
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Developing a CUDA solver for large
sparse matrices for MARIN

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

MARTIJN DE JONG

Delft, the Netherlands
February 2012

Copyright c© 2012 by Martijn de Jong. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Developing a CUDA solver for large
sparse matrices for MARIN”

MARTIJN DE JONG

Delft University of Technology

Daily supervisor Responsible professor

Prof. dr. ir. C. Vuik Prof. dr. ir. C. Vuik

Other thesis committee members

Dr. ir. A. Ditzel

Dr. ir. A. van der Ploeg

Dr. ir. H.X. Lin

March 12, 2012 Delft, the Netherlands

Preface

This masters thesis has been written for the degree of Master of Science in Applied Mathe-
matics at the faculty of Electrical Engineering, Mathematics and Computer Sciences of Delft
University of Technology. The report ends a nine month internship carried out at Maritime
Research Institute Netherlands (MARIN).

MARIN supplies innovative products for the offshore industry and shipping companies.
One of their products is a full-scale bridge simulator which can be used to train captains,
steersmen and other ship workers, but also for research and consultancy purposes. Also much
smaller real-time simulators are available in the form of software that can be installed and
run on a single or multiple desktop PCs.

To bring the simulator to a next level a new wave model is under development. The
project that deals with this new wave model is called the “Interactive Waves” project. As
the name explains, the project focusses on developing a simulator in which ships and waves
interact. The new wave model is the Variational Boussinesq model (VBM) as suggested by
Gert Klopman. However, this new realistic model brings much more computation effort with
it. The VBM namely requires a solver that solves each frame (20 fps) a system Sψ = b.

Using VBM most of the computational time is absorbed by the solver, which makes it
impossible to simulate domains larger than 200 × 400 nodes in real-time. The focus of the
Master’s project was thus on developing a fast CUDA solver that would deliver a really good
speed-up, so that the solving the system Sψ = b is no longer the time bottleneck in the
simulator.

Outline

The layout of the report as follows. The report consists of six parts (I, II, III, IV, V and VI),
each consisting of multiple chapters.

Part I provides background information and explains our problem in detail. Also, the
Variational Boussinesq model (VBM), test problems and test equipment are discussed. Part I
ends with a plan of approach.

Part II is on linear solvers. After some preliminaries, mostly linear algebra results, we
discuss consecutively direct methods, basic iterative methods (BIMs), the Conjugate Gradient
(CG) algorithm, preconditioners, deflation, and Multigrid (MG).

In Part III we discuss the architecture of a GPU and strategies for fast CUDA software.
Also notions on performance, timing and speed-up are discussed. At the end of Part II we
find two CUDA applications which illustrate nicely the most important concepts in designing
fast CUDA code.

In Part IV the new CUDA solvers are discussed in great detail. The discussion on the
RRB-solver may serve as a manual. The part contains all the source code of the kernels for

v

vi

our two new CUDA solvers: the RRB-solver and IPDIAG-solver. The full source code can be
obtained via MARIN.

Part V deals with the experiments and corresponding results. First our testing strategy is
explained so that there can be no confusion on how we have timed the code and how speed-up
factors are computed.

Finally, in Part VI we find conclusions and recommendations for future research.

Reading advice

Not all chapters and sections are equally important. As the report is quite thick, we recom-
mend reading at least the chapters and sections listed in the table below completely if one
has little time; the rest of the report can be “scan read”.

Part: Chapter Sections to read:

I 1-3 all
5 all

II 7 7.1, 7.2
10 10.1.1, 10.2.2, 10.2.3

III 13-15 all
16 16.1, 16.3, 16.4
17 all

IV 18 18.1
19 19.1, 19.2, 19.5
20 20.1

V 21-23, 25 all

VI 26, 27 all

Acknowledgements

I would like to thank MARIN and in particular Auke Ditzel for giving me the opportunity to
do research at MARIN on this challenging project, Prof. Vuik for providing me feedback on
my work and support, and Anneke Sicherer-Roetman and John Jaspersen for their help and
company. Also, I would like to thank Elwin van ’t Wout, his work helped me alot.

Martijn de Jong,

Delft, February 2012.

Contents

I PROBLEM FORMULATION AND DESIGN PLAN 1

1 Backgrounds: the Interactive Waves project 3

1.1 Backgrounds and history . 3

1.2 Earlier work . 4

1.2.1 Gert Klopman: model maker . 4

1.2.2 Elwin van ’t Wout: faster solvers and model explanation 4

1.2.3 Anneke Sicherer-Roetman: code optimization 5

1.3 What we are going to do . 6

2 The model 7

2.1 The Variational Boussinesq model (VBM) . 7

2.2 The computational domain . 9

2.3 Discretization of the VBM equations . 9

2.4 The system . 10

2.5 Properties of the matrix S . 11

2.6 Problem size and the real-time issue . 11

3 Test problems 13

3.1 Mathematical problem: Poisson’s equation . 13

3.2 Small harbour . 15

3.3 Realistic problems: IJssel, Plymouth, Port Presto 15

3.3.1 The Gelderse IJssel . 15

3.3.2 Plymouth Sound . 15

3.3.3 Port Presto . 17

4 Test systems 19

4.1 System I: GTX 285 . 19

4.2 System II: GTX 580 . 20

5 Design plan 21

5.1 CUDA rather than OpenCL . 21

5.2 Our choice: PCG with the RRB-method, shortly: the RRB-solver 21

5.3 A second CUDA solver: the IPDIAG-solver . 22

5.4 Get CUDA and OpenMP to work simultaneously 23

vii

viii CONTENTS

II THEORY: LINEAR SOLVERS 25

6 Preliminaries and notation 27

6.1 Linear algebra . 27

7 Solvers for Ax = b : a brief overview 29

7.1 The system . 29

7.2 An overview . 29

7.3 Direct methods . 30

7.3.1 Introduction . 30

7.3.2 Occurence of fill-in and reordering . 30

7.3.3 Cholesky factorization algorithm . 32

7.4 Iterative methods . 33

8 Basic Iterative Methods 35

8.1 Introduction . 35

8.2 Some popular methods . 36

8.2.1 Jacobi . 36

8.2.2 Gauss-Seidel (GS) . 37

8.2.3 SOR . 37

8.3 Some basic results . 38

8.4 Convergence results of BIMs . 38

9 The Conjugate Gradient (CG) method 41

9.1 Derivation of the CG method . 41

9.1.1 Quadratic form . 41

9.1.2 The method of Steepest Descent . 42

9.1.3 The method of Conjugate Directions 44

9.1.4 Gram-Schmidt Conjugation method 46

9.1.5 Conjugate directions that lead to CG 46

9.1.6 The CG algorithm . 47

9.2 Storage and computational requirements for CG 48

9.2.1 Memory . 48

9.2.2 Flop count . 48

9.3 Convergence analysis of CG . 50

9.3.1 CG and the Krylov space . 50

9.3.2 CG and optimal polynomials . 50

9.3.3 Chebyshev polynomials . 52

9.3.4 A perfect polynomial . 53

9.3.5 The upper bound for the error . 54

9.4 Preconditioned Conjugate Gradient (PCG) method 55

10 Preconditioners 59

10.1 Classical preconditioners . 59

10.1.1 Diagonal scaling . 59

10.1.2 SSOR . 60

10.2 Preconditioners based on leaving out fill-in . 61

CONTENTS ix

10.2.1 Incomplete Cholesky (IC) . 61
10.2.2 Repeated Red-Black (RRB) . 62
10.2.3 Incomplete Poisson (IP) . 65

11 Deflation 67
11.1 Introduction . 67
11.2 The deflation matrix . 68
11.3 Deflated Preconditioned Conjugate Gradients (DPCG) 68
11.4 Choice of the deflation vectors . 69

12 The Multigrid (MG) method 71
12.1 Concepts of MG . 71

12.1.1 The smoothing property . 71
12.1.2 Exploiting coarse grids . 76

12.2 Two-grid (TG) method . 79
12.2.1 Restriction and prolongation . 79
12.2.2 Pre- and post-smoothing . 82
12.2.3 The TG algorithm . 82

12.3 The MG algorithm . 83

III SCIENTIFIC COMPUTING WITH CUDA 87

13 GPU architecture 89
13.1 Architecture category . 89
13.2 How work is executed on the GPU . 89
13.3 Compute capability . 90
13.4 Physical processors . 91
13.5 Memory hierarchy . 92

14 CUDA C programming environment 93
14.1 Thread organization . 93

15 Strategies for a fast implementation 95
15.1 General strategies . 95

15.1.1 Library functions . 95
15.1.2 Optimal tiling . 95
15.1.3 Global memory and memory coalescing 96
15.1.4 Shared memory and bank conflicts . 96
15.1.5 Sum reduction . 96

15.2 Advanced strategies . 97
15.2.1 Pointers . 97
15.2.2 Page-locked memory . 97
15.2.3 Textures . 98
15.2.4 Loop unrolling . 98
15.2.5 Better performance at lower occupancy 99
15.2.6 Registers versus shared memory . 99
15.2.7 Overlapping communication and computation 99

x CONTENTS

15.2.8 Concurrent kernels . 100

16 Measuring and optimizing performance 101

16.1 Performance measures . 101

16.1.1 Floprate . 101

16.1.2 Throughput . 102

16.2 Timing of GPU tasks . 103

16.2.1 Wall-clock timing . 103

16.2.2 GPU events . 104

16.2.3 NVIDIA profiler . 104

16.3 Throughput and coalesced memory — two little studies 104

16.3.1 Copy with a stride . 105

16.3.2 Copy with a shift . 107

16.4 Measuring speed up and Amdahl’s law . 110

17 Two important basic CUDA kernels 111

17.1 Sparse Matrix-vector products (SpMVs) . 111

17.1.1 Introduction . 111

17.1.2 The DIA storage scheme . 111

17.1.3 Computation of an SpMV in case of a 5-point stencil 112

17.1.4 Hints for an optimal CUDA implementation 114

17.2 Work efficient parallel sum reduction . 119

17.2.1 Introduction . 119

17.2.2 Time and cost efficiency of the parallel sum reduction algorithm . . . 121

17.2.3 Hints for an optimal CUDA implementation 121

IV PCG SOLVERS 127

18 General comments that apply to all the PCG solvers in the lin wacu soft-
ware 129

18.1 Termination criterium . 129

19 The C++ and CUDA RRB-SOLVER 131

19.1 RRB-solver basic concepts . 131

19.1.1 Repeated Red-Black numbering . 131

19.1.2 Effect of the RRB-numbering on the sparsity pattern of matrix S . . . 133

19.1.3 Maximal number of levels . 136

19.1.4 The RRB-k method . 137

19.1.5 PCG for half of the nodes . 139

19.2 The ideas behind the CUDA RRB-solver . 140

19.2.1 Clever storage of the data: the r1/r2/b1/b2-storage format 140

19.2.2 Recursively applying the r1/r2/b1/b2-storage format 144

19.2.3 Thread organization . 147

19.3 General comments on implementation . 148

19.4 Determining the sizes of the levels . 149

19.4.1 Introduction . 149

CONTENTS xi

19.4.2 The embedding grid . 149
19.4.3 The r1/r2/b1/b2-grids . 149
19.4.4 An example . 150

19.5 Memory requirements . 151
19.5.1 A list of all data objects . 151
19.5.2 Extra memory requirements for the repeated r1/r2/b1/b2-storage for-

mat — an estimate . 152
19.5.3 Memory requirements for a 1.5M node test problem 152
19.5.4 An overview: memory versus problem size 155

19.6 Constructing the preconditioning matrix M 156
19.6.1 Algorithm . 156
19.6.2 Phase 2a: elimination of black nodes 158
19.6.3 Phase 2b: lumping . 160
19.6.4 Phase 2c: memory efficiency . 161
19.6.5 Phase 3: elimination of the red nodes which are not in the next level . 164
19.6.6 Phase 1: lumping . 168
19.6.7 Phase 4: dividing by main diagonal . 170
19.6.8 The final level . 171

19.7 Solving Mz = r . 174
19.7.1 Preliminary work . 174
19.7.2 Step 1: Solving Lx = r . 176
19.7.3 Step 2: Solving y = D−1x . 185
19.7.4 Step 3: Solving LT z = y . 186
19.7.5 The final level . 192

19.8 Computing q = S1p . 195
19.8.1 Step 1 in C++ . 195
19.8.2 Step 2 in C++ . 196
19.8.3 Towards an efficient CUDA implementation 198
19.8.4 Step 1 in CUDA . 199
19.8.5 Step 2 in CUDA . 201

19.9 Dot products . 203
19.9.1 A two-step approach . 204
19.9.2 Kahan summation . 204
19.9.3 Mass reduction phase on the GPU . 206

19.10AXPYs . 209

20 The CUDA IPDIAG-solver 211
20.1 Outline . 211

20.1.1 Input and output . 211
20.1.2 SpMVs: two flavours . 212
20.1.3 Termination criterium . 213

20.2 Implementation . 214
20.2.1 General comments . 214
20.2.2 Memory requirements . 214
20.2.3 Constructing the preconditioner(s) . 214
20.2.4 Updating the matrix S in case of diagonal scaling 217
20.2.5 The operations x = P Tx and x = P−Tx 218

xii CONTENTS

20.2.6 SpMVs: two flavours . 218

20.2.7 AXPYs and dot products . 220

20.2.8 Overlapping and concurrent kernels 221

V TESTS AND RESULTS 223

21 Testing method 225

21.1 Measures and terminology . 225

21.1.1 Frame time . 225

21.1.2 Total time . 225

21.1.3 Solver time . 226

21.1.4 Additional time . 226

21.1.5 Speed up . 226

21.1.6 Solver speed up . 226

21.1.7 Total speed up . 226

21.1.8 Useful throughput . 227

21.2 Performance/timing plan . 227

21.2.1 Special poisson testing environment 227

21.2.2 Plugging-in in the lin wacu software 229

21.3 Profiling of the CUDA solvers . 232

21.3.1 Built-in performance monitor . 232

21.3.2 NVIDIA profiler . 232

22 Results — 2D Poisson test problem 233

22.1 Specification of the problem . 233

22.2 Problem related results . 234

22.2.1 Number of CG-iterations . 234

22.2.2 Convergence behaviour of the RRB-solver 235

22.3 CUDA RRB-solver related results . 236

22.3.1 Solver speed up . 236

22.3.2 Useful throughput . 237

22.3.3 Solver profile . 239

22.3.4 Amount of overhead / idle threads . 241

23 Results — realistic test problems 243

23.1 Number of CG-iterations . 243

23.2 Timing . 244

23.2.1 Solver time . 244

23.2.2 Additional time . 245

23.2.3 Total time . 246

23.3 Speed up numbers . 247

24 Screenshots from a simulation 249

CONTENTS xiii

25 Further analysis and discussion 253
25.1 Parallel host code with OpenMP . 253
25.2 Profile of the lin wacu code . 255

25.2.1 Overview of computations . 255
25.2.2 Wall-clock timing results . 256
25.2.3 Time profile charts . 257

25.3 New bottlenecks in the code . 258

VI CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK
259

26 Conclusions 261

27 Recommendations and future research 265

A List of symbols 267

B List of abbreviations 269

C Raw data 271
C.1 Timing results System I: GTX 285 — all test problems 271
C.2 Timing results System II: GTX 580 — all test problems 272

xiv CONTENTS

Part I

PROBLEM FORMULATION AND
DESIGN PLAN

1

Chapter 1

Backgrounds: the Interactive
Waves project

The Interactive Waves (“Interactieve Golven”) project was initiated a few years ago to bring
MARIN’s real-time simulator, and in particular the real-time wave model, to a next level.

In the next sections we discuss the backgrounds of the Interactive Waves project and the
work that has been performed on this project so far. The information in these sections comes
for a good part from the presentation “Interactieve Golven: ups and downs” held by Anneke
Sicherer-Roetman on 16 februari 2010 at MARIN. Also several memos are used that were
sent regularly to all stakeholders with updates on the progress and latest developments in the
Interactive Waves project.

1.1 Backgrounds and history

In the current version of the Mermaid simulator the wave model is deterministic. The wave-
induced motions come from a deterministic force model in combination with a database that
links waves to ship movements. Because of deterministic waves the waves are not influenced
at all by ships, moles, breakwaters, piers, or any other arbitrary object.

However, the underlying model in Mermaid simulator is already much more realistic and
complete than the visualization models from the film industry (e.g. Waterworld, Titanic,
Perfect Storm). In contrast to these models in the Mermaid simulator the ship movements
are realistic.

A better model was suggested by Gert Klopman: the Variational Boussinesq model
(VBM). The model is discussed in Chapter 2. The big advantage of this Variational Boussi-
nesq model over the current deterministic model is its completeness: in the “Klopman model”
the waves and ships really interact, i.e., the movements of the ship are influenced by the waves
and the waves in their turn are influenced by the ship, hence the project name “Interactive
Waves”. Moreover, the model can deal with deep waters with varying depth, which is quite
unique. However, logically, one pays for this additional future: the model is much more
computation-intensive and therefore a really fast solver is needed.

Gert Klopman delivered in the 3th quarter of 2007 Fortran source code in which the
VBM was embedded: the lin wacu program. The underlying test problem in the software
was the so-called “Klopman’s harbour”, see Section 3.2, that includes a varying bathymetry.
The original program already had wave makers, comparable to the wave makers in the MARIN

3

4 CHAPTER 1. BACKGROUNDS: THE INTERACTIVE WAVES PROJECT

bassins, to generate all kinds of waves. In the program the ship was modelled by an ellip-
tical “pressure puls”, and the visualization is made with PGPLOT (“moving heat map”).
Experiments showed that the sequential solver in Klopman’s code took about 75% of the
computation time, which was way too much.

The next steps were to incorporate the VBM in the Mermaid simulator, which is written
in C++, and to design a faster parallel solver. Klopman’s code had to be translated into C++,
and simultaneously be restructered so that it became more modular. This work was carried
out by Anneke Sicherer-Roetman in the 4th quarter of 2007, and the first two quarters of
2008. Her efforts have resulted in highly efficient and transparant C++ code with a class
structure. For the visualization now use was made of OpenSceneGraph (OSG) instead of
PGPLOT, which allows the user to watch the simulations in 3D.

For designing a new fast parallel solver MARIN contacted the department of Numerical
Analysis from Delft University of Technology led by Prof. Kees Vuik. While MARIN was
waiting on a math student, Anneke worked during the 3th quarter of 2008 on parallelizing
the software, except from the solver part, further optimizing the code, and running more tests
with different pressure pulses (”bath-tub” shapes) and multiple pressure pulses (two ships).

In the 4th quarter of 2008, Elwin van ’t Wout from Delft Univiversity of Technology
arrived at MARIN to do research on a fast parallel solver for his Master’s project. His efforts
have resulted in a fast preconditioned Conjugate Gradient solver. The work of Elwin was
carried out under supervision of Prof. Vuik, Auke Ditzel and Auke van der Ploeg and it was
completed in August 2009. Because programming on the GPU is difficult and modern CPUs
contain more and more computing units, in first instance the focus was on a fast solver for the
CPU. The fastest solver turned out to be a CG solver preconditioned by the RRB-method,
or briefly “the RRB-solver” which has been used since then.

1.2 Earlier work

1.2.1 Gert Klopman: model maker

Dr.ir. Gert Klopman came up with the Variational Boussineq model (VBM) that is used
in the Interactive Waves software. Gert Klopman provided Fortran source code, called
“lin wacu” in which the VBM was embedded. Besides his contributions to MARIN’s In-
teractive Waves project, he has published many papers on the Variational Boussinesq model,
modelling of linear water waves, waves in varying bathymetries, etc.

1.2.2 Elwin van ’t Wout: faster solvers and model explanation

For his Master’s project Ir. Elwin van ’t Wout has written an excellent thesis [28]. The project
was carried out upon instructions from MARIN. The project was about improving the linear
solver that is used in a real-time ship simulator. The underlying wave model is the variational
Boussinesq model as suggested by Gert Klopman. In the thesis we find a very(!) complete
and accurate description of the model, and lots of details on its discretization. Below follows
a brief summary of his work.

Elwin starts with the derivation of the Variational Boussinesq model (VBM). The cor-
responding sections are based on several papers by Gert and some emails and conversations
with Gert. We read that essential in the VBM is the use of so-called vertical shape functions

1.2. EARLIER WORK 5

to reduce the 3D model to a 2D model. Moreover, the resulting model is linearized to reduce
the computational effort even further.

After deriving the VBM the model is discretized. For time discretization the Leapfrog
method is used, and for spatial discretization the finite volume method is used to discretize
the equations, yielding a linear system Sψ = b, with S a large SPD matrix, resulting from a
5-point stencil. This system must be solved in real-time (frame rate: 20 fps → frame time
= 0.05 s).

Elwin points out that at this moment typical problems that can be solved real-time involve
a matrix S of size 20000× 20000 (resulting from a 5m× 5m mesh, and 200 grid points in the
x-direction and 100 grid points in the y-direction). Much bigger problems cannot be solved
real-time, and this is the main problem: as captains can see miles away, for the simulator
to become realistic it is necessary that the waves can be computed for much larger domains.
Therefore, the solver used in the Interactive Waves model is reviewed.

The solver that was used was the RRB-solver, with as many levels as the problem allows,
implemented in Fortran by Auke van der Ploeg [19]. This solver was slightly modified such
that the number of grid levels was no longer fixed. The modified version is called the RRB-k
method (k is the number of grid levels). Besides this solver Elwin investigated several other
solvers all based on CG, but with different preconditioners (diagonal scaling, RIC), and with
or without deflation. Therefore, at first the properties of the matrix and its spectrum are
analyzed in order to gain insight into topics as convergence and condition number. Next, we
find a good discussion on Krylov subspace methods, CG, preconditioners, and deflation. The
most important results for MARIN are accompanied with mathematical reasonings, formulas
and proofs.

Elwin also gives some suggestions on how to implement the methods efficiently (Eisenstat’s
implementation, termination criterium, using LAPACK routines, etc.). The solvers have been
tested with a set of test problems: (i) open sea, (ii) Klopman’s harbour, (iii) IJssel. Lots of
settings have been investigated, e.g., for RRB-k the number of levels is varied, and for RICCG
with deflation (RICDEF) the amount of deflation vectors is varied. After lots of experiments
the RRB-k method and the RICDEF method turn out to be the most promising methods.
Elwin succeeded to reduce the computation time by 25% by optimally choosing the number
of levels in RRB-k. Furthermore, we find some first attempts for a parallel implementation
and some hints, e.g., as incomplete Cholesky is inherently sequential, a block-version of the
algorithm is proposed. Besides finding out to what extent the methods can be parallelized
on multi-CPU or GPU-machines, investigating the Multigrid method is suggested as future
research by Elwin.

1.2.3 Anneke Sicherer-Roetman: code optimization

Dr. Anneke Sicherer-Roetman is the main programmer of the Interactive Waves project. In
first instance Anneke ported the Fortran code by Gert Klopman to C++ code with a very
transparent class structure. Moreover, the code was restructured so that hardcoded parts of
the code that should have been external inputs from the beginning, e.g., the shape of the
pressure puls, now can be freely chosen by the user.

Also, Anneke has improved, optimized and parallelized parts of the code. For example,
the amount of 2D-arrays that have the size of the system matrix has been strongly reduced,
so that less memory is required; also, depending on the situation the user can now choose to
use either floats or doubles. Furthermore, where possible, except from the solvers, the code

6 CHAPTER 1. BACKGROUNDS: THE INTERACTIVE WAVES PROJECT

has been parallelized with OpenMP yielding a nice speed up of about 1.3-1.8× on a quad-core
system.

Anneke also investigated to what extent the RRB-solver could be parallelized; unfortu-
nately, however, it turned out to be very difficult to parallelize the RRB-solver with OpenMP.
At the time, Anneke had to conclude that parallelizing this part of the code was not viable.

In the beginning of 2010 Anneke investigated if ready CUDA solvers could be used for the
MARIN problem. Five CUDA solvers were found: Multigrid with CUDA by Chris Bunch,
OpenCurrent 1.0.0 by Jonathan Cohen, Iterative CUDA by Andreas Klöckner, and
OpenNL 3.0.2. Gert Klopman suggested ParaSails (which uses MPI not CUDA). Three
out of five (the last three) turned out to be good candidates and could readily be applied
without too many difficulties or modifications to the code.

The results were not very promising: for Klopman’s harbour the CUDA solvers were much
slower than the C++ RRB-solver. However, for larger problems, such as the open sea,
Iterative CUDA did show a significant speed up. One reason for the disappointing results
is the fact that the ready CUDA solvers do not exploit the structure of our problem, e.g., the
fact that the matrix is a pentadiagonal matrix is not exploited, moreover, the Iterative
CUDA solver, which is a CG-type solver, uses each time a zero initial guess in the CG algorithm,
while the solution from the previous time step would be a much better initial guess.

1.3 What we are going to do

Our main target is to design and implement fast CUDA solvers. The solvers should be able
to solve a set of test problems accurately and fast enough for real-time simulators. Also, the
solvers should come well documented, so that in the future other programmers can work with,
understand and hopefully even modify the CUDA solvers, so that they can be kept up-to-date.

Chapter 2

The model

The model that is used in the Interactive Waves software is the Variational Boussinesq model
(VBM) as proposed by Gert Klopman. In contrast to the standard Boussinesq model (1871),
the VBM can be used to model water waves in deep water with varying current and depth.

The VBM and related topics can be found in Gert Klopman’s PhD thesis [13]. However,
a first and very complete and detailed description of the model is given in the MSc thesis of
Elwin van ’t Wout [28]. For this reason, we shall only give a global description about the
model without deriving it or going into details; full details can be found in [13, 28] and the
references therein.

2.1 The Variational Boussinesq model (VBM)

We jump in at the point where things get interesting for us: the point where the VBM
equations have been linearized for the sake of simplicity and reduction of the required com-
putational effort. The governing linearized VBM equations are given by (cf. [28]; Chapter 5):

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (2.1.1a)

∂ϕ

∂t
+ U · ∇ϕ+ gζ = Ps, (2.1.1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0. (2.1.1c)

Herein is:

ζ water level1,2 h water depth4

ϕ surface velocity potential2 U current5

ψ vertical structure2,3 Ps pressure puls ship6

g gravity D,M,N model parameters7

Notes:

1. The water level ζ = ζ(x, y, t) is relative to a reference level z = 0. The reference level
can be thought of as the level if the water surface were completely flat (no waves at all),
like the MARIN water bassins before a simulation.

7

8 CHAPTER 2. THE MODEL

2. The VBM equations are derived from the Euler equations for irrotatianal flow, leading
to the instationary Bernoulli equation. Because the vertical structure of water flows is
often known, the velocity potential φ occuring in the instationary Bernoulli equation is
expanded in predefined shape functions fm, i.e.,

φ(x, y, z, t) = ϕ(x, y, t) +

M∑
m=1

fm(z, ζ)ψm(x, y, t).

This reduces the 3D-model to a 2D-model and the computational effort. Two realis-
tic choices for fm are parabolic and cosine-hyperbolic shapes for which the expansion
consists of only one shape function. With M = 1 we can simply write

φ(x, y, z, t) = ϕ(x, y, t) + f(z)ψ(x, y, t). (2.1.2)

The basic variables of the VBM thus become ζ, ϕ, and ψ. Note that f does no longer
depend on ζ. This is the consequence of an approximating argument during the lin-
earization process.

3. Together with the shape function f the vertical structure ψ allows variations in the
vertical water velocity. ψ occurs in the expansion in shape functions, see expression
(2.1.2). ψ is not known a priori and thus is one of the three basis variables to solve for
in the linearized VBM.

4. The water depth h = h(x, y, t) is also relative to the reference level z = 0. The bottom
of a bassin, river or sea is thus at level z = −h.

5. U = U(x, y, t) is the average horizontal velocity of the current over time and is delivered
to the model in the form of external data.

6. Although physically not correct at MARIN we like to speak about “pressure puls”
(actually we only say it in Dutch: “drukpuls”); in fact, we have Ps := −ps

ρ , where ps
is a pressure (predefined) modelling the ship, and ρ is the density of water. So Ps is in
[m2s−2] instead of [Pascal] = [kg ·ms−2]. The pressure puls is computed via Ps = gd,
where g is the gravity and d is the draft (Dutch: “diepgang”) of the ship.

7. The model parameters (functionals) are implied by the shape function f through

D = −1

h

∫ 0

−h
f dz, M =

∫ 0

−h
(f ′)2 dz, and N =

∫ 0

−h
f2 dz. (2.1.3)

Physically realistic choices for the vertical shape functions f are parabolic and cosine-
hyperbolic shape functions [13]. For the linearized parabolic model we have

D(p) =
1

3
h, M(p) =

1

3
h, and N (p) =

2

15
h3. (2.1.4)

For the linearized cosine-hyperbolic model we have

D(c) = C − S
κh
,

M(c) =
1

2
κSC − 1

2
κ2h,

N (c) = −3

2

1

κ
SC +

1

2
h+ hC2,

(2.1.5)

2.2. THE COMPUTATIONAL DOMAIN 9

where

S = sinh(κh) and C = cosh(κh). (2.1.6)

2.2 The computational domain

The domain is chosen to be rectangular. Its dimensions are Lx×Ly. For discretization of the
VBM equations this domain is covered with an equidistant grid with Nx ×Ny grid points or
nodes. The outermost nodes are placed on the physical boundary. The mesh spacing in the
x- and y-direction are ∆x = Lx

Nx−1 and ∆y =
Ly

Ny−1 , respectively. The nodes are numbered as

(i, j) with i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny. An example is given in Figure 2.1.

(1, 1)

(1, 2)

(Nx, Ny)(1, Ny)

(Nx, 1)
S

ECW

N

V

Lx

L
y

Figure 2.1: The physical domain and its corresponding grid necessary for discretization of the VBM
equations. Here: Nx = 8 and Ny = 8.

2.3 Discretization of the VBM equations

The VBM equations are discretized in space with the finite volume method (FVM). For the
grid point located at C (= center) the surrounding control volume V and its four nearest
neighbours (N = north, E = east, S = south,W = west) are indicated by rectangles of size
∆x×∆y. For time integration the Leapfrog method is used. Discretization of the equations

10 CHAPTER 2. THE MODEL

(2.1.1) with the FVM yields:

∆x∆y
dζC
dt

+ 1
2

(
VN∆xζN + UE∆yζE − VS∆xζS − UW∆yζW

)
+1

2

(
VN∆x+ UE∆y − VS∆x− UW∆y

)
ζC

+∆x
∆yhNϕN + ∆y

∆xhEϕE + ∆x
∆yhSϕS + ∆y

∆xhWϕW

−
(

∆x
∆yhN + ∆y

∆xhE + ∆x
∆yhS + ∆y

∆xhW
)
ϕC

−∆x
∆yhN DNψN −

∆y
∆xhE DEψE −

∆x
∆yhS DSψS −

∆y
∆xhW DWψW

+
(

∆x
∆yhN DN + ∆y

∆xhE DE + ∆x
∆yhS DS + ∆y

∆xhW DW
)
ψC = 0, (2.3.1a)

∆x∆y
dϕC
dt

+ 1
2

(
VN∆xϕN + UE∆yϕE − VS∆xϕS − UW∆yϕW

)
−1

2

(
VN∆x+ UE∆y + VS∆x− UW∆y

)
ϕC + ∆x∆ygζC = PsC∆x∆y, (2.3.1b)

∆x
∆yhN DNϕN + ∆y

∆xhE DEϕE + ∆x
∆yhS DSϕS + ∆y

∆xhW DWϕW
−
(

∆x
∆yhN DN + ∆y

∆xhE DE + ∆x
∆yhS DS + ∆y

∆xhW DW
)
ϕC

−∆x
∆yNNψN −

∆y
∆xNEψE −

∆x
∆yNSψS −

∆y
∆xNWψW

+
(

∆x
∆yNN + ∆y

∆xNE + ∆x
∆yNS + ∆y

∆xNW
)
ψC + ∆x∆yMCψC = 0, (2.3.1c)

The overbar notation is used to indicate the average of two nodes, e.g., ζN = (ζN + ζC)/2.
The system can be put in the form (cf. [28]; page 34):

d

dt

 ~ζ
~ϕ
0

+

 Sζζ Sζϕ Sζψ
Sϕζ Sϕϕ Sϕψ
Sψζ Sψϕ Sψψ

 ~ζ
~ϕ
~ψ

 =

 0
~Ps
0

 , (2.3.2)

or, equivalently,

dq

dt
= Lq + f, (2.3.3a)

S ~ψ = b. (2.3.3b)

The first equation is solved using the Leapfrog integration scheme. The second equation, i.e.,
the system (2.3.3b), is the system that has to be solved by the solver.

2.4 The system

The problem that has to be solved, is

Sψ = b, (2.4.1)

wherein the matrix S is given by the 5-point stencil 0 −∆x
∆yNN 0

−∆y
∆xNW

∆x
∆yNN + ∆y

∆xNE + ∆x∆yMC + ∆x
∆yNS + ∆y

∆xNW −∆y
∆xNE

0 −∆x
∆yNE 0

 . (2.4.2)

The problem has to be solved multiple times per second needed for real-time simulation.

2.5. PROPERTIES OF THE MATRIX S 11

2.5 Properties of the matrix S

In [28]; Appendix F it has been shown that D,M,N ≥ 0. Also recall that the overbar
notation just means taking the average of two neighbouring nodes. Therefore, the center
coefficient of the stencil is positive and the other coefficients are negative, and hence the
matrix S is diagonally dominant. In fact it can be shown that MC > 0 and therefore the
matrix is strictly diagonally dominant, and thereby an M -matrix.

Next, by taking ∆x = k∆y, we see that the center coefficient of the matrix is O(1 + h2),
whereas the other coefficients are O(1). Hence for small h the diagonal dominance is not very
strong.

Because of the diagonal dominance of the matrix Gershgorin’s circle Theorem can be
applied to show that the real part of the eigenvalues are strictly positive. Furthermore, by
writing out the outer coefficients it is easily found that the matrix is symmetric, so, for all
λ ∈ σ(S), we have λ ∈ R>0. Thus, summarizing, the matrix S is an SPD matrix.

2.6 Problem size and the real-time issue

Typical mesh sizes for a 2D rectangular grid are 5m × 5m. In a simulation environment, a
domain of 20 km× 20 km is common. Hence in that case the grid consists of about 16 million
nodes. The system Sψ = b that must be solved thus involves a matrix S of 16 million by 16
million! Moreover, the simulator has a frame rate of say 20 fps, hence the system Sψ = b
must be solved within 0.05 seconds. This example already points out the difficulty of our
problem; the main problem is the size in combination with the little time available. A huge
amount of computational effort must be performed in almost zero time, and so a massive
parallel solver and a tremendous amount of crunch power is required.

To put things in perspective: nowadays with MARIN’s current C++ RRB-solver problems
on a domain of no more than 200 by 400 nodes can be computed in real time.

12 CHAPTER 2. THE MODEL

Chapter 3

Test problems

3.1 Mathematical problem: Poisson’s equation

As a first test problem we shall consider Poisson’s equation on a 2D square grid with Dirichlet
boundary conditions, i.e.,

−∆u = f(x, y) on Ω = (0, 1)× (0, 1),

u(x, y) = 0 on ∂Ω.
(3.1.1)

This is a very suitable test problem since the 2D Poisson’s problem is very well studied, and
our problem is a Poisson-like problem. Hence results and insight obtained using this test
system can be applied to our system. However, the rate of convergence for this problem is
not representive for the realistic problems.

For the discretization we use a square grid with a total of (N + 1)2 equidistant grid cells
of size h2, h = 1/(N + 1), see Figure 3.1. The unknows ui,j are defined at the cell vertices
of the grid. Since all vertices on the boundary are known the number of unknows equals N2.
Let us introduce the number n = N2 for convenience. By applying finite differences in the
x-direction, we obtain a second order accurate discretization,

− ∂2u

∂x2

∣∣∣∣
x,y

=
−u(x− h, y) + 2u(x, y)− u(x+ h, y)

h2
+O(h2). (3.1.2)

A similar discretization can be derived for the y-direction. If we let ui,j denote the approxi-
mation of u(x, y) in the point (xi, yj) with xi = ih, yj = jh discretization of system (3.1.1)
yields, using approximations like (3.1.2), the following system of linear equations:

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = h2f(xi, yj),

u0,j = ui,0 = uN+1,j = ui,N+1 = 0 for i, j ∈ {1, 2, . . . , N}.

Equivalently, in stencil notation for internal points this system reads, −1
−1 4 −1

−1

ui,j = h2f(xi, yj).

Using a natural ordering (lexicographic) in matrix-vector notation this translates to

Au = f

13

14 CHAPTER 3. TEST PROBLEMS

(i, j) = (1, 1)

(i, j) = (3, 2)

j = 0

i = N + 1i = 0

j = N + 1

h

1

1

Figure 3.1: The square grid for discretization of Poisson’s equation (3.1.1).

with A ∈ Rn×n being the block matrix

A =



T −I 0 0 · · · ∅
−I T −I 0 · · ·

0 −I T −I

0 0 −I T
. . .

. . .
. . . −I

∅ −I T


,

where the I’s are N ×N identity matrices and where the T ’s are tridiagonal N ×N matrices
given by

T =



4 −1 0 0 · · · ∅
−1 4 −1 0 · · ·

0 −1 4 −1

0 0 −1 4
. . .

. . .
. . . −1

∅ −1 4


,

where u = (ui,j) ∈ Rn is the vector of unknowns, and f = (h2f(xi, yj)) ∈ Rn the right-hand
side.

3.2. SMALL HARBOUR 15

3.2 Small harbour

A representative model with all important phenomena was created to study all kind of wave
phenomena, see Figure 3.2. There is a beach, a harbour and a shoal. The overall depth is
30m except from the cone shaped shoal, radius 125m, with its top lying 2 meter under the
water surface. The beach has a width of 300m and length 200m. The total rectangular
domain has size 600m× 1200m with grid cells of 5m× 5m.

Figure 3.2: Klopman’s harbour.

3.3 Realistic problems: IJssel, Plymouth, Port Presto

Three realistic problems are obtained from MARIN’s database. We have selected parts from
the following regions:

1. The Gelderse IJssel (Netherlands);

2. Plymouth Sound (United Kingdom);

3. Port Presto (fictional; inspired by Barcelona, Spain);

3.3.1 The Gelderse IJssel

The Gelderse IJssel, a small river, is a branch from the Rhine in the Dutch provinces Gelder-
land and Overijssel. The river flows from Westervoort and discharges in the IJsselmeer. In
Figure 3.3 a (small) part of the river is shown. From this part several test problems are
extracted. This is done by cropping the displayed region to smaller rectangular shapes, see
the table attached to the figure. For the discretization an equidistant 2m by 2m grid is used.

3.3.2 Plymouth Sound

Plymouth Sound, locally just The Sound, is a bay located at Plymouth, a town in the South
shore region of England, United Kingdom. In the centre of The Sound is Plymouth Break-
water, a dam which protects anchored ships in the Northern part of The Sound against

16 CHAPTER 3. TEST PROBLEMS

Lx [m] Ly [m] Nx Ny n (#nodes)

1,000 400 500 200 100,000
1,600 500 800 250 200,000
2,000 1,000 1,000 500 500,000
3,200 1,250 1,600 625 1,000,000
3,000 2,000 1,500 1,000 1,500,000

Figure 3.3: The Gelderse IJssel and extracted test regions (Google Maps).

south-western storms. From this region also rectangular shaped test problems are extracted,
see Figure 3.4. For the discretization an equidistant 5m by 5m grid is used.

Lx [m] Ly [m] Nx Ny n (#nodes)

2,000 1,250 400 250 100,000
2,500 2,000 500 400 200,000
4,000 3,125 800 625 500,000
4,000 6,250 800 1,250 1,000,000
6,000 6,250 1,200 1,250 1,500,000

Figure 3.4: Plymouth Sound and extracted test regions (Google Maps).

3.3. REALISTIC PROBLEMS: IJSSEL, PLYMOUTH, PORT PRESTO 17

3.3.3 Port Presto

Port Presto is a fictional region that shows great similarities with Barcelona, Spain. Is is used
frequently as a reference harbour in real-time simulator studies and assesments of mariners.
In Figure 3.5 a OpenSceneGraph (OSG) screenshot is shown as well as a rectangular test
problem that is extracted from it. The rectangular box corresponds with the 1,500,000 nodes
test problem. For the discretization an equidistant 5m by 5m grid is used.

Lx [m] Ly [m] Nx1 Nx2 n (#nodes)

2,000 1,250 400 250 100,000
2,500 2,000 500 400 200,000
4,000 3,125 800 625 500,000
5,000 5,000 1,000 1,000 1,000,000
6,000 6,250 1,200 1,250 1,500,000

Figure 3.5: Port Presto and extracted test regions (OpenSceneGraph).

18 CHAPTER 3. TEST PROBLEMS

Chapter 4

Test systems

Below is an overview of the machines that will be used to do our experiments. The two
machines are equipped with different CPUs and GPUs. System I is a system with hardware
a couple of years old. System II is a system equipped with the latest and pretty much the
best hardware available today. The different machines are used to make sure that our CUDA
solvers run on GPUs with different architectures.

4.1 System I: GTX 285

A somewhat older machine equipped with the — back in the days — very popular GeForce
GTX 285.

Brand / Type Dell Precision Workstation T3400
Owner / System no. MARIN LIN0143

CPU Intel Core 2 Duo E6850 @ 3.00 GHz
No. of cores 2
Cache 64 kB L1 / 4 MB L2
Memory 4 GB (4 × 1 GB) RAM DDR2 @ 667 MHz

Motherboard Dell Custom
Operating System Ubuntu 10.04.3 LTS
System kernel 2.6.32-27-generic (x86 64)
CUDA release 3.2
Driver version 260.19.26
GCC version 4.4.3

GPU (CUDA + screen) Asus NVIDIA GeForce GTX 285
Memory 1024 MB
No. of cores 30 SM × 8 (cores/SM) = 240 cores
Compute capability 1.3

19

20 CHAPTER 4. TEST SYSTEMS

4.2 System II: GTX 580

A state-of-the-art machine equipped with the ultimate GeForce GTX 580 graphics processing
unit, and about the fastest CPU: the Xeon W3520. The Xeon W3520 is comparable to the i7
920 processor, or even slightly better. We belief that using this machine we get honest speed
up evaluations for CPU versus GPU code. If we were to compare the CPU from System I, the
C2D E6850, with the GPU in this system, we would argue that the comparisons are dishonest
as the CPU is quite old and the GPU is very modern.

Brand / Type Dell Precision Workstation T3500
Owner / System no. MARIN LIN0169

CPU Intel Xeon W3520 @ 2.67 GHz
No. of cores 4
Cache 256 kB L1 / 1 MB L2 / 8 MB L3
Memory 6 GB (3 × 2 GB) RAM DDR2 @ 1066 MHz

Motherboard Dell Custom
Operating System Ubuntu 10.04.3 LTS
System kernel 2.6.32-34-generic (x86 64)
CUDA release 4.0
Driver version 270.41.19
GCC version 4.4.3

GPU 0 (CUDA) Asus NVIDIA GeForce GTX 580
Memory 1536 MB
No. of cores 16 SM × 32 (cores/SM) = 512 cores
Compute capability 2.0

GPU 1 (screen) Asus NVIDIA Quadro NVS 295
Memory 256 MB
No. of cores 1 SM × 8 (cores/SM) = 8 cores
Compute capability 1.1

Chapter 5

Design plan

In this chapter we explain how we came up with our new solvers. Among the first steps
is to decide in what language we were going to program the solvers, and also what specific
solver(s) we were going to implement. Conjugate Gradients (CG), Multigrid (MG), or a
maybe a combination? And in case of CG: which preconditioner are we going to use? And
in case of MG: which smoother, which coarse grid solver, etcetera?

5.1 CUDA rather than OpenCL

We have chosen to implement our new solvers in CUDA. There are several reasons for this
decision. To start with, on the one hand, OpenCL (Open Computing Language) is an open
standard to write parallel software supporting many platforms including CPUs and GPUs.
The framework hs been developed by Apple and includes a programming language based on
the C99 standard. Because of its generality a performance hit is likely expected. It is almost
impossible to achieve maximal performance on every different platform. On the other hand,
CUDA is a parallel computing architecture developed by NVIDIA themselves for the NVIDIA
GPUs only. Its very limited range of support is quite a disadvantage of CUDA; however, in
this way NVIDIA can easily safeguard maximal performance.

In [11] we find a performance comparison of CUDA and OpenCL. Although the experiments
are not very interesting for us, the results and conclusions are. The authors state that both
data transfers and kernel execution in CUDA is 15% - 60% faster than in OpenCL, depending
on the specific size and application. For MARIN at this point maximal performance is more
important than generalism, and so CUDA is preferred over OpenCL.

Also, it is said that the CUDA programming lanuage is more compact (fewer lines of code)
and somewhat easier to comprehend. Especially if you are a C programmer (like us) the
CUDA runtime API is easier to use than OpenCL. If at one point one desires OpenCL it
is not too difficult to port the software from CUDA to OpenCL. Last but not least, we have
already quite some experience with CUDA from which we can greatly benefit.

5.2 Our choice: PCG with the RRB-method, shortly: the
RRB-solver

As the matrix S of the system Sψ = b is SPD, and given by a 5-point stencil, thus yielding
a very sparse pentadiagonal matrix, the most proficient method to solve this system is the

21

22 CHAPTER 5. DESIGN PLAN

preconditioned Conjugate Gradient (PCG) method. No question about that. The real ques-
tion is what preconditioner we should choose. Given the desire of MARIN to be able to solve
really large systems in the nearby future (open sea), taking the Multigrid (MG) method as
preconditioner seems to be a good option because of its linear complexity and the fact that
the MG method offers good parallelization opportunities. In our literature study we chose
for the MGCG-solver, i.e., CG with MG as preconditioner.

However, across time we changed our mind and rather chose to port the existing C++ RRB-
solver, i.e., CG preconditioned with the RRB-method, to CUDA. There were several reasons
to make this switch. Firstly, we found that the existing C++ RRB-solver did a great job when
we ranthe lin wacu software with the new set of larger test problems (IJssel, Plymouth,
Port Presto). We found that the RRB-solver was able to solve all the test problems (up to
1.5 million nodes) within 6 or 7 CG-iterations! This number of CG-iterations is considered
small in numerical science. So, if we were to design a new MGCG-solver we would have to
beat this number, which seems already to be a difficult task.

Secondly, the RRB-solver has great similarities with the MGCG-solver: both contain the
“finer-to-coarser” grid level hierarchy. This implies that for both methods we would encounter
the same implementation issues such as overhead due to communication and idle threads on
coarse grids. So, regarding implementation difficulties, both methods are “equally” difficult
to parallelize efficiently.

Thirdly, if we were to design a MGCG-solver we would encounter additional problems.
The MGCG-solver would be a difficult solver to tune to our problem because of its great
complexity: the number of levels, the smoother, the form of the cycles, etcetera, are all
variables that need to be set and chosen properly, fully depending on our specific problem. It
may turn out, after already putting much effort in it, that we do not succeed in designing a
robust MGCG-solver that can solve the full set of test problems. And then what? We would
stand empty-handed.

Finally, the problems that we can solve real-time later on with the new CUDA solver are
possibly not big enough for the linear complexity of the Multigrid method to really kick in;
possibly the RRB-solver outperforms the MGCG-solver for medium sized grids like our test
problems (1.5 million nodes).

Therefore, as porting the C++ to CUDA appears to be already difficult enough, we have
chosen to port at least a solver that already works properly. Moreover, the parallelization
techniques can possibly be used in the future to make an efficient CUDA MGCG-solver.

5.3 A second CUDA solver: the IPDIAG-solver

A few months earlier Rohit Gupta has been investigating for his Master’s project a specific
CUDA solver for bubbly flow problems [7]: the IP solver with deflation, i.e., CG with the
Incomplete Poisson preconditioner and deflation on top of it, shortly the IPDEF-solver. The
speed up results were quite promising. Our very first idea was thus to apply Gupta’s IPDEF-
solver to our test problems and see what it does. However, unfortunately, Gupta’s code could
not be used for grids with arbitrary sizes (which is mandatory for us), and especially his
deflation implementation lacks generalism. Moreover, the code was written according to a
low standard and overall structure was missing.

Therefore, we could not run his code and we decided to implement an own version of
the IPDEF-solver. Unfortunately, we did not have enough time to complete our flexible

5.4. GET CUDA AND OPENMP TO WORK SIMULTANEOUSLY 23

implementation of deflation (we were almost there), and so deflation has been left out of
the code. What remains is a CG solver with the IP preconditioner, and diagonal scaling (if
enabled), shortly the IPDIAG-solver. Funny enough the IPDIAG-solver is not a very good
solver for the basic 2D Poisson problem; however, for our test problems the IPDIAG-solver
does a good job, because of the bigger diagonal dominance of these problems.

Another motivation for this solver was that the CUDA IPDIAG-solver is an embarrassingly
parallel type solver that can be far more easily divided over a cluster of computers and GPUs
than the CUDA RRB-solver. Thus, although the IPDIAG-solver is inferior to the RRB-solver
on its own, on multiple GPUs the IPDIAG-solver may be a good alternative. The IPDIAG-
solver is thus much more “future-proof”.

5.4 Get CUDA and OpenMP to work simultaneously

Before we started with porting the RRB-solver to CUDA we had to fix an issue. For some
reason CUDA and OpenMP could not work together. OpenMP is used to parallelize the code
around the solver, and CUDA is used to parallelize the solver. With a first basic CUDA solver,
plain CG, we tested why OpenMP and CUDA could not be used simultaneously. The cause
turned out to be easy but tricky. The constructor phase (allocating memory on the GPU)
was done by host thread A while the solve phase (solving Sψ = b) was called by say thread
B. Thread B could simply not address the allocated memory on the GPU (the pointers to the
memory were gone). The solution is to make sure that the same thread, say thread A, calls
both the constructor and the solve phase. One option is to use p-threads, or, even easier,
to use #pragma omp critical to tell the host that only the main thread (which is never
cleared) is allowed to call CUDA routines.

24 CHAPTER 5. DESIGN PLAN

Part II

THEORY: LINEAR SOLVERS

25

Chapter 6

Preliminaries and notation

In this chapter we introduce some basic terminology and results from linear algebra that are
needed for the rest of Part II.

6.1 Linear algebra

Definition 6.1.1. A ∈ Rn×n is called symmetric if A = AT , where T stands for transposing,
thus, if the entries of A are written as A = (aij), then it holds that aji = aij.

Definition 6.1.2. A ∈ Rn×n is called diagonally dominant if

|aii| >
n∑
j=1
j 6=i

|aij |

for all i.

Definition 6.1.3. A ∈ Rn×n, write A = (aij) is called an M -matrix if and only if

1. aii > 0 for all i = 1, 2, . . . , n;

2. aij ≤ 0 for all i 6= j, i, j = 1, 2, . . . , n;

3. A−1 exists, and A−1 ≥ 0.

Theorem 6.1.4. If A ∈ Rn×n, write A = (aij), satisfies

1. aii > 0 for all i = 1, 2, . . . , n;

2. aij ≤ 0 for all i 6= j, i, j = 1, 2, . . . , n;

3. A is irreducibly diagonal dominant,

then A is an M -matrix.

Definition 6.1.5. If there exists a v ∈ Cn, v 6= 0 such that

Av = λv,

where A ∈ Rn×n, and λ a scalar, then v is called an eigenvector of A, and λ is the corre-
sponding eigenvalue.

27

28 CHAPTER 6. PRELIMINARIES AND NOTATION

Lemma 6.1.6. If v is an eigenvector of A with corresponding eigenvalue λ, then v is also an
eigenvector of P (A) with corresponding eigenvalue P (λ) for any polynomial P .

Definition 6.1.7. The set of all eigenvalues is called the spectrum of A, denoted σ(A); thus,
σ(A) := {λ | λ is an eigenvalue of A} .

Definition 6.1.8. The spectral radius, denoted ρ(A), of a matrix A is given by

ρ(A) = max
λ∈σ(A)

|λ|. (6.1.1)

Lemma 6.1.9. The eigenvalues of a symmetric matrix A are real.

The previous Lemma 6.1.9 implies that the eigenvalues of a symmetric n × n matrix A
can be ordered as

λ1 ≤ λ2 ≤ . . . ≤ λn, (6.1.2)

where eigenvalues with algebraic multiplicity k > 1 are listed k times in a row. Note that for
a symmetric n× n matrix A we just have ρ(A) = λn.

Definition 6.1.10. A ∈ Rn×n is called symmetric positive definite, abbreviated SPD, if A
is symmetric, and xTAx > 0 for all x 6= 0.

Lemma 6.1.11. A ∈ Rn×n is SPD if and only if A is symmetric and all its eigenvalues are
positive.

The previous Lemma 6.1.11 allows the introduction of the so-called spectral condition
number:

Definition 6.1.12. Let A ∈ Rn×n be SPD, and order the eigenvalues as done in (6.1.2).
Then, the number

κ(A) :=
λn
λ1
∈ [1,∞)

is called the spectral condition number.

The following result underlies the so-called Cholesky factorization, see Section 7.3.3.

Theorem 6.1.13. If A ∈ Rn×n is an SPD matrix, then there exists a unique L ∈ Rn×n with
positive diagonal entries such that A = LLT .

Theorem 6.1.14 (Gershgorin). Let A be an n × n matrix, possibly complex-valued, with
entries aij. For i = 1, 2, . . . , n let

Ri =
n∑
j=1
j 6=i

|aij |,

and let Di = D(aii, Ri) be the closed disc centered at aii with radius Ri, called a Gershgorin
circle. Then, for all λ ∈ σ(A), there exists an i such that λ ∈ Di.

Definition 6.1.15. The A-inner product, denoted 〈x, y〉A is defined to be 〈x, y〉A = 〈Ax, y〉2.

Chapter 7

Solvers for Ax = b : a brief overview

7.1 The system

The goal throughout the upcoming sections is to solve the linear system

Ax = b, (7.1.1)

where A ∈ Rn×n is an SPD matrix (see 6.1.10), x ∈ Rn the vector of unknowns, and b ∈ Rn a
given vector, the right-hand side (RHS). Although not necessary, we confine ourselves to SPD
matrices A which are sparse, that is, matrices that are mainly filled with zeros, and having
just a few nonzero elements, say O(n) nonzeros compared to a total of O(n2) elements.

We shall very often refer to this system; by writing “linear system (7.1.1)” we mean the
system with A specified as above: size n× n, SPD and sparse.

7.2 An overview

Below a figure is given that summarizes what methods there are to solve system (7.1.1).

Ax = b, A SPD

Direct methods Iterative methods

Multigrid Krylov
(CG)

Basic Iterative
method (BIM)

(Jacobi/GS/SSOR)
Cholesky
(A = LLT)

prec.

coarse
grid

solver

smoother prec.

Figure 7.1: Overview of solvers for Ax = b, with A an SPD matrix.

29

30 CHAPTER 7. SOLVERS FOR AX = B : A BRIEF OVERVIEW

7.3 Direct methods

In the next sections we are interested in solving the linear system (7.1.1) by means of a
direct method. In contrast to iterative methods, direct methods attempt to solve a problem
in a finite number of operations, without occurence of roundoff errors resulting in an exact
solution. Although a direct method in itself is not very useful for large systems (too expensive
in terms of memory and work) they can be used for, e.g., preconditioning in the Conjugate
Gradient method, see Chapter 9, or as exact solver on the coarsest grid in Multigrid, see
Chapter 12.

7.3.1 Introduction

For general sparse A (thus not SPD) one typically applies Gaussian elimination to obtain a
factorization A = LU , whereafter one successively solves the systems Ly = b and Ux = y,
where L and U respectively are lower and upper triangular matrices, hence the name LU
decomposition. The systems are easily solved by forward- and backward substitution. For
systems in which A is SPD one can apply the Cholesky factorization to obtain a factorization,

A = GGT , (7.3.1)

where G is a lower triangular matrix known as the Cholesky factor. The system Ax = b
is then readily solved by first solving the system Gy = b for y, where y = GTx, using
forward substition, and then solving the system GTx = y for x by using backward substition.
Cholesky factorization is advantageous for a couple of reasons. Firstly, pivoting (row and/or
column interchanges), which ensures numerical stability, is proven to be no longer necessary.
Secondly, both memory and work are halved compared to Gaussian elimination. Furthermore,
the underlying problem of reordering, which we will describe in a moment, can better be
described. For example, for SPD matrices one can predict the locations of nonzero entries
during the process, and hence the data structure can be chosen and memory can be reserved
before the actual computations are executed.

7.3.2 Occurence of fill-in and reordering

Usually, when applying Cholesky factorization to a sparse matrix A, the matrix suffers so-
called fill-in, that is, G has nonzeros in positions which are zero in the lower triangular part
of A. This effect is best illustrated by an example.

Consider the matrix for the 2D Poisson equation with Dirichlet boundary conditions
obtained via finite differences on a square grid with 25 interior grid points and a lexicographic
numbering. The structure of this matrix is given below in Figure 7.2. Using the Cholesky
algorithm we obtain a factor which structure is shown in Figure 7.2 on the right. As one can
see, the Cholesky factor suffers lots of fill-in (gray).

By reordering of the system we hope for a factorization with less fill-in. By setting x̃ = P Tx
where P denotes a permutation matrix, solving the system Ax = b for x becomes equivalent
with solving the reordered system,

Ãx̃ = b̃ (7.3.2)

for x̃, where Ã = PAP T and b̃ = Pb. In this way the matrix Ã is again SPD, and hence we
can apply the Cholesky decomposition to obtain a factorization, Ã = G̃G̃T . In Figure 7.3 the
system is reordered by applying the Reverse Cuthill-McKee method while in Figure 7.4 the

7.3. DIRECT METHODS 31

A =

••
•

•••
•

•••
•

•••
•

••

•

•

••
•

•
•••
•

•
•••
•

•
•••
•

•
••

•

•

••
•

•
•••
•

•
•••
•

•
•••
•

•
••

•

•

••
•

•
•••
•

•
•••
•

•
•••
•

•
••

•

•

••

•
•••

•
•••

•
•••

•
••

#nnz(A) = 105

G =

•••••••••• •• ••• ••• ••• ••• •• ••• ••• ••• ••• •• ••• ••• ••• ••• •• ••• ••• ••• ••

••

#nnz(G) = 129 (fill-in: 64)

Figure 7.2: Matrix A and its Cholesky factor G for the Poisson equation.

system is reordered by applying the Minimum Degree method. As one can see, in both cases
the amount of fill-in is significantly reduced. Note also that Reverse Cuthill-McKee provides
for this example the standard diagonal numbering of the grid nodes.

Ã =

•••
••
••
•
•
••
•
•
••

••
•
••

•
•
••

•
•
••

••
•
••

••
•
••

•
•
••

•
•

•

••
•
••

••
•
••

••
•
••

•

•
•

••
•
•

••
•
••

••
•
••

••
•
•

••
•
•

••
•
••

••
•
•
••
•
•
••
••
•••

#nnz(Ã) = 105

G̃ =

•••• •• ••• •• •• ••• ••• •• •• ••• ••• ••• •• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••••

••

#nnz(G̃) = 115 (fill-in: 50)

Figure 7.3: Reordered matrix Ã and its Cholesky factor G̃ for the Poisson equation. Reordering by
Reverse Cuthill-Mckee.

Ã =

•••
••
•

•

•
••

•

•••

•
•

•••
••
•

•

•
••

•

•••

•
•

•

••
•
•

•••
••
•

•

•
••

•

•••

•

•

•••
••
••
•
••
•

•••
••

•
•
••

•
•
•••

••

•
••

•

•
••

•
••

••

•
•

••

•

•
•

••

•

•

••

#nnz(Ã) = 105

G̃ =

•••• •••••••• ••••••••• •••••••• ••••• • •• • ••••• • •• • ••• •• •• • ••• • • •• • ••

•
•

•
•

•• ••
•••• ••••••• • •••••••••• • ••••••

#nnz(G̃) = 102 (fill-in: 37)

Figure 7.4: Reordered matrix Ã and its Cholesky factor G̃ for the Poisson equation. Reordering by
the Minimum Degree Method.

32 CHAPTER 7. SOLVERS FOR AX = B : A BRIEF OVERVIEW

7.3.3 Cholesky factorization algorithm

Let us derive the Cholesky-Crout version of the Cholesky factorization algorithm. This version
computes the elements G column by column starting from the upper left corner of G. Consider
a 4× 4 SPD matrix A = (aij) and write G = (gij), then

a11 · · ·
a21 a22 · ·
a31 a32 a33 ·
a41 a42 a43 a44

 = A = GGT =


g11 0 0 0
g21 g22 0 0
g31 g32 g33 0
g41 g42 g43 g44



g11 g21 g31 g41

0 g22 g32 g42

0 0 g33 g43

0 0 0 g44



=


g2

11 · · ·
g11g21 g2

21 + g2
22 · ·

g11g31 g21g31 + g22g32 g2
31 + g2

32 + g2
33 ·

g11g41 g21g41 + g22g42 g31g41 + g32g42 + g33g43 g2
41 + g2

42 + g2
43 + g2

44

 ,
where the dots (·) indicate the symmetric counterparts. We now have to solve a system of
equations in the 10 unknows gij . By working columnwise through G starting from g11 we
find:

1. g2
11 = a11 =⇒ g11 =

√
a11,

2. g11g21 = a21 =⇒ g21 =
a21

g11
,

g11g31 = a31 =⇒ g31 =
a31

g11
,

g11g41 = a41 =⇒ g41 =
a41

g11
,

3. g2
21 + g2

22 = a22 =⇒ g22 =
√
a22 − g2

21,

4. g21g31 + g22g32 = a32 =⇒ g32 =
1

g22
(a32 − g21g32),

g21g41 + g22g42 = a42 =⇒ g42 =
1

g22
(a42 − g21g42),

5. g2
31 + g2

32 + g2
33 = a33 =⇒ g33 =

√
a33 − (g2

31 + g2
32),

6. g31g41 + g32g42 + g33g43 = a43 =⇒ g43 =
1

g33
(a43 − (g31g41 + g32g42)),

7. g2
41 + g2

42 + g2
43 + g2

44 = a44 =⇒ g44 =
√
a44 − (g2

41 + g2
42 + g2

43).

From this we see that for general SPD matrices A ∈ Rn×n we find G via

gjj =

√√√√ajj −
j−1∑
k=1

g2
jk,

gij =
1

gjj

(
aij −

j−1∑
k=1

gikgjk

)
, for i > j.

(7.3.3)

7.4. ITERATIVE METHODS 33

Also note that for A ∈ Rn×n one computes the elements in the following order:

1
2 3
2 4 5
... 4 6 7
...

...
...

. . .

2 4 6 8 · · · 2n− 1


Since A is an SPD matrix, the expression under the root is always positive. However, to avoid
square roots we may consider a factorization A = GDGT instead. Further note that matrix
A can be overwritten by its Cholesky factor G if the original matrix A is no longer needed.
Typical code for the Cholesky Factorization is given in Algorithm 1.

Input: A
Output: G
for k = 1, 2, . . . , n do1

gkk =
√
akk −

∑k−1
j=1 akj ;2

for i = k + 1, . . . , n do3

gik =4

(aik −
∑k−1

j=1 aijakj)/akk;

end5

end6

Algorithm 1: Cholesky factorization

(column version).

The number of flops for this algorithm is n3/3.

7.4 Iterative methods

The iterative methods are discussed in the following chapters.

34 CHAPTER 7. SOLVERS FOR AX = B : A BRIEF OVERVIEW

Chapter 8

Basic Iterative Methods

In this chapter we shall briefly discuss some classical methods, usually called the Basic Iter-
ative Methods (BIMs). Although these methods themselves are of no practical use to us as
they will usually take a too large number of iterations to convergen, the BIMs can be used as
building blocks for more advanced solvers, e.g., they may serve as preconditioners in the CG
method or as smoothers in the MG method.

8.1 Introduction

Suppose we want to solve the linear system (7.1.1) for vector x, the vector of unknowns, where
A is a nonsingular1 matrix, and b a given vector, the right-hand side (RHS). By introducing
a splitting A = M − N , where M is a nonsingular matrix, we can formulate the fixed point
iteration

Mxk+1 = Nxk + b, (8.1.1)

with x0 a given start vector. By defining Q = M−1N and s = M−1b we can identify scheme
(8.1.1) with the following type of BIMs:

xk+1 = Qxk + s, (8.1.2)

in which Q is called the iteration matrix . The iteration matrix is usually not computed
explicitly as it is too expensive or just impossible to do so.

The BIM (8.1.2) can be damped by incorporating a damping factor ω as follows:

x∗ = Qxk + s, (8.1.3a)

xk+1 = ωx∗ + (1− ω)xk. (8.1.3b)

Thus actually we take some kind of weighted average between xk and the update x∗, therefore
we frequently see terminology as weighted scheme and weight factor ω. Also, the words
relaxation parameter or smoothing factor2 are frequently used for ω, especially in the context
of SOR (see below). By eliminating x∗ from the equations (8.1.3) we get

xk+1 = (ωQ+ (1− ω)I)xk + ωs. (8.1.4)

1A nonsingular matrix A is a matrix that is not singular , that is, for matrix A the inverse, A−1, exists.
2This word may lead to confusion, see smoothing in Multigrid.

35

36 CHAPTER 8. BASIC ITERATIVE METHODS

Damping can be needed to ensure the BIM has the smoothing property, which we shall explain
in a later chapter. By optimally choosing ω we can optimize the speed of convergence.

To be able to specify some popular BIMs, suppose that A is decomposed as A = D+L+U ,
where D is a diagonal matrix containing the main diagonal entries of A, L the strictly lower
triangular part of A, and U the strictly upper triangular part of A. Then, by choosing M as
indicated we get the following methods:

Method Choice of M

Jacobi D

Weighted Jacobi
1

ω
D

Gauss-Seidel (GS) D + L
Gauss-Seidel backward D + U

SOR (= weighted GS)
1

ω
(D + ωL)

SSOR
1

ω(2− ω)
(D + ωL)D−1(D + ωU)

Table 8.1: Popular Basic Iterative Methods.

SOR stands for Successive Overrelaxation, and SSOR stands for Symmetric SOR, which is
a version that yields a symmetric iteration matrix Q. SOR follows from Gauss-Seidel (GS) by
incorporating damping as discussed above. SSOR follows from a forward SOR sweep followed
by a backward SOR sweep. Note that for ω = 1 we get back the GS method. Thanks to this
relaxation parameter the SOR method is a major improvement over Jacobi and GS in terms
of convergence speed. Next we discuss some of the listed methods in more detail.

8.2 Some popular methods

8.2.1 Jacobi

For the Jacobi method we take

M = D, (8.2.1a)

N = −(L+ U). (8.2.1b)

This gives us
Dxk+1 = b− (L+ U)xk, (8.2.2)

or,
xk+1 = QJACx

k +D−1b, (8.2.3)

where the iteration matrix QJAC is given by

QJAC = −D−1(L+ U). (8.2.4)

In componentwise form we have

xk+1
i =

1

aii

(
bi −

n∑
j=1
j 6=i

aijx
k
j

)
. (8.2.5)

8.2. SOME POPULAR METHODS 37

8.2.2 Gauss-Seidel (GS)

For the GS method we take

M = D + L, (8.2.6a)

N = −U. (8.2.6b)

This gives us

(D + L)xk+1 = b− Uxk, (8.2.7)

or,

xk+1 = QGSx
k + (D + L)−1b, (8.2.8)

where the iteration matrix QGS is given by

QGS = −(D + L)−1U. (8.2.9)

In componentwise form we have

xk+1
i =

1

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)
. (8.2.10)

8.2.3 SOR

For the SOR method we take

M =
1

ω
(D + ωL), (8.2.11a)

N =
1− ω
ω

D − U. (8.2.11b)

This gives us

(D + ωL)xk+1 = ωb+ ((1− ω)D − ωU)xk, (8.2.12)

or,

xk+1 = QSORx
k + (D + ωL)−1ωb, (8.2.13)

where the iteration matrix QSOR is given by

QSOR = (D + ωL)−1((1− ω)D − ωU). (8.2.14)

In componentwise form we have

xk+1
i =

ω

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)
+ (1− ω)xki . (8.2.15)

Note that this last equation can readily be derived from the equation (8.2.10) for the GS
method and the damped scheme (8.1.3). Furthermore, for SOR we have ω > 1, hence the
name “overrelaxation”. “Successive” refers to the fact that an overrelaxation is carried out
regularly at every iteration step.

38 CHAPTER 8. BASIC ITERATIVE METHODS

8.3 Some basic results

The error ek is defined to be the difference between the exact solution x∗ and the approxima-
tion xk, i.e., ek := xk − x∗. The residual rk is defined to be the difference between the RHS
b and Axk, i.e., rk := b−Axk. The relationship between the error and residual is as follows:

Aek = A(xk − x) = Axk − b = −rk. (8.3.1)

By replacing b by Ax∗ = (M −N)x∗ in the fixed point iteration (8.1.1) we find

Mxk+1 = Nxk + (M −N)x∗,

or,
M(xk+1 − x∗) = N(xk − x∗),

hence
ek+1 = Qek, (8.3.2)

where Q = M−1N is the iteration matrix.

Lemma 8.3.1. It holds that ek = Qke0.

Proof. We use induction to k. The case k = 1 is clear, indeed e1 = Qe0 by (8.3.2). Assume
that it holds for k = i (induction hypothesis), i.e., ei = Qie0. Then for k = i+ 1 we find

ei+1 = Qei
(I.H.)

= QQie0 = Qi+1e0,

and we are done.

8.4 Convergence results of BIMs

In this section we discuss some standard convergence results, and explain why the BIMs on
themselves are not very good solvers. The section also introduces some terminology which will
be used in other sections as well. To start with, let us clarify what we mean with convergence
in the context of iterative methods.

Definition 8.4.1. An iterative method
{
xk
}
, k = 0, 1, 2, . . . is said to be convergent if

lim
k→∞

‖x− xk‖ = 0.

If the BIM given by (8.1.2) converges it must be towards the unique solution of (7.1.1).
This follows from its construction. For k →∞ (8.1.2) becomes x = Qx+ s = M−1(Nx+ b),
or, equivalently, Mx = Nx + b. With A = M − N this comes down to solving Ax = b, the
original system (7.1.1).

So, now the interesting question is under what conditions (8.1.2) converges. Let us intro-
duce the following terminology.

Definition 8.4.2. The spectral radius, denoted ρ(A), of a matrix A is given by

ρ(A) = max {|λ| : λ is an eigenvalue of A} . (8.4.1)

8.4. CONVERGENCE RESULTS OF BIMS 39

Without a proof we state the following important result (for a proof, see [14]).

Theorem 8.4.3. The BIM (8.1.2) converges for every x0 if and only if ρ(Q) < 1.

The BIM thus converges if all the eigenvalues of the iteration matrix Q = M−1N in
absolute value are smaller than 1. The spectral radius can be thought of as the asymptotic
rate of convergence, in other words, at each iterate the error is reduced by a factor ρ(Q), i.e.,
asymptotically

‖x− xk+1‖ ≤ ρ(Q)‖x− xk‖.

For BIMs the M -matrix property guarantees convergence.

Definition 8.4.4. Matrix A is called an M -matrix if A is nonsingular, A−1 ≥ 0 (element-
wise) and aij ≤ 0 for all i, j with i 6= j.

Accordingly, we have the following result.

Theorem 8.4.5. If the system matrix A in (7.1.1) is an M -matrix then Jacobi and GS
converge and ρ(QGS) < ρ(QJAC) for ρ(QJAC) 6= 0.

GS thus converges faster than Jacobi. This is not surprising as GS always uses the “newest
information that is available”, and Jacobi does not.

As stated earlier, the BIMs are of little practical use as the rate of convergence is usually
very poor. This is motivated by the unfortunate fact that for many problems the spectral
radius nears 1 as the grid size becomes smaller, and the closer the spectral radius is to
1, the poorer the speed with which the BIM converges. A standard example is the Poisson
equation on a Cartesian grid (unit square) with mesh size h. In that case ρ(QJAC) = cosπh =
1− (πh)2/2 +O(h4), and ρ(QGS) = cos2 πh = 1− (πh)2 +O(h4), see [26]; e.g., for h = 1/64
we find ρ(QJAC) = 0.998, and ρ(QJAC) = 0.9976. With such numbers Jacobi and GS take
literally tens of thousands of iterates to approximate the solution with good enough accuracy.

However, by incorporating damping, see equations (8.1.3), the rate of convergence can
greatly be improved. For Jacobi we obtain Weighted Jacobi by doing so, and for GS we
obtain the SOR method. For the Poisson example above we find with optimal ω, call it ωopt,
this time ρ(QSOR) ≈ 0.90 for h = 1/64, and hence SOR converges must faster than GS. For
the Poisson problem an analytic solution for ωopt can be found; unfortunately, however, for
general problems this is not possible and ωopt must be found by experiments.

Although the relaxed methods generally are significantly faster than standard Jacobi and
GS their rates of convergence are still not very impressive. The BIMs can be speed up much
further by using a Krylov subspace method as accelerator, such as CG. The opposite viewpoint
is saying that we use a BIM as preconditioner for the CG method. Then, the BIMs become
valuable building blocks.

40 CHAPTER 8. BASIC ITERATIVE METHODS

Chapter 9

The Conjugate Gradient (CG)
method

9.1 Derivation of the CG method

For the derivation of the CG method we follow the approach that links solving system (7.1.1)
to minimizing a function in n variables [22]. In this respect CG is just a line-search method
with a special choice for the search directions (to be explained below). Some results and their
proofs come from lecture notes1 by Wen Shen2 which are on their turn based on work by
Douglas Arnold2 [2] A same kind of derivation, results and proofs can be found in [6].

Other approaches are to consider CG as a variant of the Arnoldi/Lanczos iteration [20].
The relationship between Lanczos and CG is extensively discussed in [15]. A very first de-
scription of CG is published by Hestenes and Stiefel [9].

On our way we shall come along several other algorithms that are related to CG, and,
therefore, we shall briefly discuss them too. However, for these algorithms no convergence
results are presented; they are merely used to introduce CG in a most natural way. For the
CG method itself of course full details are given.

9.1.1 Quadratic form

Solving system (7.1.1) (with A an SPD n × n matrix) corresponds with minimizing the
following quadratic functional :

x∗ = arg min
x∈Rn

f(x), f(x) =
1

2
xTAx− bTx. (9.1.1)

This can be seen as follows. For symmetric A we can compute

∇f(x) = Ax− b, (9.1.2)

and so ∇f(x) = 0 if and only if Ax = b. Furthermore, ∇2f = A is SPD. From the conditions
of x being a minimum we may conclude that there is an unique minimizer x∗ of f(x), and
this x∗ is the solution to system (7.1.1). To visualize this, for an SPD matrix A the quadratic
form f(x) is some kind of paraboloid. By solving ∇f(x) = 0 we thus search for the lowest
point of the surface.

1http://www.math.psu.edu/shen_w/524/CG_lecture.pdf
2Pennsylvania State University

41

http://www.math.psu.edu/shen_w/524/CG_lecture.pdf

42 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

9.1.2 The method of Steepest Descent

The method of Steepest Descent is a line search method. As the name indicates a line search
method searches for an optimum along a line; therefore, the method performs every iteration
two steps: given the current approximate solution xk,

1. find a direction pk to move into (the line);

2. find out how far to move into that direction; i.e.

(a) αk = arg min f(xk + αpk);

(b) set xk+1 = xk + αkp
k.

For the method of Steepest Descent the direction pk is opposite to the direction in which f
increases most quickly, that is, pk = −∇f(xk), hence a gradient-based method. Note that
because of equation (9.1.2) we have

−∇f(xk) = b−Axk = rk. (9.1.3)

With such search directions the iterative scheme becomes

xk+1 = xk + αkr
k. (9.1.4)

To determine the stepsize αk, we apply Taylor’s theorem for multivariable functions3 to
f(xk+1) with xk+1 given by (9.1.4). This yields4

f(xk+1) = f(xk)− αk(rk)T rk +
α2
k

2
(rk)TArk. (9.1.5)

By taking the directional derivative of (9.1.5) to αk, i.e., (d/dαk)f(xk+1), and setting the
result to zero, we find

αk =
(rk)T rk

(rk)TArk
. (9.1.6)

In summary the method of Steepest Descent is defined by the following iterative scheme.
Given x0, for k = 0, 1, 2, . . . do

rk = b−Axk, (9.1.7a)

αk =
〈rk, rk〉
〈rk, Ark〉

, (9.1.7b)

xk+1 = xk + αkr
k, (9.1.7c)

where 〈·, ·〉 is the Euclidean inner product. The computational effort of the method is domi-
nated by matrix-vector products (MVs) which arise in computing the residuals and stepsizes,
hence 2 MVs per iteration. Fortunately, one of the MVs can be eliminated (at the cost of

3Multivariable Taylor’s Theorem. For x, y ∈ Rn and t ∈ R we have

f(x+ ty) = f(x) + t(∇f(x))T y +
t2

2
yT∇2f(x)y + · · · . (∗)

Note: ∇2f(x) is called the Hessian.
4In (∗) take x = xk, t = αk, y = rk, and substitute ∇f(xk) = −rk, and ∇2f(xk) = A.

9.1. DERIVATION OF THE CG METHOD 43

accuracy) as follows. By multiplying the equation for xk+1 by A and thereafter subtracting b
we get

Axk+1 − b = Axk − b+ αkAr
k,

hence

rk+1 = rk − αkArk. (9.1.8)

In this way only Ark needs to be computed, we can store the result in say a vector q. Because
of roundoff errors it is wise to compute the true residual, that is, using (9.1.3), after a couple
of iterations, say niter. A slightly different way to safeguard a correct outcome, is to compute
the true residual after the termination criterium (see below) is met, and to restart the method
with the latest xk if necessary.

About the memory requirements: Notice that xk, rk and αk can be overwritten by their
updates, so that only 1 matrix, A, and three vectors, x, r, q (recall q = Ar), need to be stored
(and of course some scalars).

Finally, we need a measure to determine when to stop. A common termination criterium
is to stop when ‖rk‖ < ε · ‖b‖, with ε a predefined tolerance, or when a given number of
iterations, maxiter, is reached. Based on the preceding hints, the ready-to-implement code
for the method of Steepest Descent is given by Algorithm 2.

Input: A, b, x, ε, niter, maxiter
Output: x
r = b−Ax;1

ρ = rT r;2

for k = 1, 2, . . . ,maxiter do3

if ρ < ε2‖b‖ then4

break;5

end6

q = Ar; // MV7

σ = rT q; // dot product8

α =
ρ

σ
;9

x = x+ αr; // AXPY10

if niter | j then11

r = b−Ax;12

else13

r = r − αq; // AXPY14

end15

ρ = rT r; // dot product16

end17

Algorithm 2: The method of Steep-
est Descent.

Because of the consecutive orthogonality of gradients, the method proceeds according to a
“zig-zag”-pattern. Typically the method of Steepest Descent does multiple steps in the same
direction, as if it adjusts earlier work. It would be much more efficient when the method
searches only once in each particular direction, and moves in that direction just right so that

44 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

it does not have to come back. For example, in 2D the method would then find the exact
solution in at most 2 steps.

9.1.3 The method of Conjugate Directions

Consider the iterative scheme

xk+1 = xk + αkp
k, (9.1.9)

where αk is the stepsize in search direction pk. To accomplish searching in non-interfering
directions we want a new search direction pk in some sense to be orthogonal to all earlier
search directions {pj}k−1

j=0 so that the method leads us straight away to the solution x (thus
without the “zig-zagging”). Therefore, we have to introduce a different form of orthogonality.

Definition 9.1.1. A set of vectors {pj}k−1
j=0 are conjugate or A-orthogonal to an SPD n× n

matrix A if (pi)TApj = 0, for all i, j = 0, 1, 2, . . . , k − 1, i 6= j.

The method of Conjugate Directions uses conjugate directions instead of orthogonal direc-
tions. We shall show in a moment how the stepsizes αj are determined and that the method
converges in at most n steps towards the solution of system (7.1.1) and, equivalently, finds
the minimizer of the quadratic form given by (9.1.1). Therefore, we need the following result.

Theorem 9.1.2. For an SPD n×n matrix A the conjugate set {pj}n−1
j=0 forms an A-orthogonal

basis for Rn.

Proof. We show that the set {pj}n−1
j=0 is a linearly independent set. Suppose not, thus there

exist nonzero constants aj , j = 0, 1, 2, . . . , n− 1, such that

a0p
0 + a1p

1 + · · ·+ an−1p
n−1 = 0.

Multiplying by A and taking the inner product with arbitrary pi yields

a0(pi)TAp0 + a1(pi)TAp1 + · · ·+ an−1(pi)TApn−1 = 0,

which by the A-orthogonality, i.e., (pi)TApj = 0 for all i 6= j, reduces to ai(p
i)TApi = 0. By

the positive definiteness of A we must have (pi)TApi > 0, which implies ai = 0. This gives
the desired contradiction. We conclude span{p0, p1, . . . , pn−1} = Rn.

Next, we introduce the following notation. Let

Dk := span{p0, p1, . . . , pk−1} and Xk := x0 +Dk.

Then, we have the following theorem.

Theorem 9.1.3. Let Dn be an A-orthogonal basis for Rn, and consider the sequence {xj}kj=0

generated by the iterative scheme (9.1.9). Then xj = arg minx∈Xj f(x), for all j = 1, 2, . . . , k.

Proof. We proceed by induction to k. For k = 1 the result follows immediately from the
definition. Suppose that for some k = i we have (the induction hypothesis):

xj = arg min
x∈Xj

f(x), for all j = 1, 2, . . . , i.

9.1. DERIVATION OF THE CG METHOD 45

We have to show that if xi+1 = xi + αip
i then xi+1 = arg minx∈Xi+1 f(x). For x ∈ Xi+1 we

can write x = y + αpi, with y ∈ Xi and α ∈ R. Then, using again the multivariable Taylor’s
Theorem (see footnote 3) we have

f(x+ αpi) = f(y) + α(pi)T (∇f(y)) +
α2

2
(pi)TApi. (9.1.10)

Now, although the second term appears to couple minimizations w.r.t. α and y, it is actually
not the case since y − xi ∈ Di and thus y − xi is A-orthogonal to pi, hence

0 = (pi)TA(y − xi) = (pi)T (Ay − b− (Axi − b)) (9.1.2),(9.1.3)
= (pi)T (∇f(y) + ri),

or, equivalently, (pi)T (∇f(y)) = −(pi)T ri. Substituting this result into (9.1.10) allows us to
decouple the minimization problem as

min
x∈X i+1

f(x) = min
y∈Xi

f(y) + min
α∈R

(
− α(pi)T ri +

α2

2
(pi)TApi

)
.

By the induction hypothesis the first term on the RHS is minimized by xj , and the second
term on the RHS is minimized by α = αi given by

αi =
(pi)T ri

(pi)TApi
. (9.1.11)

Thus xi+1 = xi + αip
i minimizes f(x) over Xi+1.

The theorem shows that the method of Conjugate Directions finds the solution x∗ to
system (7.1.1) in at most n steps.

Notice that by taking pi = ri we get back the method of Steepest Descent.

Putting everything together the method of Conjugate Directions is given by the following
iterative scheme. Given a conjugate set {pk}n−1

k=0 , and initial guess x0, for k = 0, 1, 2, . . . , n−1
do

rk = b−Axk, (9.1.12a)

αk =
〈pk, rk〉
〈pk, Apk〉

, (9.1.12b)

xk+1 = xk + αkp
k. (9.1.12c)

In the method of Conjugate Directions we again have to compute 2 MVs per iteration:
Apk and Ark, but in contrast to the method of Steepest Descent none can be eliminated.
However, as the method takes at most n iterations, the solution is found in fewer iterations,
and the total amount of work is likely smaller.

What lacks in the description of the method of Conjugate Directions is how the set of
conjugate directions is generated, and, therefore, presenting a ready-to-implement algorithm
is impossible. There are several options to generate a conjugate set of vectors, but we shall
only consider that option that leads to the CG method. The CG method uses the residuals,
those that are used in the method of Steepest Descent, to generate a conjugate set by applying
the so-called Gram-Schmidt Conjugation method to them.

46 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

9.1.4 Gram-Schmidt Conjugation method

Suppose we have a set of n linearly independent vectors u0, u1, . . . , un−1. For the moment
take for the ui’s the coordinate axes. The Gram-Schmidt Conjugation method is then as
follows:

1. Set p0 := u0;

2. For k = 1, 2, . . . , n− 1 compute pk = uk −
k−1∑
j=0

βkjp
j with βkj =

(pj)TAuk

(pj)TApj
.

To check that the set {pk}n−1
k=0 is indeed an A-orthogonal set is easily proved by induction.

Note that the method is quite expensive to implement, because it takes O(n2) operations
(for a full matrix-vector product) to compute one βkj , and the whole set of search directions
takes O(n3) operations. Moreover, as a new search direction pk depends on all previous
search directions {pj}k−1

j=0 , all search directions need to be stored. Also, due to roundoff errors
the search directions may loose A-orthogonality. All together, using the coordinate axes to
generate the search direction vectors is obviously not a very good choice.

9.1.5 Conjugate directions that lead to CG

In CG the conjugate directions are not determined beforehand, instead they are generated
sequentially as the algorithm progresses. For this the residuals rk, as they appear in the
method of Steepest Descent, are used, for the simple reason that each iteration a new residual
is computed, and the residuals work well for the method of Steepest Descent, so why not use
them for CG? So, take uk = rk in the Gram-Schmidt Conjugation method. This yields p0 = r0

and for k > 1,

pk = rk −
k−1∑
j=0

(pj)TArk

(pj)TApj
pj . (9.1.13)

At first sight this does not improve things; however, we have the following theorem.

Theorem 9.1.4. Let {pj}k−1
j=0 be a set of conjugate search directions generated by (9.1.13).

Then,

(i) Dk = span{r0, r1, . . . , rk−1};

(ii) (ri)T rj = 0, for all 0 ≤ j < i ≤ k (i.e., `2-orthogonal);

(iii) (pk)T rj = (rk)T rk, for all 0 ≤ j ≤ k;

(iv) The search direction pk satisfies

pk = rk + βk−1p
k−1, with βk−1 =

(rk)T rk

(rk−1)T rk−1
. (9.1.14)

Proof. Part (i) follows immediately by construction, i.e., since the search directions are built
from the residuals using (9.1.13) with p0 = r0, the subspace Dk = span{p0, p1, . . . , pk−1} is
equal to span{r0, r1, . . . , rk−1}. For (ii) note that for 0 ≤ j < i ≤ k we have that xi+arj ∈ Xi,

9.1. DERIVATION OF THE CG METHOD 47

for any a ∈ R. From Theorem 9.1.3 we know that xi is the unique minimizer of f(x) over Xi,
i.e., f(xi) ≤ f(x) for all x ∈ Xi. Thus g(a) := f(xi + arj) on its turn is minimal when a = 0.
Now, dg/da = 0 if and only if

0 =
df(xi + arj)

da

∣∣∣∣
a=0

= −(rj)T (b−Axi),

and hence by definition of residual we find (rj)
T ri = 0. For (iii) we note that (pj)T rk = 0 for

all j < k because of part (i), and then we find for j = k:

(pk)T rk
(9.1.13)

= (rk)T rk +
k−1∑
j=0

(pj)TArk

(pj)TApj
(pj)T rk = (rk)T rk. (*)

For j < k we observe that since xk ∈ Xk and xj ∈ Xj we have that xk − x6j ∈ Dk, and
therefore, by the A-orthogonality, 0 = (pk)TA(xk − xj) = (pk)T (rk − rj). Hence (pk)T rj =
(pk)T rk for all j < k and thus (pk)T rj = (rk)T rk by (*). For (iv) we observe that the set
{rj}kj=0 forms an `2-orthogonal basis for Dk+1 (this follows from the preceding parts). Then

pk ∈ Dk+1 can be written as a linear combination of those vectors. Next we apply (iii) two
times, i.e.,

Dk+1 3 pk =
k∑
j=0

(pk)T rj

(rj)T rj
rj

(iii)
=

k∑
j=0

(rk)T rk

(rj)T rj
rj = rk +

(rk)T rk

(rk−1)T rk−1

k−1∑
j=0

(rk−1)T rk−1

(rj)T rj
rj

(iii)
= rk +

(rk)T rk
(rk−1)T rk−1

k−1∑
j=0

(pk−1)T rj

(rj)T rj
rj = rk + βk−1p

k−1,

as desired.

Part (iv) of Theorem 9.1.4 thus allows us to compute the search directions in a very cheap
manner, namely by 2 dot products, a division and one AXPY. Now all ingredients for CG are
there.

9.1.6 The CG algorithm

Let us put everything together. We start from the iterative scheme of the method of Conjugate
Directions, see equations (9.1.12). However, by Theorem 9.1.4, part (iii) we are allowed to
replace (pk)T rk by (rk)T rk (this saves computational effort, see below), so that we get the
iterative scheme: for k = 0, 1, 2, . . . do

rk = b−Axk,

αk =
〈rk, rk〉
〈pk, Apk〉

,

xk+1 = xk + αkp
k.

Now note that we can again save one MV (at the cost of accuracy), just like in the case of
the method Steepest Descent, by computing rk+1 differently. That is, by multiplying the
equation for xk+1 by A and thereafter subtracting b we get

Axk+1 − b = Axk − b+ αkAp
k,

48 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

and thus
rk+1 = rk − αkApk. (9.1.15)

Now the MV Apk occurs twice, and therefore we save the outcome in a vector q = Apk. Next
we add formula (9.1.14) to the scheme to come up with the new search directions. So, all
together, the CG algorithm is as follows. Given x0, compute r0 = b − Ax0 and set p0 = r0,
then for k = 0, 1, 2, . . . do

αk =
〈rk, rk〉
〈pk, Apk〉

(9.1.16a)

xk+1 = xk + αkp
k, (9.1.16b)

rk+1 = rk − αkApk, (9.1.16c)

βk =
〈rk+1, rk+1〉
〈rk, rk〉

, (9.1.16d)

pk+1 = rk+1 + βkp
k. (9.1.16e)

Note that an inner product of the form 〈rk, rk〉 shows up three times (2 times for βk and
1 time for αk). Hence by saving the outcome cleverly we actually have to compute the dot
product only once. The CG algorithm is frequently slightly rearranged and put in a form like
Algorithm 3 (ready-to-implement).

9.2 Storage and computational requirements for CG

9.2.1 Memory

Consider system (7.1.1). Suppose that the SPD n × n matrix A is a generated by a 5-point
stencil, and therefore saved in the DIAG format. For that case, based on Algorithm 3, we
have listed the variables that need to be stored and their memory requirements in Table 9.1.

Variable Type Description Memory

A Matrix System matrix 5n
b Vector Right-hand side n
x Vector Solution n
r Vector Residual n
p Vector Search direction n
q Vector q = Ap n
ε, niter,maxiter Scalar Parameters 3
ρnew, ρold, σ, α, β, j Scalar Internal variables 6

Table 9.1: Storage requirements for the CG algorithm.

9.2.2 Flop count

We compute the amount of flops for the case that the matrix is generated by a 5-point stencil.
For most CG iterations, according to Algorithm 3 the computational effort consists of one
MV, two dot products and three AXPYs. Hence a total of 10n+ 3 · 2n+ 2 · 2n = 20n flops.

9.2. STORAGE AND COMPUTATIONAL REQUIREMENTS FOR CG 49

Input: A, b, x, ε, niter, maxiter
Output: x
r = b−Ax;1

ρnew = rT r;2

for k = 1, 2, . . . ,maxiter do3

if ρnew < ε2‖b‖ then4

break;5

end6

if k = 1 then7

p = r;8

else9

β =
ρnew

ρold
;

10

p = r + βp; // AXPY11

end12

q = Ap; // MV13

σ = pT q; // dot product14

α =
ρnew

σ
;15

x = x+ αp; // AXPY16

if niter | j then17

r = b−Ax;18

else19

r = r − αq; // AXPY20

end21

ρold = ρnew;22

ρnew = rT r; // dot product23

end24

Algorithm 3: The CG algorithm.

50 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

9.3 Convergence analysis of CG

The ultimate goal of this section is to prove the upper bound

‖xk − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x0 − x‖A.

9.3.1 CG and the Krylov space

Definition 9.3.1. The subspace Kk(A; r0) := span{r0, Ar0, A2r0, . . . , Ak−1r0} is called the
Krylov (sub-)space of dimension k for matrix A and residual r0.

Let Pk denote the set of all polynomials of degree k. Then note that y ∈ Kk(A; r0) can
be written as y = P (A)r0, with P ∈ Pk−1.

Lemma 9.3.2. It holds that Dk = Kk(A; r0).

Proof. We use induction to k. The case k = 1 is clear. Assume that it holds for k = i (in-
duction hypothesis), i.e., by Theorem 9.1.4(i), we assume that Di = span{r0, r1, . . . , ri−1} =
Ki(A; r0). To show that it holds for k = i + 1 we thus have to show that ri ∈ Ki+1(A; r0).
By the induction hypothesis we can write for ri−1, pi−1 ∈ Di:

ri−1 = Ri−1(A)r0 and pi−1 = Pi−1(A)r0, (*)

where Ri−1 and Pi−1 are polynomials of degree at most i− 1. Equation (9.4.3c) gives us

ri = ri−1 + αi−1Ap
i−1

(∗)
= Ri−1(A)r0 + αi−1APi−1(A)r0

which is clearly in Ki+1(A; r0).

Corollary 9.3.3. It holds that Dk = span{Ae0, A2e0, . . . , Ake0}.

Proof. This follows directly from the relationship between the error and the residual, i.e,
Aej = −rj , see (8.3.1).

Note that the CG iterates xk ∈ Xk are picked from x0 + Kk(A; r0). Likewise the errors
ek are picked from e0 + Kk(A; r0). Therefore, CG belongs to the class of Krylov subspace
methods.

9.3.2 CG and optimal polynomials

We saw that CG minimizes the quadratic functional (9.1.1). Now note that

‖ek‖2A = (ek)TAek = (xk − x∗)TA(xk − x∗)
= (xk)TAxk − 2(xk)TAx∗ + (x∗)TAx∗

= (xk)TAxk − 2(xk)T b+ (x∗)T b

= 2f(xk) + constant,

9.3. CONVERGENCE ANALYSIS OF CG 51

by recalling that f(x) = 1
2x

TAx − bTx. Hence as CG generates an optimal xk in each
iteration, ek is simultaneously minimized in the A-norm. Actually, some authors derive the
CG algorithm by trying to minimize ‖ek‖A within e0 +Kk(A; r0).

Since ek ∈ e0 +Kk(A; r0) the error ek can be written as

ek = Pk(A)e0,

where

Pk(z) =
k∑
j=0

γj(k)zj with pk(0) = 1.

The CG algorithm finds thus an optimal polynomial Pk ∈ Pk with Pk(0) = 1, such that
‖ek‖A = ‖Pk(A)e0‖A is minimized; i.e.,

‖ek‖A = min
P∈Pk;P (0)=1

‖P (A)e0‖A. (9.3.1)

We have the following lemma.

Lemma 9.3.4. With σ(A) being the spectrum of A, we have

‖ek‖A ≤ min
P∈Pk;P (0)=1

max
λ∈σ(A)

|P (λ)|‖e0‖A. (9.3.2)

Proof. Let V = {v1, v2, . . . , vn} be the set of orthonormal eigenvectors, and σ(A) = {0 < λ1 ≤
λ2 ≤ · · · ≤ λn} be the spectrum of an SPD n× n matrix A. Write e0 as a linear combination
of the vectors in V , i.e.,

e0 =

n∑
j=1

ajvj .

Then

‖e0‖2A = (e0)TAe0 =
n∑
j=1

a2
jλj ,

and by Lemma 6.1.6 we have

ek = P (A)e0 =

n∑
j=1

ajP (λj)vj =⇒ ‖ek‖2A =

n∑
j=1

a2
jλjP

2(λj).

Then,

‖ek‖2A = min
P∈Pk;P (0)=1

‖P (A)e0‖2A

= min
P∈Pk;P (0)=1

n∑
j=1

a2
jλjP

2(λj)

≤ min
P∈Pk;P (0)=1

max
λ∈σ(A)

P 2(λ)

n∑
j=1

a2
jλj

= min
P∈Pk;P (0)=1

max
λ∈σ(A)

P 2(λ)‖e0‖2A.

By taking the square root we find the desired inequality.

52 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

Rather than minimizing expression (9.3.2) over a finite number of points (the eigenvalues),
we shall minimize the expression over the whole interval [λ1, λn]. The polynomial P that does
the trick is a so-called Chebyshev polynomial. We shall prove this in a moment. Let us first
explain what Chebyshev polynomials generally look like.

9.3.3 Chebyshev polynomials

The Chebyshev polynomials Tj(z) of the first kind are defined by the following recursion

Tj(z) = 2zTj−1(z)− Tj−2(z), for j ≥ 2, (9.3.3)

with T1(z) = z, and T0(z) = 1. The general solution to this recursion formula can be found
as follows. For fixed z try solutions of the form Tj(z) = (r(z))j . Substitution in (9.3.3) yields

(r(z))j−2((r(z))2 − 2zr(z) + 1) = 0.

Hence the general solution is given by

Tj(z) = c1(r1(z))j + c2(r2(z))j ,

where r1(z) and r2(z) are roots of the characteristic equation

r2 − 2zr + 1 = 0.

This equation is easily solved, either by the abc-formula, or noting that

0 = r2 − 2zr + 1⇐⇒ (r − z)2 = z2 − 1⇐⇒ r1,2 = z ±
√
z2 − 1.

Hence
Tj(z) = c1

(
z +

√
z2 − 1

)j
+ c2

(
z −

√
z2 − 1

)j
.

Using the boundary condition T0(z) = 1 we find c1 +c2 = 1, and with the boundary condition
T1(z) = z we find, substituting c2 = 1 − c1, that 2c1

√
z2 − 1 −

√
z2 − 1 = 0, so c1 = c2 = 1

2 .
The Chebyshev polynomials are thus explicitly given by

Tj(z) =
1

2

{(
z +

√
z2 − 1

)j
+
(
z −

√
z2 − 1

)j}
, for j ≥ 0. (9.3.4)

Written out, the first Chebyshev polynomials are

T0(z) = 1,

T1(z) = z,

T2(z) = 2z2 − 1,

T3(z) = 4z3 − 3z,

T4(z) = 8z4 − 8z2 + 1.

The Chebyshev polynomials can also be defined trigonometricly. Substitute z = cos(θ),
θ ∈ [−π, π] (and thus θ = arccos(z)) into (9.3.4) to get

Tj(cos θ) =
1

2

(
(cos θ + i sin θ)j + (cos θ − i sin θ)j

)
.

9.3. CONVERGENCE ANALYSIS OF CG 53

Then applying De Moivre’s formula5 gives Tj(cos θ) = cos(jθ), and thus

Tj(z) = cos(j arccos z). (9.3.5)

is another definition. Note the following fact.

Proposition 9.3.5. If ξm = cos(mπ/j), m = 0, 1, 2, . . . , j then Tj(ξm) = (−1)m.

Proof. Indeed, for m = 0, 1, 2, . . . , j we readily compute

Tj(ξm) = Tj(cos(mπ/j))

= cos(j arccos(cos(mπ/j)))

= cos(mπ)

= (−1)m,

as desired.

Expression (9.3.5) shows that |Tj(z)| ≤ 1 for all z ∈ [−1, 1], and that they oscillate between
1 and -1, in fact, the higher j the more rapidly they oscillate on the interval z ∈ [−1, 1].
From expression (9.3.4) we see that the Chebyshev polynomials grow very rapidly outside the
interval z ∈ [−1, 1]. On the interval z ∈ [−1, 1] the Chebyshev polynomials have the property
that they are smaller than any other polynomial of the same degree, which we shall prove in
a moment.

9.3.4 A perfect polynomial

The desired upper bound on the error is found by taking for P the scaled kth degree Chebyshev
polynomial Tk, which is given by

Ck(λ) =

Tk

(
λn + λ1 − 2λ

λn − λ1

)
Tk

(
λn + λ1

λn − λ1

) . (9.3.6)

Remark 9.3.6. We have

x =
λn + λ1 − 2λ

λn − λ1
⇐⇒ λ =

λ1 − λn
2

x+
λ1 + λ

2
.

and hence x ∈ [−1, 1]⇐⇒ λ ∈ [λ1, λn]

Remark 9.3.7. We still have Ck(0) = 1 thanks to a proper scaling (the denominator).
Furthermore, as the numerator is bounded by 1 in absolute value, we have that

‖Ck‖∞ := sup
λ∈[λ1,λn]

|Ck(λ)| =
∣∣∣∣Ck (λn + λ1

λn − λ1

)∣∣∣∣−1

.

The next lemma ensures there is no better polynomial than Ck.

5De Moivre’s formula. For any complex number ω and integer n it holds that (cosω+ i sinω)n = cos(nω)+
i sin(nω).

54 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

Lemma 9.3.8. For any Pk ∈ Pk with Pk(0) = 1 we have that

‖Ck‖∞ ≤ ‖Pk‖∞.

Proof. The proof is by contradiction. Set

C :=

[
Ck

(
λn + λ1

λn − λ1

)]−1

∈ R

for convenience. Further, let

µm :=
λ1 − λn

2
ξm +

λ1 + λ

2
, ξm := cos

(mπ
k

)
, m = 0, 1, 2, . . . , k.

The nice property of those µm’s is that Pk(µm) = (−1)mC, for all m = 0, 1, 2, . . . , k which we
shall use in a moment (this follows immediately from Proposition 9.3.5 and Remark 9.3.6).
Also note that µm ∈ [λ1, λn]. Let us now assume there exists Pk ∈ Pk with Pk(0) = 1 such
that |Pk(λ)| < |C| for all λ ∈ [λ1, λn]. In particular this implies that

−|C| < Pk(µm) < |C|, m = 0, 1, 2, . . . , k.

If sign(C) = 1 then
Pk(µm)− Ck(µm) < 0, m even,
Pk(µm)− Ck(µm) > 0, m odd,

and if sign(C) = −1 then

Pk(µm)− Ck(µm) > 0, m even,
Pk(µm)− Ck(µm) < 0, m odd.

So, regardless of the sign of C, the difference Pk−Ck has a zero in every interval (µm, µm+1).
Now there are m such intervals, hence m zeros. However, also Pk(0)− Ck(0) = 0. Hence the
difference Pk − Ck is a polynomial of degree k with at least k + 1 zeros, which is impossible,
unless Pk ≡ Ck but this leads to a contradiction.

9.3.5 The upper bound for the error

We first prove the following result seperately.

Proposition 9.3.9. For x :=
λn + λ1

λn − λ1
we have

Ck(x) ≥ 1

2

(
x+

√
x2 − 1

)k
.

Proof. Note that since 0 < λ1 < λn (as the matrix A is SPD) we have x > 1 by construction,

which implies
(
x−
√
x2 − 1

)k
> 1. Therefore,

Ck(x) =
1

2
{
(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k} ≥ 1

2

(
x+

√
x2 − 1

)k
,

and we are done.

9.4. PRECONDITIONED CONJUGATE GRADIENT (PCG) METHOD 55

We have now everything in place to prove the main result.

Theorem 9.3.10. An upper bound of the error is given by

‖xk − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x0 − x‖A (9.3.7)

Proof. By combining Lemma 9.3.2 and the optimality as proved in Lemma 9.3.8 of the Cheby-
shev polynomial Ck(λ) which was defined in (9.3.6) we arrive at

‖xk − x‖A ≤ ‖Ck‖∞‖x0 − x‖A.

So what remains is to compute ‖Ck‖∞ explicitly. Now this is easy:

‖Ck‖∞ =

∣∣∣∣Ck (λn + λ1

λn − λ1

)∣∣∣∣−1

≤ 2
(
x+

√
x2 − 1

)−k
(by Proposition 9.3.9)

= 2

((
x−
√
x2 − 1

)(
x+
√
x2 − 1

)(
x−
√
x2 − 1

))k
= 2
(
x−

√
x2 − 1

)k
= 2

(
κ+ 1

κ− 1
−

√(
κ+ 1

κ− 1

)2

− 1

)k
= 2

(
κ+ 1

κ− 1
− 2
√
κ

κ− 1

)
= 2

(
(
√
κ− 1)2

(
√
κ− 1)(

√
κ+ 1

)

)k
= 2

(√
κ− 1√
κ+ 1

)k
.

And with this estimate for ‖Ck‖∞ we find the desired upper bound for the error.

9.4 Preconditioned Conjugate Gradient (PCG) method

We have seen in Section 9.3 that for solving system (7.1.1), i.e.,

Ax = b, A being an SPD n× n matrix,

with CG, the rate of convergence of CG depends on the spectral condition number, κ(A), of
the matrix A, and the specific distribution of its eigenvalues. The idea behind preconditioning
is to transform the original linear system into a system that

1. has the same solution or a solution from which the original solution can be easily
recovered;

2. involves a matrix that has a more favorable spectrum, i.e., a smaller condition number,
and/or, a “better” distribution of the eigenvalues.

56 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

For this purpose, consider a nonsingular matrix M . Then, by multiplying the system
Ax = b from the left with M−1, we get

M−1Ax = M−1b, (9.4.1)

which is called a left preconditioned system; likewise, by multiplying from the right by M−1,
we get a right preconditioned system. In order to preserve symmetry, we may consider a
matrix M that is SPD also, so that we can factor it as M = PP T , and then we solve

P−1AP−T y = P−1b, x = P−T y, (9.4.2)

a central preconditioned system.

Lemma 9.4.1. The matrix P−1AP−T is also SPD.

Proof. For the symmetry: (P−1AP−T)T = (P−T)TATP−T = P−1AP−T . Further, for x 6= 0
we have 〈x, P−1AP−Tx〉 = 〈P−Tx,AP−Tx〉 = 〈y,Ay〉 > 0, hence P−1AP−T is also positive
definite.

Although the matrices M−1A and P−1AP−T are generally not the same, they share an
important feature.

Lemma 9.4.2. Let M = PP T be an SPD matrix. Then, the matrices M−1A and P−1AP−T

have the same spectrum.

Proof. Since det(AB) = det(A)det(B) for nonsingular matrices A and B, we have for arbi-
trary λ ∈ σ(P−1AP−T):

0 = det(λI − P−1AP−T)⇐⇒ 0 = det(P) det(λI − P−1AP−T) det(P T)

⇐⇒ 0 = det(λPP T −A)

⇐⇒ 0 = det(M(λI −M−1A))

⇐⇒ 0 = det(M) det(λI −M−1A)

⇐⇒ 0 = det(λI −M−1A),

hence λ ∈ σ(M−1A): the eigenvalues are the same.

The attendive reader will at this point remark that, in general the matrix M−1A in the
left preconditioned system is not SPD, and hence CG cannot be applied. However, this issue
is easily solved by using a different inner product than the Euclidean inner product in the
CG algorithm. The following observation is key.

Lemma 9.4.3. The matrix M−1A is self-adjoint in the M -inner product.

Proof. The M -inner product is given by 〈x, y〉M := 〈Mx, y〉2 = 〈x,My〉2 as M is SPD. Then,

〈M−1Ax, y〉M = 〈MM−1Ax, y〉2 = 〈Ax, y〉2 = 〈x,Ay〉2 = 〈x,MM−1Ay〉2 = 〈x,M−1Ay〉M ,

as desired.

9.4. PRECONDITIONED CONJUGATE GRADIENT (PCG) METHOD 57

As pointed out in Section 9.3.2, what CG does is minimizing ‖ek‖A = ‖xk − x∗‖A. Now
note that ‖xk − x∗‖A = 〈xk − x∗, A(xk − x∗)〉 = 〈xk − x∗,M−1A(xk − x∗)〉M . Hence, by
replacing the Euclidean inner product by the M -inner product in the CG method the left
preconditioned system (9.4.1) is solved.

For the left preconditioned system the original residuals rk = b − Axk are mapped to
zk = M−1rk. Accordingly, the new method is given by the following iterative scheme. Given
x0, compute r0 = b−Ax0, z0 = M−1r0 and set p0 = z0, then for k = 0, 1, 2, . . . do

αk =
〈zk, zk〉M

〈pk,M−1Apk〉M
(9.4.3a)

xk+1 = xk + αkp
k, (9.4.3b)

rk+1 = rk − αkApk, (9.4.3c)

zk+1 = M−1rk+1 (9.4.3d)

βk =
〈zk+1, zk+1〉M
〈zk, zk〉M

, (9.4.3e)

pk+1 = rk+1 + βkp
k. (9.4.3f)

Note that since 〈zk, zk〉M = 〈rk, zk〉 and 〈pk,M−1Apk〉M = 〈pk, Apk〉 the M -inner products
do not have to be computed.

For the central preconditioned system (9.4.2) CG can readily be applied as the matrix
P−1AP−T is SPD (see Lemma 9.4.1).

Both methods are referred to as the preconditioned Conjugate Gradient (PCG) method.
The version that uses central preconditioning is given in Algorithm 4 (version I). The version
that uses left preconditioning is given in Algorithm 5 (version II). Although the two versions
are a little different, by rearranging terms it can be shown that the methods are identical, that
is, they generate the same sequences of iterates [20]. It depends on the type of preconditioner
(the choice of M) which version of the PCG algorithm is most proficient. In Chapter 10
we discuss how to choose M and what version of PCG is most proficient for various type of
preconditioners.

58 CHAPTER 9. THE CONJUGATE GRADIENT (CG) METHOD

Input: A, P , b, x, ε, niter, maxiter
Output: x
r = b−Ax;1

r = P−1r;2

x = P Tx;3

ρnew = rT r;4

for k = 1, 2, . . . ,maxiter do5

if ρnew < ε2‖b‖ then6

break;7

end8

if k = 1 then9

p = r;10

else11

β =
ρnew

ρold
;

12

p = r + βp; // AXPY13

end14

q = P−1AP−T p; // MV15

σ = pT q; // dot product16

α =
ρnew

σ
;17

x = x+ αp; // AXPY18

if niter | j then19

r = b−Ax;20

else21

r = r − αq; // AXPY22

end23

ρold = ρnew;24

ρnew = rT r; // dot product25

end26

x = P−Tx;27

Algorithm 4: Version I of the PCG

algorithm (central preconditioning).

Input: A, M , b, x, ε, niter,
maxiter

Output: x
r = b−Ax;1

z = M−1r;2

ρnew = rT z;3

for k = 1, 2, . . . ,maxiter do4

if ρnew < ε2‖b‖ then5

break;6

end7

if k = 1 then8

p = z;9

else10

β =
ρnew

ρold
;

11

p = z + βp; // AXPY12

end13

q = Ap; // MV14

σ = pT q; // dot product15

α =
ρnew

σ
;16

x = x+ αp; // AXPY17

if niter | j then18

r = b−Ax;19

else20

r = r − αq; // AXPY21

end22

z = M−1r; // solve23

ρold = ρnew;24

ρnew = rT z; // dot product25

end26

Algorithm 5: Version II of the PCG

algorithm (left preconditioning).

Chapter 10

Preconditioners

In Section 9.4 the idea behind preconditioning was explained, and the PCG algorithm was
derived for left and central preconditioning for a preconditioning matrix M = PP T but it
was not specified yet how to choose this matrix M . So, let us continue from there.

What we want to achieve is that the spectrum of M−1A is more favorable than the
spectrum of A, that is, we want the eigenvalues to be clustered around 1. If that were the
only requirement, than taking M = A−1 would be apparently the best choice because than
M−1A = I, hence all eigenvalues are 1. However, if we have A−1 available then we do
not need to apply CG as we can compute x = A−1b right away. Using a preconditioner
should ultimately lead to a reduction in work coming from a reduction in required number of
iterations for CG to converge. The extra computational effort that comes with incorporating
a preconditioner should thus be initiated accordingly and preferably should be as little as
possible. By looking at the PCG code, this implies that the system Mx = r should be
relatively cheap to solve in case of PCG version II (possibly by factoring it as M = PP T

first) or that q = P−1AP−T p is cheap to compute in case of PCG version I.

10.1 Classical preconditioners

In this section we discuss the classical preconditioners. “Classical” because these precondi-
tioners are based on the classical methods, or, what we call them throughout the report, basic
iterative methods (BIMs), see Chapter 8. Recall that to derive the iterative scheme (8.1.2)
we introduced a splitting A = M −N .

10.1.1 Diagonal scaling

By choosing M = D we get diagonal scaling. The preconditioner is also frequently called
Jacobi preconditioner as it is based on the Jacobi method (see Section 8.2.1). In the literature
a common abbreviation for CG with diagonal scaling is SCG (the S comes from “scaling”),
and we shall use it too in this report.

The preconditioner generously fulfills the requirement of being cheap to work with. The
inverse is namely found by inverting the diagonal elements, i.e., if we write M = D =
diag(d1, d2, . . . , dn) = PP T , then P−1 = diag(1/

√
d1, 1/

√
d2, . . . , 1/

√
dn). Because P−1 is a

diagonal matrix the product Ã = P−1AP−T is cheap to compute. Moreover, the entries on
the main diagonal of Ã are all 1, and hence n multiplications can be saved. So version I of

59

60 CHAPTER 10. PRECONDITIONERS

PCG is here the best choice.

SCG is most effective for diagonally dominant matrices. By applying diagonal scaling
to a diagonally dominant matrix, the matrix becomes a normalized variant with 1’s on the
main diagonal and off diagonal elements that have magnitudes much smaller than 1. By
Gershgorin’s Theorem we conclude that the eigenvalues become clustered around 1. However,
for diagonally dominant matrices with constant diagonals, such as the system matrix that
arises from Poisson’s problem with constant coefficients, diagonal scaling is not efficient as
the condition number does not change1. In other words, the more equal the coefficients in
the matrix A are, the less efficient diagonal scaling will be.

From the viewpoint of parallel programming diagonal scaling is very promosing as it is
embarrasingly parallel.

10.1.2 SSOR

For symmetric A the SSOR preconditioner is given by, see Table 8.1:

M(ω) =
1

ω(2− ω)
(D + ωL)D−1(D + ωLT)

=
1

2− ω

(
1

ω
D + L

)(
1

ω

)−1(1

ω
+ L

)T
.

(10.1.1)

The matrix M can be split as M = PP T with

P =
1√

2− ω

(
1

ω
+ L

)(
1

ω
D

)−1
2
. (10.1.2)

Note that for a pentadiagonal matrix, the factor P is very sparse. Now version II of PCG
is applied as follows. The preconditioning step is Mz = PP T z = r. This system can be
solved by first solving Py = z using forward substitution and then P T z = y using backward
substitution.

On a GPU forward and backward substitution are extremely inefficient operations, and
results in a high number of unoccupied threads and a waste of computation power. A common
strategy to parallelize these operations is to subdivide the matrices into k independent blocks
and solve the uncoupled triangular systems simultaneously. Modification of the matrices lead
to an increase in iterations of the CG algorithm, but for a small number of blocks k � n,
n being the dimension of L, this number is not too large. Although this is a reasonable
approach for multi-CPU systems, to address all resources of a GPU this number is too small;
however, making the number k bigger will degenerate the system, and the preconditioner gets
counterproductive.

1By assumption we can write M = dI, with I the n×n identity matrix and d some scalar. By Lemma 9.4.2
we find that

det(λI −A) = 0 ⇐⇒ det((λ/d)I −M−1A) = 0.

Hence if λ ∈ σ(A) then λ/d ∈ σ(M−1A) = σ(P−1AP−T). By definition of condition number κ we find

κ(M−1A) =
λM−1A
max

λM−1A
min

=
dλA

max

dλA
min

=
λA
max

λA
min

= κ(A).

10.2. PRECONDITIONERS BASED ON LEAVING OUT FILL-IN 61

10.2 Preconditioners based on leaving out fill-in

In this section we discuss several preconditioners that are based on leaving out some (or all)
of the fill-in elements that occur when a sparse SPD matrix A is factored as A = GGT .
In Section 7.3.2 we illustrated the fill-in phenomenon with the 1D Poisson equation. By
approximating the Cholesky factor G by a (much) sparser matrix K ≈ G, we hope for a
overall reduction in computational effort in the PCG algorithm.

10.2.1 Incomplete Cholesky (IC)

The Incomplete Cholesky (IC) decomposition is one of the most popular methods to find such
a lower triangular matrix K ≈ G. Other similar methods are modified Incomplete Cholesky
(MIC) and relaxed Incomplete Cholesky (RIC). In this section we discuss briefly how the three
decompositions can be computed and the relationships between them.

The IC preconditioner is found by taking for K+KT the same sparsity pattern as A itself,
e.g., for a pentadiagonal matrix (arising from a 2D Poisson problem with a lexicographic
numbering) with bandwidth 2N − 1, N being the number of grid points in either direction),
only the main diagonal (0) and four outer diagonals (±1,±N) are kept for K + KT ; all
other fill-in entries are set to zero. Hence the lower triangular matrix K only has three
nonzero diagonals (0,−1,−N). By computing KKT we observe that two fill-in diagonals
occur (±(N −1)), hence KKT is given by a 7-point stencil. Since K is sparse and KKT ≈ A,
the IC decomposition is a good choice as preconditioner in the PCG method.

The IC decomposition is often referred to as IC(0), because of the fact that in K no other
diagonals are kept than those that belong to the structure of A itself. By saving m extra
fill-in diagonals of G we obtain a matrix K with m + 3 diagonals in the Poisson case. This
decomposition is referred to as the IC(m) decomposition method.

Instead of computing the Cholesky factorization M = GGT we may instead compute

M = (D + L)D−1(D + L)T , (10.2.1)

where L is a strictly lower triangular matrix and D a diagonal matrix. In case of the IC
decomposition we thus require that Lij = 0 for i 6= j + 1, j + p. For the 2D Poisson problem
we found that KKT is given by a 7-point stencil. To find an algorithm for computing K,
the matrix M is written out for these 7 diagonals. The computations are tedious and can be
found in [28]; Appendix H. We skip this part and directly give the results. We want M ≈ A,
so a natural choice is to take L equal to the strictly lower triangular part of A. Hence L in
(10.2.1) does not have to be computed. By doing so, it turns out that the main diagonal of
M is given by

Mii = A2
i,i−ND

−1
i−N,i−N +A2

i,i−1D
−1
i−1,i−1 +Dii, (10.2.2)

and the fill-in entries are given by

Mi,i−N+1 = Ai,i−ND
−1
i−N,i−NAi−N,i−N+1, (10.2.3a)

Mi,i+N−1 = Ai,i−1D
−1
i−1,i−1Ai−1,i+N−1. (10.2.3b)

So to be able to compute the entries of M we need to specify D. One choice is to ignore fill-in
and use Mii = Aii. This yields

Dii = Aii −
A2
i,i−N

Di−N,i−N
−

A2
i,i−1

Di−1,i−1
. (10.2.4)

62 CHAPTER 10. PRECONDITIONERS

This model for choosing L and D in Equation (10.2.1) is called the Incomplete Cholesky de-
composition (IC)2. Another choice is to require equal row sums for A and M , i.e.,

∑n
j=1Aij =∑n

j=1Mij , leading to the recursive formula

Dii = Aii −
Ai,i−N (Ai,i−N +Ai−N,i−N+1)

Di−N,i−N
−
Ai,i−1(Ai,i−1 +Ai−1,i+N−1)

Di−1,i−1
, (10.2.5)

called the modified Incomplete Cholesky (MIC). The preceding choices for D can be combined
into one scheme by requiring that

Aii = Mii + ω (Mi,i−N+1 +Mi,i+N−1) , (10.2.6)

where 0 ≤ ω ≤ 1 a relaxation parameter. This leads to

Dii = Aii −
Ai,i−N (Ai,i−N + ωAi−N,i−N+1)

Di−N,i−N
−
Ai,i−1(Ai,i−1 + ωAi−1,i+N−1)

Di−1,i−1
, (10.2.7)

which is known as the relaxed Incomplete Cholesky (RIC). Note that for ω = 0 we get back
IC and for ω = 1 we get back MIC.

10.2.2 Repeated Red-Black (RRB)

Now we have discussed the Cholesky factorization and incomplete factorization methods as
IC, MIC, and RIC, it is much easier to understand how the RRB-method works and how it
can be applied as a preconditioner. However, at this point we shall only demonstrate how the
RRB-method works; mathematical details be found in Part IV of this thesis, in the Master
thesis by Elwin van ’t Wout [28]. His work is partly based on a paper by Brand [4]. A brief
but very clear discussion on the RRB-method can also be found in [14]; Section 8.13.

What the RRB-method basically does is making a decomposition

A = LDLT +R, (10.2.8)

with L a lower triangular matrix, D a block diagonal matrix, and R a matrix that contains the
adjustments made during a so-called lumping procedure. What a lumping procedure basically
does is making sure that we keep a 5-point stencil all the time during the factorization, i.e.,
the outer elements of a 9-point stencil are ‘lumped’ (read: added) to the other elements of
the 5-point stencil.

The Repeated Red-Black method thanks its name to the way grid points of a 2D grid are
colored and numbered. Suppose we have a grid of m by n grid points (nodes). The lower
left corner is (1, 1), the upper right corner (m,n). All “even” nodes are colored red, i.e, the
nodes xij that satisfy i+ j = 0 (mod 2), and all “odd” nodes are colored black, i.e., the nodes
with i + j = 1 (mod 2). Then the black nodes are numbered sequentially and the process
is repeated on the red nodes (or vice versa, there is no difference). Thus mn/2 nodes are
numbered right away, and for the other mn/2 nodes we repeat the procedure, hence the word
“repeated” in Repeated Red-Black.

If the red-black node numbering and black node elimination process is repeated k times
we call the method the RRB-k method. Clearly, there is a maximum number of levels: each
time the number of nodes is halved, and at some point only 1 node remains. If the total

2Confusingly, this is the same term as the Incomplete Cholesky decomposition before.

10.2. PRECONDITIONERS BASED ON LEAVING OUT FILL-IN 63

number of nodes were N = mn, and N were of the form N = 2`, then the maximum number
of levels is `.

Let us see how the RRB-method works. Take the system matrix A corresponding to the
2D Poisson problem with Dirichlet boundary conditions on a square grid of 8×8 internal grid
points. With a lexicographic ordering of the grid points the matrix A is pentadiagonal and
has size 64 × 64. We shall compute the sparsity pattern of L + D + LT if we go all the way
down until the final grid contains only 1 node.

Step 1: The 64 nodes are divided in 32 red (white) and 32 black (light-gray) nodes, see
Figure 10.1(a). The black nodes are numbered sequentially starting from 1 up to 32. Also,
the remaining 32 nodes are divided in two groups each consisting of 16 red nodes. The first
group is numbered sequentially starting from 33 up to 48, see the figure.

Step 2: The process is repeated for the remaining 16 red nodes, see Figure 10.1(b). The 16
nodes are again divided into two groups of red and black nodes, having 8 nodes each. Again
first the black nodes are numbered sequentially starting from 49 up to 56. Then half of the
red nodes is numbered 57 up to 60.

Step 3: The process is again repeated for the remaining 4 nodes, see Figure 10.1(c). We find
2 black nodes with numbers 61 and 62 and one of the 2 red nodes is labeled node 63.

Step 4: Finally, the 1 node that remains in the 4th level, see Figure 10.1(d), is labeled node
64.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(a) (b) (c) (d)

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 10.1: Recursive red-black numbering process for an 8× 8 grid.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 10.2: Complete RRB-numbering for an 8× 8 grid.

Putting everything together we find the numbering as given in Figure 10.3 (on the left). The
matrix corresponding to this numbering is given in Figure 10.3 (on the right).

64 CHAPTER 10. PRECONDITIONERS

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

RRB-numbering

Figure 10.3: On the left: Numbering obtained with the RRB-method. On the right: Corresponding
sparsity pattern of L+D+LT . Entries of the original matrix after a red-black ordering are denoted by
little crosses (×), fill-in entries are denoted by circles (◦), and the shaded areas indicate the positions
where fill-in has been dropped.

The occurence of fill-in can be explained using graph theory. In the beginning we have
a 5-point stencil, see Figure 19.10 (on the left). Elimination of the black nodes leads to a
9-point stencil (the red nodes now only depend on other red nodes), see Figure 19.10 (in the
middle). This causes the occurence of fill-in and this is where the lumping procedure is used:
the fill-in elements are added to the other elements so that a rotated 5-point stencil remains,
see Figure 19.10 (on the right).

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

=⇒

5-point stencil

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

=⇒

9-point stencil

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
Rotated 5-point stencil

Figure 10.4: Elimination of the black nodes leads to fill-in and a 9-point stencil. A lumping procedure

is used to obtain again a (rotated) 5-point stencil.

The RRB-(k)method can be used as preconditioner in the PCG algorithm version II.

10.2. PRECONDITIONERS BASED ON LEAVING OUT FILL-IN 65

During each iteration the preconditioning step Mz = LDLT z = r has to be solved. This is
done in three steps:

1. La = r is solved using forward substitution;

2. b = D−1a;

3. LT z = b is solved using backward substitution.

Because of the sparsity structure of L the RRB-method offers opportunities to parallelize it,
e.g., on the first level half of the computations can be done fully in parallel; unfortunately,
however, with increasing level number, more and more overhead is introduced and on very
coarse levels likely no longer all processors/cores have work to do (idling).

10.2.3 Incomplete Poisson (IP)

The forward and backward substitution steps that occur in the SSOR, IC and RRB precondi-
tioners are inherently sequential and therefore not suitable for a massive parallel architecture
such as the GPU. The solution is to find the inverse M−1 ≈ A−1 explicitly and use it directly
in version II of the PCG algorithm. For general sparse A this can be achieved with the Sparse
Approximate Inverse (SpAI) method. However, for the matrix resulting from discretization
of Poisson’s problem, there is a more straightforward approach [1] . The preconditioner that
is found in this way is the so-called Incomplete Poisson (IP) preconditioner. Recently, Rohit
Gupta implemented CG with the IP preconditioner (in combination with deflation) on the
GPU and applied the obtained solver to bubbly flow problems [7].

The IP preconditioner is found as follows. Decompose the SPD matrix M as M = D +
L+ LT , where L is the strictly lower part of M and D its diagonal. Set

K := I − LD−1, M−1 := KKT . (10.2.9)

Let us now consider the 2D Poisson problem on the unit square with Dirichlet boundary
conditions, see the first test problem in Section 3.1. Using an equidistant grid with mesh size
h = 1/(N + 1), where N is the number of internal grid points in the x- and y-direction, the
system matrix A that results from a finite differences approach is given by the stencil

1

h2

 −1
−1 4 −1

−1

 ,
or, equivalenty, the ith row of A is given by

rowi(A) = (ai−N , ai−1, ai, ai+1, ai+N)

=
1

h2
(−1,−1, 4,−1,−1).

(10.2.10)

Hence, for L,D−1, and LT we find

rowi(L) =
1

h2
(−1,−1, 0, 0, 0),

rowi(D
−1) =

1

h2
(0, 0,

1

4
, 0, 0),

rowi(L
T) =

1

h2
(0, 0, 0,−1,−1).

(10.2.11)

66 CHAPTER 10. PRECONDITIONERS

Next, with K defined in (10.2.9) we readily compute

rowi(K) = (
1

4
,
1

4
, 1, 0, 0),

rowi(K
T) = (0, 0, 1,

1

4
,
1

4
).

(10.2.12)

Note that the 1/h2 factor cancelled out. Finally, we find for M−1 = KKT the 7-point stencil

rowi(M
−1) = (ai−N , ai−N+1, ai−1, ai, ai+1, ai+N−1, ai+N)

= (
1

4
,

1

16
,
1

4
,
9

8
,
1

4
,

1

16
,
1

4
).

(10.2.13)

Fill-in has occured at the places ai−N+1 and ai+N−1; however, compared to the other elements
the numbers are rather small. Therefore, we may set them to zero and keep the 5-point stencil.
We thus approximate M−1 by a matrix M̃−1 that is given by the incomplete stencil

rowi(M̃
−1) = (

1

4
, 0,

1

4
,
9

8
,
1

4
, 0,

1

4
). (10.2.14)

Note that M̃−1 is still a symmetric matrix. From now on we will not write the ∼’s anymore.
The preconditioner M−1 given by the stencil (10.2.14) is called the Incomplete Poisson (IP)
preconditioner. We have thus explictly computed a matrix M−1 that can be used in version II
of the PCG algorithm, and leads to a very cheap matrix-vector product.

For the 2D Poisson problem we find for an inner grid point

rowi(AM
−1) = (ai−2N , ai−N−1, ai−N , ai−N+1, ai−2, ai−1, ai, ai+1, ai+2, ai+N−1, ai+N , ai+N+1, ai+2N)

=
1

h2
(−1

4
,−1

2
,−1

8
,−1

2
,−1

4
,−1

8
,
7

2
,−1

8
,−1

4
,−1

2
,−1

8
,−1

2
,−1

4
).

(10.2.15)

By multiplying the above stencil with (2/7)h2 we get

2

7
h2 · rowi(AM

−1) = (− 1

14
,−1

7
,− 1

28
,−1

7
,− 1

14
,− 1

28
, 1,− 1

28
,− 1

14
,−1

7
,− 1

28
,−1

7
,− 1

14
),

(10.2.16)

and we see that the matrix (2/7)h2AM−1 is quite close to the identity matrix. Footnote 1 says
that (2/7)h2AM−1 and AM−1 have the same condition number. Thereby we can conclude
that since the element-wise signed distance of the matrix (7/2)h2AM−1 to the identity matrix
is much smaller than the element-wise signed distance of the original matrix A to the identity,
the condition number of the former should be significantly smaller.

As the structure of the preconditioner M−1 is the same as the structure of the system
matrix A, i.e., both are given by a 5-point stencil, and the nonzeros occur in the exact same
places, the preconditioning step comes down to a similar SpMV that occurs already elsewhere
in the CG algorithm, i.e., the matrix M−1 can be stored the same way as A is stored, and
z = M−1r can be computed in the exact same way as q = Ap. The degree of parallelism is
thus n = N2, the number of rows of matrix A. The IP preconditioner is thus a very good
candidate for the GPU.

Chapter 11

Deflation

In this chapter we shall discuss briefly the deflation technique. Deflation is some kind of
preconditioning. Deflation can be used on top of ordinary preconditioning. Therefore, the
term two-level precondioning is quite common.

11.1 Introduction

We have seen in Section 9.3 that the rate of convergence of CG depends on the spectral
condition number κ; generally, the larger κ the slower the convergence, see Inequality (9.3.7).
Recall that for a symmetric n× n matrix A the spectrum of A, σ(A), can be ordered as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax,

and then, for an SPD matrix A the spectral condition number κ is defined to be

κ =
λmax

λmin
.

Apparently, κ can be made smaller by making λmin larger, or in some way by “eliminating”,
say, the first k < n smallest eigenvalues. This is how one may think of deflation in first
instance: getting rid of the “bad” (= small) eigenvalues to get a more favorable spectral
condition number.

But this is far from mathematically precise. Let us start to clarify things. Firstly, by
“eliminating” small eigenvalues we actually mean making them zero. This is achieved by
multiplying matrix A from the left by some matrix P . The spectrum of the singular matrix
PA will then look like

σ(PA) = {0, 0, . . . , 0, λPAk+1, λ
PA
k+2, . . . , λ

PA
n },

in which λPAj ≈ λj for j = k + 1, . . . , n. Secondly, for singular systems we cannot compute
the ratio λmax/λmin as the smallest eigenvalue equals zero. Instead, for singular systems it
turns out that the the effective condition number κeff defined by

κeff =
λPAn
λPAk+1

,

67

68 CHAPTER 11. DEFLATION

is appropriate, which is thus the ratio of the biggest and smallest nonzero eigenvalues. Thirdly,
a slightly different system, i.e.,

PAx̃ = Pb. (11.1.1)

must be solved; however, because of singularity of matrix PA, the solution x̃ is not unique.
After remedying this latter issue, by choosing P appriopriately, we shall have κeff < κ and
hence CG will likely converge faster.

11.2 The deflation matrix

The matrix P that does the trick is usually defined as follows.

Definition 11.2.1. Let A ∈ Rn×n be an SPSD matrix, and let Z ∈ Rn×k, rank(Z) = k,
k � n be given. Then,

1. E := ZTAZ is called the Galerkin matrix;

2. Q := ZE−1ZT is called the correction matrix;

3. P := I −AQ is called the deflation matrix,

or, written out,
P = I −AZ(ZTAZ)−1ZT . (11.2.1)

Remark 11.2.2. E ∈ Rk×k and P,Q ∈ Rn×n.

The matrix Z in the definition above is called the deflation subspace matrix [23] and is
chosen such that E−1 exists. The matrix Z can be written as Z = [z1, z2, . . . zk], in which the
column vectors zj (j = 1, 2, . . . , k) of Z are called the deflation vectors. Later we shall come
back how the deflation vectors zj are constructed.

Usually, for the deflation matrix the letter P is taken, because of the following fact:

Lemma 11.2.3. The matrix P defined by (11.2.1) is a projection.

Proof. One must show P 2 = P , which follows directly by writing things out.

11.3 Deflated Preconditioned Conjugate Gradients (DPCG)

The deflated is system (11.1.1) is solved with CG. However, as pointed out earlier, PA is a
singular matrix and therefore the solution x̃ is not unique and may not be the solution to the
system Ax = b. However, it can be shown [23] that the vector P T x̃ is unique and well-defined,
and satisfies P T x̃ = P Tx. For this reason we split x as

x = (I − P T)x+ P Tx. (11.3.1)

The first term on the RHS can be rewritten as

(I − P T)x = (I − (I −AZ(ZTAZ)−1ZT)T)x (by definition of P)

= (I − (I − Z(ZTAZ)−TZTA))x

= Z(ZTAZ)−1ZTAx (by using symmetry of ZTAZ)

= Z(ZTAZ)−1ZT b,

(11.3.2)

11.4. CHOICE OF THE DEFLATION VECTORS 69

and we see that this part thus does not depend on x. We can thus solve system (11.1.1) for
x̃ using CG and then the solution to the original system Ax = b is found via

x = Z(ZTAZ)−1ZT b+ P T b

= x̃+ Z(ZTAZ)−1ZT (b− Sx).
(11.3.3)

Moreover, because a preconditioner usually improves the rate of convergence of CG, we
instead consider the preconditioned system

M−1PAx̃ = M−1Pb, (11.3.4)

where M = GGT ≈ A is some preconditioner. Then version II of the PCG algorithm, see
Algorithm 5 can be applied. This results in the following algorithm called the deflated pre-
conditioned Conjugate Gradient (DPCG) algorithm, see Algorithm 6 (ready-to-implement).

Note that M occurs in a different expression than P and A, and therefore the deflation
method can be used on top of the PCG algorithm for any kind of preconditioner M .

11.4 Choice of the deflation vectors

So far we did not specify how the k deflation vectors are chosen. A natural choice is to take
for the deflation vectors the k eigenvectors that correspond to the k smallest eigenvalues. By
doing so we refer to the method as eigenvalue deflation. However, computing the eigenvectors
in advance costs too much computational effort, cancelling out the profit that we gain with
deflation. A cheap method to construct the deflation vectors is so-called subdomain deflation.

In this method the domain Ω is divided in k disjoint subdomains Ωi that cover the complete
domain, i.e. Ωi ∩ Ωj = ∅ for all i 6= j, and ∪ki=1Ωi = Ω. An example is given in Figure 11.1.

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •
Ω1 Ω2

Ω3 Ω4

Figure 11.1: Domain divided in four rectangular subdomains.

The subdomain deflation vectors zi for i = 1, 2, . . . , k are then defined via

(zi)j :=

{
1, xj ∈ Ωi,
0, xj ∈ Ω \ Ωi,

(11.4.1)

where xj are the grid points of the domain.

70 CHAPTER 11. DEFLATION

Input: A, M , P , Z, b, x, ε, niter,
maxiter

Output: x
r = b−Ax;1

r = Pr;2

z = M−1r;3

ρnew = rT z;4

for k = 1, 2, . . . ,maxiter do5

if ρnew < ε2‖b‖ then6

break;7

end8

if k = 1 then9

p = z;10

else11

β =
ρnew

ρold
;

12

p = z + βp; // AXPY13

end14

q = PAp; // MV15

σ = pT q; // dot product16

α =
ρnew

σ
;17

x = x+ αp; // AXPY18

if niter | j then19

r = b− PAx;20

else21

r = r − αq; // AXPY22

end23

z = M−1r; // solve24

ρold = ρnew;25

ρnew = rT z; // dot product26

end27

x = x+ Z(ZTAZ)−1ZT (b−Ax);28

Algorithm 6: The deflated PCG al-

gorithm (left preconditioning).

Chapter 12

The Multigrid (MG) method

12.1 Concepts of MG

Although the 1D Poisson’s problem can be solved much more efficiently by a special class
of solvers, we shall use it to demonstrate the basic principles behind the Multigrid (MG)
method. A similar analysis can be done for the 2D Poisson problem, but this does not lead
to more insight and the technical details are more involved. As we shall see the MG method
is based on two observations, namely

1. Many basic iterative schemes (such as Weighted Jacobi, Gauss-Seidel, SSOR) have the
so-called smoothing property, i.e., high frequency modes of the error are rapidly damped,
whereas low frequency modes are poorly damped.

2. On a coarser grid the low frequency error modes become more oscillatory, so (by obser-
vation 1) low frequency error modes can be effectively reduced by treating them on a
coarser grid. This is advantageous because (i) on a coarser grid the computations are
cheaper, and (ii) on a coarse grid the convergence rate is marginally better.

The two observations motivate the design of a nested iterative scheme: the MG method. Our
analysis is based on the document “Introduction to Multigrid Methods”, by Alfio Borz̀ı1, the
lecture sheets “A Multigrid Tutorial”, by William L. Briggs2, and the excellent books by
Pieter Wesseling [27] and Gerard Meurant [14]. In the next sections the two concepts are
illustrated and explained in more detail.

12.1.1 The smoothing property

Consider the 1D Poisson problem

−d2u

dx2
= f(x) in Ω = (0, 1),

u(0) = u(1) = 0.

(12.1.1)

The domain Ω is divided into n + 1 equal intervals, so that there are n + 2 grid points of
which n are internal grid points (the unknowns). The grid spacing is h = 1/(n+ 1), and each
grid point is located at jh for j ∈ {0, 1, 2, . . . , n+ 1}, see Figure 12.1.

1 www.kfunigraz.ac.at/imawww/borzi/mgintro.pdf
2 www.math.ust.hk/˜mawang/teaching/math532/mgtut.pdf

71

www.kfunigraz.ac.at/imawww/borzi/mgintro.pdf
www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf

72 CHAPTER 12. THE MULTIGRID (MG) METHOD

x0 x1 x2 x3 xn xn+1

x = 0 x = 1

Figure 12.1: Discretization of domain.

A finite difference approximation yields3

−vj−1 + 2vj − vj+1

h2
= f(xj), j ∈ {1, 2, . . . , n− 1}

v0 = vn+1 = 0.
(12.1.2)

where vj denotes the approximation to the exact solution u(xj). By defining v = (v1, v2, . . . , vn)T ,
and f = (f1, f2, . . . , fn)T = (f(x1), f(x2), . . . , f(xn))T the above equation can be written as

Av = f, (12.1.3)

where the n× n matrix A is given by the stencil
1

h2
[−1 2 − 1], i.e.

A =
1

h2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 . (12.1.4)

Let us first gather some properties of the system.

Lemma 12.1.1. The eigenvectors φk and eigenvalues λk of the linear system (12.1.3) are
given by

φk = (sin(kπjh))nj=1, and λk =
1

h2
(2− 2 cos(kπh)), for k = 1, 2, . . . , n. (12.1.5)

Proof. We have to solve Av = λv, or, equivalently, (A− λI)v = 0, leading to the recurrence
relation

− vj−1 + (2− λ̂)vj − vj+1 = 0, (12.1.6)

with λ̂ = h2λ, and v0 = vn+1 = 0. Substituting vj = rj(r 6= 0) yields −rj−1(r2−(2−λ̂)r+1) =
0, and since rj−1 6= 0 for all j we have to solve

(r2 + (λ̂− 2)r + 1) = 0. (12.1.7)

3 Use the Taylor expansions u(x±h) = u(x)±hu′(x) + 1
2
h2u′′(x)± 1

6
h3u′′′(x) +O(h4). Then add u(x+h)

and u(x− h) and rearrange terms, result:

−d2u

dx2
=
−u(x− h) + 2u(x)− u(x+ h)

h2
+O(h2).

A second-order accurate approximation is then found by neglecting the higher order (h2) terms.

12.1. CONCEPTS OF MG 73

The discrimant of this quadratic equation is given by D = (λ̂− 2)2 − 4, which is a parabola
with vertex 2 and zeros 0 and 4. Now observe that for all i the Gershgorin circles Di of h2A
are given by (use Theorem 6.1.14): aii = 2 and Ri = 1+1 = 2, hence Di = D(aii, Ri) = (0, 4)
for all i = 1, 2, . . . , n. Hence, because all λ̂ ∈ (0, 4) the discrimant D is negative, and the roots
of (12.1.7) are conjugate complex. Therefore, substitute r1 = exp(iϕ) and r2 = exp(−iϕ) into
(12.1.7) yielding (2− λ̂) = exp(iϕ)+exp(−iϕ), or, equivalently, λ̂ = 2−2 cos(ϕ). The general
solution of (12.1.6) is thus vj = arj1 + brj2 = a exp(ijϕ) + b exp(−ijϕ). With the boundary
condition v0 = 0 we find a = −b, which yields vj = 2ai sin(jϕ). Finally, with vn+1 = 0 we
compute: vn+1 = 2ai sin((n+ 1)ϕ) = 0 if and only if ϕ = kπ/(n+ 1) = kπh, k = 1, 2, . . . , n.
Let φk = (v1, v2, . . . , vn)T . Then, by using λ = λ̂/h2 and ϕ = kπh, we find4

φk = (sin(kπjh))nj=1, and λk =
1

h2
(2− 2 cos(kπh)), for k = 1, 2, . . . , n,

as desired.

Remark 12.1.2. The eigenvectors φk, k = 1, 2, . . . , n, are the discrete counterparts of the
eigenfunctions ϕk(x) of Poisson’s equation, for x ∈ [0, 1] we have ϕk(x) = sin(kπx), k ∈
N\{0}.

We have plotted ϕk(x) = sin(kπx) for k ∈ {1, 2, . . . , 5} and its discrete counterparts
φk = (sin(kπjh))nj=1 for n = 15 in Figure 12.2.

x

y

0 1

ϕ5ϕ4ϕ3 ϕ2 ϕ1

1

x

y

0 1

φ5φ4φ3 φ2 φ1

1

Figure 12.2: First 5 eigenfunctions ϕk(x) of the Poisson equation (on the left), and its discrete

counterparts for n = 15: eigenvectors φk = (sin(kπjh))15j=1, k ∈ {1, 2, . . . , 5} (on the right).

Lemma 12.1.3. The matrix A given by (12.1.4) is an SPD matrix.

Proof. Matrix A is symmetric, obviously, and from Lemma 12.1.1 it follows that all eigenvalues
of A are positive. Then Lemma 6.1.11 can be applied and we are done.

We now investigate what happens if we apply the Weighted Jacobi method (see Chapter 8
and Table 8.1) to the system (12.1.3). The iteration matrix of Weighted Jacobi is given by

QωJAC = I − ωD−1A. (12.1.8)

4We have quietly used the fact that if v is an eigenvector of A, then also cv is an eigenvector of A, for any
c ∈ C\{0}.

74 CHAPTER 12. THE MULTIGRID (MG) METHOD

Lemma 12.1.4. The eigenvalues µk of QωJAC are given by

µk(ω) = 1− h2ω

2
λk, (12.1.9)

where λk are the eigenvalues of the system matrix A given by (12.1.4), see Lemma 12.1.1.
Thus, written out, we have

µk(ω) = 1− ω(1− cos(kπh)) = 1− 2ω sin2(kπh/2). (12.1.10)

Moreover, the eigenvectors of QωJAC and A are the same.

Proof. Note that D−1 = (h2/2)I. Then,

(A− λkI)φk = 0

⇐⇒ φk − ωD−1(A− λkI)φk = φk

⇐⇒ (I − ωD−1A)φk = (1− h2ω

2
λk)φk.

We see that, if φk is an eigenvector of A with corresponding eigenvalue λk, then φk is also an
eigenvector of QωJAC with corresponding eigenvalue µk(ω) given by (12.1.9).

Remark 12.1.5. The property that Weighted Jacobi preserves the eigenvectors is the reason
that most introductions to MG at first instance analyze the properties of this BIM instead of
better ones such as Gauss-Seidel; it makes the analysis much easier and more transparant.

We can explicitly compute QωJAC to be

QωJAC =


1− ω 1

2ω
1
2ω 1− ω 1

2ω
. . .

. . .
. . .

1
2ω 1− ω 1

2
1
2ω 1− ω

 . (12.1.11)

Recall that for ω = 1 we get back the Jacobi method. From the structure of the iteration
matrix, see (12.1.11), we see that in the Jacobi case an iteration is nothing more than taking
the average over the neighbouring points. For 0 < ω < 1 a weighted average over three grid
points is taken.

For 0 < ω ≤ 1 we have |µk(ω)| < 1 for all k = 1, 2, . . . , n. This is best seen by using
expression (12.1.10). Hence ρ(QωJAC) < 1 (by definition of the spectral radius) and it is
guaranteed that the method converges. More precisely, we have ρ(QωJAC) = λ1 = 1− ω(1−
cos(πh)) = 1−O(h2) ≈ 1 for small h. Thus, although the method converges, the convergence
is very slowly because of ρ(QωJAC) ≈ 1. However, we now analyze Weighted Jacobi in the
context of MG, not as a method in itself, and therefore the overall convergence is not what we
are primarily interested in; rather we are interested in how different frequencies are damped,
or “smoothed”.

Therefore, we distinguish (roughly) between

1. Low frequencies (LFs): the set of eigenvectors φk with 1 ≤ k < 1
2(n+ 1);

12.1. CONCEPTS OF MG 75

2. High frequencies (HFs): the set of eigenvectors φk with 1
2(n+ 1) ≤ k ≤ n.

The error can be expanded in terms of eigenvectors; for an initial error e0 = x0 − x we
can write

e0 =
n∑
k=1

αkφ
k. (12.1.12)

In this respect we say that the error consists of n error modes. If we were to apply Weighted
Jacobi ν times, we would obtain

eν = QνωJACe
0 =

n∑
k=1

αkQ
ν
ωJACφ

k =
n∑
k=1

αkµ
ν
k(ω)φk.

Hence, the kth error mode is reduced by a factor µk(ω) in every iteration. In Figure 12.3 we
have plotted µk(ω) as function of k (the wavenumber) for several ω’s.

k

µk

ω = 1

ω = 2
3

ω = 1
2

ω = 1
3

ω = 0

n+ 11
2 (n+ 1)

“Low” frequencies “High” frequencies

µk = 1− 2ω sin2

(
kπ

2(n+ 1)

)

Figure 12.3: Eigenvalues µk(ω) of Weighted Jacobi for the 1D Poisson problem for different weight

factors ω.

From the figure we see that LFs cannot be damped efficiently, regardless the choice of ω
(µ1 is close to 1, always). However, for HFs the choice of ω can apparently make a difference
with regard to the spectrum. For that, let us introduce the smoothing factor:

Definition 12.1.6. The smoothing factor, denoted by µ, is the worst factor by which the
HFs are damped per iteration for a scheme with iteration matrix Q, thus:

µ := max{|µk| | µk ∈ σ(Q), 1
2(n+ 1) ≤ k ≤ n}.

In case of our Weighted Jacobi method we find that the optimal ω is ω∗ = 2
3 for which

µ = 1
3 . In Figure 12.3 this corresponds to the fat box. So, µνk ≤ µν = (1

3)ν for all 1
2(n+ 1) ≤

k ≤ n, and this number becomes very small after just a few iterations.

76 CHAPTER 12. THE MULTIGRID (MG) METHOD

As a numerical example, we consider system (12.1.1) with f(x) = 12x(1− x) and n = 15.
By elementary calculus, one readily computes that for this f the analytical solution to system
(12.1.1) is given by u(x) = x3(x − 2) + x. We apply Weighted Jacobi with ω = ω∗ = 2

3
(optimal).

With n = 15 there are 15 eigenvectors, or eigenmodes, given by φk = (sin(kπjh))15
j=1, k =

1, 2, . . . 15, see Figure 12.2.
To demonstrate the damping, or “smoothing” effect as mentioned earlier, we take for the

initial guess x0 just some random vector, see the black curve (iter 0) in Figure 12.4 (on the
right). Due to the highly oscillating nature of the initial error e0 = x0 − x, both the smooth
and oscillatory modes deliver a good part to the error, that is, by writing e0 like in (12.1.12)
all αk have a significant value, see the black curve (iter 0) in Figure 12.4 (on the left).

In Figure 12.4 the contribution of each error mode (on the left) to the error and the
error itself (on the right) is plotted for 0 (initial), 1, 2, 3 and 4 iterations with optimal
Weighted Jacobi. We see the oscillatory modes are rapidly damped (|αk| become zero rapidly
for 8 ≤ k ≤ 15), whereas the smooth modes are poorly damped, causing the error to become
very rapidly a smooth curve, this is the so-called “smoothing effect”, but also causing the
error slowly to converge towards zero. In Figure 12.5 the approximate solution xi is plotted
for i = 0 (initial guess), 1, 2, 3 and 4 (on the left) and for i = 10, 20, 30, 40, 50, 100 and 1000
(on the right). We see that the approximate solution very rapidly becomes a smooth curve,
but also that it takes several 100 iterations to converge towards the analytical solution due
to the poor damping of the smooth error modes.

12.1.2 Exploiting coarse grids

In the previous section we saw how relaxation schemes effectively damp out oscillatory modes,
but that smooth modes are hardly influenced at all. At first sight this may seem a limitation;
however, we can use the smoothing property to good advantage by dealing with them on
coarser grids. A smooth error mode namely appears to be more oscillatory on a coarser grid!
Let us first explain what we exactly mean with a “fine” and a “coarse” grid.

For convenience, assume that the number of internal grid points n is odd, e.g., n = 2k− 1
for some positive integer k. With fine grid Ωh we mean the original grid, i.e., for the 1D
model Poisson problem,

Ωh := {x ∈ R | x = xj = jh, h = 1/(n+ 1), 0 ≤ j ≤ n+ 1},

so
Ωh : x0, x1, x2, . . . , xn+1.

Set H = 2h, hence a two times bigger grid spacing than the fine grid; accordingly, the coarse
grid ΩH is given by

ΩH := {x ∈ R | x = xj = 2jh, h = 1/(n+ 1), 0 ≤ j ≤ (n+ 1)/2},

so
ΩH : x0, x2, x4, . . . , xn+1.

12.1. CONCEPTS OF MG 77

|αk|

wavenumber k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LFs HFs

0

0.05

0.10

0.15
iter 0
iter 1
iter 2
iter 3
iter 4

error

position x

0 0.25 0.50 0.75 1
-0.30

-0.20

-0.10

0

0.10

0.20

0.30

Figure 12.4: Weighted Jacobi applied to the 1D Poisson problem (12.1.1) with f(x) = 12x(1− x) on

a grid with n = 15 internal grid points. On the left: The contribution of the eigenvectors (there are

15) to the error after 0 (initial error), 1, 2, 3 and 4 iterations with optimal Weighted Jacobi (ω∗ = 2
3).

We see that the contribution of the HFs rapidly decreases, while the contribution of the LFs are much

slower damped. On the right: The error after 0, 1, 2, 3 and 4 iterations with optimal Weighted Jacobi.

We see that the highly oscillating pattern, consisting of equal contributions of LF modes and HF

modes, is very rapidly reduced to a pattern which consists mainly of LF modes, this is the so-called

“smoothing effect”. As we saw on the left, the LF modes are poorly damped, causing the error very

slowly to converge towards zero.

position x

0 0.25 0.50 0.75 1
0

0.10

0.20

0.30

0.40

position x

0 0.25 0.50 0.75 1
0

0.10

0.20

0.30

0.40

Figure 12.5: Weighted Jacobi applied to the 1D Poisson problem (12.1.1) with f(x) = 12x(1− x) on

a grid with n = 15 internal grid points. On the left : The approximate solution after 0 (initial guess),

1, 2, 3 and 4 iterations with optimal Weighted Jacobi (ω∗ = 2
3). The highly oscillating approximation

is very rapidly reduced to a smooth approximation thanks to the smoothing property of Weighted

Jacobi. On the right: The approximate solution after 10, 20, 30, 40, 50, 100 and 1000 iterations. Due

to the slow damping of LF error modes it takes Weighted Jacobi several 100 iterations to approximate

the analytical solution (the fat black curve on the interval [0, 1]) accurately enough.

78 CHAPTER 12. THE MULTIGRID (MG) METHOD

Now consider again the 1D Poisson problem (12.1.1) for n = 15. On the fine grid, Ωh,
there are 15 eigenmodes, i.e., just as many as there are internal grid points. With H = 2h
the coarse grid, ΩH , has 7 internal grids points, and there are accordingly 7 eigenmodes. For
Ωh the eigenmodes φkh are given by

φkh = (sin(kπjh))15
j=1, k = 1, 2, . . . 15,

whereas for ΩH the eigenmodes φkH are given by

φkH = (sin(kπjH))7
j=1, k = 1, 2, . . . 7.

We see that the smooth eigenmodes are preserved since

φkh,2j = sin

(
kπ(2j)

n+ 1

)
= sin

(
kπj

(n+ 1)/2

)
= φkH,j

for k = 1, 2, . . . , 7. For k > (n+ 1)/2, φkh are invisible on ωH because

φkh,2j = sin

(
kπ(2j)

n+ 1

)
= − sin

(
2πj(n+ 1− k)

n+ 1

)
= − sin

(
π(n+ 1− k)j

(n+ 1)/2

)
= −φn+1−k

H,j .

This phenomenon is called aliasing, see Figure 12.6.

Ωh

y

0 1

φ7 φ3 φ1

LFs

1

ΩH

y

0 1

φ3

φ7

φ1

1

Ωh

y

0 1

φ15

HFs

1

ΩH

y

0 1

φ15 → −φ1

1

Figure 12.6: Smooth eigenmodes (LFs) are preserved on the coarse grid, oscillatory modes (HFs)

become aliased.

What we see is that on the coarse grid the smooth mode appears to be relatively higher
in frequency. For example, the eigenmode φ3 on the fine grid is the 3th out of a total of 15,
hence 1/5 the way up the spectrum. However, on the coarse grid φ3 is the 3th out of a total
of 7, hence 3/7 the way up the spectrum. Hence relaxation on a smooth mode will be more
effective when performed on a coarser grid.

12.2. TWO-GRID (TG) METHOD 79

12.2 Two-grid (TG) method

The problem to be solved (12.1.3) lives on the fine grid Ωh, let us write

Ahuh = fh. (12.2.1)

As pointed out earlier, we want to approximate this problem on a coarser grid; therefore, on
ΩH we formulate the following problem:

AHuH = fH . (12.2.2)

Here AH is called the coarse grid matrix and in a moment we shall discuss how we can get
this AH . Let us first explain how we map from the fine grid to the coarse grid and vice versa.

12.2.1 Restriction and prolongation

Let
Uh : Ωh −→ R and UH : ΩH −→ R

be the sets of fine and coarse grid functions, respectively. To go from the fine grid to the
coarse grid we use a restriction operator

RHh : Ωh −→ ΩH , (12.2.3)

and to map from the coarse grid to the fine grid we use a interpolation or prolongation operator

P hH : ΩH −→ Ωh. (12.2.4)

Then, for uh ∈ Uh and uH ∈ UH we have

uH = RHh uh and uh = P hHuH .

The prolongation operation P hH is defined by linear interpolation, i.e., by writing uh =
(uh,1, uh,2, . . . , uh,n)T and uH = (uH,1, uH,2, . . . , uH,(n−1)/2)T , thus only taking the unknowns

into consideration, we have uh,1 = 1
2uH,1, uh,n = 1

2uH,(n−1)/2, and

uh,2j = uH,j , for j = 1, 2, . . . , (n− 1)/2,

uh,2j+1 = 1
2(uH,j + uH,j+1), for j = 1, 2, . . . , (n− 3)/2.

Hence, written as a matrix, P hH ∈ Rn×(n−1)/2 is given by

P hH =



1
2 0 0 . . .
1 0 0 . . .
1
2

1
2 0 . . . ∅

0 1 0 . . .
0 1

2
1
2 . . .

0 0 1 . . .
...

...
...

...
...

...
. . . 1 0 0
. . . 1

2
1
2 0

. . . 0 1 0
∅ . . . 0 1

2
1
2

. . . 0 0 1

. . . 0 0 1
2



. (12.2.5)

80 CHAPTER 12. THE MULTIGRID (MG) METHOD

Remark 12.2.1. Note that P hH has full rank, hence Null(P hH) = ∅.

An example of prolongation is given in Figure 12.7.

ΩH

y

0 1

Ωh

y

0 1

Figure 12.7: Prolongation by linear interpolation.

For the restriction operator there are several options. The simplest one is so-called injec-
tion which is nothing more than taking the value on the coarse grid to be the same as the corre-
sponding value on the fine grid, and forget about the grid points that are not part of the coarse
grid. So, for uh = (uh,1, uh,2, . . . , uh,n)T ∈ Uh and uH = (uH,1, uH,2, . . . , uH,(n−1)/2)T ∈ UH
the injection method in 1D is given by

vH,j = vh,2j , for j = 1, 2, . . . , (n− 1)/2.

Ωh

y

0 1

ΩH

y

0 1

Figure 12.8: Restriction by injection.

An example of restriction by injection is given in Figure 12.8. Restriction by full weighting
is a second method; in 1D it is given by

vH,j = 1
4(vh,2j−1 + 2vh,j + vh,2j+1), for j = 1, 2, . . . , (n− 1)/2.

An example of restriction by full weighting is given in Figure 12.9.

12.2. TWO-GRID (TG) METHOD 81

Ωh

y

0 1

ΩH

y

0 1

Figure 12.9: Restriction by full weighting.

Written out as a matrix, RHh ∈ R(n−1)/2×n is given by

RHh =



1
4

1
2

1
4 0 0 0 . . .

0 0 1
4

1
2

1
4 0 . . . ∅

0 0 0 0 1
4

1
2 . . .

...
...

...
...

...
...

...
...

...
...

...
...

. . . 1
2

1
4 0 0 0 0

∅ . . . 0 1
4

1
2

1
4 0 0

. . . 0 0 0 1
4

1
2

1
4


Remark 12.2.2. Note that rank(RHh) = (n− 1)/2, hence nullity(RHh) = (n+ 1)/2.

Remark 12.2.3. Note that P hH = 2(RHh)T . Although not essential, this relationship, also
called variational condition is highly useful as we shall see later on.

Let us now focus on how to obtain the coarse grid matrix AH . There are basically two
ways [14, 27] to choose AH , namely

1. Discretization of the PDE on the coarse grid, which is often referred to as discretization
coarse grid approximation (DCA);

2. The Galerkin coarse grid approximation (GCA) by letting AH given by

AH = RHh AhP
h
H . (12.2.6)

Remark 12.2.4. Equation (12.2.6) is usually referred to as the Galerkin condition.

We should check the following claim.

Lemma 12.2.5. AH given by (12.2.6) is symmetric.

Proof. Indeed,

(AH)T = (RHh AhP
h
H)T = (P hH)TATh (RHh)T = 2RHh Ah · 1

2P
h
H = RHh AhP

h
H = AH ,

where we have used the symmetry of Ah and the relationship P hH = 2(RHh)T .

82 CHAPTER 12. THE MULTIGRID (MG) METHOD

In case of our 1D Poisson problem, it is easily checked that the DCA and GCA method
lead to the same result5, namely

AH =
1

(2h)2
[−1 2 − 1]. (12.2.7)

12.2.2 Pre- and post-smoothing

Let us formalize the idea of smoothing. Henceforth we shall denote the smoothing process by

u = S(u,A, b, ν). (12.2.8)

This notation means that ν steps are performed on the system Au = b with some smoothing
method S, i.e., by writing A = M −N the smoothing process may be represented as

ui+1 = Sui +M−1b, (12.2.9)

where S = M−1N is the iteration matrix. For an initial approximation u0 after ν iterations
we have

uν = Sνu0 +R(ν)b, (12.2.10)

where

R(ν) =

ν−1∑
j=1

SjM−1 = (Sν−1 + Sν−2 + · · ·+ I)M−1. (12.2.11)

This is easily checked by writing things out. All this is performed in one iteration, therefore
u is consecutively overwritten, and the indices i are omitted in (12.2.8).

12.2.3 The TG algorithm

Using the notations introduced in the preceding sections, the two-grid (TG) method is given
by the following iterative scheme.

Step Mathematics Description

1. uh = S(uh, Ah, fh, ν1) Pre-smoothing on fine grid
2. rh = fh −Ahuh Computing residual
3. rH = RHh rh Restriction
4. Solve AHeH = rH Solving exactly on coarse grid
5. eh = P hHeH Prolongation
6. uh = uh + eh Coarse-grid correction
7. uh = S(uh, Ah, fh, ν2) Post-smoothing on fine grid

Table 12.1: The two-grid (TG) method.

Like any method the TG method can be put in the form (8.1.2) for some iteration matrix
Q = QTG.

5 For the DCA method substitute h = 2h into (12.1.2), and for the GCA method just straightforwardly
compute AH = RH

h AhP
h
H .

12.3. THE MG ALGORITHM 83

Lemma 12.2.6. The iteration matrix QTG of the TG method is given by

QTG = Sν2(I − P hHA−1
H RHh Ah)Sν1 . (12.2.12)

Proof. First consider only Steps 2 to 6 (thus no pre- and post-smoothing). We then find

uh = uh + eh (by Step 6)

= uh + P hHeH (by Step 5)

= uh + P hHA
−1
H rh (by Step 4)

= uh + P hHA
−1
H RHh rh (by Step 3)

= uh + P hHA
−1
H RHh (fh −Ahuh) (by Step 2)

= (I − P hHA−1
H RHh Ah)uh + P hHA

−1
H RHh fh

= QCGCuh + P hHA
−1
H RHh fh,

where we introduced the matrix QCGC, the coarse grid correction matrix, which is thus given
by

QCGC = I − P hHA−1
H RHh Ah. (12.2.13)

Next we apply equation (12.2.10) two times and forget about the terms that do not contribute
to the iteration matrix. In the end post-smoothing is used, hence uh = Sν2uh, according to
(12.2.10). Before that, the course grid correction is applied, hence uh = Sν2QCGCuh, with
QCGC given by (12.2.13), and even before that, in the beginning, pre-smoothing is used, hence
uh = Sν2QCGCS

ν1uh = QTGuh, with QTG indeed given by (12.2.12), as desired.

Schematically the TG method can be presented as in Figure 12.10.

Solve AHeH = rH

Restrict rH = RHh rh Interpolate eh = P hHeH

Compute rH = fh −Ahuh Correct uh = uh + eh
Relax ν1 times on Ahuh = fh Relax ν2 times on Ahuh = fh

Ωh

ΩH

Figure 12.10: The TG method.

12.3 The MG algorithm

Until now we solved the problem Au = f using only two grids with the TG method, see
Table 12.1. However, it is not realistic that we can solve Step 4, i.e., AHeH = rH , in the
TG method exactly, because the amount of work is about 4 times less, but for large n the
problem can still be quite large. The solution is simple: we apply the TG method recursively
to Step 4.

84 CHAPTER 12. THE MULTIGRID (MG) METHOD

To be able to make this mathematically precise, we need some new notation. Assume that
the number of grid points in x- and y-direction is n = 2k − 1 for some nonnegative integer k.
This choice of n allows a maximum number of k grids. However, usually it is not practical to
go all the way down to a grid with only 1 grid point. So instead assume that we have L+ 1
grids. We generate a set of grids: (Ω`)

L
`=0 = {Ω0,Ω1, . . . ,ΩL}, where Ω0 denotes the coarsest

grid, and ΩL the finest grid. The meshsizes of the grids are halved each time starting from
hL = h. Now let

1. A` be the approximation of A on Ω`;

2. f` be the corresponding RHS on Ω`;

3. R`−1
` : Ω` −→ Ω`−1 be the restriction operator;

4. P `+1
` : Ω`+1 −→ Ω` be the prolongation operator; and

5. S` be the iteration matrix of the smoothing method on Ω`.

We write S(ũ`, u`, A`, f`, ν) to express that we perform ν smoothing iterations on the system
A`u` = f`. Although the numbers ν can be different on each grid, let us take for now a fixed
number ν1 of pre-smoothing steps and a fixed number ν2 of post-smoothing steps.

Using the preceding notation the Multigrid algorithm is given by the following scheme.

MG(u`, A`, f`, `);1

if ` = 0 then2

Solve A`u` = f`;3

else4

u` = S(u`, A`, f`, ν1); // Pre-smoothing5

r`−1 = R`−1
` (fh −A`u`); // Coarse grid6

residual

A`−1 = R`−1
` A`P

`+1
` ; // Coarse grid matrix7

(GCA)
for i = 1, 2, . . . , γ` do8

MG(u`−1, A`−1, f`−1, `− 1); // Recursive call9

end10

u` = u` + P `+1
` u`−1; // Coarse grid correction11

u` = S(u`, A`, f`, ν2); // Post-smoothing12

end13

Algorithm 7: Recursive Multigrid algorithm.

A Multigrid cycle depends on γ`, ν1 and ν2. The first parameter says how many times the
same cycle is repeated. This is best illustrated some examples. Take L grids, γ` = 1 for all
` = 0, 1, 2, . . . , L, and ν1 = ν2 6= 0. This type of cycle is called, for obvious reasons, a V-cycle,
see Figure 12.11. To be able to visualize other type of cycles we take L = 3, thus 4 grids.
When γ` = 2 for all ` = 0, 1, 2, 3, and ν1 = ν2 6= 0, we get a W-cycle, see Figure 12.12 (on the
left), and for γ` = 1 for all ` = 0, 1, 2, 3, and ν1 = 0, ν2 6= 0 we get a so-called sawtooth-cycle,
see Figure 12.12 (on the right).

12.3. THE MG ALGORITHM 85

Solve A0e0 = r0

Restrict rL−1 = RL−1
L rL

Restrict rL−2 = RL−2
L−1rL−1

Restrict rL−3 = RL−3
L−2rL−2

Interpolate eL = PLL−1eL−1

Interpolate eL−1 = PL−1
L−2 eL−2

Interpolate eL−2 = PL−2
L−3 eL−3

Compute rL = fL −ALuL
Relax ν1 times on ALuL = fL

Compute rL−1 = fL−1 −AL−1uL−1
Relax ν1 times on AL−1uL−1 = fL−1

rL−2 = fL−2 −AL−2uL−2
Relax on AL−2uL−2 = fL−2

Correct uL = uL + eL
Relax ν2 times on ALuL = fL

ΩL

ΩL−1

ΩL−2

ΩL−3

Ω0

Figure 12.11: A Multigrid V-cycle.

Ω3

Ω2

Ω1

Ω0

Ω3

Ω2

Ω1

Ω0

Figure 12.12: A Multigrid W-cycle (left) and sawtooth-cycle (right).

86 CHAPTER 12. THE MULTIGRID (MG) METHOD

Part III

SCIENTIFIC COMPUTING
WITH CUDA

87

Chapter 13

GPU architecture

We discuss briefly a GPU’s architecture as it is necessary to understand how to develop
efficient CUDA software. The next discussion is far from complete and only focusses on the most
important notions for us; for full details please consult the NVIDIA CUDA C Programming
Guide version 4.0 [17] (this is the latest version in which the new Fermi architecure is included
also). Also the book written by Kirk and Hwu [12] contains lots of information on this subject.
We shall briefly mention the differences between the latest and older generation GPUs. We
shall use the terms GPU and device interchangeably.

13.1 Architecture category

A GPU belongs to the architecture category of single-input multiple-data (SIMD) processors,
which basically means that many processors do the same computations for different data in
parallel. While each processor may run at ordinary speeds, say 1 GHz, thousands of these
processors integrated in one device yield extreme crunch power. In the context of a GPU
we rather speak about single-input multiple-threads (SIMT). What a thread is, is discussed
below.

13.2 How work is executed on the GPU

Before we can discuss the architecture of a GPU, we must already say something about the
way a program on the GPU is executed and how work is scheduled. It basically works as
follows. When running CUDA software the program will on its way invoke one or multiple
so-called kernels. A kernel in fact is a portion of the program that is executed on the GPU
and can be isolated into a C language function that is executed as many times as there are
threads. A CUDA thread is thus one instance of a job that has to be done in parallel, and for
the job the thread uses its own data, hence an SIMD or SIMT architecture.

The threads are organized by the programmer by defining a grid and making a division
of the grid in thread blocks or just blocks, see Figure 13.1. Each block consists of a batch of
threads, and can be a 1D, 2D or 3D object. The maximal number of threads which is allowed
depends on the compute capability, see Section 13.3.

The blocks are divided amongst the physical processors of the GPU: the streaming multi-
processors, see Section 13.4. Threads inside a block are grouped into warps. A warp consists
of typically of 32 threads with consecutive thread indices. The scheduler that picks up threads

89

90 CHAPTER 13. GPU ARCHITECTURE

Figure 13.1: The host issues a succession of kernel invocations to the device. Each kernel is executed

as a batch of threads organized as a grid of thread blocks.

for execution does so in granularity of a warp. A thread (resp., block) is identified by its thread
index (resp., block index), which is the thread (resp., block) number within the block (resp.,
grid). Index is commonly abbreviated to ID.

13.3 Compute capability

Every CUDA compatible GPU is tagged with a 2 digit number: the compute capability. The
number expresses to what degree the GPU can perform different tasks and operations and
indicates the availability and amount of different resources on the device, e.g., whether the
device can perform double precision arithmetic, the amount of registers available, the maximal
number of threads allowed per block, the throughput of arithmetic instructions for different
variable formats, etc.

More precisely: the compute capability number consists of a major revision number and
a minor revision number, notation: c.x. The major revision number (c = 1 or 2) indicates
the core architecture, and the minor revision number indicates smaller improvements with
respect to core architecture and available resources and newly added features. At the moment
of writing the latest architecture is the so-called Fermi architecture with compute capability
2.0 or 2.1, e.g., the GeForce GTX 580. The Fermi architecture often requires algorithms to
be (completely) redesigned such that optimal performance is achieved. The reason for this

13.4. PHYSICAL PROCESSORS 91

is that for Fermi GPUs the register bandwidth is significantly higher than before, see also
Section 15.2.6.

Figure 13.2: Layout of a GPU. The basic entity is a Streaming Multiprocessor (SM), that has its

own cache and shared memory and that contains a number (8− 48) streaming processors (SPs) that

work synchronously (SIMD).

13.4 Physical processors

Consider Figure 13.2. A GPU is equipped with a number of streaming multiprocessors (SMs).
The number of SMs varies from 1 (Quadro NVS 295) up to, say, 4×30 (Tesla C1070). Each
SM contains a number of streaming processors (SPs) also called CUDA cores or Shader Units
(SUs). The amount of SPs depends on the compute capability of the GPU. For older GPUs,
i.e., GPUs of compute capability 1.x, an SM consists of 8 SPs, whereas for GPUs of compute
capability 2.0 an SM consists of 32 SPs, and GPUs of compute capability 2.1 have 48 SPs
per SM. Furthermore, an SM has an Instruction Unit (IU) also called warp scheduler which
provides the instructions and schedules the warps. Older architectures (1.x) indeed have 1
IU, but the SMs of the Fermi have in fact 2 IUs; one takes care of the even thread IDs while
the other takes care of the odd thread IDs.

92 CHAPTER 13. GPU ARCHITECTURE

13.5 Memory hierarchy

Again consider Figure 13.2. A GPU has different layers of memory. The main memory is
the global memory or device memory (DRAM). It is the memory with the biggest capacity,
namely up to 6GB (Tesla C2070), but is also the slowest (400 − 600 cycles latency). Parts
of the DRAM are dedicated to constant memory and texture memory which are read-only.
Within each SM the constant memory and texture memory are accessible through constant
cache and texture cache respectively.

Each SM contains some shared memory. Shared memory is very fast memory (30 − 50
cycles latency), but it is also very scarce. GPUs of compute capability 1.x have 16 banks
of 1KB each, whereas GPUs of compute capability 2.0 and 2.1 have 32 banks with a total
capacity of 48KB.

Further each SM has a set of registers. Registers are the fastest memory type, although
shared memory without bank conflicts can compete with the older type of registers (compute
capability 1.x) [17]. The latest architecture (Fermi) GPUs have a set of registers that are
significantly faster than shared memory: up to 8× according to Volkov [24]. GPUs of compute
capability 1.0 and 1.1 have 8K (= 8192) registers, GPUs of compute capability 1.2 and 1.3
have 16K registers, and GPUs of compute capability 2.0 and 2.1 have 32K registers. Although
the numbers seem okay, they usually are the limiting factor in GPU program designing.

Further, the GPU has some cache (not depicted in the figure). With older architectures
the GPU has texture cache only; with the Fermi architecture the GPU has 768 KB L2 cache
and (adjustable) 16 up to 48 KB L1 cache per SM.

The memory types come with a set of rules which make the GPU harder to program
than the CPU. In Sections 15.1.3 and 15.1.4 we discuss two very important notions: memory
coalescing and bank conflicts.

Chapter 14

CUDA C programming environment

By this point you may possibly wonder what CUDA actually stands for since we have used the
abbreviation already several times in the previous sections. CUDA stands for “Compute Unified
Device Architecture” and basically is an extension to the C programming language which
offers developers a relatively easy environment to program the GPU. CUDA was introduced
somewhere around november 2006, and from that moment programming on the GPU for
scientific purposes really took off.

At the moment of writing there are already quite some libraries available with implemen-
tations of, e.g., BLAS, Conjugate Gradients (CG), and FFT, on the GPU, so programming
from scratch is no longer really necessary if your problem can be put in a form with lots
of library function calls. Examples of libraries are CUBLAS, CUFFT, MAGMA BLAS, CUSP,
Iterative CUDA.

In the next sections we briefly discuss the structure of programming with CUDA. For more
information we refer to the books [12] and [21].

14.1 Thread organization

In Section 13.2 we already introduced kernels and we saw how threads are organized. Now
it is time to provide more details on this subject. When invoking a kernel one must specify
the dimension of the grid, i.e., the number of blocks, and the dimension of the blocks, i.e., the
number of threads per block. In CUDA this is achieved via:

kernel <<< dimGrid, dimBlock >>> (...);

Both dimGrid and dimBlock are of the dim3−format; both grids and blocks can be
1D, 2D or 3D objects (x−, y−, z−direction). The number of blocks and threads allowed
depends on the compute capability of the device, see Section 13.3. Between brackets we put
the parameters and data required by the kernel, e.g., in case of a matrix-vector product, we
specify two input arrays, say A and x, and an output array, say y, also we must specify the
dimension of matrix A, say n for an n × n matrix. The dimensions of the grid and blocks
can be retrieved from the kernel’s code via statements like: Gx = gridDim.x, and By =
blockDim.y.

The index of the blocks and threads in x−, y− and z−direction can be retrieved via
statements like: by = blockIdx.y, and tz = threadIdx.z. By combining the block
and thread indices we can assign to each thread in a particular block a unique global x−

93

94 CHAPTER 14. CUDA C PROGRAMMING ENVIRONMENT

and y−index, e.g., for a 2D grid consisting of 2D blocks: threadIDx = blockDim.x

* blockIdx.x + threadIdx.x and threadIDy = blockDim.y * blockIdx.y +
threadIdx.y. Likewise we can compute a unique global index when one prefers to use
just one running index. This comes in handy when we want each thread to do different work.

Chapter 15

Strategies for a fast implementation

For details on the most of this matter one may consult the NVIDIA CUDA C Programming
Guide [17], the excellent book by Kirk and Hwu [12] or just google for the Dr. Dobbs “CUDA,
Supercomputing for the Masses”-articles on the Internet. We confine ourselves by just listing
keywords and giving a brief discussion on each so that the reader is fully aware of what
techniques are available.

15.1 General strategies

In this section we discuss some basic, frequently used techniques to get fast CUDA code.

15.1.1 Library functions

This technique is obvious: by using library functions rather than building own kernels, one
has the advantage that as soon as a new version of the specific library is released one may
instantenously get a faster program (after compiling) without doing any effort. The increase
in performance is due to clever redesigning of the algorithms and taking in account the
latest GPU architecures when implementing. A good example is the CUBLAS library which
contains GPU implementations of the so-called BLAS (Basic Linear Algebra Subprograms).
The implementations of the routines in the latest releases, CUBLAS v3.2 and CUBLAS v4.0,
are much faster than in earlier releases.

15.1.2 Optimal tiling

Tiling, as the most general and important technique, is widely used for optimization in CUDA
programs. Tiling basically means dividing the problem into blocks, or tiles, and assigning
them to the different streaming multiprocessors (SMs) of the GPU. The goal is to do the
tiling in such a way that the GPU’s resources are addressed as optimal as possible. A basic
example to illustrate tiling is the matrix-matrix (or matrix-vector) multiplication: a different
tiling may yield a big increase (or decrease) in performance. An important factor here is how
the data is actually stored (row-wise, column-wise). For optimal tiling of GPU programs one
must have a very good insight in both the problem and the architecture of the GPU.

95

96 CHAPTER 15. STRATEGIES FOR A FAST IMPLEMENTATION

15.1.3 Global memory and memory coalescing

First of all, one should always strive for transferring big chunks of data instead of transferring
many small data chuncks as the former is usually faster. The reason for this is that the global
memory latency is in the order of 400-600 cycles of computing time which is very high.

Further, to the global memory applies the notion of so-called coalesced memory. The global
memory bandwidth is highest when the global memory accesses can be coalesced within a
half-warp, e.g., for 16 threads in a half-warp the consecutive 4-byte words must fall within
64-byte memory boundaries, and the 16 threads must access the words in sequence: the kth
thread in the half-warp must access the kth word.

The penalty for non-coalesced memory transactions varies according to the actual size
of the data type and architecture of the device, hence depends on the compute capability.
Basically it holds that for older architectures (compute capability 1.0 and 1.1) non-coalesced
memory transactions are serialized into 16 transactions, for newer architecturesit only results
in two memory transactions instead of 16. However, in both cases performance is degraded.

If memory coalescing is not possible right away, one may consider to pad the data with
zeros such that the data is aligned along 64-byte boundaries, or, for example, one may consider
to use textures, see Section 15.2.3. In Section 20.2.6 a small case study is presented to
illustrate the importance of coalesced memory. This study also shows how textures can be
used to increase throughput.

15.1.4 Shared memory and bank conflicts

Shared memory is on chip memory and is therefore significantly faster than the global memory.
Shared memory is slower than registers and is best used for communication between the treads.
The shared memory is divided amongst so-called memory banks that are equal in size. Each
memory bank holds a successive word and so consecutive accesses by consecutive threads are
very fast. Bank conflicts occur when there are requests from multiple threads for the same
memory bank. In that case the memory access are serialized. If all threads request data from
one bank then a broadcast-mechanism is used and all threads recieve the data at the same
time, hence no serialization. In Figure 15.1 on the left an example of shared memory bank
conflicts is given.

15.1.5 Sum reduction

Sum reduction is discussed in more detail in Section 17.2. For now: sum reduction basically
is adding together n numbers (preferably n is a power of 2) in a parallel and recursive way.
Although there are different manners, we shall see in Section 17.2 how sum reduction is
implemented most efficiently on the GPU. In Figure 15.1 on the right the concept of sum
reduction without warp divergence and bank conflicts is already shown; see Section 17.2 how
this scheme is derived. Not only can sum reduction be benificial to compute a large sum
faster it also improves the accuracy with which the sum is computed significantly compared
with a straightforward sequential computation.

15.2. ADVANCED STRATEGIES 97

Figure 15.1: On the left: bank conflicts. On the right: sum-reduction without divergence and bank

conflicts.

15.2 Advanced strategies

Below follows an enumeration of somewhat more advanced techniques. Depending on the
device’s architecture the following techniques may increase performance significantly, but it
may also occur that no performance gain is obtained.

15.2.1 Pointers

In C is it slightly faster to march through arrays via pointers rather then by indexing. So too
in CUDA. Usually it will be slightly faster because this allows direct memory manipulation;
however, sometimes the differences can be so small that thousands of iterations are required
to even notice them. By running two instances of the same kernel, one with and one without
pointers, you can see whether they contribute to the kernel’s performance or not.

15.2.2 Page-locked memory

As opposed to ordinary pageable host memory the runtime environment also offers the possi-
bility to allocate so-called page-locked or pinned memory. Page-locked means that the memory
pages are locked, thus that physical adresses remain unchanged and that the memory will not
being swapped out by the operating system. The main benefit is that page-locked memory
can be up to twice as fast as ordinary host memory. If in addition the memory is allocated
as “write-combining” even higher bandwidth can be achieved, for more details consult [17].
However, page-locked memory is very scarce and should be used sparingly since the host may
slow down or even hang.

98 CHAPTER 15. STRATEGIES FOR A FAST IMPLEMENTATION

15.2.3 Textures

In case memory reads from the global memory cannot be done in a coalesced manner, one
should consider reading data through texture fetches. Texture cache reference latency is about
the same as the latency of global memory, but offers benefits. The texture memory is namely
cached in texture cache, and optimized for 2D spatial locality, which means that when data
is fetched, nearby data is already been cached, since it is quite likely that this data is also
wanted shortly.

Fujimoto published in 2008 a very interesting article [5] (source code included!) about a
—at least for that time— superior matrix-vector algorithm in terms of overall performance.
It outperformed NVIDIA’s CUBLAS 1.1 SGEMV routine easily and did not show the huge
performance drops which were typical for the SGEMV routine for matrices with dimensions
not being a multiple of 16. The implementation uses 2D textures in combination with a float4
storage format for matrix A. The float4-format was used because a single float4 read is faster
than four separate float reads.

In Section 20.2.6 a small case study is presented to show how textures can be used to
greatly enhance a CUDA kernel’s throughput.

15.2.4 Loop unrolling

An excellent thesis on loop unrolling is “Optimal Loop Unrolling for GPGPU Programs” by
G. Murthy [16]. In this thesis it is investigated how to properly unroll loops in GPU programs;
this is no so easy.

As the name indicates unrolling (or unwinding) a loop means that the loop is written out a
couple of times, say n times (accordingly the loop counter is incremented by an n times bigger
value), such that its performance is increased. This increase in performance may come from
a reduction in dynamic instruction count (think of instructions that control the loop, such
as pointer arithmetic, the each-iteration-check whether the loop can be exited, and compare
and branch instructions); from the fact that the compiler’s scheduler can better schedule
the instructions thanks to the availability of additional independent instructions, improving
instruction level parallelism (ILP), hiding pipeline and memory access latencies; and from
the fact that the compiler has opportunities to exploit register usage and memory hierarchy
localty.

However, by unrolling a loop too agressively, that is, too many times, actually the perfor-
mance may decrease for several reasons, e.g., overflow of instruction cache leading to instruc-
tion cache misses (the code has become too big in size), increased register pressure spilling
registers to memory, or inlining code is affected or no longer possible.

One basically has two options to unroll a loop: do it manually (static unrolling), or let the
compiler take care of it (dynamic unrolling). For the latter: in C one uses #pragma unroll
if the loop size is known at compile time, and #pragma unroll n when the loop size is
variable, here n denotes the times the loop is unrolled; if the loop size is not a multiple of n
the compiler automatically generates code to compute the remaining part. By the way, a C
compiler automatically unrolls loops where it is beneficial to do so, so you can just omit this
in plain C code; however, in the case of programming with CUDA with the NVCC compiler one
has to put these statements in the code to force the compiler to unroll the loop. Moreover,
to control the register pressure one may compile the code with the flag --maxregcount=N
to limit the number of registers per thread to N .

15.2. ADVANCED STRATEGIES 99

15.2.5 Better performance at lower occupancy

Vasily Volkov came recently some very interesting observations, which go against earlier
beliefs. It was namely commonly agreed and advocated through CUDA manuals and program-
ming guides that it is best to have as many threads as possible alive per multiprocessor or
per thread block, thus to maximize occupancy. It was believed that this is the only way to
cover memory latencies. However, Volkov showed in several presentations that by maximizing
occupancy you may lose performance, and actually that faster codes run at lower occupancy.
A nice illustration is how Volkov manages to double the SDK matrix-matrix multiply example
by minor modifications. See for example [24] and [25].

15.2.6 Registers versus shared memory

Another fallacy that Vasily Volkov observed was the belief that shared memory without bank
conflicts is as fast as registers. In fact this is still stated in the NVIDIA CUDA C Programming
Guide 3.2 [17], p92. According to Volkov [24], the bandwidth of shared memory is at least 3
times lower than the register bandwidth for GPUs with compute capability 1.x, and at least
6 times lower than the register bandwidth with the Fermi architecture.

Hence to get close to the device’s Peak performance Volkov concludes that one must
exploit register usage rather than shared memory for computations. This inherently requires
low occupancy to preserve the registers for actual computations rather than “wasting” them
for creating instances of the same variable for each thread. Key to obtain lower occupancy
but still doing the same amount of work overall is to compute multiple outputs per thread.

15.2.7 Overlapping communication and computation

With the latest GPU architectures it is possible to overlap communication between the host
and the device and computations on the device. This is possible as modern devices have
two types of processing units: units that handle memory operations and units that do actual
computations. Consider the following simple example. Suppose we have two data objects A
and B, and a kernel that does some computations with A and B. Further assume that copying
the data and performing the calculations take an equal amount of time.

In Figure 15.2 a straightforward approach is shown. First A and B are copied from the
host to the device, then the kernel works on A and B, and in the end the data is copied back
from the device to the host.

Time−→

Single stream

Memcpy A host to device
Memcpy B host to device
Kernel on A
Kernel on B
Memcpy A device to host
Memcpy B device to host

Figure 15.2: Using a single stream.

100 CHAPTER 15. STRATEGIES FOR A FAST IMPLEMENTATION

If each job takes 1 time unit, the total runtime of the program would be 6 time units. In
Figure 15.3 a better approach is shown. We create two so-called streams. Stream 0 will take
care of the data transfers, while stream 1 takes care of invoking the kernel. As modern GPUs
allow memory transfers and computations at the same time, communication and computation
can be overlapped. The total time is now only 4 time units, hence a performance gain of 50%.

Time−→

Stream 0

Memcpy A host to device
Memcpy B host to device
Memcpy A device to host
Memcpy B device to host

Stream 1

-
Kernel on A
Kernel on B
-

Figure 15.3: With overlapping.

In Part IV, Section 20.2.8 we come back to this technique. In the IPDIAG-solver some
computations and communication are overlapped, saving some computation time.

15.2.8 Concurrent kernels

Like the idea of overlapping communication and computation, concurrent kernels can save
execution time by running more kernels parallely. This only works if both kernels do not
address all resources of the GPU already; if one (or both) kernel(s) already ask(s) for all the
GPUs resources the kernels are either serialized or the hardware resources are divided over
the kernels. Hence concurrent kernel launches give no sudden doubling of compute power;
rather it is just a scheduling convenience.

Chapter 16

Measuring and optimizing
performance

16.1 Performance measures

The most frequently used and measurable metric of an algorithm is its speed or execution
time. Below we discuss the two derivated quantaties to indicate performance that are used
most often.

16.1.1 Floprate

In case of floating point operations (multiplications and additions) the notion of flops or
flop/s is frequently used. Flops stands for floating point operations per second. The amount
of flops is computed via:

flops =
#floating point operations

execution time
,

where execution time is in seconds (s). Because modern computers can perform million of
flops, we shall use Mflops, Gflops and even Tflops: 1 Tflops = 103 Gflops, 1 Gflops = 103

Mflops, and 1 Mflops = 106 flops. Thus the higher the amount of flops the faster the algorithm.

Example: floprate for an SpMV Let us calculate the floprate for the no textures SpMV
kernel using StC, StS, StW in Section 20.2.6 on the GeForce GTX 580 in case of a 2048×2048
grid. According to Table 17.2 it takes the kernel 649 µs. Computing the sparse matrix-vector
product for a sparce n×n matrix it takes 9n flops (for each row of the matrix: 5 multiplications
and 4 adds). Hence the floprate in Gflops is:

flops =
9 · 20482

109 · 649 · 10−6
= 58.16 Gflops.

It is interesting to compare the achieved number of flops by the algorithm with the the-
oretical Peak of the GPU, that is the maximal amount of flops the device can deliver. In
practice we can only reach a fraction of the Peak performance, in fact it is already satisfac-
tory if the sustained rate of the algorithm is just 10% of Peak. Modern CPUs have a Peak
between 5-100 Gflops (Core i7 @ 3.2 GHz: 70 Gflops) whereas high-end GPUs have possibly

101

102 CHAPTER 16. MEASURING AND OPTIMIZING PERFORMANCE

more than one Tflops on board (Tesla C2070: 1.030 Tflops, GeForce GTX 580: 1.580 Tflops).
These numbers apply to single-precision computations only; double-precision is significantly
slower (actually 2 times in case of the latest GPU architectures, on older GPU architectures
even 4 or 8 times slower).

Example: Peak versus sustained floprate The sustained rate of flops of the SpMV
kernel above is much smaller than GTX 580’s theoretical Peak, namely 58.16 versus 1,580
Gflops (the efficiency is thus a “poor” 3.6%). This indicates the SpMV kernel is bandwidth
bound.

16.1.2 Throughput

Besides flops the notions of bandwidth and throughput is frequently used to investigate the
performance. The terms are frequently used interchangeably although, originally, they are
conceptual different. This may cause confusion and, therefore, we shall try to be clear from
the very start by defining them as follows. The given interpretations will be used throughout
the report.

Bandwidth is the maximum rate at which data can be transferred, thus a theoretical
amount (depending on hardware), whereas effective bandwidth, or throughput, is the actual
number of transferred bits per time, thus a real amount (depending on application). Further-
more, additionaly, we would like to introduce the term useful throughput. Simply putted: the
useful throughput is the amount of data per time read that “can be used (usefully)”, and is,
thus, a fraction of the throughput, i.e., useful throughput ≤ throughput. Note that, when all
data that passes the device is actually used, throughput and useful throughput are just the
same. Since all these performance numbers are typically in the order of 109 bytes per second,
we use GB/s. Note that it makes a small difference whether we take 109 or 10243. We will
use 109 throughout the report.

Let us now see how to compute bandwidth and throughput for the global memory for a
NIVIDA device that runs a CUDA kernel.

The (Peak theoretical) global memory bandwidth in GB/s of a NVIDIA device can be
computed via:

global memory bandwidth =
memory clock rate ·memory bus width · data rate

109
,

where the memory clock rate is given in Hertz (Hz) and the interface width in bytes (B). The
data rate indicates the speed of the global memory, e.g., in case of DDR (which is standard)
we have data rate = 2.

Example: global memory bandwidth GeForce GTX 580 The GTX 580 runs at 2.010
GHz = 2.01 · 109 Hz and its memory bus width is 384-bit. This information can be obtained
by running ./deviceQuery that comes with the NVIDIA SDK library. Hence

global memory bandwidth =
(2.01 · 109) · (384/8) · 2

109
= 192.96 GB/s.

To compute the throughput of a CUDA kernel we can use the formula

throughput =
Br +Bw

109 · execution time
,

16.2. TIMING OF GPU TASKS 103

where the execution time is in seconds (s) and Br is the number of bytes (B) read from and
Bw the number of bytes (B) written to the global memory. Let us give an example.

Example: vector-update (AXPY) Say we have written a CUDA kernel that computes
y ← αx + y, where α ∈ R and x, y ∈ R220 . Further, the kernel is a single-precision (float)
implementation. When running the kernel we observe with the NVIDIA profiler that the
vector-update is computed in 160 µs (the time taken by the device to run the kernel). The
throughput is computed as follows. The number of bytes that must be read from the global
memory is: Br = 220 · 2 · 4 (= 8, 388, 608) since there are 220 values of x and 220 values of y
and each takes 4 bytes. Likewise, Bw = 220 · 1 · 4. Hence the throughput is: (220 · 2 · 4 + 220 ·
4)/(109 · 160 · 10−6) = 78.64 GB/s.

16.2 Timing of GPU tasks

To be able to compute the floprate or throughput we need the execution time of the kernel.
Below we briefly discuss what different options we have to do our timing.

16.2.1 Wall-clock timing

In Linux the wall-clock time can be measured through the function gettimeofday(). Al-
though the function returns the current time in seconds and microseconds, the resolution
of the measurements is usually in the order of milliseconds, depending on the environment
(hardware, software). The following C++ code can be used:

#include <sys/time.h>

int main()
{

struct timeval start, stop;
float time;

gettimeofday(&start, NULL);

// insert code that you want to time right here

gettimeofday(&stop, NULL);
time = (stop.tv_sec - start.tv_sec) +

1e-6 * (stop.tv_usec - start.tv_usec)

return 0;
}

Because of the low accuracy for tasks that barely take a few milliseconds, usually one
inserts a for-loop and runs the task many times, say 20 or even 1000 times if necessary, and
computes the average. This is a basic trick to increase timing accuracy. However, it may
occur that the compiler is so “smart” that it “sees” that nothing changes in the for-loop and
just runs the loop once, whilst the time is still being divided by the number of iterations,
resulting in very small and bogus numbers.

104 CHAPTER 16. MEASURING AND OPTIMIZING PERFORMANCE

16.2.2 GPU events

Typical C++/CUDA code to time your CUDA kernels is the following.

int main()
{

cudaEvent_t start_event, stop_event;
float time_event;

cudaEventCreate(&start_event);
cudaEventCreate(&stop_event);

cudaEventRecord(start_event, 0);

// insert GPU code that you want to time right here

cudaEventRecord(stop_event, 0);
cudaEventSynchronize(stop_event);

cudaEventElapsedTime(&time_event,
start_event, stop_event);

time_event /= 1e3;

cudaEventDestroy(start_event);
cudaEventDestroy(stop_event);

return 0;
}

Again to increase accuracy you may consider to do the CUDA kernel multiple times. Also
notice the synchronizing statement which is necesaary to ensure that all threads are finished
when retrieving the stop time. (By the way, you should also check all CUDA statements for
possible errors.)

16.2.3 NVIDIA profiler

Instead of incorporating timing functions in your CUDA program yourself, you may also con-
sider to use NVIDIA’s profiler. Typically this profiler can be found in: ../cuda/computeprof/bin,
and in Linux you can run it via ./computeprof.

Although there are manuals available, the program is very user friendly and you should
be able to figure things out by yourself.

The NVIDIA profiler comes also very handy to obtain properties and specifications of
your own CUDA kernels or to get insight in library routines.

16.3 Throughput and coalesced memory — two little studies

To show how important coalesced memory is for optimal throughput we have conducted two
experiments, namely:

1. copy data with a stride;

2. copy data with a shift.

16.3. THROUGHPUT AND COALESCED MEMORY — TWO LITTLE STUDIES 105

Although similar studies can already be found in NIVIDIA’s “CUDA Best Practices Guide”
[18], we have chosen to incorporate these studies in this report as coalesced memory is a key
concept in fast CUDA code. We want to make sure that the reader really understands what
coalesced memory is and how throughput depends on “the degree of coalescence”. Moreover,
in [18] results for the Fermi architectures are missing.

16.3.1 Copy with a stride

A first quite common situation is that data is read from the global memory using a stride.
For example, in case of a red-black numbering applied in a CG solver we have to do first
some computations for the red nodes only followed by computations for the black nodes only.
Assumed that the red and black nodes lie alternately in memory (rbrbrb . . .), computations
are done with stride 2.

64 byte

idata

odata

(a) stride = 1

64 byte 64 byte

idata

odata

(b) stride = 2

64 byte 64 byte 64 byte

idata

odata

(c) stride = 3

Figure 16.1: Copying of data with a stride.

To see that computations with a stride lead to poor performance, we do a simple experi-
ment. Consider the following CUDA kernel.

__global__ void kernel_stride(float *odata, float *idata, unsigned int stride)
{

unsigned int threadID = blockIdx.x * blockDim.x + threadIdx.x;

106 CHAPTER 16. MEASURING AND OPTIMIZING PERFORMANCE

odata[threadID] = idata[threadID * stride];
}

The kernel is used to copy data with a stride, see Figure 16.1. Given an input array
idata consisting of single-precision numbers (floats) the kernel copies data to an output
array odata. Each thread takes care of one element in the output array odata.

In the figure the 64-byte boundaries are indicated. We see that when stride = 1 that
all elements read from idata lie directly next to each other in the global memory. In that
case a single 64-byte memory transaction is used by each half-warp to access the data. This
is optimal. All data that is read is relevant, and “can be used usefully”. Therefore the
throughput equals the overall throughput.

In case stride = 2 the targeted data will be read from the global memory with a single
128-byte memory transaction. This is still fast; however, as we see half of the data cannot
be used and thus means wasted throughput. In case stride = 3 the targeted data will be
read from the global memory with a 128-byte plus a 64-byte memory transaction. Although
the overall throughput remains high the throughput degrades with increasing stride as more
and more elements cannot be used. At some point (stride = 16) all memory reads will be
done using 32-byte memory fetches; the minimum transaction size of the device is 32 bytes.
So, for each thread 32 bytes will be fetched while only 4 bytes will be used, resulting in only
1/8th of the throughput relative to fully coalesced memory.

Figure 16.2: Throughput for the stride experiment.

In Figure 16.2 the throughput is plotted as function of the stride. Although for the
previous discussion sufficient is to plot results for a stride up to 16 (from that point on

16.3. THROUGHPUT AND COALESCED MEMORY — TWO LITTLE STUDIES 107

only/mostly 32-byte transactions will be used) we have chosen to plot results up to a stride
of 32. There are two reasons for this. Firstly, in case of the latest architectures (Fermi,
compute capability 2.x), the story presented above is a little bit more complicated as these
architectures have (L1) cache; however, this is beyond the scope of this report. Secondly, we
have also investigated how textures can be used to increase throughput and in that throughput
keeps varying (decreasing) for strides larger than 16.

We see that in all cases the throughput decreases gradually with increasing stride. Al-
though in some cases techniques can be used to overcome this throughput diminishing effect,
e.g., by using shared memory, one should always strive for as much as possible coalesced
memory.

16.3.2 Copy with a shift

Another common situation is that data must be read from the global memory with a shift,
e.g., in case of a 5-point stencil the direct neighbours of a node may be required to compute
the new value in that center node. To investigate the effect we use the following CUDA kernel.

__global__ void kernel_shift(float *odata, float *idata, unsigned int shift)
{

unsigned int threadID = bx * Bx + tx;

odata[threadID] = idata[threadID + shift];
}

Note the great similarity with the stride kernel above. In Figure 16.3 we have depicted
what the kernel does.

For architectures with compute capability 1.3 the number of memory transactions issued
for a half-warp of threads depends on the shift and whether the warp is even- or odd-numbered
and throughput is correspondindly affected. In Figure 16.4 the throughput is plotted against
increasing shift. For shifts of 0 or 16, each half-warp results in a single 64-byte memory
transaction leading to highest throughput. For shifts of 1 through 7 or 9 through 15, even-
numbered warps result in a single 128-byte transaction and odd-numbered warps result in
two transactions: one 64-byte and one 32-byte transaction. Consequently, the throughput
is slightly less. For shifts of 8, even-numbered warps result in one 128-byte transaction and
odd-numbered warps result in two 32-byte transactions. The two 32-byte transactions, rather
than a 64- and a 32-byte transaction, are responsible for the little blip at shifts of 8 and 24 in
the figure. For architectures with compute capability 2.x (Fermi) memory transactions have
always the width of a full cacheline which is 128 byte, or 32 byte is the L1 cache was disabled.
Correspondinly, the throughput is almost constant for increasing stride.

The figure also shows that by using textures the throughput for the GTX 285 (compute
capability 1.3) can be significantly boosted and becomes almost constant for varying stride.
However, for the GTX 580 (compute capability 2.0) the throughput becomes slightly less by
using textures.

So what we learn from this little study is that shifted global memory reads do not seriously
harm the throughput; in case of older architectures we can use textures and in case of the
latest architectures (Fermi) throughput is not affected at all.

108 CHAPTER 16. MEASURING AND OPTIMIZING PERFORMANCE

64 byte

idata

odata

(a) shift = 0

64 byte 64 byte

idata

odata

(b) shift = 1

64 byte 64 byte

idata

odata

(c) shift = 2

64 byte 64 byte

idata

odata

(d) shift = 8

Figure 16.3: Copying of data with a shift.

16.3. THROUGHPUT AND COALESCED MEMORY — TWO LITTLE STUDIES 109

Figure 16.4: Throughput for the shift experiment.

110 CHAPTER 16. MEASURING AND OPTIMIZING PERFORMANCE

16.4 Measuring speed up and Amdahl’s law

The speed up S of parallel code compared to sequential code is computed via

S =
Tseq

Tpar
,

where Tseq is the best time of sequential versions of the algorithm, and Tpar is the time that the
parallel version takes to do the job. Now in every program there is an intrinsically sequential
part. With Amdahl’s law we can estimate to what extent we may succeed to speed up code
by parallelizing parts of it.

Amdahl’s law is as follows: if f is the fraction of the algorithm that has to be executed
sequentially and 1− f is the fraction that is parallelizable, then if p processors are available
the speed up S is bound by

S =
Tseq

Tpar
=

Tseq

fTseq + (1− f)Tseq/p
=

1

f + (1− f)/p
≤ 1

f
.

Hence, even if an infinite amount of processors p were available (so far scalability allows it)
we would never reach a speed up more than 1/f . Let us put this in perspective: say that
only 5% of our code has to be performed sequentially, and thus 95% can be made parallel
(which seems pretty good!), than unfortunately, the maximal speed up we can attain is “only”:
1/0.05 = 20 times. Always. Even if the parallel part runs at tremendous speeds and those
95% of computations can be done in almost zero time.

Although this seems so clear that mistakes are unthinkable, still researchers frequently mis-
interpret timing results. Commonly the following mistake is made: assume that an algorithm,
say Conjugate Gradients (CG), is such that 98% of the time is consumed by matrix-vector
products. Matrix-vector products lend themselves well for parallelization. Suppose that we
succeed to speed up the matrix-vector products by a factor 1000, that is, computing them
in parallel goes 1000 times faster then doing them sequentially. Did we now made CG 1000
times faster? No, unfortunately not; we have to apply Amdahl here: say that fully sequential
CG takes 1 second for a particular problem size. Now assume 98% of the time is made faster,
i.e. 0.98 seconds previously will now only take 0.00098 seconds. Hence the parallel execution
time is: sequential time + parallel time = 0.02+0.00098 = 0.02098 seconds, hence the parallel
version of CG is “only” 1/0.02098 = 47.7 times faster than the sequential version. Note that
this is close to the upper bound of: 1/f = 1/0.02 = 50.

Chapter 17

Two important basic CUDA kernels

17.1 Sparse Matrix-vector products (SpMVs)

17.1.1 Introduction

In the CG algorithm one of the most time-consuming operations is the sparse matrix-vector
product, abbreviated SpMV. In this section we discuss how an SpMV can be efficiently im-
plemented in CUDA in the case that CG is applied for solving a system Ax = b in which the
matrix A is given by a 5-point stencil. For example, discretization of the Poisson problem on
a 2D domain leads to such a 5-point stencil. In 2008 NVIDIA released a paper [3] in which
Bell and Garland studied the performance of SpMVs for different storage schemes. Their
source code was made public in the form of the CUSP library.

At this point one may wonder why we are going to spend time (and even a complete
section) to a problem that can be considered “solved”. One may argue that there are already
efficient libraries-routines available (CUSP) that can be —*snap*— called just like that, or
perhaps that the SpMV is “such a trivial” operation that does not belong in a report in which
an advanced CUDA solver is the main subject.

We see this way different, actually we consider this section as absolutely indispensable.
We believe that a throughout understanding of how an SpMV is computed on the GPU and
seeing for yourself why it is done as it is done, is key in developing efficient CUDA code your
own. Even more important, as the CG algorithm in the RRB-solver operates on the 1st Schur
complement rather than on the system matrix itself, the SpMV takes a really different form
than the “standard” one, so actually a library-routine cannot be used!

17.1.2 The DIA storage scheme

There are many different ways for storing a sparse matrix in the computer’s memory, depend-
ing on where the nonzeros are in the matrix. Popular storage schemes are: the coordinate
(COO) format, the compressed sparse row (CSR) format, the diagonal (DIA) format, the
ELLPACK (ELL) format, and so on. Each format has its own benefits over other formats.
For a matrix A given by a 5-point stencil, i.e., a matrix that contains only 5 nonzero diagonals,
the DIA format is the most proficient. In Figure 17.1 an example is given for a 4× 3 2D grid.

The places of nonzero elements in the matrix A follow from the dependencies of a grid
point on its N,E, S and W neighbours (using the compass). Correspondingly, the main
diagonal elements are indicated by a “c” (coming from “center”), and super-superdiagonal

111

112 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

4× 3 grid points

0 1 2 3

4 5 6 7

8 9 10 11

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

n0

n1

n2

n3

n4

n5

n6

n7

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

s4

s5

s6

s7

s8

s9

s10

s11

Matrix A DIA(A)

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

∗

∗

∗

∗

s4

s5

s6

s7

s8

s9

s10

s11

∗

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

∗

n0

n1

n2

n3

n4

n5

n6

n7

∗

∗

∗

∗

0 1 2 3 4

W E

N

S

Figure 17.1: The diagonal (DIA) format for a matrix A resulting from discretization on a 4× 3 grid.

elements are indicated by a “n” (coming from “north”), etcetera. The matrix A must be read
as follows. For the ith node, the matrix A tells us (see the ith row) on what neighbours node
i depends (the columns where we find a nonzero), and by how much the node depends on
that neighbour is expressed in the particular coefficient si, wi, ei and ni, of course node i can
also depend on itself; this is just coefficient ci.

On the right in Figure 17.1 it is shown how matrix A can be stored as 5 vectors of length
12. It is common use to pad the vectors (with zeros) so that on row i we find all dependencies
for node i. The padding is indicated with the stars (∗).

We know that the matrix A resulting from the discretization of the Poisson equation is
a symmetric matrix, which means that, for all i, ei = wi+1 and ni = wi+Nx (Nx being the
dimension of the grid in the x-direction). Therefore, it is not necessary to store all 5 diagonals;
we may just store the center, west and south (or the center, east and north) stencil which saves
2/5 memory. We have also seen that the matrix S resulting from the Variational Boussinesq
model is symmetric as well (in fact it is SPD), so the problem is fully determined when just
3 diagonals are stored. However, we shall see in a moment that saving all diagonals can be
beneficial when it comes down to performance. On the other hand, if memory is scarce one
should offer some performance to obtain a good reduction in required memory.

One may have noticed that storing the nonzero diagonals of A is not sufficient; we also
need some information where these diagonals are. Therefore, DIA(A) is accompanied with a
vector that contains offsets, namely

offsets = [−Nx − 1 0 1 Nx],

where Nx is the size of the grid in the x-direction.

17.1.3 Computation of an SpMV in case of a 5-point stencil

Let us now investigate how multiplying matrix A by a vector x is computed in terms of
DIA(A). Consider Figure 17.2.

The small triangles point out what elements need to be multiplied and added. Because of
padding the diagonals with 0’s it is obviously unnecessary to invoke if-statements to ensure

17.1. SPARSE MATRIX-VECTOR PRODUCTS (SPMVS) 113

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

n0

n1

n2

n3

n4

n5

n6

n7

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

s4

s5

s6

s7

s8

s9

s10

s11

A x

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

0

0

0

0

s4

s5

s6

s7

s8

s9

s10

s11

0

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

0

n0

n1

n2

n3

n4

n5

n6

n7

0

0

0

0

⇐⇒ ××

DIA(A) x

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

Figure 17.2: Multiplying matrix A by a vector x (SpMV).

that data from DIA(A) is read correctly. However, if the vector x is stored straightforwardly,
that is, without any padding, for the first and final rows corresponding elements for each of
the stencils s, s, n, e may not exist. This is indicated by that the bold rectangle partly falls
outside vector x. Thus to ensure that the SpMV is computed correctly we have to incorporate
an if-statement that checks whether a corresponding element in vector x exists. It won’t
take you long to figure out that suitable C++ code to compute the SpMV can be:

float sum;
unsigned int column;

for (unsigned int row = 0; row < n; ++row) {
sum = 0;

for (unsigned int i = 0; i < 5; ++i) {
column = row + offset[i];

if (column >= 0 && column < n)
sum += DIA[n * i + row] * x[column];

}
}

in which it is assumed that all diagonals are stored in one big (linear) array; e.g., to address
the west dependency for row row we search in the array at the location n + row, where n
is the size of the matrix (here thus n = 12). In case of storing StC, StW and StS in stC,
stW and stS, respectively, we can use the C++ code:

float sum;
unsigned int column;

for (unsigned int row = 0; row < n; ++row) {
// south
column = row + offset[0];
if (column >= 0)

sum = stS[row] * x[column];

114 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

// west
column = row + offset[1];
if (column >= 0)

sum += stW[row] * x[column];

// center
column = row + offset[2];
sum += stC[row] * x[column];

// east
column = row + offset[3];
if (column < n)

sum += stW[row - 1] * x[column];

// north
column = row + offset[4];
if (column < n)

sum += stS[row - Nx1] * x[column];
}

This implementation has the advantage of less memory requirements since the west array
is reused to compute the east contribution and the south array is reused to compute the north
contribution. As we will see in a moment this memory advantage may come at a (small) price
in CUDA.

17.1.4 Hints for an optimal CUDA implementation

With the presented C++ code snippets it is rather easy to come up with a first CUDA im-
plementation of the SpMV routine. The for-loop is replaced by parallel threads; instead of
marching through the elements of vector x we let each thread take care of computing a single
element in the vector x. This makes sense as computing each row takes an equal amount of
work and time in the presented sequential code. The first thing we have to make is a CUDA
grid of n threads to deal with the vector x of length n.

As we learned a CUDA grid consists of thread blocks, and each thread block contains an
equal amount of threads. Typical numbers for the number of threads per block are 64, 128,
256, but also numbers like 160 are frequently used. Why this many threads and not, say, 31?
Well, recall that the numbers must obey the “optimal 16 spacing (64 bytes)”-rule (or even
better, 128 bytes) to ensure that all reads from global memory are coalesced and thus optimal
throughput is obtained.

So, if we have n elements to compute we need dn/Bxe thread blocks. For n being a
multiple of Bx (thus a multiple of e.g., 64, 128, 256) we need n/Bx thread blocks in which all
threads will be busy; in case Bx does not divide n there will be one thread block with some
idle threads.

We introduce a variable threadID to make sure that each thread points to a unique
element as follows:

unsigned int threadID = blockIdx.x * blockDim.x + threadIdx.x;

Moreover, before starting the computations we must turn off some threads using an if-
statement:

if (threadID < n);

17.1. SPARSE MATRIX-VECTOR PRODUCTS (SPMVS) 115

which makes sure that only threads will do work for which work is really available. In case
we store stC, stW and stS only a first implementation of the SpMV routine in CUDA may
be:

__global__ void SpMV(float *y,
const float *stC, const float *stS, const float *stW,
const float *x,
const unsigned int Nx1, const unsigned int Nx2)

{
unsigned int threadID = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int n = Nx1 * Nx2;

float sum = 0;

if (threadID < n)
{

sum = stC[threadID] * x[threadID]; // center

if (threadID - Nx1 >= 0)
sum += stS[threadID] * x[threadID - Nx1]; // south

if (threadID - 1 >= 0)
sum += stW[threadID] * x[threadID - 1]; // west

if (threadID + 1 < n)
sum += stW[threadID + 1] * x[threadID + 1]; // east

if (threadID + Nx1 < n)
sum += stS[threadID + Nx1] * x[threadID + Nx1]; // north

y[threadID] = sum;
}

}

The above routine thus computes the SpMV y = Ax where A ∈ Rn×n using three stencils
only: stC, stW and stS. In Table 17.1 and Table 17.2 the throughput and performance is
reported for different n on the GeForce GTX 285 and GeForce GTX 580, respectively.

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 103 22.9 112.0
500 1,000 500,000 204 22.1 107.8

1,024 1,024 1,048,576 393 24.0 117.4
1,000 1,500 1,500,000 660 20.5 100.0
2,048 2,048 4,194,304 1572 24.0 117.4

Table 17.1: Throughput and performance for different n in case of using 3 stencils (GeForce GTX 285,
256 threads per block).

We mentioned earlier that the memory advantage may come at a (small) price. Let us
confirm that right now. In case that we want to use all five stencils StC, StN , StE, StW ,
StS suitable CUDA code may be:

__global__ void SpMV(float *y,
const float *stC, const float *stS, const float *stW,
const float *stE, const float *stN, const float *x,
const unsigned int Nx1, const unsigned int Nx2)

{

116 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 44 53.6 262.1
500 1,000 500,000 83 54.2 265.1

1,024 1,024 1,048,576 166 56.9 277.9
1,000 1,500 1,500,000 237 57.0 278.5
2,048 2,048 4,194,304 649 58.2 284.4

Table 17.2: Throughput and performance for different n in case of using 3 stencils (GeForce GTX 580,
256 threads per block). Note that the throughput is higher than the device’s bandwidth; about 250
GB/s versus a theoretical limit of 193 GB/s, see Section 16.1.2. This is due the usage of faster L1
cache

unsigned int threadID = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int n = Nx1 * Nx2;

float sum = 0;

if (threadID < n)
{

sum = stC[threadID] * x[threadID]; // center

if (threadID - Nx1 >= 0)
sum += stS[threadID] * x[threadID - Nx1]; // south

if (threadID - 1 >= 0)
sum += stW[threadID] * x[threadID - 1]; // west

if (threadID + 1 < n)
sum += stE[threadID] * x[threadID + 1]; // east

if (threadID + Nx1 < n)
sum += stN[threadID] * x[threadID + Nx1]; // north

y[threadID] = sum;
}

}

This code leads to the following results on the GTX 285 and GTX 580:

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 97 24.3 118.9
500 1,000 500,000 190 23.7 115.8

1,024 1,024 1,048,576 371 25.4 124.4
1,000 1,500 1,500,000 597 22.6 110.6
2,048 2,048 4,194,304 1487 25.4 124.1

Table 17.3: Throughput and performance for different n in case of using 5 stencils (GeForce GTX 285,
256 threads per block).

We notice a slight increase in performance, about 6%, for the GTX 285. This comes from
the fact that in the previous code not all global memory reads for the stencils were coalesced,
leading to wasted throughput; on even older architectures (e.g., compute capability 1.0) this
effect is much more noticable, but nowadays it is unlikely that one uses a device older than a
GTX 285 (compute capability 1.3) to perform scientific computations. In case of the GTX 580,

17.1. SPARSE MATRIX-VECTOR PRODUCTS (SPMVS) 117

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 49 48.1 235.4
500 1,000 500,000 91 49.5 241.8

1,024 1,024 1,048,576 185 49.8 243.5
1,000 1,500 1,500,000 259 52.1 254.8
2,048 2,048 4,194,304 732 51.6 252.1

Table 17.4: Throughput and performance for different n in case of using 5 stencils (GeForce GTX 580,
256 threads per block). Note that the throughput is higher than the device’s bandwidth; about 250
GB/s versus a theoretical limit of 193 GB/s, see Section 16.1.2. This is due the usage of faster L1
cache.

a Fermi device, we actually see a slight decrease in performance. This comes from the fact
that when using three stencils only, more data can be read from (the much faster) L1 cache
as there are only three different arrays.

To get a real significant boost in performance on the GTX 285 we should use textures.
We observe that the elements in vector x that are accessed lie close to each other in memory,
especially the elements x[threadID - 1], x[threadID] and x[threadID + 1]. We
have pointed out in Section 15.2.3 that using textures can boost the throughput as nearby
data is pre-cached in the texture cache when a particular element is retrieved from the global
memory. Let us give it a try. We rewrite our CUDA kernel into the following.

__global__ void SpMV(float *y,
const float *stC, const float *stS, const float *stW,
const float *stE, const float *stN, const float *x,
const unsigned int Nx1, const unsigned int Nx2)

{
unsigned int threadID = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int n = Nx1 * Nx2;

float sum = 0;

if (threadID < n)
{

sum = stC[threadID] * tex1Dfetch(texRef, threadID); // center

if (threadID - Nx1 >= 0)
sum += stS[threadID] * tex1Dfetch(texRef, threadID - Nx1); // south

if (threadID - 1 >= 0)
sum += stW[threadID] * tex1Dfetch(texRef, threadID - 1); // west

if (threadID + 1 < n)
sum += stE[threadID] * tex1Dfetch(texRef, threadID + 1); // east

if (threadID + Nx1 < n)
sum += stN[threadID] * tex1Dfetch(texRef, threadID + Nx1); // north

y[threadID] = sum;
}

}

We see that elements in the vector x are no longer straightforwardly loaded from global
memory but via textures. The command

tex1Dfetch(texRef, threadID);

118 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

accesses the element that lies at location threadID in the array x. texRef is the (1D)
texture bound to the (1D) array x. Of course this must be done prior to the kernel invocation:

cudaBindTexture(NULL, texRef, x);
SpMV <<< nblocks, NUM_THREADS >>> (y, stC, stS, stW, stE, stN, Nx1, Nx2);

It is common use to define the number of threads aforehand (pre-processor) via something
like #define NUM THREADS 256. The number of threads blocks, nblocks, is computed
on the spot. Let us discuss by how much the performance is increased. In Table 17.5 and
Table 17.6 we have listed the results.

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 82 28.8 140.7
500 1,000 500,000 140 32.1 157.1

1,024 1,024 1,048,576 275 34.3 167.7
1,000 1,500 1,500,000 388 34.8 170.1
2,048 2,048 4,194,304 1039 36.3 177.6

Table 17.5: Throughput and performance for different n in case of using 5 stencils using textures for
vector x (GeForce GTX 285, 256 threads per block). Note that the throughput is higher than the
device’s bandwidth; about 170 GB/s versus a theoretical limit of 158 GB/s. This is due the usage of
faster texture cache.

Nx1 Nx2 n Time (µs) Performance (Gflops/s) Throughput (GB/s)

512 512 262,144 50 47.2 230.7
500 1,000 500,000 93 48.4 236.6

1,024 1,024 1,048,576 186 50.7 248.1
1,000 1,500 1,500,000 263 51.3 251.0
2,048 2,048 4,194,304 736 51.3 250.7

Table 17.6: Throughput and performance for different n in case of using 5 stencils using textures for
vector x (GeForce GTX 580, 256 threads per block). Note that the throughput is higher than the
device’s bandwidth; about 250 GB/s versus a theoretical limit of 193 GB/s. This is due the usage of
faster texture cache.

17.2. WORK EFFICIENT PARALLEL SUM REDUCTION 119

We observed for serveral kernels throughput numbers that are higher than the bandwidth
of the device. This is caused by L1 cache (Fermi) and/or texture cache. Exploiting textures
yields a performance boost of about 45% for the GTX 285 and we see that using textures
for the GTX 580 yield no real difference, because L1 cache benefit is traded against the
L2 cache benefit. Summarizing, generally, that is, when our CUDA code must do well on
all architectures, using textures is a technique not to forget, and whenever we observe that
nearby data is accessed consecutively, we may try the “textures-trick”.

Finally we would like to mention that our GTX 285 numbers are just as good as the (single
precision) numbers presented in [3] (they used about the same device: a GeForce GTX 280).
We have thus shown that for getting good (read: optimal) performance CUDA kernels can
be remarkably simple of nature! In fact, in [3], the CUDA code they used is (in essence) the
same as our code. This is not surprising as much more clever code is almost impossible.
However, we may try to write code that does not contain any if-statements (so to avoid
thread divergence), e.g., by using padding. This may save up to another 5% in computation
time (but also requires some extra storage).

17.2 Work efficient parallel sum reduction

17.2.1 Introduction

Suppose we have an array x of n elements xi(i = 1, 2, . . . , n). The goal is compute the sum

n∑
i=1

xi := x1 + x2 + · · ·+ xn

as fast as possible in parallel. Computing a (big) sum is for example part of computing an
inner (dot) product, i.e., for real vectors x and y of length n the dot product, denoted by
〈x, y〉, is computed as

〈x, y〉 =
n∑
i=1

xiyi.

Computing the sum sequentially is trivial; we just loop over all elements and each time add
the value to the sum previously computed. In C++ we could use something like

float sum = 0;
for (unsigned int i = 0; i < n; ++i)

sum += x[i];

for a single-precision array x consisting of n elements. We see that the total number of
flops required is n. It is obvious that this number of flops is optimal.

We now show a parallel algorithm that is work efficient, that is, the parallel algorithm
computes the sum also using a total of n flops, no any flops more than that. For ease, suppose
we have an array x of n elements such that n is a power of 2, i.e., n = 2d for some d > 0. A
suitable work efficient sum reduction algorithm in C++ could be

for (unsigned int i = 0; i < log(n)/log(2); ++i)
for (unsigned int k = 0; k < n; k += pow(2,i+1))

x[k] += x[k + pow(2,i)];

120 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

where pow(2,i) is some implementation for 2i, and note that log(n)/log(2) actually
computes d = log2 n. It is common to speak about the step complexity, the step complexity
of the above sum reduction algorithm is thus O(log n). Of course the above code is still
sequential code, but actually the inner loop may be performed by n/k processors in parallel.
What we see is that at each of the d stages two elements are added, and, moreover, the higher
the level the less of these pairs remain (the spacing is increased by a factor 2 each level up),
so in case of a parallel performed inner loop the number of active processors decreases by
a factor 2 each time we go a level up. It is easily found that the work complexity of this
algorithm is O(n), or more precisely n− 1, thus work efficient, as

log2 n−1∑
i=0

n

2i+1
=

d−1∑
i=0

2d

2i+1
=

d−1∑
i=0

2d−i−1 =
d−1∑
j=0

2j = 2d − 1 = n− 1.

In Figure 17.3 the algorithm is applied to an array x of length n = 16.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

8 pairs

4 pairs

2 pairs

1 pair

∑
(x12, . . . , x15)

∑
(x8, . . . , x15)

∑
(x0, . . . , x15)

stage 0

stage 1

stage 2

stage 3

Figure 17.3: Work efficient sum reduction algorithm for n = 16.

17.2. WORK EFFICIENT PARALLEL SUM REDUCTION 121

17.2.2 Time and cost efficiency of the parallel sum reduction algorithm

The difference between 1 processor and p processors in parallel performing the same sum
reduction above is of course expressed in terms of computing time. Here the notion time
complexity comes into play. For 1 processor the time complexity is obviously O(n), whereas
if we have as many physical processors as there are elements, so when p = n, then the time
complexity is just O(log n). In case p < n we follow a slightly different strategy.

For p < n (usually p � n) physical processors in parallel the idea is to let in the first
stage the p processors each sum up dn/pe elements whereafter the remaining p partial sums
are summed up using the parallel sum reduction algorithm above, which takes another dlog pe
stages. So on total the time complexity becomes O(n/p+ log p).

More important is to look at the cost efficiency of the algorithm. A parallel algorithm
is said to be cost efficient if its asymptotic running time multiplied by the number of pro-
cessers involved in the computation is comparable to the running time of the best sequential
algorithm. The cost of the algorithm is thus defined as

cost = #processors× running time per processor.

So, what cost efficiency basically tells us is how efficient we use the hardware. Looking at
our parallel sum reduction algorithm we want to obtain a cost of O(n) since this is the
time complexity of the sequential algorithm above, which is also best. Given that there are
enough processors available, we may decide to use as many processors as there are elements,
so taking p = n. We have seen that in case p = n the time complexity of the parallel sum
reduction is O(log n). As there are O(n) processors, this choice leads to a cost of: O(n) ×
O(log n) = O(n log n), thus not cost efficient, and thus, in some way, “spilling hardware”. A
better choice is to pick p = n/ log n processors, in which case each processor does O(log n)
sequential work. Then all O(n/ log n) processors cooperate for log n stages leading to a cost of
O(n log n)×O(log n) = O(n), which is cost efficient. So, the “optimal” number of processors
that we use for the parallel sum reduction algorithm would be n/ log n. Keep this in mind,
because we will come back to it (and use it) in the next section.

17.2.3 Hints for an optimal CUDA implementation

From Figure 17.3 one problem becomes already obvious when implementing the parallel sum
reduction algorithm in CUDA : the higher we go up the tree the more processors become
idle, or probably better said, cannot perform useful computations anymore. We shall see in
a moment that besides this “standard” problem in parallelizing algorithms there are more
problems due to the GPU’s architecture.

By studying the algorithm and the fact that the computations should be performed on
the GPU as much as possible, it becomes evident that we should exploit the shared memory
of the GPU. The shared memory is the fastest way that threads can use to communicate
data. The idea is to first load a chunk of (slow) global memory into the (fast) shared memory
whereafter a set of threads compute the sum over the elements contained in this chunk. So
somewhere in the beginning of a sum reduction’s kernel we should find code like

__global__ void sum_kernel(float *x, ...)
{

unsigned int loc = ...
unsigned const int threadID = ...

122 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

__shared__ REAL sm[CHUNK_SIZE];

sm[threadID] = x[loc];
__syncthreads();

...
}

What this code does is determining a specific location loc of data in the larger array x,
whereafter a bunch of threads, BUNCH SIZE many, each having unique number threadID,
together load a chunk of data from the global memory array x into the shared memory sm.
In the end we find the synchronization command syncthreads() to make sure that all
threads are finished loading data before the actual sum reduction computations are started.
However, in a moment we shall see that there is a more efficient (much faster) mechanism
to load data from global memory into shared memory yielding more throughput, namely by
letting each thread do more work. At this point you may already observe that this may have
something to do with cost efficiency.

Before delving into more implementation details, let us first return to the hardware specific
problems that occur when implementing the parallel sum reduction in CUDA. For that we need
a somewhat bigger example than in Figure 17.3, so see Figure 17.4 for the first phases of a four
times larger sum. In this figure we have also depicted the global to shared memory transfer
as discussed earlier.

global to shared

global

shared

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

half-
warp

bank 1 1 1 12 2 2 23 3 3 34 4 4 45 5 5 56 6 6 67 7 7 7.16 16 16 16

Figure 17.4: Work efficient sum reduction algorithm using 64 threads. However, the algorithm is yet
efficient on the GPU’s hardware because of shared memory bank conflicts or warp divergence.

In Figure 17.4 we have illustrated the phenomenon ‘shared memory bank conflicts’. As
we know the shared memory consists of multiple banks, see Section 13.5, i.e., we have learned
that devices with compute capability 1.x have 16 banks and devices with compute capability
2.0 and 2.1 have 32 banks, which are interleaved with a granularity of 32bit (so byte 0 − 3
fall in bank 1, 4− 7 in bank 2, . . ., byte 64− 69 again in bank 1, etcetera). In Figure 17.4 we
have depicted a device with 16 banks which thus means that 16 consecutive 4-byte words each
fall in a different bank. Bank conflicts arise if multiple threads in the same half-warp (= 16
threads) access different words in the same bank. In the figure we see that if 32 threads (= 2
half-warps) were assigned to the data as indicated, there would be quite some bank conflicts;
for example, thread 0 and thread 8 would both read from bank 1. The same holds for thread
1 and thread 9; they would both read from bank 2, etcetera. In the next stage there would

17.2. WORK EFFICIENT PARALLEL SUM REDUCTION 123

be even more bank conflicts, see the figure; in that case threads 0, 4, 8 and 12 would read
different 4-byte words from bank 1. To avoid bank conflicts we may force half of the threads
in the half-warp to do nothing, e.g., by using if-statements; however in that case we will face
warp divergence, that is, threads in the same half-warp are instructed to do different things,
in our sum reduction algorithm this would lead to idle threads. So, summarizing, we either
face bank conflicts or warp divergence if we were to straightforwardly port the proposed sum
reduction algorithm to CUDA. Fortunately, the solution to overcome both is pretty simple.

global to shared

global

shared

half-
warp

bank 1 1 1 12 2 2 23 3 3 34 4 4 45 5 5 56 6 6 67 7 7 7.16 16 16 16

Figure 17.5: Work efficient sum reduction algorithm using 64 threads. This version of the algorithm
is optimal for CUDA, because there are no shared memory bank conflicts and, except from the last
half-warp (= 16 threads), there is no warp divergence.

Consider Figure 17.5. This figure shows how the sum reduction algorithm should be
rephrased so that no bank conflicts occur, and warp divergence is reduced to a minimum.
What we see is that each thread in the half-warp reads from a different memory bank, so
no bank conflicts at all. Also, the warp scheduler is able to schedule half-warps in which all
threads are busy except from the final stages in which the last 16 elements are cumulated. For
the 64 elements example in Figure 17.5 the warp scheduler would schedule only 3 half-warps
to come up with the total sum, whereas in Figure 17.4 the number of half-warps would be
many more when trying to avoid bank conflicts.

The heart of the sum reduction algorithm should thus contain code like:

for (unsigned int k = CHUNK_SIZE / 2; k > 0; k >>= 1) {
if (threadID < k)

sm[threadID] += sm[threadID + k];
__syncthreads();

}

which does what we have explained above. Note that in the last runs warp divergence
occurs. Warp divergence cannot be overcome; however, we can avoid synchronization where
it is no longer needed (since instructions are SIMD synchronous within a warp) by unrolling
the last warp (= 32 threads). Moreover, we may decide to let threads do useless work so that
also if-statements are no longer needed as well. The following code snippet contains these
small improvements:

124 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

for (unsigned int k = size / 2; k > 32; k >>= 1) {
if (threadID < k)

sm[threadID] += sm[threadID + k];
__syncthreads();

}
if (threadID < 32) {

sm[threadID] += sm[threadID + 32];
sm[threadID] += sm[threadID + 16];
sm[threadID] += sm[threadID + 8];
sm[threadID] += sm[threadID + 4];
sm[threadID] += sm[threadID + 2];
sm[threadID] += sm[threadID + 1];

}

In the end of the sum reduction we have to write the result back to the global memory, it
is natural to let the first thread do that, i.e., the thread with threadID = 0.

Finally we come back to the issue how to read from global memory as efficient as possible,
that is, how should employ the threads with work so that maximal throughput is obtained. In
Section 17.2.2 we have seen how we can alter the cost of the parallel sum reduction algorithm
by varying the number of processors assigned to the task. Although threads are not the same
as physical processors, or streaming processors (SPs) in the case of a GPU, the notion of
cost efficiency can stear us how to use the hardware as optimal as possible. When there are
more threads than SPs the warp scheduler is forced to launch blocks of threads sequentially.
So to minimize time we should let each thread do an optimal amount of work, targeting a
kernel that is overall as most cost efficient as possible. Threads are launched in blocks, and
each streaming multiprocessor (SM) can launch one or multiple thread blocks. The “optimal”
number of threads within each block to sum up m elements, where m is a fraction of the total
array of length n, is something like m/ logm as we pointed out in Section 17.2.2. Or, turned
around, given that each thread blocks contains p threads, there is an “optimal” number of
elements that each thread should sum up sequentially before the reduction stages are initiated,
i.e., the mechanism that we have called the parallel sum reduction algorithm. The moral of
this section is that we should let each thread do more work to get more throughput and thus
a faster kernel. The “optimal” number is more or less found by trial and error and depends
on the specific hardware.

The CUDA kernel for the parallel sum reduction should thus rather start with loading data
from the global memory into shared memory as follows:

__global__ void sum_kernel(float *x, ...)
{

unsigned int loc = blockIdx.x * blockDim.x + threadIdx.x;
unsigned const int threadID = loc;

__shared__ REAL sm[NUM_THREADS];

float sum = 0;
for (unsigned int i = 0; i < OPTIMAL_NUM_ELTS; ++i) {

sum += x[loc];
loc += OFFSET;

}

sm[threadID] = sum;
__syncthreads();

17.2. WORK EFFICIENT PARALLEL SUM REDUCTION 125

This piece of code is used as follows: given an array x and a number of thread blocks
NUM BLOCKS, each of the NUM THREADS threads accumulates OPTIMAL NUM ELTS elements
and stores the result in shared memory at location threadID. We feel that a figure is needed
to make things easier to understand, so see Figure 17.6. It must be said: in this figure the
problem is very small and the number of threads and things like that is far from realistic;
however, the figure contains what is essential, and you can scale things up to arbitrary large
sizes. In the figure it is supposed that we have 4 thread blocks (so NUM BLOCKS = 4), each
consisting of 4 threads (so NUM THREADS = 4). The total array x has length 64, and hence
each thread is going to sum up 4 elements (so OPTIMAL NUM ELTS = 4 which is assumed
to be the number that does the trick).

Array x

thread block

(0) (1) (2) (3)

threadID = 0
threadID = 1

threadID = 2
threadID = 3

threadID = 15

threadID = 0
threadID = 1

threadID = 2
threadID = 3

threadID = 15

threadID = 0
threadID = 1

threadID = 2
threadID = 3

threadID = 15

threadID = 0
threadID = 1

threadID = 2
threadID = 3

threadID = 15

OFFSET

Figure 17.6: Mechanism for a cost efficient parallel sum reduction algorithm and maximal throughput.

Although there are different choices for reading data from global memory in the code
snippet it is assumed that each thread reads data elements that lay OFFSET apart in global
memory. Of course, the striding should be such that the memory reads occur all coalesced, e.g.,
OFFSET should be a multiple of 16 (= 64 bytes in case of floats). We see that each thread (of
a total of 4 · 4 = 16 threads) is assigned to a unique spot in the first part of array x with the
line loc = blockIdx.x * blockDim.x + threadIdx.x; Each thread has a unique
label threadID which is constant. blockDim.x returns the size of the thread block, hence
the number NUM THREADS which is 4. Likewise, blockIdx.x and threadIdx.x return the
location of a particular thread block in the CUDA grid and the location of a particular thread
in the thread block, respectively. Note that for this example the kernel would be invoked by
something like

sum_kernel <<< 4, 4 >>> (x, ...);

In the for-loop at each iteration the location where a thread points to is updated; in the
next iteration the thread should read data at loc + OFFSET which is the next element to
be added. The other obvious choice is to let the very first thread take care of the elements
x0, x4, x8, x12. In this figure this will not work because they lay just 4 spaces (= 16 byte)
apart which goes against the “optimal 16 spacing (64 byte)” rule for coalesced global memory
reads; however, for thread blocks that contain a multiple of 16 threads (which is a more
realistic and quite typical number for CUDA programming), this way of addressing data is the
other good option to march through the array and pick up elements.

For complete source codes and optimal sum reduction kernels one can study the NVIDIA
GPU Computing SDK’s example code “reduction” which incorporates all aforementioned
hints and even more techniques to get the fastest sum reduction algorithm in CUDA. This
code belongs to the study performed by Mark Harris, see [8]. To see what order of speed ups
we may think of by using the various hints we listed above, we refer to Harris’ results for a sum
reduction counting 4 million (222) elements. By taking all his suggested improvements into

126 CHAPTER 17. TWO IMPORTANT BASIC CUDA KERNELS

account (all of ours plus some more) we can achieve a speed up of a factor 20×(!) compared
to a straightforward (naive) implementation.

Part IV

PCG SOLVERS

127

Chapter 18

General comments that apply to all
the PCG solvers in the lin wacu
software

18.1 Termination criterium

The termination criterium in all1 the PCG solvers (RRB, Cg4, Nop, CUDA) that are used
in the lin wacu software is a relative criterium based on the preconditioned residual zi =
M−1ri, namely: stop the iterative process when

〈ri, zi〉2 = ‖ri‖2M−1 ≤ (‖r0‖2M−1 + 1) · (psitol)2.

In C++ this is implemented as follows.

// Earlier computed: rho = <r, z>, where r = b - S1*x and z comes from solving Mz = r

// stop criterium
REAL stop = (rho + 1) * FloatUtils::square(tolerance);

// here the CG iterations start
while (rho > stop) && (iter < MAXITER))
{

...
}

A while loop is used to determine when to stop. The iterative process is stopped either when
the termination criterium is fulfilled or the maximal number of iterations is exceeded.

1We have to point out something. For most solvers (Nop, IPDIAG, Cg4) the dot product is computed over
all elements in r and z. As there are n unknows the dot product is computed by

dot =

n∑
j=1

rj · zj .

However, for the RRB-solver only half of the nodes are used, namely the first level red nodes only, which
leads to an initial preconditioned residual that is about half in magnitude. However, this is done consistently
throughout the RRB-solver and therefore it does not make any difference. All solvers reduce the initial residual
by a factor 1/(psitol)2, e.g., when psitol =1e-5 the initial residual is reduced by a factor 1010.

129

130CHAPTER 18. GENERAL COMMENTS THAT APPLY TOALL THE PCG SOLVERS IN THE LIN WACU SOFTWARE

We see that the criterium is of the form: ‖ri‖M−1 ≤ ε‖r0‖M−1 . The relative criterium has
the property that it is scaling invariant which implies that mesh-refinement does not lead to
a more stringent criterium.

Using ‖r0‖M−1 rather than ‖r0‖2 is logical as ‖r0‖2 is not directly available in an efficient
PCG implementation. In Figure 18.1 we have plotted 〈r0, z0〉2, ‖r0‖22 and ‖b‖22 for the first
1000 time steps in the Plymouth 1.5M test problem.

We see that ‖r0‖M−1 is close to ‖r0‖2, and, as the field gets filled with more and more
waves, the right-hand side b in Sψ = b becomes more and more “difficult” to solve for, which
translates in a larger Euclidean norm.

Figure 18.1: Evolution of 〈r0, z0〉2, ‖r0‖22 and ‖b‖22 for the first 1000 time steps in the Plymouth 1.5M
nodes test problem.

At the moment the tolerance allowed, i.e., psitol is given per test problem in the corre-
sponding .par files. Typically we have: psitol = 1e-5 (most test problems: lin wacu, IJssel,
Plymouth, Port Presto) or psitol = 2e-6 (open sea).

As the required number of CG-iterations directly depends on psitol, one may consider
taking a larger psitol to get a faster solver. However, one must be careful by doing this as at
some point the problem will not be solved correctly anymore across time and we will observe
that the wave pattern starts deviating from the true solution and it may even explode.

Chapter 19

The C++ and CUDA RRB-SOLVER

19.1 RRB-solver basic concepts

In the next sections we shall explain the underlying concepts of the RRB-solver. We shall
do this in a very graphical and intuitive way (lots of figures) to make sure that the reader
really understands, and sees what is going on. Once the basic concepts are well understood,
we can gradually increase the number of details and introduce the underlying mathematics.
However, it never gets really difficult, as we have tried to avoid difficult details as much as
possible. As a consequence the next sections are not complete or mathematically precise. For
a complete mathematical desription we would like to refer to [4]. Also the Master thesis from
Elwin van ’t Wout [28] and the internal document “The RRB-preconditioner” (only available
at MARIN) contain additional valuable information.

19.1.1 Repeated Red-Black numbering

The fundamental underlying idea of the RRB-solver is applying a red-black numbering re-
peatedly, hence the name RRB (Repeated Red-Black). Let us see how this works. Consider a
grid with 8× 8 unknowns. Although it is unrealistically small, it is a perfect size to illustrate
the RRB-numbering.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

⇐⇒

(a) As actual points.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

(b) As a 2D-array.

Figure 19.1: An 8× 8 grid with lexicographic numbering.

Consider Figure 19.1 which shows the 8× 8 grid with the grid points, or nodes, drawn as
actual points (on the left) and as squares (on the right). We prefer the squares, because we

131

132 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

would like you to think of a grid as a two-dimensional array from the very start. The figure
also shows the natural, or lexicographic, numbering of the nodes.

The first time we apply a red-black numbering to the 8× 8 grid we get Figure 19.2. First
the black nodes are numbered (1-32, the colored squares), and then the red nodes (33-64, the
white squares). Of course one can also start with the red nodes and thereafter the black ones.
It does not matter, but we have to make a choice and be consistent throughout the method.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

Figure 19.2: Basic red-black numbering for the 8× 8 grid.

We see that by doing so we have numbered all nodes already, so for the RRB-numbering
there should be a difference. The difference is that, after we have numbered all the black
nodes, we do not number all the red nodes, but just half of them, see Figure 19.3.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

Figure 19.3: First level RRB-numbering for the 8× 8 grid. The empty spots form the 2nd level.

The 1st level consists of all nodes, the 2nd level is formed by the empty spots (16 pieces
for the 8 × 8 example). We see that the next level is, depending on what you mean, 2 or 4
times coarser. The number of nodes in either direction (x or y) is about 2 times smaller; the
total number of nodes in the 2nd level is about 4 times smaller than in the 1st level. We write
“about” because only for “perfect” grids, that is, grids with dimensions that are a power of
2, the next level is indeed 4 times coarser; for “less perfect” grids, that is, grids that have an
x- or y-dimension not being a power of 2, the next level is approximately 4 times coarser. For
example, for a 17× 17 grid the 1st level has 289 nodes, whereas the 2nd level has 8× 8 = 64
nodes (check this for yourself), so 289 / 64 = 4.5 times smaller. Note also that, because of
the 2nd level of the 17× 17 grid is 8× 8 nodes, from that level on the “4 times coarser”-rule
applies to all next grids.

Next we apply the numbering technique to the 2nd level. By doing so we are left with
empty spots which define the 3th level (4 in the 8 × 8 example), and again we apply the
numbering technique. We continue “as long as the grid allows”. How far that is shall we, for
grids with arbitrary dimensions, determine in Section 19.1.3. In Figure 19.4 we have shown

19.1. RRB-SOLVER BASIC CONCEPTS 133

the complete numbering process for the 8× 8 grid. Clearly, an 8× 8 grid allows 4 levels (64,
16, 4, 1 nodes).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 19.4: Recursive red-black numbering process for an 8× 8 grid.

Combining all levels yields Figure 19.5.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 19.5: Complete RRB-numbering for an 8× 8 grid.

19.1.2 Effect of the RRB-numbering on the sparsity pattern of matrix S

The matrix S in our system Sψ = b is given by a 5-point stencil, see Section 2.4. This means
that a node depends on its direct north, east, south and west neighbours. In Figure 19.6
on the right we have indicated for node 19 its dependencies according to a 5-point stencil.
Its neighbours are nodes 11, 18, 20 and 27. On the left in Figure 19.6 the corresponding
sparsity pattern of matrix S is shown. A matrix with such a sparsity pattern is called a
pentadiagonal matrix. On the left in the figure we have also highlighted the row and column
that correspond to node 19. The locations where crosses (×) are drawn are just the nodes on
which a particular node (the cross on the main diagonal) depends.

134 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19

19

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 19.6: Sparsity pattern of S ∈ R64×64 when the basic red-black numbering is applied.

When a basic red-black numbering is used, we get a quite different sparsity pattern of
S due to reordering, see Figure 19.7. Of course the node that is called node 19 with a
lexicographic numbering, is still at the same location in the physical domain. However, due
to the red-black numbering node 19 is now called node 42 (which is a red node), and has
direct neighbours 6, 9, 10 and 14 (which are all black nodes). We see that red nodes only
depend on black nodes and vice versa. This independency on the other color translates to a
2× 2 block structure for matrix S: we can write

S =

[
Db Sbr
Srb Dr

]
,

where “r” indicates the red nodes, and “b” the black nodes. Further, Db and Dr are diagonal
matrices and Sbr = STrb are matrices with 4 diagonals; not precisely “4 diagonals”, but this is
a good way to describe them, see Figure 19.7.

When the RRB-numbering is applied to the 8× 8 example we get Figure 19.8.

19.1. RRB-SOLVER BASIC CONCEPTS 135

42

42
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

Figure 19.7: Sparsity pattern of S ∈ R64×64 when the basic red-black numbering is applied. The
matrix S becomes a 2× 2 block matrix.

38

38

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

Figure 19.8: Sparsity pattern of S ∈ R64×64 when the RRB-numbering is applied.

136 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.1.3 Maximal number of levels

In this section we shall determine how many levels a grid consisting of Nx×Ny nodes allows.
That is, we are going to determine the maximal number of levels so that in the coarsest grid
only 1 node remains.

Perfect dimensions

In the case that Nx and Ny are powers of 2 we say that the grid has perfect dimensions. We
say “perfect” because for such grids the CUDA RRB-solver offers maximal performance.

The number n is a power of 2 when it can be written as n = 2k for k ∈ N. We have n = 2k

if and only if k = log2 n, or, for arbitrary base b (comes in handy for hand calculators),
k = logb n/ logb 2. For example, if n = 512 then k = log10 512/ log10 2 = 9. This means
that we can divide the number n consecutively k times by 2 until 1 remains. And if we were
to write down the numbers we would write down k + 1 different powers of 2. For example:
512, 256, 128, 64, 32, 16, 8, 4, 2, 1 (9+1 = 10 numbers).

Let us now apply this to our Nx × Ny grid. If both Nx and Ny are a power of 2, i.e.,
Nx = 2k1 and Ny = 2k2 , then we have to divide Nx k1 times by 2 and Ny k2 times until in
both directions the number 1 remains, hence 1 node. So if we want to have just 1 node in the
final level, we have to coarsen the grid max{k1, k2} times.

For example, for a 128× 512 grid we would find the following levels:

level 1: 128 × 512 nodes
level 2: 64 × 256 nodes
level 3: 32 × 128 nodes
level 4: 16 × 64 nodes
level 5: 8 × 32 nodes
level 6: 4 × 16 nodes
level 7: 2 × 8 nodes
level 8: 1 × 4 nodes
level 9: 1 × 2 nodes
level 10: 1 × 1 nodes

So, although in the x-direction the grid has already become of size 1 after just 7 coarsening
steps, the y-direction takes 9 coarsening steps so that 9+1 = 10 steps are necessary to generate
a level with just 1 node.

Arbitrary dimensions

Let us now discuss how many levels there will be for a grid with arbitrary dimensions Nx

and Ny. We have seen in Section 19.1.1 the mechanism behind the RRB-numbering. It was
explained that the “odd/odd” red nodes in a certain level form the next level (actually we
stated that the “even/even” nodes are being numbered, so the “odd/odd” nodes remain).

We observe that if Nx is even than there are 1
2Nx next level red nodes in the x-direction,

and if Nx is odd than there are 1
2(Nx− 1) next level red nodes in the x-direction. The former

number can be either even or odd, whereas the latter number is always even. Of course the
same holds for Ny and the y-direction.

19.1. RRB-SOLVER BASIC CONCEPTS 137

Now note that as soon as the number of next level red nodes has become a power of 2 the
number of levels from that point on can be determined according to the perfect dimensions
rules. Let us take an example: Nx = 117, Ny = 33. These numbers lead to:

level 1: 117 × 33 nodes
level 2: 58 × 16 nodes
level 3: 29 × 8 nodes
level 4: 14 × 4 nodes
level 5: 7 × 2 nodes
level 6: 3 × 1 nodes
level 7: 1 × 1 nodes

So by construction we find that 7 levels are allowed. In this example it is also nicely
illustrated how the not so perfect number 33 becomes after 1 coarsening step a perfect number,
namely 16. The pattern that we observe makes perfectly sense when we write the number as
a binary number. Let us write

Nx = ck · 2nk + ck−1 · 2nk−1 + · · ·+ c2 · 22 + c1 · 21 + c0 · 20,

where ck = 1, cj ∈ {0, 1} (j = 0, 1, 2, . . . , k − 1), and k refers to the highest power of 2 that
can be substracted from Nx. For example,

117 = 1 · 26 + 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20,

so 1172 = 1110101. Then the number of nodes in the next level is 1110101 >> 1, where >>
stands for bitshift by 1 to the right. Here: 1110101 >> 1 = 111010 = 582. So the x-dimension
of the 2nd level would be 58 nodes. Also, 332 = 100001, and 100001 >> 1 = 10000 = 162, so
the 2nd level would consist of 58× 16 nodes, just like we “computed” above.

By looking at the numbers as binary numbers the maximal number of levels is easily
found: the maximum number of levels, kmax, is 1 plus the k that refers to the largest power
of 2 that can be substracted from max{Nx, Ny}. As a formula:

kmax = 1 + b(log2(max{Nx, Ny}))c.

For the 117 × 33 example: kmax = 1 + b(log2(max{117, 33}))c = 1 + b(log2 117c = 1 +
b6.870c = 7. Note that the formula for kmax also holds for “perfect” dimensions. For the
128× 512 example in Section 19.1.3: kmax = 1 + b(log2(max{128, 512}))c = 1 + b(log2 512c =
1 + b9c = 10.

19.1.4 The RRB-k method

In the previous sections it was assumed that we go all the way down to a level that has only
1 node left. This is not mandatory; we can at any point in the coarsening process decide
to stop. The level at which we stop the process is called level k, hence the RRB-k method.
On level k the remaining nodes are numbered naturally. In Figure 19.9 we have shown the
RRB-numbering and corresponding sparsity pattern of S for the 8 × 8 example in case we
stop at level 2.

138 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

50 52

53 55

58 60

61 63

49 51

57 59

54 56

62 64

Figure 19.9: Sparsity pattern of S ∈ R64×64 and corresponding numbering for the RRB-2 method
applied to the 8× 8 example.

The RRB-method is used to compute an incomplete factorization M = LDLT which
approximates S. The idea of stopping earlier, i.e., at level k, is that we want to solve the
solution in the remaining nodes more accurately or even exactly. Suppose that at level k
there are Nx,k × Ny,k nodes. From these nodes a matrix E ∈ Nn×n, where n = Nx,kNy,k.
By using the natural numbering the matrix E becomes a symmetric pentadiagonal matrix.
More accurate solvers are more expensive, so that n should be considerably smaller than the
original matrix S which has dimensions NxNy ×NxNy in order to keep a fast solver.

On level k we have to solve a system like

Ex = b,

where x is formed by the level k nodes of z and b by the level k nodes of r in the problem
Mz = r. Because E is a pentadiagonal matrix the most proficient method (on a sequential
platform) would be to apply a Complete Cholesky factorization (see Section 7.3.3) to E,
i.e., E = GGT , where G is a lower triangular matrix, and then use forward and backward
substitution to solve Ex = b:

1. Set y := GTx and solve Gy = b using forward substitution;

2. Solve GTx = y using backward substitution.

A different approach can be to compute the inverse of E directly, and just compute
x = E−1b. This seems bad at first glance but on a parallel platform computing a full matrix-
vector product may be as fast or even faster than using forward and backward substitution
as the latter two methods are inherently sequential. For more information on the RRB-k
method we refer to [28].

19.1. RRB-SOLVER BASIC CONCEPTS 139

19.1.5 PCG for half of the nodes

What the name of the solver does not reveal is that the RRB-solver is a Conjugate Gradient
(CG) solver. More precisely, a preconditioned version of the CG algorithm is used: the
Preconditioned Conjugate Gradient (PCG) algorithm. Moreover, the PCG algorithm operates
on only half of the total number of nodes, i.e., only the red nodes. Let us start with explaining
how we get this reduction of a factor 2 in number of unknowns.

In Section 19.1.2 we have seen that with the basic red-black numbering the matrix S kan
be written as a 2× 2 block matrix. If we indicate the red nodes with “r” and the black nodes
with “b” we may put the system

Sψ = b

into the form: [
Db Sbr
Srb Dr

] [
ψb
ψr

]
=

[
bb
br

]
.

Herein are Dr and Db diagonal matrices and Srb = STbr are matrices with 4 diagonals.
Next we apply so-called Gaussian elimination to “get rid off” all black nodes. This yields:[

Db Sbr
0 Dr − SrbD−1

b Sbr

] [
ψb
ψr

]
=

[
bb

br − SrbD−1
b Sbr

]
. (19.1.1)

The matrix S1 := Dr−SrbD−1
b Sbr is called the 1st Schur complement and is given by a 9-point

stencil, the vector b1 := br−SrbD−1
b bb is the corresponding right-hand side. In Figure 19.10 we

see, using graph representation, how Gaussian elimination leads to this 9-point dependency.

5-point stencil

=⇒
Gaussian

elimination

9-point stencil

Figure 19.10: Elimination of the black nodes leads to fill-in and a 9-point stencil.

We observe that if we were to know the solution in all red nodes (ψr), we would be able
to compute the solution in all black nodes (ψb) by means of a simple substitution. Thanks
to the red-black numbering we thus only have to compute the solution for about half of the
nodes (only the red nodes). Solving the sub-system

S1ψr = b1 (19.1.2)

140 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

with b1 := br − SrbD
−1
z Sbr is done iteratively, namely with the Conjugate Gradient (CG)

method. The “engine” of the RRB-solver is thus the CG algorithm applied to half of the
nodes.

But there is a catch. As the CG algorithm operates on half of the notes, at first glance
we may believe that we gain a factor 2 reduction in computing time. Unfortunately, this is
not true. Indeed the number of unknows is reduced by a factor 2, but the system involves no
longer a 5-point stencil but a more expensive 9-point stencil. For example, the matrix-vector
product which occurs in every iteration of the CG algorithm becomes more expensive; the
number of flops per node increases from 9 for the 5-point to 17 for the 9-point stencil. Other
operations such as vector updates (AXPYs) and dot products (DOTs) have become two times
cheaper. If we were to count the overall number of flops for the RRB-solver we would see a
decrease in number of flops.

Moreover, a reordering of the nodes (in our case thus a red-black reordering) typically
means an increase in number of CG iterations required for the CG algorithm to converge.
However, the RRB-solver does not use the plain CG algorithm, but the preconditioned Conju-
gate Gradient algorithm (PCG), which increases the rate of convergence. The preconditioner
that is used is the RRB method.

If everything goes well, the CG algorithm will provide us the solution in the red nodes,
ψr. Given this vector ψr we can compute the solution in the black nodes, i.e., the vector ψb,
by means of a simple substitution as follows. From (19.1.1) we see that

Dbψb + Sbrψr = bb ⇐⇒ ψb = D−1
b (bb − Sbrψr).

So, summarizing, we do the following:

1. Compute b1 = br − SrbD−1
b bb;

2. Apply CG to system (19.1.2), i.e., S1ψr = b1, result: ψr;

3. Compute ψb via ψb = D−1
b (bb − Sbrψr).

19.2 The ideas behind the CUDA RRB-solver

As we have seen earlier in Part III one of the most, if not, the most important notion to get
really fast CUDA code is the notion of coalesced memory. For our RRB-solver not different:
we want all the global memory reads and stores to be “as coalesced as possible”. Maximal
throughput is achieved only if all memory transactions go coalesced-wise. However, due to
one of the basis principles behind the RRB-solver, i.e., computations on consecutively coarser
red-black grids, it seems grit is already thrown in the machine. How are we going to overcome
global memory reads with increasing offsets due to coarsening? This is the main subject of
this section: clever tricks to get maximal throughput.

19.2.1 Clever storage of the data: the r1/r2/b1/b2-storage format

Throughout this section we shall demonstrate everything at the hand of a small example:
a region that leads to a grid containing 75 × 40 nodes, see Figure 19.11. The rectangle
shows how data is stored in a 2D array-format. Throughout the lin wacu code the class
Array2D is used, a very efficient custom-built C++ class exploiting pointers that let us store

19.2. THE IDEAS BEHIND THE CUDA RRB-SOLVER 141

and manipulate 2D arrays in a very cheap manner. Next to the figure a compass is drawn,
the so-called “host compass”. In a moment we shall also meet the so-called “device compass”.
We distinguish between two orientations due to the fact that data is copied wrongly from the
host to the device.

Nx1

N
x
2

COLUMNS

R
O
W
S

W E

N

S

Host compass

Figure 19.11: An example how a grid is stored in the lin wacu software. For the storage the

Array2D class is used. The grid has Nx1 nodes in the x-direction and Nx2 nodes in the y-direction.

In the south and west there is a layer of “ghost nodes”; in the north and east are two layers of extra

nodes. The overall dimensions of the grid are thus: COLUMNS = Nx1 + 3 by ROWS = Nx2 + 3

nodes. Here: Nx1 = 75, Nx2 = 40.

The data which we are interested in is indicated by the gray cells. The relevant data is
thus surrounded by layers of “ghost nodes”. By thinking in advance how CUDA will work
with the data, we figured that we should copy the data to the device in a not-straightforward
manner, i.e., we are going to embed the array in a somewhat larger array, see Figure 19.12.

142 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

cx[0]

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

nx[0]

c
y
[
0
]

n
y
[
0
]

compute
block

16× 16

W E

N

S

Device compass

DETAIL
r1 b1

r2b2

r1 b1

b2

r1 b1

b2

1st idx = (nx[0] + 1) *
BORDER WIDTH

DETAIL

The nodes are divided in 4 groups:

Figure 19.12: The original grid is embedded in a somewhat larger grid that offers better parallel-

lization possibilities and more efficient code. In the bottom-right corner is a r1/r2/b1/b2-numbering is

shown.

Consider Figure 19.12. First note that the array is mirrored in some sense. This is due to
the row-wise/column-wise storage of data. Furthermore, we see how the original grid is copied
into a grid with “wide borders”, namely BORDER WIDTH wide, an even number. We have
taken BORDER WIDTH = 16 which makes that data is stored according to the “optimal 16-
spacing (= 64 byte)” rule. The new array is nx[0] by ny[0]. Also a so-called compute-block
is indicated. A compute-block is the basic identity with which CUDA will work. The compute-
block is square: 16×16 elements or 32×32 elements (depending on the GPU). Henceforth we
shall assume that the compute-block consists of 16 × 16 elements but everything also holds
for compute-blocks with 32 × 32 elements. Later on we shall use DIM COMPUTE BLOCK as
size of the compute-block.

It should be noted that “elements” is not equal to “threads” per se: The CUDA code will
be such that each division of the 16 × 16 block into smaller thread-blocks is allowed; e.g., 2
thread-blocks of 16 × 8 threads each or 16 thread-blocks consisting of 4 × 4 threads, which

19.2. THE IDEAS BEHIND THE CUDA RRB-SOLVER 143

won’t be optimal, but this division is also allowed.

Finally in the bottom-right corner a special numbering of the nodes is suggested: the
data is divided into four distinct groups: the r1-nodes (even/even red nodes), the b1-nodes
(the odd/even black nodes), the r2 nodes (the odd/odd red nodes), and the b2-nodes (the
even/odd black nodes). With “even/odd” we mean: the first coordinate is even; the second
coordinate is odd.

The idea is now, especially since the CG algorithm operates on the red nodes only, to
restore the data according to this r1/r2/b1/b2-storage format, See Figure 19.13.

r1

r2

b1

b2

cx[1] cx[1]

nx[1]

c
y
[
1
]

c
y
[
1
]

n
y
[
1
]

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

compute
block

16× 16

Figure 19.13: Restoring the first grid according to a r1/r2/b1/b2-storage format.

Why saving the data in this different format? Well, by doing so we will get much more
coalesced memory transactions. For example, imagine we have to do some computations

144 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

for the red nodes only in the first level, e.g., a vector update (AXPY), than by using the
r1/r2/b1/b2-storage format we can read all data fully coalesced from the global memory using
64 bytes long chunks of memory, which is optimal. This is just why the compute-blocks
consist of 16× 16 elements (or 32× 32 with 128 byte chunks)! If also nearby data is required,
say the direct neighbours according to a 5-point stencil, i.e., 4 black nodes, then again we
can read those for 50% from the global memory in a coalesced manner. Namely, for r1 (or
r2) the b2 and b1 nodes can be read coalesced; the other two neighbours must be read in a
non-coalesced manner. In some cases we may use textures (which uses caches) to decrease
accessing time for such “nasty” elements.

The figure also shows that we do some useless work due to padding (the white parts), but
for larger grids the amount of useless work is neglicable. The fat borders prevent inclusion of
if-statements. Although this usually saves only about 5%, it is noticeable.

19.2.2 Recursively applying the r1/r2/b1/b2-storage format

Now the key observation is that the nodes in the next coarser red-black grid are just the r2-
nodes! Therefore, we can recursively apply this reordering! In Figure 19.14 and Figure 19.15
this coarsening process is shown.

In Figure 19.15 all relevant data is contained in four 16× 16 blocks, which have just the
dimensions of the basic computing entities: the compute-blocks consisting of 16×16 elements.
At this level we stop the process as only 16×16 CUDA threads are active and the problem now
fits completely in shared memory or in the cache of the GPU on 1 streaming multiprocessor
(SM). 1 thread-block with 16 × 16 threads on 1 SM will therefore take care of the last few
levels.

19.2. THE IDEAS BEHIND THE CUDA RRB-SOLVER 145

r1 b1

r2b2

cx[2] cx[2]

nx[2]

c
y
[
2
]

c
y
[
2
]

n
y
[
2
]

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

Figure 19.14: The second CUDA grid. Note how the grids systematically become smaller. From

this picture it is also clear that grids that have dimensions that are a power of 2 (i.e., 16, 32, 64,

128, 256, 512, 1024, 2048, 4096, etcetera) are optimal for the proposed method consisting of 16 × 16

compute-blocks.

146 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

r1 b1

r2b2

cx[3] cx[3]

nx[3]

c
y
[
3
]

c
y
[
3
]

n
y
[
3
]

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

Figure 19.15: The third and final CUDA grid in case of the 75 × 40 example. 1 thread-block having

16× 16 (or 32× 32) threads will take care of this remaining grid by exploiting cached global memory.

19.2. THE IDEAS BEHIND THE CUDA RRB-SOLVER 147

19.2.3 Thread organization

Figure 19.16 shows how the threads are organized for all kernels; however, the size of thread-
blocks may differ per kernel, depending on what division delivers the most throughput.

r2b2

g.cx g.cx

ld = g.nx

g
.
c
y

g
.
c
y

g
.
n
y

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

compute
block

16× 16

r1 b1

thread
block
16× 8

v r2 = BORDER WIDTH2 + g.cy + by * By + ty

u r2 = BORDER WIDTH2 + g.cx + bx * Bx + tx

v r1 = BORDER WIDTH + by * By + ty

u r1 = BORDER WIDTH + bx * Bx + tx

Grid g

Figure 19.16: Assigning unique array elements to threads. In this picture it is assumed that the
dimensions of the compute-block are set to 16×16. Further, BORDER WIDTH = 16 and the compute-
block is divided into two thread-blocks of size 16×8, hence Bx = 16 and By = 8. The grid consists of
6 compute-blocks, hence 12 thread-blocks: bx = 0,1 and by = 0,1,2. For two array elements, one
r1- and one r2-element, it is shown which thread handles it (the little black squares). For this particular
elements we have (check it yourself): bx = 0, by = 0, tx = 8, ty = 4 for the r1-node and
bx = 1, by = 1, tx = 10, ty = 4 for the r2-element.

148 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.3 General comments on implementation

We briefly comment on our CUDA implementation. This is necessary as in the next sections
we are going to explain the kernels at the hand of the actual implementation.

Matrix S is given by three stencils, namely StC (the center stencil), StW (the west stencil)
and StS (the south stencil). The east and north stencils are not needed as the matrix S is
symmetric and therefore the east stencil, StE, can be expressed in terms of StW , and the
north stencil, StN , can be expressed in terms of StS.

To avoid really difficult bookkeeping and to increase transparancy of the code, the pre-
conditioning matrix M in the current C++ version is build with all five stencils. Our CUDA
implementation also uses five stencils, but in principle it is possible to write code that uses
only three stencils.

On top of the five stencils, four additional stencils (or two in case of just three stencils)
are needed since the 1st Schur complement, namely StNE (north-east), StSE (south-east),
StSW (south-west) and StNW (north-west).

In the CUDA implementation we have therefore declared a structure Grid which will
contain the 9 stencils (structure members). The reason why a structure is used rather than a
class, is that CUDA does not support classes. Grid is defined as a global variable as follows:

struct Grid {
REAL *cc;
REAL *nn;
REAL *ee;
REAL *ss;
REAL *ww;
REAL *ne;
REAL *se;
REAL *sw;
REAL *nw;
unsigned int nx;
unsigned int ny;
unsigned int cx;
unsigned int cy;

};

The symbol REAL is either float or double. This is decided by the preprocessor directives

#ifdef USEDOUBLE
#define REAL double
#else
#define REAL float
#endif

in the headerfile “defines.h”. So, if USEDOUBLE is defined (either via a preprocessor
directive or adding -DUSEDOUBLE in the Makefile, double-precision (double) is used; if not,
single-precision (float) is used throughout the code. Further, the structure has the structure
members nx, ny, cx and cy. Herein refers, for example, nx to the dimension of the grid
in the x-direction (the leading dimension) and cy to the height of the computing area.

We can use this structure by declaring a variable via Grid g;. Then, for example, the
north-east stencil is retrieved with g.ne, and the leading dimension ld is retrieved with ld
= g.nx.

19.4. DETERMINING THE SIZES OF THE LEVELS 149

19.4 Determining the sizes of the levels

In Section 19.1.3 we have seen how many levels there are for grids with arbitrary dimensions
Nx by Ny nodes. In Section 19.1.3 it was remarked that in CUDA at a certain point we stop
the coarsening process, namely as soon as the remaining number of nodes fit in the basic
computing unit: the compute-block which is 16 × 16 or 32 × 32 elements large (depending
on the GPU). In this section we shall provide C++ source code that computes the number of
levels and the corresponding sizes.

19.4.1 Introduction

When arrays with the Array2D format are copied from the host to the device, the rows and
columns are interchanged. This means that when the original grid has size Nx1 (x) by Nx2
(y) on the host, on the device it arrives as a Nx2 (x) by Nx1 (y) array. In Section 19.2.1 it
was explained that the original data is embedded in a somewhat bigger array. The reason
to do this was that we always strive for coalesced memory transactions. The first task is to
determine the dimensions of this embedding grid.

19.4.2 The embedding grid

Consider Figure 19.12. The relevant data is contained in a computing area with dimensions
cx[0] by cy[0] elements. Around this computing area wide borders are attached with
width BORDER WIDTH. The overall dimensions of the embedding grid are nx[0] by nx[1]
elements. We have that nx[0] = cx[0] + BORDER WIDTH2 where BORDER WIDTH2 =
2 * BORDER WIDTH. To make sure that the relevant data is copied into the embedding
grid as intended the CUDA function cudaMemcpy2D() is used. To determine how large the
computing area (cx[0] by cy[0]) should be we compute how many compute-blocks (with
dimensions DIM COMPUTE BLOCK by DIM COMPUTE BLOCK) are needed in either direction
to contain the data. This is done with the C++ code:

cx[0] = DIM_COMPUTE_BLOCK * (int)ceil((float)Nx2 / DIM_COMPUTE_BLOCK);
cy[0] = DIM_COMPUTE_BLOCK * (int)ceil((float)Nx1 / DIM_COMPUTE_BLOCK);

Note that we use Nx2 for the x-direction and Nx2 for the y-direction because of the
row/column interchange. Accordingly, nx[0] and ny[0] can be computed as follows:

nx[0] = m_cx[0] + BORDER_WIDTH2;
ny[0] = m_cy[0] + BORDER_WIDTH2;

19.4.3 The r1/r2/b1/b2-grids

The next task it to determine how many different r1/r2/b1/b2-levels we need and also how
large they should be. Let us first focus on how many levels there are needed. In Section 19.2.2
it was explained that we stop as soon as the number of remaining elements fit in one compute-
block. Therefore we use a while-loop to check whether we can stop yet:

int k = 1;
while (cx[k-1] > DIM_COMPUTE_BLOCK || cy[k-1] > DIM_COMPUTE_BLOCK)
{

...
}

150 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

The first r1/r2/b1/b2-grid is called grid 1. It remains to give a relationship between the
dimensions of the computing areas of consecutive grids. It won’t take you long to figure out
that the following code does the trick:

cx[k] = DIM_COMPUTE_BLOCK * (int)ceil((float)(cx[k-1] / 2)
/ DIM_COMPUTE_BLOCK);

cy[k] = DIM_COMPUTE_BLOCK * (int)ceil((float)(cy[k-1] / 2)
/ DIM_COMPUTE_BLOCK);

Accordingly, the overall dimenions of each grid are given by

m_nx[k] = 2 * cx[k] + BORDER_WIDTH + BORDER_WIDTH2;
m_ny[k] = 2 * cy[k] + BORDER_WIDTH + BORDER_WIDTH2;

The term BORDER WIDTH corresponds with the fact that the r1, r2, b1 and b2 parts of the array
are seperated by a strokes with width BORDER WIDTH. Everything combined an appriopriate
C++ class function for CudaRrbSolver is given in Listing 19.1.

Listing 19.1: Class function determineGrids().

1 void CudaRrbSolver::determineGrids(unsigned int Nx1, unsigned int Nx2)
2 {
3 m_cx[0] = DIM_COMPUTE_BLOCK * (int)ceil((float)Nx2 / DIM_COMPUTE_BLOCK);
4 m_cy[0] = DIM_COMPUTE_BLOCK * (int)ceil((float)Nx1 / DIM_COMPUTE_BLOCK);
5

6 m_nx[0] = m_cx[0] + BORDER_WIDTH2;
7 m_ny[0] = m_cy[0] + BORDER_WIDTH2;
8

9 int k = 1;
10 while (m_cx[k-1] > DIM_COMPUTE_BLOCK || m_cy[k-1] > DIM_COMPUTE_BLOCK)
11 {
12 m_cx[k] = DIM_COMPUTE_BLOCK * (int)ceil((float)(m_cx[k-1] / 2)
13 / DIM_COMPUTE_BLOCK);
14

15 m_cy[k] = DIM_COMPUTE_BLOCK * (int)ceil((float)(m_cy[k-1] / 2)
16 / DIM_COMPUTE_BLOCK);
17

18 m_nx[k] = 2 * m_cx[k] + BORDER_WIDTH + BORDER_WIDTH2;
19 m_ny[k] = 2 * m_cy[k] + BORDER_WIDTH + BORDER_WIDTH2;
20 ++k;
21 }
22 m_numLevels = k - 1;
23 } // determineGrids

Note that, for example, nx is replaced by m nx. This means that the variable m nx has become
a member variable of the class CudaRrbSolver. The total number of r1/r2/b1/b2-levels is
called m numLevels. Let us illustrate the algorithm at the hand of a small example.

19.4.4 An example

Let us take Nx1 = 75 and Nx2 = 40. Assume DIM COMPUTE BLOCK = 16. For the em-
bedding grid we find: cx[0] = 16 · df40/16e = 16 · d2.5e = 16 · 3 = 48. Herein is / the integer
division operator and f the float-type cast. Likewise, cy[0] = 16 · df75/16e = 16 · d4.6875e =
16 · 5 = 80. Hence nx[0] = 48 + 32 = 80 and ny[0] = 80 + 32 = 112.

19.5. MEMORY REQUIREMENTS 151

For the first r1/r2/b1/b2-grid we compute cx[1] = 16 · df(40/2)/16e = 16 · d1.25e = 16 ·2 =
32 and cy[1] = 16 ·df(75/2)/16e = 16 ·d2.34375e = 16 ·3 = 48. Hence nx[1] = 2 ·32+16+32 =
112 and ny[1] = 2 · 48 + 16 + 32 = 144. By going through all computations we find:

level k cx[k] cy[k] nx[k] ny[k]

embedding (= 0): 48 × 80 80 × 112

level 1: 32 × 48 112 × 144
level 2: 16 × 32 80 × 112
level 3: 16 × 16 80 × 80

19.5 Memory requirements

In this section we shall give indications on how much memory is required for solving a problem
consisting of Nx1 by Nx2 nodes on the GPU. The r1/r2/b1/b2-storage format offers great
advantages regarding performance, however, we have to pay a price: extra memory is needed.
We shall give estimates how much memory is required for the complete CUDA RRB-solver as
well as the amount of extra memory that comes with introduction of the r1/r2/b1/b2-storage
format.

19.5.1 A list of all data objects

To be able to give memory estimates we have put together a list that contains all data
objects that take a significant amount of memory space. The list is based on the actual CUDA
implementation.

Variable Description Storage format

*m prec preconditioner stencils repeated r1/r2/b1/b2
m orig original stencils single r1/r2/b1/b2

*m dcc center stencil standard(∗)

*m dss south stencil standard(∗)

*m dww west stencil standard(∗)

*m dX vector x standard

*m dB vector b standard

*m dXr1r2b1b2 vector x single r1/r2/b1/b2

*m dYr1r2b1b2 vector y single r1/r2/b1/b2

*m dBr1r2b1b2 vector b single r1/r2/b1/b2

*m dPr1r2b1b2 vector p single r1/r2/b1/b2

*m dQr1r2b1b2 vector q single r1/r2/b1/b2

*m dRr1r2b1b2 vector r single r1/r2/b1/b2

**m dZr1r2b1b2 vector z repeated r1/r2/b1/b2

*m drem for dot products standard

Note (∗): Only 1 of the stencils exists at the time. After the stencil is copied to the device, the stencil
is restored in the r1/r2/b1/b2-storage format, the original stencil is deleted right after it.

It appears that only the vectors x and b are stored twice in two different formats. Further, for
creating the preconditioner stencils in the r1/r2/b1/b2-storage format it is necessary to have
at the same moment the stencil available in the original, standard format. Compared to a

152 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

straightforward CUDA PCG solver we thus need 3 extra arrays in the device’s global memory
that have the dimension of the original problem. Moreover, some of the variables require
already some extra memory space because of the repeated r1/r2/b1/b2-storage format.

19.5.2 Extra memory requirements for the repeated r1/r2/b1/b2-storage for-
mat — an estimate

Let us start by stating the following result:

∞∑
i=1

1

4i
= 1 +

1

4
+

1

16
+

1

64
+

1

256
+ · · · = 4

3
.

What does this infinite series has to do with the memory? Well, imagine that we say that the
original grid takes 1 unit of memory (a unit may be 6.3 MB, 1.7 GB, basically any number of
bytes). Then, if we are going to store the r2 nodes into a new grid, the 2nd grid, consisting of
about 1/4th of the total number of nodes, we need a grid that takes 1/4 units of memory. The
3th level takes 1/16th units of memory, and so on. We see that in the ideal case only a factor
4/3 more memory is needed for using the repeated r1/r2/b1/b2-storage format compared to
using only the original grid. We write “in the ideal case” because of the extra borders, one
can imagine that for small problems the amount of extra memory can be much larger than
that factor 4/3. So with the ideal case we mean very large grids, so that the width of the
borders become negligable compared to the computing area.

19.5.3 Memory requirements for a 1.5M node test problem

The laboratorium version of the CUDA RRB-solver can provide valuable nformation while
it runs. By setting the switches DISPLAY GRIDS = 1 and DISPLAY MEMORYUSAGE = 1
the CUDA RRB-solver will generate a .txt-file with information on the grid levels and the
amount of allocated memory on the device. With the switch DISPLAY PROPERTIES also the
device is listed on which the experiments run. Below we have included the generated output
file for the 1.5M Plymouth test problem when the aforementioned switches are turned on.

Display grid is enabled [DISPLAY_GRIDS = 1]
==
Problem size (given): 1250 x 1200

Grid level nx ny cx cy
==
1 1264 1328 608 640
2 688 688 320 320
3 368 368 160 160
4 240 240 96 96
5 176 176 64 64
6 112 112 32 32

==

Display device props is enabled [DISPLAY_PROPERTIES = 1]

The \texttt{CUDA} RRB-solver will run on:

Device name: GeForce GTX 580
==

19.5. MEMORY REQUIREMENTS 153

Total global memory: 1572032 KB
Shared memory per block: 48 KB
Number of registers: 32768
Warp size in threads: 32
Max. nr. threads per block: 1024
Compute capability: 2.0
Number of SMs: 16
Number of SPs per SM: 32

Display memory usage is enabled[DISPLAY_MEMORYUSAGE = 1]
==

1) Allocating memory for preconditioner (9 stencils):
Grid level nx ny memory (B)
==
1 1264 1328 60429312
2 688 688 17040384
3 368 368 4875264
4 240 240 2073600
5 176 176 1115136
6 112 112 451584

TOTAL: 85985280 Bytes
RUNNING TOTAL: 85985280 Bytes

2) Allocating memory for vectors x and b:
Name nx ny memory (B)
==
vector x 1248 1312 6549504
vector b 1248 1312 6549504

TOTAL: 13099008 Bytes
RUNNING TOTAL: 99084288 Bytes

3) Allocating memory for CG vectors (r1/r2/b1/b2 storage):
Name nx ny memory (B)
==
vector x 1264 1328 6714368
vector b 1264 1328 6714368
vector p 1264 1328 6714368
vector q 1264 1328 6714368
vector r 1264 1328 6714368
vector y 1264 1328 6714368

TOTAL: 40286208 Bytes
RUNNING TOTAL: 139370496 Bytes

4) Allocating memory for vector z(r1/r2/b1/b2 storage):
Grid level nx ny memory (B)
==
1 1264 1328 6714368
2 688 688 1893376
3 368 368 541696
4 240 240 230400
5 176 176 123904
6 112 112 50176

TOTAL: 9553920 Bytes
RUNNING TOTAL: 139370496 Bytes

154 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

5) Allocating memory for original stencils:
nx ny memory (B)

==
center 1264 1328 6714368
north 1264 1328 6714368
east 1264 1328 6714368
south 1264 1328 6714368
west 1264 1328 6714368

TOTAL: 33571840 Bytes
RUNNING TOTAL: 172942336 Bytes

6) Allocating memory for partial dot products:
array size: 380 1520 Bytes

RUNNING TOTAL: 172943856 Bytes
==

7) Some memory must be left for handling stC, stW, stS:
nx ny memory (B)

==
buffer 1248 1312 6549504

==
SUPER TOTAL: 179493360 Bytes

==

We observe that we need for the preconditioner about 86 MB memory for the repeated
r1/r2/b1/b2-storage format. For 9 stencils in the standard format we would need about
#stencils ·Nx1 ·Nx2 · 4 bytes = 9 · 1250 · 1200 · 4 = 54 MB. So, in practice we need about a
factor 86/54 = 1.6 more storage space rather than the factor 4/3 (= 1.33). In the next section
we present a list with the memory requirements for many more different problem sizes.

19.5. MEMORY REQUIREMENTS 155

19.5.4 An overview: memory versus problem size

In the table below the memory requirements for all test problems are listed.

Test problem Nx Ny Total memory repeated r1/r2/b1/b2
(MB) versus standard

Poisson 65k 256 256 10.0 2.1×
Poisson 262k 512 512 33.5 1.7×
Poisson 590k 768 768 71.3 1.6×
Poisson 1M 1,024 1,024 121.5 1.5×
Poisson 1.6M 1,280 1,280 187.3 1.5×
Poisson 2.4M 1,536 1,536 264.6 1.5×
Poisson 3.2M 1,792 1,792 356.6 1.5×
Poisson 4.2M 2,048 2,048 460.9 1.4×
IJssel 100k 500 200 18.4 2.6×
IJssel 200k 800 250 29.8 2.1×
IJssel 500k 1,000 500 64.1 1.7×
IJssel 1M 1,600 625 122.9 1.7×
IJssel 1.5M 1,500 1,000 179.2 1.6×
Plymouth 100k 400 250 16.7 2.4×
Plymouth 200k 500 400 30.0 2.1×
Plymouth 500k 800 625 65.9 1.8×
Plymouth 1M 800 1,250 125.6 1.7×
Plymouth 1.5M 1,200 1,250 179.5 1.7×
Port Presto 100k 400 250 16.7 2.4×
Port Presto 200k 500 400 30.0 2.1×
Port Presto 500k 800 625 65.9 1.8×
Port Presto 1M 1,000 1,000 121.5 1.6×
Port Presto 1.5M 1,200 1,250 179.5 1.6×

In this table the total memory is the memory requirement to store all data objects as listed
in Section 19.5.1. The far most right column shows the ratio of storing the preconditioner
matrix with the repeated r1/r2/b1/b2-storage format versus saving only the 9 stencils on the
very first (finest) level. We see that for very large problems, i.e., the 2048×2048 node Poisson
problem we see that the ratio approaches the theoretical factor 4/3, recall Section 19.5.1.

156 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6 Constructing the preconditioning matrix M

In this section it is explained how the preconditioning matrix M = LDLT is constructed.

19.6.1 Algorithm

The preconditioning matrix M is constructed iteratively, that is, level-wise, as follows. The
stencils StC, StW and StS that define the matrix S are copied into the three arrays ccc,
cww and css. Further, the west and south stencil are used to make cee and cnn, and
four additional arrays, cne, cse, csw, cnw, are created. Then the following steps are
performed in the indicating order:

Level Phase Description

1st Phase 2a elimination of black nodes (5-point → 9-point)
using the 5-point stencils for surrounding black nodes

=⇒

for both r1- and r2-nodes

1st Phase 2b lumping (9-point → 5-point)

=⇒

only for r1-nodes

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 157

level Phase description

1st Phase 2c memory efficiency
only for r1-nodes: cnn ← [cnw

cee ← [cne
cww ← [csw
css ← [cse

1st Phase 3 elimination of 1st level red nodes using the 5-point stencil from Phase 2b

=⇒

only for r2-nodes (= nodes in 2nd level)

2nd Phase 1 lumping (9-point → 5-point)

=⇒

only for black nodes in 2nd level

2nd Phase 2a see above (repeated on 2× coarser grid)

In the end ccc, cnn, cee, css, cww are divided by ccc.

level Phase description

1st Phase 4 dividing by main diagonal
for all nodes in 1st level: ccc ←[1

cnn ←[cnn / ccc
cee ←[cee / ccc
css ←[css / ccc
cww ←[cww / ccc

158 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6.2 Phase 2a: elimination of black nodes

In Phase 2a the black nodes are eliminated. By doing so the 5-point stencil becomes a 9-point
stencil.

=⇒

The black nodes are eliminited with Gaussian elimination. When Gaussion elimination
is applied to the 1st level, the resulting 9-point stencil defines the matrix S1 which is called
the 1st Schur complement, see Section 19.1.5. Using stencil notation the computation of
Dr − SrbD−1

b Sbr translates to:


0 0 0 0 0
0 0 Nb 0 0
0 Wb Cr Eb 0
0 0 Sb 0 0
0 0 0 0 0


︸ ︷︷ ︸

center

− Nb

CN
b


0 0 NN

r 0 0
0 WN

r CN
b EN

r 0
0 0 SN

r 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

north

− Eb

CE
b


0 0 0 0 0
0 0 0 NE

r 0
0 0 WE

r CE
b EE

r

0 0 0 SE
r 0

0 0 0 0 0


︸ ︷︷ ︸

east

− Sb

CS
b


0 0 0 0 0
0 0 0 0 0
0 0 NS

r 0 0
0 WS

r CS
b ES

r 0
0 0 SS

b 0 0


︸ ︷︷ ︸

south

− Wb

CW
b


0 0 0 0 0
0 NW

r 0 0 0
WW

r CW
b EW

r 0 0
0 SW

r 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

west

=



0 0 −NbN
N
r

CN
b

0 0

0 −NbW
N
r

CN
b

− WbN
W
r

CS
b

0 −NbE
N
r

CN
b

− EbN
E
r

CE
b

0

−WbW
W
r

CS
b

0 Cr −
NbS

N
r

CN
b

− EbW
E
r

CE
b

− SbN
S
r

CS
b

− WbE
N
r

CS
b

0 −EbE
E
r

CE
b

0 −SbW
S
r

CS
b

− WbS
N
r

CS
b

0 −EbS
E
r

CE
b

− SbE
S
r

CS
b

0

0 0 −SbS
N
b

CN
b

0 0


.

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 159

In C++ this can be implemented as follows.

// r1 nodes:
for (j = st; j <= Nx2; j += tw) {

for (i = st; i <= Nx1; i += tw) {
// north
cne[i][j] -= cnn[i][j] * cee[i][j+st] / ccc[i][j+st];
cnw[i][j] -= cnn[i][j] * cww[i][j+st] / ccc[i][j+st];
ccc[i][j] -= cnn[i][j] * css[i][j+st] / ccc[i][j+st];
cnn[i][j] = - cnn[i][j] * cnn[i][j+st] / ccc[i][j+st];

// south
cse[i][j] -= css[i][j] * cee[i][j-st] / ccc[i][j-st];
csw[i][j] -= css[i][j] * cww[i][j-st] / ccc[i][j-st];
ccc[i][j] -= css[i][j] * cnn[i][j-st] / ccc[i][j-st];
css[i][j] = - css[i][j] * css[i][j-st] / ccc[i][j-st];

// east
cne[i][j] -= cee[i][j] * cnn[i+st][j] / ccc[i+st][j];
cse[i][j] -= cee[i][j] * css[i+st][j] / ccc[i+st][j];
ccc[i][j] -= cee[i][j] * cww[i+st][j] / ccc[i+st][j];
cee[i][j] = - cee[i][j] * cee[i+st][j] / ccc[i+st][j];

// west
cnw[i][j] -= cww[i][j] * cnn[i-st][j] / ccc[i-st][j];
csw[i][j] -= cww[i][j] * css[i-st][j] / ccc[i-st][j];
ccc[i][j] -= cww[i][j] * cee[i-st][j] / ccc[i-st][j];
cww[i][j] = - cww[i][j] * cww[i-st][j] / ccc[i-st][j];

}
}

For the r2-nodes similar code can be used (just change the initializers of the for-loops into
i = tw and j = tw). Check for yourself that the code snippet above indeed computes the
elements in the 9-point stencil above. The code is close to the actual implementation in C++.
Note that lots of terms occur multiple times, which motivates to introduce extra variables
to store common values. This will increase readability of the code, and, perhaps, may even
increase performance.

In CUDA Phase 2a, Phase 2b and Phase 2c are combined into 1 kernel. In Listing 19.2 the
corresponding CUDA code can be found.

160 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6.3 Phase 2b: lumping

In Phase 2b the 9-point stencil is reduced to a 5-point stencil by using a method which is
known as lumping.

=⇒

Basically lumping is nothing more than removing stencil dependencies by adding the
respective coefficients to (an)other coefficient(s). Although there are lots of different possibil-
ities, according to [28] it is best to use the lumping strategy that corresponds to the Modified
Incomplete Cholesky decomposition (with ω = 1). If the 9-point stencil from Step 2a is
notated as 

0 0 NNr 0 0
0 NWr 0 NEr 0

WWr 0 CCr 0 EEr
0 SWr 0 SEr 0
0 0 SSr 0 0

 ,
than the 5-point stencil after lumping is NWr 0 NEr

0 CC∗r 0
SWr 0 SEr

 ,
where CC∗r is given by

CC∗r := CCr +NNr + EEr + SSr +WWr.

Suitable C++ code would be:

// r1 nodes:
for (j = st; j <= Nx2; j += tw) {

for (i = st; i <= Nx1; i += tw) {
ccc[i][j] = ccc[i][j] + // center

cnn[i][j] + // north
cee[i][j] + // east
css[i][j] + // south
cww[i][j]; // west

}
}

In CUDA Phase 2a, Phase 2b and Phase 2c are combined into 1 kernel. In Listing 19.2 the
corresponding CUDA code can be found.

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 161

19.6.4 Phase 2c: memory efficiency

In this step a clever trick is used which saves memory. For the r1-nodes the north-west stencils
(StNW) for those nodes are saved in the north stencils (StN), the north-east stencils (StNE)
in the east stencils (StEE), the south-east stencils (StSE) in the south stencils (StSS) and
the south-west stencils (StSW) in the west stencils (StWW). By doing so the stencils StNE,
StSE, StSW and StNW can be deleted as soon as the preconditioning matrix M is made.
The CG-part of the solver will only use the remaining 5 stencils. Corresponding C++ code is:

// r1 nodes:
for (j = st; j <= Nx2; j += tw) {

for (i = st; i <= Nx1; i += tw) {
cnn[i][j] = cnw[i][j];
cee[i][j] = cne[i][j];
css[i][j] = cse[i][j];
cww[i][j] = csw[i][j];

}
}

In CUDA Phase 2a, Phase 2b and Phase 2c are combined into the kernel prec::kernel prec2().
In Listing 19.2 the corresponding CUDA code can be found.

Listing 19.2: CUDA kernel prec::kernel prec2().

1 template <class T>
2 __global__ void kernel_prec2(Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
11 int v_b1 = BORDER_WIDTH + by * By + ty;
12 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
13 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;
14

15 int loc_r1 = ld * v_r1 + u_r1;
16 int loc_r2 = ld * v_r2 + u_r2;
17 int loc_b1 = ld * v_b1 + u_b1;
18 int loc_b2 = ld * v_b2 + u_b2;
19

20 T sum_cc = 0;
21 T sum_ne = 0;
22 T sum_nw = 0;
23 T sum_nn = 0;
24 T sum_se = 0;
25 T sum_sw = 0;
26 T sum_ss = 0;
27 T sum_ee = 0;
28 T sum_ww = 0;
29

30 const T val_nn_b1 = __FETCH_NN(u_b1, v_b1, ld);
31 const T val_ee_b1 = __FETCH_EE(u_b1, v_b1, ld);
32 const T val_ss_b1 = __FETCH_SS(u_b1, v_b1, ld);
33 const T val_ww_b1 = __FETCH_WW(u_b1, v_b1, ld);

162 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

34

35 const T val_nn_b2 = __FETCH_NN(u_b2, v_b2, ld);
36 const T val_ee_b2 = __FETCH_EE(u_b2, v_b2, ld);
37 const T val_ss_b2 = __FETCH_SS(u_b2, v_b2, ld);
38 const T val_ww_b2 = __FETCH_WW(u_b2, v_b2, ld);
39

40 const T val_cc_b1 = __FETCH_CC(u_b1, v_b1, ld);
41 const T val_cc_b2 = __FETCH_CC(u_b2, v_b2, ld);
42

43 T a, b;
44

45 // r1 nodes:
46 a = 1 / val_cc_b2;
47 b = g.nn[loc_r1] * a;
48 sum_ne = g.ne[loc_r1] - b * val_ee_b2;
49 sum_cc = g.cc[loc_r1] - b * val_ss_b2;
50 sum_nw = g.nw[loc_r1] - b * val_ww_b2;
51 sum_nn = - b * val_nn_b2;
52

53 a = 1 / __FETCH_CC(u_b2, v_b2-1, ld);
54 b = g.ss[loc_r1] * a;
55 sum_se = g.se[loc_r1] - b * g.ee[loc_b2 - ld];
56 sum_sw = g.sw[loc_r1] - b * g.ww[loc_b2 - ld];
57 sum_cc -= b * g.nn[loc_b2 - ld];
58 sum_ss = - b * g.ss[loc_b2 - ld];
59

60 a = 1 / val_cc_b1;
61 b = g.ee[loc_r1] * a;
62 sum_ne -= b * val_nn_b1;
63 sum_se -= b * val_ss_b1;
64 sum_cc -= b * val_ww_b1;
65 sum_ee = - b * val_ee_b1;
66

67 a = 1 / __FETCH_CC(u_b1-1, v_b1, ld);
68 b = g.ww[loc_r1] * a;
69 sum_nw -= b * __FETCH_NN(u_b1-1, v_b1, ld);
70 sum_sw -= b * __FETCH_SS(u_b1-1, v_b1, ld);
71 sum_cc -= b * __FETCH_EE(u_b1-1, v_b1, ld);
72 sum_ww = - b * __FETCH_WW(u_b1-1, v_b1, ld);
73

74 g.cc[loc_r1] = sum_cc + sum_nn + sum_ee + sum_ss + sum_ww;
75 g.nn[loc_r1] = sum_ne;
76 g.ee[loc_r1] = sum_se;
77 g.ww[loc_r1] = sum_nw;
78 g.ss[loc_r1] = sum_sw;
79 g.ne[loc_r1] = sum_ne;
80 g.se[loc_r1] = sum_se;
81 g.sw[loc_r1] = sum_sw;
82 g.nw[loc_r1] = sum_nw;
83

84 // r2 nodes:
85 a = 1 / __FETCH_CC(u_b1, v_b1+1, ld);
86 b = g.nn[loc_r2] * a;
87 sum_ne = g.ne[loc_r2] - b * g.ee[loc_b1 + ld];
88 sum_cc = g.cc[loc_r2] - b * g.ss[loc_b1 + ld];
89 sum_nw = g.nw[loc_r2] - b * g.ww[loc_b1 + ld];
90 sum_nn = - b * g.nn[loc_b1 + ld];

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 163

91

92 a = 1 / val_cc_b1;
93 b = g.ss[loc_r2] * a;
94 sum_se = g.se[loc_r2] - b * val_ee_b1;
95 sum_sw = g.sw[loc_r2] - b * val_ww_b1;
96 sum_cc -= b * val_nn_b1;
97 sum_ss = - b * val_ss_b1;
98

99 a = 1 / __FETCH_CC(u_b2+1, v_b2, ld);
100 b = g.ee[loc_r2] * a;
101 sum_ne -= b * __FETCH_NN(u_b2+1, v_b2, ld);
102 sum_se -= b * __FETCH_SS(u_b2+1, v_b2, ld);
103 sum_cc -= b * __FETCH_WW(u_b2+1, v_b2, ld);
104 sum_ee = - b * __FETCH_EE(u_b2+1, v_b2, ld);
105

106 a = 1 / val_cc_b2;
107 b = g.ww[loc_r2] * a;
108 sum_nw -= b * val_nn_b2;
109 sum_sw -= b * val_ss_b2;
110 sum_cc -= b * val_ee_b2;
111 sum_ww = - b * val_ww_b2;
112

113 g.cc[loc_r2] = sum_cc;
114 g.nn[loc_r2] = sum_nn;
115 g.ss[loc_r2] = sum_ss;
116 g.ee[loc_r2] = sum_ee;
117 g.ww[loc_r2] = sum_ww;
118 g.ne[loc_r2] = sum_ne;
119 g.se[loc_r2] = sum_se;
120 g.sw[loc_r2] = sum_sw;
121 g.nw[loc_r2] = sum_nw;
122 }

164 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6.5 Phase 3: elimination of the red nodes which are not in the next
level

=⇒

Using stencil notation the elimination of the red nodes which are not in the next level is given
by:


0 0 NNr 0 0
0 NWr 0 NEr 0

WWr 0 CCr 0 EEr

0 SWr 0 SEr 0
0 0 SSr 0 0


︸ ︷︷ ︸

center

− NEr

CCNE
r


0 0 NWNE

r 0 NENE
r

0 0 0 CCNE
r 0

0 0 SWNE
r 0 SENE

r

0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

north-east

− SEr

CCSE
r


0 0 0 0 0
0 0 0 0 0
0 0 NWSE

r 0 NESE
r

0 0 0 CCNE
r 0

0 0 SWSE
r 0 SESE

r


︸ ︷︷ ︸

south-east

− SWr

CCSW
r


0 0 0 0 0
0 0 0 0 0

NWSW
r 0 NESW

r 0 0
0 CCSW

r 0 0 0
SWSW

r 0 SESW
r 0 0


︸ ︷︷ ︸

south-west

− NWr

CCNW
r


NWNW

r 0 NENW
r 0 0

0 CCNW
r 0 0 0

SWNW
r 0 SENW

r 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

north-west

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 165

=


NW ∗

r 0 NN∗
r 0 NE∗

r

0 0 0 0 0
WW ∗

r 0 CC∗
r 0 EE∗

r

0 0 0 0 0
SW ∗

r 0 SS∗
r 0 SE∗

r

 ,
where

NW ∗r := −NWrNW
NW
r

CCNWr

,

NE∗r := −NErNE
NE
r

CCNEr

,

SE∗r := −SErSE
SE
r

CCSEr
,

SW ∗r := −SWrSW
SW
r

CCSWr
,

NN∗r := NNr −
NErNW

NE
r

CCNEr

− NWrNE
NW
r

CCNWr

,

EE∗r := EEr −
NErSE

NE
r

CCNEr

− SErNE
SE
r

CCSEr
,

SS∗r := SSr −
SErSW

SE
r

CCSEr
− SWrSE

SW
r

CCSWr
,

WW ∗r := WWr −
SWrNW

SW
r

CCSWr
− NWrSW

NW
r

CCNWr

,

CC∗r := CCr −
NErSW

NE
r

CCNEr

− SErNW
SE
r

CCSEr
− SWrNE

SW
r

CCSWr
− NWrSE

NW
r

CCNWr

.

In C++ these computations can be implemented as follows:

for (j = 0; j <= Nx2; j += tw) {
for (i = 0; i <= Nx1; i += tw) {

// north-east
cnn[i][j] -= cne[i][j] * cnw[i+st][j+st] / ccc[i+st][j+st];
cee[i][j] -= cne[i][j] * cse[i+st][j+st] / ccc[i+st][j+st];
ccc[i][j] -= cne[i][j] * csw[i+st][j+st] / ccc[i+st][j+st];
cne[i][j] = - cne[i][j] * cne[i+st][j+st] / ccc[i+st][j+st];

// north-west
cnn[i][j] -= cnw[i][j] * cne[i-st][j+st] / ccc[i-st][j+st];
cww[i][j] -= cnw[i][j] * csw[i-st][j+st] / ccc[i-st][j+st];
ccc[i][j] -= cnw[i][j] * cse[i-st][j+st] / ccc[i-st][j+st];
cnw[i][j] = - cnw[i][j] * cnw[i-st][j+st] / ccc[i-st][j+st];

// south-west
css[i][j] -= csw[i][j] * cse[i-st][j-st] / ccc[i-st][j-st];
cww[i][j] -= csw[i][j] * cnw[i-st][j-st] / ccc[i-st][j-st];
ccc[i][j] -= csw[i][j] * cne[i-st][j-st] / ccc[i-st][j-st];
csw[i][j] = - csw[i][j] * csw[i-st][j-st] / ccc[i-st][j-st];

166 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

// south-east
css[i][j] -= cse[i][j] * csw[i+st][j-st] / ccc[i+st][j-st];
cee[i][j] -= cse[i][j] * cne[i+st][j-st] / ccc[i+st][j-st];
ccc[i][j] -= cse[i][j] * cnw[i+st][j-st] / ccc[i+st][j-st];
cse[i][j] = - cse[i][j] * cse[i+st][j-st] / ccc[i+st][j-st];

}
}

In CUDA this translates to the code in Listing 19.3.

Listing 19.3: CUDA kernel prec::kernel prec3().

1 template <class T>
2 __global__ void kernel_prec3(Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int loc_r2 = ld * v_r2 + u_r2;
12

13 T sum_cc = 0;
14 T sum_ne = 0;
15 T sum_nw = 0;
16 T sum_nn = 0;
17 T sum_se = 0;
18 T sum_sw = 0;
19 T sum_ss = 0;
20 T sum_ee = 0;
21 T sum_ww = 0;
22

23 T a, b;
24

25 const T val_cc_r1 = 1 / __FETCH_CC(u_r1, v_r1, ld);
26

27 a = 1 / __FETCH_CC(u_r1+1, v_r1+1, ld);
28 b = g.ne[loc_r2] * a;
29 sum_nn = g.nn[loc_r2] - b * __FETCH_NW(u_r1+1, v_r1+1, ld);
30 sum_ee = g.ee[loc_r2] - b * __FETCH_SE(u_r1+1, v_r1+1, ld);
31 sum_cc = g.cc[loc_r2] - b * __FETCH_SW(u_r1+1, v_r1+1, ld);
32 sum_ne = - b * __FETCH_NE(u_r1+1, v_r1+1, ld);
33

34 a = 1 / __FETCH_CC(u_r1, v_r1+1, ld);
35 b = g.nw[loc_r2] * a;
36 sum_nn -= b * __FETCH_NE(u_r1, v_r1+1, ld);
37 sum_ww = g.ww[loc_r2] - b * __FETCH_SW(u_r1, v_r1+1, ld);
38 sum_cc -= b * __FETCH_SE(u_r1, v_r1+1, ld);
39 sum_nw = - b * __FETCH_NW(u_r1, v_r1+1, ld);
40

41 a = val_cc_r1;
42 b = g.sw[loc_r2] * a;
43 sum_ss = g.ss[loc_r2] - b * __FETCH_SE(u_r1, v_r1, ld);
44 sum_ww -= b * __FETCH_NW(u_r1, v_r1, ld);
45 sum_cc -= b * __FETCH_NE(u_r1, v_r1, ld);
46 sum_sw = - b * __FETCH_SW(u_r1, v_r1, ld);

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 167

47

48 a = 1 / __FETCH_CC(u_r1+1, v_r1, ld);
49 b = g.se[loc_r2] * a;
50 sum_ss -= b * __FETCH_SW(u_r1+1, v_r1, ld);
51 sum_ee -= b * __FETCH_NE(u_r1+1, v_r1, ld);
52 sum_cc -= b * __FETCH_NW(u_r1+1, v_r1, ld);
53 sum_se = - b * __FETCH_SE(u_r1+1, v_r1, ld);
54

55 g.cc[loc_r2] = sum_cc;
56 g.ne[loc_r2] = sum_ne;
57 g.nw[loc_r2] = sum_nw;
58 g.nn[loc_r2] = sum_nn;
59 g.se[loc_r2] = sum_se;
60 g.sw[loc_r2] = sum_sw;
61 g.ss[loc_r2] = sum_ss;
62 g.ee[loc_r2] = sum_ee;
63 g.ww[loc_r2] = sum_ww;
64 }

168 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6.6 Phase 1: lumping

In Phase 1 the 9-point stencil is reduced to a 5-point stencil by using a method which is
known as lumping.

=⇒

Basically lumping is nothing more than removing stencil dependencies by adding the
respective coefficients to (an)other coefficient(s). Although there are lots of different possibil-
ities, according to [28] it is best to use the lumping strategy that corresponds to the Modified
Incomplete Cholesky decomposition (with ω = 1). If the 9-point stencil from Step 3 is notated
as  NWb NNr NEb

WWr CCb EEr
SWb SSr SEb

 ,
than the 5-point stencil after lumping is 0 NNr 0

WWr CC∗b EEr
0 SSr 0

 ,
where CC∗b is given by

CC∗b := CCb +NEb + SEb + SWb +NWb.

Suitable C++ code would be:

if (level > 1) // skip first level
{

// b1 nodes:
for (j = st; j <= Nx2; j += tw) {

for (i = tw; i <= Nx1; i += tw) {
ccc[i][j] = ccc[i][j] + // center

cne[i][j] + // north-east
cse[i][j] + // south-east
csw[i][j] + // south-west
cnw[i][j]; // north-west

}
}
// b2 nodes:
for (j = tw; j <= Nx2; j += tw) {

for (i = st; i <= Nx1; i += tw) {
ccc[i][j] = ccc[i][j] + // center

cne[i][j] + // north-east
cse[i][j] + // south-east
csw[i][j] + // south-west

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 169

cnw[i][j]; // north-west
}

}
}

In CUDA this translates to the code in Listing 19.4.

Listing 19.4: CUDA kernel prec::kernel prec1().

1 template <class T>
2 __global__ void kernel_prec1(Grid g)
3 {
4 int ld = g.nx;
5

6 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
7 int v_b1 = BORDER_WIDTH + by * By + ty;
8 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
9 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int loc_b1 = ld * v_b1 + u_b1;
12 int loc_b2 = ld * v_b2 + u_b2;
13

14 g.cc[loc_b1] = g.cc[loc_b1] +
15 g.ne[loc_b1] +
16 g.nw[loc_b1] +
17 g.se[loc_b1] +
18 g.sw[loc_b1];
19

20 g.cc[loc_b2] = g.cc[loc_b2] +
21 g.ne[loc_b2] +
22 g.nw[loc_b2] +
23 g.se[loc_b2] +
24 g.sw[loc_b2];
25 }

170 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.6.7 Phase 4: dividing by main diagonal

To get the factorization M = LDLT it remains to divide the stencils (which define L) by the
diagonal D. In C++ this can be done as follows:

for (i = 0; i <= Nx1; ++i) {
for (j = 0; j <= Nx2; ++j) {

float fac = 1.0 / ccc[i][j];
ccc[i][j] = fac;
cnn[i][j] /= fac;
css[i][j] /= fac;
cee[i][j] /= fac;
cww[i][j] /= fac;

}
}

Because of the repeated r1/r2/b1/b2-storage format in CUDA we have to do this level-wise.
For each grid we only divide the r1-nodes by the center stencil, see Listing 19.5.

Listing 19.5: CUDA kernel prec::kernel prec4().

1 template <class T>
2 __global__ void kernel_prec4(Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
11 int v_b1 = BORDER_WIDTH + by * By + ty;
12 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
13 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;
14

15 int loc_r1 = ld * v_r1 + u_r1;
16 int loc_r2 = ld * v_r2 + u_r2;
17 int loc_b1 = ld * v_b1 + u_b1;
18 int loc_b2 = ld * v_b2 + u_b2;
19

20 T fac;
21

22 // r1 nodes:
23 fac = 1 / g.cc[loc_r1];
24 g.nn[loc_r1] *= fac;
25 g.ss[loc_r1] *= fac;
26 g.ee[loc_r1] *= fac;
27 g.ww[loc_r1] *= fac;
28 g.cc[loc_r1] = fac;
29

30 // r2 nodes:
31 fac = 1 / g.cc[loc_r2];
32 g.nn[loc_r2] *= fac;
33 g.ss[loc_r2] *= fac;
34 g.ee[loc_r2] *= fac;
35 g.ww[loc_r2] *= fac;
36 g.cc[loc_r2] = fac;
37

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 171

38 // b1 nodes:
39 fac = 1 / g.cc[loc_b1];
40 g.nn[loc_b1] *= fac;
41 g.ss[loc_b1] *= fac;
42 g.ee[loc_b1] *= fac;
43 g.ww[loc_b1] *= fac;
44 g.cc[loc_b1] = fac;
45

46 // b2 nodes:
47 fac = 1 / g.cc[loc_b2];
48 g.nn[loc_b2] *= fac;
49 g.ss[loc_b2] *= fac;
50 g.ee[loc_b2] *= fac;
51 g.ww[loc_b2] *= fac;
52 g.cc[loc_b2] = fac;
53 }

19.6.8 The final level

As explained earlier the final grid has a dimension of 16 × 16 or 32 × 32 nodes, i.e., the size
of the compute-block. The final level is therefore handled by 1 SM of the GPU. Because of
its small dimensions, the problem fits completely in the global memory’s cache. All previous
preconditioner kernels are combined in a single kernel, prec::kernel precfinal(). The
complete code is given in Listing 19.6. Notice the syncthreads() statements, these are
really importance; without them the complete RRB-solver does not function properly.

Listing 19.6: CUDA kernel prec::kernel precfinal().

1 template <class T>
2 __global__ void kernel_precfinal(Grid g)
3 {
4 int ld = g.nx;
5

6 int loc;
7

8 int st = 1;
9 int tw = 2;

10 int u, v;
11

12 T a, b;
13

14 for (int nt = DIM_COMPUTE_BLOCK / 2; nt >= 1; nt >>= 1)
15 {
16 // phase 1: for all black points
17 if (tx < nt) {
18 u = (st - 1) + tw * tx;
19 v = (tw - 1) + tw * ty;
20 } else {
21 u = (tw - 1) + tw * (tx - nt);
22 v = (st - 1) + tw * ty;
23 }
24 __syncthreads();
25 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
26 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
27 if (ty < nt && tx < nt << 1) {

172 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

28 g.cc[loc] = g.cc[loc] +
29 g.ne[loc] +
30 g.nw[loc] +
31 g.se[loc] +
32 g.sw[loc];
33 }
34 __syncthreads();
35

36 // phase 2: for all red points
37 if (tx < nt) {
38 u = (st - 1) + tw * tx;
39 v = (st - 1) + tw * ty;
40 } else {
41 u = (tw - 1) + tw * (tx - nt);
42 v = (tw - 1) + tw * ty;
43 }
44 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
45 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
46

47 if (ty < nt && tx < nt << 1) {
48 a = 1 / g.cc[loc + st * ld];
49 b = g.nn[loc] * a;
50 g.ne[loc] -= b * g.ee[loc + st * ld];
51 g.cc[loc] -= b * g.ss[loc + st * ld];
52 g.nw[loc] -= b * g.ww[loc + st * ld];
53 g.nn[loc] = - b * g.nn[loc + st * ld];
54

55 a = 1 / g.cc[loc - st * ld];
56 b = g.ss[loc] * a;
57 g.se[loc] -= b * g.ee[loc - st * ld];
58 g.sw[loc] -= b * g.ww[loc - st * ld];
59 g.cc[loc] -= b * g.nn[loc - st * ld];
60 g.ss[loc] = - b * g.ss[loc - st * ld];
61

62 a = 1 / g.cc[loc + st];
63 b = g.ee[loc] * a;
64 g.ne[loc] -= b * g.nn[loc + st];
65 g.se[loc] -= b * g.ss[loc + st];
66 g.cc[loc] -= b * g.ww[loc + st];
67 g.ee[loc] = - b * g.ee[loc + st];
68

69 a = 1 / g.cc[loc - st];
70 b = g.ww[loc] * a;
71 g.nw[loc] -= b * g.nn[loc - st];
72 g.sw[loc] -= b * g.ss[loc - st];
73 g.cc[loc] -= b * g.ee[loc - st];
74 g.ww[loc] = - b * g.ww[loc - st];
75 }
76 __syncthreads();
77

78 // phase 3: for red points not in next level
79 if (ty < nt && tx < nt) {
80 g.cc[loc] = g.cc[loc] +
81 g.nn[loc] +
82 g.ee[loc] +
83 g.ss[loc] +
84 g.ww[loc];

19.6. CONSTRUCTING THE PRECONDITIONING MATRIX M 173

85 g.nn[loc] = g.ne[loc];
86 g.ee[loc] = g.se[loc];
87 g.ww[loc] = g.nw[loc];
88 g.ss[loc] = g.sw[loc];
89 }
90 __syncthreads();
91

92 // phase 4: for red points in next level
93 u = (tw - 1) + tw * tx;
94 v = (tw - 1) + tw * ty;
95 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
96 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
97 if (ty < nt && tx < nt) {
98 a = 1 / g.cc[loc + st * ld + st];
99 b = g.ne[loc] * a;

100 g.nn[loc] -= b * g.nw[loc + st * ld + st];
101 g.ee[loc] -= b * g.se[loc + st * ld + st];
102 g.cc[loc] -= b * g.sw[loc + st * ld + st];
103 g.ne[loc] = - b * g.ne[loc + st * ld + st];
104

105 a = 1 / g.cc[loc + st * ld - st];
106 b = g.nw[loc] * a;
107 g.nn[loc] -= b * g.ne[loc + st * ld - st];
108 g.ww[loc] -= b * g.sw[loc + st * ld - st];
109 g.cc[loc] -= b * g.se[loc + st * ld - st];
110 g.nw[loc] = - b * g.nw[loc + st * ld - st];
111

112 a = 1 / g.cc[loc - st * ld - st];
113 b = g.sw[loc] * a;
114 g.ss[loc] -= b * g.se[loc - st * ld - st];
115 g.ww[loc] -= b * g.nw[loc - st * ld - st];
116 g.cc[loc] -= b * g.ne[loc - st * ld - st];
117 g.sw[loc] = - b * g.sw[loc - st * ld - st];
118

119 a = 1 / g.cc[loc - st * ld + st];
120 b = g.se[loc] * a;
121 g.ss[loc] -= b * g.sw[loc - st * ld + st];
122 g.ee[loc] -= b * g.ne[loc - st * ld + st];
123 g.cc[loc] -= b * g.nw[loc - st * ld + st];
124 g.se[loc] = - b * g.se[loc - st * ld + st];
125 }
126 __syncthreads();
127

128 st = tw;
129 tw *= 2;
130 }
131 }

174 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.7 Solving Mz = r

During the CG algorithm per iteration step the preconditioning step Mz = r has to be solved
for z. The preconditioner matrix M can be written as

M = LDLT

so that solving Mz = r can be done in three steps as follows. Set y := LT z and x := DLT z =
Dy, then:

1. solve Lx = r using forward substitution;

2. compute y = D−1x;

3. solve LT z = y using backward substitution.

19.7.1 Preliminary work

In Figure 19.17 the Cholesky factor L is shown when the RRB-method is applied to matrix
S ∈ R64×64 resulting from a 8× 8 grid.

b(1)

r(1)

b(1) r(1)

This part is used

to solve Mz = r

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

RRB-numbering

Figure 19.17: Cholesky factor L for matrix S ∈ R64×64 resulting from a 8× 8 grid.

As emphasized earlier the CG algorithm in the RRB-solver operates on the red nodes
only. In Figure 19.17 the first level red nodes are indicated by r(1). Using the r(1)-nodes only
means that only the indicated framed part of L is used to solve Mz = r. In Figure 19.18 we
have zoomed in on the r(1)-part of L. On the right in this figure the r(1)-nodes are indicated.

19.7. SOLVING MZ = R 175

r
(1)
1

r
(1)
2

r
(1)
1 r

(1)
2

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

r(1)-nodes are divided
in two sets: r

(1)
1 - and

r
(1)
2 -nodes (fat squares)

Figure 19.18: The first grid is divided into a set of red nodes and black nodes. The red nodes in turn

are divided into 2 sets: r
(1)
1 -nodes and r

(1)
2 . The next level is always formed by the set of r2-nodes,

here: the second level is formed by the r
(1)
2 -nodes. Those nodes are indicated on the right with fat

boxes.

According to the r1/r2/b1/b2 numbering we have that the r(1)-nodes are divided into two

sets: r
(1)
1 -nodes and r

(1)
2 -nodes. For full clarity: the superscript () thus indicates the level we

are at, and the subscript relates to the r1/r2/b1/b2 numbering.

The r
(1)
2 -nodes together form the second level. We have seen that they are again divided

in a set of black nodes and a set of red nodes. The second level is indicated in Figure 19.19.

r
(1)
1

r
(1)
2

r
(1)
1 r

(1)
2

2nd level b(2)

r
(2)
1

r
(2)
2

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

The second level is form-
ed by the r

(1)
2 -nodes

Figure 19.19: The second grid is again divided into a set of red nodes and black nodes. The red

nodes consist of the r
(2)
1 -nodes and r

(2)
2 -nodes. The third level is formed by the r

(2)
2 -nodes which are

indicated on the right with fat boxes.

176 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

In Figure 19.20 we have zoomed in on the second level in which it can be seen how a third
grid is formed.

r
(1)
2

r
(1)
2

3th level

2nd level

b(2)

r
(2)
1

r
(2)
2

63 61

62 64

The third level is form-
ed by the r

(2)
2 -nodes

Figure 19.20: The third grid is again divided into a set of red nodes and black nodes. The red nodes

consists of the r
(3)
1 -nodes and r

(3)
2 -nodes. The fourth and final level is formed by the single r

(3)
2 -node

which is indicated on the right with a fat box.

19.7.2 Step 1: Solving Lx = r

The first step is to solve Lx = r for x using forward substitution. This is done level-wise
using two steps:

• Phase 1: Updating r2-nodes using r1-nodes in the same level;

• Phase 2: Updating r1- and r2-nodes using b1- and b2-nodes in the same level.

The forward substitution is thus like:

Phase 1 → Phase 2 → Phase 1 → Phase 2 → · · · → Phase 1 → Phase 2 → Phase 1,

so starting with Phase 1 and finishing with Phase 1. Below both phases are discussed in more
detail.

Phase 1

From Figure 19.18 it appears that r2-nodes depend on r1-nodes according to a rotated 5-point
stencil. For example, r2-node 59 depends on the r1-nodes 41, 42, 45 and 46. Now note that
the rotated 5-point stencils shows up every level.

Consider Figure 19.21 which shows the 5-point stencil more precisely. In Figure 19.21(a)
we have shown how it would be straightforwardly done with a two-dimensional array storage
format seen from the viewpoint of r2-nodes; in Figure 19.21(b) we have shown how it would
be done seen from the viewpoint of r1-nodes. The latter version is the one used in the current

19.7. SOLVING MZ = R 177

implementation of the C++ RRB-solver which uses the Array2D-class for storage. For the
first level we have that tw = 1, i.e., the surrounding nodes lie directly around the node which
is updated, for the second level we have tw = 2, for the third level tw = 4, etcetera. Hence
the stride is increasing by a factor 2 each time we go a level up. Verify this for yourself by
going through Figure 19.18 to Figure 19.20 again (the parts on the right).

[i-st,j-st] [i+st,j-st]

[i-st,j+st] [i+st,j+st]

[i,j]

r1 r1

r1 r1

r2

cww

cnncee

css

(a) C++ version A

[i-st,j-st] [i+st,j-st]

[i-st,j+st] [i+st,j+st]

[i,j]

r2 r2

r2 r2

r1

cee

csscww

cnn

(b) C++ version B

Figure 19.21: The rotated 5-point stencil for Phase 1. On the left: from the viewpoint of r2-nodes.
On the right: from the viewpoint of r1-nodes.

In case of version A in C++ the new value for the r2-node can be computed by using the
following computation:

for (int i = tw; i <= Nx1; i += tw) {
for (int j = tw; j <= Nx2; j += tw) {

x[i,j] -= cww[i+st,j+st] * x[i+st,j+st] + // north-east
cnn[i+st,j-st] * x[i+st,j-st] + // south-east
cee[i-st,j-st] * x[i-st,j-st] + // south-west
css[i-st,j+st] * x[i-st,j+st]; // north-west

}
}

In case of version B, thus the version that the current C++ RRB-solver uses, we have

for (int i = st; i <= Nx1; i += tw) {
for (int j = st; j <= Nx2; j += tw) {

float val = x[i][j]; // r1-value
x[i+st][j+st] -= cee[i][j] * val; // north-east
x[i+st][j-st] -= css[i][j] * val; // south-east
x[i-st][j-st] -= cww[i][j] * val; // south-west
x[i-st][j+st] -= cnn[i][j] * val; // north-west

}
}

In CUDA, thanks to the r1/r2/b1/b2 storage format, the stride is eliminated; at each level
surrounding nodes lie — in some sense — directly around the node that is updated. Moreover,

178 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

[u,v] [u+1,v]

[u,v+1] [u+1,v+1]

[u,v]

r1 r1

r1 r1

r2

g.ss

g.wwg.nn

g.ee

Figure 19.22: The rotated 5-point stencil in CUDA for Phase 1.

the nodes lie in the global memory in a more favourable manner. In Figure 19.22 we have
shown how it is done in the CUDA RRB-solver.

Rather than i,j we use u,v as this is exactly the notation in our CUDA implementation.
Now note that, given the r2-node we are interested in is located at [u,v], the south-west
neighbour is also stored at [u,v], and thus lies in a perfect way in the device’s global memory.
The north-west neighbour is stored at [u,v+1], and because of the fact that the pitch of each
r1/r2/b1/b2-grid is a multiple of 16 or 32, also this neighbour lies perfectly in the device’s
global memory. The north-east and south-east neighbours lie slightly worse in the device’s
global memory, namely at [u+1,v] and [u+1,v+1], respectively. The x-coordinate causes
the memory reads to be uncoalesced. However, as we have seen in Section 16.3 a copy with
a shift is not so bad. Actually, for the new architectures (compute capability 2.x) copying
with a shift does not lead to less throughput, see Figure 16.4 (red/triangles) and for older
devices (compute capability 1.x) textures can be used to boost throughput, see Figure 16.4
(blue/squares). So, summarizing, no throughput is wasted in Phase 1.

The x-values may be fetched through textures as follows. Say we want to read for all
values r2 their corresponding north-east value (which are r1-nodes) from the global memory.
By looking at, for example, Figure 19.16, we see that the x- and y-coordinate should be
computed as:

int u_r1 = BORDER_WIDTH + blockIdx.x * blockDim.x + tx;
int v_r1 = BORDER_WIDTH + blockIdx.y * blockDim.y + ty;

Then, the north-east x-value is read from the global memory via:

float value = tex2D(texRef, u_r1+1, v_r1+1);

For the other three neighbours, similar commands can be used. If we were to read the
x-values directly from the global memory, thus without any textures, we would go from
2D coordinates [u,v] to a single (1D) coordinate. (Recall that, if we do nothing special,
everything in the device’s global memory is actually stored as a 1D-array.) We just compute

int loc_r1 = v_r1 * ld + u_r1;

19.7. SOLVING MZ = R 179

where ld is the leading dimension of the array, that is, g.nx. So, in this case the north-
east x-value is read from the global memory via:

float value = x[loc_r1 + ld + 1];

In as similar way the stencil-values can be read from the global memory (which are stored
in g.nn, g.ee, g.ss and g.ww). So, in CUDA, the C++ code snippet above would become:

x[loc_r2] -= g.ss[loc_r1+ld+1] * x[loc_r1+ld+1] + // north-east
g.ww[loc_r1+1] * x[loc_r1+1] + // south-east
g.ee[loc_r1+ld] * x[loc_r1+ld] + // north-west
g.nn[loc_r1] * x[loc_r1]; // south-west

or, using textures,

x[loc_r2] -= g.ss[loc_r1+ld+1] * tex2D(texRef, u_r1+1, v_r1+1) + // north-east
g.ww[loc_r1+1] * tex2D(texRef, u_r1+1, v_r1) + // south-east
g.ee[loc_r1+ld] * tex2D(texRef, u_r1 , v_r1+1) + // north-west
g.nn[loc_r1] * tex2D(texRef, u_r1 , v_r1); // south-west

Next, we have seen that the r2-nodes define the next coarser grid, see Section 19.7.1 and,
for example, Figure 19.18. So, from the updated values for r2-nodes computed in this phase
the next (coarser) r1/r2/b1/b2-grid should be formed. We let each thread compute a unique
location in the new grid. An idea is to let the even/even threads deal with the new r1-nodes,
the odd/odd threads deal with the new r2-nodes, the odd/even threads deal with the new b1-
nodes, and the even/odd threads deal with the new b2-nodes, see Figure 19.23. Corresponding
code is:

int loc_new = ldd * (BORDER_WIDTH + blockIdx.y * (BlockDim.y >> 1))
+ (threadIdx.y & 1) * (BORDER_WIDTH + gg.cy) * ldd
+ BORDER_WIDTH + bx * (BlockDim.x >> 1)
+ (threadIdx.x & 1) * (BORDER_WIDTH + gg.cx)
+ (threadIdx.y >> 1) * ldd + (threadIdx.x >> 1);

where ldd is the leading dimension of the next grid, that is, gg.nx, where >> stands for
a bit shift to the right, e.g., 8 >> 1 = 4, and where & replaces the %-sign (modulo), which
is generally faster. For example, 16 & 1 is just the same as 16 % 2 (which is 0).

The cleverness in the CUDA implementation of the solver part is thus that multiple grids
can be used, each offering optimal throughput (instead of just one grid like in the C++ imple-
mentation), and that using these grids come without a (significant) time penalty (overhead).
Of course some extra time is spend to compute and fill the next grid, but this is completely
justified as in the next level again full throughput is achieved (instead of a huge performance
drop due to reading and writing data with a stride). Phase 1 corresponds with CUDA kernel
solv::kernel solv1. There are three flavours that are almost the same. We have shown
the version that is used most often in Listing 19.7.

180 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

tx = 0, ty = 0

tx = 1, ty = 1

tx = 1, ty = 0

tx = 0, ty = 1

r1

r2b2

b1

r1

r2b2

b1

Grid x

Grid y

ld = g.nx ldd = gg.nx

Figure 19.23: Dividing the r2-nodes in grid x over the four groups of nodes in grid y.

Listing 19.7: CUDA kernel solv::kernel solv1v2().

1 template <class T>
2 __global__ void kernel_solv1v2(T *y, const T *x, const Grid gg,
3 const Grid g)
4 {
5 int ld = g.nx;
6 int ldd = gg.nx;
7

8 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
9 int v_r1 = BORDER_WIDTH + by * By + ty;

10 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
11 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;
12

13 int loc_r1 = ld * v_r1 + u_r1;
14 int loc_r2 = ld * v_r2 + u_r2;
15

16 const T x_r1up1vp1 = __FETCH_XX(u_r1+1, v_r1+1, ld);
17 const T x_r1up1 = __FETCH_XX(u_r1+1, v_r1 , ld);
18 const T x_r1vp1 = __FETCH_XX(u_r1 , v_r1+1, ld);
19 const T x_r1 = __FETCH_XX(u_r1 , v_r1 , ld);
20

21 int loc_new = ldd * (BORDER_WIDTH + by * (By >> 1))
22 + (ty & 1) * (BORDER_WIDTH + gg.cy) * ldd
23 + BORDER_WIDTH + bx * (Bx >> 1)
24 + (tx & 1) * (BORDER_WIDTH + gg.cx)
25 + (ty >> 1) * ldd + (tx >> 1);
26

27 T sum = x[loc_r2] - g.ss[loc_r1 + ld + 1] * x_r1up1vp1 // north-east

19.7. SOLVING MZ = R 181

28 - g.ww[loc_r1 + 1] * x_r1up1 // south-east
29 - g.nn[loc_r1] * x_r1 // south-west
30 - g.ee[loc_r1 + ld] * x_r1vp1; // north-west
31

32 y[loc_new] = sum;
33 }

Phase 2

In Phase 2 the r1- and r2-nodes are updated by the b1- and b2-nodes as can be seen from
Figure 19.19. The red nodes depend on the black nodes via a 5-point stencil. For example,
node 57 (which is a r1-node) depends on nodes 49 and 51, and node 63 (which is a r2-node)
depends on nodes 49, 51, 52 and 53. In Figure 19.24 this 5-point stencil is shown in more
detail.

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

b2

b1 r1 b1

b2

css

cnn

cwwcee

(a) C++ version A, r1-nodes

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

b1

b2 r2 b2

b1

css

cnn

cwwcee

(b) C++ version A, r2-nodes

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

r2

r1 b1 r1

r2

cnn

css

ceecww

(c) C++ version B, r1-nodes

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

r1

r2 b2 r2

r1

cnn

css

ceecww

(d) C++ version B, r2-nodes

Figure 19.24: The 5-point stencil that is used in Phase 2 in C++.

182 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

In case of version A in C++ the new value for the r1- and r2-nodes may be computed by
using the following computations:

// r1 nodes:
for (int i = st; i <= Nx1; i += tw) {

for (int j = st; j <= Nx1; j += tw) {
x[i,j] -= css[i,j+st] * x[i,j+st] + // north

cww[i+st,j] * x[i+st,j] + // east
cnn[i,j-st] * x[i,j-st] + // south
cee[i-st,j] * x[i-st,j]; // west

}
}

// r2 nodes:
for (int i = tw; i <= Nx1; i += tw) {

for (int j = tw; j <= Nx1; j += tw) {
x[i,j] -= css[i,j+st] * x[i,j+st] + // north

cww[i+st,j] * x[i+st,j] + // east
cnn[i,j-st] * x[i,j-st] + // south
cee[i-st,j] * x[i-st,j]; // west

}
}

Herein is st = 1 and tw = 2 in the beginning. Then, each time we go a level up, st
and tw are updated via st = tw and tw *= 2. So, for the first level we have st = 1, tw
= 2, for the second level st = 2, tw = 4, for the third level st = 4, tw = 8, etcetera.
Verify for yourself that by doing so indeed, for all levels, the r1- and r2-nodes are addressed
by the loop counters i,j.

In case of version B, see Figure 19.24(c) and Figure 19.24(d), and this is the way how it
is actually implemented in the current C++ RRB-solver, we have:

// b1 nodes:
for (int i = tw; i <= Nx1; i += tw) {

for (int j = st; j <= Nx2; j += tw) {
float val = x[i][j]; // b1-value
x[i][j+st] -= cnn[i][j] * val; // north
x[i+st][j] -= cee[i][j] * val; // east
x[i][j-st] -= css[i][j] * val; // south
x[i-st][j] -= cww[i][j] * val; // west

}
}

// b2 nodes:
for (int i = st; i <= Nx1; i += tw) {

for (int j = tw; j <= Nx2; j += tw) {
float val = x[i][j]; // b2-value
x[i][j+st] -= cnn[i][j] * val; // north
x[i+st][j] -= cee[i][j] * val; // east
x[i][j-st] -= css[i][j] * val; // south
x[i-st][j] -= cww[i][j] * val; // west

}
}

To see how we implement Phase 2 in CUDA we combine the two 5-point stencils for the r1-
and r2-nodes into a somewhat bigger stencil like the one shown in Figure 19.25. Note that

19.7. SOLVING MZ = R 183

the north neighbour of r1 is the same black b2-node as the west neighbour of r2, likewise, the
east neighbour of r1 is the same black b1-node as the south neighbour of r1. By handling
both the r1-nodes and r2-nodes in the one CUDA kernel less different data has to retrieved
from the global memory which improves throughput.

[u,v-1]

[u-1,v] [u,v]

[u,v]

[u,v]

[u,v] [u+1,v]

[u,v+1]

b2

b1 r1 b1

b2 r2 b2

b1

g.ee g.ww

g.nn

g.ss

g.ee g.ww

g.nn

g.ss

Figure 19.25: Two 5-point stencils are combined for Phase 2 in CUDA.

Much of the data lies in a perfect coalesced manner in the global memory. The x-values for
r1, r2, and the x-values for the north b2-neighbour of r1 (which is thus the west b2-neighbour
of r2) and east b1-neighbour of r1 (which is thus the south b1-neighbour of r2), all have
coordinates [u,v]. Further, the x-values for the south b2-neighbour of r1 and the north
neighbour of r2 have coordinates [u,v+1], and with our stride that is a multiple of 16 or 32,
also these values lie in a perfect coalesced manner in the global memory. Only the x-values for
the west b1-neighbour and east b2-neighbour lie slightly worse in the device’s global memory.
The same holds for the stencils g.nn, g.ee, g.ss and g.ww; most of the data lie perfectly
fine in the global memory.

For the data that lies slightly worse in the global memory, that is, with a shift of 1,
textures can be used to increase throughput on older devices. On devices with the newest
architecture this is unnecessary, see Section 16.3 and in particular Figure 16.4.

In CUDA the two double for-loops above are replaced by the following code:

float x_b1 = x[loc_b1]; // common b-values for r1 and r2
float x_b2 = x[loc_b2];

x[loc_r1] -= g.ss[loc_b2] * x_b2 + // north
g.ww[loc_b1] * x_b1 + // east
g.nn[loc_b2-ld] * x[loc_b2-ld] + // south
g.ee[loc_b1-1] * x[loc_b1-1]; // west

x[loc_r2] -= g.ss[loc_b1+ld] * x[loc_b1+ld] + // north
g.ww[loc_b2+1] * x[loc_b2+1] + // east

184 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

g.nn[loc_b1] * x_b1 + // south
g.ee[loc_b2] * x_b2; // west

where, for example, loc b1 is, for each thread, a unique b1-location in the grid g and
vector x:

int u_b1 = 2 * BORDER_WIDTH + g.cx + blockIdx.x * BlockDim.x + threadIdx.x;
int v_b1 = BORDER_WIDTH + blockIdx.y * BlockDim.y + threadIdx.y;

int loc_b1 = v_b1 * ld + u_b1; // ld = leading dimension of the grid/vector

Verify for yourself that the above lines are correct. When textures are used the r1-part
would become something like:

float x_b1 = tex2D(texRef, u_b1, v_b1); // common b-values for r1 and r2
float x_b2 = tex2D(texRef, u_b2, v_b2);

x[loc_r1] -= g.ss[loc_b2] * x_b2 + // north
g.ww[loc_b1] * x_b1 + // east
g.nn[loc_b2-ld] * tex2D(texRef, u_b2, v_b2-1) + // south
g.ee[loc_b1-1] * tex2D(texRef, u_b1-1, v_b1); // west

Phase 2 corresponds with CUDA kernel solv::kernel solv2, see Listing 19.8.

Listing 19.8: CUDA kernel solv::kernel solv2().

1 template <class T>
2 __global__ void kernel_solv2(T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
11 int v_b1 = BORDER_WIDTH + by * By + ty;
12 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
13 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;
14

15 int loc_r1 = ld * v_r1 + u_r1;
16 int loc_r2 = ld * v_r2 + u_r2;
17 int loc_b1 = ld * v_b1 + u_b1;
18 int loc_b2 = ld * v_b2 + u_b2;
19

20 const T x_b1 = __FETCH_XX(u_b1, v_b1, ld);
21 const T x_b1um1 = __FETCH_XX(u_b1-1, v_b1, ld);
22 const T x_b2 = __FETCH_XX(u_b2, v_b2, ld);
23 const T x_b2up1 = __FETCH_XX(u_b2+1, v_b2, ld);
24 const T x_b2vm1 = __FETCH_XX(u_b2, v_b2-1, ld);
25 const T x_b1vp1 = __FETCH_XX(u_b1, v_b1+1, ld);
26

27 x[loc_r1] -= g.ss[loc_b2] * x_b2 + // north
28 g.ww[loc_b1] * x_b1 + // east
29 g.nn[loc_b2 - ld] * x_b2vm1 + // south
30 g.ee[loc_b1 - 1] * x_b1um1; // west
31

19.7. SOLVING MZ = R 185

32 x[loc_r2] -= g.ss[loc_b1 + ld] * x_b1vp1 + // north
33 g.ww[loc_b2 + 1] * x_b2up1 + // east
34 g.nn[loc_b1] * x_b1 + // south
35 g.ee[loc_b2] * x_b2; // west
36 }

19.7.3 Step 2: Solving y = D−1x

This part of the preconditioner step is very easy. As D is a diagonal matrix, y is found by
dividing all elements of x with a corresponding value inD. Actually, during the construction of
the preconditioner at some point we have inverted all main diagonal elements, i.e., dii → 1/dii,
so that y is not found by dividing all elements of x by an element in D, but by multiplying all
elements of x by an element in D. Generally, multiplying numbers can be done (much) faster
than dividing numbers. The preconditioner step is performed just once whereas solving the
system Mz = r is done every iteration in the CG part of the RRB-solver. Hence, inverting
D in the preconditioner phase saves valuable time later on in the CG-part.

The red nodes in the first level are used for solving Mz = r; correspondingly, y = D−1x
requires to multiply each red node in x with the corresponding diagonal element in D. To
save memory x is overwritten by y, so we actually solve x = D−1x. In C++ we can do this as
follows:

for (int i = 1; i <= Nx1; i += 2) {
for (int j = 1; j <= Nx2; j += 2) {

y[i][j] *= ccc[i][j]; // r1 nodes
y[i-1][j-1] *= ccc[i-1][j-1]; // r2 nodes

}
}

where ccc thus represents the diagonal matrix D.
In our CUDA implementation we do this differently. We have to do this differently, because

of the fact that we use multiple levels. We have seen that at the end of Phase 1 in Step 1,
i.e., solving Lx = r, the results are written to the next (coarser) level for x, so the previous
level is not aware of any updated data. Therefore, we have to do the step x = D−1x locally
at each level, and thus we have to integrate Step 2 into Step 1.

At each level, when Phase 1 is finished we update x in the r1-nodes, and when Phase 2 is
finished we update x in the b1- and b2-nodes. Vector x is not updated in the r2-nodes as the
r2-nodes carry over to a next grid; only in the end when just 1 node remains, for this node its
x-value has to be multiplied with the corresponding diagonal element. So, one of the CUDA
kernels contains the lines

x[loc_b1] *= g.cc[loc_b1]);
x[loc_b2] *= g.cc[loc_b2]);

and another contains the line

x[loc_r1] *= g.cc[loc_r1]);

186 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

The two CUDA kernels are solv::kernel solv5 and solv::kernel solv6, see List-
ing 19.9 and Listing 19.10.

Listing 19.9: CUDA kernel solv::kernel solv5().

1 template <class T>
2 __global__ void kernel_solv5(T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
7 int v_b1 = BORDER_WIDTH + by * By + ty;
8 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
9 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int loc_b1 = ld * v_b1 + u_b1;
12 int loc_b2 = ld * v_b2 + u_b2;
13

14 x[loc_b1] *= g.cc[loc_b1];
15 x[loc_b2] *= g.cc[loc_b2];
16 }

Listing 19.10: CUDA kernel solv::kernel solv6().

1 template <class T>
2 __global__ void kernel_solv6(T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8

9 int loc_r1 = ld * v_r1 + u_r1;
10

11 x[loc_r1] *= g.cc[loc_r1];
12 }

19.7.4 Step 3: Solving LT z = y

In Step 1 we go from fine grids (many nodes) to coarse grids (few nodes) and forward substi-
tution is used. In Step 3 we go the other way around: we go from coarse grids to fine grids
and backward substitution is used. In case of the 8× 8 grid the coarsest level, that is, level 4,
contains 1 node. This value is used to update the 4 nodes in level 3. Then, the updated 4
nodes in level 3 are used to update the 16 nodes in level 2, and, finally, the updated 16 nodes
in level 2 are used to update the red nodes in the first level, level 1. So, where Step 1 can
be seen as a “converging”-phase, Step 3 can be seen as a “diverging”-phase. Just like solving
Lx = r solving LT z = y is done iteratively using two steps:

• Phase 4: Updating r1-nodes using r2-nodes in the same level;

• Phase 3: Updating b1- and b2-nodes using r1- and r2-nodes in the same level.

Intentionally we have put Phase 4 first. The backward substitution is like:

19.7. SOLVING MZ = R 187

Phase 4 → Phase 3 → Phase 4 → Phase 3 → · · · → Phase 4 → Phase 3 → Phase 4,

so starting with Phase 4 and finishing with Phase 4. Below both phases are discussed in more
detail.

Phase 4

Phase 4 is the backward counterpart of Phase 1. In this phase the r2-nodes are used to update
the r1-nodes in the same level. For example, in level 2 of the 8× 8 example, node 60 depends
on nodes 61, 62, 63 and 64, see Figure 19.19. Of course the r1-nodes depend on the r2-nodes
according to same rotated 5-point stencil as in Phase 1. In Figure 19.26 we have depicted
this 5-point stencil from the viewpoint of r1-nodes.

[i-st,j-st] [i+st,j-st]

[i-st,j+st] [i+st,j+st]

[i,j]

r2 r2

r2 r2

r1

cee

csscww

cnn

(a) C++ version

[u-1,v-1] [u,v-1]

[u-1,v] [u,v]

[u,v]

r2 r2

r2 r2

r1

g.ss

g.wwg.nn

g.ee

(b) CUDA version

Figure 19.26: The 5-point stencil that is used in Phase 4 in C++ and CUDA.

In Figure 19.26(a) we have depicted the 5-point stencil that belongs to the current C++
implementation. It won’t take you long to figure out that suitable C++ code for this stencil
is:

for (int i = m_st; i <= Nx1; i += tw) {
for (int j = m_st; j <= Nx2; j += tw) {

x[i][j] = x[i][j] - cee[i][j] * x[i+st][j+st] // north-east
- css[i][j] * x[i+st][j-st] // south-east
- cww[i][j] * x[i-st][j-st] // south-west
- cnn[i][j] * x[i-st][j+st]; // north-west

}
}

In Figure 19.26(b) we have depicted the 5-point stencil that belongs to the CUDA im-
plementation of Phase 4. Note the difference stencils between the C++ and CUDA version.
The differences have to do with how data was copied to the GPU, recall the host and device
compass. Suitable CUDA code is:

188 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

x[loc_r1] -= g.nn[loc_r1] * x[loc_r2] + // north-east
g.ee[loc_r1] * x[loc_r2-ld] + // south-east
g.ss[loc_r1] * x[loc_r2-ld-1] + // south-west
g.ww[loc_r1] * x[loc_r2-1]; // north-west

Phase 4 corresponds with CUDA kernel solv::kernel solv4, see Listing 19.11.

Listing 19.11: CUDA kernel solv::kernel solv4().

1 template <class T>
2 __global__ void kernel_solv4(T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int loc_r1 = ld * v_r1 + u_r1;
12

13 const T x_r2 = __FETCH_XX(u_r2, v_r2, ld);
14 const T x_r2vm1 = __FETCH_XX(u_r2, v_r2-1, ld);
15 const T x_r2um1 = __FETCH_XX(u_r2-1, v_r2, ld);
16 const T x_r2um1vm1 = __FETCH_XX(u_r2-1, v_r2-1, ld);
17

18 x[loc_r1] -= g.nn[loc_r1] * x_r2 + // north-east
19 g.ee[loc_r1] * x_r2vm1 + // south-east
20 g.ss[loc_r1] * x_r2um1vm1 + // south-west
21 g.ww[loc_r1] * x_r2um1; // north-west
22 }

Phase 3

Phase 3 is the backward counterpart of Phase 2. In this phase the b1- and b2-nodes are
updated by the r1- and r2-nodes in the same level. For example, in level 2 of the 8 × 8
example, see Figure 19.19, the b1-node 52 depends on the red nodes 58, 60 (r1-nodes) and 61,
63 (r2-nodes). Of course the black nodes depend on the red nodes according to same 5-point
stencil as in Phase 2. In Figure 19.27 we see how it is done in the C++ version.

Corresponding C++ code is:

for (int i = tw; i <= Nx1; i += tw) {
for (int j = st; j <= Nx2; j += tw) {

x[i][j] -= cnn[i][j] * x[i][j+st] + // north
cee[i][j] * x[i+st][j] + // east
css[i][j] * x[i][j-st] + // south
cww[i][j] * x[i-st][j]; // west

}
}

for (int i = st; i <= Nx1; i += tw) {
for (int j = tw; j <= Nx2; j += tw) {

x[i][j] -= cnn[i][j] * x[i][j+st] + // north
cee[i][j] * x[i+st][j] + // east
css[i][j] * x[i][j-st] + // south

19.7. SOLVING MZ = R 189

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

r2

r1 b1 r1

r2

cnn

css

ceecww

(a) C++ version, b1-nodes

[i,j-st]

[i-st,j] [i+st,j]

[i,j+st]

[i,j]

r1

r2 b2 r2

r1

cnn

css

ceecww

(b) C++ version, b2-nodes

Figure 19.27: The 5-point stencil that is used in Phase 3 in C++.

cww[i][j] * x[i-st][j]; // west
}

}

In Figure 19.28 we have shown the extended stencil that is used in the CUDA implemen-
tation. Again, some red nodes are common to b1 and b2. Without textures CUDA code would
be something like:

[u,v-1]

[u,v] [u+1,v]

[u,v+1]

[u,v]

[u,v][u-1,v]

[u,v+1]

r2

r1 b1 r1

r2b2r2

r1

g.ww g.ee

g.ss

g.nn

g.ww g.ee

g.ss

g.nn

Figure 19.28: The 5-point stencil that is used in Phase 3 in CUDA.

float x_r1 = x[loc_r1]; // common r-values for b1 and b2:

190 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

float x_r2 = x[loc_r2];

// b1 nodes:
x[loc_b1] = x[loc_b1] - g.nn[loc_b1] * x_r2 // north

- g.ee[loc_b1] * x[loc_r1+1] // east
- g.ss[loc_b1] * x[loc_r2-ld] // south
- g.ww[loc_b1] * x_r1; // west

// b2 nodes:
x[loc_b2] = x[loc_b2] - g.nn[loc_b2] * x[loc_r1+ld] // north

- g.ee[loc_b2] * x_r2 // east
- g.ss[loc_b2] * x_r1 // south
- g.ww[loc_b2] * x[loc_r2-1]; // west

Next, all results computed in the current level are substituted into the r2-part of the grid
that is 1 level higher (which has 4 times more nodes). So, from the 4 seperate data blocks
in the current grid we make 1 big data block that corresponds to the r2-part of the next
higher grid. Each thread must write four values to the next grid (one r1-, one r2-, one b1-
and one b2-value). After the new value of b1 is computed by using the computation above,
each thread writes its computed value to a b1-location in the r2-part of the next grid, say y
which has leading dimension ldd. Likewise, after the new value of b2 is computed using the
computation above, the thread writes the results to a b2-location in the r2-part of the next
grid. In our computations above we have also used the x-values for r1- and r2-nodes so these
can be written also to the next higher grid. Study Listing 19.12 yourself and see how we go
from r1/r2/b1/b2 back to the r2-part in the next higher grid.

19.7. SOLVING MZ = R 191

Listing 19.12: CUDA kernel solv::kernel solv3().

1 template <class T>
2 __global__ void kernel_solv3(T *y, const T *x, const Grid gg,
3 const Grid g)
4 {
5 int ld = g.nx;
6 int ldd = gg.nx;
7

8 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
9 int v_r1 = BORDER_WIDTH + by * By + ty;

10 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
11 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;
12 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
13 int v_b1 = BORDER_WIDTH + by * By + ty;
14 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
15 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;
16 int loc_b1 = ld * v_b1 + u_b1;
17 int loc_b2 = ld * v_b2 + u_b2;
18

19 int loc = ldd * (BORDER_WIDTH2 + gg.cy + 2 * by * By)
20 + BORDER_WIDTH2 + gg.cx + 2 * bx * Bx;
21 int loc_new;
22

23 const T x_r1 = __FETCH_XX(u_r1, v_r1, ld);
24 const T x_r2 = __FETCH_XX(u_r2, v_r2, ld);
25 const T x_r1up1 = __FETCH_XX(u_r1+1, v_r1, ld);
26 const T x_r2vm1 = __FETCH_XX(u_r2, v_r2-1, ld);
27 const T x_r1vp1 = __FETCH_XX(u_r1, v_r1+1, ld);
28 const T x_r2um1 = __FETCH_XX(u_r2-1, v_r2, ld);
29

30 T sum;
31

32 // b1 nodes:
33 sum = x[loc_b1] - g.nn[loc_b1] * x_r2 // north
34 - g.ee[loc_b1] * x_r1up1 // east
35 - g.ss[loc_b1] * x_r2vm1 // south
36 - g.ww[loc_b1] * x_r1; // west
37 loc_new = loc + ldd * (ty << 1) + (tx << 1) + 1;
38 y[loc_new] = sum;
39

40 // b2 nodes:
41 sum = x[loc_b2] - g.nn[loc_b2] * x_r1vp1 // north
42 - g.ee[loc_b2] * x_r2 // east
43 - g.ss[loc_b2] * x_r1 // south
44 - g.ww[loc_b2] * x_r2um1; // west
45 loc_new = loc + ldd * ((ty << 1) + 1) + (tx << 1);
46 y[loc_new] = sum;
47

48 // r1 nodes:
49 loc_new = loc + ldd * (ty << 1) + (tx << 1);
50 y[loc_new] = x_r1;
51

52 // r2 nodes:
53 loc_new = loc + ldd * ((ty << 1) + 1) + (tx << 1) + 1;
54 y[loc_new] = x_r2;
55 }

192 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.7.5 The final level

The previous discussion was not complete. In our CUDA RRB-solver at some point we do
not make any more new grids. We stop the process when the number of nodes becomes
smaller than 16× 16 or 32× 32, the dimensions of the so-called compute-block. All previous
kernels are combined into 1 big kernel for the final level, see Listing 19.13. 1 SM is used to
complete all nodes in the final level, the kernel exploits the global memory cache. Notice
the synchronization points which are extremely important; without them the complete solver
does not function properly.

Listing 19.13: CUDA kernel solv::kernel solvfinal().

1 template <class T>
2 __global__ void kernel_solvfinal(T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int loc;
7 int st = 1;
8 int tw = 2;
9 int u, v;

10

11 // Part I) solving Lx = x
12 for (int nt = DIM_COMPUTE_BLOCK / 2; nt >= 1; nt >>= 1)
13 {
14 // Phase 2: for all red nodes
15 // This part corresponds with solv::kernel_solv2()
16 if (tx < nt) {
17 u = (st - 1) + tw * tx;
18 v = (st - 1) + tw * ty;
19 } else {
20 u = (tw - 1) + tw * (tx - nt);
21 v = (tw - 1) + tw * ty;
22 }
23 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
24 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
25

26 if (ty < nt && tx < nt << 1) {
27 x[loc] -= g.ss[loc + st * ld] * x[loc + st * ld] +
28 g.ww[loc + st] * x[loc + st] +
29 g.nn[loc - st * ld] * x[loc - st * ld] +
30 g.ee[loc - st] * x[loc - st];
31 }
32 __syncthreads();
33

34 // phase 1: for r2 nodes: forward substitution of r1 into r2 nodes
35 // This part corresponds with solv::kernel_solv1()
36 u = (tw - 1) + tw * tx;
37 v = (tw - 1) + tw * ty;
38 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
39 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
40

41 if (ty < nt && tx < nt) {
42 x[loc] -= g.ss[loc + st * ld + st] * x[loc + st * ld + st] +
43 g.ww[loc - st * ld + st] * x[loc - st * ld + st] +
44 g.ee[loc + st * ld - st] * x[loc + st * ld - st] +
45 g.nn[loc - st * ld - st] * x[loc - st * ld - st];

19.7. SOLVING MZ = R 193

46 }
47 __syncthreads();
48

49 st = tw;
50 tw *= 2;
51 }
52

53

54 // Part II) solving Dx = x
55 // first half
56 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + ty)
57 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + tx;
58 T sum = x[loc] * g.cc[loc];
59 x[loc] = sum;
60 __syncthreads();
61

62 // second half
63 loc += ld * (DIM_COMPUTE_BLOCK / 2);
64 sum = x[loc] * g.cc[loc];
65 x[loc] = sum;
66 __syncthreads();
67

68

69 // Part III) solving LˆTx = x
70 st = DIM_COMPUTE_BLOCK / 2;
71 tw = DIM_COMPUTE_BLOCK;
72

73 for (int nt = 1; nt <= DIM_COMPUTE_BLOCK / 2; nt <<= 1)
74 {
75

76 // for r1 nodes: backward substitution of r2 into r1 nodes
77 if (tx < nt) {
78 u = (st - 1) + tw * tx;
79 v = (st - 1) + tw * ty;
80 } else {
81 u = (tw - 1) + tw * (tx - nt);
82 v = (tw - 1) + tw * ty;
83 }
84 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
85 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
86

87 if (ty < nt && tx < nt) {
88 x[loc] -= g.nn[loc] * x[loc + st * ld + st] +
89 g.ee[loc] * x[loc - st * ld + st] +
90 g.ss[loc] * x[loc - st * ld - st] +
91 g.ww[loc] * x[loc + st * ld - st];
92 }
93 __syncthreads();
94

95 // for all black nodes
96 if (tx < nt) {
97 u = (st - 1) + tw * tx;
98 v = (tw - 1) + tw * ty;
99 } else {

100 u = (tw - 1) + tw * (tx - nt);
101 v = (st - 1) + tw * ty;
102 }

194 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

103 loc = ld * (BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + v)
104 + BORDER_WIDTH2 + DIM_COMPUTE_BLOCK + u;
105

106 if (ty < nt && tx < nt << 1) {
107 x[loc] -= g.nn[loc], x[loc + st * ld] +
108 g.ee[loc], x[loc + st] +
109 g.ss[loc], x[loc - st * ld] +
110 g.ww[loc], x[loc - st];
111 }
112 __syncthreads();
113

114 tw = st;
115 st /= 2;
116 }
117 }

19.8. COMPUTING Q = S1P 195

19.8 Computing q = S1p

Every CG-iteration the matrix-vector product q = S1p has to be computed. The matrix S1

is the first Schur complement, given by

S1 := Dr − SrbD−1
b Sbr.

The multiplication q = S1p is done in two steps, namely:

1. y = D−1
b Sbrp,

2. q = Drp− Srby.

Since only the red nodes are involved in the computations, the black nodes can be used to store
intermediate results. So it is possible to compute q = D−1

b Sbrx followed by q = Drp − Srbq
and hence an extra vector y is no longer needed which saves memory. This trick is used in
both the current C++ version as well as in the CUDA version of the RRB-solver.

In the C++ version a memory efficient implementation is used: only three stencils are
used, namely StC, StW and StS. In the current CUDA version all five stencils are used, so
less memory efficient. However, also for the CUDA solver it is possible to write kernels which
use only the stencils StC, StW and StS. The reason why all five stencils are used in the
current CUDA implementation is that most kernels were designed on an older GPU, namely
the GTX 285 which has compute capability 1.3. We have seen in Section 16.3.2 that for
older architectures it matters whether we fetch data with a shift. In the very beginning of
our CUDA programming we chose performance over memory efficiency, and, accordingly, the
kernels were written such that most memory reads are coalesced. In the next sections we
describe the implementations carefully.

19.8.1 Step 1 in C++

The first step is to compute q = D−1
b Sbrp. Consider Figure 19.29. The figure shows how

we are going to compute the intermediate result q = D−1
b Sbrp. The intermediate results are

stored in the black points. On the right in Figure 19.29 we have zoomed in on the highlighted
5-point stencil (with a b1-node as center node; for the b2-nodes the same 5-point stencil is
used). The surrounding red nodes correspond with elements in the matrix Sbr, the center
black node corresponds with an element in the matrix D−1

b .
Now note that it holds that cn[i,j] = cs[i,j+1] and ce[i,j] = cw[i+1,j] so

that indeed only three stencils are needed. We can express all north-dependencies in terms
of south-dependencies and all east-dependencies in terms of west-dependencies. In C++ the
following code can be used:

// b1 nodes:
for (int i = 2; i <= Nx1; i += 2) {

for (int j = 1; j <= Nx2; j += 2) {
q[i][j] = cc[i][j] * (cs[i][j+1] * p[i][j+1] + // north

cw[i+1][j] * p[i+1][j] + // east
cs[i][j] * p[i][j-1] + // south
cw[i][j] * p[i-1][j]); // west

}
}

196 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

// b2 nodes:
for (int i = 1; i <= Nx1; i += 2) {

for (int j = 2; j <= Nx2; j += 2) {
q[i][j] = cc[i][j] * (cs[i][j+1] * p[i][j+1] + // north

cw[i+1][j] * p[i+1][j] + // east
cs[i][j] * p[i][j-1] + // south
cw[i][j] * p[i-1][j]); // west

}
}

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

⇐⇒

[i,j-1]

[i-1,j] [i+1,j]

[i,j+1]

[i,j]

r2

r1 b1 r1

r2

cs

cs

c
w

c
w

Figure 19.29: The 5-point stencil for Step 1 of the matrix-vector product q = S1p. This is the part
where q = D−1

b Sbrp is computed (the intermediate q result is stored in all first level black nodes).
Note that only the center (cc), the west (cw) and south (cs) stencils are used.

19.8.2 Step 2 in C++

The second step is to compute q = Drp−Srbq. For this step the 5-point stencil of Figure 19.30
is used (the figure shows the 5-point stencil for r1-nodes; for r2-nodes the same 5-point stencil
is used). In C++ the point-wise computation of q = Drp−Srbq can be done with the following
code:

19.8. COMPUTING Q = S1P 197

// r1 nodes:
for (int i = 1; i <= Nx1; i += 2) {

for (int j = 1; j <= Nx2; j += 2) {
q[i][j] = cc[i][j] * p[i][j] - // center

cs[i][j+1] * q[i][j+1] - // north
cw[i+1][j] * q[i+1][j] - // east
cs[i][j] * q[i][j-1] - // south
cw[i][j] * q[i-1][j]; // west

}
}

// r2 nodes:
for (int i = 2; i <= Nx1; i += 2) {

for (int j = 2; j <= Nx2; j += 2) {
q[i][j] = cc[i][j] * p[i][j] - // center

cs[i][j+1] * q[i][j+1] - // north
cw[i+1][j] * q[i+1][j] - // east
cs[i][j] * q[i][j-1] - // south
cw[i][j] * q[i-1][j]; // west

}
}

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

r1 b1

b2 r2

⇐⇒

[i,j-1]

[i-1,j] [i+1,j]

[i,j+1]

[i,j]

b2

b1 r1 b1

b2
cs

cs

c
w

c
w

Figure 19.30: The 5-point stencil for Step 2 of the matrix-vector product q = S1p. This is the part
where q = Drp−Srbq is computed (all first level red nodes). Note that only the center (cc), the west
(cw) and south (cs) stencils are used.

198 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.8.3 Towards an efficient CUDA implementation

In CUDA the matrix-vector product q = S1p is implemented slightly differently than what the
C++ code snippets suggest in the previous sections. The reason to do this differently is that
we can obtain a faster implementation if we compute things differently. The idea is to shift
some of the computations of Step 2 into Step 1 so that 1) overall less global memory reads
are needed, 2) global memory latency can be hidden much better. Let us first discuss how a
CUDA implementation would look like without any modifications.

Similar to two of the solver-kernels (Phase 2 and Phase 3) in CUDA the 5-point stencils
for b1- and b2-nodes can be combined into one larger stencil. For Step 1 the extended stencil
is shown in Figure 19.31.

[u,v-1]

[u,v] [u+1,v]

[u,v]

[u,v]

[u,v][u-1,v]

[u,v+1]

r2

r1 b1 r1

r2b2r2

r1

g
.
w
w

g
.
e
e

g.ss

g.nn

g
.
w
w

g
.
e
e

g.ss

g.nn

Figure 19.31: Two 5-point stencils combined. For each thread [u,v] are unique (coalesced) locations
in the global memory.

From this figure and the C++ implementation code snippet for Step 1 we can easily count
the number of reads and writes from and to the global memory. Each thread computes two
temporary results q: one for a b1-node and one for a b2-node, hence the number of global
memory writes is 2. Next, we need g.cc, g.nn, g.ee, g.ss and g.ww for each of the nodes,
hence 10 reads from the global memory. Further, we need also 6 different values in vector p
(2 of them are common to b1 and b2, see the figure). So the total number of global memory

19.8. COMPUTING Q = S1P 199

reads that are really required is 10 + 6 = 16.

For Step 2 a similar stencil can be drawn, see Figure 19.32. From this figure and the C++
implementation code snippet for Step 2 we can easily count the number of reads and writes
from and to the global memory. We find: 2 writes to the global memory. Further, we need
10 stencil values, 2 different values in vector q and 6 different values in vector p, hence a total
of 18 global memory reads.

[u,v-1]

[u,v] [u+1,v]

[u,v]

[u,v]

[u,v][u-1,v]

[u,v+1]

b2

b1 r1 b1

b2r2b2

b1

g
.
w
w

g
.
e
e

g.ss

g.nn

g
.
w
w

g
.
e
e

g.ss

g.nn

Figure 19.32: Two 5-point stencils combined. For each thread [u,v] are unique (coalesced) locations
in the global memory.

Thus, on total, if we implement the matrix-vector product in CUDA using the unmodified
versions of Step 1 and Step 2 it would cost 2 + 2 = 4 global memory writes and 16 + 18 = 34
global memory reads per thread.

In the next sections we discuss the modified versions of Step 1 and Step 2 and we see how
with minor modifications a more efficient CUDA implementation can be achieved.

19.8.4 Step 1 in CUDA

By looking at the two extended stencils carefully, we see that each thread first computes
intermediate results q in a b1- and b2-node and then uses these values plus two other values
computed by neighbour threads to compute the final values in the r1- and r2-node. The key

200 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

observation is now that once a thread has computed the b1- and b2-values it can immediately
start computing its own p values in the r1- and r2-nodes! We write “start computing” because,
unfortunately, for a single thread it is not possible to compute the final values for the r1-and
r2-nodes as it needs the intermediate results computed by 2 other threads. However, the
thread can already make a start with its own computed b1- and b2-values: for the r1-node
the thread can already compute the north and west contributions that occur in Step 2, and
for the r2-node the thread can already compute the south and east contributions that occur
in Step 2. At this point it is best to present the first CUDA kernel already, see Listing 19.14.
Remark: y corresponds with vector q and x with vector p.

Listing 19.14: CUDA kernel matv::kernel matv1().

1 template <class T>
2 __global__ void kernel_matv1(T *y, const T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
12 int v_b1 = BORDER_WIDTH + by * By + ty;
13 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
14 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;
15

16 int loc_r1 = ld * v_r1 + u_r1;
17 int loc_r2 = ld * v_r2 + u_r2;
18 int loc_b1 = ld * v_b1 + u_b1;
19 int loc_b2 = ld * v_b2 + u_b2;
20

21 const T x_r1 = __FETCH_XX(u_r1, v_r1, ld);
22 const T x_r1up1 = __FETCH_XX(u_r1+1, v_r1, ld);
23 const T x_r1vp1 = __FETCH_XX(u_r1, v_r1+1, ld);
24 const T x_r2 = __FETCH_XX(u_r2, v_r2, ld);
25 const T x_r2vm1 = __FETCH_XX(u_r2, v_r2-1, ld);
26 const T x_r2um1 = __FETCH_XX(u_r2-1, v_r2, ld);
27

28 const T nn_r1 = g.nn[loc_r1];
29 const T ee_r1 = g.ee[loc_r1];
30 const T ss_r2 = g.ss[loc_r2];
31 const T ww_r2 = g.ww[loc_r2];
32

33 // b1:
34 T sum_b1 = g.cc[loc_b1] * (ss_r2 * x_r2 + // north
35 g.ee[loc_b1] * x_r1up1 + // east
36 g.ss[loc_b1] * x_r2vm1 + // south
37 ee_r1 * x_r1); // west
38

39 // b2:
40 T sum_b2 = g.cc[loc_b2] * (g.nn[loc_b2] * x_r1vp1 + // north
41 ww_r2 * x_r2 + // east
42 nn_r1 * x_r1 + // south
43 g.ww[loc_b2] * x_r2um1); // west
44

19.8. COMPUTING Q = S1P 201

45 y[loc_b1] = sum_b1;
46 y[loc_b2] = sum_b2;
47

48 // r1 (partial):
49 T sum_r1 = g.cc[loc_r1] * x_r1 -
50 nn_r1 * sum_b2 -
51 ee_r1 * sum_b1;
52

53

54 // r2 (partial):
55 T sum_r2 = g.cc[loc_r2] * x_r2 -
56 ss_r2 * sum_b1 -
57 ww_r2 * sum_b2;
58

59 y[loc_r1] = sum_r1;
60 y[loc_r2] = sum_r2;
61 }

In lines 21-28 we recognize how data is fetched through textures. The stencils that are
needed multiple times are stored in registers, see lines 28-31. These stencils are used for both
the computation of the intermediate q-values in the b1- and b2-nodes as well as for the partial
computation of the final p values in the r1- and r2-nodes. Note that the intermediate q-values
still have to be written to the global memory as other threads need them later on. Also
note that for the extra computations, see lines 49-51 and 55-57, apart from g.cc[loc r1]
and g.cc[loc r2] no new data is required. This means that the computations can be
done extremely rapidly! The latency of fetching the 2 g.cc values is fully hidden under the
computations.

This time we count a total of 4 global memory writes (2 intermediate q-results and 2
partial p-values) and 18 global memory reads. Both numbers are higher than in the original
version; however, of course, in the new version of Step 2 the numbers will be lower, so that
on overall the number of reads and writes is less.

19.8.5 Step 2 in CUDA

Half of the computations of Step 2 are now performed in Step 1, so that the remaining part
of Step 2 takes only a few computations and a few data fetches, see Listing 19.15. Remark:
y corresponds with vector q and x with vector p.

Listing 19.15: CUDA kernel matv::kernel matv2().

1 template <class T>
2 __global__ void kernel_matv2(T *y, const T *x, const Grid g)
3 {
4 int ld = g.nx;
5

6 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
7 int v_r1 = BORDER_WIDTH + by * By + ty;
8 int u_r2 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
9 int v_r2 = BORDER_WIDTH2 + g.cy + by * By + ty;

10

11 int u_b1 = BORDER_WIDTH2 + g.cx + bx * Bx + tx;
12 int v_b1 = BORDER_WIDTH + by * By + ty;
13 int u_b2 = BORDER_WIDTH + bx * Bx + tx;
14 int v_b2 = BORDER_WIDTH2 + g.cy + by * By + ty;

202 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

15

16 int loc_r1 = ld * v_r1 + u_r1;
17 int loc_r2 = ld * v_r2 + u_r2;
18

19 const T y_b2vm1 = __FETCH_YY(u_b2, v_b2-1, ld);
20 const T y_b1um1 = __FETCH_YY(u_b1-1, v_b1, ld);
21 const T y_b1vp1 = __FETCH_YY(u_b1, v_b1+1, ld);
22 const T y_b2up1 = __FETCH_YY(u_b2+1, v_b2, ld);
23

24 // r1 (correction):
25 T sum_r1 = y[loc_r1] - g.ss[loc_r1] * y_b2vm1 // south
26 - g.ww[loc_r1] * y_b1um1; // west
27

28 // r2 (correction):
29 T sum_r2 = y[loc_r2] - g.nn[loc_r2] * y_b1vp1 // north
30 - g.ee[loc_r2] * y_b2up1; // east
31

32 y[loc_r1] = sum_r1;
33 y[loc_r2] = sum_r2;
34 }

The corrections to the r1- and r2-nodes are done in lines 25-26 and 29-30. For the r1-
node the south and west contributions were missing and for the r2-node the north and east
contributions were missing. We count 2 global memory writes and 10 global memory fetches.

Hence in the modified version we find on total 4 + 2 = 6 global memory reads and
18 + 10 = 28 global memory reads. This means a reduction of 6 global memory reads at the
cost of 2 extra global memory writes. However, as we have mentioned earlier, this is not the
only improvement: also global memory latency can be hidden much better, so that on overall
we gain a good 15% reduction in computing time.

19.9. DOT PRODUCTS 203

19.9 Dot products

In this section we discuss how inner products, also called dot products, are computed in our
CUDA RRB-solver. As emphasized earlier, the CG-algorithm operates on the first level red
nodes only, so that for computing dot products also only the first level red nodes are required.
In Section 17.2 we have discussed in detail how we can compute a (big) sum

n∑
i=1

xi = x1 + x2 + . . .+ xn

and hence also dot products, i.e.,

〈x, y〉 =
n∑
i=1

xiyi

as fast as possible in CUDA. We have seen that the way to go is the work- and cost-efficient
parallel sum reduction algorithm. This algorithm is used in the CUBLAS library routines
cublasSdot() and cublasDdot() (single resp. double precision). In the CUBLAS library
routines it is assumed that the vectors x and y are stored as linear (1D) arrays. This introduces
already a problem for us: because of the r1/r2/b1/b2-storage format, the r1- and r2-nodes
do not lie next to each other in the global memory; in between we have black nodes, see
Figure 19.33.

r1 b1

b2 r2

r1 r1 r2 r2b1 b1 b2 b2

Figure 19.33: The r1/r2/b1/b2-storage format and how it is actually stored in the device’s global
memory as a linear (1D) array.

Hence we cannot use the CUBLAS library routines, or at least, not right away. At this
point one may note that by switching b1 and r2 we can make sure that the r1- and r2-nodes
will become almost next to each other in the global memory. We write “almost” because in
between we keep the “gaps” (padded zero’s) with one and two times BORDER WIDTH-
width, so that by applying a CUBLASdot product routine to the vectors x and y with the
suggested modified r1/r2/b1/b2-storage format results in some useless computations for the
gaps (multiplication of padded zero’s). However, for grids large enough (which is the case for
realistic problems) the amount of overhead becomes insignificant (say 1 percent or so). The
“switching” approach has thus good potential.

We also wrote “not right away”. With that we target the following. The CUBLASdot
product routine cannot be used right away because of the r1/r2/b1/b2-storage format, but
suppose we have succeeded to do the first sum-reduction level ourselves. If we ensure that the
intermediate results are written to a linear array odata (which is actually very logical), from

204 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

that point on we can apply the CUBLASroutine to do the remaining sum-reduction levels and
come up with the final answer.

But wait, why should we strive for using the CUBLAS-routine anyways? The most im-
portant argument would be the conviction that the CUBLAS-routine will always be faster
than code that we come up with ourselves. A second argument may be that by using library
routines throughout the code, the solver may become faster for free each time a new version
of the CUBLASlibrary is released by NVIDIA. However, for our CUDA RRB-solver this second
argument would make no sense as all other routines in our CUDA RRB-solver are already
custom build.

Regarding the first argument: our custom dot product implementation outperforms the
CUBLASroutine cublasSdot() for most array sizes, even when not fully optimized. In the
next sections we explain how our implementation works.

19.9.1 A two-step approach

The central idea is to compute the dot product 〈x, y〉 in two steps, namely:

1. Do a mass reduction on the GPU, store the intermediate results in a linear array odata,
and copy this array back from the device to the host;

2. Use Kahan summation on the CPU to add the elements in odata.

Let us first explain what Kahan-summation is, and then how we make the array odata
on the GPU.

19.9.2 Kahan summation

The Kahan summation algorithm greatly reduces the numerical error that occurs when many
floating point numbers are added together in finite precision. At this point we should note that
the parallel sum-reduction algorithm is, although it is slightly less accurate, generally a better
approach to reduce the numerical error, because it keeps the summation work-efficient, see
Section 17.2. However, if a parallel method cannot be used, the Kahan summation algorithm
is a good alternative on sequential machines.

The central idea behind the Kahan summation algorithm is the introduction of a seperate
running compensation, i.e., a variable to accumulate small errors. Is is beyond the scope of
this report to give an accuracy analysis or other mathematical details. For us it is enough
to know that the Kahan summation algorithm makes it possible to sum n numbers with an
error that only depends on the floating-point precision [10].

In C++ the Kahan summation algorithm can be implemented as given in Listing 19.16. A
C++ template is used to make the code suitable for both single and double-precision numbers.
size contains the length of the linear array odata. Let us illustrate the algorithm with
the following example which comes from Wikipedia1. Although actual computers use binary
arithmetic, the example works with 6-digit decimal precision to illustrate the principle (this
way you can use a 10-digit hand calculator along).

Suppose we have so far sum = 10000.0 and we have to add 3.14159 and 2.71828 (do
you recognize these numbers?). The correct result would be: 10000.0 + 3.14149 + 2.71828 =
10005.85987 which rounds to 10005.9. In case we were to naively add the three numbers

1See: http://en.wikipedia.org/wiki/Kahan_summation_algorithm.

http://en.wikipedia.org/wiki/Kahan_summation_algorithm

19.9. DOT PRODUCTS 205

we would get 10000.0 + 3.14159 = 10003.14159 which rounds to 10003.1 and then 10003.1 +
2.71828 = 10005.81828 which rounds to 10005.8. This is clearly not correct.

Listing 19.16: C++ Kahan summation algorithm.

1 template <class T>
2 T Kahan(T* odata, unsigned int size)
3 {
4 T sum = 0;
5 T y = 0;
6 T t = 0;
7 T c = 0;
8

9 for (unsigned int i = 0; i < size; i++) {
10 y = odata[i] - c;
11 t = sum + y;
12 c = (t - sum) - y;
13 sum = t;
14 }
15

16 return sum;
17 }

Let us now go step by step through the Kahan summation algorithm. Assume c = 0 initially.

y = odata[i] - c; = 3.14159− 0 c is 0 initially
= 3.14159

t = sum + y; = 10000.0 + 3.14159
= 10003.14159 without rounding
= 10003.1 many digits lost after rounding!

c = (t - sum) - y; = (10003.1− 10000.0)− 3.14159
= 3.10000− 3.14159
= −0.0415900

sum = t; = 10003.1

y = odata[i] - c; = 2.71828−−0.0415900 see above for new c
= 2.75987

t = sum + y; = 10003.1 + 2.75987
= 10005.85987 without rounding
= 10005.9 after rounding

c = (t - sum) - y; = (10005.9− 10003.1)− 2.75987
= 2.80000− 2.75987
= 0.040130

sum = t; = 10005.9 correct result!

We see how c keeps track of the digits that were not assimulated into sum, and each time
a new y is computed these “lost” digits are brought into account. We see how introduction of
an extra variable, the accumulator c, leads to a method that is able to compute correct results
within the floating-point precision. Clearly, the higher accuracy does not come for free: an
additional 3 flops and some memory operations are needed. However, for small arrays odata,
say less than 10k elements, we observed that the computing times are so short (just a few µs)
that the extra work does not botter us.

206 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

19.9.3 Mass reduction phase on the GPU

In the previous section we have seen how Kahan summation can accurately compute the sum
of the elements of a linear array. It was also mentioned that for arrays small enough, that is,
O(104) elements, the computation times are in the order of micro seconds. In the first step
of our CUDA dot product implementation we thus target to generate a linear array odata
that has about O(104) elements. For realistic problems the grid typically consists of O(106)
elements, so that the GPU has to reduce the number of elements that has to be summed with
a factor O(102).

This reduction of a factor O(102) is obtained as follows. In Figure 19.34 it is shown how
threads are organized to compute the dot product 〈x, y〉. Vectors x and y are stored in the
r1/r2/b1/b2-format. The red nodes are used only, i.e., the r1- and r2-nodes. In the figure is is
assumed that the compute block consists of 16× 16 elements, but for a compute block with
dimensions 32× 32 there are no fundamental differences.

Each compute block is divided in sub-blocks by introduction of the block-factor called
DOTP BF. This number DOTP BF says in how many sub-blocks the compute block is divided
equally. For example, if DOTP BF = 4 each 16×16 compute-block is divided in 4 sub-blocks
with dimenions 16×4, if DOTP BF = 1 there is only 1 sub-block as big as the compute block
itself: 16× 16 elements.

We write “sub-blocks” rather than “thread-blocks” because they are not exactly the same,
namely: for each compute-block only one of the sub-blocks will also be a thread-block, i.e.,
the one that is on the bottom of the compute block.

Each thread in a thread-block sums up DOTP BF different products xiyi, namely the ones
that lie with stride DOTP BF * ld in the global memory (check for yourself). For one thread
(tx = 0, ty = 0) the different values are indicated by the small black squares. The reason
why we let each thread do more work, is to get a (more) cost-efficient algorithm and maximal
throughput, see Section 17.2.2. We see that by the threads organized in this way we get
indeed a reduction of a factor O(102), because each compute-block delivers 1 value to the
output array odata. So, for compute-blocks with size 16 × 16 the number of elements is
reduced by a factor 162 = 256 and for compute-blocks of size 32× 32 the number of elements
is even reduced by a factor 322 = 1024.

In Listing 19.17 the code for the kernel dotp::kernel dotp1 is presented. In line 19 we
see how precisely enough shared memory, sm, is allocated. As there are DIM COMPUTE BLOCK

* (DIM COMPUTE BLOCK / DOTP BF) threads alive per thread-block we also need this
amount of shared memory. In lines 23-28 we see how each threads computes products xiyi
and adds them to a running total sum. Note that since only a few elements are added which
all have about the same magnitude it is prettly unlikely that large roundoff errors occur. In
lines 30-31 we see how the intermediate result sum is written to the shared memory sm and
afterwards the threads are synchronized (at the level of thread-blocks) to make sure that all
data is really stored in sm. In lines 33-53 the values in the shared memory sm are summed
together according to a parallel sum-reduction strategy, see Section 17.2.3. Finally, in lines
56-57 we see how the thread with thread-indices tx = 0, ty = 0 writes the result to the global
memory.

We found that choosing DOTP BF = DIM COMPUTE BLOCK / 2 yields maximal through-
put (about 148.31 GB/s in single-precision on a GTX 580 which is the device-to-device band-
width). Faster than this is simply impossible as the kernel is bandwidth bound (just like
CUBLAS’s cublasSdot).

19.9. DOT PRODUCTS 207

r2b2

g.cx g.cx

ld = g.nx

g
.
c
y

g
.
c
y

g
.
n
y

B
O
R
D
E
R

W
I
D
T
H

BORDER
WIDTH

compute
block

16× 16

r1 b1

DETAIL

DETAIL
DOTP BF = 4

thread-
block

tx = 0, ty = 0

Vector x (and y)

Figure 19.34: Thread organization for dot products.

208 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

Listing 19.17: CUDA kernel dotp::kernel dotp1().

1 template <class T>
2 __global__ void kernel_dotp1(T *odata, const T *y, const T *x,
3 const Grid g)
4 {
5 int cx = g.cx;
6 int cy = g.cy;
7 int ld = g.nx;
8

9 int u_r1 = BORDER_WIDTH + bx * DIM_COMPUTE_BLOCK + tx;
10 int v_r1 = BORDER_WIDTH + by * DIM_COMPUTE_BLOCK + ty;
11 int u_r2 = BORDER_WIDTH2 + cx + bx * DIM_COMPUTE_BLOCK + tx;
12 int v_r2 = BORDER_WIDTH2 + cy + by * DIM_COMPUTE_BLOCK + ty;
13

14 int loc_r1 = ld * v_r1 + u_r1;
15 int loc_r2 = ld * v_r2 + u_r2;
16

17 int tid = Bx * ty + tx;
18

19 __shared__ T sm[DIM_COMPUTE_BLOCK * (DIM_COMPUTE_BLOCK / DOTP_BF)];
20

21 T sum = 0;
22

23 for (int k = 0; k < DOTP_BF; ++k) {
24 sum += y[loc_r1] * x[loc_r1];
25 sum += y[loc_r2] * x[loc_r2];
26 loc_r1 += ld * (DIM_COMPUTE_BLOCK / DOTP_BF);
27 loc_r2 += ld * (DIM_COMPUTE_BLOCK / DOTP_BF);
28 }
29

30 sm[tid] = sum;
31 __syncthreads();
32

33 for (int k = (DIM_COMPUTE_BLOCK / 2) *
34 (DIM_COMPUTE_BLOCK / DOTP_BF); k > 16; k >>= 1) {
35 if (tid < k) {
36 sm[tid] += sm[tid + k];
37 __syncthreads();
38 }
39 }
40

41 if (tid < 16)
42 sm[tid] += sm[tid + 16];
43 __syncthreads();
44 if (tid < 8)
45 sm[tid] += sm[tid + 8];
46 __syncthreads();
47 if (tid < 4)
48 sm[tid] += sm[tid + 4];
49 __syncthreads();
50 if (tid < 2)
51 sm[tid] += sm[tid + 2];
52 __syncthreads();
53 if (tid < 1)
54 sm[tid] += sm[tid + 1];
55 __syncthreads();
56 if (tid == 0)

19.10. AXPYS 209

57 odata[by * gridDim.x + bx] = sm[tid];
58 }

19.10 AXPYs

Vector updates (AXPY) is a very easy to implement routine. The following code speaks for
itself.

Listing 19.18: CUDA kernel axpy::kernel axpy().

1 template <class T>
2 __global__ void kernel_axpy(T *y, const T *x,
3 const T a, const T b, const Grid g)
4 {
5 int cgx = g.cx;
6 int cgy = g.cy;
7 int ld = g.nx;
8

9 int v_r1 = BORDER_WIDTH + by * By + ty;
10 int u_r1 = BORDER_WIDTH + bx * Bx + tx;
11 int v_r2 = BORDER_WIDTH2 + cgy + by * By + ty;
12 int u_r2 = BORDER_WIDTH2 + cgx + bx * Bx + tx;
13

14 int loc_r1 = ld * v_r1 + u_r1;
15 int loc_r2 = ld * v_r2 + u_r2;
16

17 y[loc_r1] = a * y[loc_r1] + b * x[loc_r1];
18 y[loc_r2] = a * y[loc_r2] + b * x[loc_r2];
19 }

210 CHAPTER 19. THE C++ AND CUDA RRB-SOLVER

Chapter 20

The CUDA IPDIAG-solver

In this chapter we discuss in detail how the IPDIAG-solver is implemented in CUDA. The
mathematics and central idea behind the IP preconditioning are already discussed in Sec-
tion 10.2.3.

20.1 Outline

The IPDIAG-solver is a CG-type solver with Incomplete Poisson (IP) as preconditioner com-
bined with diagonal scaling (DIAG). Actually diagonal scaling is form of preconditioning, see
Section 10.1.1. Diagonal scaling is added to ensure that the solver becomes stable for all test
problems; without diagonal scaling the approximate solution may diverge at some point in
time for particular test problems, e.g., Klopman’s harbour.

The IPDIAG-solver is implemented in such a way that the user can choose beforehand
what solver he or she wants to use: plain CG, CG + diagonal scaling, CG + IP precondi-
tioning, or CG + diagonal scaling + IP preconditioning. Also, the user can decide whether
to start the iterative process with the zero vector (x = 0) rather than the solution x from the
previous time step. Both futures are achieved by means of preprocessor directives (#define)
as this is the fastest alternative (unused code is just not compiled).

In Algorithm 8 an outline of the complete algorithm is given as it is implemented in CUDA.
Note that the if-statements with capitals (e.g., USEIPPREC) are catched in preprocessor
directives and hence are not real if-statements. Verify for yourself that when USEDIAGSCAL
= 0 and USEIPPREC = 0 we get back the CG-algorithm, see Algorithm 3 (although slightly
rewritten).

20.1.1 Input and output

The input consists at least of the discretization matrix S, the right-hand side (RHS) b (stored
in r), an initial guess x (solution from the previous time frame), a tolerance psitol, and a
maximum bound for the number of CG-iterations maxiter.

If the IP preconditioner is used (USEIPPREC = 1) the algorithm works with an extra
input: matrix M−1, the preconditioning matrix, see lines 15 and 43, accompanied with an
extra vector z, the so-called preconditioned residual, see lines 16, 25, 43 and 47.

If moreover diagonal scaling is used (USEDIAGSCAL = 1) the algorithm works with an-
other extra input: diagonal matrix P , see lines 5, 11, and 53.

211

212 CHAPTER 20. THE CUDA IPDIAG-SOLVER

The matrices S, M−1 and P come in the form of stencils. For both S and M−1 three
stencils are needed: a center (StC), a west (StW) and a south (StS) stencil. As matrix P is
a diagonal matrix only 1 stencil is required.

The only output is the solution vector x which thus serves as next initial guess in case we
have set USEZEROVECTOR = 0.

Input: S, (M−1), (P), r, x, psitol, maxiter
Output: x
if USEZEROVECTOR then1

x = 0;2

end3

if USEDIAGSCAL then4

x = P Tx;5

y = S̃x; // SpMV: version 26

else7

y = Sx; // SpMV: version 18

end9

if USEDIAGSCAL then10

r = P−1r;11

end12

r = r − y;13

if USEIPPREC then14

z = M−1r; // SpMV: version 115

ρnew = 〈r, z〉;16

else17

ρnew = 〈r, r〉;18

end19

stop = (ρnew + 1) · (psitol)2;20

Algorithm 8: The IPDIAG-algorithm (see also next page).

20.1.2 SpMVs: two flavours

In lines 6, 8, 15, 34, 36 and 43 we find SpMVs (sparse matrix-vector products). As indicated
there are two versions. The reason for two different implementations is that in case diagonal
scaling is used the SpMV becomes (slightly) cheaper: if n is the total number of nodes
(n = Nx × Ny), n multiplications can be saved. This is explained in Section 10.1.1. The

matrix S̃ is computed by
S̃ := P−1SP−T .

and as a consequence the entries on the main diagonal of S̃ (i.e., the center stencil) are all 1.
In Section 20.2.6 we discuss the SpMVs and their implementation in detail.

20.1. OUTLINE 213

while (ρnew > stop & iter < maxiter) do21

iter + +;22

if iter = 1 then23

if USEIPPREC then24

p = z;25

else26

p = r;27

end28

else29

β =
ρnew

ρold
;

30

p = r + βp; // AXPY31

end32

if USEDIAGSCAL then33

q = S̃p; // SpMV: version 234

else35

q = Sp; // SpMV: version 136

end37

σ = pT q; // dot product38

α =
ρnew

σ
;39

r = r − αq; // AXPY40

x = x+ αp; // AXPY41

if USEIPPREC then42

z = M−1r; // SpMV: version 143

end44

ρold = ρnew;45

if USEIPPREC then46

ρnew = 〈r, z〉; // dot product47

else48

ρnew = 〈r, r〉; // dot product49

end50

end51

if USEDIAGSCAL then52

x = P−Tx;53

end54

Algorithm 8: The IPDIAG-algorithm (continued).

20.1.3 Termination criterium

The termination criterium for the IPDIAG-solver depends on whether or not IP precondi-
tioning is used. In case of a plain CG or CG + diagonal scaling, the termination criterium is
given by: stop the iterative process when

ρnew = 〈ri, ri〉2 = ‖ri‖22 ≤ (‖r0‖22 + 1) · (psitol)2

(or when the maximal number of iterations is exceeded). In that case the ordinary residual
ri is thus used for iteration i. In case of CG + IP preconditioning or the true IPDIAG-solver

214 CHAPTER 20. THE CUDA IPDIAG-SOLVER

the termination criterium is given by: stop the iterative process when

ρnew = 〈ri, zi〉2 = ‖ri‖2M−1 ≤ (‖r0‖2M−1 + 1) · (psitol)2

(or when the maximal number of iterations is exceeded), hence the criterium that is used in
all PCG solvers in the lin wacu software. The termination criterium is found in lines 20
and 21.

20.2 Implementation

20.2.1 General comments

The current implementation of the CUDA IPDIAG-solver consists mostly of custom-built ker-
nels. For computation of dot products the CUBLAS library routines cublasSdot() (single-
precision) and cublasDdot() (double-precision) are used. However, it may be worth to
write similar own code, see Sections 17.2 and 19.9 (faster). Throughout the source code use is
made of the symbol REAL which can either be float or double, and the kernels are written
using template functions. In this way the IPDIAG-solver can handle both single-precision
and double-precision numbers.

Although at the moment the preconditioner is constructed only once for an entire simula-
tion, we have made the IPDIAG-solver “future-proof”. That is, all time intensive computa-
tions are done on the GPU rather than on the CPU, so that in the future the IPDIAG-solver
can also be used for time varying depth-profiles in case which multiple times per second the
preconditioner has to be constructed.

In the lin wacu software the IPDIAG-solver is called the “CudaSimpleSolver”, the rea-
son being obvious: this CUDA solver is very basic, especially compared to the CUDA RRB-
solver. Accordingly, the IPDIAG-solver is saved in the files CudaSimpleSolver.cpp with
corresponding header CudaSimpleSolver.h and various other (header-)files.

20.2.2 Memory requirements

The total amount of memory required is easy to compute. Suppose the number of nodes in
the x-direction is Nx and the number of nodes in the y-direction is Ny. The total number of
nodes is then n = Nx ·Ny. In Table 20.1 all (significant) data objects are listed.

Depending on what solver is chosen, all or fewer linear arrays are needed. In case of plain
CG we only need the stencils for S and the vectors r, x, y, p and q, hence 8 linear arrays of size
n. In case of CG + diagonal scaling we need additionaly the diagonal matrix P . However,
as the center stencil of S only contains ones we do not need the center stencil, hence 8 linear
arrays of size n are sufficient. In case of the IPDIAG-solver we need all of them: a total of
13 linear arrays. Also note that in a most memory efficient implementation the vector y is
actually not needed.

20.2.3 Constructing the preconditioner(s)

Actually there are two preconditioners: the preconditioner matrix M−1 and the diagonal
matrix P . Let us start with the matrix P .

20.2. IMPLEMENTATION 215

Variable Description Storage format

*dcc matrix S center stencil linear array of size n

*dss matrix S south stencil linear array of size n

*dww matrix S west stencil linear array of size n

*kcc matrix M−1 center stencil linear array of size n

*kcc matrix M−1 south stencil linear array of size n

*kcc matrix M−1 west stencil linear array of size n

*dpp matrix P =
√
D linear array of size n

*dz vector z linear array of size n

*dr vector r linear array of size n

*dx vector x linear array of size n

*dy vector y linear array of size n

*dp vector p linear array of size n

*dq vector q linear array of size n

Table 20.1: Memory requirements of the CUDA IPDIAG-solver.

Diagonal matrix P

In Section 10.1.1 it was explained that P is computed at the hand of the diagonal of S.
Actually, we have D = PP T , where D is the diagonal of matrix S and hence P , which is thus
also diagonal, is found by

P = diag(
√
d1,
√
d2, . . . ,

√
dn),

where the di’s are the main diagonal elements of D (the only nonzeros). The diagonal of S,
i.e., matrix D is stored in the center stencil StC. Therefore, accordingly, in CUDA the matrix
P can be stored in 1 stencil and the following CUDA kernel can be used:

Listing 20.1: CUDA kernel makeDiagonal().

1 template <class T>
2 __global__ void makeDiagonal(T *stP, const T *stC, const int n)
3 {
4 int tid;
5

6 tid = bx * Bx + tx;
7 if (tid < n)
8 stP[tid] = sqrt(stC[tid]);
9 }

Herein is n the total number of nodes, i.e., n = Nx1 * Nx2, and tid points to a unique
location in the arrays. In this way each thread computes one value in P ’s stencil StP at the
hand of the corresponding value of the center stencil of S which is stored in StC.

For a grid of 2048× 2048 nodes the kernel reaches a useful throughput of 162.7 GB/s on
a GeForce GTX 580; the kernel is bandwidth bound.

IP preconditioner M−1

In Section 10.2.3 it was explained how the IP preconditioner M−1 is computed at the hand
of the matrix S. The procedure was illustrated with the 2D Poisson problem. Recall that

M−1 = KKT , K = I − LD−1,

216 CHAPTER 20. THE CUDA IPDIAG-SOLVER

where I is the identity matrix, L the strictly lower part of S, and D the diagonal of S. It was
shown that the matrix M−1 constructed in this way is not given by a 5-point stencil but by
a 7-point stencil. Next it was shown that, in case of the 2D Poisson problem, approximating
M−1 by M̃−1, where M̃−1 is found by leaving out the fill-in that occured, does lead to an
acceptable approximation. The matrix M̃−1 is thus given by a 5-point stencil, so that the
preconditioning step, M−1z = r (thus actually M̃−1z = r), comes down to computation of
an SpMV just like for the product q = Sp is needed and hence the same CUDA kernel can be
used!

The procedure was illustrated at the hand of the 2D Poisson example with N nodes in
the x- and y-direction. In that case the matrix M−1 is given by

rowi(M
−1) = (M−1

i−N ,M
−1
i−1,M

−1
i ,M−1

i+1,M
−1
i+N),

= (
1

4
,
1

4
,
9

8
,
1

4
,
1

4
)

or, equivalently, M−1 is given by the stencil

M−1 =

 1/4
1/4 9/8 1/4

1/4

 .
Let us now see what changes if we apply the method to our SPD matrix S ∈ RNxNy×NxNy

on a grid with Nx nodes in the x- and Ny nodes in the y-direction. Note that by symmetry,
we only have to consider rowi(S) = (Si−Nx , Si−1, Si, ∗, ∗), i.e., the south, west and center
stencil are sufficient; those three describe matrix S completely. It can be computed, just like
in Section 10.2.3 is done for the 2D Poisson problem, that if S is given by

rowi(S) = (Si−Nx , Si−1, Si, ∗, ∗),
= (si, wi, ci, ∗, ∗),

then the matrix M−1 (thus the approximation) is given by

rowi(M
−1) = (M−1

i−Nx
,M−1

i−1,M
−1
i , ∗, ∗),

= (
si
ci
,
wi
ci
, 1+

(wi
ci

)2
+
(si
ci

)2
, ∗, ∗).

Note that this is only correct for most rows of matrix M−1; for the first Nx rows of matrix
M−1, and especially the very first row, the stencil is slightly different, i.e., fewer terms occur.
In Listing 20.2 corresponding CUDA code is presented. Herein are Nx1, Nx2 the number of
nodes in x- and y-direction, respectively (Nx and Ny). The stencil of S is stored by StSC,
StSS and StSW, the stencil of the preconditioning matrix M−1 will be saved in StMC, StMS
and StMW.

In lines 16, 18 and 20 we see if-statements that make sure that the first Nx1 (Nx) rows
are handled differently. Each thread computes one value in StMC, one value in StMS and one
value in StMW, hence each thread does somewhat more work which is good for bandwidth.
We also see how the center stencil of M−1, StMC, is computed in terms of the west, StMW,
and south, StMS, stencil of M−1.

For a grid of 2048× 2048 nodes the kernel reaches a useful throughput of 151.1 GB/s on
a GeForce GTX 580; the kernel is bandwidth bound.

20.2. IMPLEMENTATION 217

Listing 20.2: CUDA kernel makeIPPrec().

1 template <class T>
2 __global__ void makeIPPrec(T *StMC, T *StMS, T *StMW,
3 const T *StSC, const T *StSS, const T *StSW,
4 const int Nx1, const int Nx2)
5 {
6 int tid = bx * Bx + tx;
7

8 T valSC, valMW, valMS, valMC;
9

10 if (tid < Nx1 * Nx2)
11 {
12 valSC = 1.0 / stSC[tid];
13 valMW = StSW[tid] * valSC;
14 valMS = StSS[tid] * valSC;
15

16 if (tid == 0) // first row of Mˆ{-1}
17 valMC = 1.0;
18 else if (tid > 0 && tid < Nx1) // first Nx1 rows except row 1
19 valMC = 1.0 + valMW * valMW;
20 else // all other rows
21 valMC = 1.0 + valMW * valMW + valMS * valMS;
22

23 StMW[tid] = valMW;
24 StMS[tid] = valMS;
25 StMC[tid] = valMC;
26 }
27 }

20.2.4 Updating the matrix S in case of diagonal scaling

In case of diagonal scaling, the matrix S is overwritten by the matrix S̃ := P−1SP−T . For
this matrix S̃ the entries on the main diagonal are all 1. Note that, in case diagonal scaling
is enabled (USEDIAGSCAL = 0), the matrix S (thus actually S̃) is fully described by two
stencils only: a new west and south stencil; the center stencil is no longer needed as its entries
are all 1.

To compute the new matrix S we need matrix P . In Listing 20.3 suitable CUDA code
is presented. Each thread computes three outputs: the updated center value StC which is
always 1, thus this part of the code can be left out, the updated west value stW and the
updated south value StS.

Listing 20.3: CUDA kernel updateMatrix().

1 template <class T>
2 __global__ void updateMatrix(T *StC, T *StS, T *StW,
3 const T *StP,
4 const int Nx1, const int Nx2)
5 {
6 int tid = bx * Bx + tx;
7

8 if (tid < Nx1 * Nx2)
9 {

10 StC[tid] = 1.0; // center (not needed explicitly)
11 if (tid > 0)

218 CHAPTER 20. THE CUDA IPDIAG-SOLVER

12 StW[tid] /= (StP[tid - 1] * StP[tid]); // west
13 if (tid > Nx1 - 1)
14 StS[tid] /= (StP[tid - Nx1] * StP[tid]); // south
15 }
16 }

For a grid of 2048× 2048 nodes the kernel reaches a useful throughput of 197.7 GB/s on
a GeForce GTX 580; the kernel is bandwidth bound.

20.2.5 The operations x = P Tx and x = P−Tx

Since matrix P is a diagonal matrix, the operations x = P Tx and x = P−Tx come down to
element-wise multiply and element-wise division, respectively. Listings 20.4 and 20.5 do the
job.

Listing 20.4: CUDA kernel elementWiseMul().

1 template <class T>
2 __global__ void elementWiseMul(T *x, const T *p, const int n)
3 {
4 int tid = bx * Bx + tx;
5 if (tid < n)
6 x[tid] *= p[tid];
7 }

Listing 20.5: CUDA kernel elementWiseDiv().

1 template <class T>
2 __global__ void elementWiseDiv(T *x, const T *p, const int n)
3 {
4 int tid = bx * Bx + tx;
5 if (tid < n)
6 x[tid] /= p[tid];
7 }

For a grid of 2048× 2048 nodes the kernels reach a useful throughput of 173.7 GB/s and
176.8 GB/s, respectively, on a GeForce GTX 580; the kernels are bandwidth bound.

20.2.6 SpMVs: two flavours

The sparse matrix-vector product (SpMV) is discussed in great detail in Section . In that
section hints are given for an optimal CUDA implementation, depending on the GPU’s archi-
tecture. On Fermi GPUs it is most proficient in for both memory and performance to use
three stencils only: StC, StW and StS, rather than all 5. Memory speaks for itself and the
slightly better performance has to do with the fact that L1 cache of the device is used in that
case. On older GPUs some performance can be gained if 5 stencils are used because of more
coalesced memory transactions. It is also shown that vector x in the computation y = Sx
should be fetched through textures (which are cached), to get a good boost in performance.
In case of the Fermi GPUs textures do not make a difference as vector x is already cached in
L1 without them and with the textures the L1 cache is just replaced by the texture cache.
However on older GPUs 45% performance is gained with textures as older GPUs do not have
L1 global memory cache.

20.2. IMPLEMENTATION 219

SpMV kernel version 1

Version 1 of the SpMV is used for: 1) the preconditioning step M−1z = r and 2) if diagonal
scaling is not enabled, for computing q = Sp. The corresponding code is listed below.

Listing 20.6: CUDA kernel SpMVv1().

1 template <class T>
2 __global__ void SpMVv1(T *y,
3 const T *stC,
4 const T *stS,
5 const T *stW,
6 const T *x,
7 const int Nx1,
8 const int Nx2)
9 {

10 int tid = bx * Bx + tx;
11

12 T sum = 0;
13

14 if (tid < Nx1 * Nx2)
15 {
16 sum = stC[tid] * tex1Dfetch(texRefx, tid); // center
17

18 if (tid + Nx1 < Nx1 * Nx2)
19 sum += stS[tid + Nx1] * tex1Dfetch(texRefx, tid + Nx1); // north
20 if (tid + 1 < Nx1 * Nx2)
21 sum += stW[tid + 1] * tex1Dfetch(texRefx, tid + 1); // east
22 if (tid - Nx1 >= 0)
23 sum += stS[tid] * tex1Dfetch(texRefx, tid - Nx1); // south
24 if (tid - 1 >= 0)
25 sum += stW[tid] * tex1Dfetch(texRefx, tid - 1); // west
26

27 y[tid] = sum;
28 }
29 }

For a grid of 2048× 2048 nodes the kernel reaches a useful throughput of 253.4 GB/s on
a GeForce GTX 580; the kernel is bandwidth bound.

SpMV kernel version 2

Version 2 of the SpMV is used for the matrix-vector product q = Sp in case diagonal scal-
ing is enabled, thus for a matrix S which has a main diagonal consisting of 1s only. The
corresponding code is listed below.

Listing 20.7: CUDA kernel SpMVv2().

1 template <class T>
2 __global__ void SpMVv2(T *y,
3 const T *stC, // note: not used (because all 1’s)
4 const T *stS,
5 const T *stW,
6 const T *x,
7 const int Nx1,
8 const int Nx2)
9 {

220 CHAPTER 20. THE CUDA IPDIAG-SOLVER

10 int tid = bx * Bx + tx;
11

12 T sum = 0;
13

14 if (tid < Nx1 * Nx2)
15 {
16 sum = tex1Dfetch(texRefx, tid); // center
17

18 if (tid + Nx1 < Nx1 * Nx2)
19 sum += stS[tid + Nx1] * tex1Dfetch(texRefx, tid + Nx1); // north
20 if (tid + 1 < Nx1 * Nx2)
21 sum += stW[tid + 1] * tex1Dfetch(texRefx, tid + 1); // east
22 if (tid - Nx1 >= 0)
23 sum += stS[tid] * tex1Dfetch(texRefx, tid - Nx1); // south
24 if (tid - 1 >= 0)
25 sum += stW[tid] * tex1Dfetch(texRefx, tid - 1); // west
26

27 y[tid] = sum;
28 }
29 }

Notice that the only difference with Listing 20.6 is that the value Stc[tid] is no longer
loaded from the global memory.

For a grid of 2048× 2048 nodes the kernel reaches a useful throughput of 281.7 GB/s on
a GeForce GTX 580; the kernel is bandwidth bound.

20.2.7 AXPYs and dot products

The dot products are computed with the CUBLAS library routine cublasSdot in case of
floats or cublasDdot in case of doubles. The routine achieves a useful throughput
of 165.6 GB/s. The vector-updates (AXPYs) are computed with code similar to CUBLAS’s
routine cublasSsaxpy. Our own kernel is just as fast as CUBLAS’s routine but it is a
more flexible; our AXPY is actually: y := αx + βy (AXPBY). The CUDA code is given in
Listing 20.8. The kernel reaches a useful throughput of 177.5 GB/s. Both the dot products
and the AXPY kernel are bandwidth bound.

Listing 20.8: CUDA kernel AXPY().

1 template <class T>
2 __global__ void AXPY(T *y,
3 const T *x,
4 const T alpha,
5 const T beta,
6 const int n)
7 {
8 int tid = bx * Bx + tx;
9 if (tid < n)

10 y[tid] = alpha * x[tid] + beta * y[tid];
11 }

20.2. IMPLEMENTATION 221

20.2.8 Overlapping and concurrent kernels

Consider Algorithm 8. In lines 1-9 operations are done with vector x which is already on the
device. From line 10 and further the operations start on “fresh” vector r coming from the
host (the right-hand side b in Sψ = b). As the vectors x and r do not rely on each other in
these first lines, the idea is to process them concurrently using streams. And communication
(vector r has to be copied from the host to the device) can be overlapped with computation.
From experiments we know that transferring the data takes a couple of ms, so it would be
nice to do as much computations simultanesouly to get some reduction in overall execution
time. In Figure 20.1 we have visualized this idea.

Time−→

Stream 0

Memcpy r host to device
r = P−1r
r = r − y

Stream 1

x = P Tx
y = Ax
-

Figure 20.1: Overlapping and concurrent kernels.

To get an idea, in our CUDA IPDIAG-solver this is done as follows:

cudaStream_t stream1;
cudaStream_t stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

// copy vector b to device (to r)
cudaMemcpy2DAsync(m_dr, m_pitch, pB->getElements() + m_srcOffset,

pB->columns() * m_elementSize, m_Nx1 * m_elementSize,
m_Nx2, cudaMemcpyHostToDevice, stream1);

#if USEZEROVECTOR
misc::memset_kernel<REAL> <<< m_numBlocks, m_numThreads, 0, stream2 >>>

(m_dx, m_n, 0);
#endif

#if USEDIAGSCAL
// x = PˆTx
cg::elementWiseMul<REAL> <<< m_numBlocks, m_numThreads, 0, stream2 >>>

(m_dx, m_dpp, m_n);

// y = A * x
cudaBindTexture(NULL, texRefx, m_dx);
cg::SpMVv2<REAL> <<< m_numBlocks, m_numThreads, 0, stream2 >>>

(m_dy, m_dcc, m_dss, m_dww, m_dx, m_Nx1, m_Nx2);
#else

cudaBindTexture(NULL, texRefx, m_dx);
cg::SpMVv1<REAL> <<< m_numBlocks, m_numThreads, 0, stream2 >>>

(m_dy, m_dcc, m_dss, m_dww, m_dx, m_Nx1, m_Nx2);
#endif

#if USEDIAGSCAL
// r = Pˆ{-1} * r = Pˆ{-T} * r

222 CHAPTER 20. THE CUDA IPDIAG-SOLVER

cg::elementWiseDiv<REAL> <<< m_numBlocks, m_numThreads, 0, stream1 >>>
(m_dr, m_dpp, m_n);

#endif

// r = r - y
cg::AXPY<REAL> <<< m_numBlocks, m_numThreads, 0, stream1 >>>

(m_dr, m_dy, -1, 1, m_n);

N.B. Later on, in lines 40 and 41 in Algorithm 8 we see two vector-updates that are completely
independent. Also these two can be put in different streams.

Part V

TESTS AND RESULTS

223

Chapter 21

Testing method

In the sections we shall discuss how we are going to test our new CUDA solvers and compare it
with the existing solvers. What basically matters is how fast are our CUDA solvers compared
to the current C++ RRB-solver in terms of execution time as the C++ RRB-solver is the fastest
of all C++ solvers available. For reliable measurements we have to be consistent and need a
performance/timing plan so that there is no room for doubt or confusion.

21.1 Measures and terminology

To see how well our CUDA solvers really perform we have to introduce some extra measures
and additional terminology.

21.1.1 Frame time

The simulator is a real-time simulator which basically means that multiple times per second
the wave field has to be computed entirely from scratch (possibly using the previous wave
field as starting solution). Typically the frame rate is 20 fps, i.e. the program computes 20
times per second a new wave field. The frame time (or time frame) is the period of time
that corresponds to the frame rate, i.e., when the frame rate is 20, then the frame time is
1/20 = 0.050 s = 50ms.

Every time frame many computations are performed. Most of the computations are
gathered in the routine WavesComputer::compute(). First a new right-hand side b is
computed externally, and then in the routine WavesComputer::compute() in consecutive
order incoming waves are computed, a system Sψ = b is solved, time derivates are computed
and finally the time integration is performed using the Leapfrog-method (and lots of minor
computations). For a complete overview see Table 25.3.

For the simulator to fulfill the real-time requirement obviously all computations must be
performed in less time than the frame time. Therefore we keep track of the total execution
time.

21.1.2 Total time

The total (execution) time is the time taken by the computer to perform all computations
described above (incoming waves, solver, time derivatives, Leapfrog). Hence for the simulator
to allow real-time simulation we require: total time < frame time.

225

226 CHAPTER 21. TESTING METHOD

21.1.3 Solver time

The solver (execution) time is the time taken by a solver to solve the system Sψ = b once
in a particular time frame. The solver time is thus a fraction of the total time. If the solver
time is almost equal to the total time, we say that the solver part is a bottleneck.

21.1.4 Additional time

The additional (execution) time is the time taken by all compututations different from those
that needed for solving the system Sψ = b. The additional time is thus formed by the
computations for incomping waves, time derivatives, Leapfrog, etcetera. We have

Total time = solver time + additional time.

21.1.5 Speed up

We define speed up as follows. The speed up is a relative measure between two arbitrary
solvers, independent from the implemented method and platform that is used (CPU, GPU,
etc.). So just the performance counts. We say that solver Y has a speed up of a factor n over
solver X if

time solver X to solve system

time solver Y to solve system
= n.

So, for example, if solver X takes 30 ms to solve the system Sψ = b and solver Y takes 10 ms
we say that solver Y has a speed up factor of 30/10 = 3 over solver X. The term speed up
is thus used very freely; if solver X were a sequential C++ RRB-solver (CPU) and solver Y a
highly parallel CUDA IPDIAG-solver (GPU), we also would just say that solver Y is 3 times
faster than solver X. This is a bit tricky and may lead to dishonest comparisons; therefore,
we also introduce the term solver speed up.

21.1.6 Solver speed up

The solver speed up is the increase in performance when the sequential (C++, CPU) version
of a solver is compared to its parallel (CUDA, GPU) version. The underlying method is thus
kept the same, e.g., the RRB-solver, Nop-solver (CG with diagonal scaling), etc., is used for
both the sequential and parallel version.

21.1.7 Total speed up

Like we distinguish between total time and solver time, we also have a total speed up. The
total speed up thus relates to the increase in performance taken over a complete time frame.
We say that solver y yields a total speed up of a factor n if

total time with solver X

total time with solver Y
= n.

For example, suppose that with solver X the system Sψ = b is solved in 30 ms and that the
additional computations take 10 ms (incoming waves, time derivates, Leapfrog, etc.). So the
total time is 30 + 10 = 40 ms (thus real-time). Next suppose that with solver Y the system
Sψ = b is now solved in 10 ms. Of course the additional computations still take 10 ms. The
total time is reduced to 10 + 10 = 20 ms, and hence the total speed up is a factor 40/20 =

21.2. PERFORMANCE/TIMING PLAN 227

2. So, although solver Y is 3 times as fast, because of the additional computations, the total
speed up is only a factor 2 (Amdahl’s law).

21.1.8 Useful throughput

Throughput has already been discussed in detail in Section 16.1.2. We pointed out that we
make a distinction between throughput (= effective bandwidth) and useful throughput. The
difference between the terms is that throughput is the total amount of data that passes the
device caused by global memory read en global memory write operations. Memory operations
are performed on chunks of data; typical are 32-, 64- and 128-byte operations. So, if we use
single-precision numbers (floats = 4 bytes) and a 32-byte operations is used, 8 numbers are
read or written simultaneously. The fraction of the data that is really used to compute things
yields the useful throughput, e.g., only the odd numbers are used. The useful throughput is
thus a fraction of the throughput, and this is the number that really matters. Therefore, we
always look at the useful throughput rather than just the throughput.

21.2 Performance/timing plan

In this section we explain exactly how we ran our experiments. We went through two phases:

1. The solvers evaluated in a special poisson testing environment;

2. The solvers plugged-in in the lin wacu software.

21.2.1 Special poisson testing environment

The poisson testing environment is a custom-built environment to test MARIN’s solvers in
greater detail. The environment consists a poisson.cu-file in which a 2D Poisson problem
Ax = b is set-up and solved once with a solver specified by the user. In the header-file
defines.h of the CUDA solver the user has to switch to the output modus for output to the
screen or file. This is done by setting various preprocessor directives #define to 1 instead
of 0 (default). Below we give an outline of the poisson.cu-file.

Listing 21.1: Test file poisson.cu.

1 int main(int argc, char **argv)
2 {
3 // declaration of variables
4 ...
5

6 const REAL tol = 1e-5; // default tolerance
7 const char *solvername = "cudarrb"; // default solver is specified
8 Solver* pSolver;
9

10 Array2D<REAL> matC(COLUMNS, ROWS); // center stencil
11 Array2D<REAL> matW(COLUMNS, ROWS); // west stencil
12 Array2D<REAL> matS(COLUMNS, ROWS); // south stencil
13 ...
14

15 // fill matC, matW, matS arrays
16 ...
17

228 CHAPTER 21. TESTING METHOD

18 // System to solve: Ax = b
19 // We generate a target y and compute a corresponding b via b = A*y
20 Array2D<REAL> y(COLUMNS, ROWS);
21 Array2D<REAL> b(COLUMNS, ROWS);
22 Array2D<REAL> x(COLUMNS, ROWS);
23

24 // Create target solution y
25 ...
26

27 // Compute corresponding right-hand side (RHS) b on CPU
28 ...
29

30 // Set an initial guess x
31 x = 0.0; // zero vector as initial guess
32

33 // setup the solver and make preconditioner
34 START_CPU_TIMER(time, 1);
35 pSolver = SolverFactory::create(solvername, 100, 0, &matC, &matS, &matW,
36 Nx1, Nx2, tol);
37 STOP__CPU_TIMER(time, 1);
38 ...
39

40 // solve the system Ax = b
41 START_CPU_TIMER(time, 1);
42 pSolver -> solve(&b, &x);
43 STOP__CPU_TIMER(time, 1);
44 ...
45

46 delete pSolver; // delete solver and memory
47

48 return EXIT_SUCCESS;
49 }

The symbols COLUMNS and ROWS relate to the overall dimensions of the arrays. Recall
that we have some “ghost” layers around the relevant data. Therefore, we have COLUMNS
= Nx1 + 3 and ROWS = Nx2 + 3. At line 16 code is inserted that fills matC, matW and
matS according to the 2D Poisson stencil −1

−1 4 −1
−1

 ,
i.e., the arrays matC consists of 4’s only, and matW and matS consist of -1’s and some zeros.
At line 24 code is inserted that constructs the target solution y. At line 28 code is inserted
that computes the corresponding right-hand b via b = Ay for this y. In line 31 the initial
guess x is set to zero, i.e. x ≡ 0. In lines 34-37 the solver is constructed, that is, the
constructor of the C++ class is invoked. During construction the preconditioner is build as
well; for example, in case of the RRB-solver, the matrix M = LDLT is constructed. The
preconditioner step is quite expensive but luckely it has to performed only once1. The time
taken for construction of the solver and the preconditioner is measured with a CPU timer

1This is only true for a constant depth profile. The current lin wacu works with constant depth profiles.
In case the depth profile changes in time, the software must be rewritten in a form such that every time frame
a new preconditioning matrix is computed. More details on this see:

21.2. PERFORMANCE/TIMING PLAN 229

(lines 34 and 37). In lines 41-43 the system Ax = b is solved once with initial guess x =
0.0. The final solution, corresponding to a tolerance defined above (tol = 1e-5), is also
stored in x. The approximate result is compared with the target solution y. The time taken
to solve the system Ax = b once is measured with a CPU timer (lines 41 and 43).

The poisson testing environment is especially designed to gather additional information
on the CUDA solvers such as:

• Time needed to construct the preconditioner;

• Number of iterations needed to solve the 2D Poisson problem;

• Residual charts;

• Memory usage for larger problems (larger than the test problems, e.g., 3000 × 2000
nodes);

• speed up factor for these larger problems;

• Useful throughput, solver efficiency.

The poisson testing environment was actually used to build the CUDA solvers. During
implementation of the CUDA RRB-solver we constantly checked whether the output of the
CUDA RRB-solver corresponded one-to-one to the existing C++ RRB-solver. However, using
the plain 2D Poisson problem would not have worked as many coefficients are the same,
therefore, during implementation, we temporarily added noise to the 4’s and -1’s to get all
different numbers.

The environment was also build in a way such that after testing, the new solver can
immediately be plugged-in in the linwace software. The solver in the lin wacu is called
in the exact same way as in the testing environment.

21.2.2 Plugging-in in the lin wacu software

After extensive testing the new CUDA solvers in the poisson testing environment and taking
care of all bugs, the CUDA solver is ready for the real job. The source code is copied to the
lin wacu folder and the SolverFactory.cpp-file and Makefile must be updated so
that the lin wacu code “knows” that the CUDA solvers exist.

The testing and timing with the lin wacu code is done in various ways:

1. perl macros;

2. Profiling with Valgrind;

3. Visual check by actually plotting the waves to the screen.

Note that to get accurate timing results all output to the screen or files must be switched off.
If one wants to have additional information the poisson testing environment can be used
or one may run the code 1 time in the output (debug) modus to get the information but the
timing results are ignored, and thereafter 1 time in the performance modus to get the correct
timing but no output is generated.

230 CHAPTER 21. TESTING METHOD

perl macros

With the macros testserieel.pl and testparallel1.pl we can run a bunch of exper-
iments. Therefore we select the solvers that we want to study and we list the test problems
that we are interested in. The solvers are gathered after my @solvers and the test problems
after my @data. The first listed test problem is treated first using the first listed solver, then
the second listed solver, etc. When all solvers are applied to the same test problem, the next
listed test problem is treated. This continues as many times as there are test problems. The
simulations are started by entering

> perl testserieel.pl

or

> perl testparallel1.pl

The difference between testserieel.pl and testparallel1.pl is the way in which
the rest of the code (all code except the solve part) is handled; in case of testserieel.pl all
other computations are done sequentially on 1 core on the CPU, in case of testparallel1.pl
all other computations are done in parallel on as many cores as the CPU has. Depending on
which solver is used the solve part is done on the CPU (1 core only) or on the GPU (using
all its cores (SPs)). The results are written to the screen and the file lin wacu.out.

The following lines are an example of the output that we can expect.

Data sol br ho nodes total solver (pct) Fext
plymouth-1500000 cudarrb 1250 1200 1500000 289.06 18.17 (6%) 7.36809
plymouth-1500000 rrb 1250 1200 1500000 767.90 491.41 (64%) 7.36810
portpresto-1500000 cudarrb 1200 1250 1500000 214.89 19.72 (9%) 3.40904
portpresto-1500000 rrb 1200 1250 1500000 657.07 461.95 (70%) 3.40904
ijssel-1500000 cudarrb 1500 1000 1500000 213.36 17.83 (8%) 4.10701
ijssel-1500000 rrb 1500 1000 1500000 770.92 533.71 (69%) 4.10701

We see that we have let the software run three different test problems using two solvers, the
CUDA RRB-solver, and the C++ RRB-solver. The 1st column (Data) lists the test problems,
the 2nd column (sol) the solver, the 3th column (br) is the number of nodes in the x-
direction, the 4th column (ho) the number of nodes in the y-direction, the 5th column (total)
the total (execution) time, the 6th column (solver) the solver (execution) time, the 7th
column (pct) the fraction: solver time / total time, and the 8th column (Fext) is a number
to check whether the problem is correctly solved. If for different solvers the numbers are
significantly different, one (or both) of the solvers failed to solve the test problem correctly.

In the above sample output we see already a) that the CUDA RRB-solver is much faster
than the C++ RRB-solver, and b) the test problems are (most likely) correctly solved (as both
Fext-numbers are equal).

The total time consists of the time taken by all computations apart from the solve part
Sψ = b (thus incoming waves, time derivatives, Leapfrog, etcetera). The solver time is the
time to solve the system Sψ = b.

21.2. PERFORMANCE/TIMING PLAN 231

Profiling with Valgrind

To get insight in which computations are expensive and which are not, the lin wacu software
can be run using a profiler like Valgrind. The generated .callgrind-files can thereafter
be studied using kcachegrind. Valgrind can only be used to profile CPU tasks; unfor-
tunately, GPU-tasks cannot be profiled. When the program contains both CPU and GPU
tasks, like the lin wacu code in combination with our new CUDA RRB-solver, the overall
timing results are no longer correct. However, as the CPU tasks are timed correctly, the
results are still valuable as we can sort out new CPU bottlenecks in the code.

In Figure 21.1 we have included a sample chart as it is displayed in kcachegrind. The
chart that summarizes the profiling results for the Plymouth 1M nodes problem. The solver
that is used in the experiment is the C++ RRB-solver. The results are grouped by class.

Figure 21.1: Sample output of kcachegrind. Results for the Plymouth 1M nodes test problem
using the C++ RRB-solver.

The chart must be interpreted as follows. The class RRB-solver (light-blue) takes
54.04% of the total time. Obviously, for this test problem the RRB-solver is the current
bottleneck. The class routine RrbSolver::solver() solves the system Mz = r for z, and
it is the most expensive part of the RRB-solver; namely (28.54/54.04)×100% = 52.8% of the
solver time is consumed by that step. And this is as much as 28.54% of the total time.

The class WavesComputer (green) is the next most expensive class. Within this class we
see that especially the class routines timeDerivatives is expensive (12.55% of total time).
This implies that if the solver becomes much faster than computing the time derivatives
becomes the new bottleneck.

We see that using the Valgrind profiler, we can get insight in what the bottlenecks are
in our program. In Section 25.2.3 and Section 25.3 we elaborate upon the current and new
bottlenecks in the lin wacu software.

232 CHAPTER 21. TESTING METHOD

Visual check

To get a conclusive answer whether the simulation is performed correctly, and thus whether
the solver is robust, we just do a visual check by letting the program display the wave field
on the screen.

21.3 Profiling of the CUDA solvers

GPU code cannot be profiled with CPU profilers like Valgrind. To study the performance
and efficiency of, and profile our CUDA solvers we proceed as follows:

1. Use the built-in performance monitor from the CUDA RRB-solver;

2. Use the NVIDIA profiler.

The CUDA IPDIAG-solver does not contain a performance monitor yet and can therefore only
be studied with the NVIDIA profiler.

21.3.1 Built-in performance monitor

If enabled the CUDA RRB-solver writes output tothe following .txt-files:

1. profiler output.txt: contains the optimal tiling strategy (number of threads in x-
and y-direction) and the achieved useful write and read throughput in GB/s per kernel;

2. runinfo RRB.txt: contains memory usage in MB, number of CG-iterations, norms
(start residual) and the solver time in seconds.

21.3.2 NVIDIA profiler

We have mentioned the NVIDIA profiler already in Section 16.2.3. The profiler is a valuable
tool for gaining insight in the efficiency and bottlenecks in our CUDA code. With the latest
version in particular (the one that comes with CUDA 4.0) almost everything can be measured:
kernel execution times, occupancy, number of registers, throughput, cache usage, etcetera.
Typically this profiler can be found in: ../cuda/computeprof/bin, and in Linux you
can run it via ./computeprof.

Chapter 22

Results — 2D Poisson test problem

In this chapter we discuss the results for the 2D Poisson test problem, see Section 3.1.

22.1 Specification of the problem

What was missing in Section 3.1 was a specification of the function f = f(x, y) in sys-
tem (3.1.1), that is, the system

−∆u = f(x, y) on Ω = (0, 1)× (0, 1),

u(x, y) = 0 on ∂Ω.

However, it is easier to pick a target solution u = u(x, y) and compute the Laplacian ∆u to
find f , or, realizing that we are going to use the computer, we can use the corresponding
discretization matrix A and compute f(xi, yj) = Au(xi, yj) with xi = ih, yj = jh.

As we use the test problem primarily to get our new CUDA solvers working and see how
they perform, we can pick u almost arbitrarily. In accordance with the test problem in [4] we
have chosen to pick

u(x, y) = x(x− 1)y(y − 1) exy.

Note that indeed u = 0 on ∂Ω. For this u we readily compute

∂2u

∂x2
=
(
(x2 − x)y4 + (−x2 + 5x− 2)y3 + (4− 4x)y2 − 2y

)
exy

and by symmetry of u we can just interchange x and y above to find ∂2u/∂y2. Hence for f
we consider

f(x, y) = −
{(

(x2 − x)y4 + (−x2 + 5x− 2)y3 + (4− 4x)y2 − 2y
)

+(
(y2 − y)x4 + (−y2 + 5y − 2)x3 + (4− 4y)x2 − 2x

)}
exy.

The solution u is a cone-shaped surface in space, see Figure 22.1.

233

234 CHAPTER 22. RESULTS — 2D POISSON TEST PROBLEM

Figure 22.1: Target solution u(x, y) = x(x − 1)y(y − 1) exy approximated on a grid with (N + 1)2

equidistant grid cells. Plot generated with gnuplot.

22.2 Problem related results

22.2.1 Number of CG-iterations

Let us see how many CG-iterations are required to solve the 2D Poisson problem. The number
of required CG-iterations depends on variables as:

• what preconditioner is used;

• the accuracy with which we want to solve the problem;

• the size of the problem.

Using MARIN’s PCG solvers database and our new CUDA solvers we have evaluated the
number of CG-iterations for the following PCG solvers:

Name Preconditioner Remarks

None no preconditioner
Cg4 Modified Incomplete Cholesky uses Eisenstat’s implementation
DIAG Diagonal scaling Also known as the “NopSolver”
IP Incomplete Poisson
IPDIAG Incomplete Poisson + diagonal scaling
RRB Repeated Red-Black

Further, we have chosen psitol =1e-5 for the accuracy. This means that the iterative
process is stopped whenever the residual is 1010× smaller than the initial residual (see ter-
mination criterium, Section 18.1). For the problem size we have taken N = 16, 32, 64, 128,
256, 512, 768, 1024, 1280, 1536, 1792, 2048, where N is the number of unknowns in both the
x- and y-direction. The results are gathered in Figure 22.2.

22.2. PROBLEM RELATED RESULTS 235

Figure 22.2: Required number of CG-iterations for the 2D Poisson problem for various grids and
various PCG solvers. For the accuracy is taken psitol = 1e-5. On the left: All six solvers in one
plot. On the right: Among the six evaluated, the Cg4 and RRB preconditioner are the most proficient
preconditioners for the 2D Poisson problem.

The left part of Figure 22.2 shows that for the 2D Poisson problem simple preconditioners
such as diagonal scaling (DIAG) and Incomplete Poisson (IP) are not very suitable. On
contrast Modified Incomplete Cholesky (MIC) and Repeated Red-Black (RRB) do a very
good job. On the right in Figure 22.2 we see the good scaling properties of the RRB-solver:
the required number of CG-iterations grows very slowly with increasing grid size. As the
VBM is a Poisson-type problem the RRB-solver should also perform well for the realistic test
problems.

22.2.2 Convergence behaviour of the RRB-solver

Figure 22.3: The convergence behaviour of the RRB-solver.

236 CHAPTER 22. RESULTS — 2D POISSON TEST PROBLEM

22.3 CUDA RRB-solver related results

22.3.1 Solver speed up

The most important result is how much faster is our CUDA implementation compared to the
C++ implementation of the RRB-solver. Of course this strongly depends on what GPU and
what CPU we use (how modern is it?), and on how efficient the solvers are implemented. Let
us repeat the properties of the CUDA and C++ versions first.

The C++ implementation of the RRB-solver is fully sequential: only 1 core of the CPU
is used. Considered that only 1 core is used the implementation is very efficient thanks to
the usage of pointers for the solve part and the usage of a superior storage format: the class
Array2D. The RRB-solver greatly benefits from the large amount of available (L3, L2, L1)
cache. Note: the phase in which the preconditioner is constructed does not use pointers.

The CUDA implementation of the RRB-solver is fully parallel: most of the time all available
cores (SPs) of the GPU are used. Thanks to the r1/r2/b1/b2 storage format most of the time
maximal throughput is achieved. The coalesced memory transfers compensate for the little
amount of cache.

We believe that — in some sense — both solvers are “equally efficiently” implemented.
Further, to get an honest comparison we are going to compare a state-of-the-art CPU (Xeon
W3520) with a state-of-the-art GPU (GeForce GTX 580). System II: GTX 580 houses this
hardware.

In Table 22.1 we have gathered the timing results for the 2D Poisson problem with sizes
256, 512, 768, 1024, 1280, 1536, 1792 and 2048.

Constructor (ms) Solve part (ms)
N C++ CUDA speed up C++ CUDA speed up

256 7.6 2.1 3.62× 7.7 2.1 3.67×
512 52.3 4.3 12.16× 81.5 5.3 15.38×
768 152.1 7.2 21.13× 261.7 10.8 24.23×

1024 347.4 11.3 30.74× 528.9 19.1 27.69×
1280 550.1 15.6 35.26× 965.4 32.0 30.17×
1536 834.5 20.3 41.11× 1425.7 43.5 32.77×
1792 1184.3 26.6 44.52× 1972.5 58.1 33.95×
2048 1625.5 34.0 47.81× 2767.1 76.3 36.27×

Table 22.1: Timing results for the 2D Poisson problem for various sizes and psitol = 1e-5. The C++
version ran on 1 core of a Xeon W3520 processor and the CUDA version ran on all cores of a GeForce
GTX 580, see System II: GTX 580.

The left part of Table 22.1 corresponds with the constructing phase of the RRB-solver.
This is the part in which memory is allocated and in which the preconditioning matrix M =
LDLT is constructed. The right part of Table 22.1 corresponds with solving the system
Sψ = b once. For completeness we have also plotted the speed up numbers in a chart, see
Figure 22.4.

22.3. CUDA RRB-SOLVER RELATED RESULTS 237

Figure 22.4: speed up.

We observe the following. The larger the problem size the larger the speed up number.
This is not surprising as for smaller grids the CUDA solver suffers from overhead (idle threads,
communication host-device), and, moreover, for larger grids the amount of CPU cache is no
longer sufficient. Further, the speed up number for the constructing part is larger than for the
solve part. This has to do with the fact that making the preconditioner in the C++ version is
done without pointers, whereas the constructing part and the solver part of CUDA solver are
equally efficiently implemented (both use the r1/r2/b1/b2 storage format).

22.3.2 Useful throughput

To see how well our CUDA RRB-solver has been implemented we look at how much useful
throughput is achieved. In Table 22.2 we have listed the useful throughput per kernel in case
of a 2048× 2048 nodes test problem. The results are obtained using the built-in performance
monitor and must be interpreted as follows.

The useful throughput consists of read and write throughput. The read throughput is
computed via

Useful read throughput (GB/s) =
#{bytes read per thread} ·#{threads required}

109 · kernel time in s
.

The number of threads required depends on the level, each thread basically handles 1 node.
For most kernels the first r1/r2/b1/b2 level is used to compute the useful throughput.

Let us give an example: in case of a 2048× 2048 grid the first r1/r2/b1/b2 grid consists of
4 parts (r1, r2, b1 and b2) of 1024× 1024 nodes each. Further, for the kernel kernel prec2
49 read operations are required per thread/node, see Listing 19.2. Hence in case of single-
precision numbers (floats = 4 byte) and a kernel execution time of 1310 µs (see table), we
get:

Useful read throughput kernel prec2 =
49 · 4 · (1024 · 1024)

109 · 1310 · 10−6
= 156.89 GB/s.

Likewise the write throughput is computed via

Useful write throughput (GB/s) =
#{bytes written per thread} ·#{threads required}

109 · kernel time in s
.

238 CHAPTER 22. RESULTS — 2D POISSON TEST PROBLEM

Kernel Opt x Opt y Time Read (GB/s) Write (GB/s) Total (GB/s)

kernel prec1 32 4 81 129.52 25.90 155.43
kernel prec2 32 2 1310 156.89 57.63 214.53
kernel prec3 32 2 183 166.28 51.60 217.88
kernel prec4 32 4 1031 81.35 81.35 162.70
kernel prec5 32 8 102 82.57 82.57 165.15
kernel subs1 32 4 433 213.09 38.74 251.83
kernel subs2 32 4 407 185.29 41.18 226.47
kernel solv1 32 4 233 180.28 36.06 216.34
kernel solv2 32 4 93 180.52 22.56 203.08
kernel solv3 32 4 116 144.62 36.15 180.77
kernel solv4 32 8 180 210.08 23.34 233.42
kernel solv5 32 8 41 101.21 50.60 151.81
kernel solv6 32 8 22 95.06 47.53 142.60
kernel matv1 32 4 460 163.99 36.44 200.43
kernel matv2 32 4 251 100.11 66.74 166.84
kernel axpy 32 8 154 109.05 54.52 163.57

kernel dotp 32 2 113 148.31 0.00 148.31
kernel from1to4 32 4 210 79.81 79.81 159.62
kernel from4to1 32 4 213 78.81 78.81 157.61
kernel divR2in4 32 32 661 57.13 57.13 114.27
kernel cmp4toR2 32 32 561 67.28 67.28 134.57

Table 22.2: Timing (in µs) and useful throughput per kernel of the CUDA RRB-solver on System

II: GTX 580. The device-to-device bandwidth of the GTX is 141.35 GB/s according to NVIDIA’s

code example bandwidthTest. Thanks to the r1/r2/b1/b2 storage format the kernels attain optimal

throughput (at the first level). Moreover, thanks to texture cache and L1 cache most kernels run at

speeds (much) higher than the device theoretically allows (141.35 GB/s). Remark: the five last listed

kernels have not been fully optimized.

Some of the kernels are invoked multiple times on different grids, because of the repeated
r1/r2/b1/b2 levels. For example, the kernel kernel prec2, which helps constructing the
preconditioning matrix M = LDLT , is launched as many times as there are grid levels (for
a 2048 × 2048 grid there are 6 r1/r2/b1/b2 levels). For the coarsest grids (fewest nodes)
overhead becomes more and more significant. The listed useful throughput is for the finest
grid (highest level) on which the kernel runs.

Furthermore, “opt x” and “opt y” refer to the optimal tiling strategy per kernel. The
optimal tiling is computed by the CUDA RRB-solver itself prior to all other computations.
The solver ran a series of tests to determine the optimal settings.

For completeness we have also plotted the results in a chart, see Figure 22.5. From
the table and the figure we observe that most kernels run on speeds higher than the device
theoretically allows (for the GTX 580 this is 141.35 GB/s). This has to do with the fact that
cache is used throughout the computations: many kernels use textures which are cached and
the device also has some L1 cache.

22.3. CUDA RRB-SOLVER RELATED RESULTS 239

Figure 22.5: Useful throughput per kernel of the CUDA RRB-solver on System II; GTX 580.

22.3.3 Solver profile

It is interesting to see how the time is distributed over the kernels of the CUDA RRB-solver.
By doing so one can see, for example, if there is one major time consuming part (bottleneck)
in the code. How time is distibuted depends on the problem size and the number of iterations.
Some of the parts are only performed once, e.g., memory transfers between the host and the
device, whereas other parts are performed every iteration, e.g., solving the system Mz = r
for z. In Table 22.3 we have listed the actions that are performed by the CUDA RRB-solver
as well as the corresponding execution times (in µs) for a system of 2048× 2048 nodes.

At first instance, for the number of CG-iterations we have taken the actual required
number of CG-iterations for the 2048 × 2048 nodes Poisson problem, which is 26 iterations,
see Table 22.3 and corresponding pie chart in Figure 22.6. However, actually, we can substitute
any number of iterations; if the underlying problem were, for example, VBM rather than 2D
Poisson (on a 2048×2048 nodes grid), the number of iterations would be different, say 20, but
the timing results would not be different. Hence the timing results can be used to construct
the time profile (the pie chart) for any problem on a grid consisting of 2048× 2048 nodes.

We see that for this many iterations (26), the actual computations take the most time:
solving Mz = r for z (38%), matrix-vector product q = S1p (26%), vector-updates (16%) and
dot products (10%). The memory transfers for this many iterations become relatively cheap
(5%). However, if the system were solved in fewer CG-iterations, say 5, the memory transfers
would become much more expensive: each about 15%.

240 CHAPTER 22. RESULTS — 2D POISSON TEST PROBLEM

time in µs
Memcpy HtoD vector r 2982
From 1 to 4 vector r 225
Forward substitution vector r 463
Matrix-vector y = S1x 732
Vector-update r = r − y 159
Solver Mz = r 1085
Dot product ρnew = 〈r, z〉 139

While-loop
Vector-update p = z + βp 160 (26×)
Matrix-vector q = S1p 732 (26×)
Dot product σ = 〈p, q〉 139 (26×)
Vector-update x = x+ αp 159 (26×)
Vector-update r = r − αq 159 (26×)
Solver Mz = r 1085 (26×)
Dot product ρnew = 〈r, z〉 139 (26×)

End while-loop

Backward substitution vector x 424
From 4 to 1 vector x 216
Memcpy DtoH vector x 3848

Table 22.3: Typical distribution of time for the CUDA RRB-solver for 1 time step on System II:
GTX 580 for a grid of 2048× 2048 nodes.

Figure 22.6: Typical distribution of time for the CUDA RRB-solver for 1 time step on System II:
GTX 580 for a grid of 2048× 2048 nodes. The plot is based on the assumption that 26 iterations were
needed to solve the system Sψ = b. The fractions are CPU time fractions.

22.3. CUDA RRB-SOLVER RELATED RESULTS 241

22.3.4 Amount of overhead / idle threads

Recall that the useful throughput of the kernels is being measured for the finest grids (many
nodes). Most kernels operate on the red nodes of the first level. However, the kernels that
are needed to solve the preconditioner step Mz = r for z operate on all levels.

Of course the useful throughput drops with increasing grid level; as the grid becomes
coarser (fewer nodes), the amount of overhead increases, and at some point there will be idle
threads. To see the effect of the coarsening process during this solve step, we have used the
NIVIDA profiler to profile the preconditioner step Mz = r of our CUDA RRB-solver. We have
done this for a problem with 2048× 2048 nodes. The results are gathered in Table 22.4.

solv::kernel solv[x] Total
Level Nx = Ny 1 2 3 4 5 6 final time level Perc.

1 1024 242.4 242.4 22.2%
2 512 54.2 102.0 45.0 25.8 227.1 20.8%
3 256 19.3 31.1 14.8 9.7 74.9 6.9%
4 128 7.0 14.2 7.0 3.0 31.2 2.9%
5 64 4.0 5.0 3.0 4.0 16.0 1.5%
6 32 4.0 6.0 4.0 4.0 3.0 3.0 30.0 54.0 4.9%
5 64 3.0 6.0 9.0 0.8%
4 128 12.4 6.0 18.4 1.7%
3 256 36.5 19.0 55.5 5.1%
2 512 125.1 53.0 178.1 16.3%
1 1024 185.3 185.3 17.0%

Time kernel 330.9 158.3 181.0 273.3 72.9 45.5 30.0 1092.0 100.0%
Percentage 30.3% 14.5% 16.6% 25.0% 6.7% 4.2% 2.8% 100.0%

Table 22.4: Time distribution for solving Mz = r. Time in µs. In case of a grid of 2048× 2048 nodes
and a compute-block of 32× 32 threads, the number of grid levels is 6.

The number of computations reduces with a factor 4 each time we go a level up (next
coarser level). Let us see if this is the case in our CUDA RRB-solver. Consider for example
solv::kernel solv2. In Table 22.4 we see that on level 2 it takes 102.0 µs and on level
3 it takes 31.1 µs, and thus only a reduction of a factor (102.0/31.1) ≈ 3. Even worse, from
level 3 to level 4 we observe a reduction of only a factor (31.1/14.2) ≈ 2 rather than a factor
4. For the other kernels we observe the same behaviour. The reason that we do not get a
reduction of a factor 4 is the introduction of overhead.

However, this is not so bad as it seems. Let us explain why. We know that the useful
throughput on the first levels is very high. In Section 22.3.2 we reported rates of 150-230 GB/s,
which are even much higher than the global memory bandwidth of the GTX 580 (about 150
GB/s). We explained that this is possible thanks to the usage of cache. From Table 22.4 we
see that the first two levels take 22.2 + 20.8 + 16.3 + 17.0 = 76.3% of the total computution
time. On the first two levels the useful throughput is optimal: 150-230 GB/s, hence the
computations on the first levels cannot be performed much faster anymore. This means that
76.3% of a total of 1092 µs = 833 µs is always there. So, regardless how fast the higher grid
levels can be processed, we can solve the system Mz = r at best (1092/833) ≈ 1.2× faster.

242 CHAPTER 22. RESULTS — 2D POISSON TEST PROBLEM

Chapter 23

Results — realistic test problems

23.1 Number of CG-iterations

In Table 23.1 we have gathered the average number of CG-iterations for all realistic test
problems when using the RRB-solver and the IPDIAG-solver. The reason why we have also
listed the results for the IPDIAG-solver is that, in contrast to the 2D Poisson problem, the
IPDIAG-solver turns out to be also a good candidate for solving the realistic test problems
IJssel, Plymouth and Port Presto.

IJssel Plymouth Port Presto
RRB IPDIAG RRB IPDIAG RRB IPDIAG

100k 5.814 12.595 5.804 11.906 5.924 18.713
200k 5.832 11.839 5.892 11.919 5.962 27.288
500k 5.836 12.591 5.964 19.866 5.986 33.299

1M 5.859 12.359 5.976 21.498 6.362 37.202
1.5M 5.766 12.569 5.984 20.330 6.921 37.915

Table 23.1: Average number of CG-iterations over 1000 time frames.

The table is generated using the lin wacu software which ran a simulation of 1000 time
frames. We see that in terms of convergence the RRB-solver is superior to the IPDIAG-
solver; however, the larger number of CG-iterations required by the IPDIAG-solver is still
manageable thanks to fast computing times per iteration, see Section 23.2.1.

The table only provides information on the average number of iterations but it does not
give us any information on how the number of iterations changes in time. In Figure 23.1
it is shown for the RRB-solver how the number of CG-iterations required to solve the 1.5M
nodes problems grows in time as the field gets filled with more and more waves. We see
that, although the initial residual and RHS keeps growing, the number of required CG-
iterations settles at 6 (IJssel and Plymouth) or 7 (Port Presto) for the rest of the simulation.
In Figure 23.2 the same is done but this time for the IPDIAG-solver. We notice different
behaviour: in the beginning the number of CG-iterations grow very rapidly to a maximum
but after 200 time frames the number of CG-iterations also settles to quite constant values
(30 for IJssel, 20 for Plymouth and 36 for Port Presto).

All the other test problems (the smaller ones) show the same behaviour: in the beginning
just a few CG-iterations are required since there are hardly any waves, and after some time

243

244 CHAPTER 23. RESULTS — REALISTIC TEST PROBLEMS

the number of CG-iterations settles at a certain number.

Figure 23.1: Number of CG-iterations for the first 1000 time frames of the 1.5M nodes problems
when using the RRB-solver.

Figure 23.2: Number of CG-iterations for the first 1000 time frames of the 1.5M nodes test problems
when using the IPDIAG-solver.

23.2 Timing

23.2.1 Solver time

More interesting than the number of CG-iterations are, for us, the corresponding computing
times. In Tables 23.2 to 23.4 we have gathered all results. We have run the simulations on
both System I and System II. On each system we timed both the C++ and CUDA version of

23.2. TIMING 245

the RRB-solver, as well as the CUDA IPDIAG-solver (we do not have a C++ implementation
for this solver).

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 49.229 4.310 6.518 47.321 2.148 2.193
200k 94.343 5.902 8.163 83.782 2.832 3.296
500k 191.210 8.863 12.895 130.414 4.852 6.312

1M 390.995 13.420 20.918 266.269 7.749 11.001
1.5M 534.363 17.567 29.874 347.331 10.709 15.711

Table 23.2: Average solver time (in ms) over 1000 time frames for the IJssel test problem.

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 15.988 4.234 6.298 11.450 1.894 2.110
200k 41.022 5.472 7.850 57.661 2.628 3.072
500k 141.007 8.704 18.372 71.493 4.728 8.941

1M 332.706 13.992 30.463 178.297 7.865 16.915
1.5M 490.332 18.523 40.824 298.446 10.618 23.159

Table 23.3: Average solver time (in ms) over 1000 time frames for the Plymouth test problem.

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 14.168 4.240 8.846 10.264 1.886 2.842
200k 40.132 5.524 5.962 22.345 2.684 5.969
500k 127.789 8.648 28.138 64.601 4.732 13.832

1M 272.533 14.007 48.667 148.022 7.964 27.288
1.5M 462.946 20.010 71.370 219.051 11.619 39.737

Table 23.4: Average solver time (in ms) over 1000 time frames for the Port Presto test problem.

We observe that, although the required number of CG-iterations for the IPDIAG-solver
is much larger than for the RRB-solver, the corresponding computing times are much closer.
In particular for the IJssel test problem, which requires not too many iterations, the CUDA
IPDIAG-solver can almost match the performance of the CUDA RRB-solver. For the Plymouth
and Port Presto the CUDA RRB-solver is really superior, thanks to the fast convergence.

23.2.2 Additional time

The additional time is the time needed to do all computations apart from the solve step
(Sψ = b) within a complete frame: incoming waves, time derivatives, Leapfrog, etcetera.
With the perl macro testserieel.pl, see Section 21.2.2 we can easily measure both the
solver time and total time. We run all test problems with the C++ and CUDA RRB-solver

246 CHAPTER 23. RESULTS — REALISTIC TEST PROBLEMS

and the CUDA IPDIAG-solver on System I and System II. The raw data can be found in
Appendix C.

By substracting the solver time from the total time we find the additional time. However,
to get more accurate results we take the average over the 3 additional times per test problem.
The results are gathered in Table 23.5.

System I: GTX 285 System II: GTX 580
#nodes (C2D E6850) (Xeon W3520)

IJ
ss

el

100k 13.60 9.32
200k 26.24 17.90
500k 92.14 42.42

1M 126.91 99.46
1.5M 195.80 131.08

Ply
m

ou
th

100k 25.10 21.45
200k 42.62 34.83
500k 65.08 70.18

1M 176.70 134.88
1.5M 274.58 208.50

Por
t
Pre

st
o

100k 13.33 9.11
200k 25.90 17.49
500k 63.10 41.78

1M 131.39 89.62
1.5M 195.31 131.01

Table 23.5: Average additional time (in ms).

We see that the IJssel and the Port Presto test problem require about equal additional
time. The Plymouth test problem requires apparently some extra computions. These extra
computations come from incoming waves with a Jonswap spectrum.

23.2.3 Total time

Although the total time is directly measured by using testserieel.pl it is slightly more
accurate to use the average times from earlier tables. The total time is found by the sum of
the average solver time and average additional time. By doing so we get Tables 23.6 to 23.8.

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 62.83 17.91 20.12 56.64 11.47 11.51
200k 120.58 32.14 34.40 101.68 20.73 21.20
500k 283.35 101.00 105.04 172.83 47.27 48.73

1M 517.91 140.33 147.83 365.73 107.21 110.46
1.5M 730.16 213.37 225.67 478.41 141.79 146.79

Table 23.6: Average total time (in ms) over 1000 time frames for the IJssel test problem.

23.3. SPEED UP NUMBERS 247

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 41.09 29.33 31.40 32.90 23.34 23.56
200k 83.64 48.09 50.47 92.49 37.46 37.90
500k 206.09 73.78 83.45 141.67 74.91 79.12

1M 509.41 190.69 207.16 313.18 142.75 151.80
1.5M 764.91 293.10 315.40 506.95 219.12 231.66

Table 23.7: Average total time (in ms) over 1000 time frames for the Plymouth test problem.

System I: GTX 285 System II: GTX 580
C++ RRB CUDA RRB CUDA IPDIAG C++ RRB CUDA RRB CUDA IPDIAG

100k 27.50 17.57 22.18 19.37 11.00 11.95
200k 66.03 31.42 31.86 39.84 20.17 23.46
500k 190.89 71.75 91.24 106.38 46.51 55.61

1M 403.92 145.40 180.06 237.64 97.58 116.91
1.5M 658.26 215.32 266.68 350.06 142.63 170.75

Table 23.8: Average total time (in ms) over 1000 time frames for the Port Presto test problem.

We immediately see that, although the CUDA solvers are much faster than the C++ RRB-
solver, the total times are much closer to each other. The see how much closer let us compute
the corresponding speed up numbers.

23.3 Speed up numbers

With the tables from the previous sections we can compute speed up numbers. Although
one can do that for all test problems, in the end we are only really interested for the largest
problems. Therefore, we shall only compute the corresponding speed up numbers for the
1.5M nodes problems.

The results are shown in Figures 23.3 and 23.4. Figure 23.3 shows the (solver) speed up
numbers, whereas Figure 23.4 shows the total speed up numbers for all three 1.5M nodes test
problems.

We observe the following. The CUDA RRB-solver is about 20-30× as fast as its C++
counterpart, and the CUDA IPDIAG-solver is about 5-20× as fast as the C++ RRB-solver.
How much faster strongly depends on the underlying test problem. Although the CUDA yield
great speed up factors, the total speed up is disappointing. Almost regardless of what CUDA
solver is used we get a speed up of only 2-3×.

248 CHAPTER 23. RESULTS — REALISTIC TEST PROBLEMS

Figure 23.3: speed up numbers for the 1.5M nodes test problems. On the left: The speed up of the
CUDA RRB-solver and CUDA IPDIAG-solver compared to the C++ RRB-solver on System I: GTX 285
versus 1 core of an Intel C2D E6850 @ 3.0 GHz. On the right: The same speed up numbers but then
for System II: GTX 580 versus 1 core of an Intel Xeon W3520 @ 2.67 GHz.

Figure 23.4: Total speed up numbers for the 1.5M nodes test problems. On the left: The total speed
up of the CUDA RRB-solver and CUDA IPDIAG-solver compared to the C++ RRB-solver on System I:
GTX 285 versus 1 core of an Intel C2D E6850 @ 3.0 GHz. On the right: The same total speed up
numbers but then for System II: GTX 580 versus 1 core of an Intel Xeon W3520 @ 2.67 GHz.

Chapter 24

Screenshots from a simulation

In this chapter we just present some nice screenshots resulting from a simulation in the
lin wacu software. The simulation that we have run to get the pictures is the Plymouth
100k test problem from Section 3.3.2 for 3000 time frames. A time step of ∆t = 0.05 s is used,
so the entire simulation would take 150 s in real-time. The domain is 2000m× 1250m. The
corresponding grid a mesh size of 5m and thus consists of 400 × 250 nodes. In Figure 24.1
the path is indicated that the ship follows.

Figure 24.1: The path that the ship follows in the Plymouth 100k test problem (top view).

In the next set of figures we show how the wave field changes in time. We have taken
screenshots for time frames 500, 1000, 1500, 2000, 2500 and 3000.

249

250 CHAPTER 24. SCREENSHOTS FROM A SIMULATION

Figure 24.2: Plymouth 100k for time frame 500 (3D view).

Figure 24.3: Plymouth 100k for time frame 1000 (3D view).

Figure 24.4: Plymouth 100k for time frame 1500 (3D view).

251

Figure 24.5: Plymouth 100k for time frame 2000 (3D view).

Figure 24.6: Plymouth 100k for time frame 2500 (3D view).

Figure 24.7: Plymouth 100k for time frame 3000 (3D view).

252 CHAPTER 24. SCREENSHOTS FROM A SIMULATION

For clarity we have gathered all impressions in one figure and this time the waves are
observed from above, see Figure 24.8.

(a) time frame 500 (t = 25 s) (b) time frame 1000 (t = 50 s)

(c) time frame 1500 (t = 75 s) (d) time frame 2000 (t = 100 s)

(e) time frame 2500 (t = 125 s) (f) time frame 3000 (t = 150 s)

Figure 24.8: Wave pattern of the realistic Plymouth 100k nodes test problem for time frames 500,
1000, 1500, 200, 2500 and 3000 (top view).

In the figures it is seen how the ship navigates along its path and how waves come in from
the west and south boundary (incoming waves). The wave pattern seems realistic, as far as
we can judge that.

Chapter 25

Further analysis and discussion

25.1 Parallel host code with OpenMP

In Section 23.3 we saw how the code around the solver leads to poor speed up results. To
remedy this the code around the solver, i.e., code that remains on the CPU, should also
be processed in parallel. This is already possible; the code around the solver has been
parallelized with OpenMP. By using the perl macro testparallel1.pl rather than
testserieel.pl the host code is processed in parallel. Let us find out how much we
gain when we run the host code not on 1 core but on 4 cores on a Xeon W3520 processor.

We have run the test problems again for 1000 time frames with the CUDA RRB-solver
on System II, but this time with OpenMP “enabled”. The timing results are gathered in
Table 25.2.

#nodes total time (ms) solver time (ms) additional (ms)

IJ
ss

el

100k 5.70 2.12 3.58
200k 8.96 2.85 6.11
500k 18.86 4.76 14.10

1M 37.44 7.63 29.81
1.5M 52.21 10.62 41.59

Ply
m

ou
th

100k 13.13 1.84 11.29
200k 18.66 2.60 16.60
500k 35.41 4.70 30.71

1M 67.21 7.83 59.38
1.5M 100.44 10.49 89.95

Por
t
Pre

st
o

100k 5.18 1.81 3.37
200k 8.67 2.62 6.05
500k 18.32 4.72 13.60

1M 38.14 7.90 30.24
1.5M 54.24 11.05 43.19

Table 25.1: Timing results in case the host code is parallelized over 4 cores of a Xeon W3520 processor
with OpenMP.

If we now compare the additional times from Table 23.5 with those in Table 25.2 we can
make the following table.

253

254 CHAPTER 25. FURTHER ANALYSIS AND DISCUSSION

additional time (ms)
#nodes on 1 core on 4 cores host speed up

IJ
ss

el

100k 9.32 3.58 2.6×
200k 17.90 6.11 2.9×
500k 42.42 14.10 3.0×

1M 99.46 29.81 3.3×
1.5M 131.08 41.59 3.2×

Ply
m

ou
th

100k 21.45 11.29 1.9×
200k 34.83 16.60 2.1×
500k 70.18 30.71 2.3×

1M 134.88 59.38 2.3×
1.5M 208.50 89.95 2.3×

Por
t
Pre

st
o

100k 9.11 3.37 2.7×
200k 17.49 6.05 2.9×
500k 41.78 13.60 3.1×

1M 89.62 30.24 3.0×
1.5M 131.01 43.19 3.0×

Table 25.2: speed up factors for the host code in case the host code runs sequentially on 1 core or
parallely on 4 cores of a Xeon W3520 processor with OpenMP.

We see that running the host code parallely pays off. In case of no incoming waves (IJssel,
Port Presto) we observe a speed up of 3×, and in case of incoming Jonswap waves we observe
a speed up of a factor 2. A speed up of 3× for 4 cores is a good result. Let us now see how
the total speed up charts from Section 23.3 change because of this reduction in additional
time. The new speed up numbers are given in Table 25.1

Figure 25.1: Total speed up numbers for the 1.5M nodes test problems for the CUDA RRB-solver and
CUDA IPDIAG-solver compared to the C++ RRB-solver on System II: GTX 580. The host code ran
on 4 cores of the Xeon W3520 of System II.

We see that if we run the code around the solver parallely then we get a speed up around

25.2. PROFILE OF THE LIN WACU CODE 255

3-7× depending on the particular test problem if we use the CUDA RRB-solver or the CUDA
IPDIAG-solver instead of the C++ RRB-solver.

25.2 Profile of the lin wacu code

To get better insight in how much the overall effect is of speeding-up particular parts of
the code, we are going to look at how time is distributed among the computations in the
lin wacu software. To do so we have to use a test problem in which all possible computations
are actually performed. The Plymouth test problem is a good candidate as this test problem
contains incoming waves.

To get the profile of the lin wacu software we may use the Valgrind profiler, see
Section 21.2.2. However, we have to be careful with that as timing measurements may be
incorrect. For example, CUDA code is not being measured correctly with the Valgrind
profiler. Therefore, we have chosen to do all timing results by measuring the wall-clock time,
see Section 16.2.1, rather than using the Valgrind profiler. However, the Valgrind profiler
still can be used to gain additional information such as the time profile of a specific subroutine.

25.2.1 Overview of computations

Within the C++ class wavesComputer the wave field is computed. The following subroutines
in the routine WavesComputer::compute() are called in the indication order.

Routine: Function: Remarks:

shiftZetaPhi() Shifts q = [ζ, ϕ]T (tn+1, tn, tn−1)
m pIncomingWaves->compute() Computes incoming waves Class object
waveBreaking() –
boundaryZetaPhi() –
solvePsi() –
adjustPsi() –
m pSolver->solve() Solves the system Sψ = b Class object
shiftPsi() Shifts ψ (tn+1, tn, tn−1)
boundaryPsi() –

timeDerivatives() Computes
∂ζ

∂t
and

∂ϕ

∂t
weaklyReflective() –
smoothZetaPhi() –
leapFrog() Computes qn+1 with qn and qn−1 q = [ζ, ϕ]T

m pLPFil->filter(m zeta) – Class object
m pLpFil->filter(m phi) – Class object
“maxwaves” – Inlined code

Table 25.3: List of subroutines that are called within the routine WavesComputer::compute().
A “–” means that we do not know the function of the specific routine yet.

256 CHAPTER 25. FURTHER ANALYSIS AND DISCUSSION

25.2.2 Wall-clock timing results

With wall-clock timing we find the following profiles for the Plymouth 1.5M test nodes prob-
lems when the C++ and CUDA RRB-solver are applied (CPU: C2D E6850 @ 3GHz, GPU:
GeForce GTX 580), see Table 25.4. Notice that the machine that is used is neither System I
or System II. The machine that is used here is System I but with the GTX 285 replaced by the
GTX 580, because System II was already dismantled before we could to these measurements.

100k 200k 500k 1M 1.5M

shiftZetaPhi() 3.2 6.4 16.1 32.0 48.8
m pIncomingWaves->compute() 12.2 17.3 29.4 43.6 52.4
waveBreaking() 0 0 0 0 0
boundaryZetaPhi() 0 0 0 0.1 0.1
solvePsi() 1.7 3.0 6.6 16.4 20.1
adjustPsi() 0.3 0.6 1.3 3.2 4.3

m pSolver->solve() CUDA 1.8 2.6 4.7 7.8 10.6
(C++) (14.3) (29.9) (112.3) (266.3) (379.5)

shiftPsi() 0.4 0.8 1.3 4.3 6.5
boundaryPsi() 0 0 0 0 0
timeDerivatives() 6.4 11.7 27.2 63.0 85.8
weaklyReflective() 0.1 0.2 0.2 0.4 0.4
smoothZetaPhi() 0 0 0 0 0
leapFrog() 2.2 4.2 9.9 22.2 30.1
m pLPFil->filter(m zeta) 0 0 0 0 0
m pLpFil->filter(m phi) 0 0 0 0 0
“maxwaves” 0.2 0.3 1.1 2.0 2.9

Total CUDA 28.5 47.1 97.8 195.0 262.0
(C++) (41.0) (74.4) (205.4) (453.5) (630.9)

Table 25.4: Time profile of the routine WavesComputer::compute().

25.2. PROFILE OF THE LIN WACU CODE 257

25.2.3 Time profile charts

In Figures 25.2 and 25.3 we have plotted the profile of the most time-consuming routines.
The routines which take no or a little time are combined in “rest”. In Figure 25.2 the old
situation is shown, that is, the situation in which Sψ = b is solved with the C++ RRB-solver.

Figure 25.2: Time profile for WavesComputer::compute() for 5 test problems using the C++
RRB-solver (CPU, sequential, 1 core).

In the next figure we see the great impact of the CUDA RRB-solver on the time profile.
We see that the CUDA RRB-solver is now among the cheapest routines.

Figure 25.3: Time profile for WavesComputer::compute() for 5 test problems using new CUDA
RRB-solver (GPU, parallel, all available SPs/cores).

258 CHAPTER 25. FURTHER ANALYSIS AND DISCUSSION

Further we observe that the time profile changes with increasing problem size: incomping
waves becomes relatively cheaper and time derivatives becomes more expensive in terms of
computation time. For the two largest problems (1M and 1.5M) the profiles are more or less
the same which may indicate the existence of some kind of “equilibrium”.

25.3 New bottlenecks in the code

In the previous section it was shown that the solver is no longer the bottleneck in the
lin wacu code. From the time profile chart, see Figure 25.3, we clearly see what the new
bottlenecks are. In indicating order the following routines are the most important new bot-
tlenecks:

1. timeDerivatives();

2. m pIncomingWaves->compute();

3. shiftZetaPhi();

4. leapFrog().

Part VI

CONCLUSIONS,
RECOMMENDATIONS AND

FUTURE WORK

259

Chapter 26

Conclusions

From the results and accompanying analysis we can draw many conclusions. Let us start
with what is most important for MARIN regarding the Interactive Waves project, and finish
with less important conclusions.

The new CUDA RRB-solver is 30× faster

Previously, the C++ RRB-solver had to be used, which was the fastest solver available in the
lin wacu software. The C++ RRB-solver is able to solve the system Sψ = b within 50 ms for
domains no bigger than 100k - 200k nodes, depending on the specific underlying test problem.

From now on, MARIN can use the new CUDA RRB-solver in the Interactive Waves project.
The CUDA RRB-solver does exactly the same as its C++ counterpart, but it is much faster.
From simulations it is seen that the new solver can solve systems that have more than 1.5
million nodes within 50 ms with ease. Actually, the provided realistic test problems turned
out somewhat too small: the CUDA RRB-solver solved them all in no more than 12 ms. If a
2048× 2048 test problem were to take 10 iterations, which seems reasonable, than the CUDA
RRB-solver would be able to solve such a big problem also within 50 ms1.

In general it holds that the larger the problem the larger the speed up factor of the CUDA
RRB-solver compared to the C++ RRB-solver. Depending on the specific problem and its
size we find a speed up up to a factor 30. In other words, with the new CUDA RRB-solver we
are able to simulate 30× larger domains, if, and this is important, the rest of the lin wacu
code would be fast enough.

The CUDA RRB-solver allows depth profiles that change in time

The constructor phase of the CUDA also takes only a few ms. In the constructor phase the
device memory is allocated, the grid levels are computed and the preconditioner is constructed.
All this takes only 34 ms for a grid of 2048 × 2048 nodes, see Table 22.1. Therefore, for
somewhat smaller grids, the preconditioner can be constructed every time frame if we want
to. This makes it possible to handle bottom profiles that change in time due to water currents.

1In Table 22.1 it is seen that a 2048 × 2048 nodes problem takes about 76 ms. In Figure 22.2 it is seen
that this takes about 27 CG-iterations. So, if 10 CG-iterations were needed for a realistic problem of this size,
which is reasonable guess as the 1.5M test problems only need 6 or 7 CG-iterations, then we would expect a
solver time of: (10/27) · 76 = 28 ms).

261

262 CHAPTER 26. CONCLUSIONS

The solver is no longer the bottleneck in the lin wacu software

Unfortunately, we do not get speed ups of a factor 30× for the complete lin wacu code.
This has to do with the other computations that are involved, such as computing incoming
waves, time derivatives, etcetera. Amdahl’s law applies here. It turns out the rest of the code
becomes the time consuming part in the new situation when the CUDA RRB-solver is plugged-
in in the software. Overall we get a speed up of the code of only a factor 2-3×, depending
on the specific test problem and when the host code is run sequentially. If OpenMP for the
additional computations (incoming waves, time derivatives, etcetera) is enabled and the work
are divided among the 4 physical cores of a quadcore CPU we find speed ups of a factor 3-7×.

In Figure 25.3 we have shown the time profile of the lin wacu code. We have found that
the CUDA RRB-solver belongs in the new situation to the least time consuming parts of the
code. The chart shows that in the new situation the most time consuming routines of the
code are now (percentages are for the 1.5M problem):

1. timeDerivatives() (around 30%);

2. m pIncomingWaves->compute() (around 20%);

3. shiftZetaPhi() (around 20%);

4. leapFrog() (around 10%).

Available device memory is not a problem

In Section 19.5.4 the total memory needed for the CUDA RRB-solver has been listed for
different sizes of test problems. The largest problem that we have run was on a grid of
2048× 2048 nodes. The memory required for that problem is 460 MB. A GeForce GTX 580
has at least 1 GB of global memory, thus plenty enough. Other NVIDIA GPUs, such as the
Tesla series, even have up to 5 GB of global memory. Moreover, from the results it follows
that the total computation time becomes earlier a problem than memory: the lin wacu code
would reach much earlier the bound of 50 ms (20 fps) than that the device’s global memory
would become fully allocated. Hence storage is not a problem2.

A much faster implementation of the CUDA RRB-solver does not exist

In Section 22.3.2 we reported throughput rates of 150-250 GB/s for the kernels on the finest
levels. These rates are already much higher than the global memory bandwidth (about 150
GB/s) thanks to cache benefits. In Section 22.3.4 we have shown that although the coarser
levels introduce overhead, they do not degrade the performance of the CUDA RRB-solver
significantly (at most a factor 1.2). Hence, our first version of the CUDA RRB-solver already
adresses almost the full resources of the device. If one finds manners to increase the L1 and
texture cache hit ratios or manners to reduce global memory read and write transactions (e.g.,
by rewriting the RRB-solver routines), the useful throughput may get higher, but not much
higher: perhaps a factor 1.5× at best.

2 However, we have to make a side note here. If only one GPU is used for both computations and rendering,
maybe the amount of available memory for particular devices is not sufficient. This can also occur when other
programs allocate and preserve device memory simultaneously. However, a better GPU (more global memory)
or a second dedicated device (like in our test System II) fix this problem.

263

The CUDA IPDIAG-solver is surprisingly good for realistic problems

In our experiments we found that the CUDA IPDIAG-solver is not a good preconditioner for
the 2D Poisson problem, see Section 22.2.1. The number of required CG-iterations grows
rapidly with the size of the problem, and becomes soon way too big. Compared to plain
CG only a reduction of a factor 2 in CG-iterations is observed. However, for realistic test
problems the CUDA IPDIAG-solver performs quite well. This has to do with the fact that our
system matrix S is much more diagonally dominant than the system matrix corresponding
to the 2D Poisson problem.

In Section 2.5 it is explained why the matrix S is diagonally dominant. It is also mentioned
that for small mesh spacings h the diagonal dominance is not very strong. However, if there
are many so-called “dry nodes”, that is nodes that correspond to land rather than water, the
matrix S becomes much stronger diagonally dominant. This follows from the fact that for
dry nodes the center diagonal element of S is set to 1 and the outer diagonals are set to 0.
In one of our test problems this is observed clearly: the Gelderse IJssel. We found that the
average number of CG-iterations for the CUDA IPDIAG-solver is 12 regardless of the problem
size, and thus does not grow with the problem size, see Table 23.1. This is only possible when
the matrix S is strongly diagonally dominant. From Figure 3.3 we can see that the Gelderse
IJssel is a small river. The computational domain is always a rectangle and thus there is
much land compared to water, i.e., many dry nodes.

Although the number of CG-iterations of the CUDA IPDIAG-solver is 2-6× larger than
the number of CG-iterations of the RRB-solver, the computation times are much closer. The
reason is simple: an iteration of the CUDA IPDIAG-solver costs less than an iteration of the
CUDA RRB-solver. The CUDA IPDIAG-solver is a PCG solver that can be parallelized easily
because of its simplicity; the preconditioner step Mz = r is done explicitly: z = M−1r and
since M−1 (the IP preconditioner) is also a pentadiagonal matrix, the preconditioner step is
nothing more than a sparse matrix-vector multiplication (SpMV). This also means that the
CUDA IPDIAG-solver is easy to divide over multiple PCs and GPUs, see [1]. So, if in the
future a multi-GPU solver is used, the CUDA IPDIAG-solver is a good candidate.

264 CHAPTER 26. CONCLUSIONS

Chapter 27

Recommendations and future
research

We would like to recommend MARIN and in particular the MSG group the following regarding
the Interactive Waves project. The recommendations also indicate topics for future research.

Optimize the rest of the lin wacu software

The solver is no longer the bottleneck in the lin wacu software. From our experiments it is
seen that four C++ subroutines in the routine WavesComputer::compute() consume the
most time when the new CUDA RRB-solver is plugged-in in the software. Because of these
bottlenecks we only observe a total speed up of a factor 2-3 when the CUDA RRB-solver is
used (Amdahl’s law). To get a much better total speed up we have to make the code around
the solver much faster. This should be on top of the “to do list”. Actually, before starting or
while optimizing and parallelizing the rest of the code, we also advise to review the code and
find out whether the computations can be fundamentally differently or more efficiently from
an algorithm point of view.

Document the lin wacu code and appoint somebody to become an expert

Although the source code is commented, it is unsufficient to really understand what is going
on. Our advice is to document the lin wacu code. Furthermore, at the moment MARIN
relies heavily on the expertise of Gert Klopman; he is the only one that fully understands the
lin wacu software and the only one who can make fundamental changes. It is a good idea to
have an expert internally at MARIN who also fully understands the Variational Boussinesq
model (VBM) and lin wacu code.

Allow depth profiles that change in time

At the moment the code is such that the preconditioner is constructed once for a fixed system
matrix S. However, in some cases one desires a bottom profile that changes accross time, e.g,
because sand of the bottom is moved by the water current. In these cases the system matrix
S also changes in time (some or all coefficients change). Hence the preconditioner has to be
constructed multiple times. It is not really necessary to do this every time frame but say once

265

266 CHAPTER 27. RECOMMENDATIONS AND FUTURE RESEARCH

in a second (20 time frames). At the moment the lin wacu code cannot handle this, but
with minor modifications this can be achieved.

Research how to handle much bigger problems

For a simulator to fulfill the real-time requirement all computations have to be performed
within 50 ms. But do not forget: the data also must be visualized, which also takes time.
From our experiments it is found that the solver can solve systems of about 2048×2048 nodes
in real-time. However, with a mesh spacing of 5m this corresponds to a domain of about
10 km × 10 km, which is still not very big. Although computing power increases with the
years, it seems there is no way that a single PC with a single GPU will be able compute much
larger domains in real-time. Therefore, we recommend to study how data and computations
can be divided over a cluster of PCs, one PC with multiple CPUs/GPUs, etcetera.

Another option is to look at domains which can be approximated by a constant and flat
bottom profile (like open sea). In this case the system matrix S becomes a pentadiagonal
matrix similar to the 2D Poisson’s matrix. For this kind of problems a specific class solvers
can be used: Poisson-solvers. As those type of solvers use FFTs, we can expect a speed up
of a factor 100 compared to a PCG-solver, and hence domains up to 100 km × 100 km may
become computable in real-time.

Appendix A

List of symbols

Symbol Unit Name

ζ m water level

h m water depth

φ m2

s velocity potential

ϕ m2

s surface velocity potential

ρ kg
m3 mass density

D,M,N – model parameters

t s time

x, y m horizontal coordinates

z m vertical coordinate

U = (U, V)T m
s current

g m
s2

gravity

p Pa = kg
ms2

pressure

Ps
m2

s2
“pressure puls”

Nx, Ny – number of grid points in x- resp. y-direction

Lx, Ly m length of computational domain in x- resp. y-direction

∆x,∆y m mesh size in x- resp. y-direction

h m characteristic mesh size

S – system matrix

S1 – first Schur complement

267

268 APPENDIX A. LIST OF SYMBOLS

Appendix B

List of abbreviations

Abbreviation Full name or meaning

AXPY vector-update: y := ax+ y
BIM Basic Iterative method
BLAS Basic Linear Algebra Subprograms
CG Conjugate Gradient(s)
Cg4 CG with MIC as preconditioner
CPU central processing unit
CSR compressed sparse row
CUDA Compute Unified Device Architecture
DIAG/DIA diagonal (scaling)
DDR double data rate
FFT Fast Fourier Transform
GB gigabyte
GPU graphics processing unit
GS Gauss-Seidel
HF high frequencey
IC Incomplete Cholesky
ILP instruction level parallelism
IP Incomplete Poisson
IPDEF CG with IP as preconditioner and deflation
IPDIAG CG with IP as preconditioner and diagonal scaling
IU instruction unit
JAC Jacobi
kB kilobyte
LF low frequency
MARIN Maritime Research Institute Netherlands
MB megabyte

(continued on next page)

269

270 APPENDIX B. LIST OF ABBREVIATIONS

Abbreviation Full name or meaning

MG Multigrid
MGCG CG with MG as precontioner
MIC Modified Incomplete Cholesky
MV matrix-vector
Nop CG with diagonal scaling
OpenCL Open Computing Language
OpenMP Open Multi Processing
OSG OpenSceneGraph
PC personal computer
PCG preconditioned CG
RHS right-hand side
RIC Relaxed Incomplete Cholesky
RICCG CG with RIC as preconditioner
RICDEF RICCG with deflation
RRB Repeated Red-Black
RRB-k RRB with k levels
SDK Software Development Kit
SIMD single-input multiple-data
SIMT single-input mutliple-threads
SM streaming multiprocessor
SOR Successive Overrelaxation
SP streaming processor
SpAI Sparse Approximate Inverse
SPD symmetric positive definite
SPSD symmetric positive semi-definite
SpMV sparse matrix-vector
SSOR Symmetric SOR
TG Two-grid
VBM Variational Boussinesq model

Appendix C

Raw data

C.1 Timing results System I: GTX 285 — all test problems

Data sol br ho nodes total solver (pct) Fext
plymouth-100000 cudarrb 400 250 100000 29.19 4.17 (14%) 7.10787
plymouth-100000 rrb 400 250 100000 41.13 15.98 (39%) 7.10787
plymouth-100000 cudasimple 400 250 100000 31.21 6.09 (20%) 7.10787
portpresto-100000 cudarrb 250 400 100000 17.53 4.20 (24%) 2.49029
portpresto-100000 rrb 250 400 100000 27.51 14.21 (52%) 2.49029
portpresto-100000 cudasimple 250 400 100000 21.93 8.57 (39%) 2.49029
ijssel-100000 cudarrb 500 200 100000 17.90 4.26 (24%) 3.35114
ijssel-100000 rrb 500 200 100000 62.09 48.61 (78%) 3.35114
ijssel-100000 cudasimple 500 200 100000 19.98 6.30 (32%) 3.35114
plymouth-200000 cudarrb 500 400 200000 47.97 5.42 (11%) 5.69041
plymouth-200000 rrb 500 400 200000 82.99 40.38 (49%) 5.69041
plymouth-200000 cudasimple 500 400 200000 50.56 7.87 (16%) 5.69040
portpresto-200000 cudarrb 500 400 200000 31.33 5.46 (17%) 3.18055
portpresto-200000 rrb 500 400 200000 65.99 40.12 (61%) 3.18054
portpresto-200000 cudasimple 500 400 200000 41.38 15.43 (37%) 3.18054
ijssel-200000 cudarrb 800 250 200000 32.04 5.93 (19%) 3.90261
ijssel-200000 rrb 800 250 200000 121.83 95.23 (78%) 3.90261
ijssel-200000 cudasimple 800 250 200000 34.43 8.42 (24%) 3.90261
plymouth-500000 cudarrb 800 625 500000 99.97 8.49 (8%) 7.35204
plymouth-500000 rrb 800 625 500000 231.41 140.10 (61%) 7.35206
plymouth-500000 cudasimple 800 625 500000 114.45 20.81 (18%) 7.35205
portpresto-500000 cudarrb 800 625 500000 71.54 8.49 (12%) 3.08224
portpresto-500000 rrb 800 625 500000 191.74 128.88 (67%) 3.08224
portpresto-500000 cudasimple 800 625 500000 95.72 32.32 (34%) 3.08224
ijssel-500000 cudarrb 1000 500 500000 72.69 8.69 (12%) 3.36611
ijssel-500000 rrb 1000 500 500000 258.42 191.16 (74%) 3.36611
ijssel-500000 cudasimple 1000 500 500000 78.35 14.37 (18%) 3.36611
plymouth-1000000 cudarrb 1250 800 1000000 188.17 13.74 (7%) 6.91291
plymouth-1000000 rrb 1250 800 1000000 510.27 331.76 (65%) 6.91292
plymouth-1000000 cudasimple 1250 800 1000000 211.28 34.13 (16%) 6.91292
portpresto-1000000 cudarrb 1000 1000 1000000 144.91 13.74 (9%) 3.39525
portpresto-1000000 rrb 1000 1000 1000000 403.92 272.63 (67%) 3.39525
portpresto-1000000 cudasimple 1000 1000 1000000 189.15 57.43 (30%) 3.39525
ijssel-1000000 cudarrb 1600 625 1000000 139.73 13.17 (9%) 3.92232
ijssel-1000000 rrb 1600 625 1000000 518.80 391.50 (75%) 3.92232
ijssel-1000000 cudasimple 1600 625 1000000 151.09 24.22 (16%) 3.92232
plymouth-1500000 cudarrb 1250 1200 1500000 289.06 18.17 (6%) 7.36809
plymouth-1500000 rrb 1250 1200 1500000 767.90 491.41 (64%) 7.36810

271

272 APPENDIX C. RAW DATA

plymouth-1500000 cudasimple 1250 1200 1500000 323.15 46.79 (14%) 7.36812
portpresto-1500000 cudarrb 1200 1250 1500000 214.89 19.72 (9%) 3.40904
portpresto-1500000 rrb 1200 1250 1500000 657.07 461.95 (70%) 3.40904
portpresto-1500000 cudasimple 1200 1250 1500000 283.59 87.95 (31%) 3.40904
ijssel-1500000 cudarrb 1500 1000 1500000 213.36 17.83 (8%) 4.10701
ijssel-1500000 rrb 1500 1000 1500000 730.92 533.71 (73%) 4.10701
ijssel-1500000 cudasimple 1500 1000 1500000 228.31 33.64 (15%) 4.10701

C.2 Timing results System II: GTX 580 — all test problems

Data sol br ho nodes total solver (pct) Fext
plymouth-100000 cudarrb 400 250 100000 23.33 1.85 (8%) 7.10787
plymouth-100000 rrb 400 250 100000 33.01 11.53 (35%) 7.10787
plymouth-100000 cudasimple 400 250 100000 23.41 2.01 (9%) 7.10787
portpresto-100000 cudarrb 250 400 100000 11.03 1.82 (17%) 2.49029
portpresto-100000 rrb 250 400 100000 19.05 10.06 (53%) 2.49029
portpresto-100000 cudasimple 250 400 100000 11.89 2.75 (23%) 2.49029
ijssel-100000 cudarrb 500 200 100000 11.46 2.07 (18%) 3.35114
ijssel-100000 rrb 500 200 100000 56.84 47.68 (84%) 3.35114
ijssel-100000 cudasimple 500 200 100000 11.51 2.10 (18%) 3.35114
plymouth-200000 cudarrb 500 400 200000 37.49 2.61 (7%) 5.69041
plymouth-200000 rrb 500 400 200000 58.71 23.78 (41%) 5.69041
plymouth-200000 cudasimple 500 400 200000 37.68 2.99 (8%) 5.69041
portpresto-200000 cudarrb 500 400 200000 20.16 2.64 (13%) 3.18055
portpresto-200000 rrb 500 400 200000 40.27 22.81 (57%) 3.18054
portpresto-200000 cudasimple 500 400 200000 23.35 5.85 (25%) 3.18055
ijssel-200000 cudarrb 800 250 200000 20.55 2.77 (13%) 3.90261
ijssel-200000 rrb 800 250 200000 100.57 82.34 (82%) 3.90261
ijssel-200000 cudasimple 800 250 200000 20.85 3.17 (15%) 3.90261
plymouth-500000 cudarrb 800 625 500000 74.28 4.64 (6%) 7.35206
plymouth-500000 rrb 800 625 500000 141.49 71.48 (51%) 7.35206
plymouth-500000 cudasimple 800 625 500000 79.64 8.76 (11%) 7.35206
portpresto-500000 cudarrb 800 625 500000 46.21 4.70 (10%) 3.08224
portpresto-500000 rrb 800 625 500000 106.54 64.91 (61%) 3.08224
portpresto-500000 cudasimple 800 625 500000 55.82 13.63 (24%) 3.08224
ijssel-500000 cudarrb 1000 500 500000 47.08 4.78 (10%) 3.36612
ijssel-500000 rrb 1000 500 500000 171.48 129.30 (75%) 3.36611
ijssel-500000 cudasimple 1000 500 500000 48.89 6.11 (12%) 3.36612
plymouth-1000000 cudarrb 1250 800 1000000 139.32 7.76 (6%) 6.91292
plymouth-1000000 rrb 1250 800 1000000 312.77 177.39 (57%) 6.91292
plymouth-1000000 cudasimple 1250 800 1000000 154.34 16.64 (11%) 6.91292
portpresto-1000000 cudarrb 1000 1000 1000000 97.23 7.93 (8%) 3.39525
portpresto-1000000 rrb 1000 1000 1000000 237.22 147.72 (62%) 3.39525
portpresto-1000000 cudasimple 1000 1000 1000000 117.07 27.02 (23%) 3.39525
ijssel-1000000 cudarrb 1600 625 1000000 105.72 7.66 (7%) 3.92232
ijssel-1000000 rrb 1600 625 1000000 366.64 265.91 (73%) 3.92232
ijssel-1000000 cudasimple 1600 625 1000000 110.31 10.72 (10%) 3.92232
plymouth-1500000 cudarrb 1250 1200 1500000 214.29 10.50 (5%) 7.36809
plymouth-1500000 rrb 1250 1200 1500000 508.38 298.36 (59%) 7.36810
plymouth-1500000 cudasimple 1250 1200 1500000 234.60 22.92 (10%) 7.36809
portpresto-1500000 cudarrb 1200 1250 1500000 141.35 11.46 (8%) 3.40904
portpresto-1500000 rrb 1200 1250 1500000 349.73 218.75 (63%) 3.40904
portpresto-1500000 cudasimple 1200 1250 1500000 171.60 39.45 (23%) 3.40903
ijssel-1500000 cudarrb 1500 1000 1500000 142.66 10.65 (7%) 4.10701
ijssel-1500000 rrb 1500 1000 1500000 478.63 348.50 (73%) 4.10701
ijssel-1500000 cudasimple 1500 1000 1500000 146.61 15.52 (11%) 4.10701

Bibliography

[1] Ament, M., Knittel, G., Weiskopf, D. Straßer, W., A Parallel Preconditioned Conjugate
Gradient Solver for the Poisson Problem on a Multi-GPU Platform, Proceedings of
18th Euromicro International Conference on Parallel, Distributed and Network-Based
Computing (PDP 2010), pp. 583–592, 2010.

[2] Arnold, D.N., A Concise Introduction to Numerical Analysis, Lecture Notes, University
of Minnesota, 2001.

[3] Bell, N., Garland, M., Efficient Sparse Matrix-Vector Multiplication on CUDA, Tech-
nical Report NVR-2008-004, NVIDIA, December 2008, http://www.nvidia.com/
object/nvidia_research_pub_001.html.

[4] Brand, C.W., An Incomplete-factorization Preconditioning using Repeated Red-Black
Ordering, Numerische Mathematic, pp. 433–454, July 1992.

[5] Fujimoto, N., Faster Matrix-Vector Multiplication on GeForce 8800GTX, Proceedings
of IEEE Interational Parallel and Distributed Processing Symposium (IPDPS), 22:1-8,
2008.

[6] Golub, G.H., Van Loan, C.F., Matrix Computations, The Johns Hopkins University
Press, Baltimore, third edition, 1996.

[7] Gupta, R., Implementation of the Deflated Preconditioned Conjugate Gradient Method
for Bubbly Flow on the Graphical Processing Unit (GPU), MSc Thesis Computer Engi-
neering, Delft University of Technology, Delft, August 2010.

[8] Harris, M., Optimizing Parallel Reduction in CUDA, CUDA Webinar 2,
http://developer.download.nvidia.com/compute/cuda/1_1/Website/
projects/reduction/doc/reduction.pdf.

[9] Hestenes, M.R., Stiefel, E., Methods of Conjugate Gradients for Solving Linear Systems.
J. Research Nat. Bur. Standards, 49:409436 (1953), 1952.

[10] Higham, N.J., The Accuracy of Floating Point Summation, SIAM Journal on Scien-
tific Computing 14 (4): 783-799, 1993, http://www.maths.Manchester.ac.uk/

˜nareports/narep198.pdf.

[11] Karimi, K., Dickson, N.G., Hamze, F., A Performance Comparison of CUDA and
OpenCL, D-Wave Systems Inc., British Columbia, Canada, http://arxiv.org/
pdf/1005.2581.

273

http://www.nvidia.com/object/nvidia_research_pub_001.html
http://www.nvidia.com/object/nvidia_research_pub_001.html
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf
http://www.maths.Manchester.ac.uk/~nareports/narep198.pdf
http://www.maths.Manchester.ac.uk/~nareports/narep198.pdf
http://arxiv.org/pdf/1005.2581
http://arxiv.org/pdf/1005.2581

274 BIBLIOGRAPHY

[12] Kirk, D.B., Hwu, W.W., Programming Massively Parallel Processors, Morgan Kauf-
mann Publishers, 2010.

[13] Klopman, G., Variational Boussinesq Modelling of Surface Gravity Waves over
Bathymetry, Phd Thesis, University of Twenty, Twente, May 2010.

[14] Meurant, G., Computer Solution of Large Linear Systems, Studies in Mathematics and
its Applications 28, Elsevier, Amsterdam, 1999.

[15] Meurant, G., The Lanczos and Conjugate Gradient Algorithms, SIAM, August 2006.

[16] Murthy, G.S., Optimal Loop Unrolling for GPGPU Programs, Msc Thesis, Ohio State
University, 2009, http://etd.ohiolink.edu/send-pdf.cgi/Sreenivasa%
20Murthy%20Giridhar.pdf?osu1253131903.

[17] NVIDIA team, NVIDIA CUDA C Programming Guide v4.0, NVIDIA Corporation,
June, 2011, http://developer.download.nvidia.com/compute/cuda/4_0_
rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf.

[18] NVIDIA team, NVIDIA CUDA Best Practices Guide v4.0, NVIDIA Corporation,
March, 2011, http://developer.download.nvidia.com/compute/cuda/4_
0_rc2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf.

[19] Ploeg, A. van der, Preconditioning for Sparse Matrices with Applications, PhD Thesis
Mathematics and Physics, University of Groningen, Groningen, February 1994.

[20] Saad, Y. Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics (SIAM), 2nd edition, Philadelphia, 2003.

[21] Sanders, J., Kandrot, E., CUDA by Example — An Introduction to General-Purpose
GPU Programming, Addison-Wesley Professional, July, 2010.

[22] Shewcuck, J.R., An Introduction to the Conjugate Gradient Method without the Ago-
nizing Pain, August 1994.

[23] Tang, J.M., Two-Level Preconditioned Conjugate Gradient Methods with Applications
to Bubbly Flow Problems, PhD Thesis Applied Mathematics, Delft University of Tech-
nology, Delft, 2008.

[24] Volkov, V., Better performance at lower occupancy, GPU Technology Conference (GTC
2010), 2010, www.cs.berkeley.edu/˜volkov/volkov10-GTC.pdf.

[25] Volkov, V., Use registers and multiple outputs per thread on GPU, International
Workshop on Parallel Matrix Algorithms and Applications (PMAA’10), 2010, http:
//www.cs.berkeley.edu/˜volkov/volkov10-PMAA.pdf.

[26] Vuik, C., Lahaye, D.J.P., Scientific Computing (wi4201), Lecture notes, Delft Univer-
sity of Technology, Delft, 2010, http://ta.twi.tudelft.nl/nw/users/vuik/
wi4201/wi4201_notes.pdf.

[27] Wesseling, P., An Introduction to Multigrid Methods, Corrected Reprint, Philadelphia:
R.T. Edwards, Inc., 2004.

http://etd.ohiolink.edu/send-pdf.cgi/Sreenivasa%20Murthy%20Giridhar.pdf?osu1253131903
http://etd.ohiolink.edu/send-pdf.cgi/Sreenivasa%20Murthy%20Giridhar.pdf?osu1253131903
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0_rc2/toolkit/docs/CUDA_C_Best_Practices_Guide.pdf
www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-PMAA.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-PMAA.pdf
http://ta.twi.tudelft.nl/nw/users/vuik/wi4201/wi4201_notes.pdf
http://ta.twi.tudelft.nl/nw/users/vuik/wi4201/wi4201_notes.pdf

BIBLIOGRAPHY 275

[28] Wout, E. van ’t, Improving the Linear Solver used in the Interactive Wave Model of a
Real-time Ship Simulator, MSc Thesis Applied Mathematics, Delft University of Tech-
nology, Delft, August 2009.

	I PROBLEM FORMULATION AND DESIGN PLAN
	1 Backgrounds: the Interactive Waves project
	1.1 Backgrounds and history
	1.2 Earlier work
	1.2.1 Gert Klopman: model maker
	1.2.2 Elwin van 't Wout: faster solvers and model explanation
	1.2.3 Anneke Sicherer-Roetman: code optimization

	1.3 What we are going to do

	2 The model
	2.1 The Variational Boussinesq model (VBM)
	2.2 The computational domain
	2.3 Discretization of the VBM equations
	2.4 The system
	2.5 Properties of the matrix S
	2.6 Problem size and the real-time issue

	3 Test problems
	3.1 Mathematical problem: Poisson's equation
	3.2 Small harbour
	3.3 Realistic problems: IJssel, Plymouth, Port Presto
	3.3.1 The Gelderse IJssel
	3.3.2 Plymouth Sound
	3.3.3 Port Presto

	4 Test systems
	4.1 System I: GTX 285
	4.2 System II: GTX 580

	5 Design plan
	5.1 CUDA rather than OpenCL
	5.2 Our choice: PCG with the RRB-method, shortly: the RRB-solver
	5.3 A second CUDA solver: the IPDIAG-solver
	5.4 Get CUDA and OpenMP to work simultaneously

	II THEORY: LINEAR SOLVERS
	6 Preliminaries and notation
	6.1 Linear algebra

	7 Solvers for Ax = b : a brief overview
	7.1 The system
	7.2 An overview
	7.3 Direct methods
	7.3.1 Introduction
	7.3.2 Occurence of fill-in and reordering
	7.3.3 Cholesky factorization algorithm

	7.4 Iterative methods

	8 Basic Iterative Methods
	8.1 Introduction
	8.2 Some popular methods
	8.2.1 Jacobi
	8.2.2 Gauss-Seidel (GS)
	8.2.3 SOR

	8.3 Some basic results
	8.4 Convergence results of BIMs

	9 The Conjugate Gradient (CG) method
	9.1 Derivation of the CG method
	9.1.1 Quadratic form
	9.1.2 The method of Steepest Descent
	9.1.3 The method of Conjugate Directions
	9.1.4 Gram-Schmidt Conjugation method
	9.1.5 Conjugate directions that lead to CG
	9.1.6 The CG algorithm

	9.2 Storage and computational requirements for CG
	9.2.1 Memory
	9.2.2 Flop count

	9.3 Convergence analysis of CG
	9.3.1 CG and the Krylov space
	9.3.2 CG and optimal polynomials
	9.3.3 Chebyshev polynomials
	9.3.4 A perfect polynomial
	9.3.5 The upper bound for the error

	9.4 Preconditioned Conjugate Gradient (PCG) method

	10 Preconditioners
	10.1 Classical preconditioners
	10.1.1 Diagonal scaling
	10.1.2 SSOR

	10.2 Preconditioners based on leaving out fill-in
	10.2.1 Incomplete Cholesky (IC)
	10.2.2 Repeated Red-Black (RRB)
	10.2.3 Incomplete Poisson (IP)

	11 Deflation
	11.1 Introduction
	11.2 The deflation matrix
	11.3 Deflated Preconditioned Conjugate Gradients (DPCG)
	11.4 Choice of the deflation vectors

	12 The Multigrid (MG) method
	12.1 Concepts of MG
	12.1.1 The smoothing property
	12.1.2 Exploiting coarse grids

	12.2 Two-grid (TG) method
	12.2.1 Restriction and prolongation
	12.2.2 Pre- and post-smoothing
	12.2.3 The TG algorithm

	12.3 The MG algorithm

	III SCIENTIFIC COMPUTING WITH CUDA
	13 GPU architecture
	13.1 Architecture category
	13.2 How work is executed on the GPU
	13.3 Compute capability
	13.4 Physical processors
	13.5 Memory hierarchy

	14 CUDA C programming environment
	14.1 Thread organization

	15 Strategies for a fast implementation
	15.1 General strategies
	15.1.1 Library functions
	15.1.2 Optimal tiling
	15.1.3 Global memory and memory coalescing
	15.1.4 Shared memory and bank conflicts
	15.1.5 Sum reduction

	15.2 Advanced strategies
	15.2.1 Pointers
	15.2.2 Page-locked memory
	15.2.3 Textures
	15.2.4 Loop unrolling
	15.2.5 Better performance at lower occupancy
	15.2.6 Registers versus shared memory
	15.2.7 Overlapping communication and computation
	15.2.8 Concurrent kernels

	16 Measuring and optimizing performance
	16.1 Performance measures
	16.1.1 Floprate
	16.1.2 Throughput

	16.2 Timing of GPU tasks
	16.2.1 Wall-clock timing
	16.2.2 GPU events
	16.2.3 NVIDIA profiler

	16.3 Throughput and coalesced memory — two little studies
	16.3.1 Copy with a stride
	16.3.2 Copy with a shift

	16.4 Measuring speed up and Amdahl's law

	17 Two important basic CUDA kernels
	17.1 Sparse Matrix-vector products (SpMVs)
	17.1.1 Introduction
	17.1.2 The DIA storage scheme
	17.1.3 Computation of an SpMV in case of a 5-point stencil
	17.1.4 Hints for an optimal CUDA implementation

	17.2 Work efficient parallel sum reduction
	17.2.1 Introduction
	17.2.2 Time and cost efficiency of the parallel sum reduction algorithm
	17.2.3 Hints for an optimal CUDA implementation

	IV PCG SOLVERS
	18 General comments that apply to all the PCG solvers in the lin_wacu software
	18.1 Termination criterium

	19 The C++ and CUDA RRB-SOLVER
	19.1 RRB-solver basic concepts
	19.1.1 Repeated Red-Black numbering
	19.1.2 Effect of the RRB-numbering on the sparsity pattern of matrix S
	19.1.3 Maximal number of levels
	19.1.4 The RRB-k method
	19.1.5 PCG for half of the nodes

	19.2 The ideas behind the CUDA RRB-solver
	19.2.1 Clever storage of the data: the r1/r2/b1/b2-storage format
	19.2.2 Recursively applying the r1/r2/b1/b2-storage format
	19.2.3 Thread organization

	19.3 General comments on implementation
	19.4 Determining the sizes of the levels
	19.4.1 Introduction
	19.4.2 The embedding grid
	19.4.3 The r1/r2/b1/b2-grids
	19.4.4 An example

	19.5 Memory requirements
	19.5.1 A list of all data objects
	19.5.2 Extra memory requirements for the repeated r1/r2/b1/b2-storage format — an estimate
	19.5.3 Memory requirements for a 1.5M node test problem
	19.5.4 An overview: memory versus problem size

	19.6 Constructing the preconditioning matrix M
	19.6.1 Algorithm
	19.6.2 Phase 2a: elimination of black nodes
	19.6.3 Phase 2b: lumping
	19.6.4 Phase 2c: memory efficiency
	19.6.5 Phase 3: elimination of the red nodes which are not in the next level
	19.6.6 Phase 1: lumping
	19.6.7 Phase 4: dividing by main diagonal
	19.6.8 The final level

	19.7 Solving Mz = r
	19.7.1 Preliminary work
	19.7.2 Step 1: Solving Lx = r
	19.7.3 Step 2: Solving y = D-1x
	19.7.4 Step 3: Solving LTz = y
	19.7.5 The final level

	19.8 Computing q = S1p
	19.8.1 Step 1 in C++
	19.8.2 Step 2 in C++
	19.8.3 Towards an efficient CUDA implementation
	19.8.4 Step 1 in CUDA
	19.8.5 Step 2 in CUDA

	19.9 Dot products
	19.9.1 A two-step approach
	19.9.2 Kahan summation
	19.9.3 Mass reduction phase on the GPU

	19.10 AXPYs

	20 The CUDA IPDIAG-solver
	20.1 Outline
	20.1.1 Input and output
	20.1.2 SpMVs: two flavours
	20.1.3 Termination criterium

	20.2 Implementation
	20.2.1 General comments
	20.2.2 Memory requirements
	20.2.3 Constructing the preconditioner(s)
	20.2.4 Updating the matrix S in case of diagonal scaling
	20.2.5 The operations x = PTx and x = P-Tx
	20.2.6 SpMVs: two flavours
	20.2.7 AXPYs and dot products
	20.2.8 Overlapping and concurrent kernels

	V TESTS AND RESULTS
	21 Testing method
	21.1 Measures and terminology
	21.1.1 Frame time
	21.1.2 Total time
	21.1.3 Solver time
	21.1.4 Additional time
	21.1.5 Speed up
	21.1.6 Solver speed up
	21.1.7 Total speed up
	21.1.8 Useful throughput

	21.2 Performance/timing plan
	21.2.1 Special poisson testing environment
	21.2.2 Plugging-in in the lin_wacu software

	21.3 Profiling of the CUDA solvers
	21.3.1 Built-in performance monitor
	21.3.2 NVIDIA profiler

	22 Results — 2D Poisson test problem
	22.1 Specification of the problem
	22.2 Problem related results
	22.2.1 Number of CG-iterations
	22.2.2 Convergence behaviour of the RRB-solver

	22.3 CUDA RRB-solver related results
	22.3.1 Solver speed up
	22.3.2 Useful throughput
	22.3.3 Solver profile
	22.3.4 Amount of overhead / idle threads

	23 Results — realistic test problems
	23.1 Number of CG-iterations
	23.2 Timing
	23.2.1 Solver time
	23.2.2 Additional time
	23.2.3 Total time

	23.3 Speed up numbers

	24 Screenshots from a simulation
	25 Further analysis and discussion
	25.1 Parallel host code with OpenMP
	25.2 Profile of the lin_wacu code
	25.2.1 Overview of computations
	25.2.2 Wall-clock timing results
	25.2.3 Time profile charts

	25.3 New bottlenecks in the code

	VI CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK
	26 Conclusions
	27 Recommendations and future research
	A List of symbols
	B List of abbreviations
	C Raw data
	C.1 Timing results System I: GTX 285 — all test problems
	C.2 Timing results System II: GTX 580 — all test problems

