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Abstract
To collaborate effectively, humans and AI agents need to trust each other. Commu-

nication between teammates is an essential component to achieve this, as it makes the
AI system more understandable to humans. However, previous research lacks a focus
on ways to build an AI agent’s trust in its human teammate and, consequently, on how
the AI’s beliefs can be communicated to the human. As such, this study explores how
real-time visual explanations of the AI agent’s trust in its human teammate influence
human trust and overall satisfaction. Through a user experiment (n=46) conducted on
an Urban Search and Rescue simulation, integrating trust explanations was compared
against a baseline containing no such information. Results show a statistically signifi-
cant increase in both human trust and satisfaction when the explanations are provided,
highlighting the need for further exploration into methods of communicating trust.

1 Introduction
Artificial agents are increasingly designed to collaborate with humans, by assisting them in
tasks and improving efficiency. In such a setting, the AI and human agents work together
towards a common goal, forming human-AI teams (HATs). Mutual trust is essential in
this interaction [1]: humans need to trust artificial agents to collaborate effectively (natural
trust), while artificial agents should incorporate trust into their decision process to determine
how and with whom to engage [2] (artificial trust). Thus, it is imperative to research ways
of consolidating the human-AI trust from both perspectives, i.e. both the natural and the
artificial trust.

To build artificial trust, the AI agent should be able to perceive human characteristics
and assess whether they are a cue for trustworthiness [3]. This requires the AI to construct
an accurate mental model of the human teammate and possibly adjust its behaviour based
on it. Mental models are, however, a complex concept, encompassing all information related
to environment dynamics, responses to these dynamics, team goals, and team role inter-
dependencies [1]. This poses a problem, as there is limited research on building artificial
trust in human-AI team scenarios. While existing studies offer conceptual models of con-
structing trust, empirical research on the advantages of building artificial trust and practical
implementations of such models remain underexplored.

Communication has proven to be essential in building and maintaining natural trust,
as an explainable system improves the user’s trust in the algorithm [4]. When designing
human-AI communication mechanisms, decisions about which aspects of the AI model to
communicate and how to communicate them are pivotal, as they directly influence team
trust and performance [5]. However, as empirical research on building artificial trust is
scarce, there is consequently a gap in studying the effects of communicating this aspect
of the AI model. As such, this research analyses the impact of communicating the AI
agent’s trust in its human teammate, which aims to increase the human’s understanding
of the AI algorithm. Moreover, previous literature lacks a focus on the different types of
communication the human-AI teams can incorporate [5]. Thus, this study will focus on a
particular communication type, specifically real-time visual explanations of trust. There
is evidence supporting this choice: explanations can affect humans’ perception of an AI’s
ability to help [6], visual information is preferred by users over textual alternatives [7], and
collaborative tasks are considered an opportunity for real-time feedback and updates [1].

This research aims to consolidate human-AI collaboration in team-based activities by
building and communicating artificial trust. To achieve this, the study focuses on 1) con-
structing a trust model of the AI agent and 2) implementing real-time visual explanations of
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the AI’s trust in the human teammate. The following research question has been formulated
to support this development:

How do real-time visual explanations of the mental model of the AI agent’s trust in its
human teammate affect the human’s trust in the AI agent and overall satisfaction?

To effectively address the research question, several sub-questions have been composed:

1. What are the main components of the mental model of the AI’s trust in its human
teammate? How are they formally defined?

2. How can the AI agent’s trust be visually explained in a real-time environment?

3. How can human trust and satisfaction be measured?

4. How does the inclusion of real-time visual explanations impact the trust and satisfac-
tion of the human teammate compared to a baseline model?

These sub-questions serve as a guide through the research process, which includes three
main phases: building the trust model (1), implementing the communication method (2),
and assessing the performance of this method by conducting a user study (3, 4). The first two
sub-questions are answered by performing a literature study supported by implementation,
while the last two are discussed based on the setup and results of the user study.

This research has the potential to improve support for building trust models in practical
scenarios and to promote natural trust via real-time visual explanations. The main focus is
developing trust models that reflect real-life contexts and promoting communication styles
that feel more trustworthy. Rather than viewing AI agents as tools, the aim is to encourage
a perspective where they are seen as legitimate teammates. This shift in mindset has the
potential to greatly enhance team performance and effectiveness [5].

The rest of the paper is structured as follows. Section 2 presents the background litera-
ture used to develop the trust and communication models, followed by a formalization of the
trust model in section 3. The methodology and experiment design are described in section 4,
and an overview of the results is presented in section 5. A discussion on responsible research
is presented in section 6 and the experiment results are discussed subsequently in section 7.
The conclusions of this research are highlighted in section 8.

2 Background

2.1 The Trusting Process
According to Sabater-Mir and Vercouter (2013), trusting another involves a process that
can be divided naturally into two stages: trust evaluation and trust decision [2]. The first
stage, trust evaluation, assesses the trustworthiness of the trustee (party to be trusted)
based on all mental states, values, and beliefs accumulated by the trustor (trusting party)
[2]. For artificial agents, especially in short-lived teams, this information might only be
collectable from directly observable cues and behaviours. Falcone et al. (2011) define these
observable signs as manifesta, and the internal properties that can be derived from them as
krypta [8]. Previous literature has outlined multiple frameworks for modelling the krypta,
such as the ABI (Ability-Benevolence-Integrity) Model developed for human-human teams
[9] or the Socio-Cognitive Model of Trust [10].
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The Socio-Cognitive Model states that the trustor can form two basic beliefs regarding
the trustee: competence and willingness. The competence belief is related to the ability
of the trustee to perform a given task, or how useful the trustee is to achieve the trustor’s
goal. The willingness belief represents how much the trustor thinks the trustee will perform
the given task, or how willing the trustee is to achieve the trustor’s goal. Based on these
concepts, the agent can construct different sets of beliefs for each task domain, following
the model proposed by Paglieri et al. (2013) about building trust based on the message
quality of the trustee in an argumentative scenario [11]. They explain that trustworthiness
in one domain does not necessarily imply trustworthiness in another: a doctor is considered
competent in the health domain, but not necessarily when suggesting a restaurant [11].

The second stage in the trusting process is the trust decision, which determines whether
the trustee will be trusted with a given task [2]. This decision involves not only the trust
evaluation but also the context of the interaction [2]. Based on the trust decision, the trustor
might adjust its behaviour towards the trustee, and the process repeats. In the context of
artificial agents, not trusting the human can refer to performing more tasks alone instead of
asking for assistance, or adjusting the task allocation.

Previous studies proposed that both the trust evaluation and decision stages are influ-
enced by context, as it impacts the krypta and manifesta of a teammate [12]. Preferences are
a significant and "often ignored" part of this context [13, p. 386], as they influence humans’
engagement with tasks. For instance, humans may choose not to assist the AI agent due
to a dislike for a specific task rather than a reflection of their krypta, and the AI should
account for this when assessing trust. Centeio Jorge et al. (2024) propose a conceptual
framework to integrate context into trust models, composed of task and team configurations
[12]. A notable component of task configuration is the set of stimuli, which can influence
humans’ motivation to perform a task and provide a better understanding of its perceived
complexity. Preferences can arguably be considered a part of this set, as they convey similar
aspects. Other essential elements of this framework include task workload, criticality, and
team lifespan and composition [12].

2.2 Communicating the Trust Model
As a broader concept, communication is considered to be a central point in human-AI team
processes and a facilitator of shared knowledge [5, 12]. Communication can thus be viewed
as an effort towards Explainable AI (XAI), an artificial intelligence branch focused on mak-
ing systems more understandable to humans [14]. There are several past experiments which
focused on the impact AI communication has on users. Zhang et al. (2023) studied how
AI communication strategies impact human-AI teaming processes, concluding that proac-
tive communication enhances human trust and situation awareness [5]. The experiment
by Verhagen et al. (2022) analyses the effect of various AI communication styles (silent,
transparent, explainable, adaptive) on teamwork performance, across different levels of in-
terdependence [15]. Their findings generally indicated increased levels of human trust and
understanding when the robot communicated. Le Guillou et al. (2023) analysed the impact
of the AI agent providing intention-based explanations on user trust and acceptability, con-
cluding that such explanations enhance trust [16]. Overall, it is noticeable that there is a
strong connection between appropriate AI communication and natural trust.

Although certainly valuable, the communication types investigated in most studies are
environment- or task-related, with no focus on implementing or communicating artificial
trust. Therefore, following the advice of Zhang et al. (2023), "Research should gear towards
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understanding the nuances and different types of communication that the current state-of-
the-art HATs afford, and that the future HATs should afford" [5, p .281:5], this research
focuses on the potential utility of communicating the AI agent’s trust beliefs and related
behaviour.

As the communication model outlined in the research question is explanation-based, it is
worth clarifying the distinction between explainable and transparent systems. Following the
framework proposed by Verhagen et al. (2021), transparency refers to disclosing knowledge
about the system functionality, or answers to "what"-questions [14]. On the other hand,
explainability provides answers to "why" or "how"-questions, clarifying relations between
system elements and thus supporting human understanding [14]. The explanations of trust
should, therefore, include not only plain information but also the reasoning behind it. The
choice of integrating explanations is supported by past studies, which demonstrate that
providing reasoning information increases trust [6, 17]. Moreover, a measure of interest
for the research question is human satisfaction. Therefore, following the conclusions of
Szymanski et al. (2021) that users prefer visualization-based explanations over textual ones,
the trust model of the AI agent should be presented graphically [7]. However, since the
notion of explainability implies providing a reason when communicating knowledge, the
visualizations should be enhanced with textual reasonings. This decision is also supported
by Szymanski et al. (2021), who concluded that enhancing visual explanations with textual
additions improves user performance [7]. Finally, collaborative tasks are considered to be
an opportunity for more frequent feedback and updates [1]. This advantage can be used by
presenting the trust beliefs of the AI agent in a real-time manner, on every trust update or
behaviour change.

3 Trust Model Formalization
To communicate the AI agent’s trust beliefs, this study compiled a context-dependent trust
model for building artificial trust, following the concepts presented in subsection 2.1.

In the evaluation stage, the AI agent’s beliefs are updated according to the perceived
competence and willingness of the human. Formally, when observing the nth behaviour cue
of the human H for a certain task t ∈ D from task domain D, the AI agent’s beliefs in the
human krypta value ϕ ∈ {competent, willing} are updated as:{

Bn(ϕ(H,D)) = Bn−1(ϕ(H,D)) + ∆(t)

B0(ϕ(H,D)) = 0
(1)

where Bn(x) ∈ [−1, 1] is the belief of the AI agent on an arbitrary value x after n observa-
tions and ∆(t) is the amount of adjustment (positive/negative) for a task t. The amount
of adjustment depends on the importance and interdependence level of the task. Having a
different set of beliefs for each individual task instead of aggregated domains was also consid-
ered. However, due to the short lifespan of the human-AI collaboration chosen for the user
study, it was decided to opt for constructing task domains instead. This ensures that the
beliefs have enough time to consolidate and converge towards the end of the collaboration.

For tasks t that can be dependent on human preferences, an additional preference factor
P (t) (positive/negative) is considered when computing the willingness belief. This study
considers that preferences can only impact the willingness of a human to perform a certain
task, independent of their competence. The human preferences were, thus, considered in
both the evaluation and decision stages, serving as a context factor. Integrating preferences
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into the evaluation stage is, to the best of the author’s knowledge, not an experimented area
in the current literature. This inclusion aims to form more accurate trust beliefs, which
should be better understood and accepted by humans when communicated. Formally, the
preference factor is included as:

Bn(willing(H,D)) = Bn−1(willing(H,D)) + ∆(t) + P (t) (2)

To compute the preference factor, this research considered a heuristic-based approach, cen-
tred on the idea that humans prefer to do less difficult tasks. There is evidence supporting
this heuristic. O’Brien et al. (2020) discuss in their experimental study regarding web search
engagement that complex tasks are associated with negative emotions and are deemed less
engaging [18]. Moreover, Jorge et al. (2024), in their experiment about which manifesta
should an AI agent take into account as cues of the human’s krypta, discussed that most
participants chose tasks with the least effort associated to them (the easiest products to
collect in a supermarket environment) [3].

For trust decisions, aggregating trust beliefs is a necessary step. Following the study by
Paglieri et al. (2013), this research follows the hypothesis that a source is trusted if it is
believed to be both competent and willing [11]. Formally, the trust decision τn(t) ∈ {0, 1}
on task t after n observations is:

τn(t) = Bn(competent(H,D)) ≥ Tc ∧Bn(willing(H,D)) ≥ Tw (3)

where Tc, Tw are predefined thresholds and τn(t) = 1 represents trust, τn(t) = 0 represents
distrust. For the willingness belief, Tw is dependent on the preference factor P (t) of the task
t for which the decision is taken.

Since the study is dealing with short-lived collaboration, blindly making decisions based
on trust in early stages can negatively impact the overall goal. Thus, to model the consol-
idation of beliefs over time, confidence was introduced. This addition aims to mimic how
users’ trust in intelligent systems changes over time as they gain more experience, a point
highlighted in earlier studies [19]. Formally, when making a decision, the AI agent trusts
its own beliefs and, consequently, uses its trust decision τn(t) with confidence C, or else
considers the human as trustworthy by default. Confidence can therefore be viewed as a
probability measure, C ∈ [0, 1].

Updating the confidence value is based on the monotonicity of the previous trust ad-
justments. For example, if the human manifesta produced only trust increases/decreases
in the last few assessments, the confidence increases as well since the AI’s opinion of the
human is solidified. A similar concept is described by Paglieri et al. (2013), which explain
that information should only change a source’s assessment when something new is learned,
either consolidating the judgement or revealing the previous opinion to be wrong [11]. The
confidence is updated per domain, taking into account separately both beliefs. Formally,
adjusting the confidence on domain D for belief ϕ with adjustment δ(ϕ), considering the
last k trust assessments out of the total of n assessments, is computed as:

Cn(D) =


Cn−1(D) if ∀i n− k + 1 ≤ i < n, Bi(ϕ) = Bi+1(ϕ), otherwise
Cn−1(D) + δ(ϕ) if ∀i n− k + 1 ≤ i < n, Bi(ϕ) ≤ Bi+1(ϕ)

Cn−1(D) + δ(ϕ) if ∀i n− k + 1 ≤ i < n, Bi(ϕ) ≥ Bi+1(ϕ)

Cn−1(D)− δ(ϕ) otherwise

(4)
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Figure 1: Environment used during the experiment. Left side shows the initial map
configuration in "God" view. Right side shows the chat area.

4 Method
The goal of this research is to assess whether communicating the AI agent’s trust model
increases the human’s trust in the AI and overall satisfaction. To achieve this, a between-
subject experiment was conducted in person, collecting both observable human behaviours
through game logs and self-reported measures of trust and satisfaction using validated ques-
tionnaires.

4.1 Participants
To conduct this experiment, 46 participants were recruited using the author’s personal
networks. All participants resided in Europe and most belonged to the 18-24 age group
(41). Ages were between 18 and 44. Most participants had an academic Computer Science-
related background (38) and were Bachelor students or graduates (34). Regarding gender,
33 participants identified themselves as men and the rest as women. Only some of them
had experience with the MATRX software (12). The gaming experience ranged from no
experience (4), very little experience (6), some experience (17), to a lot of experience (19).

4.2 Environment
Simulation. The experiment used a simulated Urban Search and Rescue environment,
adapted from an existing implementation [20] and developed using the MATRX Software
[21]. The environment features a two-dimensional map with 10 areas where the robot (Res-
cueBot) and the human participant navigate and interact, along with a chat area where
the teammates exchange information (Figure 1). There are 6 victims to be rescued, with
three being critically injured (red) and three mildly injured (yellow). The critically injured
victims could only be rescued with the AI’s help, while the mildly injured ones could be
rescued by only one teammate (but working together improved efficiency). Some areas were
obstructed by 8 obstacles, such as rocks, trees, and stones, which need to be cleared to
access those rooms. Clearing the obstacles required different interdependence levels with
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the robot. Rocks (grey) demanded cooperation from both teammates to clear them. Trees
(green) could only be removed by the robot itself. Stones (brown) were the most flexible ob-
stacle - either teammate could handle them, although working together improved efficiency.
The RescueBot, victims, and obstacles were only visible to the human if close to their avatar
(as opposed to the "God" view showcased in Figure 1).

Task. The goal of this simulation was to successfully find and transport all 6 victims to the
rescue zone. Completing this task required a high level of interaction with the robot, both
communication-wise and when performing joint tasks. Each simulation lasted 10 minutes,
after which the environment shut down. The task domains based on which the AI formed
its trust beliefs were Search (announcing searches and properly searching rooms), Obstacles
(clearing obstacles efficiently), and Victims (finding and collecting victims).

Communication. In the chat area, the participant could only communicate with the
robot using predefined phrases, presented as buttons. This interface allowed for:

• sharing decisions about searching ("I will search in area X")

• requesting help with removing obstacles ("Help remove at X")

• answering questions ("Remove alone/together", "Rescue alone/together", "Continue")

• announcing the discovery and rescue of victims ("I have found X", "I will pick up X").

Preferences. To elicit human preferences, the environment was designed to give the tasks
varying engagement levels. Notably, a flooded area was included that covers half of the map,
which takes longer for the user to navigate compared to the non-flooded area. Moreover,
the map contains special victims (elderly victims) whose rescue requires more time. The
distance between the human and the robot was also considered. All three aspects (flooded
areas, special victims, distance) were used to compute the preference factor, based on the
heuristic that humans tend to avoid complex tasks. Additionally, the distance was also taken
into account when determining the robot’s waiting time for human response or assistance,
as part of the behaviour adaptation process.

4.3 Conditions
This experiment compares the changes in human trust and satisfaction when incorporating
real-time visual explanations about the AI agent’s trust model (Trust Explanations group),
compared to a baseline without this information (Baseline group). To fulfil this, two trust-
related plots were integrated into the chat area of the TE group, offering explanations and
insights into the trust model (Figure 2). The choice to use plots for visualization is supported
by previous studies that adopted the same method [7]. Moreover, for the trust model to be
easily understandable, only the components deemed the most important were displayed: the
trust assessment and decisions, the human’s krypta model, and the AI agent’s confidence.

The left plot shows the change in the AI agent’s overall trust in the participant over time,
thus leveraging the real-time aspect of the collaboration. The trust value was averaged across
all domains (Search/Obstacles/Victims) and beliefs (competence/willingness), to make the
plot more comprehensible. Upon hover, each data point displays a brief explanation of
why the trust value changed (Figure 2b), such as a specific human action that caused the
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(a) Default view (b) View upon hovering on a data point

Figure 2: Trust plots displayed for the TE condition.

Table 1: Trust-based explanations for the TE condition.

Trust Increase Trust Decrease Behaviour Adaptation

You searched a room

You want to remove together O

You asked for help with O and
are here

You want/asked me to remove O

We removed O together

Found V because you told me

You want to rescue together V

We rescued V together

You found/collected V

Found V/O in room searched by you

You searched 2 rooms in <5 seconds

You searched a room already searched
by me/you before

You forgot to announce search/found

You asked for help with O but were not
there

Found V but you said you collected it

Victim V not found in room you said

I rescued/removed V/O alone because I
waited too much for an answer/for help

I continued searching without
rescuing/removing V/O because I waited
too much for an answer/for help

I trust you, so I continued searching
without rescuing/removing V/O

I trust you with rescuing V

I trust you to rescue V together

I continued searching without
rescuing/removing V/O because I waited
too much for an answer/for help

I rescued/removed V/O alone because I
waited too much for an answer/for help

I will help you with rescuing V

I rescue/remove V/O alone because I
think it is more efficient

I rescue/remove V/O alone because I do
not think you prefer this task

O = obstacle, V = victim.

increase or decrease in trust (marked with up/down arrows), or notable events related to
the agent’s behaviour (marked with an exclamation mark). This inclusion aims to fulfil
the explainability aspect of the research question. A comprehensive list of all trust-based
explanations can be found in Table 1. The right plot is a bar chart displaying the values of
the two components the AI agent’s trust is based on, competence and willingness, as well
as the AI agent’s confidence in its own beliefs. The latter was added for better insights into
the trust decision process. These values are averaged on all domains and are presented as
percentages, aiming to make the plot clearer.

4.4 Procedure
Each participant was first asked to read a research overview and complete a consent form
before proceeding with the experiment. They were randomly assigned to one of the two
conditions after consenting. Then, each participant was asked to complete a personal in-
formation survey in which they stated their age group, gender, region, level of education,

8



game experience, knowledge of the MATRX Software, and whether they major(ed) in a
Computer Science-related field. The participant was then instructed on how to navigate the
environment and interact with the robot, by playing a tutorial in a toy environment. In
the tutorial, the robot prompted the user to perform different tasks and explained the most
relevant environmental aspects. Regardless of condition, participants were also informed
that the robot contains a trust model, based on their competence and willingness, and that
the robot adapts its behaviour based on it. For the TE condition, the participants also
received a verbal explanation of how to use the trust-related plots. Afterwards, participants
proceeded with the official task. During the task, they were allowed to ask for technical sup-
port, such as game commands, but no other help was provided. After the task was finished,
each participant completed a questionnaire regarding their perception of the RescueBot.

4.5 Metrics
4.5.1 Subjective Measures

To measure the participant’s self-reported (SR) trust and satisfaction, two validated ques-
tionnaires proposed by Hoffman et al. (2023) were used: the Trust Scale for the XAI Context
and the Explanation Satisfaction Scale [22]. Both questionnaires were based on a 5-point
Likert scale and were adapted slightly to fit the topic of this research. The survey also
contained an exploratory, optional section in which participants could respond to four open-
ended questions regarding their perception of RescueBot. The integral questionnaires can
be found in Appendix A.

4.5.2 Objective Measures

During the simulation, objective metrics were recorded and collected in the background for
analysis. Specifically, the following events were logged for each simulation: the number of
messages received from the participant, the number of human actions (both individual and
joint), the mouse movements of each user, the number of successful joint tasks proposed by
the AI, and the completion time of the simulation in ticks. The number of human actions
and the completion time were recorded using MATRX’s environment loggers. Ten ticks
represent approximately one second and are the time unit used by the MATRX software.
These logs were then used to compute multiple metrics potentially capable of indicating
trust and satisfaction:

• The number of human messages was divided by the total completion time in seconds
to assess the participants’ communication rate. This measure was recorded due
to evidence suggesting that a higher communication rate typically indicates increased
trust [23].

• The ratio of joint actions relative to total human actions was computed using the num-
ber of joint and individual human actions, to assess the human’s level of interaction
with the robot.

• The mouse movements were recorded to monitor the interaction of the participants
with the trust plots in the TE condition. A focus metric was also calculated for the
plots, by dividing the number of mouse movements over the plots by the total number
of movements. These measures are inspired by previous studies, which utilized eye
and mouse tracking to assess user satisfaction. Generally, it is reported that users
concentrate their mouse cursor or gaze on elements that attract them [23, 24].
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Table 2: Pearson’s correlations between self-reported measures and objective metrics.

Communication Rate Level of Interaction Focus Compliance
SR Satisfaction 0.34∗ -0.287 0.095 -0.423∗

SR Trust 0.247 -0.113 0.182 -0.088
∗

Statistically significant at p < 0.05 level (green).

Table 3: Comparison test results for assessing differences across the two conditions for the
dependent variables trust, satisfaction, communication rate, compliance.

Metric Statistical Test P-value Condition Mean (µ) SD (σ)
TE 4.261 0.31⋄SR Trust Independent Samples

Welch’s T-test < 0.001* Baseline 3.511 0.624⋄

TE 4.344 0.41⋄SR Satisfaction Independent Samples
Welch’s T-test 0.002* Baseline 3.688 0.873⋄

TE 0.049 0.011Communication
rate

Mann-Whitney
U test 0.011* Baseline† 0.042 0.014

TE† 2.864 1.66Compliance Mann-Whitney
U test 0.216 Baseline 3.09 1.311

* Statistically significant at p < 0.05 level (green).
† Non-normality (orange).
⋄ Heteroscedasticity (yellow).

• The number of successful joint tasks proposed by the robot was used to assess the
compliance of the human with the robot’s requests. Compliance reflects the human’s
inclination to accept system guidance or decisions, providing insight into their trust
in the system [23].

5 Results
Based on the collected data, a statistical analysis was performed on both subjective and
objective metrics using the SciPy Python library1. One outlier from the TE group was
removed due to its significant deviation from the rest of the sample, as it negatively impacted
parametric assumptions. This decision is supported by previous studies [25]. Consequently,
a randomly chosen Baseline result was removed to maintain a balanced design, bringing the
final experiment to 44 participants. Two hypotheses were formulated to guide the analysis:

H1 Incorporating real-time visual explanations of the AI agent’s trust in its human team-
mate increases natural trust.

H2 Incorporating real-time visual explanations of the AI agent’s trust in its human team-
mate increases overall satisfaction.

Correlations. The relationships between self-reported and objective measures were anal-
ysed using Pearson’s Correlation coefficient. Table 2 showcases a summary of the results,
along with their assessed statistical significance at p < 0.05 level.

1SciPy: https://scipy.org/
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(a) SR Trust (b) SR Satisfaction

(c) Communication rate (d) Compliance

Figure 3: Interaction plots for assessing differences across the two conditions for the
dependent variables trust, satisfaction, communication rate, compliance.

Comparison tests. Comparison tests were performed to assess differences between the
TE and Baseline groups, using both subjective and objective metrics as dependent variables
(Figure 3). Only the objective measures that correlated with the self-reported ones were
included in the analysis. Before selecting the appropriate comparison test, each group’s data
was tested for parametric assumptions: normality, homogeneity of variances, no outliers,
independence. The independence assumption was ensured by the experiment’s between-
subject design. Normality was assessed using the Shapiro-Wilk test, with significance level
α = 0.05. Bartlett’s test was used to further check for the equal variances assumption if
normality was met. After assessing the parametric assumptions, a suitable comparison test
was chosen for each measure. Because datasets exhibited heteroscedasticity, an independent
samples Welch’s T-test was performed if the other assumptions were met. When parametric
assumptions were not met, a Mann-Whitney U test was performed instead. Table 3 presents
the results for each measure, along with their statistical significance at p < 0.05 level.

Mouse Movements. To visually evaluate whether the participants interacted with the
trust plots, a heatmap was created, showing the average mouse movements of all participants
in the TE group. Figure 4 shows both the plain generated plot (left) and an enhanced version
with a sample image from the environment overlaid on the heatmap (right).

11



Figure 4: Heatmap of the aggregated mouse movements in the TE group.

6 Responsible Research
This research received ethical approval from the TU Delft HREC, id. 4043. Before con-
ducting the experiment, all participants were informed about the research overview and
potential risks. Following this, they signed an informed consent form and an ethics review
checklist for human research. The primary risk identified was related to data processing,
thus several measures were taken to mitigate any potential breaches. Personally identifiable
information (PII), including full names and signatures, was collected solely as part of the
consent form and ethics checklist and is accessible only to the research team. Moreover,
the Personally Identifiable research data (gender, age group, region, education, Computer
Science experience, MATRX Software experience, and game experience) was collected to
describe the data samples and was anonymized for each participant. The data collection
was carried out using Microsoft Forms2, which is GDPR-compliant. These methods ensured
the privacy of the participants, thus adhering to ethical research standards.

Regarding data transparency and experiment reproducibility, the full codebase of the
simulation, the collected data (both raw and processed), and the scripts used for the statis-
tical analysis are all available in a Gitlab repository provided by TU Delft3. The baseline
version of the simulation environment is also provided in a separate repository4. All process-
ing techniques, including the removal of one outlier and the statistical analysis performed,
were described in section 5. The exact questionnaires used to collect self-reported metrics
are available in Appendix A. Participants were encouraged by the research team to respond
honestly, as there were no right or wrong answers, to preserve the integrity of this study.
Lastly, the potential limitations of this research are objectively presented in subsection 7.3,
to improve the transparency of this study further. These measures comply with the FAIR
(Findable, Accessible, Interoperable, Reusable) principles for responsible research.

2Microsoft Forms: https://forms.office.com/
3Full Gitlab repository: https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Tielman_Jorge/edumitrescu

-Communicating-trust-based-beliefs-and-decisions-i
4Baseline repository: https://gitlab.ewi.tudelft.nl/cjorge/rp2024artificialtrust
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7 Discussion
This section presents a discussion of possible interpretations of the experiment results, high-
lighting the most relevant aspects. The structure follows the two measures of interest for
the research question, natural trust and overall satisfaction. The experiment limitations and
future work are presented at the end of this section.

7.1 Natural Trust
In terms of self-reported trust, the comparison test revealed a significantly higher mean
for the TE group compared to the Baseline group. These findings suggest that integrating
real-time visual explanations of artificial trust significantly increases humans’ trust in the AI
agent. Another plausible inference is that the system and its underlying AI algorithm become
more understandable through the integration of trust-based explanations. The results thus
support hypothesis H1.

7.2 Overall Satisfaction
The overall satisfaction was first assessed in terms of self-reported satisfaction, which was
found to be significantly higher in the TE group compared to the Baseline group. This
shows that incorporating visual explanations of the AI agent’s trust increases the human’s
satisfaction, thus supporting hypothesis H2.

Moreover, a statistically significant positive correlation was found between SR satisfac-
tion and communication rate, suggesting that this objective metric can be an indication of
overall satisfaction. This is surprising, as the communication rate was mostly assessed as
a metric indicating trust by past studies [23]. However, this difference may be attributed
to the questionnaire’s focus on explanation satisfaction, which is inherently a component of
communication. Comparison tests were thus performed for the communication rate as well,
as it was considered to be an indirect communication satisfaction measure. It was found that
the communication rate is higher when including the visual explanations of trust, further
supporting H2.

A statistically significant correlation was also found between SR satisfaction and com-
pliance. However, this correlation is negative, as opposed to previous studies that analysed
compliance in trust-related contexts [23, 24, 25]. One possible explanation for this result
is that the computed metric might reflect the perceived complexity of the overall simula-
tion. Compliance increased when participants agreed to perform tasks together with the
robot; however, excessive dependence on the robot’s assistance may indicate a higher per-
ceived complexity. As humans’ confidence in their abilities decreases when task complexity
increases [23], this could have negatively impacted their satisfaction. Further comparison
tests between TE and Baseline groups in terms of this metric revealed no statistical signifi-
cance, with the Baseline group having a slightly higher mean than the TE group.

Finally, the mouse movements were tracked as a measure of engagement and, thus,
satisfaction with the trust plots in the TE condition. Although aggregated measures based
on the movements revealed no statistical significance, the aggregated heatmap presented
in Figure 4 clearly indicates a higher focus on the hovering graph compared to the rest of
the screen. An individual analysis of each participant’s mouse movements (Appendix B)
revealed that, while some participants were engaged with the hovering explanations, others
were not paying much attention to them. However, both subgroups had similar mouse
movement density on the rest of the screen, which might have produced the visible difference
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in aggregated heatmap density. What can be concluded is that, although having visual
explanations increased overall satisfaction as assessed by previous tests, the supplementary
textual explanations were only considered engaging by some of the participants.

This duality can also be inferred from the open-ended section of the questionnaire. Two
participants from the TE group suggested integrating the trust-based explanations in the
chat area instead of as a hovering feature because the explanations were "hard to look" at
(P10), which might indicate information overload. This is not surprising, as past experiments
also resulted in information overload if the volume of explanations was perceived as too dense
[5, 6]. On the other hand, two other participants in the TE group mentioned the real-time
feedback/plots as a favourite part of their collaboration with RescueBot, which "helped in
having more confidence in the robot" (P22).

7.3 Experiment Limitations
A potential limitation of this experiment is the hardware used for the TE group compared
to the Baseline group when conducting the simulation. For the TE group, a Macbook
laptop was used, which ran the simulation environment smoothly, with very little latency.
In contrast, the Baseline group used both Macbook and Windows laptops, with the latter
experiencing slower performance within the environment. Thus, the trust and satisfaction
levels of Windows participants could have been negatively affected by this difference. This
limitation can also be an explanation for the heteroscedasticity of the data, as both self-
reported trust and self-reported satisfaction exhibited significant variance in the Baseline
group compared to the TE group.

Another limitation that could have impacted the results is the homogeneity of partic-
ipants. Analyzing the demographics reveals that over 75% of participants have at least
some gaming experience, and 82.6% have an academic background related to Computer
Science. This uniformity in participant backgrounds likely influenced the study’s outcomes,
contributing to consistently high performance and positive attitudes towards the simulation
and AI. Moreover, the high performance of participants limited the potential effectiveness
of some objective metrics, such as simulation scores and game completeness, which were not
suitable for meaningful analysis.

7.4 Future Work
In the future of this research, it would be interesting to further explore the impact of commu-
nicating the AI agent’s trust from multiple perspectives. Different ways of communicating
trust, such as textual or visual, or explainable versus transparent-based, should be inves-
tigated to allow for comparisons and find the most appropriate methods. Looking back at
the potential information overload highlighted by the participants, a solution also worth
exploring is adding trust explanations as part of the chat area, shifting towards hybrid
communication.

Moreover, future research should further explore potential metrics that assess human
trust and satisfaction. Due to experiment limitations, the current study only focused on
an accessible range of metrics. Measures related to team performance were not suitable for
analysis due to participant homogeneity and hardware inconsistencies. Additionally, more
advanced tracking techniques, which would have provided a more complete picture of the
user engagement, were less accessible to the research team. For instance, eye tracking can
provide a more accurate picture of users’ interaction with the trust plots. Analysing the
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plots visually without reading the trust explanations is also a reflection of engagement, which
was not captured by mouse movement analysis alone.

Lastly, future studies should generally gear more towards empirical studies on artificial
trust. The literature presents various conceptual frameworks and techniques to build an AI
agent’s trust model, however, there is not much effort towards automatizing this process. In
an ideal scenario, trust model implementations should be readily available for research and
should be flexible enough to sustain multiple contexts. The model presented in this study
has the potential to be reused in other similar experiments, and a future direction would be
to further improve its adaptability and effectiveness.

8 Conclusions
This study analysed the impact of communicating the AI agent’s trust beliefs and related
behaviour to a human teammate, in terms of human trust and overall satisfaction. A context-
dependent model was proposed to build the AI’s trust in its teammates, which combines
multiple frameworks from past literature. The communication method was designed as real-
time, visual, and explanation-based, and was presented as trust-related plots enhanced with
small textual reasonings. The influence of this communication on human trust and satis-
faction was studied by conducting an empirical experiment with 46 participants, using both
subjective and objective measures for analysis. Results showed a significant increase in both
human trust and overall satisfaction when adding the communication method, compared to
a baseline with no such information. Moreover, the communication rate was found to be
a relevant objective measure of human satisfaction and was higher when trust communica-
tion was integrated. The results also hinted towards potential information overload when
integrating explanations directly into the trust plots, which can be a suggestion of hybrid
communication as a more performant method. Overall, this research takes a step towards a
more empirical exploration of artificial trust, by providing a practical implementation and
communicating it to human participants.
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A Questionnaires
The following questionnaire (Table 4) was used to assess the participants’ self-reported trust
and satisfaction, based on a 1-5 Likert scale. The questionnaire is adapted from two scales
proposed by Hoffman et al. (2023), the Trust Scale for the XAI Context and the Explanation
Satisfaction Scale [22].

Table 4: Questionnaire used to assess self-reported measures, split by sections.

Trust

I am confident in RescueBot. I feel that it works well.

The outputs (communication, decisions) of RescueBot are very predictable.

The RescueBot is very reliable. I can count on it to be correct all the time.

I feel safe that when I rely on RescueBot I will get the right result.

RescueBot is efficient and works very quickly.

I am wary of the RescueBot.*

The RescueBot can perform a task better than a novice human user.

I like using the RescueBot’s guidance for decision making.

Satisfaction

From RescueBot’s explanations, I know how it works.

The RescueBot’s explanations of how it works are satisfying.

The RescueBot’s explanations of how it works have sufficient detail.

The RescueBot’s explanations of how it works seem complete.

The RescueBot’s explanations of how it works tell me how to use it.

The RescueBot’s explanations of how it works are useful to my goals.

The RescueBot’s explanations show me how accurate the system is.

Open Questions

What information would you have liked the RescueBot to provide but was missing?

What did you like most about your collaboration with RescueBot?

What did you like least about your collaboration with RescueBot?

What do you think RescueBot thinks of you? How does that make you feel?
∗

Represents distrust. The score needs to be inverted when aggregating results.
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B Individual Heatmaps
Figure 5 presents two examples of the heatmaps generated for each participant. Image (a)
belongs to the group which exhibited a lot of interest in the trust explanations, while image
(b) corresponds to the less interested group. The mouse movements on the rest of the screen
are fairly similar in terms of density.

(a) Lots of engagement with trust plot

(b) Little engagement with trust plot

Figure 5: Examples of two individual heatmaps from the mouse movement analysis.

19


	Introduction
	Background
	The Trusting Process
	Communicating the Trust Model

	Trust Model Formalization
	Method
	Participants
	Environment
	Conditions
	Procedure
	Metrics
	Subjective Measures
	Objective Measures


	Results
	Responsible Research
	Discussion
	Natural Trust
	Overall Satisfaction
	Experiment Limitations
	Future Work

	Conclusions
	Questionnaires
	Individual Heatmaps

