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Abstract 

To tackle challenges such as climate change, air pollution, traffic accidents, or the lack of space in 

cities, our urban transportation systems must become sustainable, emission-free, safer, and more 

efficient. The introduction of shared mobility is seen as a critical component in facilitating a mobility 

transition in large cities, as shared mobility can promote multimodal travel behavior, leading to 

reduced ownership and usage of the private car. 

Shared mobility requires charging solutions and parking space within the existing urban fabric. 

Additionally, it must have digital and physical integration into existing transportation systems. These 

requirements should be jointly addressed within the concept of shared mobility hubs. Recently, cities 

have moved from pilot testing standalone hubs to the scaling of city-wide hub networks. Planning the 

locations of these hubs remains a challenge for cities trying to optimize their distribution.  

This research suggests an improved location planning method for shared mobility hubs, combining 

Multiple Criteria Decision Analysis (MCDA) and Network Analysis. Different prioritizations at the 

municipal decision-making level can be translated into placement strategies through MCDA. If 

necessary, multiple stakeholders can also be involved through a Multi-actor Multi-criteria Analysis 

(MAMCA). The resulting MCDA score for each spatial unit converts a multivariate problem into a single 

variable location-optimization problem. Utilizing single variable location-optimization tools, such as 

ArcGIS location allocation, specific location suggestions can be computed along with their respective 

catchment areas. This also allows a comparison of different placement strategies based on city-wide 

Key Performance Indicators (KPIs). In turn, decision-makers are enabled to compare different 

placement strategies in terms of their potential impacts on their objectives. This method holds the 

potential to accelerate micro-planning processes with defined target scenarios and data-based 

insights per hub location. 

The improved method is developed upon the case study of Munich, considering various location 

planning objectives. 600 locations composed of 3 hub types are suggested in order to achieve city-

wide accessibility within 5 minutes of walking time. 1000 locations of an additional hub type are 

suggested to achieve city-wide accessibility within 3 minutes of walking time. 

This work is licensed under the Creative Commons Attribution 4.0 International License. 

To view a copy of this license, visit www.creativecommons.org/licenses/by/4.0/
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1. Introduction 
 

1.1. Context 

 

To tackle challenges such as climate change, air pollution, traffic accidents, or the lack of space in 

cities, our urban transportation systems must become sustainable, emission-free, safer, and more 

efficient. The introduction of shared mobility is seen as a critical component in facilitating a mobility 

transition in large cities. With the introduction of Mobility-as-a-Service (MaaS) and a strong 

integration with existing public transport, shared mobility can promote multimodal travel behavior, 

leading to reduced ownership and usage of the private car. This can contribute to less greenhouse gas 

emissions, less air pollution and less pressure on the traffic system as well as public spaces (ITF, 2017, 

2021a, 2021b).  

Shared mobility itself requires charging solutions, parking space in the existing urban fabric as well as 

digital and physical integration into existing transportation systems. These requirements should be 

jointly addressed within the concept of shared mobility hubs. Due to the actuality of the topic, there 

is not yet a consistent description of shared mobility stations in scientific literature. In this study, the 

definition of Blad (2021) is adopted with a slight modification:  

 

“The shared mobility hub is a place where multiple shared transport modes come together, 
providing seamless connectivity between shared and traditional modes, possibly including other 
features, ranging from retail, workplaces to parcel pick-up points.” 
 

As the definition and interpretation of shared mobility hubs is still under discussion and allows for 

various interpretations, exemplary images and ambitions for networks of shared mobility hubs are 

presented for different cities. 

 

Various concepts of shared mobility hubs were tested in pilots around the world, focusing on Germany 

pilots for shared mobility hubs are implemented in Bremen since 2003 (VCD, 2019), in Hamburg since 

2013 (VCD, 2017), in Munich since 2016 (Mobilitätsreferat München, 2021a) and in Berlin since 2019 

(Tagesspiegel, 2022). Recently, cities have moved from testing standalone shared mobility hubs to the 

scaling of these hubs to city-wide networks. Within Germany, the three largest cities are planning to 

build hundreds of shared mobility hubs over the next years:  

 

• Berlin plans to develop a more dense hub network within the Jelbi program (see Figure 1, 

Figure 2) starting from currently 44 hubs (Tagesspiegel, 2022).  

• Hamburg plans to increase the number of hubs within the HVVswitch program (see  

Figure 3, Figure 4) from currently 88 to 222 until 2024 (ZfK, 2022).  

• Munich plans to increase the number of hubs within Mobilitätsstation program (see Figure 5, 

Figure 6, Figure 7) from currently 9 to 200 by 2026 (muenchen.de, 2022). 
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Figure 1: Jelbi station in Berlin with shared cars, shared micromobility,  

public transport and parcel locker (Jelbi, 2022) 
 

 
Figure 2: Jelbi point in Berlin with shared micromobility only  

(die mitte berlin, 2020) 
 

 
 

Figure 3: Mobility station in Hamburg with shared car, shared micromobility  
and public transport (ITS International, 2017) 
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Figure 4: Mobility station in Hamburg with car sharing and public transport  

(VCD, 2017) 
 

 
Figure 5: Mobility station in Munich with shared cars, shared micromobility  

and public transport (VCD, 2020) 

 

 
Figure 6: Mobility station in Munich with shared cars and shared micromobility  

(Mobilitätsreferat München, 2021a) 
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Figure 7: Mobility station in Munich with parking for e-scooters only  

(Mobilitätsreferat München, 2022) 

 

If the long-term objective is the city-wide coverage within a short walking distance, larger cities will 

require hundreds to thousands of shared mobility hubs. When a large number of shared mobility hubs 

throughout the urban area are required, cities are challenged with the location planning for this new 

type of infrastructure. Quantitative location suitability analysis for strategic planning of shared 

mobility infrastructure is a key factor in the efficiency of these systems (Aydin et al., 2022; Kabak et 

al., 2018). Therefore, the need for data-based and automated methods for location planning of shared 

mobility hubs is emerging. 

 

1.2. Existing research and gap 

 

Location planning for transportation infrastructure and more specifically for shared mobility hubs is 

investigated by researchers around the globe. Most scientific sources perform spatial analysis based 

on polygons (raster cells or administrative areas) and Euclidean distance (Blad, 2021; Correia & 

Casanovas, 2022; Knaack, 2021; Liao & Correia, 2021; Zhou et al., 2020), leading to a hub suitability 

score per area. Spatial analysis using network theory is less common (García-Palomares et al., 2012; 

Tran & Draeger, 2021) and the application of network theories to location planning for shared mobility 

hubs has not been studied in detail. One of the scholars performing initial tests of network theories 

for location planning of shared mobility hubs concludes: “There is considerable opportunity for 

complex network theory to further inform transportation planning, especially in the context of urban 

mobility hubs, which due to increasing availability of extensive geospatial asset data can be readily 

analyzed with network statistics (Tran & Draeger, 2021, p. 2729).” 

 

1.3. Research objective 

 

From the literature review it can be concluded that application-ready location methods for mobility 

hubs mostly result in a heat map with hub suitability per grid cell or administrative area. The city is 

supposed to manually locate the shared mobility hubs one by one according to the heatmap.  
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In practice, this means that for each area marked as “suitable” in the initial data analysis a manual 

analysis is carried out. The detailed manual planning expected to answer the questions of how many 

hubs are actually required and where exactly their optimal location is within the suitable area. For this 

purpose, a qualified specialist must survey the entire area via Google Street View and usually also in 

person. In this way, a candidate list of possible locations for a hub is created for the considered area. 

Afterwards, the respective catchment area (e.g. Isochron with 5 min) must be calculated for each 

candidate location. Now the different possible combinations of locations have to be considered 

manually with the aim to maximize the coverage of the demand and to minimize overlaps of the 

isochrons. Then, for each selected location, the provided sharing services are determined. The 

placement proposal for an area created by this process is finally presented and possibly adjusted 

during a site visit with other involved departments as well as local politicians and residents (Hochbahn 

Hamburg, personal communication, February 23, 2022).  

 

A small number of shared mobility hubs might still be placed according to local decision-makers and 

without advanced methodological approaches in practice. But with the upcoming creation of larger 

networks of hundreds or even thousands of Shared Mobility Hubs, the need for data-based and 

automated methods for location optimization of Shared Mobility Hubs is also emerging in practice. 

 

A major transformation of the transport system is one of the greatest metropolitan challenges of our 

time. Improved methods for locating large networks of mobility hubs are of high societal relevance as 

they could improve the quality and speed of implementation of this new infrastructure type, whilst 

reducing planning cost. This could support cities in achieving their policy goals for shared mobility and 

mobility hubs: (1) public space improvement, (2) sustainable and liveable environment, (3) reduction 

of (private) car usage and ownership, (4) improvement of accessibility (van Gerrevink, 2021). 

 

Research on the placement of shared mobility hubs often applies Multiple Criteria Decision Analysis 

(MCDA) and results in heat maps that show the location suitability per area. Extending the MCDA 

approach with location optimization using network analysis and high-resolution spatial data can lead 

to a better understanding of shared mobility hubs in general, underpinning the scientific relevance of 

this research. 

 

1.4. Research questions 

 

This research aims to improve methods for the planning of large networks of shared mobility stations. 

Therefore, existing approaches could be extended by network analysis methods. This way, an 

improved method should be able to perform location optimization in the network, including exact 

walking distances in the street network, competition effects between stations and comparison of 

placement strategies by key performance metrics. A location planning methodology using network 

analysis for an entire urban area could advance current research and help cities navigate the many 

challenges they face when scaling shared mobility stations. Therefore, this thesis aims to answer the 

main research through four sub-research questions.  

 

Main RQ: How can network analysis methods improve location planning of shared mobility hubs? 
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• RQ 1: What methods are currently applied for location finding of shared mobility hubs? 

• RQ 2: What network analysis techniques could be applied for location planning of shared 

mobility hubs? 

• RQ 3: How can network analysis techniques be integrated into an improved location planning 

method for shared mobility hubs? 

• RQ 4: What are the results and learnings from applying the improved method to the Munich 

case study? 

 

1.5. Research approach 

 

According to a literature review of Macharis (2009), extending existing evaluation methods is crucial 

for the successful implementation of future transportation projects: Larger transport projects require 

evaluation methods and science has already provided many different types of evaluation methods for 

this purpose. Methods like the private investment analysis, the cost-effectiveness analysis (CEA), the 

economic-effects analysis (EEA) have a strong focus on financial costs only. According to a literature 

review by Macharis (2009), nowadays the environmental, spatial and social dimensions of a project 

are considered increasingly important in addition to the economic dimension. Therefore, methods 

that can include aspects besides the economic perspective, such as multicriteria decision analysis 

(MCDA), are used more frequently. MCDA makes it possible to evaluate several options with multiple 

quantitative and qualitative criteria. MCDA is used for various purposes in transportation planning 

such as policy measures in passenger transport, strategic decisions, technologies, infrastructure 

projects and locations (Macharis et al., 2009). The last-mentioned application for location finding of 

transport projects shows the direct relevance of the method for this thesis. Another development for 

MCDA is the inclusion of various stakeholder perspectives in the analysis. Transportation projects 

influence or are influenced by many different stakeholders such as users, operators, and authorities. 

The involvement of all stakeholders is critical to the successful implementation of a transportation 

project. As MCDA is suitable to consider the interests of various stakeholders, Macharis (2009) 

introduces a multi-actor multi-criteria approach (MAMCA), which is particularly suitable for the 

evaluation of transport projects. This research aims to combine existing MCDA and MAMCA 

approaches with network analysis theories, leading to a higher level of spatial detail in the results. This 

can support the improvement of evaluation methods for transportation projects, in particular location 

planning for large networks of shared mobility hubs. 

 

1.6. Thesis outline 

 

In chapter 1, the general topic of the thesis is introduced. Chapter 2 provides the methodology for this 

thesis. Chapter 3 summarizes the findings of a literature review on shared mobility hubs and current 

location planning methods. Chapter 4 shows the results of a literature review on network analysis 

approaches for location planning. Chapter 5  presents the improved location planning method for 

shared mobility hubs. Chapter 6 describes the application of the improved location planning method 

for shared mobility hubs in the case study of Munich. Chapter 7 discusses the characteristics, the case 

study application as well as benefits and limitations of the improved location planning method for 

shared mobility hubs. Chapter 8 presents the conclusions of this research. 
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2. Research methodology 
 

 

2.1. Overview 

 

To answer the main research question “How can network analysis methods improve location planning 

of shared mobility hubs?”, multiple more detailed research questions (RQ) are introduced. The first 

research question aims to understand the current methods for location planning of shared mobility 

hubs through a literature review. Second, available network analysis methods are investigated by 

reviewing the literature. The results of the previous steps are synthesized to develop an improved 

method for location planning of shared mobility hubs. Finally, the improved location planning method 

is applied to the Munich case study to test and further improve the method. 

 

Table 1: Research questions 

 Research Question Method 

 
Main 
RQ 

 
How can network analysis methods improve location planning of 
shared mobility hubs? 
 

 
RQ 1.1 - RQ 1.4 

 
RQ 1 

 
What methods are currently applied for location planning of shared 
mobility hubs? 
 

 
Literature Review 

 
RQ 2 

 
What network analysis techniques could be applied for location 
planning of shared mobility hubs? 
 

 
Literature Review 

 
RQ 3 

 
How can network analysis techniques be integrated into an improved 
location planning method for shared mobility hubs? 
 

 
Synthesis of previous 
findings to improved 
location planning method 
 

 
RQ 4 

 
What are the results and learnings from applying the improved 
method to the Munich case study? 
 

 
Case Study Munich - 
Analysis & Results  

 

2.2. Literature research on location planning methods for shared mobility hubs 

 

To answer RQ 1, literature research was conducted on existing location planning methods for shared 

mobility hubs. The field of shared mobility is evolving rapidly and technological developments often 

outpace research and policy. Publications in scientific journals on recent innovations are limited, many 

up-to-date sources can be found in gray literature such as theses at universities, company websites or 

publications of municipalities. We applied Google Scholar and sciencedirect.com search tools 

(Keywords: shared, mobility, hubs, location, planning, decision, network) and snowballing techniques. 

Results are summarized in Chapter 3. 
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2.3. Literature research on network analysis methods for spatial planning 

 

To answer RQ 2, literature research was conducted on network analysis methods for spatial planning. 

We applied Google Scholar search tools (Keywords: network, analysis, methods, spatial, 

transportation, infrastructure, planning) and snowballing techniques. We applied sciencedirect.com 

search tools (Keywords: mcda, street, network, analysis) and snowballing techniques. Results are 

summarized in Chapter 4. 

 

2.4. Design of an improved location planning method using network analysis 

 

To answer RQ 3, the findings of all previous sections are synthesized to design a new location planning 

method using network analysis. Different components from existing location planning approaches for 

shared mobility hubs are combined with the capabilities of network analysis methods. The improved 

method is presented in detail in Chapter 5. 

 

2.5. Application of improved location planning method in case study 

 

For RQ 4, the improved location planning method is applied in a case study of city-wide planning of 

shared mobility hubs. The improved location planning method has been continuously refined 

alongside the case study application to ensure that the results of this research are not only 

scientifically relevant but also practice-oriented. The city of Munich, Germany, was chosen as a case 

study for this research because it is planning to build a city-wide network of shared mobility hubs in 

the coming years and the author can use existing area knowledge to validate results. Taking the 

specific perspective of the Municipality of Munich for this study, this research aims to develop 

generalizable methods that are transferable to other cities. The Municipality of Munich has provided 

high-resolution datasets, access to decision-makers and continuous input for this research. The exact 

data requirements for the improved method have been defined over the course of the research 

implementation. Access to high resolution datasets on relevant factors required data usage 

agreements and results in limited options for publication of the research. The case study application 

is presented in Chapter 6. 
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3. Literature review on shared mobility hubs 

 

3.1. Shared mobility hubs 

 
Literature review showed various terms and definitions for shared mobility stations. Due to the 

actuality of the topic, there is not yet a consistent description of shared mobility stations in scientific 

literature. Recent sources have performed in-depth literature research to compare existing definitions 

and synthesized their findings in new definitions: 

Van Gerrevink (2021, p. 123) reviews various literature sources on the definitions of shared mobility 

hubs, stating that there is a variety of terms and definitions used in the literature. Their overlap is 

summarized “as physical locations or nodes that provide access and transfer options to a variety of 

different (shared) transport modes (multimodal)”. Additionally, some definitions mention “possible 

supplements with facilities and services such as public transit or that these places can be seen as 

activity centers (van Gerrevink, 2021, p. 16).” 

Blad (2021) compares various literature sources on the definitions of shared mobility hubs and adopts 

the following definition: “The mobility hub is a place where multiple sustainable transport modes 

come together at one place, providing seamless connectivity between modes, additionally offering 

shared mobility, possibly including other features, ranging from retail, workplaces to parcel pick-up 

points (Blad, 2021, p. 15).” 

In this study, the definition of Blad (2021) is adopted with a slight modification. The focus on shared 

modes is emphasized and connectivity to traditional modes is mentioned:  

“The shared mobility hub is a place where multiple shared transport modes come together, 
providing seamless connectivity between shared and traditional modes, possibly including other 
features, ranging from retail, workplaces to parcel pick-up points.” 
 

Another major discussion point of reviewed literature are the separation of shared mobility hubs into 
different types, leading to a hub typology. Literature and practice provide diverse typologies and there 
is no commonly agreed typology for shared mobility hubs yet: 
 

Following a large review of typologies of shared mobility hubs, Blad (2021) separates shared mobility 
hubs based on their aim and their scale of operation into residential hubs, regional hubs and city hubs.  
 
Van Gerrevink (2021) performs an extensive literature review and categorizes shared mobility hubs 
based on their geographic location and their scale of operation into national hubs, city hubs, city-edge 
hubs, regional hubs, neighborhood hubs, business park hubs, logistics hubs and temporary hubs. 
 

For the Berlin shared mobility hub program Jelbi, hubs are separated in two categories: Jelbi stations, 
where all vehicle types can be rented, returned and charged. Jelbi points, where only vehicles with 
two wheels can be rented and returned (Jelbi, 2022). 
 

In terms of typologies for shared mobility hubs, there are various and different approaches. This 

research accepts the still not completed harmonization of the concept of shared mobility hubs and 

concludes that mobility hubs can generally be divided into different types, but the specific way of 

dividing different types strongly depends on the analyst's perspective and the local circumstances. For 

different contexts, e.g., different countries or even cities, one can expect a customized typology each 

time. Therefore, the improved method for location planning of shared mobility hubs should not 

provide a predefined hub typology, but instead be capable of considering customized hub typologies. 
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3.2. Location planning methods for shared mobility hubs  

 

Location planning of shared mobility hubs is a sub-topic of the research on shared mobility hubs in 
general. Fewer sources are explicitly addressing the issue of locating these hubs in the urban 
landscape. According to Tran & Draeger (2021, p. 3), “urban hubs will likely impact the structure and 
functioning of the overall transport network, yet there has been limited research on this in urban 
transport planning. The hub location problem (HLP) is a relatively new extension of classical facility 
location analysis and not typically addressed in urban transportation models.” Below various 
approaches for location planning of shared mobility hubs, or similar infrastructure, are summarized. 
 
Table 2: Overview of existing methods for location planning of shared mobility hubs 

Study Catchment area 
calculation 

Spatial unit of 
method 

Spatial 
MCDA 

Output of method 

Aydin et al. (2022) Within spatial unit Neighborhoods X Manually selected locations 

Liao & Correia (2021) Within spatial unit Neighborhoods  Location potential per 
neighborhood 

Correia & Casanovas 
(2022) 

Within spatial unit Neighborhoods X Location potential per 
neighborhood 

Correia & Antunes 
(2012) 

Within spatial unit Grid cells  Different scenarios with 
selected locations, comparable 
with KPIs 

Blad (2021) Within spatial unit Grid cells X Location potential per grid-cell 

Knaack (2021) Euclidian distance Points  Areas with high potential  

Kabak et al. (2018) Euclidian distance Grid cells X Location potential per grid-cell 
and manually selected locations 

Kurniadhini & 
Roychansyah (2020) 

Euclidian distance Grid cells X Location potential per grid-cell 

Zhou et al. (2020) Euclidian distance Grid cells X Location potential per grid-cell 

Fazio et al. (2021) Euclidian distance Grid cells X Location potential per grid-cell 
and manually selected locations  

Guler & Yomralioglu 
(2021) 

Euclidian distance Grid cells X Location potential per grid-cell 
and location selection by 
TOPSIS 

García-Palomares et al. 
(2012) 

Walking time in 
street network 

Transport zones 
of traffic model 

 Different scenarios with 
selected locations, comparable 
with KPIs 

Escobar et al. (2018) Walking time in 
street network 

Points  Different scenarios with 
selected locations, comparable 
with KPIs 

Tran & Draeger (2021) Drive time in street 
network 

Neighborhoods  Different scenarios with 
selected locations, comparable 
with KPIs 

Xanthopoulos (2022) Travel time and 
cost in multimodal 
network 

Transport zones 
of traffic model 

 Different scenarios with 
selected locations, comparable 
with KPIs 
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Aydin et al. (2022) investigates a MCDA driven location planning approach for a new mobility hub in 

Istanbul, Turkey. Candidate locations are selected manually and reduced to a number of four 

alternative locations. Using AHP, the weights of various criteria for a MCDA are determined and the 

suitability of the four locations is compared.    

Liao & Correia (2021) developed a quick scan method to indicate the potential for eHub locations per 

area. The potential is calculated based on factors such as socio-demographics, transport connectivity, 

POI and land use. Factors weights are extracted from academic studies on revealed preference of EV 

and E-bike demand in other cities. The method results in location potential per administrative unit, 

e.g. census tract, displayed in a city-wide heat map. 

Correia & Casanovas (2022) conceptualizes a decision-support tool for local public administrations to 

prioritize locations of shared mobility hubs in the city. Shared mobility hubs are differentiated into 5 

hub types using five different dimensions: urban context, transportation function, mobility spatial 

scale, mobility services offered at the hub and proximity to public transport. Potential indicators for 

the location of shared mobility hubs were collected from various sources and summarized in MCDA 

hierarchy tree with its three levels of analysis and all the criteria and sub-criteria. The criteria weights 

for the MCDA were assigned using an Analytic Hierarchy Process (AHP). Weight allocation is performed 

for each hub type separately, resulting in weight per category and weight per sub-indicator. The 

indicators are collected in administrative areas or grid cells and weights are applied to the indicators. 

The method results in location potential per administrative area or grid-cell, displayed in a city-wide 

heat map. 

Correia & Antunes (2012) presents an optimization approach to depot location in one-way car-sharing 

systems. By considering all the revenues and costs involved, the model aims to maximize the profits 

of the car-sharing provider. For the case study of Lisbon, the centroids of a 1000m raster grid were 

used as candidate locations. The performance of the system was investigated for different scenarios, 

including different pricing schemes, a usage of all 75 candidate locations or a selection of the best 10 

locations. Per scenario, the method results in a selection of depot locations and KPIs on the 

performance of the system. 

 

Blad (2021) investigates a methodology to determine the potential of areas for regional mobility hubs. 

The perspectives of the end-user, the operator and the government are incorporated in a framework, 

which connects the perspectives with certain attributes and criteria. The criteria weights for the MCDA 

were assigned using the AHP approach. The factor weights are obtained from interviews with decision-

makers of each perspective and fed into a multi-actor multi-criteria-analysis, which results in five 

scenarios with varying weight configurations. The method focuses only on the regional mobility hub 

type and suggests an expansion of the method on other types. The method is tested with 

approximations and simplifications as factor inputs, whilst an implementation with detailed data 

inputs is possible. The method results in location potential per grid-cell, displayed in a city-wide heat 

map.  

Knaack (2021) investigates a methodology for finding suitable locations for neighborhood hubs in a 

certain neighborhood in Zwolle. Potential indicators are derived from literature and expert interviews 

are used to rank them in their importance for the focus neighborhood. The five most important 

indicators are mapped in GIS with a Euclidean distance walking buffer. Areas, where the walking buffer 

of the five indicators intersect, are labeled as high potential areas. The method results in polygons 

representing high hub potential areas. 
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Kabak et al. (2018) suggests GIS-based MCDA approach for the evaluation of bike-share stations, which 

can be considered similar to shared mobility hubs. Using the example of Izmir in Turkey, the AHP 

method was used to determine criteria weights of a MCDA. Within a raster grid, MCDA scores were 

illustrated with a suitability map. Based on the suitability map, alternative or additional locations are 

suggested. Lastly, existing stations were compared with suggested locations using a ratio analysis. 

Kabak et al. (2018, p. 57) also highlights one of the limitations of suitability maps: Every time a new 

location is placed, the suitability map is supposed to adapt to prevent placing another site very close 

to the new location. The method results in location potential per grid-cell and manually selected 

locations for alternative stations. 

 

Kurniadhini & Roychansyah (2020) aim to identify the best location for bike-sharing stations by using 

a spatial MCDA based on a raster grid covering the research area. The values of 13 considered criteria 

are assigned to all raster cells within 400 m Euclidian distance to consider potential walking distances 

to and from the bike sharing station. Variable values are normalized and weighted using MCDA 

weights derived with the AHP method. The method results in location potential per grid-cell, displayed 

in a city-wide heat map.  

Zhou et al. (2020) optimize the location of bike-sharing stations taking into account customer 

satisfaction and the cost of public space. It is assumed that fixed bike-sharing stations are too 

expensive and unscalable. Parking locations are seen as flexible, geofenced locations which can be 

moved around in real-time. Therefore, the location finding method is applied real-time to calculate 

the best stations for any given fleet distribution. Candidate parking locations are selected from 

available Points-of-Interest (POIs). Best station locations are selected in real time calculation using 

neural networks, which are applied on live demand. Calculations are based on grid cells and Euclidean 

distance. The method results in a set of selected parking locations and performance measures. 

 

Fazio et al. (2021) investigates a location planning method for cycle stations, using a MCDA within 

100m x 100m grid cells.  Using several criteria, a Node Index, a Place index and a Bike Oriented 

Development Index is calculated per grid cell. The method results in location potential per grid-cell, 

displayed in a city-wide heat map. Locations for bike lanes and bike parking is suggested manually by 

only focusing on areas with higher index values. 

 

Guler & Yomralioglu (2021) develop a method to select locations for bike lanes and stations based on 

a MCDA. Weights are determined using AHP and calculated within grid cells. The method results in 

location potential per grid-cell, displayed in a city-wide heat map. Based on the heat map, a set of 

alternative locations is determined manually. The alternative locations are ranked using the TOPSIS 

method. 

García-Palomares et al. (2012) uses network analysis to locate bike sharing stations, which can be 

considered similar to shared mobility hubs. In this approach, objectives of the public bike sharing 

systems and potential demand are determining the location of stations. Potential demand was 

determined from a transport model with estimations of origins and destinations per transport zone, 

as well as the number of inhabitants and jobs per building. The two demand factors, origin and 

destination trips per street address were summed to determine the total potential demand per street 

address. Public transport stops with high passenger capacity are considered as predefined locations 

for bike sharing stations. A network analysis is implemented with the ArcGIS location-allocation tool. 

Within a minimize impedance placement strategy, the stations are located such that the sum of all of 
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the weighted costs between demand points and solution facilities is minimized. Within a maximize 

coverage placement strategy, the stations are located such that as many demand points as possible 

are covered by the stations within a maximal walking distance of 200m. After being located, the 

stations are classified into different types according to their distribution of attracted and generated 

trips. Finally, the two placement strategies are compared by a total accessibility score, taking into 

account an increasing number of stations. 

Escobar et al. (2018) investigates improved locations for a bike sharing system. A network analysis is 

implemented with the location-allocation tool within ArcGIS. Alternative location candidates were 

selected manually based on sociodemographic data. The locations were optimized to improve the 

500m coverage of the residential addresses of the registered users. Different scenarios were 

compared based on their coverage of registered users. 

Tran & Draeger (2021) explore network theories for the planning of urban mobility hubs, suggesting 

an evaluation framework to locate mobility hubs and assess the impacts of hub locations. The hub 

potential is composed of several factors such as transit capacity and is calculated per network node. 

Therefore, the method can propose specific locations for hubs and compute catchment areas and 

travel time analyses. The framework includes the calculation of different placement strategies, which 

are then compared using performance metrics. In the method, each factor is weighted equally, 

resulting in a bias in favor of high-capacity modes. The method is tested in a U.S. context, assuming 

that the hub is reached primarily by car. The applied network theories do not take into account the 

competitive effects between different hubs, resulting in a dense aggregation of hubs in areas of high 

demand. The method results in specific locations for the hubs and city-wide performance metrics for 

each placement strategy.  

Xanthopoulos (2022) optimizes the location, number and capacity of shared mobility hubs in 

Amsterdam. Candidate locations are based on the current public transport stops and manual 

placement. A mathematical optimization, which has budget-based limitations and aims for maximized 

utility gains of the population, determines hub locations to activate and their capacity. Using 

Amsterdam’s traffic model with and without potential shared mobility hub locations, an estimation of 

change in modal split per scenario is calculated. 

 

3.3. Spatial MCDA for location planning 

 

The above literature review has shown a frequent application of spatial MCDA methods for location 

planning of shared mobility hubs. Therefore, the capabilities of MCDA methods for location planning 

are presented in more detail. 

In general, MCDA is used for various purposes in transportation planning such as policy measures in 

passenger transport, strategic decisions, technologies, infrastructure projects and locations (Macharis 

et al., 2009). Especially the integration of MCDA with GIS can support decision-makers in solving spatial 

problems effectively: Disagreements for prioritizations are accommodated through the MCDA, while 

GIS allows for an evaluation of spatial decision alternatives through statistics and maps (Guler & 

Yomralioglu, 2021). This can be implemented within Spatial Decision Support Systems (SDSS), which 

are “interactive, computer-based systems designed to support a user or group of users in achieving 

higher effectiveness in decision making (Malczewski & Rinner, 2015, p. 8).” When the SDSS considers 

a variety of criteria as decision input, so in fact a MCDA and GIS are integrated, one can refer to 

Multicriteria Spatial Decision Support Systems (MC-SDSS). In this way, GIS can provide spatial data to 
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incorporate fact-based information, while MCDA can help to mitigate disagreements about value-

based decisions (Malczewski & Rinner, 2015).  

When focusing on the integration of GIS and MCDA techniques, one can also refer to this approach as 

GIS-based MCDA (GIS-MCDA). In simple terms, geographic data as input maps are combined with 

decision-maker's preferences to create decision maps as an output. This allows the comparison of 

geographically defined decision alternatives based on criteria values and the preferences of the 

decision-maker. This means that the results of a GIS-MCDA are not solely dependent on the spatial 

findings for the decision alternatives, but are driven by the values of the decision-makers (Malczewski 

& Rinner, 2015). 

MCDA approaches can be extended to consider the interests of various stakeholders. Macharis (2009) 

introduces a multi-actor multi-criteria approach (MAMCA), which is particularly suitable for the 

evaluation of transport projects. The involvement of all relevant stakeholders is critical to the 

successful implementation of a transportation project. 

When comparing MCDA and MAMCA, the consideration of multiple stakeholder perspectives early on 

in the location planning process is an attractive advantage of MAMCA. But there seems to be no 

satisfactory solution for the weighting of the decision shares of different interest groups. According to 

Macharis et al. (2012) the often used and most pragmatic approach is to assign equal weights to all 

perspectives. This might not represent reality, as stakeholder influence and importance can vary in 

many ways. This challenge of MAMCA was also mentioned when Blad (2021) applied the MAMCA 

approach to the location finding of shared mobility hubs, taking into account perspectives of users, 

operators and city. He describes an uncertainty about the right weighting for the different stakeholder 

groups. Therefore Blad (2021) investigated different weights of the stakeholder shares in various 

scenarios.  

 

Macharis et al. (2012, p. 615) describes a special case for stakeholder share weighting, if the 

government is involved in the decision making: “When the government is one of the stakeholders, 

which is usually the case in the evaluation of transport projects, one could say that this stakeholder 

represents the society’s point of view and therefore should be the one to follow. Analysis of the points 

of views of other stakeholders, like users, local population, and so on, will then show if a certain 

measure will possibly be adopted or rejected by these groups.” With this approach, other stakeholders 

than the government do not have an active stake in the decision making, but the MAMCA assists the 

government in considering their concerns. 

 

Several of the previously presented literature on the multifaceted problem of location planning for 

shared mobility hubs have applied AHP and (multi-actor) MCDA. Aydin et al. (2022) uses MCDA to 

compare the suitability of manually pre-selected locations. Correia & Casanovas (2022) implement 

MCDA to illustrate a suitability score for shared mobility hubs per neighbourhood. Kabak et al. (2018), 

Kurniadhini & Roychansyah (2020), Guler & Yomralioglu (2021), Fazio et al. (2021) and Blad (2021) 

apply (multi-actor) MCDA to determine the suitability in detail throughout the study area, using 

heatmaps indicating a suitability score per grid cell. Especially the latter approach has a great potential 

to translate the location planning objectives into quantitative input network analysis techniques. This 

would be an extension of current research on location planning for shared mobility hubs, as none of 

the reviewed studies combined MCDA with network analysis methods. 
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3.4. Conclusion 

 

In summary, the existing literature on location finding of shared mobility hubs provides typologies for 

shared mobility hubs (Blad, 2021; Correia & Casanovas, 2022; Mobilitätsreferat München, 2021b; van 

Gerrevink, 2021), frameworks to categorize a large number of indicators (Blad, 2021; Correia & 

Casanovas, 2022) as well as methods to weight indicators according to (multiple) stakeholders using 

AHP and MCDA (Aydin et al., 2022; Blad, 2021; Correia & Casanovas, 2022; Fazio et al., 2021; Guler & 

Yomralioglu, 2021; Kabak et al., 2018; Kurniadhini & Roychansyah, 2020; Zhang et al., 2019).  

 

Most sources perform spatial analysis based on datasets aggregated in polygons (raster cells or 

administrative areas) and Euclidean distance (Blad, 2021; Correia & Casanovas, 2022; Fazio et al., 

2021; Guler & Yomralioglu, 2021; Kabak et al., 2018; Knaack, 2021; Kurniadhini & Roychansyah, 2020; 

Liao & Correia, 2021; Zhou et al., 2020), leading to a shared mobility station suitability per area. Spatial 

analysis using network theories is less common (Escobar et al., 2018; García-Palomares et al., 2012; 

Tran & Draeger, 2021) and allows for the calculation of specific location suggestions for shared 

mobility hubs. Some studies calculate multiple placement strategies (Blad, 2021; Escobar et al., 2018; 

García-Palomares et al., 2012; Tran & Draeger, 2021). Only studies that use a network analysis to 

calculate the catchment area can provide specific location proposals. This enables a comparison of 

different scenarios with performance metrics on the catchment area coverage (Escobar et al., 2018; 

García-Palomares et al., 2012; Tran & Draeger, 2021). 

 

Many of the reviewed studies have used spatial MCDA to account for the complexity of location 

planning problems. This complexity increases when location planning is not just for one mode, such 

as bike-sharing, but focuses on shared mobility hubs incorporating various modes and stakeholders. 

None of the reviewed studies that used network analysis techniques employed a prior MCDA. Spatial 

MCDA based on a high-resolution grid cell has a great potential to translate the location planning 

objectives for shared mobility hubs into quantitative input for network analysis. Network analysis 

allows for a suggestion of specific locations and a comparison of different scenarios based on 

performance metrics. 
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4. Literature review on network analysis for location planning 
 

4.1. Network analysis for spatial planning 

 

Network analysis is widely applied to understand social networks, whilst it is still not widely used for 

the spatial analysis of cities. This could be related to the limited or costly tools for spatial network 

analysis. To understand interactions in large road networks, computationally intensive calculations 

further constrain the application of network analysis in spatial planning (Sevtsuk & Mekonnen, 2012). 

With the increasing availability of extensive geospatial data for urban areas, spatial network analysis 

can provide new insights throughout many disciplines (Sevtsuk & Mekonnen, 2012; Tran & Draeger, 

2021). This is particularly applicable to the improved understanding of mobility and transportation in 

cities. 

 

For network analysis within the GIS environment, there are vector-based and raster-based 

approaches. In summary, the vector-based models use features as discrete entities to represent the 

network, whilst the raster models use a continuous surface of raster cells with an attribute value. In 

general, vector models are considered more suitable for the representation of networks, particularly 

when it comes to the representation of clearly defined networks such as streets (Bruno & Giannikos, 

2015; Husdal, 2015). Therefore, this chapter focuses on vector-based approaches to network analysis 

only. 

 

4.2. Network analysis methods for facility location problems 

 

The hub location problem (HLP) can be described as a new extension of classical facility location 

analysis. In general, facility location problems aim “to determine the position of a set of facilities in a 

given location space in order to provide some service to a set of actors which are supposed to 

patronize some of the available facilities. These actors correspond to the demand (actual or potential) 

that must be satisfied (Bruno & Giannikos, 2015, p. 515)”. For a facility location problem, the following 

components can be defined: 

 

The location space, the considered area for the analysis, can be represented by a network. Within this 

discrete location space, the facilities can only be located at predefined points. As the set of predefined 

points is limited, these models can also be referred to as site-selection models (Bruno & Giannikos, 

2015).  

 

The facilities are to be located in the location space, normally represented as points. Thereby, the aim 

is the optimization of interaction with other objects already existing in the location space (Bruno & 

Giannikos, 2015).  

 

The demand represents the actors interacting with the facilities. The demand can be distributed in 

*sub-areas and points across the location space (Bruno & Giannikos, 2015). 

 

The Interactions Between Elements of a Problem can be separated in customer-facility and facility-

facility interactions. Customer-facility interactions define the way customer, or demand, is allocated 
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to facilities, taking into account factors such as the distance between the customer and a facility. 

Facility-facility interactions describe the competition of facilities to cover as much as demand as 

possible, the so-called cannibalization effect. Facility-facility effects can also be seen as cooperation, 

e.g. important to assure a minimum level of accessibility to potential users  (Bruno & Giannikos, 2015). 

 

The objective function represents the criteria or objectives considered when locating a facility. Usually, 

the main objective is efficiency, which is expressed in cost reduction. Cost is often related to the 

distance of interactions between facilities and demand. For example, efficiency can be measured in 

the amount of demand, e.g. population, covered by facilities, e.g. supermarkets. Within a given 

coverage radius, e.g. maximum walking distance of 10 minutes, all demand counts as covered. With 

this approach, the optimization aims to cover a maximum amount of demand with a given number of 

facilities (Bruno & Giannikos, 2015). 

 

Some facility location problems have to consider the hierarchy between different facility types: “In a 

hierarchical system, facilities are interrelated in a top-down or bottom-up manner at various levels of 

services” (Torkestani, 2016, p. 1). This means that location optimization must take into account not 

only efficient coverage in terms of maximum accessibility to demand from lower-level facilities, but 

also their effective supply in terms of minimizing transportation costs from higher-level facilities 

(Farahani et al., 2014). The definitions of the hierarchical location problem mention “interrelation of 

facilities”, the levels “serving each other”. This does not necessarily apply to shared mobility hubs. The 

different types mostly serve different purposes and different target users. There may be differences 

in size, but a network of smaller hubs can provide shared mobility services even without the presence 

of a larger hub. In the case where hub types do not explicitly have a hierarchical relation to each other, 

the theory of a hierarchical facility location problem is not required. 

 

4.3. Integrating MCDA and network analysis methods for facility location problems 

 

The integration of MCDA and spatial analysis in GIS, such as network analysis, are discussed in 

research. For example, Jelokhani-Niaraki et al. (2018) presents existing literature on the opportunities 

and challenges of semantic interoperability of GIS and MCDA. The study proposes an ontology-enabled 

framework to improve the general interoperability of GIS and MCDA. When looking into the specific 

case of integrating of MCDA and network analysis methods for facility location problems, the 

calculation of a suitability score can be beneficial to assessing facility locations according to multiple 

criteria. Different criteria layers can be weighted in their importance and combined to suitability score 

per area or location (Bruno & Giannikos, 2015), which is an important step as many network analysis 

methods for location planning accept only one demand criterion. The advantage of integrating MCDA 

and network analysis methods is thereby the possibility to summarize multiple criteria into an MCDA 

score prior to the network analysis steps. The idea of converting the multiple-criteria optimization 

problem to a single-criterion optimization problem prior to network analysis is also suggested by 

Malczewski & Ogryczak (1995): A single criterion can be calculated from the sum of all weighted 

criteria, followed by a network analysis minimizing a single-criterion problem. For example, Abd El 

Karim & Awawdeh (2020) summarizes various criteria relevant to quality of urban life within a MCDA 

score, which is later used for a network analysis to allocate public facilities with the aim of reducing 

the quality of urban life differences in the city. In this example, the location allocation analysis was 

performed with low spatial resolution, using only the spatial unit of neighborhoods. 
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It is important to emphasize the major advantage of integrating MCDA and network analysis for 

location planning by converting multiple criteria problems into single criterion problems: 

Consequently, the multi-criteria decision problems can be solved using single-criteria optimization 

techniques. This means that the wide range of algorithms, software, and experience that currently 

exist for single-criteria optimization can be directly applied to solving multi-criteria problems. This is 

very beneficial for location optimization problems, given the importance single-objective optimization 

has for location theories, the location allocation modeling, and the computing of location decision 

problems (Malczewski & Ogryczak, 1996). 

 

4.4. Review of network analysis tools 

 

Several network analysis tools could be applied to improve existing approaches for location planning 

of shared mobility hubs. There are various methods to measure relevant metrics and the most suitable 

has to be selected according to the aim of the research, individual characteristics of the city and the 

data availability. The detailed review of network analysis tool can be found in the appendix. 

 

Space syntax helps to understand configurational spatial relationships of the street network. It can 

therefore help to quantify a street’s connectedness and accessibility within the street network using 

concepts such as ‘centrality’ or ‘betweenness’. This can be relevant to the location planning of shared 

mobility hubs, as their locations should be well-connected and accessible within the street network. 

Furthermore, shared mobility hubs are intended to provide widespread decentralized infrastructure 

that extends throughout the city and are easily accessible by walking. Within space syntax, especially 

local integration analysis, e.g. an axial integration analysis with three topological steps or an angular 

choice analysis with a metric radius of 400-800 m, could help to understand the suitability of streets 

for shared mobility hubs. Many space syntax measures can be calculated through a plug-in for QGIS 

(van Nes & Yamu, 2021). 

 

Urban Network Analysis (UNA) toolbox provides methods to describe the spatial patterns of cities 

using mathematical network analysis methods. The overall aim to understand spatial relationships in 

networks is similar to space syntax, both focus on concepts such as “centrality” or “betweenness”. But 

the UNA toolbox addresses a number of shortcomings of previous approaches, e.g. the use of only 

nodes and edges as network elements, as well as the importance of buildings to the understanding of 

the interaction of streets. Therefore, it introduces buildings as a new network element besides nodes 

and edges, as well as weighted representation of the network elements. This could further increase 

the suitability of the measures for location planning of shared mobility hubs. To better understand the 

total covered demand of shared mobility hubs, the reach and the gravity measure could calculate 

(weighted) demand in a certain walking distance of a location. The closeness and the betweenness 

measure could be used to place shared mobility hubs in locations with high human activity, specifically 

with high presence of pedestrians. The closeness measure could quantify a location’s proximity to POIs 

and the betweenness measure could quantify the potential amount of passersby traffic. The UNA tool 

is implemented as an ArcGIS toolbox extension and can thus be easily integrated into workflows 

(Sevtsuk & Mekonnen, 2012). 

 

QGIS offers two main network analysis algorithms: The calculation of shortest paths between a set of 

points in a network and the service areas of facilities in a network. This can help to identify service 
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areas of potential locations for shared mobility hubs according to the walking distance in the street 

network. Currently, QGIS does not offer calculation of optimal facility locations in a network (QGIS, 

2022). 

 

ArcGIS offers a greater selection of network analysis functionalities compared to QGIS. Besides tools 

to calculate the shortest paths between a set of points in a network and the service areas of facilities 

in a network, ArcGIS also offers a closest facility solver to compute the travel costs between a set of 

incidents and the best facility for each incident. Most importantly, ArcGIS offers a location allocation 

solver, which selects facility locations from a set of location candidates based on the potential 

interactions of each facility location with demand points. The location allocation solver can select 

optimal locations with different objectives and is able to consider many factors highly relevant to the 

location planning of shared mobility hubs. This includes the consideration of only selected candidate 

locations, the maximization of covered demand within a certain walking time threshold as well as 

competition effects between hub locations in close proximity. Distance decay functions can be 

considered to maximize the probability of attendance. As the location allocation tool solves a 

combinatorial optimization problem, this method can lead to very high computational effort for the 

location planning of a high number of shared mobility hubs over an entire urban area. Within the 

ArcGIS location allocation tool, heuristics are applied to reduce computing time (esri, 2022a). Murray 

et al. (2019) has evaluates, besides other software solutions, the general performance of the heuristics 

used in the location allocation solver of ArcGIS. The results are described as encouraging and of high 

quality, whereas their heuristically computed solutions never varied more than 7% from the optimum 

in the problem instances. The research underlines the fact that heuristics can find optimal results in 

certain cases, but it cannot be guaranteed that the heuristics solver always achieves the exact optimal 

result. It is important to be aware of this limitation of heuristic approaches to location allocation and 

communicate them clearly when presenting the results. 

 

4.5. Conclusion  

 

With the increasing availability of extensive geospatial data for urban areas, spatial network analysis 

can provide new insights for many location planning challenges (Sevtsuk & Mekonnen, 2012; Tran & 

Draeger, 2021), such as location planning for shared mobility hubs.  

 

The hub location problem (HLP) can be described as a new extension of classical facility location 

analysis. In general, facility location problems aim “to determine the position of a set of facilities in a 

given location space in order to provide some service to a set of actors which are supposed to 

patronize some of the available facilities. These actors correspond to the demand (actual or potential) 

that must be satisfied (Bruno & Giannikos, 2015, p. 515)”. 

 

Integrating MCDA and network analysis for location planning by converting multiple criteria problems 

into single criterion problems is very beneficial, as many network analysis methods for location 

planning accept only one demand criterion. Using this approach, the multi-criteria decision problems 

can be solved using single-criteria optimization techniques. This means that the wide range of 

algorithms, software, and experience that currently exist for single-criteria optimization can be 

directly applied to solving multi-criteria problems (Malczewski & Ogryczak, 1996).  
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The ArcGIS location allocation solver is seen as the most suitable tool to perform a location 

optimization for shared mobility hubs based on network analysis. As the location allocation solver only 

optimizes according to one criterion, the possibility to apply a prior spatial MCDA to convert the 

multiple-criteria optimization problem into a single-criterion optimization problem is highly relevant 

to this research. 
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5. Improved location planning method for shared mobility hubs 
 

5.1. Aim of improved method 

 

Multiple cities want to establish a large number of shared mobility hubs throughout the urban area. 

These large networks of shared mobility hubs can consist of hundreds or even thousands of shared 

mobility hubs. Cities are challenged with the location planning for this new type of infrastructure, as 

shared mobility hubs interact with many aspects of urban mobility, existing infrastructure and involve 

many stakeholders.  

In research, different methods for location panning for shared mobility hubs have been investigated 

(see Chapter 2.2). Some of these approaches make use of high-resolution spatial data, MCDA or 

network analysis. In practice, none or more pragmatic approaches to data analysis for location 

planning of shared mobility hubs are applied. For the example of Hamburg, an initial GIS analysis is 

used to create maps indicating the potential demand for shared mobility hubs per area. Within the 

identified areas of high demand, the location, catchment areas and the characteristics of individual 

hubs are then investigated in qualitative work one by one (Hochbahn Hamburg, personal 

communication, February 23, 2022). This manual approach to location planning for city-wide shared 

mobility hubs is very time and cost intensive. Furthermore, the manual approach cannot use data-

driven decision-making to address many aspects relevant to the objectives of this new infrastructure, 

because the available datasets are only included in the initial GIS analysis and are not considered 

during micro-planning.  

Most studies reviewed in Chapter 2.2 assume that the process of location planning for shared mobility 

hubs can be simplified and generalized in a way that resulting methods or tools can be applied to any 

city in the world. This research is only in partial agreement with this perspective. On one hand, the 

generalization of methods is an essential strategy to be efficient in the provision of data-driven 

approaches to many cities. On the other hand, every city is individual in its physical characteristics, 

political objectives, financial capabilities and data availability. This argument supports more 

individualized solutions for the planning of new infrastructures such as networks of shared mobility 

hubs. Individual solutions can be built on a generalized framework, but must be adapted to the unique 

needs and circumstances of each city. This research assumes the need for city-specific spatial analysis 

methods using high-resolution datasets to effectively locate mobility hubs, which is in contrast to 

simplified methods based on publicly available data from sources like open street map. While this 

approach initially limits the developed method to cities with sufficient resources and good data 

availability, it is anticipated that this approach will provide new insights for the scaling of shared 

mobility hubs. Therefore, this research focuses on an individual, in-depth and data-intensive solution 

for one of the pioneering cities in the field of shared mobility hubs, to achieve a better understanding 

of the opportunities and challenges of location planning for shared mobility hubs in the short-term. 

The long-term goal is to ensure that such in-depth applications in pioneering cities produce results 

that are transferable to other cities by making minor adjustments. 

 

This research aims to develop an improved method for location planning of shared mobility hubs along 

the specific challenges of the case study of Munich. Therefore, the improved method should be able 

to consider different placement strategies, exact walking distances in the street network, competition 

effects between stations and compare different scenarios with KPIs for a city-wide network of shared 

mobility hubs. The improved method has been continuously refined alongside the case study 
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application, which is presented in Chapter 6. The general framework of the improved method is 

presented in this chapter. 

5.2. Overview improved method 

 

The improved method combines three components: 1) spatial MCDA, as it has proven to be a suitable 

method to perform complex decisions in transport planning. 2) Location optimization methods in GIS, 

as it considers walking routes in the street network. 3) Catchment area analysis to compute statistics 

on potential users for each hub location and overall scenario KPIs. This enables decision-makers to 

compare different placement strategies in terms of potential impacts on their objectives and to 

accelerate micro-planning processes through a defined target scenario and data-based insights per 

hub location. 

 

 
Figure 8: Overview improved method 
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5.3. Spatial MCDA component 

 

A Multi Criteria Decision Analysis (MCDA) makes it possible to evaluate several options with multiple 

quantitative and qualitative criteria. Spatial MCDA and MAMCA have been applied in several studies 

on location planning for shared mobility and appear to be beneficial in considering the various criteria 

relevant to selecting the location of infrastructure for shared mobility. Kabak et al. (2018), Kurniadhini 

& Roychansyah (2020), Guler & Yomralioglu (2021), Fazio et al. (2021) and Blad (2021) apply (multi-

actor) MCDA to determine the suitability in detail throughout the study area, using heatmaps 

indicating a suitability score per grid cell. This approach has the potential to translate the location 

planning objectives into quantitative input for the following application of network analysis 

techniques. This would be an extension of current research, as none of the reviewed studies combined 

MCDA with network analysis methods.  

Therefore, the improved method for location planning of shared mobility hubs will apply a spatial 

MCDA, and if multiple stakeholders are involved a spatial MAMCA, to translate different prioritizations 

at the decision-maker level into placement strategies. The spatial MCDA can be implemented based 

on a high-resolution grid covering the research area. The resulting MCDA score for each spatial grid 

cell converts a multiple-criteria optimization problem into a single-criterion optimization problem. 

 

5.4. Location Optimization component 

 

A single variable location optimization based on walking distance in the street network is possible 

through network analysis tools in GIS. For the purpose of location planning of shared mobility hubs, 

the location allocation solver in ArcGIS was chosen, as it provides proven functionality in optimization 

of facility location problems. Based on the potential interactions of facility location with demand 

points, the optimal facility locations are selected from a set of location candidates. The location 

allocation solver can select optimal locations with different objectives and is able to consider many 

factors highly relevant to the location planning of shared mobility hubs. There are multiple possibilities 

to adapt the location allocation solver to the problem of location planning of shared mobility hubs: 

Exclusion criteria for locations can be implemented by restricting the set of candidates. Selection 

criteria can be formulated in demand weight. To translate the objectives of the selection into the 

model, various problem types in ArcGIS location allocation tool can be applied for shared mobility 

hubs: 

 

 
Figure 18. Maximize Coverage chooses facilities such that as much demand as possible is covered by the impedance cutoff 

of facilities. In this graphic, the solver was directed to choose three facilities (esri, 2022a) 

 

Maximize Coverage problem type - Facilities are located such that as many demand points as possible 

are allocated to solution facilities within the impedance cutoff (esri, 2022a). Maximize Coverage is 
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suitable, if covering every demand point within a certain walking time is the prior objective of location 

planning of shared mobility hubs (García-Palomares et al., 2012). 

 

 
Figure 21. Maximize Attendance chooses facilities to allocate as much demand weight as possible to facilities while 

assuming the demand weight decreases with distance. The demand points, represented by pie charts in this graphic, show 

how much of their total demand is captured by the facility (esri, 2022a). 

 

Maximize Attendance problem type - Facilities are chosen such that as much demand weight as 

possible is allocated to facilities while assuming the demand weight decreases in relation to the 

distance between the facility and the demand point. Maximize attendance is suitable, if a placement 

in close proximity to high demand points is the prior objective of location planning of shared mobility 

hubs. This leads to a heterogenous distribution of hubs throughout the city, with most hubs forming 

a dense network in high demand areas. 

 

Furthermore, the ArcGIS location allocation tool provides an impedance transformation, which allows 

manipulating the effect of the distance between the facility and the demand point on the respective 

demand point weight allocation. The impedance transformation determines the equation for 

transforming the network cost between facilities and demand points, thereby calibrating how severely 

the network impedance between facilities and demand points influences the solver's choice of 

facilities (esri, 2022a). The functionality of the impedance transformation in ArcGIS is described in 

theory as a distance decay function. Assuming that demand for services declines with distance, 

locating facilities as close as possible to potential demand is an important consideration to maximize 

the served demand (Farhan & Murray, 2006). Within ArcGIS, the distance decay function can be 

included as linear, power or exponential function. If a five-minute impedance cutoff and a linear 

impedance transformation is selected, the probability of visiting a store decays at 20 percent per 

minute. Therefore, a store within 1 minute walking distance of a demand point has an 80 percent visit 

probability and a store four minutes away only has a 20 percent visit probability (esri, 2019). Using 

power or exponential functions, the decay function can be adapted to existing knowledge of user 

travel behavior of the investigated facility type. The graph below is an example from the RATP, the 

public transport operator of Paris, for the use of distance decay functions for location planning of 

public transport stations (Manout et al., 2018). 
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Figure 22. Distance decay functions by transit mode from RATP data (Manout et al., 2018) 

 

Whilst this knowledge on distance decay exists for established facility types, e.g. public transport 

stations, there is no available research on distance decay functions of for shared mobility hubs.  García-

Palomares et al. (2012) argues that transportation planning assumes that people are willing to walk 

longer to public transport stations for longer average trip distances, for example 400 m for bus stops 

and 800 m for subway stations. In the case of bike-sharing, the average trip distance is rather short 

and the maximum walking distance for access to bike-sharing stations should be lower than that for 

public transport stations. The study uses a maximum walking distance of only 200 m for the location 

optimization of bike-sharing stations. Following this reasoning, it can be assumed that the distance 

decay functions for shared mobility stations will be much more restrictive. If further research results 

in a better understanding of distance decay functions for shared mobility, this can be used to improve 

location allocation models. 

 

Within this research, the Maximize Coverage problem type is applied for location optimization, which 

only allows for a linear distance decay function. For the case study in Munich, this choice was made 

due to the equity focused location planning objective to achieve a city-wide maximum walking time 

of 5 minutes to a hub. If the improved method is applied with different location planning objectives, 

for example from the perspective of profitability for an operator, the maximize attendance problem 

with an adapted distance decay function can be a powerful tool to place hubs e.g. in the hotspots of 

early adopters. 

 

When applying the location-allocation solver in ArcGIS for location planning of shared mobility hubs, 

it is important to consider that the location allocation solver has a rapidly increasing computational 
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effort as the number of candidate sites, demand points, and chosen locations increases. This is due to 

the nature of the combinatorial optimization problem that must be solved. Therefore, this method 

can lead to very high computational effort for the location planning of a high number of shared 

mobility hubs over an entire urban area. Therefore, it is very beneficial, that the computation times 

for the location allocation tool in ArcGIS are reduced through the use of heuristics. For this study, the 

analysis was carried out on a local computer, resulting in a computing time of about one hour per 

location optimization. As this process is repeated many times throughout the methodology, 

computing time becomes a significant factor in the analysis and needs to considered for 

implementation planning. 

 

Another challenge when applying the location allocation solver in ArcGIS for the location optimization 

of shared mobility hubs is the fact that the tool only allows for one demand weight variable, one 

candidate set and one cut off value. This is a challenge, as comprehensive networks of shared mobility 

hubs consist of different hub types (facility types) with different objectives (demand weights) and 

different maximum walking time (cut off). This thesis therefore suggests a sequential location 

allocation method. Location allocation is performed separately for each hub type, allowing for 

differentiations in candidate locations, demand weights and cut off values for catchment areas for 

each hub type. This approach allows for a tailor-made modeling of various hub types with different 

characteristics and objectives. To achieve this, the location allocation is performed in multiple steps. 

The different hub types are ranked in their placement order according to the location planning 

strategy. If the main objective is a strong integration between the hub network and the existing public 

transport system, hub types with the constraint that they have to be placed next to a public transport 

station should be preferred in the placement. This means that the method will select a location at a 

public transport station even if there is a slightly better performing location in the nearby streets. And 

in the overall perspective, such an approach would lead to an anchoring of the hub network at existing 

public transport stations during the first sequential location allocation step. Only in later steps with 

less restricted candidate sets, the hub network can grow towards other areas of demand. In general, 

this means that hub types with high relevance for the overall system and hub types with very severe 

candidate set restrictions should be prioritized in the placement order. 

 

Figure 9 shows the general approach of a sequential location allocation for different hub types. First 

hub type A is located according to the candidate set restrictions, the weighted selection criteria and 

the applied cut off value. Then the location allocation is repeated for hub type B with respective 

candidate set, weighted selection criteria and cut off value - excluding demand weights in the 

catchment areas of selected locations for hub type A. Then the location allocation is repeated for hub 

type C with respective candidate set, weighted selection criteria and cut off value - excluding demand 

weights in the catchment areas of selected locations for hub types A and B. This process can be 

continued until all hub types are allocated. 
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Figure 9: Sequential location allocation for different hub types 

 

It needs to be considered that the sequential location allocation approach does not necessarily lead 

to a global optimization of shared mobility hub locations. Instead, the method optimizes the hub 

locations for a certain hub network configuration with constraints given by the city (e.g., the 

placement order of hub types and the number of hubs for type A/B/C). To reduce the uncertainties 

related to the impact of the constraints chosen by the city, this sequential location allocation approach 

is proposed in combination with the application of scenarios and scenario KPIs to enable comparison 

of various placement strategies.  

 

5.5. Service area analysis component 

 

The sequential location allocation suggests specific hub locations in the street network for each hub 

type. A service area analysis based on the street network can calculate the respective catchment area 

for each suggested hub location. This enables further analysis of the selected locations and their effect 

in regards to objectives for location planning of shared mobility hubs.  

 

For each chosen location, the catchment area in a certain walking time is computed. For each 

catchment area, the coverage of certain variables can be calculated, e.g. within 6 minutes an example 

hub serves 806 early adopters, 383 private cars, 430 single households and 303 households with 

children. These figures are very valuable when planning the offered services and implementation 

priority per hub. A high number of registered private cars might indicate a high demand for shared 
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cars. A high number of households with children might indicate a high demand for shared cargo bikes. 

A high number of young residents might indicate a need for shared bikes, e-bikes, e-scooters and e-

mopeds. A high number of elderly residents might indicate demand for other electric vehicles aimed 

at persons with limited mobility. A high number of early adopters could indicate benefits of prioritized 

implementation of a location. Many conclusions can be drawn from these statistics for each hub 

location, simplifying and accelerating the following manual steps in micro-planning. 

 

By aggregating the statistical results of all hub locations across the entire city, the overall scenario KPIs 

enable a data-based comparison of different placement strategies. For each scenario, the overall 

coverage of certain variables can be calculated, e.g. Scenario 1 results in city-wide hub accessibility 

within 3 minutes walking time for 71% of all registered private cars, 68% of all early adopters, 57% of 

all residents, 55% of all retail m2. The comparison of different placement strategies is an important 

feature of the suggested method.  

 

There are no existing examples or best practices for implementing city-wide networks of shared 

mobility hubs. Therefore, the method should allow a comparison of different placement strategies for 

the respective city and enable decision-makers to have data-based discussions about the best 

performing placement strategies. In addition, the method itself and the constraints specified by the 

city within the sequential location allocation are still subject to great uncertainties. The calculation of 

several scenarios and their comparison on the basis of scenario KPIs provides a better understanding 

of the method itself. 

 

5.6. Workflow of the improved method  

  

This section explains and presents the overview workflow of the improved method in a table and in 

an illustration. The 15 steps are assigned to 7 phases. The researcher is involved in all 14 steps, the 

stakeholder(s) are only involved in 6 steps. Below each step is described in detail.  
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Table 3: Phases and steps of the improved method 

Phase 1 MCDA preparation  

Step 1.1 Determine overall location 
planning objectives and criteria 

Stakeholder(s) and researcher select the overall objectives and 
criteria for the location planning of shared mobility hubs. 

Step 1.2 Ensure data availability for MCDA 
criteria 

Stakeholder(s) and researcher filter criteria and indicators based 
on availability of datasets with high spatial resolution. 

Phase 2 Exclusion criteria per hub type  

Step 2.1 Set exclusion criteria per hub 
type 

For each hub type, stakeholder(s) and researcher set exclusion 
conditions for candidate locations. 

Step 2.2 Select intersections as candidate 
locations 

For each hub type, the researcher categorizes candidate 
intersections. 

Phase 3 Selection criteria per hub type  

Step 3.1 Set selection criteria per hub type Stakeholder(s) and researcher set selection criteria per hub type 

Step 3.2 Calculate criteria per grid cell The researcher calculates criteria values in high resolution grid 
cell 

Step 3.3 Indicator Standardization The researcher standardizes all criteria values per grid cell 

Step 3.4 Set selection criteria weights per 
hub type 

For each hub type, stakeholder(s) and researcher adjust criteria 
weights using AHP. 

Step 3.5 Calculate MCDA score as demand 
points 

For each hub type, the researcher uses criteria values and 
weights to calculate the MCDA score per grid cell centroid. 

Phase 4 Network Analysis Layer  

Step 4 Build network analysis layer The researcher sets up a network analysis layer. 

Phase 5 Define Scenarios  

Step 5 Define scenarios for different 
placement strategies 

Stakeholder(s) and researcher define different scenarios 
representing different placement strategies. This can include 
varying numbers of each hub type or varying MCDA weights. 

Phase 6 Scenario calculation (Phase 6 is repeated for each scenario) 

Step 6.1 Perform sequential location 
allocation 

The researcher performs sequential location allocation: 
1) A hubs; 2) B hubs; 3) C hubs. 

Step 6.2 Perform service area analysis The researcher computes the service area of each location and 
calculates statistics per service area. 

Step 6.3 Calculate Scenario KPIs The researcher computes KPIs to represent the fulfillment of 
criteria within the whole city. 

Phase 7 Scenario decision  

Step 7.1 Decide for scenario as master 
plan 

Stakeholder(s) compare scenario KPIs of different placement 
strategies and set target scenario for micro planning. 
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Figure 10: Workflow of the improved method 
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Phase 1: MCDA preparation 

 

Step 1.1: Determine overall location planning objectives and criteria 

 

To begin, it is important to have a general understanding of the objectives of the analysis. The 

improved method translates the city's objectives and decisions into automated, data-based location 

optimization. Therefore, the results of the method can only perform according to the prioritizations 

set in this step. At the end of this step, the objectives and relevant criteria for location planning of 

shared mobility hubs are defined based on policy documents and in discussions with decision-makers. 

 

Step 1.2: Ensure data availability for MCDA criteria 

 

For each identified objective and criteria, spatial data at high spatial resolution is needed to be 

included in the analysis. Data collection can be time intensive, as high spatial resolution data might be 

hard to obtain and privacy guidelines have to be followed. After data collection, stakeholder(s) and 

researcher filter criteria and indicators based on availability of datasets with high spatial resolution.  

 

Phase 2: Exclusion criteria per hub type 

 

Step 2.1: Set exclusion criteria per hub type 

 

In the method used, there are two ways to consider criteria for location planning, exclusion criteria 

and selection criteria. This step defines the exclusion criteria only. Exclusion criteria is used to create 

a limited and targeted candidate set for each hub type. The selection of candidates for a hub type is 

dependent on the hub type’s objectives. Exclusion criteria are the strongest way to influence the siting 

of a hub type, as any location that does not meet the criteria will be excluded in any further analysis 

steps. At the end of this step, stakeholder(s) and researcher have set exclusion conditions for 

candidate locations for each of the hub types. 

 

Step 2.2: Select intersections as candidate locations 

 

Based on the exclusion criteria of step 2.1, the researcher categorizes all possible candidate 

intersections into candidate locations for each hub type.  

 

Phase 3: Selection criteria per hub type 

 

Step 3.1: Set selection criteria per hub type 

 

The relevant criteria for the selection of the best candidates for each hub type are determined. At the 

end of this step, it is clear which datasets have to be further processed to create indicators for each 

relevant criterion. 

 

Step 3.2: Calculate criteria per grid cell 
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Based on the collected datasets of step 1.2, the researcher compiles all criteria in high resolution grid 

cells. After this step, each criterion is represented as a value per grid cell. 

 

Step 3.3: Indicator Standardization 

 

To be able to make the criteria comparable within the MCDA, the researcher standardizes all criteria 

values per grid cell. Using the linear max approach, every value of a criterion is divided by the 

maximum value in the criterion (Binsbergen, 2021). After this step, every value of the criterion is 

represented by a value between 0 and 1.  

 

Step 3.4: Set selection criteria weights per hub type 

 

The selection of the best candidates for each hub type is based on weighted selection criteria. Later in 

the method, the weighted selected criteria form a MCDA score per grid cell. The coverage of this  

MCDA score within the maximum walking distance is optimized by the location allocation algorithm 

to select the best performing configuration of candidate locations for each hub type. For each hub 

type, a decision tree is constructed. The weighting of selection criteria is adjusted using the AHP 

approach, which allows the decision-makers to pairwise compare the different criteria to determine 

overall weights. This step results in a decision tree with weighted selection criteria for each hub type. 

 

Step 3.5: Calculate MCDA score as demand points 

 

Using the standardized criteria values of step 3.3 and the decision tree with criteria weights of step 

3.4, the researcher calculates the MCDA score per hub type in each grid cell. The MCDA score per hub 

type is then stored in the centroid point of each grid cell, as the network analysis requires point data 

as input. 

 

Phase 4: Network Analysis Layer 

 

Step 4: Build network analysis layer 

 

Based on a dataset with all streets and paths of the city, the researcher sets up a network analysis 

layer. As the analysis investigates accessibility to the hub locations by foot, the network analysis should 

include a walking mode where distance in the network is measured in walking minutes. 

 

Phase 5: Define Scenarios 

 

Step 5: Define scenarios for different placement strategies 

 

To account for multiple possible placement strategies, the method allows the definition of different 

scenarios. Placement strategies can differ in the total number of hubs placed, the number of hubs per 

hub type or characteristics such as walking distance per hub type. If the total number of hubs is 

unclear, a pre-analysis using the Maximize Coverage and Minimize Facilities within ArcGIS Network 

Analysist can be used to estimate a rough number of hubs needed to cover one variable, e.g. 

inhabitants, within a certain walking time cut off throughout the research area. For further calibration, 
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a repeated Maximize Coverage analysis with iterated number of hubs can be used. For the scenarios, 

changes in exclusion or selection criteria are possible, but work intensive. At the end of this step, 

stakeholder(s) and researcher have defined different scenarios representing different placement 

strategies.  
 

Phase 6: Scenario calculation (Phase 6 is repeated for each scenario) 

 

Step 6.1: Perform sequential location allocation 

 

Using the MCDA score per demand point from step 5.1, the candidate locations from step 5.2 and the 

network analysis layer from step 5.3, the researcher performs automated location optimization. This 

is achieved by sequential location allocation for first hub type A, second hub type B and third hub type 

C. As location allocation is performed separately for each hub type, it is possible to consider different 

candidate locations, demand weights and cut off values for catchment areas for each hub type. This 

step results in the locations and service areas per hub type. 

 

Step 6.2: Perform service area analysis 

 

The researcher calculates statistics about the coverage of certain criteria for each service area. These 

figures are important to understand the individual user groups of each hub location. 

 

Step 6.3: Calculate Scenario KPIs 

 

The researcher computes scenario KPIs to represent the fulfillment of criteria within the whole city. 

These figures are important to compare the effects of different placement strategies on the objectives 

of the city. 

 

Phase 7: Scenario decision 

 

Step 7.1: Decide for scenario 

 

Stakeholder(s) compare the performance of different scenarios with scenario KPIs. A decision is made 

for one scenario as a master plan for the city-wide location planning of shared mobility hubs, which 

serves as the basis for further microplanning. 
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Munich case study 



39 

6. Munich case study 
 

6.1. Transportation system of Munich 

 

With about 1.5 million inhabitants, Munich is the third largest city of Germany. Munich has a very 

strong public transportation system, consisting of various modes such as bus, light rail (Tram), metro 

(U-Bahn) and rail (S-Bahn). Since 2015, the public bike sharing system MVG-Rad is operating in close 

cooperation with the public transport system - public transport subscribers can rent the bikes at 

discounted rates. The system currently has about 4500 bikes that can be used in a free-floating zone 

in the city center and at 300 stations extending beyond the city borders (MVG, 2022a). Many other 

providers operate shared vehicles in Munich, including TIER (e-bikes, e-scooters, e-mopeds), Lime (e-

scooters), VOI (e-scooters), emmy (e-mopeds), Avocargo (Cargobikes), Share Now (Cars), Sixt Share 

(Cars) and Miles (Cars, Vans). The city aims to integrate the various sharing providers within a MaaS 

app, called MVGO. Currently, only public transport, taxi, TIER and VOI are integrated in the new app 

(MVG, 2022b).  

In a case study, McKinsey (2019) 

investigated the modal split of Munich 

per travelled kilometer as shown in 

Figure 11. In 2019, 50-60% of all 

kilometers travelled in Munich still 

account to the car. 30-40% are travelled 

by public transportation and private 

micromobility covers the remaining 

kilometers. In 2019, shared 

micromobility provides only a very small 

share. 

 

From here, McKinsey (2019) estimates 

the potential of shared micromobility 

for the mobility system of Munich, as 

shown in Figure 12. The base case of this 

study estimates that shared 

micromobility can account for 8-10% of 

all travelled kilometer in 2030. This 

calculation only refers to shared 

micromobility and does not include 

other shared modes such as car sharing.  

 

Another study, initiated by the mobility 

department of Munich, states that 

400,000 out of 1,600,000 trips per day can shift from private motorized transport to shared mobility. 

This would result in shared mobility contributing 8.3% of the the total modal split in Munich 

(Mobilitätsreferat München, 2021b, p. 24). 

 

Figure 11: Modal split for Munich in 2019 (McKinsey, 2019) 
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Figure 12: Estimated modal split for Munich in 2030 (McKinsey, 2019) 

Shared mobility is an established component of the transportation system in Munich. The city attaches 

great importance to the further enhancement of shared mobility and its integration with the overall 

transport system. Digital integration is enhanced with the development of the MVGO app. The 

physical integration of various modes is addressed with the recent plans to create city-wide network 

of shared mobility hubs. 

 

6.2. Shared mobility hubs in Munich 

 

Munich has tested the concept of shared mobility hubs in several pilot projects (Miramontes, 2018). 

The Munich City Council has approved the Shared Mobility sub-strategy, in which shared mobility hubs 

are described as an essential part of the mobility transition strategy for 2035. This includes the decision 

to build up to 200 shared mobility hubs in Munich until 2026. This is only seen as the first phase, as 

the expansion of the shared mobility station network will be continued even after 2026 aiming for 

maximum walking time of 5 minutes to the next shared mobility hub throughout the city. In a first 

estimate, the number of required locations for a accessibility within 5 minutes was assumed to 1300. 
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(Mobilitätsreferat München, 2021b). Whilst the locations for pilot projects of shared mobility hubs 

were selected without any systematic decision process and more due to practical circumstances 

(Miramontes, 2018), the city aims for an advanced location planning method for the intended major 

extension of the shared mobility hub infrastructure in Munich (Mobilitätsreferat München, 2021b). 

Therefore, Munich will be used as a case study to validate the functionality and practicability of the 

suggested method. Working closely with the mobility department of the city, this study was able to 

include the input of city planners and spatial data with very high spatial resolution. 

 

6.3. Case Study Application 

 

The previously presented workflow of the improved method is applied to the case study of Munich.  

 

Step 1.1 Determine overall location planning objectives and criteria 

 

Firstly, the overall objectives of location planning for shared mobility hubs were determined. The 

mobility transition strategy for 2035 (Mobilitätsreferat München, 2021b) sets clear overall goals for 

promoting shared mobility. The paper served as a great starting point for further discussions and 

definitions.  At the same time, the details of the location planning for shared mobility hubs were still 

very vague. Therefore, the fundamental choices for a shared mobility hub location planning were 

refined in several sessions with the city planners of Munich. 

 

As a first step, the overall objectives and criteria for location planning of shared mobility hubs were 

discussed with the city planners, resulting in 9 objectives and 18 criteria presented in Figure 13.  

 

Here it must be emphasized, that shared mobility hubs are an infrastructure with more stakeholders 

than just the city, such as shared mobility providers and shared mobility users. The overall objectives 

and criteria for location planning of shared mobility hubs presented in Figure 13 were developed 

exclusively with representatives of the city administration and were not reviewed with other 

stakeholders. The reasons and limitations for this approach are described in detail in Chapter 5.1.  
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Figure 13: Case Study Munich - Overall objectives and criteria for location planning of shared mobility hubs 
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As a second step, the hub typology applied for the location planning of shared mobility hubs was 

further defined. Munich originally used a S, M, and L categorization for “mobility points” 

(Mobilitätsreferat München, 2021b, p. 31): 

 
● Category S offers at least two shared mobility services or one in combination with public 

transport. These points serve in particular as access points for spontaneous or routine trips 
and can be established city-wide, but especially in small-scale locations or residential areas. 

 
● Category M bundles at least three offers and so-called "add-ons". These include infrastructure 

and service offerings with a mobility connection that offer additional services at mobility 
points, such as bicycle parking facilities, parking areas for cargo bikes, bicycle pumps or repair 
stations. These stations are particularly suitable at central neighborhood locations, 
development axes, intersections and popular destinations. 

 
● Category L mobile points provide access to at least four shared mobility offerings, as well as 

public transit and other add-ons in all cases. These mobility points are predominantly located 
at classic nodes, strategic locations or in newly built neighborhoods. 

 

Translating this categorization of hub types into quantitative indicators for spatial analysis turned out 

difficult because the differentiating factors of size and aim of each hub type were blended with each 

other. Therefore, the hub typology was refined in cooperation with the mobility department, resulting 

in a new typology mainly differentiated by the main aim of each hub type.  

 

 
Figure 14: Case Study Munich - illustrative example for hub type A (VCD, 2020) 

Hub type A: Integration of shared mobility at major public transport transfer nodes 

Aim: Integrate shared mobility at main transfer nodes of city-wide trips 

Candidates: Public Transport Stations with highest passenger transfer volume 

Users: Large number of external users, a few local users 

Walking Time cut-off: 7 minutes (Scenario 1), 5 minutes (Scenario 2) 

Key feature: Nodes with the highest public transport connectivity, focus on external users, e.g. by 

providing digital information board. 
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Figure 15: Case Study Munich - illustrative example for hub type B (Mobilitätsreferat München, 2021a) 

Hub type B: Integration of shared mobility to main public transport lines 

Aim: Integrate shared mobility at main public transport lines  

Candidates: Stations with high capacity / frequency public transport lines  

Users: Some external users, more local users 

Walking Time cut-off: 6 minutes (Scenario 1), 5 min (Scenario 2) 

Key feature: High public transport connectivity, focus on local users and the combination of public 

transport and shared mobility as first or last mile. 

 

 
Figure 16: Case Study Munich - illustrative example for hub type C (Mobilitätsreferat München, 2021a) 

Hub type C: Cluster shared mobility at local centers  

Aim: Cluster shared mobility at hubs throughout the city aiming for 5 min accessibility 

Candidates: Local centers of human activity 

Users: Mostly local users 

Walking Time cut-off: 5 minutes (Scenario 1 and Scenario 2) 

Key feature: High activity locations in the neighborhood, often areas without high 

frequency/capacity public transport, focusing on local, recurring users. 
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Figure 17: Case Study Munich - illustrative example for hub type D (Mobilitätsreferat München, 2022) 

Hub type D: Provide shared mobility parking within 3 minutes walking (only used in Scenario 2) 

Aim: Provide parking reserved for shared mobility throughout the city within 3 minutes walking time 

Candidates: Every street intersection with car and pedestrian access. 

Users: Local users 

Walking Time cut-off: 3 minutes (only used in Scenario 2) 

Key feature: Low effort design to provide reserved parking for shared modes 

 

For Scenario 1, hub type A, B and C were applied. Different walking time cut off values were assigned 

to each hub type with the idea that users are willing to walk further to a shared mobility hub if shared 

mobility modes are combined with a very strong public transport connectivity.  

 

For Scenario 2, certain restrictions were changed. As the results of Scenario 1 showed the unintended 

effect of less coverage around large public transportation hubs, for Scenario 2 the hub type A, B and 

C were assigned the same 5-minute walking time cut off. Hub type D was added to optimize not only 

for a 5-min accessibility to a shared mobility hub A, B, C, but to optimize for an additional 3-min 

accessibility to hub type A, B, C and D. This can be described as a re-densification of the 5-min network 

with hub types A, B, C to a 3-min network with hub types A, B, C, D. 

 

It can be observed, that hub type A has the highest restrictions in candidate locations, hub type B has 

the second highest restrictions in candidate locations, hub type C has the third highest restrictions in 

candidate locations and hub type D has the lowest restrictions of candidate locations. Therefore, the 

optimization algorithm has more freedom in hub placement with each step of the sequential location 

allocation, as the set of candidate locations increases. The hubs are placed starting from the existing 

public transport lines, to local centers of human activity and finally aiming for full coverage across the 

city. 

 

 

 



46 

 

Step 1.2 Ensure data availability for MCDA criteria 

 

In this step, a broad database was created to select only criteria with sufficient data availability for the 

following analysis. For the location optimization through a combination of MCDA and network 

analysis, high resolution spatial data is required for each criterion, which can be challenging. Due to 

the involvement of the city of Munich, high resolution datasets from public sources were easier to 

access. Most datasets were collected from various departments of the city of Munich. Datasets on 

shared mobility rentals were collected from MVG, TIER and Miles. Additionally, OSM data was used, 

whenever other datasets were not sufficient. Many high-resolution datasets were only available 

through non-disclosure agreements due to data privacy regulation or corporate interests. 

 
Table 4: Case study Munich - Data availability 

Name Description Used Source 

Administrative areas Administrative areas of Munich Yes https://opendata.muenchen.de/d
ataset/verwaltungseinheiten-der-
landeshauptstadt-muenchen 

Bike sharing rentals MVG Rad bike sharing rentals of 2021 Yes https://www.mvg.de/services/mv
g-rad.html 

E-bike, E-Scooter and E-
moped sharing rentals 

E-bike, E-Scooter and E-moped rentals of TIER within 12 months, 
Rentals aggregated within 50x50 m grid. 

Yes TIER  

Car sharing rentals  Car rentals between August 2021 and Mai 2022 of Miles Yes Miles 

Public transport MVG Public transport GTFS, without S-Bahn Yes https://www.mvg.de/services/fahr
gastservice/fahrplandaten.html 

Retail Points Location of retail, retail type, supermarkets with >300m2 
categories, 16.000 points; Shops with 0m2 were estimated to 30 
m2; Concentration of retail m2 outliers in one location (e.g. 
shopping centers) are manually distributed across different 
entrances. 

Yes Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

EV-Charging Locations of public EV charging, 374 points Yes Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Inhabitants in age 
groups 

Number of inhabitants per 50x50m cell, including age groups, 
280.000 Polygons, “<6”, aggregates less than 6 -> set to 5 
inhabitants. 

Yes Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Registered cars Number of cars per block, 10.000 Polygons, separated by 
private/business (many gaps),  
Attribute AlterMW is the arithmetic mean of the years since first 
registration of all registered private cars in the building block. 
Extreme outliers with more than 100.000 vehicles per km2 were 
replaced by 99.000 vehicles per m2. 

Yes Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Traffic zones Traffic zones from Traffic model with 1) source / destination car 
traffic volume per zone (the sum of the vehicle volume on an 
average working day per traffic zones). 2) source / destination 
public transport volume per zone (the sum of the PT trips on an 
average working day per traffic zones), 1.000 polygons 

Yes Geobasisdaten © 
GeodatenService München 2022 
(Contact: Boese) 
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Sinus Mileus Sinus milieu population distribution per neighborhood (477). Sinus 
Milieu target group research: The Sinus Milieus group people who 
are similar in their concept and way of life. The milieu 
classification is based on two dimensions: "social situation" 
(lower, middle or upper class) and "basic orientation" ("tradition," 
"modernization/individualization" and "reorientation").  

Yes Munich (Contact: Hanke) 

Parking management 
areas 

All areas with parking management, priced parking, 73 areas, 
covering approx. 25% of Munich 

Yes Munich (Contact: Hanke) 

OSM Street Network Street Network for Munich with 238.043 categorized edges Yes https://download.geofabrik.de/ 

OSM POIs 37.187 categorized POIs within Munich Yes https://download.geofabrik.de/ 

OSM Public Transport 
Stations 

2.787 categorized public transport stops (each platform of a 
station is counted separately) 

Yes https://download.geofabrik.de/ 

Street addresses Directory of all street addresses in Munich No  https://opendata.muenchen.de/d
ataset/adressverzeichnis-der-
landeshauptstadt-muenchen 

Land use planning  Land use zoning, intended use by zoning plan of administration; 
5.700 Polygons, covers private and public areas with less detail 

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Actual land use Land use, actual use, 250.000 polygons, covers only public areas 
with high detail 

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Number of households Number of households per block, 10.000 Polygons, “<6”, 
aggregates less than 6 -> set to 5 households in the analysis.   

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Buildings Buildings, 300.000 polygons, with usage type type of building, and 
number of floors, allows for calculation of building volume 

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Schools 550 GPS points, with number of pupils No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Boese) 

Socially insured 
employees 

Socially insured employees based on the location of the 
employment registration, 400 sub districts 

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Wirtenberger) 

Street links traffic 
model 

Street links from Traffic Model, some streets are not correct, 
mostly focused on streets for car traffic, not suitable for detailed 
walking analysis. 30.000 edges. 

No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Boese) 

Traffic POI points POI from traffic model, very general, 2000 points No Geobasisdaten © 
GeodatenService München 2022 
(Contact: Boese) 
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Step 2.1 and Step 3.1 Set exclusion criteria and selection criteria per hub type 

 

Based on the overall objectives and criteria from Figure 13 and the data availability from Table 4, all 

possible indicators for exclusion and selection criteria can be derived. Exclusion and selection criteria 

were assigned to each hub type during a workshop, as shown in Figure 18.  

 

 

Figure 18: Case Study Munich - Workshop with city planners  

 

Selection criteria could be customized based on all data available within Table 4. Selection criteria 

could be selected from the following options: 

 

• Inhabitants (without a 5 min walking distance to Public Transport station) 

• Inhabitants without a 5 min walking distance to Public Transport station with service at 

certain time interval (e.g. at night) 

• Early Adopters: Inhabitants between 16 - 44 years old, weighted by Sinus Milieu 

• POIs 

• Employees 

• Retail m2 (without a 5 min walking distance of Public Transport station) 

• Shared Mobility Rentals 

• Public Transport vehicle capacity per station 

• Registered private cars (without 5 min walking distance to PT) 

• Registered cars within priced parking zones 

• Originating Public Transport trips per inhabitant from Traffic Model 

• Originating car trips per inhabitant from Traffic Model 

 

The chosen exclusion and selection criteria are shown for each hub type in Figure 19, Figure 20, 

Figure 21 and Figure 22. 
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Figure 19: Case Study Munich - location planning decision tree for hub type A  
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Figure 20: Case Study Munich - location planning decision tree for hub type B 
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Figure 21: Case Study Munich - location planning decision tree for hub type C 
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Figure 22: Case Study Munich - location planning decision tree for hub type D 
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Step 2.2       Select intersections as candidate locations 

 

Candidates Hub Type A (Scenario 1) 

 

For Hub Type A, candidate locations are selected based on the exclusion criteria in Figure 19. Due to 

lack of data on public transport passenger counts, only public transport stations with two crossing rail 

lines were filtered. All street intersections within 100 m of the filtered stations were selected, resulting 

in street intersections around 38 public transport stations as A candidates. This candidate set was only 

used in Scenario 1. 

 

 
Figure 23: Case Study Munich - Candidates for A Hubs in Scenario 1 
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Candidates Hub Type B (Scenario 1 and 2) 

 

For Hub Type B, candidate locations are selected based on the exclusion criteria in Figure 20. Due to 

lack of data on public transport passenger counts, only public transport stations with rail-based public 

transport lines were filtered. All street intersections within 100 m of the filtered station were selected, 

resulting in street intersections around 324 public transport stations as B candidates. This candidate 

set was used in Scenario 1 and 2. 

 

 

 
Figure 24: Case Study Munich - Candidates for B hubs in Scenario 1 and 2 
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Candidates Hub Type C (Scenario 1 and 2) 

 

For Hub Type C, candidate locations are selected based exclusion criteria in Figure 21.  
 

Intersections with car access 

AND with a high number of POIs within 100m (min 2 POIs within 100 m) 

OR with a high number of retail m2 within 100m (min 50 m2 within 100m) 

OR with a supermarket with more than 300m2 within 100m (min 1 within 100m) 

OR with carRental (min 100 within 100m) 

OR with bikeRental (min 50 within 100m) 

OR with ebikeRental (min 10 within 100m) 

OR with emoped rentals (min 4 within 55 m) 

OR with escooter rentals (min 40 within 55m) 

OR with a PT station within 100m 

OR with a charging location within 100 m 

 

Selecting candidates with the above filters, the total selection included 11.619 locations as C 

candidates. This candidate set was used in Scenario 1 and 2. 

 

 
Figure 25: Case Study Munich - Candidates for C hubs in Scenario 1 and 2 
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Manually chosen locations for Hub Type A (Scenario 2) 

 

In scenario 2, locations for Hub Type A were selected manually based on the exclusion criteria in Figure 

19. This was mainly due to a lack of data on public transport passenger counts, making an automated 

selection very difficult. As the number of A candidates is very small and of strategical nature, a manual 

selection by transport planners seemed appropriate. As the largest interchange points within the city 

are well-known to transportation planners, a manual selection was quickly implemented. Therefore, 

this was not a candidate set for a location allocation analysis, but already the final set of chosen 

locations. The 19 manually chosen A hub locations were only used only in Scenario 2. 

 

 
Figure 26: Case Study Munich - Manually chosen A hubs in Scenario 2 
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Candidates Hub Type D (Scenario 2) 

 

For Scenario 2, hub type D was added as an additional layer to the sequential location allocation. For 

Hub Type D, candidate locations are selected based exclusion criteria in Figure 22. This included all 

street intersection with car and pedestrian access. This resulted in a total selection of 26.488 as D 

candidates. This candidate set was used only in Scenario 2. 

 

 

 
Figure 27: Case Study Munich - Candidates for D hubs in Scenario 2 
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Step 3.2 Calculate criteria per grid cell 

 

Only the indicators relevant to the selection criteria were further processed into a grid of polygon cells 

with 50m x 50m. For this, the indicator datasets were compiled into 281.188 grid cells covering 

Munich. This requires a transformation of indicator datasets from point and polygon format into the 

grid cell dataset. Indicator units stored in point datasets were transferred using the spatial join tool in 

ArcGIS. Indicator units stored in polygon datasets were transferred by 1) calculating the unit/area ratio 

in the initial polygons, 2) chopping the polygons along all edges of the grid cells using the intersect 

tool in ArcGIS, 3) calculating the unit for each chopped polygon based on its area, 4) using the spatial 

join function in ArcGIS to sum all units of chopped polygon parts within each grid cell. A similar 

approach could be applied to indicator units stored in lines, but was not necessary for the case study.  

During this process, certain indicator definitions were slightly adjusted to account for the 

characteristics of the available datasets. Table 5 shows all indicators compiled into the grid cells. 

 
Table 5: Case Study Munich - Indicators compiled in grid cells 

Indicator Name Definition 

Inhab Inhabitants  Number of registered inhabitants per grid cell, due to privacy 
concerns cells with value 1-5 are assigned the value 3 

EaAd_Age Early 
Adopters by 
age 

Registered inhabitants between 16-44 years per grid cell, due to 
privacy concerns cells with value 1-5 are assigned the value 3  

EaAd_Sin Early 
Adopters by 
sinus milieu 

The sinus mileu groups with high traditional values and low income 
are removed, following the approach of (Hochbahn Hamburg, 
personal communication, February 23, 2022). Early Adopters by 
sinus milieu is calculated per neighborhood as the ratio of the early 
adopters group of the total population  

EaAdop Early 
Adopters 
By age and 
sinus milieu 

Early Adopters by age and sinus milieu is calculated by multiplying 
EaAd_Age and EaAd_Sin for each cell 

RetailM2 Retail m2 Retail m2 per grid cell 

Grocery Grocery store 
above 300m2 

Availability of a supermarket, 0 = no, 1 = yes 

POIs Points-of-
interest 

Points-of-interest, relevant to locations of shared mobility hubs. 
This includes the location of attractions, schools, shops, 
restaurants from OSM (to identify local centers of human activity) 
as well as the locations of public charging points. 

PricPark Priced 
Parking 

Areas with priced parking through parking management from the 
city, indicating areas with higher parking pressure, 0 = no, 1 = yes 

PriCars Private Cars Amount of registered private cars per grid cell.  

PrivCar2PrPa Private Cars 
in Priced 
Parking 
Zones 

Number of registered private cars with cars registered in priced 
parking zones counted double 

BikRen Shared Bike 
Rentals 

Shared Bike Rentals per grid cell within 12 months 
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CarRen Shared Car 
Rentals 

Shared Car Rentals per grid cell within 8 months 

eBikRen Shared e-Bike 
Rentals 

Shared e-Bike Rentals per grid cell within 12 months 

eScoRen Shared e-
Scooter 
Rentals 

Shared e-Scooter Rentals per grid cell within 12 months 

ShMoRen Shared 
Mobility 
Rentals 

Number of shared mobility rentals per grid cell, sum of all sharing 
modes (car, e-moped, e-bike, e-scooter, bike) 

PT_Or Public 
Transport 
Trip Origins 
2019 

Public Transport trips origins per inhabitant; from traffic model for 
2019 

PT_VeCa Public 
Transport 
Vehicle 
Capacity per 
hour  

Per station, frequency of stops per line between 8-9am on a 
weekday (e.g. 12 times per hour) based on GTFS. Frequency is 
multiplied with vehicle capacity (Bus=80, LightRail=220, Rail=1000). 
As Sbahn was not included in GTFS dataset, stations were assigned 
a value manually. 

HcPT5min High-capacity 
Public 
Transport  
within 5 min 

Areas with high capacity (only rail) Public Transport Access within 5 
min walking. Bus stations were excluded from this dataset, as 
shared mobility intermodal trips are more likely combined with 
frequent and high-capacity lines and most areas of Munich are 
covered by 5 min accessibility to less frequent bus routes. 0 = no, 1 
= yes 

Ret_2nPT Retail m2 
without rail-
based Public 
Transport 
Access 

Retail m2, all retail m2 outside 5 min walking distance to a rail-
based Public Transport stations are doubled 

 
 

The indicators used to build the MCDA scores for the selection of A, B, C and D hubs are presented in 

Figure 28 - Figure 37. To increase the contrast, a dark color is used for the value 0. As the original 

indicator units were stored in different data formats, their distribution can be very concentrated (e.g. 

GPS data) or very distributed (e.g. data on building block level).  

 

Using a spatial resolution of 50m x 50m, mapping the variables with gradient colors on the city scale 

is difficult to interpret for a human. In these maps, very high and very concentrated values are only 

displayed extremely small and therefore hardly recognizable with the human eye (e.g. Figure 37). 

These maps are not intended for a human interpretation of the variables, but are only included to 

illustrate an intermediate computational step of the method. Within the method, the shown maps 

serve as a sub-step for calculating high-resolution city-wide MCDA scores for each hub type. Even the 

MCDA score maps are not intended for manual planning of locations, but the data processing and 

spatial resolution decisions are intended to compile various datasets with high spatial resolution as 

singly variable input for automated location optimization in the street network. 
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Figure 28: Case Study Munich - Inhabitants per cell 

 
Figure 29: Case Study Munich - Early adopters per cell 
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Figure 30: Case Study Munich - Private cars per cell 

 
Figure 31: Case Study Munich - Private cars in parking management zone per cell 
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Figure 32: Case Study Munich - Retail m2 per cell 

 

Figure 33: Case Study Munich - Retail m2 without rail-based public transport per cell 
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Figure 34: Case Study Munich - Annual shared mobility rentals per cell 

 
Figure 35: Case Study Munich - POIs per cell 
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Figure 36: Case Study Munich - Public transport trip origins per cell 

 
Figure 37: Case Study Munich - Hourly public transport capacity per cell 
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Step 3.3 Indicator Standardization 

 

To calculate spatial MCDA scores, a standardization of each indicator to the same scale is necessary. 

Using the linear max approach, every value of a criterion is divided by the maximum value in the 

criterion (Binsbergen, 2021). After this step, every value of the criterion is represented by a value 

between 0 and 1.  

 

If large outliers with extreme values distort the standardization, it is possible to manually spread the 

value over adjacent cells. For example, a large shopping centre accumulates 100.000 retail m2 in one 

single point and therefore in one grid cell. To improve the performance of the location allocation, it is 

possible to manually split the 100.000 retail m2 equally across the five entrances of the shopping 

centre and manually assign 20.000 retail m2 to the grid cells at the entrance points.   

 

Step 3.4 Determine weights for selection criteria using AHP 

 

The next step is to determine the MCDA weights using the AHP method. A free online tool was used 

to determine the weights (Goepel, 2018). The method also checks the consistency of the weights with 

a consistency index. This index should be below 10%. This is very useful for the robustness of the 

analysis, but can also lead to confusion, if weights need to be changed to become more consistent. If 

the Consistency Index is above 10%, the system highlights possible iterations within the AHP in light 

green, which lead to a lower Consistency Index. This is very helpful to achieve logical weights and a 

good consistency value. The AHP was implemented separately for each hub type, as shown in Table 6. 

It can be observed, that the chosen variables and their weights change strongly between the different 

hub types. For example, public transport is dominating hub type A and strongly influencing hub type 

B to guarantee a good integration with public transport, but becomes irrelevant for hub type C and D. 

POIs are relevant for hub types A, B and C to select locations with high human activity, but becomes 

irrelevant for the 3 min accessibility goal of hub type D. Retail has influence on all hub types, showing 

very strong influence especially on hub type C to place hubs in centers of human activity. Inhabitants 

and Early Adopters are strongly influencing Hub Type B and C, before being the main criteria for hub 

type D.  
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Table 6: Case Study Munich - MCDA weights resulting from AHP 

 
HUB TYPE 

A 
HUB TYPE 

B 
HUB TYPE 

C 
HUB TYPE 

D 

Public Transport Trip Origins 12,9%    

Public Transport Capacity 65,4% 16,8%   

POIs 16,2% 16,7% 22,7%  

Retail m2 5,6% 8,0%  13,9% 

Retail m2 (2x if further than 5 min walking access 
to rail-based public transport) 

  31,8%  

Inhabitants  13,5% 12,5% 60,1% 

Early Adopters  7,3% 16,3% 20,5% 

Shared Mobility Rentals  18,1% 8,4%  

Registered cars (2x within priced parking zone)  19,7 % 8,3% 5,4% 

Total: 100% 100% 100% 100% 

Consistency Ratio CR: 7,4% 7,0% 7,5% 5,8% 

 

 

Step 3.5 Calculate MCDA score 

 

Using the standardized indicator values per cell and the MCDA weights from Table 6, the MCDA score 

for each hub type is calculated per cell. The MCDA score for each hub type is illustrated in Figure 38 - 

Figure 41. 

 

The city-scale MCDA maps are only shown to illustrate a sub step of the methodology and have 

limitations in their interpretability for the human eye due to the very high resolution. Two things can 

be observed anyway: First, the maps show the maximum area to be covered for each hub type by 

clearly isolating areas with an MCDA value of 0. Second, the hotspots of the MCDA values can be 

identified. However, due to the resolution and the often very low values per cell, it is difficult to 

understand the distribution of the low to medium values. Especially in the outskirts very small MCDA 

values might seem negligible at first. However, since the following network analysis aggregates all 

values within a certain walking time, even the comparatively small values of the outskirts become very 

relevant for location optimization algorithm. 

 

Subsequently, the MCDA score was transferred from the grid cells to a point data format, using the 

feature to point tool in ArcGIS. Thereby, each cell is then represented by a point in its centroid. This 

change of data format is necessary for the use of the MCDA score as a demand variable in the following 

location allocation.  
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Figure 38: Case Study Munich - MCDA Score for Hub Type A 

 
Figure 39: Case Study Munich - MCDA Score for Hub Type B 
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Figure 40: Case Study Munich - MCDA Score for Hub Type C 

 
Figure 41: Case Study Munich - MCDA Score for Hub Type D 
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Step 4 Build network analysis layer 

 

The network analysis layer is built in the ArcGIS network analysis extension. The street network for 

Munich is exported from OSM data. Only streets which are accessible for pedestrians are selected, as 

the network analysis will model waking time of pedestrians. After planarizing all network elements, 

the length of each network element is calculated in meter. Walking time per network element is 

calculated in minutes with an assumed walking speed of 80 meter per minute. The resulting network 

has 238.043 elements with a total length of 8644km. The network is constructed as network dataset 

in the Network Analysist Extension of ArcGis. 

 

Step 5 Define scenarios for different placement strategies 

 

There was high uncertainty about the total number of hubs required, which is an important input of 

the model by the decision-makers. Therefore, a first simplified pre-analysis was performed using 

only one variable and only one location allocation step. 

 

 
Figure 42: Case Study Munich - Pre-Analysis of Inhabitants covered within 5 min walking distance 

 

The pre-analysis only optimized for the coverage of the inhabitant’s criterion of the overall analysis. 

The analysis included all 26.488 street intersection with car and pedestrian access as candidate 

locations. Using the ArcGIS Location Allocation tool, the Maximize Coverage function optimized the 5 

min walking coverage only of the 78.703 demand points with registered inhabitants. Other areas of 

the city have no or very less inhabitants but will require coverage by mobility stations due to other 

criteria. Therefore, Figure 42 can only serve as a rough pre-orientation of the total number of hubs 

required for the main analysis. As the main analysis includes the demand areas of all relevant criteria 

and introduces more restriction for the candidate locations, the number of required hub locations is 

expected to be higher. On the other hand, the intended walking time cut offs for the hub type A (7min), 

B (6min) and C (5min) average higher than the 5 min cut off in the pre-analysis. Taking these influences 

in account, a starting scenario with around 600 stations is suggested for the first main analysis. 
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Step 6.1 Perform sequential location allocation 

 

In the case of Munich, location optimization needs to consider different objectives for each hub type. 

By using different candidate sets, demand weight variable, and cutoff values, the different 

requirements for each hub type can be represented in the model. As the location allocation tool in 

ArcGIS can only process one candidate set, demand weight variable and cutoff value, this is 

implemented using a sequential approach as described in detail before in the workflow of the 

improved method. 

 

Scenario 1: 

 

For the first sequential location allocation run in Munich, the A hubs were placed based on the A 

Candidate set, the A MCDA score and a Maximize Coverage cut off at 7 walking minutes. An iteration 

approach was used to determine the correct number of A, B, and C hubs. This was a time intensive 

approach, as each sequential location allocation run would take up to one hour (Computer: Intel(R) 

Core(TM) i7-6500U CPU @ 2.50GHz; 8 GB RAM; Intel(R) HD Graphics 520). During various location 

allocation runs for type A hubs, it could be observed that from a certain number of hubs, the algorithm 

does distribute hubs throughout the whole city. This means that the very high-demand areas in the 

city centers are covered and the algorithm focuses on covering the high-demand areas in the suburbs. 

If the number of hubs is set too high, the algorithm has to choose not ideal locations from the very 

limited A candidate set, resulting in high cannibalization between hub placed too close to each other. 

This problem is mainly encountered in hub types with very restricted candidate sets as for A and B 

hubs, but less severe with extensive candidate sets as for C hubs. Based on the observations in the 

iteration runs, the number of A hubs was set to 30. 

 

The same iteration procedure was repeated for the second sequential location allocation run for hub 

type B. The B hubs were placed based on the B Candidate set, the B MCDA score and a Maximize 

Coverage cut off at 6 walking minutes. To enable a sequential location allocation, all demands points 

covered by the 30 already chosen A hubs were removed in the location allocation of the B hubs. Based 

on the observations in the iteration runs, the number of B hubs was set to 150. 

 

In the third sequential location allocation run, the C hubs were placed based on the C Candidate set, 

the C MCDA score and a Maximize Coverage cut off at 5 walking minutes. To enable a sequential 

location allocation, all demands points covered by the 180 already chosen A and B hubs were removed 

in the location allocation of the C hubs. It was initially aimed for a total number of 600 hubs, as 

determined in the pre-analysis. From there, different iterations were calculated in steps of 100 hubs. 

For each of the iterations in the number of C hubs, service area statistics were computed to compare 

the iterations based on coverage KPIs. 

 

Scenario 2: 

 

Based on the experiences of the implementations of Scenario 1, the city planners of Munich decided 

to change certain restrictions. Hubs of type A are chosen manually due to the lack of data on passenger 

transfers per public transport station, resulting in 19 locations. The maximum walking time for the 
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service areas of hubs type A, B and C was aligned to 5 minutes. And an additional Type D hub was 

introduced: Basic reserved parking for shared transportation should be used to re-densify the hub 

network to provide improved accessibility to any of the four hub types A, B, C, and D within 3-minutes 

walking. As the hub types A, B and C have the same 5 min cut off for the Maximize Coverage tool, it 

was possible to simplify the sequential location allocation. Already chosen hubs were included in the 

next sequential location allocation run as so-called required candidates. This option is only possible, if 

the walking time cut off is equal for the different hub types. The same procedure could be applied to 

the location allocation run for D hubs. Because every demand point should be able to reach a A, B, C 

or D hub within 3 minutes cut off, the walking time cut off was equal for all hub types again. 

 

Step 6.2 Perform service area analysis 

 

Whilst the sequential location allocation is able to optimize the locations of various hub types with 

different candidate sets, demand weight variables and walking time cut offs, it does not allocate each 

demand point to the closest hub location. The output of the sequential location allocation, the 

optimized locations of all hub types, are used in the service area analysis tool in ArcGIS to calculate 

the catchment area of each hub according to the walking time cut off per hub type.  

 

 
Figure 43: Case Study Munich - Service Area Analysis 

This step has proven to be very error-prone in ArcGIS, as it requires detailed analysis of small walking 

times for thousands of nodes in the street network. The most accurate and robust method of 

representing coverage areas per hub is the covered streets assigned to the hub by the shortest walking 

distance, as shown in Figure 43. To calculate KPIs and illustrate the service areas per hub, displaying 
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service areas as polygons, representing coverage, is the most suitable option. The polygon generation 

functionalities in the ArcGIS Network Analysis Toolbox turned out to be very error-prone, leading to 

missing or falsely generated polygons. For this study, the large number of service area polygons were 

generated in a separate procedure from the service area lines. Therefore, a combination of the Buffer 

Line tool and the Remove Overlap tool in ArcGIS, as well as the Delete Holes tool in Q-GIS was applied. 

This was a work and time intensive workaround. It seems that a dense street network combined with 

short distances and overlapping service areas leads to errors during polygon generation in ArcGIS.  

 

 
Figure 44: Case Study Munich - MCDA score details 

With the service area polygons available, the spatial coverage of different variables can be calculated 

per service area using the spatial join tool in ArcGIS. For example, as shown in Figure 44, the covered 

standardized MCDA score can be summed per service area, allowing prioritization of locations for each 

hub type. 

 

Step 6.3   Calculate Scenario KPIs 

 

As a final step, overall scenario KPIs can be calculated by taking into account the total coverage of 

indicators of all service areas together. Relating this coverage of a certain variable, e.g. covered 

inhabitants, to the total number of inhabitants allows for a calculation of a coverage ratio in percent. 

These KPIs are very useful for decision-makers to understand the effect of different placement 

strategies. 
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6.4. Case Study Results 

 

Scenario 1 

 

Table 7 presents an overview of all iterations of Scenario 1 and their respective KPI coverage. The 

overall KPI coverage uses service areas for different cut off walking times per hub type (A=7min, 

B=6min, C=5min). The KPI coverage within 3 minutes always uses service areas with 3 minute cut off 

walking.  

 
Table 7: Case Study Munich - Overview Scenario 1 

 Scenario 1.0 Scenario 1.1 Scenario 1.2 Scenario 1.3 

Characteristics     

A Hubs (7 min) 30 30 30 30 

B Hubs (6 min) 150 150 150 150 

C Hubs (5 min) 220 320 420 520 

Total Hubs 400 500 600 700 

Overall KPI Coverage 
(A=7min, B=6min, C=5min) 

    

Inhabitants 1377375 
(85,2%) 

1480797 
(91,6%) 

1530318 
(94,7%) 

1558153 
(96,4%) 

Early Adopters 365236 
(86,5%) 

389836 
(92,4%) 

401763 
(95,2%) 

408343 
(96,7) 

Retail m2 1613007 
(89,8%) 

1684718 
(93,8%) 

1717494 
(95,6%) 

1743345 
(97,0%) 

Shared Mobility Rentals 1095771 
(93,5%) 

1113854 
(95,0%) 

1126011 
(96,0%) 

1138849 
(97,2%) 

Private Cars 450808 
(79,6%) 

497617 
(87,9%) 

518857 
(91,6%) 

531876 
(94,0%) 

KPI Coverage within 3 min 
(A,B,C=3min) 

    

Inhabitants 756570 
(46,8%) 

980054 
(60,7%) 

1058501 
(65,5%) 

1159532 
(71,7%) 

Early Adopters 201969 
(47,8%) 

259799 
(61,5%) 

279444 
(66,2%) 

305503 
(72,4%) 

Retail m2 1043008 
(58,0%) 

1191815 
(66,3%) 

1243135 
(69,2%) 

1270295 
(70,7%) 

Shared Mobility Rentals 669291 
(57,1%) 

782373 
(66,7%) 

814537 
(69,5%) 

877430 
(74,9%) 

Private Cars 241864 
(42,7%) 

325426 
(57,5%) 

355711 
(62,8%) 

392622 
(69,3%) 

 

Figure 45 and Figure 46 illustrate the increase in KPI coverage per iteration of Scenario 1 using a 

comparable scale. With these graphical representations, decision-makers are able to make data-based 

decisions for a target scenario, improving the understanding of a planned policy or infrastructure. 

Policy makers are supposed to make a decision for one of the four scenarios, or like in the case of 

Munich, adapt their strategy with the calculation of a new scenario. In this case, certain restrictions 

were changed and calculations were repeated to create Scenario 2. 
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Figure 45: Case Study Munich - Overall KPI coverage of Scenario 1 

 
Figure 46: Case Study Munich - KPI coverage within 3 min of Scenario 1 

0 10 20 30 40 50 60 70 80 90 100

Inhabitants

Early Adopters

Retail m2

Shared Mobility Rentals

Private Cars

Scenario 1: Overall KPI Coverage
(A=7min, B=6min, C=5min)

Scenario 1.0 Scenario 1.1 Scenario 1.2 Scenario 1.3

0 10 20 30 40 50 60 70 80 90 100

Inhabitants

Early Adopters

Retail m2

Shared Mobility Rentals

Private Cars

Scenario 1: KPI Coverage within 3 min
(A,B,C=3min)

Scenario 1.0 Scenario 1.1 Scenario 1.2 Scenario 1.3



75 

 
Figure 47: Case Study Munich - Locations and service areas for Scenario 1.0 

 
Figure 48: Case Study Munich - Locations and service areas for Scenario 1.1 
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Figure 49: Case Study Munich - Locations and service areas for Scenario 1.2 

 
Figure 50: Case Study Munich - Locations and service areas for Scenario 1.3 
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Figure 47 - Figure 50 show the locations and service areas for each iteration of Scenario 1. When policy 

makers have decided for one scenario, these maps enable hub planners to assess with a single glance 

how many hubs are needed in a particular area. Furthermore, they can greatly speed up planning 

processes by focusing the planning resources on the suggested 700 rough locations, rather than 

considering every street in the city. 

 

Figure 51 illustrates the coverage of the MCDA score by all service areas. The MCDA score for hub type 

C is chosen for the illustration, as for Scenario 1 the last sequential location allocation run with most 

hubs is based on this score. Overlaying the service areas with any other spatial variable will allow for 

a quick assessment if additional hubs are required to ensure coverage of the variable. 

 

 

 
Figure 51: Case Study Munich - Coverage of MCDA Score for Hub Type C for Scenario 1.3 

  



78 

Scenario 2 

 

In Scenario 2, hubs of type A are chosen manually due to the lack of data on passenger transfers per 

public transport station, resulting in 19 locations. The maximum walking time for the service areas of 

hubs type A, B and C was aligned to 5 minutes. And an additional Type D hub was introduced: Basic 

reserved parking for shared transportation is used to re-densify the hub network to provide improved 

accessibility to any of the four hub types A, B, C, and D within 3-minutes walking. Table 8 presents an 

overview of all iterations of Scenario 2 and their respective KPI coverage. The overall KPI coverage 

uses service areas for different cut off walking times per hub type (A,B,C=5min and D=3min). The KPI 

coverage within 3 minutes always uses service areas with 3 minutes cut off. 

 
Table 8: Case Study Munich - Overview Scenario 2 

 Scenario 2.0 Scenario 2.1 

Characteristics   

A Hubs (5 min) 19 19 

B Hubs (5 min) 221 221 

C Hubs (5 min) 360 360 

D Hubs (3min) 0 1000 

Total locations 600 1600 

Overall KPI Coverage 
(A,B,C=5min; D=3min) 

  

Inhabitants 1438458 
(89,0%) 

1546657 
(95,7%) 

Early Adopters 377702 
(89,5%) 

402857 
(95,5%) 

Retail m2 1615666 
(89,9%) 

1638455 
(91,1%) 

Shared Mobility Rentals 1171629 
(94,7%) 

1189993 
(96,2%) 

Private Cars 484311 
(85,5%) 

530616 
(93,7%) 

KPI Coverage within 3 min 
(A,B,C,D=3min) 

  

Inhabitants 1127418 
(69,8%) 

1543394 
(95,5%) 

Early Adopters 301422 
(71,4%) 

402239 
(95,3%) 

Retail m2 1353667 
(75,3%) 

1593280 
(88,7%) 

Shared Mobility Rentals 996734 
(80,6%) 

1166533 
(94,3%) 

Private Cars 370094 
(65,3%) 

529611 
(93,5%) 

 

Figure 52 and Figure 53 illustrate the increase in KPI coverage per iteration of Scenario 2 using a 

comparable scale. 
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Figure 52: Case Study Munich - Overall KPI coverage of Scenario 2 

 
Figure 53: Case Study Munich - KPI coverage within 3 min of Scenario 1  
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Figure 54: Case Study Munich - Locations and service areas for Scenario 2.0 

 
Figure 55: Case Study Munich - Locations and service areas for Scenario 2.1 



81 

Figure 54 and Figure 55 show the locations and service areas for each iteration of Scenario 2. 

 

Figure 56 illustrates the coverage of the MCDA score by all service areas. The MCDA score for hub type 

D is chosen for the illustration, as in Scenario 2 the last sequential location allocation run with the 

largest number of hubs is based on this score.  

 

 

 
Figure 56: Case Study Munich - Coverage of MCDA Score for Hub Type D for Scenario 2.1 

 

 

The final output of the method are individual service area statistics for each suggested hub location 

as shown in Table 9. Any variable can be queried in the table and compared on maps, for example, the 

number of retail m2 per service area shown in Figure 57. This enables fast and data-driven 

microplanning for each individual hub, including decisions on the size of each hub, the modes offered 

and the prioritization in the deployment of the hubs. 

 

Detailed maps of areas where the author of the study has local knowledge, such as Figure 57, were 

also used to test the accuracy of the results. The results for Munich appeared consistent and logical. 

Undesired patterns, such as the occasionally very close proximity of stations, can be attributed to the 

highly restricted candidate sets for some hub types and the high concentration of demand in certain 

areas. 
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Table 9: Case Study Munich - Summed indicators per service area for the Trudering neighborhood 

 
 

 

 

 
Figure 57: Case Study Munich - Map based on statistics per service area for the Trudering neighborhood 

 

… 

…
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6.5. Case Study Validation 

 

 

The results of the improved method were compared with manual hub planning. The mobility 

department of Munich has started to locate hubs based on manual analysis. In some areas, such as 

the city centre, hub planning is already under discussion with the local councils or even under 

implementation. The intermediary results of the manual planning are compared with the results of 

the location optimization method presented in this research. The proposed locations are shown as 

large circles to illustrate that they should be considered as rough indications of the hub location and 

that a manual micro planning is required to determine the exact hub location. 

 

Figure 58 shows the city centre of Munich with a comparison of hubs located through manual analysis 

and hubs located through Scenario 2.0 of the improved method. The manually planned hubs are 

arranged in close proximity to each other around the city centre and its pedestrian zone. It is 

remarkable that the manually planned hubs are sometimes only in 200 m distance from each other. 

Perhaps the city planners were already aiming for a 3-minute walkability in the city centre during 

manual placement, which would explain why so many of the manually placed hubs are located so 

closely to each other. In the improved method, A hubs were manually selected by the city and were 

thus predefined. For B hubs, all public transport stations with rail-based public transport were 

considered as candidates and the selected hub locations form a ring around the city centre. For C hubs, 

all intersections with high human activity and car access were considered as candidates, which in the 

city centre includes the vast majority of intersections outside the pedestrian zone (see Figure 25). The 

selected C hubs locations supplement the ring around the city centre and also complete coverage 

within the ring. If targeting for a 5-minute walking accessibility, the 10 hub locations suggested by the 

improved method seem logical. The 13 manual placed locations do follow a similar pattern, but are 

positioned closer to each other. It can be concluded that the improved method is able to optimise the 

locations of the hubs with the aim of maximising coverage within 5 minutes walking time with as less 

hubs as possible. At the same time, it can be assumed that in the manual placement justified factors 

lead to several hubs being close to each other and that these factors are not sufficiently taken into 

account in the automatic method. 

 

Figure 59 shows the city centre of Munich with a comparison of hubs located through manual analysis 

and hubs located through Scenario 2.1 of the improved method. A, B and C hubs are placed identically 

as in Scenario 2.0. The algorithm has placed around seven D hubs in the city centre to achieve a 3-

minute walking accessibility. The distribution of manually placed hubs and automatically placed hubs 

is much more similar in Scenario 2.1, some D hubs are suggested precisely on the manually placed 

locations. This can be seen as a positive sign for the quality of site planning through the improved 

methodology. 

 

For the example of the city centre, the improved method seems to optimise the hub locations in a 

satisfactory way according to the given restrictions. Finally, it must be emphasised that a newly 

proposed method such as this needs additional sensitivity analysis as well as further and more rigorous 

validation to assess reliability for future applications. 
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Figure 58: Case Study Munich - Scenario 2.0 - Comparison with manual hub planning 

 
Figure 59: Case Study Munich - Scenario 2.1 - Comparison with manual hub planning 
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7. Discussion of the improved method 
 

7.1. Characteristics of the improved method 

 

An improved location planning method for shared mobility hubs was presented in Chapter 5. A 

combination MCDA and Network Analysis is used to represent complex location planning problems. 

Different prioritizations at the decision-maker level can be translated into placement strategies 

through MCDA and, if necessary, multiple stakeholders can be involved through a MAMCA analysis. 

The resulting MCDA score for each spatial unit converts a multivariate into a single variable location 

optimization problem. In this way, single variable location optimization tools, such as ArcGIS location 

allocation, can compute specific location suggestions and their respective catchment areas. This also 

allows a comparison of different placement strategies based on city-wide KPIs. 

 

Using exclusion criteria, which limit the set of location candidates, hubs can be placed very targeted, 

for example at public transport stations or places with a high level of human activity. This can be 

important to achieve a good integration of shared mobility hubs with public transport stations or 

increase visibility and safety of hubs by placing them at high activity locations.  

 

The selection criteria relevant for choosing the locations are compiled into a MCDA score per grid cell. 

Various criteria area weighted in their importance using AHP, allowing a selection of the locations 

based on a single variable.  

 

Since there are several hub types with different objectives, location optimization needs to be done 

according to the priorities and restrictions of each hub type. This might require different candidate 

locations and candidate selection strategies such as Maximize Coverage, Maximize Attendance or 

Maximize Impedance with different cut off values per hub type. This exceeded the standard 

functionality of e.g. the ArcGIS location allocation tool. Therefore, a sequential allocation approach 

was applied, where hub types with strong restrictions of the candidate set are placed first. These are 

usually also the most influential hub types, as the first hub types are expected to be strongly tied to 

existing transportation infrastructure, e.g. train station. In several steps, all other hub types follow 

according to their restrictions in candidate locations. 

 

Different placement strategies can be compared through KPIs of the computed location suggestions. 

This promotes the refinement of the placement strategy and can thus improve the overall quality of 

the infrastructure rollout. 

 

Once a satisfactory target scenario is created for the city to implement, all location suggestions and 

their individual catchment areas can be exported. By statistics on the catchment area of each 

individual hub location, the micro-planning of the hubs is strongly assisted and accelerated by data-

driven processes. This allows to plan the size of the hub, the modes offered and also the prioritization 

in the implementation on the basis of data insights. 

The improved method maximizes the city-wide coverage for given constraints and considers the 

competition of stations located close to each other. If initial constraints are changed, e.g. the number 

of hubs or already existing hubs, certain stations will change their location due to different 
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competition effects. Alternatively, one could repeatedly ask "Where should I place the next 100 

hubs?" alongside the expansion, but a better optimization of locations is possible if an overall target 

scenario is calculated initially. In this way, the algorithm can place the stations with less restrictions 

and more efficiently. The overall target scenario not only accelerates location planning, but also 

supports the long-term strategic and financial planning of the expansion. In conclusion, the planning 

tool developed in this master thesis focuses on the calculation of the overall target scenario for a city-

wide network of shared mobility hubs. This should enable decision-makers to steer the expansion of 

this new infrastructure according to their related objectives whilst decreasing the cost and duration 

of planning. 

 

 

7.2. Case study application of the improved method 

 

Even if only the city administration is involved, the location planning for shared mobility hubs is 

interwoven with various other infrastructures and comes with diverse, sometimes even conflicting, 

objectives. In principle, all variables are in competition with each other for the location planning, since 

the spatial distribution of most variables differs greatly. Location planning is further challenged by the 

contradicting objectives that the hubs should be strategically located near multi-modal travelers but 

also near car-centric travelers. The same applies to public transport, on the one hand the hubs should 

be closely integrated with existing public transport stations, on the other hand areas without public 

transport stations should be prioritized as well. These examples from Munich show that the location 

planning of shared mobility hubs is a complex, multi-variable dilemma. 

 

In the case study of this research, the city of Munich is financing and implementing the shared mobility 

hubs. They aim to take a leading role in shaping and regulating the shared mobility ecosystem of the 

city, in line with their role as the responsible authority aiming for a more sustainable and efficient 

transportation system for the city. They have executed various pilots for shared mobility hubs in 

cooperation with many stakeholders and published an extensive shared mobility strategy. Therefore, 

this research assumes that city administrations which decide for a large-scale roll out of shared 

mobility hubs already went through extensive discussions with overall society, shared mobility 

operators and shared mobility users. When it comes to the actual location planning of shared mobility 

hubs, the departments of the city were then able to take into account the different perspectives in 

their decision making. This means, that government bodies are expected to consider the perspectives 

of different stakeholders in their decisions. This research therefore does not apply a MAMCA, but a 

MCDA with only the perspective of the mobility department of the city. This is also due to a limited 

time scope of this research and its focus on the extension of current approaches with network analysis 

methods. For future research, the benefits of a more extensive MAMCA could be explored. 

 

For Munich, the hub types used in the policy documents were not clearly transferable into 

quantitatively exclusive definitions of hub types. Therefore, the typology had to be further refined in 

close exchange with city planners, which led to a classification of the hub types according to their 

respective aims. 

 

In the Munich case study, this sequential location allocation approach for the location planning shared 

of mobility hubs started with a first placement of A and B nodes only along the main public transport 
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lines. Then, areas not covered within 5 minutes were served by additional C hubs placed only at 

candidates defined as centres of human activity. Finally, the algorithm optimized the 3-minute 

accessibility with D hubs with a barely limited candidate set including locations in any street accessible 

by car. 

 

The calculation of several scenarios leads to a better understanding of different placement strategies 

for the location planning for shared mobility hubs. Evaluating Scenario 1 based on city-wide KPIs led 

to an improved understanding of restrictions such as different cut-off values per hub, the general 

functionality of the method and the impact of local circumstances in Munich on the model. This 

resulted in an improved placement strategy for Scenario 2 by taking into account the lack of public 

transport passenger data through manual placement of A hubs and by aligning the walking time cut 

off for A, B and C hubs. Additionally, hub type D with a lower walking time cut off was included to 

increase the overall accessibility. 

 

As a final output, the method provides a target scenario with rough location suggestions. These 

location suggestions are usually located at intersections and serve as a starting point for manual micro-

planning. This means that a detailed micro-planning by a site planner is still required, including manual 

consideration of local circumstances and a more precise location selection in the area surrounding the 

rough location suggestions. For example, a good visibility of the location, sufficient car parking spots 

for a conversion and other potential factors are assessed manually via google street view and through 

site visits by the planner. The planner does not have to consider all the streets in a neighbourhood, 

but can concentrate on the suggested locations and the surrounding street space within a 100 m 

radius. This greatly reduces the location options and therefore manual analysis workload. In addition, 

the results of the service area analysis of each hub can be used in micro-planning to quickly estimate 

the prioritisation, offered modes and size of each hub. 

 

Estimating the number of required hubs to achieve an accessibility within a certain walking distance 

seems to be a big challenge without such a methodology. In Munich, previous policy papers estimated 

the need of 1300 locations for a demand coverage within 5 minutes. With Scenario 2.0, around 90 % 

of demand can already be covered with 600 suggested locations. Such a drastic reduction in the 

number of required locations to achieve the goal of a policy has a strong impact on the budget and 

time planning for the rollout of this new infrastructure type. 

 

Since the construction of such an infrastructure will take years in the best case and decades in the 

worst case, prioritisation of hubs within the infrastructure rollout is very important. The improved 

method enables demand-based prioritisation, for example when sites with a particularly high 

coverage of early adopters are implemented first. However, it is also possible to prioritise according 

to equity aspects: In scenario 2.1, if all 600 A, B and C hubs are implemented in a first construction 

phase, the vast majority of citizens, businesses, etc. are evenly supplied with a shared mobility hub 

within 5 minutes. In this way, an equity focused, city-wide system could be established within a few 

years and coverage could be ensured even in peripheral locations. Only in a second construction phase 

the 1000 D locations would be realised and the city-wide accessibility would be reduced to 3 minutes. 

 

In principle, the creation of a long-term target scenario allows planners more freedom in prioritisation 

during the actual implementation. While all information for a data-based prioritisation is provided, 
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the target scenario allows fast adaptions of the hub prioritisation due to political or other 

circumstances: Location suggestions and statistics of their service area coverage are already available 

for every area of the city. Data-based prioritisation is therefore always possible, but can be used in a 

flexible way by the implementing organisation. This flexibility in prioritisation was very relevant to the 

case study of Munich, as the mobility department has the general mandate from the city council to 

create a city-wide network of shared mobility hubs, but must coordinate the actual implementation 

with 25 local councils. Therefore, practical or political circumstances can easily lead to local delays and 

a static, city-wide implementation order calculated on the basis of data analysis is not realistic. 

 

7.3. Benefits of the improved method 

 

The improved method is able to extend the data-driven macro-level across most required steps for 

location planning of shared mobility hubs. As shown in Figure 60, only some steps are left for the 

manual micro-level, where the manual approach is beneficial to consider local circumstances and to 

enable the participation of local politicians and residents. As an automated location optimization is 

always based on simplifications of reality, the manual micro-level is also important for reviewing and 

adjusting the hub locations calculated in the automated macro-level. 

 

Figure 60: Comparison of data-driven macro-level of current methods and the improved method 

 

The improved method minimizes the workload of the manual micro level enormously. This is achieved 

by four important benefits of the improved method: 

 

High spatial resolution of the analysis: a 50m grid replaces the spatial analysis level of neighborhoods, 

traffic zones or low-resolution grids, to represent walking distances in single digit range accurately. 
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Network analysis: Catchment areas are represented by walking distances in the street network 

instead of Euclidean distance, since walking distances in real urban settings are strongly influenced by 

obstacles and street constellations. 

 

Automated location optimization: The method calculates the optimal locations of a network of 

mobility stations instead of just showing the "suitability per area" in a heat map. The optimized 

location determination can consider different objectives, candidates and walking distances for each 

hub type. In addition, it can aim for maximized accessibility, so the hub should not only be accessible 

within a fixed maximum value (e.g. 5 min), but the algorithm places the hub as close as possible to the 

demand points with particularly high weight. This automated location optimization can reduce the 

required time and cost for location planning of shared mobility hubs immensely, by eliminating many 

and simplifying the remaining steps of the manual micro analysis. By focusing on the rough locations 

identified by the optimization algorithm, the workload of remaining manual steps can be reduced. 

 

Statistical results: The concrete location of the hubs enables the calculation of further beneficial 

figures. A clear target vision with scenario KPIs (e.g. Scenario A results in city-wide hub accessibility 

within 3 minutes walking time for 63% of residents, 55% of retail m2, ...), thereby factualizing political 

and site-specific discussions. Statistics per hub catchment area (Hub 418 serves within 5 minutes 806 

early adopters, 383 private cars, 430 individual households, 303 households with children, ...), thereby 

reducing the workload for the remaining steps of the manual microanalysis. 

 

 

7.4. Limitations of the improved method 

 

The method has very high requirements for data availability and data processing. Cities might not have 

access to criteria datasets at the required spatial resolution or lack experience in processing high-

resolution spatial data. A very high spatial resolution of the input datasets to calculate the MCDA score 

per grid cell is a precondition for the integration of the network analysis, as it later serves as demand 

points for location optimization with the ArcGIS location allocation tool. This method is only useful if 

the spatial MCDA score is available with a very high spatial resolution, because the location planning 

of shared mobility hubs requires an optimization of catchment areas of very short walking distances. 

If the spatial MCDA score is not available in high spatial resolution, a network analysis based on the 

street network is not meaningful due to an error-prone assignment of the grid cell centroids within 

the road network.  

 

In a city-wide location allocation, there is always a direct competition between the city centre and the 

outskirts for locations. An algorithm optimising for demand coverage will always first place hubs in 

high demand areas, and thus in the city centre. Only when these high demand areas are saturated the 

medium to low demand areas in peripheral areas are covered. This means that in a location 

optimization for a small number of hub locations (e.g. 100), most of the locations will be placed in the 

city centre. This is correct in the sense of the optimization algorithm, but does not correspond to the 

city's placement strategy. The city is rather aiming for an even distribution of hubs across the city area, 

also in the sense of equity aspects in infrastructure development. This challenge was addressed by 

using the methodology solely to calculate the target scenario. In this way, the algorithm can first place 

hubs in the city centre, before starting to cover medium to low demand areas in the peripheral areas. 
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For an infrastructure development of this size, such a long-term target scenario helps to have a clear 

vision during the implementation. The prioritisation of the hubs in the implementation can thus be 

answered in a data-driven way, for example the hubs with the largest number of early adopters in the 

catchment area, or can be adjusted to take into account local political circumstances. 

 

ArcGIS location allocation only allows optimization according to one objective - in this study maximize 

coverage was applied. With the help of targeted restrictions of the candidate set and the sequential 

location allocation approach, further aspects of the strategic location planning for shared mobility 

hubs could be implemented in the model. However, no further restrictions can be incorporated with 

this approach, for example a minimum distance of 5 stops in the public transport network between 

two A hubs, to avoid a concentration in the city centre. Using the ArcGIS location allocation tool, the 

method can only optimise according to the walking time in the street network and one problem type. 

Other mathematical models allow for a multi-faceted constraint definition for optimization and can 

be further explored to improve the functionalities of the method. 

 

Within this research, the Maximize Coverage problem type is applied for location optimization, which 

only allows for a linear distance decay function. For the case study in Munich, this choice was made 

due to the equity focused location planning objective to achieve a city-wide maximum walking time 

of 5 minutes to a hub. If the improved method is applied with different location planning objectives, 

for example from the perspective of profitability for an operator, the maximize attendance problem 

with an adapted distance decay function can be a powerful tool to place hubs e.g. in the hotspots of 

early adopters. 

 

Since it can be assumed that changes will occur continuously in the course of the detailed planning 

and implementation of the shared mobility hubs over the years or even decades, it would be 

advantageous to provide the target scenario in an interactive software. For example, a simplified 

WebGIS application that displays the optimized location suggestions as a baseline scenario. Over the 

course of manual microplanning, hub locations are moved by a few intersections and it would be very 

beneficial to use a software solution that constantly adjusts the changing catchment areas and effects 

on the overall KPIs. In this way, the impact of manual changes and possibly the placement of additional 

nodes on coverage can be evaluated in a data-driven manner. This would enable data-driven decision-

making of the location planners throughout the actual implementation period. 

 

For this research, the processing of spatial data, especially with the integration of network analysis, is 

complex and difficult to automate as a whole. Furthermore, the model implementation will differ from 

city to city, as each city has individual circumstances, data availability and objectives for such an 

analysis. It can be assumed that such detailed and in-depth analyses will not be available as an 

automated software solution, but for larger cities rather an individual multi-month consultancy service 

is required. Alternatively, it might be possible to accept certain compromises for accuracy and quality 

of the method to achieve a simplified and generalizable method. 

 

Data-driven location optimization techniques need to be well-explained, well-structured and 

transparent to be acceptable to decision-makers and the public. This condition is challenging because 

processing high-resolution spatial data in a method that integrates MCDA and network analysis is 

difficult to communicate to the general public. According to Malczewski & Ogryczak (1995), this 
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requires the researcher to strongly communicate while working with decision-makers and various 

stakeholders, as this is the only way to convince them of the credibility and usefulness of the results 

of the analysis. Only then, the results produced by a data-driven location optimization technique may 

be accepted for implementation.  

 

Malczewski & Ogryczak (1995) concluded at the time that many public sector location planning 

decisions are ill structured because of diverse or even conflicting stakeholder perspectives and 

difficulties in measuring and evaluating the impacts associated with alternative location decisions. 

While there have been major advances in digitalization and data-based decision-making methods in 

the past decades, also in today’s public sector the execution of location planning decisions can still be 

untransparent, solely based on the personal judgment of planners and political agendas. This lack of 

consideration of transparent and data-driven methods in planning practice can be seen as a major 

challenge for the implementation of location planning tools, not only for Shared Mobility Hubs. 
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8. Conclusion 

 

To tackle challenges such as climate change, air pollution, traffic accidents and lack of space in cities, 

our urban transportation system must become sustainable, emission-free, safer and more efficient. 

The introduction of shared mobility is seen as an important ingredient to facilitate a mobility transition 

in large cities. With the introduction of Mobility-as-a-Service (MaaS) and a strong integration with 

existing public transport, shared mobility can promote multimodal travel behavior, leading to a 

reduced ownership and usage of the private car. This can contribute to less greenhouse gas emissions, 

less air pollution and less pressure on the traffic system as well as public spaces (ITF, 2017, 2021a, 

2021b).  

 

Shared mobility itself requires charging solutions, parking space in the existing urban fabric as well as 

digital and physical integration into existing transportation systems. These requirements should be 

jointly addressed within the concept of shared mobility hubs. Shared mobility hubs have been a 

concept explored in various pilots around the world. Recently, cities have moved from testing 

standalone shared mobility hubs to the scaling of these hubs to city-wide networks. Within Germany, 

multiple cities are planning to build hundreds of shared mobility hubs over the next few years and are 

challenged with the required location planning. 

 

8.1. Main findings of research questions 

 

To investigate the main research question “How can network analysis methods improve location 

planning of shared mobility hubs?”, more detailed research questions (RQ 1-4) are introduced. 

 

For RQ 1 “What methods are currently applied for location planning of shared mobility hubs?”, a 

literature review is conducted. This has shown, that the existing literature on location finding of shared 

mobility hubs provides different typologies for shared mobility hubs, frameworks to categorize a large 

number of indicators as well as methods to weight indicators according to (multiple) stakeholders 

using AHP and MCDA. Most sources perform spatial analysis based on different datasets aggregated 

in polygons (raster cells or administrative areas) and Euclidean distance, leading to a shared mobility 

station suitability per area. Spatial analysis using network theories is less common and allows for the 

calculation of specific location suggestions for shared mobility hubs. Some studies calculate multiple 

placement strategies. Only studies that use a network analysis to calculate the catchment area can 

provide specific location proposals. This enables a comparison of different scenarios with performance 

metrics on the catchment area coverage. From the research on RQ 1, it can be concluded that many 

of the reviewed studies on location planning for shared mobility hubs have used spatial MCDA to 

account for the complexity of the location planning problem, but none of the reviewed studies that 

used network analysis techniques employed a prior MCDA. Spatial MCDA based on a high-resolution 

grid cell has a great potential to translate the location planning objectives for shared mobility hubs 

into quantitative input for network analysis. Network analysis allows for a suggestion of specific 

locations and a comparison of different scenarios based on performance metrics. 

 

To answer RQ 2 “What network analysis techniques could be applied for location planning of shared 

mobility hubs?” another literature review is provided. The hub location problem (HLP) can be 
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described as a new extension of classical facility location analysis. In general, facility location problems 

aim to determine the position of a set of facilities in a given location space, for example a network, to 

provide a service to actors within the location space. Integrating MCDA and network analysis for 

location planning by converting multiple criteria problems into single criterion problems is very 

beneficial, as many network analysis methods for facility location analysis accept only one demand 

criterion. Using this approach, the multi-criteria decision problems can be solved using single-criteria 

optimization techniques. This means that the wide range of algorithms, software, and experience that 

currently exist for single-criteria optimization can be directly applied to solving multi-criteria facility 

location problems. For this study, the ArcGIS location allocation solver is seen as the most suitable 

tool to perform a location optimization for shared mobility hubs based on network analysis. As the 

location allocation solver only optimizes according to one criterion, the possibility to apply a prior 

spatial MCDA to convert the multiple-criteria optimization problem into a single-criterion optimization 

problem is highly relevant to the suggested method. 

 

For RQ 3 “How can network analysis techniques be integrated into an improved location planning 

method for shared mobility hubs?”, the previous findings of RQ 1 and RQ 2 were synthesized to design 

an improved location planning method. As a result, a combination MCDA and Network Analysis is 

used to represent complex location planning problems for shared mobility hubs. Different 

prioritizations at the decision-maker level can be translated into placement strategies through MCDA 

and, if necessary, multiple stakeholders can be involved through a MAMCA analysis. The resulting 

MCDA score for each spatial unit converts a multivariate into a single variable location optimization 

problem. In this way, single variable location optimization tools, such as ArcGIS location allocation, 

can compute specific location suggestions and their respective catchment areas. This also allows a 

comparison of different placement strategies based on city-wide KPIs. This enables decision-makers 

to compare different placement strategies in terms of potential impacts on their objectives and to 

accelerate micro-planning processes through a defined target scenario and data-based insights per 

hub location. 

 

To answer RQ 4 “What are the results and learnings from applying the improved method to the 

Munich case study?” the improved method is implemented with the Mobility Department of Munich. 

It became clear, that even if only the city administration is involved, the location planning for shared 

mobility hubs is interwoven with various other infrastructures and comes with diverse, sometimes 

even conflicting, objectives. These examples from Munich show that the location planning of shared 

mobility hubs is a complex and multi-variable dilemma. For the case study, the mobility department 

was expected to consider the perspectives of different stakeholders of mobility hubs in their decisions. 

This research therefore did not apply a MAMCA, but a MCDA with only the perspective of the mobility 

department of the city. Within the method application, the calculation of several scenarios leads to a 

better understanding of different placement strategies for the location planning for shared mobility 

hubs. Evaluating Scenario 1 based on city-wide KPIs led to an improved understanding of restrictions 

such as different cut-off values per hub, the general functionality of the method and the impact of 

local circumstances in Munich on the model. This resulted in an improved placement strategy for 

Scenario 2. With Scenario 2.0, around 90 % of demand can already be covered with 600 suggested 

locations. In Munich, previous policy papers estimated the need of 1300 locations for a demand 

coverage within 5 minutes. Such a drastic reduction in the number of required locations to achieve 

the goal of a policy has a strong impact on the budget and time planning for the rollout of this new 
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infrastructure type. The improved method was able to extend the data-driven macro-level across most 

required steps for location planning of shared mobility hubs in Munich. Only some steps are left for 

the manual micro-level, where the manual approach is beneficial to consider local circumstances and 

to enable the participation of local politicians and residents.  

 

The main research question “How can network analysis methods improve location planning of shared 

mobility hubs?”, was answered through the RQ 1-4, leading to the design and testing of an improved 

method using network analysis methods. By conducting the research along the Munich case study, 

the method has also proven its practical applicability. 

 

 

8.2. Scientific and societal relevance 

 

Research on the placement of shared mobility hubs often applies MCDA and results in heat maps that 

show the location suitability per area. The scientific relevance of this research lies in the extension of 

existing MCDA approaches with location optimization using network analysis and high-resolution 

spatial data. This leads to a better understanding of different placement strategies in location planning 

and of shared mobility hubs in general. 

 

A major transformation of the transport system is one of the greatest metropolitan challenges of our 

time. Improved methods for locating large networks of mobility hubs are of high societal relevance as 

they could enhance the quality and speed of implementation of this new infrastructure type, whilst 

reducing planning cost. This could support cities in achieving their policy goals for shared mobility and 

mobility hubs, which have very high societal relevance: Improving public space, achieving a sustainable 

and liveable environment, reducing the usage and ownership of cars, as well as improving accessibility 

in cities.  

 

8.3. Recommendations for future research 

 

Existing research did not yet agree on a definition and typology of shared mobility hubs. This can be 

seen as a prerequisite for the development of generalizable tools for the location planning of a new 

infrastructure. Therefore, further research is required to better understand the different perspectives 

on shared mobility hubs and harmonize the definitions and typologies. 

Within the case study, the spatial MCDA was only based on the input of one stakeholder, the city of 

Munich. As various stakeholders can be considered when planning locations of shared mobility hubs, 

a spatial MAMCA could translate different prioritizations into agreements on potential placement 

strategies and scenarios. Research of a more advanced or multi-actor analysis within the MCDA 

component of the improved method can increase the method's ability to mediate conflicting 

perspectives on this new infrastructure prior to its implementation. 

Within the case study, the Maximize Coverage problem type of the ArcGIS location allocation tool was 

applied, which only allowed for a linear distance decay function. For the case study in Munich, this 

choice was made due to the equity focused location planning objective to achieve a city-wide 

maximum walking time of 5 minutes to a hub. If the improved method is applied with different location 

planning objectives, for example from the perspective of profitability for an operator, the maximize 
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attendance problem with an adapted distance decay function can be a powerful tool to place hubs 

e.g. in the hotspots of early adopters. Research on the effect of the combination of a spatial MCDA 

with different network analysis approaches can lead to a refinement of the method to represent other 

placement objectives. 

 

Whilst distance decay functions are well-researched for established facility types, e.g. public transport 

stations, there is no available research on distance decay functions for shared mobility hubs.  In 

transportation planning, it is generally assumed that people are willing to walk longer to public 

transport stations for longer average trip distances, for example 400 m for bus stops and 800 m for 

subway stations. In the case of bike-sharing, the average trip distance is rather short and the maximum 

walking distance for access to bike-sharing stations should be lower than that for public transport 

stations. For shared modes with longer average trip distances, e.g. car-sharing, the maximum walking 

distance is expected to be higher. Following this reasoning, it can be assumed that the distance decay 

functions for shared mobility hubs will differ from the modes offered at the hub. If further research 

results in a better understanding of distance decay functions for different shared mobility modes and 

therefore shared mobility hubs, these insights can be used to improve location allocation models by 

using adapted distance decay functions. 

 

8.4. Recommendations for policy makers 

 

Larger transport projects require evaluation methods and science has already provided many different 

types of evaluation methods for this purpose. Therefore, it is recommended to perform location 

planning decisions for shared mobility hubs by using data-based decision-making methods which are 

transparent and consider the interests of all stakeholders.  

 

The recommendation to use data-based decision-making methods is to be understood not only as a 

recommendation for the planning of shared mobility hubs, but for all important location planning 

decisions in the public sector. Consequently, numerous data-based decision-making methods in the 

public sector will face similar challenges as this research, namely obtaining high-resolution spatial data 

for e.g., a city. Improving the general accessibility of high-resolution spatial data can therefore have a 

positive impact on various location planning decisions in a city. This can be achieved through the 

creation or the further expansion of internal data sharing platforms or, in the best case, public open 

data platforms. 

 

When choosing a data-based decision-making method for the location planning of shared mobility 

hubs, the short-time investment into an in-depth analysis such as automated location optimization 

methods using network analysis techniques could bring enormous long-term benefits. The 

implementation speed, cost efficiency and location quality for networks of shared mobility hubs are 

assumed to be substantially improved in comparison to current methods without location 

optimization. 
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Appendix 

 

 

Appendix A: Detailed review of network analysis tools 

 
 

Space Syntax 

 

Space syntax is a theory and method for analyzing spatial relationships, especially for measuring 

configurational spatial relationships in the built environment. It can be described as a mathematical 

street network model for calculating topological spatial relationships. Space syntax was developed in 

the 1970s by Bill Hillier and colleagues at the Bartlett, University College London. The initial 

calculations were done by hand, and only later automated computations could extend the analysis to 

the street networks of entire cities (van Nes & Yamu, 2021). In general, space syntax aims to measure 

the build environment by the spaces or connection between objects rather than their physical shape.  

On one hand, spatial syntax measures the "to-movement potential" or the closeness of each street 

segment to all others. On the other hand, spatial syntax measures the "through-movement potential" 

or the betweenness of each street segment relative to all others. In this way, space syntax provides a 

set of tools to quantify connectivity, accessibility, walkability or socioeconomic activities in an urban 

area (van Nes & Yamu, 2021). According to scholars such as Jane Jacobs (Jacobs, 1961), these 

measurements are crucial indicators for creating vital and lively neighborhoods. Many space syntax 

measures can be calculated using the depthmapX software, which is also available via a QGIS plug-in 

(UCL, 2022). In the following, selected space syntax measurements are presented according to van 

Nes & Yamu (2021): 

 

Global Integration Analysis: When performing such analysis, the selected radius is set to the total 

extent of the research area. The more integrated a street in a Global Integration Analysis is, the shorter 

is its topological distance to all other streets in the urban system. This analysis type normally indicates 

car-based distances and accessibility on a city-wide scale. Illustration (a) on the next page shows a 

global integration analysis of Oslo, indicating the inner and outer ring roads (van Nes & Yamu, 2021). 

 

Local integration analysis: When performing such analysis, the selected radius is smaller than the 

global extent. A Local Integration Analysis calculates the average mean depth value of all streets within 

a certain syntactic radius, for example, a radius of three topological steps or a metric distance of 500m. 

This analysis type normally indicates walking distances and accessibility on the local scale. Illustration 

(b) on the next page shows a local integration analysis of Oslo, indicating the local centers of Oslo with 

pedestrian friendly and vital shopping streets (van Nes & Yamu, 2021). 
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Figure 61: Appendix A - Global (a) and local (b) integration analyses of Oslo (van Nes & Yamu, 2021) 
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Angular Segment Analysis incorporates the assumption that human routing decisions aim to maintain 

both linearity in direction and minimum angles for turns. This way, the angular segment analysis 

computes the number of trips passing each street segment, considering all possible combinations of 

origin and destinations within a certain radius. For Angular Segment Analysis, the radius can be defined 

in a  topological, geometric, and metric way (van Nes & Yamu, 2021). 

 

 
Figure 62: Appendix A - Various local measurements of Amsterdam, with the location of the oldest center of Amsterdam 

around the old Berlage stock exchange indicated in the black circle (van Nes & Yamu, 2021) 

 

Above, an Angular Segment Analysis with the old Amsterdam city center (dotted circle) is shown. 

Image (c) displays the results of an angular integration analysis with a metric radius of 400 m. Image 

(d) displays the results of an angular choice analysis with a metric radius of 400 m. This shows that the 

pedestrian-friendly city center of Amsterdam was categorized accordingly using the angular segment 

analysis with metric radius. A metric distance of 400-800 m applies for pedestrian accessibility, while 

a distance of 5000-8000 m is suitable for centers for car accessibility (van Nes & Yamu, 2021, p. 64). 

 

UNA Toolbox 

 

The Urban Network Analysis (UNA) toolbox provides methods to describe the spatial patterns of cities 

using mathematical network analysis methods. The UNA toolbox computes graph analysis measures 

for spatial networks and extends existing network analysis methods to address a number of 

shortcomings, e.g. the use of only nodes and edges as network elements, as well as the importance of 

buildings to the understanding of the interaction of streets. It was released by the City Form Research 
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Group at MIT in 2011 and is aimed at researchers and practitioners concerned with the spatial 

configuration of cities (Sevtsuk & Mekonnen, 2012). 

 

To better represent the built environment within a network, the UNA toolbox introduces 1) buildings 

as a new network element besides nodes and edges, 2) weighted representation of the network 

elements. This expands the possibilities of network analysis in urban areas, as the analysis can now 

be performed at the building level, which are interacting with each other via a street network. The 

analysis can include various characteristics of the urban space through the attributes of the 

individual buildings, which allow for weighting. If the focus is on the network itself, the tool can also, 

instead of buildings, use nodes in the road network as input. The UNA Toolbox is implemented as a 

freely available add-on to the ArcGIS software, requiring a license for the network analyst extension 

of ArcGIS (Sevtsuk & Mekonnen, 2012). 

 

The UNA toolbox allows for the computation of the following relevant centrality metrics, which are 

defined based on Sevtsuk & Mekonnen (2012): Reach, Gravity Index, Betweenness and Closeness. 
 

 
Figure 63: Appendix A - Reach to build volume within a 600-meter network radius from each building in Cambridge & 

Somerville, MA (Sevtsuk & Mekonnen, 2012) 

The Reach measure (Sevtsuk, 2010) counts the number of buildings each building can reach within a 

certain search radius on the street network. The reach measure can also explore the access to any 

other destination type or include weights per building attribute. 
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Figure 64: Appendix A - Gravity Index measured to build volume within a 600-meter network radius from each building to 
every other building in Cambridge & Somerville, MA (Sevtsuk & Mekonnen, 2012) 

 

The Gravity measure (Hansen, 1959) also counts the number of buildings each building can reach 

within a certain search radius on the street network, but additionally considers the spatial 

impedance between the building and each destination.  

 

 
Figure 65: Appendix A - Betweenness centrality in a 600-meter network radius, weighted by building volume in Cambridge & 

Somerville, MA (Sevtsuk & Mekonnen, 2012). 

The Betweenness measure (Freeman, 1977) describes the portion of the shortest paths between 

pairs of other buildings that pass by the particular building. It estimates the amount of passersby 
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traffic for each building and the passerby traffic can also be weighted with e.g. demographic 

attributes. 

 

 

Figure 66: Appendix A - Closeness centrality to surrounding buildings with no limiting radius and no weights in Cambridge & 
Somerville, MA (Sevtsuk & Mekonnen, 2012) 

 

The Closeness measure (Sabidussi, 1966) indicates how close a building is to all other surrounding 

buildings within a given distance threshold. It is defined as the inverse of cumulative distance 

required to reach from that building to all other buildings with the shortest paths within the Search 

Radius. 

QGIS Network Analysis 

 

QGIS is a free and open source GIS software, which is developed by a volunteer community. In the 

processing menu of QGIS, two network analysis algorithms are offered: The Service Area algorithm 

returns only the part of a network which can be reached within a set cost, e.g. time or distance, from 

a starting point. The Shortest Path algorithm computes the shortest or fastest route from one or 

multiple start locations to another end location (QGIS, 2022). There are Plug-ins, which allow 

computation of further measures, e.g. an Origin-Destination-Matrix (Raffler, 2018). Currently, there is 

no algorithm available in QGIS to optimize facility locations in a network based on weighted demand 

points, travel time or competition effects  (Open Door Logistics, 2019). 

 

ArcGIS Network Analyst 

 

ArcGIS Pro is a GIS software, which requires licensing from esri (esri, 2022b). It offers a network 

analysis extension. The network analysis extension allows importing network datasets, transforming 

them into an ArcGIS network analysis layer, which is the basis to run different solvers. The network 

analysis extension has multiple functionalities relevant to this research: 
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Figure 67: Appendix A - Closest Facility Solver (esri, 2022b) 

 

The closest facility solver calculates the travel costs between a set of incidents and facilities. A 

threshold defines the maximum travel cost in time or distance. The results include the best route from 

a facility to an incident and the associated travel costs (esri, 2022b). 

 

 
Figure 68: Appendix A - Service Area Solver (esri, 2022b) 

The service area solver computes the area which can be reached from a set of facilities via a street 

network within a certain impedance value. Impedance is defined as time or distance and can be 

adapted for each facility individually. The tool allows calculations of overlapping or non-overlapping 

service areas of competing facilities. The results include the individual service area for each facility 

(esri, 2022b). 
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Figure 69: Appendix A - Location Allocation Solver (esri, 2022b) 

 

The location allocation solver chooses locations from a set of location candidates based on the 

potential interactions of each location with demand points. The location allocation problem is a 

combinatorial optimization problem, which means that the number of possible solutions increases 

rapidly with the number of candidate and demand points, leading to very high computational effort. 

To reduce the computational effort and achieve reasonable search times, the network assignment 

tool applies heuristics (esri, 2022a)..  

 

The location allocation solver can select locations with different objectives to solve different types of 

problems. The following problem types could be relevant for this research: 

 

 
Figure 70: Appendix A - Minimize Impedance chooses facilities such that the sum of weighted impedances (demand 

allocated to a facility multiplied by the impedance to the facility) is minimized (esri, 2022a). 

Minimize Impedance problem type - Facilities are located such that the sum of all weighted costs 

between demand points and solution facilities is minimized. The allocation is based on distance among 

all demand points for a facility (esri, 2022a). 
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Figure 71: Appendix A - Maximize Coverage chooses facilities such that as much demand as possible is covered by the 

impedance cutoff of facilities. In this graphic, the solver was directed to choose three facilities (esri, 2022a) 

Maximize Coverage problem type - Facilities are located such that as many demand points as possible 

are allocated to solution facilities within the impedance cutoff (esri, 2022a). 

 

 
Figure 72: Appendix A - Maximize Capacitated Coverage chooses facilities such that all or the greatest amount of demand 

can be served without exceeding the capacity of any facility (esri, 2022a) 

 

Maximize Capacitated Coverage problem type - Facilities are located such that as many demand points 

as possible are allocated to solution facilities within the impedance cutoff; additionally, the weighted 

demand allocated to a facility can't exceed the facility's capacity (esri, 2022a). 

 

 

 
Figure 73: Appendix A - Maximize Coverage and Minimize Facilities problem type chooses facilities such that as many 

demand points as possible are within the impedance cutoff of facilities. Additionally, the number of facilities required to 
cover all demand points is minimized. In this graphic, the solver was able to cover all demand points with only two facilities. 

(esri, 2022a). 

Maximize Coverage and Minimize Facilities problem type problem type - Facilities are located such 

that as many demand points as possible are allocated to solution facilities within the impedance 

cutoff; additionally, the number of facilities required to cover demand points is minimized (esri, 

2022a).  
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Figure 74: Appendix A - Maximize Attendance chooses facilities such that as much demand weight as possible is allocated to 
facilities while assuming the demand weight decreases with distance. The demand points, represented by pie charts in this 

graphic, show how much of their total demand is captured by the facility (esri, 2022a). 

Maximize Attendance problem type - Facilities are chosen such that as much demand weight as 

possible is allocated to facilities while assuming the demand weight decreases in relation to the 

distance between the facility and the demand point. Therefore, the tool provides an impedance 

transformation, which allows manipulating the effect of the distance between the facility and the 

demand point on the respective demand point weight allocation. The impedance transformation 

determines the equation for transforming the network cost between facilities and demand points, 

thereby calibrating how severely the network impedance between facilities and demand points 

influences the solver's choice of facilities (esri, 2022a). 

 

The approach of the "Maximize Attendance" problem type in ArcGIS is described in theory as a 

distance decay function. As demand for services declines with distance, which means that locating 

facilities as close as possible to potential demand is an important consideration to maximize the served 

demand (Farhan & Murray, 2006). Within ArcGIS, the distance decay function can be included as 

linear, power or exponential function. If a five-minute impedance cutoff and a linear impedance 

transformation is selected, the probability of visiting a store decays at 20 percent per minute. 

Therefore, a store within 1 minute walking distance of a demand point has an 80 percent visit 

probability and a store four minutes away only has a 20 percent visit probability (esri, 2019). Using 

power or exponential functions, the decay function can be adapted to existing knowledge of user 

travel behavior of the investigated facility type. The graph below is an example from the RATP, the 

public transport operator of Paris, for the use of distance decay functions for location planning of 

public transport stations (Manout et al., 2018). 
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Figure 75: Appendix A - Distance decay functions by transit mode from RATP data (Manout et al., 2018) 

Whilst this knowledge on distance decay exists for established facility types, e.g. public transport 

stations, there is no available research on distance decay functions of for shared mobility hubs. For 

shared mobility hubs, distance decay functions can currently only be roughly estimated and in the 

longer term the modelling of accessibility can be improved by distance decay research based on usage 

data of shared mobility hubs. 

Murray et al. (2019) evaluates, besides other software solutions, the general performance of the 

location allocation solver of ArcGIS. Specifically, the solution performance and quality of the use of 

heuristic techniques to solve location coverage problems are analyzed. Therefore, three case studies 

with more than 1000 planning problem instances were solved in different commercial software and 

the results are compared. The results for the GIS software are described as encouraging and of high 

quality, whereas their heuristically computed solutions never varied more than 7% from the optimum 

in the problem instances. Therefore, the research underlines the fact that heuristics can find optimal 

results in certain cases, but it cannot be guaranteed that the heuristics solver always achieves the 

exact optimal result. It is important to be aware of this limitation of heuristic approaches to location 

allocation and communicate them clearly when presenting the results. 


