointRend [51] was proposed to
improve the quality of the generated masks of Mask R-CNN. Although PointRend indeed produces more
accurate results, the improved accuracy was still significantly lower than an FCN could achieve. Due to
the lower accuracy and limited scalability, this thesis only considers FCNs for its model architectures.

As shown in Figure 4.2, U-Net showed more promising results compared to PointRend on early pre-
dictions of single-unit floor plans. The highlighted area shows missing opening predictions of PointRend
compared to U-Net. The generated masks were of sufficient accuracy and precision, which lead to further
evaluation on larger multi-unit plans. The results on multi-unit floor plans of U-Net were significantly
poorer. Although boundaries could still be detected fairly well, openings were no longer detected reli-
ably. To improve segmentation performance, two variants of U-Net were examined next. Specifically,
U-Net++ [39] and U-Net3+ [40] were considered, both improving upon the original U-Net architecture.
The two models showed promising results on an initial evaluation on a small sample of multi-unit floor
plans, with U-Net3+ performing best. Due to the improved performance, and reduced parameters com-
pared to U-Net++ [40], U-Net3+ was selected as the starting point for the proposed architectures.

(a) Segmentation mask of PointRend on single-unit floor plan (b) Segmentation mask of U-Net on single-unit floor plan

Figure 4.2: Early results of PointRend and U-Net on single-unit floor plan considering walls and openings highlighted in yellow
and blue. Problematic areas of PointRend highlighted in red.

The architectures for the main semantic model of this thesis are thus based on U-Net3+ [40]. Fig-
ure 4.3 depicts the two model architectures considered in comparison with the existing architectures
of U-Net [38], U-Net++ [39], U-Net3+ [40] and MACU-Net [41]. The remainder of this subsection will
dive into the specific differences between existing models and the model architectures proposed in in
this thesis. The following will be discussed: normalization, re-designed skip-connections, convolution
blocks, attention mechanism and the encoder backbones used.

Normalization

Due to GPU memory constraints on our machine, the maximum batch size of floor plans is limited to
small values (=< 2). Using native Batch Normalization [52] or Instance Normalization [53] would not be an
effective normalization method due to inaccurate mean and variance statistics used [54]. Two alternative
normalization techniques can mitigate this problem: Group Normalization (GN) [54] and Filter Response
Normalization (FRN) [55]. GN computes its mean and variance over a predefined group size, smaller than
the number of channels for a given feature map [54]. FRN computes statistics over the width and height
for a single image, eliminating the dependence on other batch elements [55]. FRN has been shown to
marginally outperform GN on small batch sizes, and would therefore be the logical choice. Nevertheless,
this thesis opts to use GN instead. The reason for this is that the dependence of FRN on the width and
height of an input restricts a model to only operate on a fixed input size. This would, however, interfere
with multi-scale feature learning and, more importantly, multi-scale inference. FRN normalization is
thus incompatible with the model proposed in this thesis, which will use GN instead.

Multi-scale skip connections

The design and use of skip connections is an important part of the architecture of an effective FCN. Skip
connections can combat the negative side-effects that an FCN introduce, such as spatial information
loss, convergence instability and vanishing gradients [56]. Several types of skip connections can be iden-
tified from existing literature: short, long, nested, dense, full-scale, and multi-scale skip connections [38,
39, 40, 41, 57]. Short and long skip were proposed first and have been evaluated extensively. Nested,
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Figure 4.3: Two model architectures in comparison with existing segmentation models: (e) regular multi-scale skip connections,
and (f) fully connected multi-scale skip connections.

dense and full-scale skip connections are specific variants of short or long skip connections. Applying
a combination of long and short skip connections in an FCN is generally beneficial, improving spatial
feature utilization, convergence time, and combating vanishing gradients [56]. It is, however, important
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to realize that the performance of the skip connections in a specific architecture depends heavily on the
learning context including the dataset, feature shape and feature scale [58]. Too many skip connections
can, for instance, have a negative impact on the segmentation accuracy [58]. State-of-the-art segmenta-
tion models have proposed several distinct types and combinations of skip connections, none of which
have been evaluated on floor plan datasets. This thesis will therefore propose two model architectures
with different skip-connections based on literature. The best performing architecture will be determined
through empirical evaluation.

Several types of re-designed skip connections have been proposed to close the semantic gap between
features in the original U-Net architecture, improving overall segmentation performance. U-Net++ uses
nested and dense connections shown in Figure 4.3b to reduce this semantic gap, but at the cost of signif-
icant computational overhead [39]. U-Net3+, shown in Figure 4.3c achieves comparable performance to
U-Net++ by using fully connected full-scale skip connections. Recent works introduce multi-scale skip
connections depicted in Figure 4.3d, similar to full-scale connections, but without the assumption that
all channels of feature maps share equal weights [41]. Multi-scale connections thus seem most promising
from related work, which will be used for the model architectures considered in this thesis.

There are various ways of combining multi-scale skip connections, which can have a significant im-
pact on segmentation performance. Furthermore, a model architecture using more skip connections
does not necessarily perform better than one with fewer skip connections [58]. MACU-Net, shown in Fig-
ure 4.3d, uses fully connected multi-scale connections, where features from multiple decoder neurons
are fused with multiple decoder neurons [41]. MDA-UNet applies similar multi-scale connections where
multiple encoder neurons are fused with a single decoder neuron [42]. The encoders combined with de-
coder neurons are from the same or previous (i.e. shallower) depth. Since MACU-Net and MDA-UNet
have not been evaluated on floor plan datasets, this thesis evaluates both by incorporating them into
the two model architectures. Figure 4.3e and Figure 4.3f show the two model architectures considering
regular and fully connected multi-scale skip connections.

Asymmetric convolution block

To better capture learned feature maps, different types of convolution blocks can be used. In addition
to the normalization and activation functions paired with convolutional layers, the design and use of
kernels play an important role in improving the performance of a CNN [59]. This thesis proposes an
Asymmetric Convolution (AC) block, as depicted in Figure 4.4, to replace the standard square convolu-
tions in U-Net3+ [40]. Asymmetric convolution blocks have been shown to enhance skeleton features by
replacing standard k x k kernels with the aggregation of the k x k kernel and two additional horizontal
1 x k and vertical k x 1 kernels [59]. Directional kernels have also been evaluated on floor plans, but do
not improve clear performance improvements compared to horizontal and vertical kernels [16, 60].



4.1. Recognition 27

convl
B —

conv2 +

conv3
—_—

equal

Cmmmmmmmm oo

conv

(a) Enhancement of skeleton features by asymmetric convolution
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Figure 4.4: Asymmetric Convolution (AC) block enhancing skeleton features. @ represents element-wise addition.

Attention Mechanism
Attention mechanisms are an umbrella term for methods that refine generated feature maps to more ef-
fectively capture the learned representations. Refining features to improve their representation power
can, for instance, be achieved by enhancing important features and suppressing the others [61]. Two
types of attention mechanisms that have been extensively evaluated in related work are Channel Atten-
tion Modules (CAM) and Spatial Attention Modules (SAM). Channel attention modules aim to improve
feature utilization by weighing feature maps according to the ‘importance’ of their channels [61]. The im-
portance of a channel can, for instance, refer to how much a channel differs from others. Spatial attention
modules aim to weigh feature maps according to extracted refined spatial features. Using a combination
of channel and spatial attention modules can improve performance [42, 61]. Based on these findings, this
thesis opts to use both a channel and attention block to improve segmentation performance compared
to U-Net3+.

The proposed attention module infers a channel attention map M, and spatial attention map M
from an intermediate feature F, which is subsequently weighed through multiplication formalized by
Equation 4.1. The final refined feature is computed by performing asymmetric convolution on the con-
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catenated channel and spatial refined feature. An overview of the AM is shown in Figure 4.5:

A(F) = AC([FC ® M.(F),Fs ® MS(F)]),
F.=C"Y(p), 4.1)
Fy=CY (P,

where F, and F; are channel compressed representations of intermediate feature map F using two 1 x 1
convolutions. Note that the spatial map M; is derived from the full sized feature F. Concatenation is
denoted by [-].
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Figure 4.5: Overview of Attention Module consisting of Channel Attention Module (CAM) and Spatial Attention Module (SAM)
enhancing channel and spatial features respectively. @, ® and (S denote element-wise addition, multiplication and the sigmoid
operation.

The intermediate feature map F of the model architectures is constructed similar to that of U-Net3+ [40].
For each up-sampling level i < N and respective decoder X 25 o> the feature map F ! to be refined consists
of a mix of different scaled feature maps from encoder and decoder layers. The first decoder layer is
equal to last encoder layer. The scaled feature maps for the other decoders are aggregated through con-
catenation. Depending on depth i of the decoder, features from other encoder and decoders are first
either up- or down-sampled to match the spatial dimensions of F?. The different sampling operations
improve the representation power of the model by merging both high-level and low-level semantic in-
formation [40]. Down-sampling and up-sampling are done by a max pooling operation and bilinear
interpolation respectively. Other alternatives for sampling layers have been evaluated, such as average
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pooling and transposed convolution, but performed worse. Directly concatenating the resized feature
maps would result in an aggregated feature map consisting of a large number of channels. The asym-
metric convolution with 32 filters is used to reduce the number of channels in each feature maps from
another layer. The number of filters is set equal to the number of filters in the first encoder block to cap-
ture sufficient information. The final intermediate feature map is equal to the concatenation of 32 x n
feature maps from the other encoder and decoder layers. The decoder layer X }'3 . is equal to the refined
feature map of F! obtained through the attention mechanism. The intermediate feature map of the fully
connected model architecture 2 is formalized by Equation 4.2 and depicted in Figure 4.6. The intermedi-
ate feature map of the regularly connected architecture is constructed similarly, but only consists of the
feature maps from the encoders and decoders of the same and previous depth. Equation 4.3 formalizes
the feature map of model architecture 1.

X, =
xi = i-1 : N . . (4.2)
e Al (ac(Dixky), L Ac) Aclugy) || st e ieNe
Scales:‘ithﬂ'th Scales:(i-;—(l)thﬁ\ﬁh
Xlii‘n ,i=N
xi = _ . . 43
Pem ) A| [ac(DiED), ACxy,), ACUKED) | | i=L, - i=N1 @
Scales::thw'th Scales:(i+1)th~Nth

where A is the attention mechanism, AC is the asymmetric convolution, D(-) and U/ (-) are up- and down-
sampling, [-] represents concatenation, and C(-) is a regular convolution operation.
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Figure 4.6: Example of intermediate feature map F3 of third decoder layer X% .- AC and AM indicate the asymmetric convolution
block and attention mechanism.

Channel Attention Module The disadvantage of directly aggregating full-scale features, as proposed by
U-Net3+ [40], is that this assumes the weights of the channels of these features are equal. To better utilize
the features, a channel attention module is proposed to weigh the feature map F € R”*">C according
to a channel feature map M, € R'*1*¢/2 where C indicates the number of channels of the feature map.
Multiplying the intermediate feature map with the channel feature map allows the model to reinforce
informative channels and restrain indiscriminative channels [62]. A variant of the channel attention
block used in MACU-Net [41] will be used by this thesis. The advantage of this approach, compared to
others such as MDA-UNet, is that the CAM is designed to process features of arbitrary size. Although the
structure of the CAM used in this thesis is similar to that of MACU-Net, there are three notable differences:
(1) the contents of the intermediate feature map, (2) the number of filters used in convolution operations,
and (3) the application of the channel-refined feature map.
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The channel feature map M, € R'*1*C/2 is inferred along the spatial dimensions of an intermediate

feature, as formalized by Equation 4.4. Due to the large number of channels in the original input feature
map, a compressed version F, with half the number of channels is first computed by 1 x 1 convolution.
The spatial dimensions of F, are then squeezed through separate adaptive average pooling and max pool-
ing producing Fg'® and F™® of 1 x 1 x C/2. Separate and simultaneous average and max pooling has been
shown to improve representation power of a model [61]. The extraction of important channels is done
by compressing the pooled feature maps into one-sixteenth of their original size using a convolution and
ReLU operation. To produce the channel feature map, the channel features are expanded to C/2 chan-
nels and aggregated by element-wise addition. The merged channel map is normalized by the sigmoid
function.

M (F) = o (ReLu (™ (F2¥) )| + 2! (ReLU 1! (Fr) ))) (4.4)

where o, ReLU and C denote the sigmoid function, ReLU activation, and a convolution operation.

Spatial Attention Module The aim of a spatial attention module is to highlight important features by
weighing the feature map F € R*"*C according to a spatial feature map M, € R”*W>*! where H, W and
C are the height, width and number of channels of the feature map. MDA-UNet has applied a variant of a
spatial attention module to better fuse multi-scale features in U-Net3+ [42]. The limitation of the spatial
attention module in MDA-UNet is that it was designed to refine a single encoder feature. This thesis pro-
poses an improved spatial attention module, considering both regular and fully connected multi-scale
features. Figure 4.5 depicts the spatial attention module used in the model architectures.

The spatial attention module (SAM) aims to learn a spatial feature map M, € R”*W>1 by inferring
along the input features’ channel dimension. The value of the spatial map is formalized by Equation 4.5.
To compute the spatial attention map, average and max channel pooling [63] is first applied to produce
F&'8 e RF*Wx1 and Fmax ¢ W1 regpectively. Channel pooling is used because it has been shown to
be effective at enhancing spatial features [61]. The concatenated pooled feature maps are then passed to
the spatial convolutional layer Cs; which enhances spatial features using different dilation rates. Concate-
nating average and max-pooled feature maps has been shown effective at reinforcing spatial features [42].
Different dilation rates have been used to capture features from different-sized receptive fields, rein-
forcing both small and large spatial features. The spatially enhanced features are aggregated through
element-wise addition and normalized by the sigmoid function to obtain the final spatial map.

M(F) = a(cs[[FEVg,F;“a"])),

3 ) (4.5)
CS(F) — Z(Clxl(F) + CSXB,d:l(F))
i=1

where o and C; denote the sigmoid function and spatial convolutional block respectively.

Backbone

Variants of U-Net have been proposed as backbone-agnostic extensions. Improved variants of U-Net
have considered different backbone models responsible for encoding the input features, which include
VGG, ResNet and DenseNet encoders [39, 40, 48]. This thesis opts to use EfficientNet as the backbone
model for the encoder, which has been shown to outperform the aforementioned encoders [64]. Eight
versions of EfficientNet ranging from B0 to B7 with increasing complexity have been proposed. This
thesis opts to use EfficientNet-B2, offering a good balance between the complexity and accuracy.

4.1.3. Deep Supervision

Lee et al. proposed deeply-supervised nets that improved the learning ability of intermediate layers [65].
Applying deep supervision also combats vanishing gradients and slow convergence [39, 40, 65]. Deep
supervision has shown to be promising in state-of-the-art segmentation models, improving the use of
multi-scale features [39, 40]. U-Net++ [39] proposed a deeply supervised variant applying losses to the
shallowest decoders. Unet3+ [40] applied deep supervision to all decoder neurons, which are first up-
sampled to the match spatial dimensions. At inference time, an average of all supervised neurons is
often used. This thesis proposes to use deep supervision to reinforce multi-scale feature learning by
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applying a different loss function to each decoder neuron of a distinct scale. The loss function applied to
each decoder differs by varying the scales the heatmap regression loss considers. Similar to U-Net3+, the
average up-sampled predictions of the proposed architectures are also used for inference. Up-sampling
is done by bilinear interpolation. Figure 4.7 shows the deeply supervised variant of model architecture 2.
The deeply supervised variant of proposed architecture 1 is constructed similarly.
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Figure 4.7: Deeply supervised variant of model architecture 2. A loss term is computed for each decoder neuron.

4.1.4. Training Objective

The training objective of the segmentation model consists of multiple tasks, each designed for a specific
purpose: handling class imbalance, utilizing semantic relations in labels, and utilizing multi-scale pre-
dictions. Each task can also be seen as a form of pixel, patch and multi-scale loss respectively, helping to
process floor plans of arbitrary size.

Unified focal loss
Unified focal loss is used to handle class imbalance by suppressing the background loss and enhancing
the foreground loss [66]. The class imbalance in the floor plan datasets is mainly due to the background
pixels. For instance, in the augmented CubiCasa datset, the ratio foreground to background is 1 : 16. Fun-
damentally, the unified focal loss relies on a generalization of Focal loss and Focal Tversky loss, improved
versions of cross entropy and dice loss respectively [66]. Two key advantages of using the unified focal
loss is that (1) the focal hyperparameters for each loss term have been grouped, reducing their number
significantly, and (2) the focal losses have been modified so that they are applied separately per class. The
latter advantage is distinct from the regular Focal loss, which applies the focal effect to all classes.

The asymmetric variant of unified focal loss £,ar as formalized by Equation 4.6 was shown to be most
effective and is used here [66]. Term A is the focal hyperparameter weighing the background suppression
and foreground enhancement.

EaUF = /LcmaF +(1- /I)LmaFT (4.6)

where Lnar and Lipapr are the modified asymmetric Focal loss modified asymmetric Focal Tversky loss
respectively.

Adaptive affinity field loss

Unified focal loss applies a form of unary supervision, which lacks the spacial discrimination to exploit
semantic structure in labels [67]. To capture this structure, affinity field loss is used. Affinity field loss
employs both a grouping force Lgoup and separating force Lseparate in the prediction map j. The degree
of each force depends on whether a pixel and its neighbours belong to the same category c in the ground-
truth label y.
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jeNea) 0 otherwise
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where NV (i) denotes the neighbourhood for a pixel i of size k. The neighbourhood N is defined by
the 8 endpoints in the 3 x 3 kernel with dilation rate k. For k = 3 this is equal to the Moore neighbourhood
of a pixel. Dy (+) s the Kullback-Leibler divergence between two distributions.

The adaptive affinity field loss Laar learns the optimal kernel size out of set K per class through train-
ing by formulating the loss as a minimax problem. Maximizing the affinity field loss ensures the most
critical neighbourhood sizes are used. This approach is chosen since the optimal set of kernels is context
dependent and can be expensive to find [67].

C K
= group ncki separate »cki
LZAAF—mL&aX{ZZZ(ka Lgroup + Wop ﬁseparate)},
c ki
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Multi-scale heatmap regression loss
Relying on a soft loss function can help stabilize training by guiding a network during training [68, 69].
Heatmap regression can be an effective measure to compute such a loss, which shows promising results
for human pose estimation. Lv et al. introduce opening regression loss, utilizing predicted heatmaps to
regress the boundaries of openings [17].

This thesis introduces a multi-scale heatmap regression loss for openings that considers the regressed
opening predictions based on multi-scale heatmaps derived from ground-truth labels. This is distinct
from the approach proposed by Lv et al. [17], as no heatmaps are directly generated by the model. In-
stead, the heatmaps are indirectly derived from the segmentation masks. It has been shown that a similar
approach reduces the memory footprint of a model significantly [70].

Another difference between the proposed approach and that of Lv et al. [17] is how the ground-truth
heatmaps are created. In [17] the endpoints of openings are used to create heatmaps, which are manu-
ally defined for their new dataset. Instead of manually adding these endpoints to the existing datasets,
this thesis derives the endpoints from the opening labels by further processing them. Generating the
heatmaps is composed of the following three steps, also depicted in Figure 4.8.

1. Find the connected components of category ¢ using [71] (Figure 4.8b).
2. Find the contour of each component of step 1 using [72] (Figure 4.8c).
3. Given scale s and 8, compute the value of each pixel i of category ¢ using Equation 4.10 (Figure 4.9)

. —_— : 2
915 0l) (4.10)

B2
where O, is the set of endpoints of opening ¢, and B controls the spread of the peak of the values in
the heatmap.

Given the heatmaps H, the heatmap regression loss Lypg is a simple average of the squared eu-
clidean distance between the prediction map j and the heatmap over all scales S, openings O and pix-
els i in the floor plan. This is formalized by Equation 4.11. The reason for using the average heatmap
ﬁ Zg (Hgﬁ(i)) is that this motivates the model to keep refining its openings prediction. An example of
such a combined heatmap is shown in Figure 4.10.

Hgﬁ(i) =§r€1%>§exp(—

L -iiiiich)—ii(m (i)l 4.11)
SN ATTE AT TIE A '

where O c K is the subset of opening categories consisting of the elements described in Table 3.1. Note
that only |J;(c) — | refers to the absolute difference as apposed to the length.
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The values controlling the spread in the heatmap in B must be chosen carefully. If too high, values in
the resulting heatmap equal or larger than 0.5 outside of an opening could confuse the model trying
to accurately detect it. Thus, the combined mean heatmap of values B should have a sharp decline
towards 0.5, followed by a slower decrease in value in order to facilitate learning. The mean heatmap
with B = {2,10}, as illustrated in Figure 4.11, can model this effectively.

The different scales S play an important role in deep supervision, for which the heatmaps can be used
to train the model to learn opening features across multiple scales [69]. The heatmap loss can then be
computed for each decoder, with increasing scale as the resolution of the decoder increases. Figure 4.12
shows the same heatmap generated at different scales by down-sampling. If deep supervision is not used,
only one scale of heatmaps is considered for the loss.
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(a) Ground-truth label, boundaries and openings highlighted in
black and red respectively.

(b) Opening connected components highlighted in green.

(c) Contours of connected components highlighted in red.

Figure 4.8: Ground-truth opening label and the first two steps to derive opening endpoints.
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Figure 4.9: Three examples of generated heatmaps of the opening class for increasing values for  superimposed on the original
floor plan.
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Figure 4.10: Example of average heatmap computed using B = {5, 10,40} superimposed on the original floor plan.
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Figure 4.11: Heatmap values for increasing distances with B = {2,10}. Term f = 2 marked in blue is responsible for the sharp
decline towards 0.5 necessary to prevent contradictory learning. Term § = 10 ensures there is a slower decline after 0.5 to facilitate
further learning. Heatmap value 0.5 has been marked in green for reference.
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Figure 4.12: Three examples of generated heatmaps for decreasing values of scale s.
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Total loss

The final multi-task loss is a weighted sum of all previously defined loss functions 7 = {£,uE, LaaF, LMHR}-
Manually tuning the weights for the losses can be a difficult and time-consuming task. Kendall et al.
showed that task weights can be modelled as homoscedastic uncertainty terms and thus learned during
training by applying appropriate regularization [73]. The regularization term prevents the model from
finding trivial solutions. A refined version of this approach proposed by Liebel et al. is used here [74].

£=Y 12-£T+ln(1+a§) (4.12)
7eT <07

4.2. Reconstruction

The reconstruction step of the model is responsible for transforming the segmentation mask into a 3D
representation. The reconstruction step consists of post-processing, vectorization and 3D visualization.
This section will discuss all three methods. The entire reconstruction pipeline takes seconds for small
floor plans, and in the order of minutes for the largest multi-unit floor plans.

4.2.1. Post-Processing

The post-processing step is used to reduce noise in the segmentation mask produced in the recognition
step. The goal of post-processing is to increase the model accuracy as measured by segmentation and
recognition metrics such as pixel accuracy and intersection over union. The post-processing step first
transforms the segmentation mask into approximate polygons derived from the union of all semantic
class masks. The polygons consist of approximated contours of the elements in the joint mask, aimed to
reduce noise in the segmentation mask. The approximate polygons are then refined by merging and
transforming vertices and polygons according to their distance and angle. The refined polygons are
transformed back into their original class masks by dividing the polygons into smaller polygons until
their semantic class can be determined with sufficient accuracy. Finally, several heuristics are applied
to the post-processed mask. The heuristics resolve any potential conflicting predictions, such as glass
walls neighbouring windows which do not occur in MURE The post-processing steps are depicted in
Figure 4.14. Figure 4.15 shows the post-processed segmentation mask of a multi-unit floor plan.

Zeng et al. proposed a simpler method using two types of horizontal and vertical kernels that are ap-
plied to the boundary masks to fill in pixel gaps by applying a morphological close operation [16]. Equa-
tion 4.13 shows the two types of horizontal kernels of size 5. The vertical kernels are a simple transpose of
the horizontal ones. While this approach is effective at refining 'straight’ boundaries (orthogonal to the
kernels), the kernels fail to refine rotated boundaries. Figure 4.13 shows post-processing problems that
occur when the kernels are applied to an example floor plan with rotated boundaries. For this reason,
this thesis proposes a post-processing method that, while more computationally expensive, can process
floor plans rotated by any angle.

00000 00000
00000 00000
K'={1 0 0 0 1|, k=[1 1 0 1 1 (4.13)
00000 00000
00000 00000

Approximate polygons

To derive the approximate polygons from the segmentation mask, one joint mask consisting of the union
of all semantic classes is first created. The joint mask of an example segmentation mask is shown in
Figure 4.14a and Figure 4.14b. The following steps are executed on the joint mask until no further ap-
proximation is necessary:

1. Find the initial connected components in prediction j using [71].

2. While there are components left, find the rotated rectangle bb with the minimum area enclosing
the component using [75], and calculate the uncertainty of bb according to Equation 4.14

(a) Ifuncertain, divide the bounding box bb into two smaller rectangles as shown in Figure 4.16,
add the new components of each polygon, and repeat step 2.
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e -
(a) Original segmentation mask (b) Post-processed segmentation mask

Figure 4.13: Reduced accuracy on boundary junctions when applying simple closing kernels on rotated boundaries. Example
problem area marked in red.

(b) If certain, add the approximate polygon to the list of polygons.

1
oD 'bej/(i))< eu (4.14)

where €, is a constant uncertainty threshold set to 0.5 determined empirically. The value was found to be
high enough to produce accurate approximations, and low enough to generalize over noisy predictions.

uncertain(bb) = (

Refined polygons

The refined polygons are obtained by reducing the approximate polygons in two steps according to two
rules similar to Lv et al. [17]. The first step is to merge all vertices of which the euclidean distance is
smaller then or equal to a pre-defined distance threshold €,. Vertices are continuously merged until
no longer possible. The second step refines the polygons by removing vertices approximately collinear
to two other vertices. A vertex is considered collinear to two other vertices if the angle between them
is greater then or equal to a threshold €,. Distance and angle thresholds €; and ¢, have been found
empirically and set to 4 and cos(14°). The two rules are executed as follows:

1. Repeat until there are no vertices to merge:

(a) Construct a KD-tree of the vertices V of all polygons

(b) For each vertex v; € V, compute the set of close vertices V; such that for each vertex v; € V,
it holds that either v; and v; are from a different polygon and ||v; — vjll2 < €4, or v; = v;. This
prevents small polygons from being collapsed into a single vertex.

i. Pickavertex vj € V; and replace v; and v; with o 2”’ in the respective polygons.

2. Repeat until there are no vertices to remove:

(a) For each distinct triplet of vertices v;, v, vg in each polygon, remove the middle vertex v; if
the angle between the vertices |cos(v; v}, Vjvg)| = €4

Heuristics

Although the level of noise of the refined segmentation masks is significantly lower, applying predefined
heuristics can further improve accuracy. Three heuristics are used to correct the segmentation masks
if necessary. The first heuristic replaces windows with glass walls if their pixels are neighbouring. This
heuristic is derived from the annotated multi-unit floor plans, in which glass walls are never directly
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N

(a) Original segmentation mask with detected walls, windows, (b) Joint mask equal to union of all semantic class masks.
doors and railings in black, orange, yellow and green respectively.

/. /.

N\ N\

(c) Post-processed segmentation mask with approximate polygons. (d) Final post-processed segmentation mask after refining
polygons and applying heuristics.

Figure 4.14: Post-processing steps on example segmentation mask. The differences between the final post-processed mask and
approximated polygons mask is small, but noticeable in the reduced noise in walls and other straight elements. Example of
refined window polygon highlighted in red.

neighbouring a window. Since glass walls and windows share the same physical properties, the real-
world effect of this heuristic is small. The second heuristic is similar but resolves conflicting predictions
between sliding doors and regular doors. Either sliding doors or doors are used to replace the pixels,
depending on which is in the majority in the neighbourhood. The third heuristic replaces the pixels
neighbouring stairs that are not background pixels with either walls or railings depending on which of
the latter is already present. This heuristic is derived from the CubiCasa and MURF dataset, for which all
stairs are either surrounded by background pixels, walls or railings. For all heuristics, the neighbourhood
of a pixel is defined by a k x k kernel centered on the pixel. A kernel size of k = 6 was found to be effective.
The effect of applying the heuristics on a segmentation mask is shown in Figure 4.14d.

4.2.2. Vectorization

The vectorization step is responsible for converting the post-processed segmentation mask into polygons
that can be used to visualize the original floor plan. A method different from Lv et al. [17] is used since
they require wall junctions for vectorization. The vectorization method is similar to the post-processing,



4.2. Reconstruction 41

T

. T"'I' =
|
] H
L TI1TE] T

:
L0

‘ = ] I

. ]_"l' -]
|

—‘l }_‘ . l—

- Atj__t_ _:_ ] L_;‘ —

0 e g —

1|

Figure 4.15: Example of post-processed segmentation mask of multi-unit floor plan.

(b) Post-processed segmentation mask.

described by the following steps:

1. Find the connected components of each semantic class ¢ using [71].
2. Find the contour of each component of step 1 using [72].

3. Convert the contour into a 2D polygon by compressing all horizontal, vertical and diagonal coordi-
nates.
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(a) Initial bounding rectangle.

(b) First new bounding box of first half. (c) Second new bounding box of second half.

Figure 4.16: Example of bounding box and smaller bounding boxes generated to derive new components. The smaller bounding
boxes divide the largest side of the initial bounding box in two.

4.2.3. Visualization

Using a vectorized representation of the segmentation mask, a 3D visualization can be generated. Each
polygon of a segmentation mask is first transformed into a 3D object by generating the appropriate ver-
tices and faces. A predefined height is used depending on the class. This height is set equal for each class
other than the stairs category. The height of stairs is set to a higher value to make them semantically dis-
tinct from other elements in the generated 3D model. Finally, each 3D object is assigned a fixed texture
derived from the semantic class. Blender [76] is used to visualize the 3D objects, as it allowed for fast
visualization without user interaction.

4.3. Reflection on RQ2 and RQ3

This chapter described the recognition and reconstruction part of the architectures proposed in this the-
sis. The recognition part of the model is responsible for detecting the semantic elements in floor plans
of arbitrary size, which is related to RQ2: what CNN architecture can effectively detect semantic informa-
tion in architectural floor plans of arbitrary size in a scalable manner? The following four observations
on RQ2 were made in this chapter:
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¢ An FCN s, in comparison to a typical CNN, more effective at processing multi-unit floor plans, due
to its ability to operate on input of arbitrary size.

* The performance of skip connections depends heavily on the context, and should be evaluated
accordingly. Multi-scale skip connections offer a good trade-off between computational cost and
improved accuracy, which will be used in this thesis.

¢ An attention mechanism can further improve segmentation performance by increasing the repre-
sentation power of features by weighing them according to channels or spatial features.

¢ Compared to a single-task training objective, a multi-task training objective optimizing pixel, patch
and multi-scale loss can improve segmentation performance by incorporating structural reasoning
into the learning process.

The reconstruction part of the model aims to answer part of RQ3: how can produced segmentation
masks best be transformed into a 3D representation? This chapter showed the following on RQ3:

¢ Conventional morphological operations are not sufficient to refine floor plans with rotated ele-
ments.

¢ A post-processing method relying on refined rotated rectangles of components in a produced seg-
mentation mask is effective at reducing noise in predictions.

¢ Heuristics can further improve accuracy by resolving conflicting predictions.
¢ Blender can efficiently transform a vectorized segmentation mask into a 3D model.



Experiments

This chapter describes the experiments performed in this thesis and the floor plan datasets that are used.
The datasets used in the experiments are first described, related to RQ2: the design and use of a multi-
unit floor plan dataset. Afterwards a quantitative and qualitative evaluation based on five datasets is
performed to assess the performance of the novel model architectures proposed in this thesis, related to
RQ1 and RQ3 respectively.

5.1. Datasets

Five augmented datasets have been used in the experiments in this chapter. This section will briefly
discuss each dataset and the augmentation pipeline used to expand the floor plan datasets. The datasets
have been selected for their size, variety and usage in literature. Table 5.1 contains the used datasets with
their respective number of images, resolution, and augmented size. Chapter 3 and Appendix A contain
example floor plans of MURF and the two public datasets R3D and CubiCasa.

The first is based on R3D [26] and its extension proposed by Zeng et al. [16]. This dataset consists of
mostly rectangular single-unit floor plans and only considers walls and opening classes. The dataset also
contains 18 floor plans with round-shaped layouts. A total of 7 images was removed from this dataset, as
incorrect padding values were used. These floor plans could otherwise confuse the model when learning
to distinguish background from foreground pixels. R3D considers two semantic classes: boundaries (e.g.
walls) and openings (e.g. doors).

The second dataset is CubiCasa, a refined version of the CubiCasa5K dataset [28] as described in Sec-
tion 3.4.1. CubiCasa is a larger single-unit floor plan dataset with varying levels of complexity. CubiCasa
considers five semantic classes: walls, railings, doors, windows and stairs.

The third dataset is the novel multi-unit floor plan dataset MURF proposed as part of this thesis. It
is based on images of large buildings in the city of Rotterdam in the Netherlands. Due to their size and
level of noise, the floor plans in MURF are of high complexity compared to R3D and CubiCasa. MURF
considers seven semantic classes: walls, glass walls, railings, doors, sliding doors, windows and stairs.

The fourth dataset is a combination of CubiCasa and MURE Although the list of semantic classes
of CubiCasa is smaller, the classes of MURF will not be merged. This allows for a full evaluation on all
semantic elements. The purpose of this combined dataset is to evaluate to what degree a model can
generalize across different drawing notations and floor plan sizes.

The fifth and last dataset is MURF g, which is a variant of MURF used solely for the qualitative eval-
uation. MURFi¢g consists of the same floor plans in MURF but derived by using larger samples during
augmentation. Evaluation on this dataset should give a better indication of the performance of a model
processing multi-unit floor plans, as it poses two extra challenges. First, the floor plans are significantly
larger than what the models have been trained on, and second, the boundaries of floor plans, missing
in MURF due to sampling, will now have to be predicted as well. The reason for not using the MURF
dataset during training is that the floor plans are too large to fit into GPU memory.

44
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Dataset Images Resolution Augmented images
R3D 225 175-1104 957

CubiCasa5K 560 206-6768 7265

MURF 124 3100-28160 578
CubiCasa5K+MURF 684 206-28160 7843

MURF et 8 3100-28160 32

Table 5.1: The five datasets used in the experiments with their respective number of floor plan images, original resolution and
number of augmented images. The MURF dataset contains the number of sampled images in the images column. The MURFest
is an unsampled variant of MURE used only for qualitative evaluation.

5.1.1. Augmentation

Since segmentation models are not invariant to translation, rotation and scale [77], an augmentation
pipeline was employed to expand the floor plan datasets. The augmentation pipeline consists of applying
each combination of the following steps:

Optionally flip the floor plan around the x-axis.
Optionally rotate the floor plan randomly by r € [-90,90] degrees.
Optionally apply a sampling step if the image is larger than the predefined maximum size.

=N e

Resize the floor plan randomly within the predefined minimum and maximum size.

For the larger floor plans, a sampling step is performed in step 3. This sampling step divides a floor
plan into random smaller tiles within a minimum and maximum size so that each pixel of the original
floor plan is present in the resulting set of tiles. The tiles are generated by randomly sampling their center
points over a floor plan. A similar sampling approach has been applied to create CubiCasa5K and other
floor plan datasets [27, 28]. Without sampling, the augmentation pipeline quadruples the number of
floor plan images in a dataset. The number of tiles that are generated depend on the floor plan size.

The sampling step generates tiles from a predefined set of sizes equal to {512,576, ...,832}. A step size
of 64 pixels for tile sizes is used to support the stride length of each model considered in the following
experiments. A minimum and maximum of 512x512 and 832 x 832 is used because these are large enough
to capture sufficient floor plan information and small enough to still fit into GPU memory. For a floor
plan with width w and height h, the lower and upper bound on the number of tiles is formalized by
Equation 5.1. The lower bound is equal to dividing the dimension over the largest tile size with minimum
overlap. Deriving the upper bound is more complex. The upper bound assumes the worst first center
position of a tile is first picked, leaving a single row and column of pixels near one corner of the floor plan
uncovered. These rows, and the remaining pixels, can be covered by dividing the floor plan dimensions
by half the tile size. In practice, the average number of tiles needed for a floor plan scales according to
Equation 5.2. The value 448 is derived from the number of pixels the average tile 5122& covers with an
average overlap of 672 - % The average overlap relies on a factor % due to the fact that this increases with
the number of tiles already present. Appendix B contains examples of the average number of tiles for
floor plans of various dimensions.

n 1 if[ <512
i DY L - or .
[SSZW [sszw = #tiles < [5122,31] . ifes512<T 5.1)
55571 [512571 otherwise
where € = min(w, h) and I' = max(w, h).
w h
#tiles~ | — | - | — 59
res [4481 [4481 (5.2)

5.2. Experimental Setup

The models proposed in this thesis are trained for a maximum of 200 epochs with a batch size of 1. Mem-
ory limits did not allow for larger batches without reducing image quality which would harm perfor-
mance. Using a larger batch size would also not offer any benefits in terms of model accuracy, since
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group normalization works well on small batches [54]. For the two model architectures proposed in this
thesis, the ADAM optimizer is used to update the model parameters with a learning rate of 1 x 1074, If
the validation loss does not reduce for 10 epochs, the learning rate is set to half its original value until
a minimum of 1 x 107 is reached. An early stopping criteria with a patience of 30 epochs is also used.
Unless otherwise specified, all compared models have been set up identical to the manner described in
their respective works. All models have been pre-trained on the ImageNet dataset [78].

All augmented floor plan datasets are split into train/validation/test sets as 0.6/0.2/0.2 which are
used for all models. The training sets are used to calculate and perform the gradient updates, which are
evaluated on the validation set used to determine the updates improved model performance. The test
sets represent a portion of unseen data used for evaluation. In the case of MURF g, all floor plans are
part of the test set.

For both the sampling and augmentation methods, the minimum and maximum floor plan resolu-
tion of 512 x 512 and 832 x 832 is used respectively. All implementations are based on TensorFlow, and
were trained on a machine with the following specifications:

e GPU: 2x NVIDIA GeForce RTX 2080 Ti GPU with 11 GB VRAM
e CPU: 2x AMD EPYC 7542 32-Core Processor
¢ Storage: 1 TB SSD

5.3. Quantitative Evaluation

The purpose of the quantitative evaluation is to empirically assess the performance of the proposed ar-
chitectures. This section will discuss the three experiments performed and what metrics are considered.

5.3.1. Evaluation Metrics

This thesis considers three evaluation metrics to assess the models as proposed by Long et al. [79], also
commonly used in related literature [16, 17, 27]. The three selected metrics are overall pixel accuracy,
per-class pixel accuracy and intersection over union. When applicable, mean metrics are also consid-
ered, which are averaged over all semantic classes excluding the background class. The background class
is not considered for this mean value, as it can misrepresent results due to the class imbalance. The
performance metrics assess either the segmentation quality or recognition quality of the model, and are
separated accordingly. For all metrics, n;; is the number of pixels of class i predicted to belong to j and
ti=Xjnijis the total number of pixels of class i. Term n, = |C|, where C denotes the set of semantic
classes.

Segmentation quality

The metrics assessing the segmentation quality of a model rely on region-based metrics. The first met-
ric is overall pixel accuracy, formalized by Equation 5.3, which computes the mean accuracy of all pixels
independent of the semantic classes. The background class is excluded in the average to focus on the
foreground classes. The second metric in Equation 5.4 is the Intersection over Union (IoU) metric, which
computes the overlap between the predicted and true pixels of a specific class. The mean IoU in Equa-
tion 5.5 is a simple average over all classes.

Pixel Acc. = =17 (5.3)
ili
Nii
Class ToU = —————— (5.4)
ti+Xjnji— N
1 nij
MeanloU= —) —————— (5.5)

ne G ti+ X nji — N

Recognition Quality

Class accuracy, as formalized by Equation 5.6, is used to evaluate the recognition quality of a model. The
class accuracy, more commonly referred to as recall, describing the ratio of true positives over all true
positive and false negatives. The mean class accuracy in Equation 5.7 is also considered, which is the
mean per-class accuracy.
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nii
Class Acc. = . (5.6)
i
1 n;;
Mean Acc.= — ) — (5.7

ne 5 L

5.3.2. Experiment 1: Comparing Recognition with DFPR and CubiCasa5K

The purpose of experiment 1 is to evaluate the performance of the recognition and post-processing part
of the proposed architectures. This evaluation is based on a comparative analysis using the datasets
described and two floor plan processing models from related work. From all relevant state-of-the-art
floor plan processing methods [1, 15, 16, 17, 27, 28, 37], only Zeng et al. [16] and Kalervo et al. [28] have
published the details of their model and are thus included in this experiment. The two models, named
DFPR and CubiCasa5K respectively, have been modified for a fair comparison, removing fixed input size
requirements and room predictions. Room predictions have been removed because these would other-
wise only reduce the accuracy of boundary and opening classes. A subscript B is used for the modified
models. For CubiCasa5Kp, the balanced entropy loss function of Zeng et al. [16] is adopted, as the origi-
nal categorical cross entropy loss failed to converge. It should be noted that the CubiCasa5K model is an
improved version of Liu et al. [1], so this model is also evaluated indirectly.

The proposed model architectures aim to improve the state-of-the-art on both single-unit and multi-
unit floor plans. To determine whether this is the case, the described datasets will be evaluated separately.
The following tables contain the results on R3D, CubiCasa, MURF and the combined dataset respectively.
The values between brackets represent post-processed results. For fairness, the heuristics were also ap-
plied to the DFPRg and CubiCasa5Kpz models. The next sections discuss the results on each dataset and
the general observations that can be made.

R3D

Table 5.2 and Table 5.3 contain the accuracy and IoU results on R3D. The results show that the modified
variant DFPRg performs significantly worse than originally reported. This is likely due to the fact that the
DFPR model has been trained and evaluated on an augmented dataset, consisting of more difficult floor
plans. The floor plans in the augmented dataset are more difficult due to, for instance, rotated elements
that did not occur before augmentation. Interestingly, the CubiCasa5Kp model performs worse than
the DFPRi model, despite being designed to predict a larger range of more complex semantic elements.
One possible reason for this is that the CubiCasa5Kg model was trained with a lower batch size than
recommended in the original work due to limited GPU memory. The limited batch size does, however,
not fully explain the significant performance difference compared to the original work. A second reason
could be related to the architecture of CubiCasa5K, which is designed to process floor plans of a fixed size,
failing at predicting multiple sizes of floor plans. The proposed architectures perform best considering
accuracy and IoU, with the fully connected model architecture 2 achieving the best performance out of
both.

Compared to DFPRg and CubiCasa5Kp, the post-processed values of the proposed architectures
show a significant increase in accuracy, but a significant decrease in the intersection over union. It is
also interesting to note that architecture 1 achieves a higher post-processed accuracy than architecture
2, although the base accuracy of the former is lower.
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DFPR DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Pixel 0.89(0.90) 0.84 (0.85) 0.80(0.83) 0.92 (0.94) 0.93 (0.94)
Acc.
Wall 0.98 (0.98) 0.87(0.88) 0.85(0.88) 0.95 (0.96) 0.95 (0.96)
Door-and-window 0.83 (0.83) 0.73 (0.73) 0.60 (0.60) 0.87 (0.89) 0.87 (0.88)
Closet 0.61 (0.54) - - - -

Class Bathroom & etc. 0.81(0.78) - - - -
Acc. Livingroom & efc.  0.87 (0.93) - - - -

Bedroom 0.75(0.79) - - - -
Hall 0.59 (0.68) - - - -
Balcony 0.44(0.49) - - - -
Mean 0.63 (0.66) 0.80 (0.80) 0.73 (0.74) 0.90 (0.92) 0.91 (0.92)

Table 5.2: Accuracy on R3D compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Zeng et al. for
reference [16]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on
the augmented dataset. Highest value marked in bold.

DFPR DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Wall 0.98 (0.98) 0.83(0.82) 0.82(0.82) 0.90 (0.83) 0.90 (0.83)
Door-and-window 0.83 (0.83) 0.65 (0.65) 0.55 (0.55) 0.76 (0.71) 0.77 (0.72)
Closet 0.61(0.54) - - - -

Class Bathroom & etc. 0.81(0.78) - - - -
IoU Livingroom & etc.  0.87 (0.93) - - - -

Bedroom 0.75(0.79) - - - -
Hall 0.59 (0.68) - - - -
Balcony 0.44(0.49) - - - -
Mean 0.63 (0.66) 0.74 (0.74) 0.68 (0.69) 0.83 (0.77) 0.84 (0.78)

Table 5.3: IoU on R3D compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Zeng et al. for reference [16].
Subscript 3 refers to the model variant only considering boundary and opening elements that was evaluated on the augmented
dataset. Highest value marked in bold.

CubiCasa

Table 5.4 and Table 5.5 contain the accuracy and IoU results on CubiCasa. The results on CubiCasa show
a similar trend compared to R3D. The DFPR3 model outperforms CubiCasa5Kp significantly, especially
on stairs. The difference between the accuracy of DFPRi and the two proposed architectures is more
notable on CubiCasa, proving to be a more difficult dataset to learn features from. The proposed archi-
tectures achieve a considerably higher per class accuracy and overall pixel accuracy. The background
class is the exception, on which the CubiCasa5Kz and DFPRi3 models achieve a higher accuracy. This
is likely due to wrong predictions of the baseline models of other semantic classes, indirectly increasing
the background accuracy. The proposed architectures also improves the IoU compared to the baselines,
but to a lesser extent. There is notable difference between architecture 1 and architecture 2 on CubiCasa.
Architecture 1 achieves the highest IoU, while architecture 2 achieves the best accuracy. For all models,
the railing class is most difficult to predict. This is likely due to their semantic similarity to walls and
windows.

The post-processing results on CubiCasa are similar to the results on R3D. The accuracy of the pro-
posed architectures is increased significantly, while the IoU is decreased. The exception is the railing
class, which decreases in accuracy. This is likely due to incorrect application of the heuristic that replaces
railings with walls when deemed appropriate. Architecture 2 achieves the best overall post-processed
performance.
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CubiCasa5K  DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Pixel 0.898 (0.886)* 0.71 (0.72) 0.48 (0.50) 0.86 (0.89) 0.87 (0.89)
Acc.
Wall 0.858 (0.720) 0.76 (0.78) 0.57 (0.61) 0.90 (0.92) 0.91 (0.92)
Railing 0.287 (0.116) 0.36 (0.36) 0.02 (0.01) 0.62 (0.61) 0.68 (0.66)
Door 0.598 (0.598)  0.58 (0.58) 0.20 (0.20) 0.71 (0.75) 0.75 (0.78)
Window 0.737 (0.661)  0.66 (0.66) 0.40 (0.40) 0.86 (0.86) 0.85 (0.86)
Stairs - 0.65 (0.65) 0.18 (0.18) 0.73 (0.79) 0.78 (0.81)
Background* 0.936 (0.932) 0.998 (0.997) 0.998 (0.998) 0.98 (0.98) 0.98 (0.98)
Bedroom 0.862 (0.859) - - -
Bath 0.734 (0.726) - - -
Bathtub 0.301 (0.220) - - -
Chimney 0.117 (0.089) - - -
Closet 0.776 (0.739) - - -
Class Electr. Appl 0.757 (0.709) - - -
Acc. Empty 0.993 (0.991) - - -
Fire Place 0.404 (0.240) - - -
Garage 0.472(0.481) - - -
Hallway 0.712 (0.706) - - -
Kitchen 0.799 (0.770) - - -
Living Room 0.826 (0.838) - - -
Other rooms  0.571 (0.575) - - -
Outdoor 0.777 (0.741) - - -
Sauna bench 0.742 (0.603) - - -
Sink 0.661 (0.598) - - -
Storage 0.539 (0.528) - - -
Toilet 0.684 (0.618) - - -
Mean 0.658 (0.611)  0.60 (0.60) 0.27 (0.28) 0.76 (0.80) 0.80 (0.81)

Table 5.4: Accuracy on CubiCasa compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Kalervo et al. for
reference [28]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on
the augmented dataset. *This value includes the background class and can thus not directly be compared to the others. Highest
value marked in bold.
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CubiCasa5K  DFPRp CubiCasa5Kp  Architecture 1  Architecture 2

Wall 0.730 (0.614) 0.72(0.73)  0.55 (0.58) 0.79 (0.74) 0.78 (0.74)
Railing 0.236 (0.105) 0.33 (0.33)  0.02 (0.01) 0.47 (0.44) 0.45 (0.42)
Door 0.536 (0.486) 0.53 (0.53) 0.19(0.18) 0.57 (0.53) 0.56 (0.53)
Window 0.668 (0.549) 0.63 (0.62) 0.32(0.33) 0.73 (0.70) 0.73 (0.70)
Stairs - 0.61 (0.61) 0.14 (0.15) 0.62 (0.60) 0.61 (0.59)
Background  0.873 (0.855) 0.98 (0.99) 0.97 (0.97) 0.98 (0.98) 0.98 (0.98)
Bedroom 0.742 (0.733) - - -
Bath 0.606 (0.596) - - -
Bathtub 0.267 (0.205) - - -
Chimney 0.112 (0.086) - - -
Closet 0.692 (0.658) - - -

Class Electr. Appl 0.660 (0.608) - - -

IoU Empty 0.976 (0.970) - - -
Fire Place 0.362 (0.224) - - -
Garage 0.337 (0.335) - - -
Hallway 0.556 (0.553) - - -
Kitchen 0.650 (0.625) - - -
Living Room 0.666 (0.664) - - -
Other rooms 0.414 (0.415) - - -
Outdoor 0.664 (0.566) - - -
Sauna bench 0.673 (0.553) - - -
Sink 0.557 (0.490) - - -
Storage 0.448 (0.439) - - -
Toilet 0.628 (0.566) - - -

Mean 0.566 (0.518) 0.56 (0.56) 0.25 (0.25) 0.64 (0.59) 0.63 (0.58)

Table 5.5: IoU on CubiCasa compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Kalervo et al. for

reference [28]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on
the augmented dataset. Highest value marked in bold.
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MURF

Table 5.6 and Table 5.7 contain the accuracy and IoU results on MURE The results show that the CubiCasa5Kp
starts to fail on certain semantic classes. The accuracy and IoU of every class except walls and stairs is
very low, reaching values close to zero for the railing and door classes. This is likely due to the increased
variance in floor plan scales present in the MURF dataset. In contrast, the DFPRg model still manages to
achieve similar performance to R3D and CubiCasa proving the generalize quite well across different floor
plan datasets. The accuracy on doors is lower for the DFPRi model on MURF compared to CubiCasa,
probably due to the additional sliding doors class. Similar to CubiCasa, the two proposed architectures
achieve a significantly higher accuracy and IoU compared to the baseline architectures. This is especially
the case for the more difficult classes, including glass walls, railings and sliding doors. The difference
between the regularly connected and fully connected architecture is small, with the latter achieving the
best performance on both the accuracy and IoU.

Post-processing increases the accuracy, but decreases the IoU for the proposed architectures. Similar
to on R3D, a lower base accuracy sometimes results in a higher post-processed accuracy, which is the
case for the wall class of architecture 1. The post-processed results for the baseline models illustrate that
small base values cause it to fail. For instance, the low base accuracy of the stairs class of CubiCasa5Kp is
reduced further by post-processing. Overall, model architecture 2 performs the best.

DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Pixel Acc. 0.71 (0.73)  0.34 (0.39) 0.90 (0.91) 0.92 (0.93)
Wall 0.74 (0.77)  0.51 (0.58) 0.94 (0.95) 0.95 (0.95)
Glass wall 0.66 (0.70) 0.03 (0.14) 0.85 (0.85) 0.86 (0.86)
Railing 0.59 (0.59) <0.01(<0.01) 0.86(0.81) 0.88 (0.82)
Class Acc. Door 0.44 (0.43) <0.01(<0.01) 0.79(0.81) 0.80 (0.82)
Sliding door  0.42 (0.41)  0.01 (< 0.01) 0.83 (0.85) 0.84 (0.86)
Window 0.74 (0.73)  0.05(0.01) 0.88 (0.89) 0.90 (0.91)
Stairs 0.80 (0.80) 0.11 (0.01) 0.84 (0.86) 0.87 (0.88)
Mean 0.63 (0.63) 0.10(0.11) 0.85 (0.86) 0.87 (0.88)

Table 5.6: Accuracy on MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript B refers to the model variant only
considering boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.

DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Wall 0.72(0.74) 0.48 (0.54) 0.87 (0.81) 0.87 (0.81)
Glass wall 0.63 (0.66) 0.02 (0.10) 0.80 (0.76) 0.80 (0.76)
Railing 0.52(0.52) <0.01(<0.01) 0.75(0.66) 0.79 (0.68)
ClassIoU Door 0.40 (40) <0.01(<0.01) 0.65(0.61) 0.67 (0.62)
Sliding door 0.34 (0.35) <0.01(<0.01) 0.67(0.61) 0.75 (0.70)
Window 0.66 (0.66) 0.05 (0.01) 0.80 (0.76) 0.81 (0.77)
Stairs 0.77 (0.77)  0.09 (0.01) 0.80 (0.78) 0.83 (0.81)
Mean 0.58 (0.58) 0.14 (0.10) 0.76 (0.71) 0.79 (0.74)

Table 5.7: [oU on MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript 13 refers to the model variant only considering
boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.

Combined dataset

Table 5.8 and Table 5.9 contain the accuracy and IoU results on the combined dataset. The results on
the combined dataset hint that it is a more difficult dataset to generalize on compared to the previous
datasets. The increased class imbalance introduced by combining the datasets is one factor makinglearn-
ing more difficult. The class imbalance is increased because of two reasons: (1) the CubiCasa dataset sim-
ply contains more floor plans compared to MURE and (2) the CubiCasa dataset considers a smaller set of
semantic classes than MURE Combining the two datasets results in, for instance, sliding doors making
up a smaller portion of the dataset pixels compared to MURE Since sliding doors are already underrep-
resented in MURE the combined dataset further increases this class imbalance. It is interesting to note
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that both DFPRi and CubiCasa5Kp rely on a weighted cross entropy loss function which aims to balance
the classes. The results show that this loss function is not sufficient to deal with the class imbalance of
the combined dataset. Both DFPRi and CubiCasa5Kp fail at predicting glass walls and sliding doors, and
can no longer be used reliably. Whereas the baseline models fail to generalize, the proposed architectures
achieve promising results. There is a notably decreased accuracy and IoU on the glass walls and railings,
likely due to missing annotations for glass walls that might be present in the CubiCasa floor plans. The
model architecture 2 outperforms architecture 1 by similar margins compared to the previous datasets.

Similar to on CubiCasa, the post-processing method of the baseline models further reduces the ac-
curacy of semantic classes with a low base accuracy. The proposed post-processing method increases
the accuracy, but reduces the IoU for the combined dataset. The increase and decrease in accuracy and
IoU is similar to the individual MURF and CubiCasa datasets. With post-processing, model architecture
2 still performs the best out of all the models.

DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Pixel Acc. 0.53 (0.54) 0.33 (0.36) 0.84 (0.85) 0.85 (0.86)
Wall 0.59 (0.61) 0.47 (0.52) 0.89 (0.90) 0.90 (0.90)
Glass wall <0.01 (<0.01) <0.01(<0.01) 0.51(0.52) 0.54 (0.54)
Railing 0.04 (0.03) <0.01 (<0.01) 0.59 (0.57) 0.62 (0.60)
Class Acc. Door 0.28 (0.28) 0.02 (0.01) 0.71 (0.73) 0.69 (0.72)
Sliding door 0 (0) 0(0) 0.34 (0.36) 0.60 (0.61)
Window 0.55 (0.54) 0.03 (0.01) 0.83 (0.84) 0.82 (0.83)
Stairs 0.45 (0.45) 0.02 (0.02) 0.72 (0.74) 0.73 (0.74)
Mean 0.27 (0.27) 0.08 (0.08) 0.66 (0.69) 0.70 (0.71)

Table 5.8: Accuracy on CubiCasa+MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript I3 refers to the model variant
only considering boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.

DFPRp CubiCasa5Kp  Architecture 1  Architecture 2
Wall 0.57 (0.59) 0.45 (0.49) 0.78 (0.73) 0.79 (0.73)
Glass wall <0.01(<0.01) <0.01(<0.01) 0.44(0.41) 0.43 (0.40)
Railing 0.04 (0.03) <0.01 (<0.01) 0.44(0.41) 0.44 (0.41)
ClassIoU Door 0.27 (0.27) 0.02 (0.01) 0.54 (0.51) 0.56 (0.52)
Sliding door 0 (0) 0 (0) 0.21 (0.18) 0.24 (0.21)
Window 0.49 (0.49) 0.03 (0.01) 0.71 (0.69) 0.71 (0.69)
Stairs 0.43 (0.43) 0.02 (0.01) 0.59 (0.57) 0.62 (0.60)
Mean 0.26 (0.26) 0.07 (0.08) 0.53 (0.50) 0.54 (0.50)

Table 5.9: [oU on CubiCasa+MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript 13 refers to the model variant only
considering boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.

General observations
The results on the four datasets have shown that, regarding the baselines, the DFPRg consistently out-
performs the CubiCasa5Kg model, proving to generalize better across more complex and various scaled
floor plan features. Generally, the baseline models also perform worse than originally reported. This
is likely due to the augmented datasets, which are more difficult to learn from. It is also important to
note that the DFPR model [16] has not been evaluated on a separate test set consisting of unseen data.
The results of evaluating DFPRg on a test set are thus expected to be worse. Compared to the baselines
the proposed architectures achieve a considerably higher accuracy and IoU for all datasets. Although by
a small margin, the fully connected model architecture 2 performs better than the regularly connected
architecture 1.

The proposed post-processing method generally increases the accuracy significantly, but decreases
the intersection over union. The decreased IoU is likely due to the width of semantic elements the post-
processing method increases to deal with noise. Morphological erosion has been applied to mitigate this,
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but another method could prove more effective. Different values for the distance and angle threshold
could also reduce the increased width in the segmentation masks introduced by post-processing.

Loss terms

The training objective for the model architectures is to minimize a multi-task loss function, for which
the task weights are learned through training. This section presents a brief analysis of how task weights
change in order to gain a better understanding of how tasks are used during training. The results from
model architecture 2 on the combined dataset are discussed, which follow the same trend of model ar-
chitecture 1.

The task weights o; balance the unified focal loss, adaptive affinity field loss and multi-scale heatmap
regression loss. Figure 5.1 shows how the values of the task weights develop across epochs, with Fig-
ure 5.1b showing the scaling parameter that is used during training. The results show that the lowest loss
is achieved by reducing the weight of the unified focal loss, while increasing that of the affinity field and
heatmap regression loss. The increase of the affinity field loss weight is most apparent, showing that it is
useful during training.
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Figure 5.1: Task weights o7 across epochs, ﬁ is shown for reference as this value is used to scale the loss tasks.
T

In addition to the task weights, the adaptive affinity field loss also learns grouping and separating
weights per kernel and class. Figure 5.2 shows the value of the weights across epochs. The results show
that the largest kernel size is most effective to group similar pixels, while the smallest kernel is more
useful to separate different pixels.
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Figure 5.2: Grouping and separating weights applied to focus on important areas for calculating the affinity field loss.

5.3.3. Experiment 2: Comparing Recognition with State-of-the-Art

The purpose of experiment 2 is to evaluate how general state-of-the-art segmentation models perform
compared to the model architectures proposed in this thesis. The reason for comparing general segmen-
tation models is that these models improve much faster over time compared to floor plan processing
methods, which allows for a more fair comparison of models regarding their size and complexity. Namely,
one reason for the improved performance of the model architectures compared to DFPR and CubiCasa5K
presented in experiment 1 is due to the increased model complexity. Considering segmentation models
that have shown very promising results in other fields, such as medical image segmentation, and are of
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similar size and complexity thus allow for a better understanding of how the model architectures per-
form.

The two general segmentation models that are considered are U-Net++ [39] and U-Net3+ [40]. Both
have shown promising results in medical image segmentation and have source code that is publicly ac-
cessible. U-Net [38] is also included in the evaluation as a baseline for the segmentation models. Each
model has been modified to be similar to the proposed architectures. The same backbone, feature map
sizes and loss function are used used for all models. This sections discusses the aggregated results on
each dataset: R3D, CubiCasa, MURF and the combined dataset. The metrics include the pixel accuracy,
mean class accuracy and mean IoU, as these are sufficient to evaluate the performance of the proposed
architectures. Only the boundary and opening classes considered by the proposed architectures are com-
pared. Post-processed results are not included, as the method is identical for all models. Appendix C
contains the full results of experiment 2.

Results

Table 5.10 contains the aggregated results for the four datasets. The results show that the fully connected
model architecture 2 outperforms U-Net3+. The exception is the IoU, on which U-Net3+ achieves a
higher value for CubiCasa and the combined dataset. The regularly connected architecture performs
worse than U-Net3+, likely due to the lower model complexity not being able to capture sufficient infor-
mation. Compared to experiment 1, the differences between the considered models are smaller. This is
expected, because an accuracy of 100% can never be reached which causes the best models to achieve
similar performance. It is also interesting to note that U-Net, the baseline model, performs much better
than might be expected due to its low complexity compared to the other models. U-Net outperforms U-
Net++ on every dataset, although the former is a more complex model. This confirms the hypothesis that
more skip-connections do not necessarily improve performance, and that the use of skip-connections
are context dependent.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2

Pixel Acc. 0.92 0.91 0.93 0.92 0.93
R3D Mean Class Acc.  0.90 0.89 0.90 0.90 0.91
Mean Class IoU. 0.83 0.82 0.83 0.83 0.84
Pixel Acc. 0.86 0.82 0.86 0.86 0.87
CubiCasa  Mean Class Acc. 0.78 0.76 0.77 0.78 0.80
Mean Class IoU. 0.64 0.58 0.64 0.61 0.63
Pixel Acc. 0.91 0.83 0.91 0.90 0.92
MURF Mean Class Acc. 0.85 0.71 0.86 0.85 0.87
Mean Class IoU. 0.78 0.63 0.77 0.76 0.79
Pixel Acc. 0.83 0.80 0.85 0.84 0.85
Combined Mean ClassAcc. 0.65 0.56 0.69 0.66 0.70
Mean Class [oU. 0.52 0.44 0.55 0.48 0.54

Table 5.10: Overall accuracy, mean class accuracy and mean IoU of the proposed architectures and compared segmentation
models on four floor plan datasets. Highest value marked in bold.

5.3.4. Experiment 3: Deep Supervision

Deep supervision has been shown to speed up training and improve segmentation performance. The
purpose of experiment 3 is to assess whether a deeply supervised variant of the best performing proposed
architecture further improves performance. This experiment will only evaluate the combined dataset, as
there is sufficient room for improvement compared to the regular proposed architectures. Evaluating a
deeply supervised variant on the other datasets will likely not result in improved performance, because
the proposed models already perform close to optimal.

Results

Table 5.11 contains the aggregated results of architecture 2 and its deeply supervised variant on the com-
bined dataset. The results show that the deeply supervised variant achieves a higher mean class accuracy,
but lower overall pixel accuracy and mean class IoU. Since the increase in mean class accuracy is small,
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compared to the decrease in IoU, the proposed deep supervision method is not effective. Other training
or inference strategies could prove more effective.

Architecture 2  Architecture 2 DS

Pixel Acc. 0.85 0.85
Mean Class Acc. 0.70 0.71
Mean Class IoU. 0.54 0.52

Table 5.11: Overall accuracy, mean class accuracy and mean IoU of architecture 2 compared to its deeply supervised (abbreviated
by DS) variant on the combined dataset.

5.4. Qualitative Evaluation

The goal of the qualitative evaluation is to get a deeper understanding of the recognition and recon-
struction results. This section presents the results of the best performing recognition architecture on
the datasets considered, and an additional case study on a large hospital building in Rotterdam.

5.4.1. Floor Plan Datasets
Figure 5.3, Figure 5.4 and Figure 5.5 shows the recognition results for three example images from R3D, Cu-
biCasa and MUREF respectively. The results show that the proposed architecture 2 is much more robust
to the noise introduced by augmenting the floor plans in the dataset. Especially the CubiCasa5Kp fails to
identify sufficient semantic information in the floor plans. Compared to DFPR3, the proposed architec-
ture produces segmentation masks of higher quality. Although the proposed architecture produces more
accurate masks, there are still some mispredicted stairs in the masks. The difference in accuracy of the
segmentation masks increases for the more complex datasets such as MURE

In addition to the original segmentation mask of proposed architecture 2, the post-processed segmen-
tation mask, abbreviated by ‘pp), is also examined by generating its 3D model. Figure 5.6, Figure 5.7 and
Figure 5.8 show the 3D models of three post-processed segmentation masks from each of the datasets.
Appendix D contains the full-sized 3D models. The results show that the reconstruction method is ef-
fective at reducing noise so an accurate 3D model can be generated. Figure 5.9 contains an example of
a full-sized 3D models generated from MURF ¢ by proposed architecture 2. The results from MURF;eg;
show that the features captured by the proposed architecture are sufficient to infer a full-sized multi-unit
floor plan.
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(a) Input (b) Ground truth (c) Arch. 2 (d) DFPRp (e) CubiCasa5Kp

Figure 5.3: Qualitative comparison of segmentation masks from R3D.
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(a) Input (b) Ground truth (c) Arch. 2 (d) DFPRp (e) CubiCasa5Kp

Figure 5.4: Qualitative comparison of segmentation masks from CubiCasa.
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(a) Input (b) Ground truth (c) Arch. 2 (d) DFPRp (e) CubiCasa5Kp

Figure 5.5: Qualitative comparison of segmentation masks from MURE
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(a) Input (b) Arch. 2 (c) Arch. 2 pp (d) 3D model

Figure 5.6: Qualitative comparison of generated 3D models by proposed architecture 2 from R3D.
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(a) Input (b) Arch. 2

(c) Arch. 2 pp (d) 3D model

Figure 5.7: Qualitative comparison of generated 3D models by proposed architecture 2 from CubiCasa.

(a) Input (b) Arch. 2

(c) Arch. 2 pp (d) 3D model

Figure 5.8: Qualitative comparison of generated 3D models by proposed architecture 2 from MURE
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(b) Post-processed segmentation mask

(c) 3D model

Figure 5.9: 3D model generated from full-sized MURF;est dataset.
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5.4.2. Case Study

In addition to the qualitative evaluation on floor plan datasets, this section presents a case study of the
proposed floor plan processing method on the Erasmus Medical Center (EMC) in Rotterdam. The goal
of the case study on the EMC is to evaluate the differences between a man-made 3D model and an au-
tomatically generated 3D model of a part of the building of the EMC. The building of the EMC consists
of several parts constructed during different years. A 3D model has only been created for the so-called
NG building of the EMC. Unfortunately, the NG part of the EMC is not visible in the floor plan, and thus
a similar region of the floor plan is considered in this case study. Figure 5.10 shows the front view of the
EMC. The green and red areas correspond to the same areas in the floor plan shown in Figure 5.11. The
blue area in Figure 5.11 is the region considered for the 3D model comparison.

Figure 5.10: Front view of the Erasmus Medical Center. Areas marked in red and green correspond to the same areas in the floor
plan (Figure 5.11). Source: Rob van Esch (May 2018).

One notable difference between the floor plan of the EMC and other multi-unit floor plans is the
difference in image contrast. A small contrast modification formalized by Equation 5.8 was applied to
correct this. The contrast for all pixels within a lower and higher bound based on the floor plan is in-
creased by a factor of 2. Note that the highest value is equal to 255, so to increase contrast the pixel value
must be divided instead. Figure 5.12 shows the result of applying the contrast correction on a portion of
the EMC floor plan.

Ji 5 i rgzason Zi Vi < Vi< Li Vi 58
' y; otherwise )

where y; € [0,255] is the value of a pixel i in the floor plan with a value of 255 equal to white.

Results

Figure 5.13 shows a comparison between the man-made 3D model and the generated model of a part
of the EMC. The results show that, after applying a simple contrast correction, the overall quality of the
generated 3D model is sufficient to recognize similar features between the man-made model and the
generated model. For instance, the column structure along the walls is identified, similar to in the man-
made model. Several stairs are also correctly identified in the region of the floor plan. There is still a
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Figure 5.11: Architectural floor plan of the Erasmus Medical Center. Areas marked in red and green correspond to the same areas
in the front view (Figure 5.10).
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(a) Original contrast in EMC floor plan. (b) Corrected contrast in EMC floor plan.

Figure 5.12: Comparison of pixel contrast in EMC floor plan before and after applying contrast correction.

moderate amount of noise, but this can be further reduced by applying an improved contrast correction.
Overall the proposed architecture shows promising results on an unseen complex multi-unit floor plan.

5.5. Ablation Studies

Two ablation studies have been conducted to evaluate the design choices made and the impact of added
components towards overall performance. This section describes the experiments and their results. Each
ablation study has been performed on the combined dataset, as this has been shown to be the most
difficult dataset to learn from. This allows for more room to improve a baseline model and thus better
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(a) Man-made 3D model of NG part of EMC building.

(b) Generated 3D model of portion of original floor plan.

Figure 5.13: Comparison man-made and generated 3D models of the EMC.

examination of the effect of an added component.

5.5.1. Attention Mechanism
The first ablation study is on the CAM and SAM blocks used in the attention mechanism in the proposed
architectures. To investigate the improved accuracy obtained by using the CAM and SAM blocks, each is
added separately to a baseline architecture. The baseline architecture is a variant of model architecture 2
that performs a single AC convolution to compute the decoder blocks, similar to the square convolution
used in U-Net3+ [40]. Table 5.12 contains the results of the ablation study on the attention mechanism.
The results show that using both a CAM and SAM module achieves the best performance. Using only
the CAM module increases the mean IoU. The SAM module is likely responsible for the improved pixel
accuracy and mean class accuracy.

5.5.2. Multi-Task Loss
The final multi-task loss consists of three losses: asymmetric unified focal loss L,yr, adaptive affinity
field loss L£aar, and multi-scale heatmap regression loss Lypr. In order to determine their impact on
accuracy, the losses are iteratively combined and evaluated on the combined dataset with architecture 2.
Table 5.13 shows the results.
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AC CAM SAM CAM+SAM

Pixel Acc. 0.85 0.85 0.85 0.85
Mean Class Acc. 0.66 0.66 0.66 0.70
Mean ClassIoU. 0.54 0.55 0.54 0.54

Table 5.12: Ablation study of CAM and SAM blocks used in the attention mechanism on the combined dataset. The baseline
model is a variant of model architecture 2 that uses a single AC block.

The results show that the combined loss function achieves the best performance. The affinity field
loss increases the mean class accuracy. The added heatmap regression loss further increases the class
accuracy and mean IoU.

Lavr  Laur+Laar  Laur + Laar + LvHR

Pixel Acc. 0.85 0.85 0.85
Mean Class Acc. 0.66 0.68 0.70
Mean Class IoU. 0.53 0.54 0.54

Table 5.13: Ablation study of combining multi-task loss terms of architecture 2 on the combined dataset. Terms £L,yp, £aar and
Lvyr refer to the asymmetric unified focal loss, adaptive affinity field loss, and multi-scale heatmap regression loss respectively.

5.6. Reflection on RQs

The use of the novel multi-unit floor plan dataset MURF has been evaluated and compared to two public
datasets R3D and CubiCasa. RQ1 investigates how a multi-unit floor plan dataset can best be defined,
the following was shown:

¢ Amulti-scale sampling method can be used to capture multi-scale features in large multi-unit floor
plans. This ensures training samples are small enough to fit into GPU memory, while preserving
features useful to learn for inference on full-scale floor plans.

¢ Augmenting a floor plan dataset can artificially increase the complexity of floor plans, forcing mod-
els to learn features that often occur in multi-unit floor plans.

* A set of fixed heights and textures per semantic class is sufficient to allow semantic classes to be
distinguished easily in generated 3D models.

This chapter also evaluated the performance of the two proposed model architectures through a
quantitative and qualitative evaluation, related to RQ2 and RQ3 respectively. The following observations
were made in this chapter:"

¢ The two proposed architectures improve performance significantly compared to existing floor plan
models DFPR [16] and CubiCasa5K [28]. The performance is improved in terms of overall pixel
accuracy, class accuracy and IoU values.

* Compared to state-of-the-art methods, the fully connected architecture 2 achieves the best perfor-
mance. However, the differences are notably smaller compared to the improved performance over
DFPR [16] and CubiCasa5K [28].

¢ A deeply supervised variant of architecture 2 offers a marginal increase in accuracy, at the cost of a
lower IoU.

¢ The post-processing method increases accuracy significantly, but reduces the IoU.

¢ Blender is an effective tool for visualizing vectorized segmentation masks.



Discussion

This chapter presents a further discussion of MURE and the recognition and reconstruction results of the
two proposed model architectures considering the results of Lu et al. [27] and Lv et al. [17]. Limitations
of the proposed floor plan processing method and possible use cases are discussed next.

To the best of our knowledge, MURF serves as the first multi-unit floor plan dataset evaluated in a
deep learning setting. Although MURF consists of a small number of floor plans compared to R3D and
CubiCasa5K, it contains sufficient data for effective learning. MUREF is also the first multi-unit floor plan
dataset considering multiple types of walls and doors, including glass walls, railings and sliding doors. Lv
etal. [17] have proposed a larger single-unit floor plan dataset RFP, which could be used to create a larger
combined dataset. Further evaluation is necessary to determine whether this is possible, as RFP does not
consider railings or stairs classes.

The recognition results from experiment 1 showed that the two proposed architectures outperform
two recent floor plan processing models DFPR [16] and the CubiCasa5K model [28] on floor plan datasets
of varying complexity. The difference in performance becomes more significant when the complexity of
a floor plan dataset increases, which was especially the case for the combined dataset. This shows that
the increased complexity of the proposed architectures allow the models to better capture a larger range
of features necessary to identify the elements in floor plans of different sizes.

Lu et al. [27] proposed a different floor plan processing CNN and also evaluated the DFPR model on
a subset of the CubiCasa5K dataset. Compared to Lu et al., the proposed architectures in this thesis and
DFPR achieve a slightly lower accuracy on the refined CubiCasa dataset. The lower accuracy is expected,
because the CubiCasa dataset contains augmented floor plans, in addition to the added stairs class.

Experiment 2 showed that, compared to state-of-the-art segmentation models such as U-Net++ [39]
and U-Net3+ [40], only the second proposed fully connected architecture achieves the best performance
on floor plan datasets. The regularly connected architecture cannot utilize the feature maps from multi-
ple scales, reducing segmentation accuracy. The increased accuracy of the second architecture is due
to the attention mechanism designed to highlight important features by considering the spatial and
channel dimensions separately. Since the attention mechanism has been designed to highlight floor
plan features specifically, further evaluation is necessary to determine whether the proposed model also
improves accuracy in other image segmentation domains. The results of U-Net illustrate that a higher
model complexity does not necessarily improve performance, which could mean that, instead of the sec-
ond architecture, the first model architecture might be more effective in other domains.

A qualitative evaluation further examined the results of the reconstruction pipeline. Lv et al. [17] per-
form a similar evaluation considering the single-unit floor plans from the original non-augmented R3D
and CubiCasa5K datasets. The proposed models in this thesis produce segmentation masks of compa-
rable accuracy. The reconstruction step, however, produces more noisy post-processed segmentation
masks and 3D models compared to those of Lv et al. This is likely due to the higher complexity of the Lv
et al. model, which generates a set of endpoints per opening class in addition to the regular segmenta-
tion masks. The set of endpoints is used in a vectorization step, which refines the segmentation mask in
a much more aggressive manner.

64
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6.1. Limitations

One limitation of the proposed MURF dataset is the small number of floor plans compared to other pub-
lic floor plan datasets. Although it has been shown that MURF contains similar amount of data compared
to other datasets, more data could help the model generalize better. Due to the high annotation cost per
floor plan, more floor plans could not be labelled and used for training. Model-assisted labelling! could
speed up the annotating process significantly, but was not explored due to lack of sufficient ground-truth
data that it requires.

Although an extensive evaluation was performed on the hardware specified in this thesis, additional
computational resources could further improve recognition performance. For instance, a more complex
backend model for the encoder such as EfficientNet-B3 may increase model accuracy. More computa-
tional power could also permit larger batch sizes for training the model proposed in this thesis. For a
larger batch size, batch normalization could further improve performance compared to group normal-
ization. Further hyper parameter tuning could also improve performance. Although a guided approach
was applied to optimize hyper parameters, no exhaustive search was performed. A larger set of kernel
sizes for the affinity field loss, or different § values to control the spread in the heatmaps for the heatmap
regression loss could be considered.

The recognition part of the model purposefully lacks a region of interest (ROI) detection module used
to initially crop a floor plan to improve accuracy. The reason for not including this module is that using
a popular object detection model such as YOLOvV5 [80] is likely sufficient to crop floor plans to their ap-
propriate size. For example, Lv et al. [17] use a variant of YOLOv4 for their ROI module. No further
optimizations would be necessary here that can be considered a scientific contribution. Furthermore,
an ROI module would not improve performance on the MURF dataset, as the multi-unit floor plans were
already cropped to the appropriate regions during annotating. The floor plans in the R3D and CubiCasa
datasets are also do not require any additional cropping.

One limitation of the reconstruction method is the visualization of stairs. Currently, stairs are visu-
alized by polygons of equal height, set to a higher value than other semantic classes. Furthermore, the
detected stairs do not take the orientation of the stairs into consideration, which can be used in visual-
ization to improve the use of stairs in the generated 3D models.

A second limitation of the reconstruction method is the way round-shaped objects are visualized.
Currently, the segmentation masks are transformed into a set of polygons with the endpoints of each
connected component as the vertices. The disadvantage of this approach is that it generates staircase
like artifacts due to the discrete values in the segmentation mask. These artifacts are especially apparent
for round-shaped objects.

6.2. Applications

Architectural floor plans play a crucial role in architectural firms and engineering offices. As a result,
methods transforming architectural floor plans into other formats can have many applications. Com-
pared to single-unit floor plan processing methods, the proposed method in this thesis can be applied
to both single-unit and multi-unit floor plans, and thus to more buildings. This section discusses three
exciting applications within the industry that could be explored.

The first application is related to why the proposed method was designed to begin with: the digital
twin of Rotterdam. The proposed method can be applied to the entirety of Rotterdam due to two improve-
ments. The first improvement is the larger range of floor plan sizes that the proposed model can process
compared to existing methods. The second improvement is the scalability of the proposed method, both
in terms of inference time and required data. The proposed method can generate the 3D model of any
sized floor plan within minutes on commodity hardware. A point-cloud based method would, for in-
stance, require more time, but more importantly, more data to generate a 3D model. A 3D representation
of Rotterdam could prove useful for the fire brigade of Rotterdam, which currently relies exclusively on
floor plans for the majority of the buildings in Rotterdam in case of an emergency.

The second application would be to apply the floor plan processing method in the residential market.
Rasterizing and visualizing floor plans is a growing market with a predicted value of $43bn by 2025 [14].
An automatic approach to detect a larger set of semantic elements in floor plans compared to existing
approaches could pose as a valuable starting point for generating 3D models used in the rental market.

Ihttps://docs.labelbox.com/docs/model-assisted-labeling
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The third application is related to BIM reconstruction. BIM models are dense 3D representations of
buildings, describing additional properties such as material, thermal and other properties. BIM models
allow for several use cases, such as structural analysis, thermal simulations, and emergency route plan-
ning. The produced 3D models produced by the method in this thesis can be converted into BIM models
by augmenting the model with additional data if available.



Conclusion

The goal of this thesis is to propose a floor plan processing method capable of processing floor plans of
arbitrary size in a scalable manner, focusing on identifying the necessary structural elements to create
an accurate 3D representation. A novel multi-unit floor plan dataset, MURE is introduced and used to
evaluate the proposed method in this thesis.

The MUREF dataset is compared to two other datasets, namely R3D and CubiCasa. MURF showed
that a small number of multi-unit floor plans are necessary compared to many single-unit floor plans
to represent a comparable amount of data. A list of 7 semantic classes were found to be sufficient to
generate realistic 3D models that can be used for various use cases. To facilitate effective learning, a
multi-scale sampling method was used to split the multi-unit floor plans into distinct tiles. Learning
from multi-scale samples reinforced models to adopt multi-scale features.

The recognition part of the proposed method is responsible for identifying the semantic elements
in floor plans. Multi-unit floor plans are very challenging to process, mainly due to their size and in-
creased complexity compared to single-unit floor plans. A key part in being able to handle both is to
learn from floor plans at different scales. Different model architectures combining multi-scale features
have been evaluated to see which skip connections performed best. An additional attention mechanism
is employed to improve the representation power of the multi-scale features, highlighting feature maps
separately based on their spatial or channel importance.

The recognition method is evaluated by comparing it to DFPR [16] and CubiCasa5K [28] on aug-
mented variants of four datasets: R3D, a refined version of CubiCasa5K [28] called CubiCasa, MURE and
a combination of CubiCasa and MURE Compared to the state-of-the-art floor plan processing methods,
the proposed architectures show promising results, increasing accuracy and intersection over union sig-
nificantly on all datasets. The difference in performance is larger for the floor plan datasets of higher
complexity.

A second experiment is conducted to investigate the performance of the proposed architectures com-
pared to U-Net++ [39] and U-Net3+ [40]: two general state-of-the-art segmentation models that have
shown promising results in other research domains. The results show that, while the difference in per-
formance is smaller compared to the first experiment, the second proposed architecture using fully con-
nected multi-scale features performs best overall. A deeply supervised variant of architecture 2 is also
evaluated which supervised the intermediate decoder layers. Applying deep supervision resulted in a
marginal increase in model accuracy, at the cost of a decreased IoU.

The reconstruction part of the proposed method transforms the produced segmentation masks into
a 3D model by applying a pipeline consisting of post-processing, vectorization and visualization. The
post-processing method is designed to refine elements of arbitrary orientation in the floor plan. This
is a necessary improvement over post-processing methods in literature, because multi-unit floor plans
almost always contain elements not aligned with the floor plan axes. The vectorization and visualization
steps generate a list of polygons from the post-processed segmentation mask and render their combined
3D representations using Blender respectively. Similar to related work [16, 17, 28], this is actually a 2.5D
representation of the floor plan, as the height of elements is set to a pre-defined value depending on the
semantic class. Stairs are, for instance, rendered with a higher height to improve their visibility in a 3D
model.
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A qualitative evaluation on the reconstruction part is presented based on the floor plan datasets
and a case study on the Erasmus Medical Center (EMC) in Rotterdam. Compared to DFPR [16] and
CubiCasa5K [28], the proposed architectures produce segmentation masks of higher accuracy. Post-
processing further reduces inaccurate predictions and can be effectively paired with vectorization and
visualization to generate 3D models. The case study on the EMC shows that the proposed method gener-
alizes well enough to generate a 3D model of a large building without any additional required training on
data of the building. With the exception of a different type of door, the generated 3D model of the EMC
looks sufficiently similar to a man-made 3D model created for a part of the building.

7.1. Answers to RQs

The first research question is: how can a multi-unit floor plan dataset best be defined for effective learn-
ing and visualization? This thesis showed that, compared to single-unit floor plans, a small number of
multi-unit floor plans are necessary to represent a comparable amount of semantic data. A sampling
method is necessary to split the large floor plans into smaller tiles, to ensure the images fit in to GPU
memory. Sampling from multiple sizes can facilitate multi-scale learning, improving overall model per-
formance. Regarding visualization, 7 semantic classes were found to be sufficient, each semantically
distinct and offering additional information about, for instance, opacity or height. Object or room types
in multi-unit floor plans was found to be unclear or contradictory, and were thus deemed too difficult to
learn.

The second research question is: what CNN architecture can effectively detect semantic informa-
tion in architectural floor plans of arbitrary size in a scalable manner? Three important design choices
were made to achieve this. The first was to use an FCN, which can process inputs of arbitrary size. The
second was to adopt a multi-task training objective, which optimizes pixel, patch and multi-scale loss
simultaneously. The third and last design choice was to use an attention mechanism block, highlighting
and suppressing important and indiscriminative spatial and channel dimensions. Although training the
proposed FCN is computationally expensive, inference is not and thus considered scalable.

The third and last research question is: how can produced segmentation masks best be transformed
into a 3D representation? A reconstruction pipeline was proposed to achieve this, refining a segmenta-
tion mask and deriving approximate polygons used to visualize a floor plan in Blender. A pre-defined
height and set of textures was used to better illustrate the physical differences between semantic classes
in a floor plan.

7.2. Future Directions

The focus of this thesis was to detect structural elements in multi-unit floor plans. Several research direc-
tions have been purposefully left unexplored, to show a relatively simple model considering only struc-
tural elements can generate accurate 3D representations of floor plans. This section will elaborate on four
possible future research directions that could further improve the performance of the proposed model.

The first future direction could be to augment the model to also detect object types in floor plans. This
may not be necessary in the use cases described in this thesis, but could prove useful in other domains
such as indoor modelling. The challenge here would be to come up with a list of object types, and suffi-
cient data for each object, for the model to generalize well. Detecting object types in a multi-unit floor
plan dataset is particularly challenging, as many floor plans would be necessary to supply the model with
sufficient data on each object class for the model to generalize well.

The second future direction could be to integrate additional data sources into the floor plan process-
ing pipeline, further improving accuracy or allowing for more complex use cases. Examples of integrating
data include deriving textures from public images of buildings for visualization, or adding real-time sen-
sor data of a building to the generated 3D model to visualize crowds.

The third future direction would be to expand the evaluation with transformers. Transformers have
recently been shown to be effective at image segmentation, and could prove effective in the domain of
floor plan processing as well. Transformer-based approaches usually process an input image in patches.
Developing a scalable method of processing the large multi-unit floor plans in patches would pose as an
additional challenge.

A fourth and last direction would be to improve inference speed by performing kernel fusion of the
asymmetric convolution blocks, as proposed in ACNet [59]. Since the separate horizontal and vertical
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kernels are no longer necessary after training, they can be merged by element-wise summation with the
regular square kernel used in the convolutional layers. Merging the kernels results in the same inference-
time performance compared to a model without using the asymmetric convolution block, since no extra
computations are required.
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Dataset Samples

This chapter contains supplementary examples of floor plans from the two public datasets considered in
this thesis: R3D [16] and a refined version of CubiCasa5K [28] called CubiCasa.

A.1. R3D

Figure A.1 contains three examples of floor plans in R3D.

A.2. CubiCasa

Figure A.2 contains three examples of floor plans in CubiCasa.
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Average Bound on Sampling Method

This chapter contains supplementary examples of the average number of tiles needed for floor plans of
various resolutions. Figure B.1a, Figure B.1b and Figure B.1c shows the number of tiles for floor plans of
1000 x 1000, 1500 x 1500 and 2000 x 2000 respectively.
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Full Results Experiment 2

This section contains the full results of experiment 2, containing all class-related metrics for each of the
four datasets considered.

R3D
Table C.1 and Table C.2 contain the accuracy and IoU results on R3D.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2

Pixel Acc. 0.92 0.91 0.93 0.92 0.93
Class Acc. Wall 0.94 0.93 0.95 0.95 0.95

Door-and-window 0.87 0.85 0.86 0.87 0.87
Mean 0.90 0.89 0.90 0.90 0.91

Table C.1: Accuracy on R3D compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Zeng et al. for
reference [16]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on
the augmented dataset. Highest value marked in bold.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2

ClassIoU Wall 0.90 0.88 0.90 0.90 0.90
Door-and-window 0.77 0.76 0.76 0.76 0.77
Mean 0.83 0.82 0.83 0.83 0.84

Table C.2: IoU on R3D compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Zeng et al. for reference [16].
Subscript /3 refers to the model variant only considering boundary and opening elements that was evaluated on the augmented
dataset. Highest value marked in bold.

CubiCasa
Table C.3 and Table C.4 contain the accuracy and IoU results on CubiCasa.
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U-Net U-Net++ U-Net3+ Architecturel Architecture 2
Pixel Acc. 0.86 0.82 0.86 0.86 0.87
Class Acc. Wall 0.88 0.85 0.91 0.90 0.91
Railing 0.67 0.66 0.64 0.62 0.68
Door 0.71 0.68 0.70 0.71 0.75
Window 0.88 0.79 0.86 0.86 0.85
Stairs 0.78 0.80 0.73 0.73 0.78
Mean 0.78 0.76 0.77 0.76 0.80

Table C.3: Accuracy on CubiCasa compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Kalervo et al. for
reference [28]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on
the augmented dataset. *This value includes the background class and can thus not directly be compared to the others. Highest
value marked in bold.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2
ClassIoU Wall 0.80 0.75 0.79 0.79 0.78
Railing 0.46 0.38 0.48 0.47 0.45
Door 0.58 0.58 0.58 0.57 0.56
Window 0.73 0.67 0.74 0.73 0.73
Stairs 0.63 0.54 0.62 0.62 0.61
Mean 0.64 0.58 0.64 0.64 0.63

Table C.4: IoU on CubiCasa compared to DFPR [16] and CubiCasa5K [28]. The first column is copied from Kalervo et al. for
reference [28]. Subscript B refers to the model variant only considering boundary and opening elements that was evaluated on

the augmented dataset. Highest value marked in bold.

MURF

Table C.5 and Table C.6 contain the accuracy and IoU results on MURE

U-Net U-Net++ U-Net3+ Architecturel Architecture 2
Pixel Acc. 0.91 0.83 0.91 0.90 0.92
Wall 0.91 0.88 0.93 0.94 0.95
Glass wall 0.85 0.78 0.86 0.85 0.86
Railing 0.85 0.66 0.86 0.86 0.88
Class Acc. Door 0.80 0.68 0.80 0.79 0.80
Sliding door  0.83 0.37 0.84 0.83 0.84
Window 0.86 0.72 0.89 0.88 0.90
Stairs 0.84 0.89 0.86 0.84 0.87
Mean 0.85 0.71 0.86 0.85 0.87

Table C.5: Accuracy on MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript B refers to the model variant only
considering boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.
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U-Net U-Net++ U-Net3+ Architecturel Architecture 2
Wall 0.86 0.81 0.85 0.87 0.87
Glass wall 0.80 0.67 0.78 0.80 0.80
Railing 0.78 0.56 0.75 0.75 0.79
ClassIoU Door 0.65 0.58 0.65 0.65 0.67
Sliding door  0.71 0.34 0.72 0.67 0.75
Window 0.81 0.64 0.80 0.80 0.81
Stairs 0.82 0.79 0.83 0.80 0.83
Mean 0.78 0.63 0.77 0.76 0.79

Table C.6: IoU on MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript B refers to the model variant only considering
boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.

Combined dataset

Table C.7 and Table C.8 contain the accuracy and IoU results on the combined dataset.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2
Pixel Acc. 0.83 0.80 0.85 0.84 0.85
Wall 0.89 0.84 0.89 0.89 0.90
Glass wall 0.46 0.27 0.57 0.51 0.54
Railing 0.61 0.59 0.60 0.59 0.62
Class Acc. Door 0.70 0.62 0.69 0.71 0.69
Sliding door  0.33 0.04 0.43 0.34 0.60
Window 0.83 0.82 0.83 0.83 0.82
Stairs 0.75 0.77 0.79 0.72 0.73
Mean 0.65 0.56 0.69 0.66 0.70

Table C.7: Accuracy on CubiCasa+MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript B refers to the model variant
only considering boundary and opening elements that was evaluated on the augmented dataset.

U-Net U-Net++ U-Net3+ Architecturel Architecture 2
Wall 0.78 0.75 0.79 0.78 0.79
Glass wall 0.38 0.18 0.46 0.44 0.43
Railing 0.44 0.38 0.44 0.44 0.44
ClassIoU Door 0.55 0.55 0.57 0.54 0.56
Sliding door 0.17 0.02 0.27 0.21 0.24
Window 0.71 0.62 0.72 0.71 0.71
Stairs 0.61 0.60 0.61 0.59 0.62
Mean 0.52 0.44 0.55 0.53 0.54

Table C.8: IoU on CubiCasa+MURF compared to DFPR [16] and CubiCasa5K [28]. Subscript B refers to the model variant only
considering boundary and opening elements that was evaluated on the augmented dataset. Highest value marked in bold.



Reconstruction Results

This chapter contains the full-sized 3D models of the qualitative evaluation.
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(a)

(b)
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Figure D.1: 3D models from R3D.
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Figure D.2: 3D models from CubiCasa.
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Figure D.3: 3D models from MURE
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