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Abstract

Legged locomotion is an example of a discrete event system (DES) with only synchronization
and no concurrency. This particular kind of DES can be framed in max-plus algebra, which
consists of maximization and addition as its basic operations. In max-plus algebra, those op-
erations are called as max-plus addition and max-plus multiplication respectively, symbolized
by ⊕ and ⊗. Max-plus algebra itself can be used for both scalar and matrices operations
[1, 2, 3]. Utilizing the max-plus operations between matrices, max-plus linear (MPL) system
can be constructed. An MPL system consists of system matrices, and vectors as both states
and inputs. The MPL system can be seen to be equivalent to the state space system in linear
algebra.
Switching max-plus linear (SMPL) system is a class of MPL system where the element of the
system matrices can be changed by a switching function. There are two variants of SMPL
system, the implicit and the explicit SMPL system. In the implicit SMPL system, the current
states depend on both previous states and themselves. The current states only depend on the
previous states in the explicit SMPL system. The implicit SMPL system can be transformed
into explicit SMPL system. Legged locomotion can be modeled as an autonomous implicit
SMPL system, as there is no input used. In modeling legged locomotion as an SMPL system,
the touchdown and lift-off time instant of every leg is set as the states. The SMPL system is
then used to schedule when each leg should touchdown and lift-off the ground. Based on the
touchdown and lift-off time instant of a leg, swing and stance period of the leg can be chosen.
The swing period of a leg starts with lift-off and ends with touchdown. The stance period
of a leg starts with touchdown and ends with lift-off. The total of both periods is called the
cycle time. The SMPL system then incorporates the gait and the desired swing and stance
period, to schedule the touchdown and lift-off time instant of every leg.
The SMPL system of legged locomotion for straightforward motion is already proposed in
[4]. The legged robot which is considered in [4] is called Zebro. Zebro is a robot with six
half-circular compliant legs, developed in Technische Universiteit Delft. In this report, the
trajectory-following SMPL system for Zebro is proposed. With the trajectory-following SMPL
system, a Zebro is able to move forward in all directions by means of the legs scheduling. It
means that with the trajectory-following SMPL system, Zebro is able to turn while moving
forward. To turn, Zebro needs to have different linear velocity on the left and right side as

Master of Science Thesis William Suriana



ii

it has no steering system. Then, Zebro turns in a similar way as the differential-drive mobile
robot. While the Zebro is turning with the trajectory-following SMPL system, the stance
period of the inner legs are longer by τp seconds compared to the stance period of the outer
legs. On the other hand, the swing period inner legs are shorter by τp seconds compared to
the swing period of the outer legs. The cycle time of every leg is the same consequently. In
the trajectory-following SMPL system, the cycle time is the same as the eigenvalue of the
system matrices. The eigenvector represents the steady-state condition of the states. The
chosen gait and the direction of Zebro can be inferred from the eigenvector.

The motion of the Zebro is predicted by the switching kinematic algorithm in this report.
The switching kinematic algorithm is based on the method proposed in [5] to model the
kinematics of the wheeled mobile robot. Sheth-Uicker convention is utilized to assign the
coordinate frames and describe the relation between coordinate frames. Based on the relation
between coordinate frames, first Jacobian matrices of the legs are formed. Each jacobian
matrix describes the relationship between the motion of a leg and the motion of Zebro.
Here, the considered leg motion is only the leg motion during the stance period. During the
swing period, the leg motion does not affect the motion of Zebro. The jacobian matrices are
combined in the sensed forward solution, to predict the motion of Zebro if there are several
legs on stance period. The switching kinematic algorithm will detect which legs are on the
stance period during a duration of time, and the change of angle of the respective legs. The
switching kinematic algorithm then forms a suitable sensed forward solution.

The results of the simulation show that the Zebro is able to turn by the trajectory-following
SMPL system. To induce turning with a smaller radius, the parameter τp is increased. In
general, if the τp is increased, the turning radius of Zebro is smaller. Still, the Zebro does
not always turn to the intended direction. The turning of the Zebro is also not smooth for
the quadruped gait. It is caused by the tilting of the Zebro. To predict the trajectory of
Zebro, a switching kinematic algorithm can be used. The switching kinematic algorithm can
predict the trajectory of Zebro if a certain lower boundary of τp is exceeded. The Zebro can
also turn to the intended direction if that lower boundary is exceeded. However, the results
of the simulation still cannot be verified by the results of the implementation. The results of
the implementation are not conclusive yet.

keywords : max-plus algebra, SMPL, kinematics, Zebro
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Chapter 1

Introduction

1-1 Background

Approximately, half of the earth’s surface is inaccessible for wheeled and tracked vehicles[7].
Legged locomotion is more adequate than wheeled and tracked locomotion for various types
of surface. Utilizing legged locomotion, a robot can be useful for many tasks, such as disaster
recovery, nature exploration, and exploration for mining. Those tasks are performed on
uneven and rough surfaces, where wheeled and tracked robots will not be effective. Therefore,
there is an importance of developing the legged robot for those kinds of tasks.

There are many legged robots which have already been developed, with various forms [8, 9, 10,
6, 11, 12, 13]. Delft Center for Systems and Control (DCSC) of Delft University of Technology
(TU Delft) also have already developed a legged robot which is called Zebro (Zesbenige
Robot). Zebro is a six-legged (hexapod) autonomous robot designed on the foundations
of RHex [6]. All of Zebro’s legs are half-circular, and each having only one independently
actuated revolute degree of freedom. With independent actuation of Zebro’s legs, various gaits
can be utilized by Zebro for its locomotion. The gaits of legged locomotion can be modeled
as discrete event systems (DES), due to the intrinsic periodic nature and synchronization
requirement of legged locomotion [14].

Modeling DES in conventional algebra results in a nonlinear description of the system. How-
ever, there exists a subclass of DES for which this model becomes linear if it is formulated in
max-plus algebra [15]. Max-plus algebra uses only maximization and addition for its opera-
tions. With these operations, DES with only synchronization and no concurrency or choice
occur can be modeled [15]. These subclass of DES are called max-plus linear (MPL) DES.
Moreover, MPL systems can be extended to switching max-plus linear (SMPL) systems where
different modes of operation can be modeled [16]. SMPL systems are already used to model
the legged locomotion of Zebro [14, 4]. With SMPL systems, several gaits can be included in
the model as a different mode of operation for each gait [14, 4].

With the development of Zebro, it is hoped that Zebro can navigate autonomously from
a starting point to a goal, following a trajectory. However, there is no research yet about
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trajectory-following navigation of Zebro. To construct a trajectory-following navigation strat-
egy for Zebro, turning method of Zebro has to be summarized. There are already some
works done regarding the turning method of legged robots, with different kind of methods
[8, 9, 10, 6, 11, 12, 13]. Due to structural limitation of Zebro, the most probable method of
turning is the differential drive, similar with RHex [6].

Differential drive is a commonly-used turning method for some wheeled robots. In differential
drive robot, the linear velocity of a side of a wheeled robot is set to be different than the
opposite side. With different linear velocity between the right and left side, the wheeled robot
will produce turning moment. The same principle can be used by legged robots and will be
applied for Zebro. Due to the complex interaction between the legs and the ground, it is hard
to model the dynamics for motion prediction of the Zebro. Therefore, kinematics approach
will be used to predict the motion of the Zebro.

However, in the remaining system, differential drive is not done by means of the SMPL system.
Differential drive is done by introducing offset to the lift-off and touchdown angle of the related
legs. There are several disadvantages of this method. First, the turning motion cannot be
predicted from the properties of the SMPL system. This disadvantage arises because angle
offset is not a part of the SMPL system. Second, the introduced angle offset is bounded by
the structure of the half-circular compliant legs. Therefore, to control the trajectory-following
Zebro, the control input is bounded by the bound of the offset. Thus, a trajectory-following
SMPL system is proposed by this thesis as a candidate method to induce the turning. The
relation between the SMPL system and the kinematics of the robot is also established in this
thesis. To analyze the performance of the trajectory-following SMPL system, 3D simulation
is done using the trajectory-following SMPL system.

1-2 Assumptions

There are several assumptions considered in this thesis :

• The considered robot is Zebro The idea in this thesis is proposed with regards to
the morphology of Zebro. The idea might not be suitable for another legged robot with
different morphology

• Turning motion is defined as forward-turning motion The turning-in-place mo-
tion is not considered as part of turning in this thesis

• All legs are utilized in a defined gait In every defined gait, there is no stationary
leg

• All legs roll without slipping The slipping kinematics of all legs are not considered
in the kinematic approach

• The robot moves on flat and stationary surface This assumption is introduced
so the basic features of the trajectory-following SMPL system can be explained easier
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1-3 Problem Statement

In this thesis, the discussed problems are including :

• How can a Zebro turn by means of SMPL system?

• How can the turning motion of Zebro be predicted?

• How is the turning performance of the Zebro?

The problems are discussed from Chapter 3 until the last chapter. The solutions to the
problems will also be explained in those chapters.

1-4 Contribution

The main contribution of this thesis is a new trajectory-following SMPL system. The trajectory-
following SMPL system and its properties are explained in chapter 3, section 3-4. To know
how the Zebro moves with the trajectory-following SMPL system, the kinematics of the Ze-
bro is explored in chapter 4, section 4-4. The kinematics of Zebro is proposed based on the
kinematics of wheeled mobile robot [5], explained in chapter 4, section 4-1 until section 4-3.
Then, planar 2D simulation is done in Chapter 4 to analyze the performance of the new
SMPL system. The planar 2D simulation results will be compared to the predicted motion
using the kinematics of the Zebro.

1-5 Outline

This report is divided into six chapters. Outside of this chapter, the remaining chapters are
explained as below :

• Chapter 2 : Max-Plus Algebra and Max-Plus Linear Systems
In the second chapter, the foundations of max-plus algebra and max-plus linear systems
are explained. The foundations of max-plus algebra are including the scalar and matrices
operations, the connection with graph theory, and the eigenvalues and eigenvectors. The
structure of max-plus linear system is also discussed here.

• Chapter 3 : Scheduling of Legged Locomotion with SMPL System
The structure of the remaining SMPL system is going to be discussed in the third
chapter. The discussion is including the structure of the SMPL system and its proper-
ties. Next, the proposed trajectory-following SMPL system with its properties is also
explained.

• Chapter 4 : Kinematic Modeling of Zebro
The kinematics of the Zebro is proposed in the fourth chapter. First, the kinematic
modeling method in [5] is discussed. This kinematic modeling method is used as the
basis of the kinematic modeling of Zebro. Then, the switching kinematics of Zebro is
explained.
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• Chapter 5 : Simulation and Implementation
In this chapter, the results of the simulation and implementation are the main discussion.
To explain the results well, the properties of both simulation and implementation are
explained first

• Chapter 6 : Conclusion and Future Works
To finish the report, the conclusion is presented in the sixth chapter. The conclusion
summarizes the material in this report. The possible future works are also discussed
here.
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Chapter 2

Max-Plus Algebra and
Max-Plus-Linear Systems

2-1 Introduction

In this chapter, the concept of max-plus algebra is introduced. The introduced concept
consists of properties of max-plus algebra, max-plus-linear (MPL) systems, and switching
max-plus-linear (SMPL) systems. The purpose is to explain the basic principles behind the
SMPL systems of legged locomotion.

Properties of max-plus algebra are first discussed in the section 2-2 . The properties of
max-plus algebra which are discussed consist of basic operations, matrix definitions, matrix
operations, connection with graph theory, and properties of eigenvalues and eigenvectors in
max-plus algebra. In the second section, the properties of MPL and SMPL systems are
discussed. The properties of MPL and SMPL systems are explained based on the properties
of max-plus algebra.

2-2 Max-Plus Algebra

2-2-1 Basic Operations and Properties

Max-plus algebra is a commutative idempotent semiring [1] which consists of two basic oper-
ations, ⊕ and ⊗ [1, 2, 3]. The operations ⊕,⊗:Rmax × Rmax → Rmax are defined as:

x⊕ y := max(x, y) (2-1)
x⊗ y := x+ y (2-2)

for x,y∈ Rmax:=R∪ {∞}. In max-plus algebra, the identity element is defined as e := 0, and
the zero element is defined as ε:=-∞. The addition and multiplication in linear algebra can
be compared to ⊕ and ⊗ in max-plus algebra as there are several similarities between them
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6 Max-Plus Algebra and Max-Plus-Linear Systems

[15]. The important difference between linear algebra and max-plus algebra is there is no
inverse element in ⊕ operation.

Besides the basic operations, power operation also exists in max-plus algebra. The power
operation has the highest order of evaluation in max-plus algebra, followed by ⊗ and ⊕.
Power operation is defined as

x⊗
r := rx (2-3)

The operations are done with regards to several properties :

• Associativity

x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊗ (y ⊗ z) = (x⊗ y)⊗ z

• Commutavity

x⊕ y = y ⊕ x
x⊗ y = y ⊗ x

• Distributivity of ⊗
x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)

for ∀x, y, z ∈ Rmax.

2-2-2 Matrix Definitions and Operations

As in linear algebra, identity matrix E ∈ Rn×nmax and zero matrix E ∈ Rn×mmax are exist in max-plus
algebra. They are constructed by max-plus-algebraic identity element and max-plus-algebraic
zero element respectively, and defined as

[E ]ij = ε (2-4)

[E]ij =
{
e if i =j
ε otherwise

(2-5)

with i and j denote the index of row and column of the matrices respectively . The ⊕, ⊗,
and max-plus-algebraic power operation in matrices are defined as

[A⊕B]ij = aij ⊕ bij := max(aij , bij) (2-6)

[A⊗ C]ij =
m⊕
k=1

aik ⊗ ckj := max
k=1,...,m

(aik + ckj) (2-7)

D⊗k := D ⊗D ⊗ ...⊗D︸ ︷︷ ︸
k− times

(2-8)

for matrices A, B, D ∈ Rn×mmax and C ∈ Rm×pmax . Note that aij , bij , cij denote the element of
matrices A, B, C for row i and column j. Exception is made for matrices max-plus-algebraic
power of zero, as it is defined as D⊗0 := En.
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2-2-3 Connection with Graph Theory

Max-plus algebra and graphs are closely related, and equivalency exists between them.[1, 17].
The equivalency particularly exists between max-plus algebra and a class of graph, directed
graph. There are properties of directed which are correlated to the properties of max-plus
algebra. To explain those properties, a directed graph is defined first

Definition 2-2.1. Directed graph A directed graph G is an ordered pair (V,A), where V
is a set of elements called nodes and A is a set of ordered pairs of nodes or arcs

An arc can be denoted as (i, j) ∈ A, with i as the initial node and j the final node. An arc
with same initial and final nodes, (i, i), is called a self-loop arc. Nodes can be sequenced as
(i1, i2, ..., ik) with k as the order of the final node. If every arcs (ik, ik+1) in the sequence of
nodes are contained in A, then the sequence of nodes are called a path. If for any two different
nodes in a directed graph there exists a path, the directed graph is strongly connected. An
arc itself can be assigned a numerical value as its weight. Weighted arcs can be correlated to
elements of a matrix in the max-plus algebraic sense. A class of directed graph, precedence
graph, is defined to correlate a directed graph and a matrix in the max-plus algebraic sense.

Definition 2-2.2. Precedence graph The precedence graph of a matrix A ∈ Rn×mmax , denoted
by G(A), is a weighted directed graph with nodes 1,2,...,n and a weighted arc (j, i) for every
aij 6= ε

In a precedence graph G(A), a weight of a particular path can be calculated by summing all the
weights of the arcs that form the path. The weight of the particular path can also be calculated
from the correlated max-plus matrix A. The summation of all aij which corresponds to the
arcs in a particular path is equal to the weight of the path. Furthermore, the maximum
weight of all paths of G(A) of length k from initial node j to final node i is calculated as

(A⊗k)ij =
⊕

i1,i2,...,ik−1

ai1i2 ⊗ ai2i3 ⊗ ...⊗ aik−1ij (2-9)

If a path exists between any two different nodes in a precedence graph, the precedence graph
is strongly connected. It is equivalent to having weight for all elements in the matrix A. An
important property of matrix A can be explained with this concept

Definition 2-2.3. Irreducibility A matrix A ∈ Rn×nmax is called irreducible if its precedence
graph G(A)is strongly connected

In the max-plus algebraic sense, the irreducibility of matrix A can be proven by means of
max-plus calculation [15]

(A⊕A⊗2 ⊕ ...⊕A⊗n−1)ij 6= ε

for all i, j with i 6= j. The concept of irreducibility helps us to understand two important
theorems in max-plus algebra
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8 Max-Plus Algebra and Max-Plus-Linear Systems

Theorem 2-2.1 (Theorem 3.17 of[1]). Consider the following systems of linear equations
in the max-plus algebra:

x = A⊗ x⊕ b (2-10)
with A ∈ Rn×nmax and b, x ∈ Rn×1

max . Now let

A? :=
∞⊕
p=0

A⊗p (2-11)

If A? as the Kleene-star product of A exists in Rn×nmax then

x = A? ⊗ b (2-12)

solves the system of max-plus linear equations 2− 10.

The existence of A? in 2−11 depends on the precedence graph G(A). If there are only diagonal
elements of non-positive values or no diagonal element in G(A), then A? exists. Moreover, A?
is unique if the diagonal elements of G(A) are negative. Theory 2− 2.1 can be expanded into

Theorem 2-2.2 (Theorem 3.20 of [1]). If matrix A of the precedence graph G(A) has
diagonal elements with non-positive values , then

A? = E ⊕A⊕A⊗2 ⊕ ...⊕A⊗n−1 (2-13)

where n is the dimension of A

Theorem 2-2.2 implies that if matrix A has diagonal elements with non-positive values, then
it is irreducible. It can be observed that the calculation of A? in Theorem 2-2.2 is similar to
the calculation proof of irreducible matrix. Hence, for the irreducible A, A? can be found in
finite p = n−1. With this bound, calculation of A? is possible. In general, irreducible matrix
itself is an example of nilpotent matrix

Definition 2-2.4. Nilpotent Matrix The matrix A ∈ Rn×nmax is called nilpotent if there
exists a finite positive integer p0 , with p ≥ p0, such that A⊗p = E .

2-2-4 Eigenvalues and Eigenvectors

As in linear algebra, eigenvalues and eigenvectors can be found from a square matrix. Eigen-
values and eigenvectors in max-plus algebra are defined as

Definition 2-2.5. Max-plus-algebraic eigenvalues and eigenvectors Let A ∈ Rn×nmax . If
there exist λ ∈ Rmax and v ∈ Rnmax with v 6= En×1 such that A ⊗ v = λ ⊕ v then we say that
λ is a max-plus-algebraic eigenvalue of A and that v is a corresponding max-plus-algebraic
eigenvector of A

For every square matrix with entries in Rmax, there is always be,at least, a max-plus-algebraic
eigenvalue [1]. Different with linear algebra, for A ∈ Rn×nmax , there might be less than n
max-plus-algebraic eigenvalues. For every irreducible matrices, there is only a max-plus-
algebraic eigenvalue [1]. As in linear algebra, the max-plus-algebraic multiplication of max-
plus-algebraic eigenvectors with a real number will result in max-plus-algebraic eigenvectors.
In max-plus-algebra, there exists a property called cyclicity of a a matrix. Cyclicity of a
matrix is related to the max-plus-algebraic eigenvalues, and defined as:
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Definition 2-2.6. Cyclicity of a matrix A matrix A is said to be cyclic if there exists a
max-plus-algebraic eigenvalue λ ∈ Rmax, and integers c ∈ N and k0 ∈ N such that

∀p ≥ k0 : A⊗p+c = λ⊗c ⊗A⊗p (2-14)

The smallest possible c for this equation is called the cyclicity of a matrix A, with k0 is called
the coupling time.

Irreducibility and cyclicity of a matrix are related, as every irreducible matrix is a cyclic
matrix [1, 2].

2-3 Max-Plus-Linear Systems

Based on max-plus algebra, a discrete event system (DES) with synchronization and no
concurrency can be modeled as max-plus linear (MPL) systems or switching max-plus-linear
systems (SMPL). MPL and SMPL systems are similar with a state-space model of a system in
linear algebra, with respect to the form. The next states are derived from max-plus addition
and multiplication of the previous states, inputs, and the matrices. As in linear algebra,
the matrices represent the model of the system. In subsection 2-3-1, MPL systems will be
explained in details. Furthermore, SMPL systems will be explained in subsection 2-3-2

2-3-1 Max-Plus-Linear Systems

MPL systems can be divided into period-invariant MPL systems and period-variant MPL
systems.In general, period-invariant MPL systems can be modeled as [1, 2, 3]:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k) (2-15)
y(k) = C ⊗ x(k) (2-16)

with A ∈ Rn×nmax ,B ∈ Rn×mmax , and C ∈ Rl×nmax as the system matrices. The number of states,inputs,
and ouputs are represented by, n m, l, respectively. The vector x(k), x(k− 1) ∈ Rn×1

max are the
current and previous-states vector of the system, respectively. The vector u(k) ∈ Rm×1

max is the
input vector of the system. The vector y(k) ∈ Rl×1

max is the output vector of the system. In
MPL systems, the elements of the state, input, and output vectors are event times, and k is
the cycle counter of the events.

The description of period-invariant MPL systems in equation 2-15 is in explicit form as the
value of x(k) does not depend on x(k) itself. If the value of x(k) depends on the x(k) itself, the
period-invariant MPL systems are said to be in implicit form. The implicit period-invariant
MPL systems are defined as

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕B ⊗ u(k) (2-17)
y(k) = C ⊗ x(k) (2-18)

with A0,A1 ∈ Rn×nmax describe as the system matrices that relate x(k) with itself and x(k − 1)
respectively. The implicit and explicit form of MPL systems are still closely related to each
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10 Max-Plus Algebra and Max-Plus-Linear Systems

other. In fact, the implicit form of MPL systems can be transformed into explicit form using
Theorem 2− 2.1 and Theorem 2− 2.2. The transformation can be defined as

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)
= A?0 ⊗A1 ⊗ x(k − 1)
= A⊗ x(k − 1)

(2-19)

for period-invariant MPL systems. The period-variant MPL systems are mostly similar with
period-invariant MPL systems for both explicit and implicit forms, except the system matrices
might change for every cycle k.

2-3-2 Switching Max-Plus-Linear Systems

For a system with different operating modes, SMPL systems can be used to model the DES
instead of MPL systems. SMPL systems, for explicit period-invariant form, are defined as
[16]

x(k) = Al(k) ⊗ x(k − 1)⊕Bl(k) ⊗ u(k) (2-20)
y(k) = C l(k) ⊗ x(k) (2-21)

with Al(k) ∈ Rn×nmax ,Bl(k) ∈ Rn×mmax , and Cl(k) ∈ Rl×nmax as the system matrices for mode l(k). The
mode l(k) of the system can be determined by a switching function [18]

l(k) = φ(x(k − 1), ..., x(0), l(k − 1), u(k)) (2-22)

With the switching function, the mode of the system can be switched so change in the
structure of the system can be modeled. SMPL systems, for implicit period-invariant form,
are defined as [16]

x(k) = A
l(k)
0 ⊗ x(k)⊕Al(k)

1 ⊗ x(k − 1)⊕Bl(k) ⊗ u(k) (2-23)
y(k) = C l(k) ⊗ x(k) (2-24)

The explicit and implicit period-variant SMPL systems have similar forms compared to the
period-invariant ones, except the switching function is also determined by the cycle k. The
implicit model of SMPL systems also can be transformed into explicit form if Theorem 2−2.1
is satisfied [18]. The SMPL systems might also subject to change based on the time instant
τ at the moment. Then, both explicit and implicit SMPL systems can be defined as

x(k|t) = Al(k|t) ⊗ x(k − 1|t)⊕Bl(k|t) ⊗ u(k|t) (2-25)
y(k|t) = C l(k|t) ⊗ x(k|t) (2-26)

(2-27)

and

x(k|t) = A
l(k|t)
0 ⊗ x(k|t)⊕Al(k|t)1 ⊗ x(k − 1|t)⊕Bl(k|t) ⊗ u(k|t) (2-28)

y(k|t) = C l(k|t) ⊗ x(k|t) (2-29)
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2-4 Summary

In this chapter, the concept of max-plus algebra and its properties are already introduced.
The connection of max-plus algebra and graph theory is utilized in the explanation. Based
on the max-plus algebra, the MPL and SMPL system are also explained. The knowledge
of max-plus algebra, MPL, and SMPL system is essential in understanding the modeling of
legged locomotion with SMPL in the next chapter.
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Chapter 3

Scheduling of Legged Locomotion
with Switching Max-Plus-Linear

(SMPL) System

3-1 Introduction

Gait reference generator is a fundamental part in controlling the movement of legged robots.
The gait reference generator decides reference path for each leg in a legged robot. The
reference path of a leg itself is decided according to how the legged robot must move. By
doing so, the gait reference generator enforces the legged robot to follow the desired trajectory.
Moreover, the reference path of every leg must be synchronized, so the legged locomotion is
kinematically stable. Therefore, synchronization of legs is also an important element of the
gait reference generator. Scheduling of legged locomotion is a way to achieve both purposes.
Here, SMPL is proposed as an effective scheduling system for legged robots. This chapter
will mainly discuss the SMPL system for legged locomotion, both the SMPL for forward-only
and trajectory-following locomotion.
To introduce, the existing gait reference generators are discussed in 3-2. There are two gait
reference generators explained, central pattern generators (CPGs) and Buehler clock [19, 6].
In section 3-3, the SMPL system for forward-only locomotion is discussed. The discussion is
including the properties of the corresponding SMPL system, such as max-plus eigenstructure,
coupling time, and gait transition. Next, the SMPL system for trajectory-following locomotion
is explained. The relevant properties of this SMPL system are also discussed here. Finally,
in section 3-5 the full control structure needed for the legged locomotion system is explained.

3-2 Recent Modeling Method

In this report, there are two events considered during the legs movement. Those events can
be explained as
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14 Scheduling of Legged Locomotion with Switching Max-Plus-Linear (SMPL) System

• Touchdown is the event when a leg touches the ground again after it moves in the air

• Lift-off is defined as the event when a leg leaves the ground after it moves on the ground

Between the two events, there are two defined periods. The periods are defined based on the
starting and ending events. Stance period of a leg will start with touchdown and end with
lift-off of the leg. Swing period of a leg will start with lift-off and end with touchdown of the
leg.

3-2-1 Central Pattern Generators (CPGs)

CPGs have been used for many times for legged robots, viewed as a standard model of gait ref-
erence generator. There are several useful properties of CPGs as gait reference generator[19]:

1. CPGs model the limit cycles on cross products of circles. Therefore, CPGs are suitable
for periodic task such as legged locomotion

2. CPGs are suitable for distributed implementation

3. There are fewer control parameters needed for CPGs

4. CPGs enable the use of feedback signal

In CPGs, the periodic motion is modeled by an abstract phase θi ∈ S1 with i denotes the
position of the leg and S1 the circle. The phase θ represents the reference angle which the
motor needs to sweep. The range of the phase can extend from 0 to 2π. From this subsection
to the end of the chapter, leg angle is assumed to be linear with the motor angle (phase). If
there are n legs, the n leg phase states θ = [θ1...θn]T ∈ Tn are generated with equation

θ̇(τ) = V + h(θ(τ)) (3-1)

where Tn is the n-torus (the Cartesian product of n circles), V ∈ Rn is the phase velocity
reference, and function h(θ(τ)) synchronizes each phase by setting the coupling between each
phases. Function h(θ(τ)) enables the design of a certain gait. With the generated phase θ,
reference trajectories of each actuator can be generated with

qref (τ) = g(p, θ(τ)) (3-2)

with qref (τ) ∈ Rn as the reference trajectories of each actuator at current time instant τ ∈
R and p as the set of parameters that modulate phases θ(τ) into a real motion. Later, the
tracking controller will use qref (τ) to control the legged robots.

There are several disadvantages of CPGs as gait reference generator[4]:

1. The needs of solving differential equations continuously, in real-time

2. The equation 3-1 will exhibit transient behavior which adds complexity into the system

With the linearity and the nonexistence of the differential equations in SMPL system, later
it will be shown that SMPL system can be proposed as an alternative to CPGs
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3-2-2 Buehler Clock

Buehler clock is first used as a reference trajectory for legs of RHex robot[6]. The Buehler
clock is modeled as continuous piecewise linear functions indicating the phase reference for
each leg for a specific time. In figure 3 − 1, Buehler clock model for tripod gait of hexapod

Figure 3-1: The Buehler Clock model of a hexapod robot[6]

robots is shown. The left tripod gait represents the phase reference for legs 1,4, and 5. The
right tripod gait represents the phase reference for legs 2,3, 6. The numbering of the legs is
referred to figure 3− 2. From figure 3− 1, the mathematical model of the Buehler clock can
be written as

θleft tripod(τ) =


θs
τg
τ̄ if− τg

2 < τ̄ <
τg

2
π−θs
τc−τg

(τ̄ − τg

2 ) + θs
2 ifτ̄ ≥ τg

2
π−θs
τc−τg

(τ̄ + τg

2 )− θs
2 ifτ̄ ≤ τg

2

(3-3)

θright tripod(τ) = θleft tripod(τ + τc
2 ) (3-4)

with τc as the cycle time, τg as the stance time, and θs as the stance phase. For τ̄ , it can be
defined as

τ̄ = ((τ + τc
2 )moduloτc)−

τc
2

The Buehler clock model represent a simple gait reference generator than CPGs. There is no
differential equation involved in Buehler clock model, in contrast with CPGs. Later, it will
be shown that SMPL model of legged locomotion system can be viewed as generalization of
Buehler clock[4]

3-3 SMPL for Straightforward-Only Legged Locomotion

In this report, the considered legged robot is Zebro robot. With six half-circular compliant
legs, the indexing of the legs is needed to identify the discussed legs. The indexing of the legs
is indicated in the figure below

The indexing of the legs will be used in the discussion about the SMPL system and the gait.

Master of Science Thesis William Suriana



16 Scheduling of Legged Locomotion with Switching Max-Plus-Linear (SMPL) System

Figure 3-2: Zebro with the leg index numbering assumed in this paper [4, 6]

3-3-1 SMPL System

To model legged locomotion system with SMPL, the states of the model needs to be defined
first. As a discrete event system (DES), the states of legged locomotion system can be defined
as the time instant of events. The events are touchdown and lift-off of each leg. Then, let ti
be the time instant of touchdown event of leg i and łi be the time instant of lift-off event of
leg i. Therefore ti and li can be defined as[14]

ti(k) = li(k) + τf (3-5)
li(k) = ti(k − 1) + τg (3-6)

with k as the cycle counter of the events, τf as the minimal swing time. The equations 3− 5
until 3 − 6 can be used to synchronize the legs movement in legged locomotion, combining
with max-plus algebra. For example, to synchronize the legs of humanoid robot, this equation
can be applied

tleft(k) = lleft(k) + τf

= lleft(k)⊗ τf
(3-7)

tright(k) = lright(k) + τf

= lright(k)⊗ τf
(3-8)

lleft(k) = max(tleft(k − 1) + τg, tright(k − 1) + τ∆)
= tleft(k − 1)⊗ τg ⊕ tright(k − 1)⊗ τ∆

(3-9)

lright(k) = max(tright(k − 1) + τg, tleft(k) + τ∆)
= tright(k − 1)⊗ τg ⊕ tleft(k)⊗ τ∆

(3-10)

with τ∆ as the double stance time. With this synchronization, the left leg of the humanoid
robot will lift off-first. Then, the right leg of the humanoid robot can only lift off τ∆ seconds
after the touchdown of the left leg. The equations 3− 7 until 3− 10 can be translated into

x(k) =


ε ε τf ε
ε ε ε τf
ε ε ε ε
τ∆ ε ε ε

⊗ x(k)⊕


ε ε ε ε
ε ε ε ε
τg τ∆ ε ε
τ∆ τg ε ε

⊗ x(k − 1) (3-11)
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with x(k) = [tleft(k) tright(k) lleft(k) lright(k)]T . For multi-legged robots, the matrices in
equation 3 − 11 will have various forms and size. The size of the matrices will depend on
the number of legs and the form of the matrices will depend on the gait which is used by
the legged robots. Therefore, there is a need to formalize the construction of the model as in
equation 3−11. For a n-legged robots, let l1,...,lm be the sets of integers which defined as[20]

m⋃
p=1

`p = {1, ..., n}for

∀i 6= j, `i ∩ `j = ∅

Each lp will contain a set of legs which recirculate simultaneously (lift-off together). Each lp
can be ordered to form a gait which can be defined as[20]

G = `1 ≺ `2 ≺ ... ≺ `m (3-12)

Therefore, the relation in 3−12 can be interpreted as the order of recirculation of each group
of legs. If the gait is already defined, then equation 3− 11 can be formalized as[21]

x(k) =
[
E τf ⊗ E
P E

]
⊗ x(k)⊕

[
E E

τg ⊗ E ⊕Q E

]
⊗ x(k − 1) (3-13)

with x(k) = [t1(k)... tn(k) l1(k)... ln(k)]T . A cycle k is finished if lm in G is already done.
The chosen gait is defined in matrices P and Q. Those matrices will synchronize the legged
locomotion as in equations 3−7 until 3−10, with regards to the chosen gait. Therefore, with
this synchronization, the legs in l2 can only lift-off τ∆ seconds after the legs in l1 touchdown.
The chosen gait can be translated into matrices P and Q with[21]

[P ]p,q =
{
τ∆ ∀j ∈ {1, ...,m− 1};∀p ∈ lj+1; ∀q ∈ lj
ε otherwise

(3-14)

[Q]p,q =
{
τ∆ ∀p ∈ l1;∀q ∈ lm
ε otherwise

(3-15)

The model in 3− 13 can be simplified into form

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1) (3-16)

This model can be regarded as an implicit SMPL system. The model does not only depend
on the previous cycle states but also on the current cycle states. With various kind of gait
which can be applied, A0 and A1 can have various kind of modes with respect to the defined
gait. The implicit SMPL system in equation 3− 16 then can be transformed into an explicit
SMPL systems as
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18 Scheduling of Legged Locomotion with Switching Max-Plus-Linear (SMPL) System

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)
= A∗0 ⊗A1 ⊗ x(k − 1)
= A⊗ x(k − 1)

(3-17)

This transformation is only possible if Theorem 2−2.1[1] is fulfilled. However, for the existence
of an explicit SMPL system of legged locomotion, there is an additional requirement[21].

Lemma 3-3.1. A sufficient condition for A∗0 to exist is that the matrix P is nilpotent in the
max-plus sense

Lemma 3− 3.1 exists as diagonal elements of non-positive values are not desirable in matrix
A0. The existence of non-positive values in matrix A0 implies that τf and τ∆ are non-positive,
which does not make sense. Therefore, to fulfill Theorem 3−3.1, matrix P must be nilpotent.
The proof of Lemma 3− 3.1 is included in the Appendix.

The matrix P itself can be proven as a nilpotent matrix. By the construction of the matrix
P , G(P ) is a strongly connected precedence graph. It can be observed that the column index
which is contained in lj will be used as the row index in lj+1. By this way, for any two
different nodes, there exists a path from a node to another node. Then, the matrix P is
irreducible. The irreducibility of matrix P implies that it is a nilpotent matrix. Because of
the irreducibility, matrix A?0 can be calculated as

A?0 = A0 ⊕A⊗2
0 ⊕ ...⊕A

⊗n−1
0 (3-18)

3-3-2 Eigenstructure and Coupling Time of the System Matrices

From matrix A in equation 3 − 17, several important max-plus-algebraic properties can be
inferred. Those properties are max-plus-algebraic eigenvalue, max-plus-algebraic eigenvec-
tor, coupling time, and cyclicity. To derive those properties, two assumptions need to be
considered

B1 : τf , τg > 0
B2 : (τf ⊗ τ∆)⊗m ≥ τf ⊗ τg

[20]The assumption B1 is straightforward from the fact that the swing and stance time of
every legs will always be more than 0 if the legged robots move. With assumption B2, τf ,
τg, τ∆ have limited set of possibilities. The derivation of max-plus-algebraic eigenvalue and
eigenvector can be explained as

Lemma 3-3.2. If assumption A1 hold then the unique max-plus-algebraic eigenvalue of ma-
trix A in system 3− 17 is

λ := (τf ⊗ τ∆)⊗m ⊕ τf ⊗ τg (3-19)
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and the max-plus-algebraic eigenvector v ∈ R2n×1
max is

∀j ∈ {1, ...,m};∀q ∈ lj :[v]q := τf ⊗ (τf ⊗ τ∆)⊗j−1 (3-20)
[v]q+n := (τf ⊗ τ∆)⊗j−1 (3-21)

with n as the number of the states.

From Lemma 3 − 3.2, it is clear that there is only a max-plus-algebraic eigenvalue with a
corresponding max-plus-algebraic eigenvector. Therefore, matrix A in equation 3 − 17 will
always be an irreducible matrix[1]. From equation 3 − 19 in Lemma 3 − 3.2, max-plus-
algebraic eigenvalue of the A matrix is the total cycle time of the gait. The corresponding
max-plus-algebraic eigenvector in equation 3− 20 describes the steady-state behaviour[4, 1].
With knowledge of the max-plus-algebraic eigenvalue and eigenvector, the coupling time and
cyclicity can be derived using equation 2 − 14 in the previous chapter. It is possible as the
matrix A in systems 3− 17 is irreducible. The resulting coupling time and cyclicity are

Lemma 3-3.3. If assumptions A1 and A2 hold then the coupling time of matrix A in equation
3− 17 is k0 = 2 with cyclicity c = 1

The coupling time explains the transient behaviour of legged robots with system 3−17. With
coupling time of 2, the legged robots with system 3 − 17 will achieve steady-state condition
within 2 cycles after a gait transition or perturbation.

3-3-3 Gait Transitions

From Chapter 2, it is already explained that different gait will result in different matrices A0
and A1 of SMPL system 3 − 16. However, the consequence of switching gait has not been
explained yet. To understand the consequence of switching gait, the representation of a gait
needs to be understood. With how a gait is defined in 3−12, a certain gait can be represented
in several ways. For example, a tripod gait can be represented as

G = {1, 4, 5} ≺ {2, 3, 6}
G = {2, 3, 6} ≺ {1, 4, 5}

and pentapod gait can be represented as

G = {1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6}
G = {6} ≺ {5} ≺ {4} ≺ {3} ≺ {2} ≺ {1}
G = {4} ≺ {3} ≺ {2} ≺ {1} ≺ {6} ≺ {5}

Each representation of a particular gait will result in the same legged locomotion behavior.
However, different representation will result in different gait transition characteristic if the
gait is switched. For example, if the gait is switched from tripod gait to pentapod gait

{1, 4, 5} ≺ {2, 3, 6} ≺ {1} ≺ {2} ≺ {3} ≺ {4} ≺ {5} ≺ {6}

will have different gait transition characteristic compared with

{1, 4, 5} ≺ {2, 3, 6} ≺ {4} ≺ {3} ≺ {2} ≺ {1} ≺ {6} ≺ {5}

Master of Science Thesis William Suriana



20 Scheduling of Legged Locomotion with Switching Max-Plus-Linear (SMPL) System

for constant τf , τg, and τ∆. When the gait is switched, the stance time of each leg will
change. The amount of stance time change will depend on the chosen representation of the
gaits involved. In the example above, the stance time of leg 4 is larger in the first kind of
transition than the second kind.

To know the amount of change in stance time during gait transition, the properties of max-
plus-algebraic eigenvalue can be utilized. If assumptions A1 and A2 are fulfilled, the equation
3 − 19 becomes λ:=(τf ⊗ τ∆)⊗m. The assumption A2 is also considered here as coupling
time needs to be minimized for the transition. Therefore, τf , τg, τ∆ are set with regards to
assumption A2. It is already known that the max-plus-algebraic eigenvalue of matrix A in
system 3− 17 is the total cycle time of a gait, with lm as the last set of legs. Therefore, the
time instant of legs in set li will lift-off is[22]

lli = τf ⊗ τ⊗i∆ (3-22)

for 0 < i < j ≤ m. If the legs in set li are moved into set lj in the new gait, the time instant
of the legs will lift-off is

llj = τf ⊗ τ⊗j∆ (3-23)

Therefore, the amount of change in stance time is equal the difference between lli and llj [22]

∆l = τf ⊗ τ⊗j−i∆ (3-24)

If this is the case, then the legs involved will stance for extra ∆l seconds during the transition
to synchronize. It might also be the case that 0 < j < i ≤ m. Then, if the legs in set li are
moved into set lj in the new gait, then

∆l = τf ⊗ τ⊗i−j∆ (3-25)

In this case, the legs involved will postpone the lift-off for ∆l seconds. To achieve optimal gait
transition, the variance of the stance time during transition should be minimized. Therefore,
optimal gait transition can be achieved by minimizing ∆l. The minimization of ∆l during gait
transition can be realized by choosing a representation of a gait which resemble the previous
gait[21]. This decision will cause the difference between l and j is minimal, so ∆l is minimal.

3-4 SMPL for Trajectory-Following Legged Locomotion

In the section 3-3, the remaining SMPL system has already been discussed. It is already
proven that the remaining SMPL system can guarantee synchronization of legs. However,
the remaining SMPL system was only tested in Zebro for straight-line motion [4]. On the
other hand, to design a trajectory-following legged locomotion system, the legged robot needs
to turn. In our case, Zebro does not have any steering system. Then, without any added
part, Zebro can only turn using a method called differential drive. With differential drive, the
linear velocity of a side of the Zebro will be different to another side. The difference of the
linear velocity causes the Zebro turns while moving forward. This method is already tested
in RHex [6].

There are two possible ways to generate specific linear velocity for each side of the Zebro.
The first way is by adding offset in the phases of the legs. For the same stance and swing
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period, legs on the left side of Zebro will have different angular velocity than the right side.
The linear velocity of a side of Zebro will be different to another side as the result. However,
the possible offset added is bounded due to the shape of the legs. The second way is by
determining different stance time for each side of the Zebro. This way offers less bound on
the determined stance time, as long as the generated angular velocity of each leg does not
violate the constraint. Therefore, it is more suitable for control purpose. To apply different
stance time for each side of the Zebro, a new SMPL system is proposed in this section.

3-4-1 SMPL Model

To induce different stance time for each side, a parameter τp is introduced. The parameter τp
is defined as difference time between left and right legs. In a turning process, τp is added to
the stance time of the inner legs. Consequently, the inner legs have longer stance time and
slower angular velocity. The linear velocity of the inner side will be slower than the outer
side. For the outer legs, τp is added to the swing time. The addition of τp to the swing time
of the outer legs guarantees that the total cycle time for each leg is same. With this factor,
the calculation of the states are cyclic. Apart from τp, the other parameters are the same as
the remaining SMPL system. There is an important convention which is desired by using the
trajectory-following SMPL system. The convention is that the legs in the same sequence will
lift-off together on every condition.
With the new parameter, ti and li of the legs can be classified into two types when the legged
robot is turning. They are tii and lii of the inner legs, and toi and loi of the outer legs. For
independent legs, equation 3-5 and 3-6 can be derived further into

tii(k) = lii(k) + τf (3-26)
toi (k) = loi (k) + τf + τp (3-27)
lii(k) = tii(k − 1) + τg + τp (3-28)
loi (k) = toi (k − 1) + τg (3-29)

To compare the trajectory-following SMPL system with the straightforward-only SMPL sys-
tem, the humanoid robot example is repeated for turning motion. For a turning left humanoid
robot, the left leg is the inner leg and the right leg is the outer leg. The states of both legs
are then defined as

tleft(k) = lleft(k) + τf

= lleft(k)⊗ τf
(3-30)

tright(k) = lright(k) + τf + τp

= lright(k)⊗ τf ⊗ τp
(3-31)

lleft(k) = max(tleft(k − 1) + τg + τp, tright(k − 1) + τ∆)
= tleft(k − 1)⊗ τg ⊗ τp ⊕ tright(k − 1)⊗ τ∆

(3-32)

lright(k) = max(tright(k − 1) + τg, tleft(k) + τp)
= tright(k − 1)⊗ τg ⊕ tleft(k)⊗ τp

(3-33)
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From equation 3-32 and 3-33, terms tright(k−1)⊗ τ∆ and tleft(k)⊗ τp can be observed. These
terms appear because the swing time of the left leg is shorter than the right leg. Therefore,
after the left leg touchdowns, there are τp seconds difference with the lift-off of the right leg.
For multi-legged robot, these terms appear to guarantee that all legs in lj+1 lift-off after all
legs in lj have already touchdown. The outer legs in lj will touchdown τp seconds after the
inner legs.

Observing the equation 3-32 to 3-33, it is obvious that the inner legs and the outer legs need to
denoted with different notation. With different notation, trajectory-following SMPL system
can be described easier mathematically. The gait parameterization can be redefined as

m⋃
p=1

`p = {1, ..., n} for

∀i 6= j, `i ∩ `j = ∅

iff τ̄2k−1
g 6= τ̄2k

g , k ∈ 1, ..., n2
`ip ⊂ `p for inner legs
`op ⊂ `p for outer legs
`ip ∪ `jp = `p, `

i
p ∩ `jp = ∅

iff τ̄2k−1
g = τ̄2k

g , k ∈ 1, ..., n2
`ip = ∅, `op = ∅

In the gait parameterization, if turning motion exists, the inner and outer legs are defined as
subsets of lp. The set of inner legs are denoted by lip and outer legs by lop. These sets only
exist if the linear velocity of the left side and right side of Zebro are different. The elements of
sets lip and lop also depend on the direction of turn. The difference is defined by the inequality
of true stance time of even indexed legs τ̄2k

g and odd indexed legs τ̄2k−1
g . Here, the true stance

time of leg i is defined as τ̄ ig. If the existing motion is straightforward, the sets lip and lop are
empty and only set lp exists.

The trajectory-following SMPL itself does not only consider turning motion. Straight-forward
motion is also still considered. Therefore, trajectory-following SMPL can be seen as a general
form of SMPL system for legged locomotion. For a n-legged trajectory-following robot, the
SMPL system in 3-13 can be modified into

x(k) =
[
E τf ⊗M
R E

]
⊗ x(k)⊕

[
E E

(τg ⊗N)⊕ T E

]
⊗ x(k − 1)

= G0 ⊗ x(k)⊕G1 ⊗ x(k − 1)
(3-34)

In this SMPL system, matrices R, T , M , and N are introduced. The introduced matrices
replace P , Q, and two max-plus identity matrices respectively. The matrices R and T are
constructed in a similar way as matrices P and Q. To construct matrices R and T , these
rules are used
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[R]p,q =


τ∆ ∀j ∈ {1, ...,m− 1};∀p ∈ `oj+1;∀q ∈ `oj ; τ̄2k−1

g 6= τ̄2k
g , k ∈ 1, ..., n2

τp ∀j ∈ {1, ...,m− 1};∀p ∈ `ij+1;∀q ∈ `ij ; τ̄2k−1
g 6= τ̄2k

g , k ∈ 1, ..., n2
τ∆ ∀j ∈ {1, ...,m− 1};∀p ∈ `j+1;∀q ∈ `j ; τ̄2k−1

g = τ̄2k
g , k ∈ 1, ..., n2

ε otherwise

(3-35)

[T ]p,q =


τ∆ ∀p ∈ `o1; ∀q ∈ `om; τ̄2k−1

g 6= τ̄2k
g , k ∈ 1, ..., n2

τp ∀p ∈ `i1; ∀q ∈ `im; τ̄2k−1
g 6= τ̄2k

g , k ∈ 1, ..., n2
τ∆ ∀p ∈ `1; ∀q ∈ `m; τ̄2k−1

g = τ̄2k
g , k ∈ 1, ..., n2

ε otherwise

(3-36)

All conditions in the rules above correspond to the gait parameterization in this subsection.
The structure of matrices R and T depend on the chosen gait and the generated motion. Every
combination of a particular gait and a particular direction will yield a particular structure
of matrices R and T . Turning left, turning right, and straightforward motion will result
in a different structure of matrices R and T respectively. Different from matrices R and T ,
matricesM and N do not depend on the chosen gait. The matricesM and N are constructed
by these rules

[M ]p,q =


τp ∀j ∈ {1, ...,m};∀p ∈ `oj ; ∀p = q; τ̄2k−1

g 6= τ̄2k
g , k ∈ 1, ..., n2

e ∀j ∈ {1, ...,m};∀p ∈ `ij ; ∀p = q; τ̄2k−1
g 6= τ̄2k

g , k ∈ 1, ..., n2
e ∀p = q; τ̄2k−1

g = τ̄2k
g , k ∈ 1, ..., n2

ε otherwise

(3-37)

[N ]p,q =


e ∀j ∈ {1, ...,m};∀p ∈ `oj ; ∀p = q; τ̄2k−1

g 6= τ̄2k
g , k ∈ 1, ..., n2

τp ∀j ∈ {1, ...,m};∀p ∈ `ij ; ∀p = q; τ̄2k−1
g 6= τ̄2k

g , k ∈ 1, ..., n2
e ∀p = q; τ̄2k−1

g = τ̄2k
g , k ∈ 1, ..., n2

ε otherwise

(3-38)

From rule 3-37 and 3-38, the structure of matrices M and N depend only on the direction
of motion. As in the straightforward-only SMPL system, matrices M and N are max-plus
identity matrices E for straightforward motion. For turning motion, matrices M and N are
diagonal matrices. The diagonal element of matrices M and N depend on the direction of
turn. For example, if the Zebro turns left, then the even indexed diagonal elements in matrix
M are τp. The odd indexed diagonal elements in matrix M are e. The opposite applies on
matrix N .

The SMPL system in 3-34 is still described in implicit form. To simplify the calculation of the
states, the SMPL system 3-34 needs to be transformed into an explicit form. In lemma 3-3.1,
the sufficient condition for the transformation is already stated for the straightforward-only
SMPL system. To check the validity of Lemma 3-3.1 for trajectory-following SMPL system,
repetitive product of G0 is calculated
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G⊗p0 =



 E τ⊗kf ⊗M⊗k ⊗R⊗(k−1)

R⊗k ⊗ τ⊗(k−1)
f ⊗M⊗(k−1) E

 if k is odd

[
τ⊗kf ⊗M⊗k ⊗R⊗k E

E R⊗k ⊗ τ⊗kf ⊗M⊗k

]
if k is even

(3-39)

Here, the Kleene-product of G0, G∗0, exists only if either matrix R or M is nilpotent. As the
matrix M consist of diagonal finite elements, matrix M will not be nilpotent in any case.
Therefore, corresponding to Lemma 3-3.1 , matrix G∗0 exists if matrix R is nilpotent. Lemma
3-3.1 holds, with matrix R replacing matrix P . The matrix G∗0 can be calculated with

G∗0 =
n−1⊕
p=0

G⊗p0 (3-40)

The implicit trajectory-following SMPL system 3-34 then can be transformed into

x(k) = G0 ⊗ x(k)⊕G1 ⊗ x(k − 1)
= G?0 ⊗G1 ⊗ x(k − 1)
= G⊗ x(k − 1)

(3-41)

The trajectory-following SMPL system will result in the touchdown and lift-off time instant
of every leg as the states. The states of the trajectory-following SMPL can be illustrated by
a gantt chart. Here, the gantt chart of the states are presented for tripod {1, 4, 5}, {2, 3, 6}
and quadruped {1, 4}, {3, 6}, {2, 5} as the gait. The chosen parameters are τf , τp, τg, and τ∆
equals to 0.5, 0.5, 0.8, and 0.1.

(a) Tripod (b) Quadruped

Figure 3-3: The gantt chart of the states of the trajectory-following SMPL system with tripod
and quadruped as the gait. The blue bar denotes the stance period, and the white bar denotes
the swing period
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3-4-2 Eigenstructure of System Matrices

With the addition of parameter τp, the eigenvalue and eigenvector of the trajectory-following
SMPL system are different compared to straightforward-only SMPL system. As the addition
of τp changes how touchdown and lift-off time instant are calculated, τp affects the value of
eigenvalue and eigenvector. The eigenvalue and eigenvector of the proposed SMPL system
are defined with the following lemma :

Lemma 3-4.1. Consider two assumptions :

A1 : τf > 0, τg > 0
A2 : (τf ⊗ τp ⊗ τ∆)⊗m > (τg ⊗ τf ⊗ τp)

Assuming that assumption A1 holds, and for turning motion, the max-plus-algebraic eigen-
value of matrix G is uniquely defined as

λ := (τf ⊗ τp ⊗ τ∆)⊗m (3-42)

and the max-plus-algebraic eigenvector v ∈ R2n×1
max is defined as

∀j ∈ {1, ...,m}; ∀qi ∈ lij ; ∀qo ∈ loj : (3-43)
[v]iq := τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-44)

[v]oq := (τf ⊗ τp)⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-45)

[v]i,oq+n := (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-46)

In the previous work [20], it is proven that the eigenvalue represents the total cycle time and
the eigenvector represents the time instant of touchdown and lift-off of the legs in steady
state condition. The variable states x(k) can be substituted by the λ ⊗ v, as the current
time instant of touchdown and lift-off of the legs is equal to the summation of previous time
instant and total cycle time. Therefore, variable states x(k − 1) can also be substituted by
v. As the cycle time, the eigenvalue is always larger than zero. With the substitution, the
SMPL system in 3-34 is transformed into :

λ⊗ v = λ⊗
[
E τf ⊗M
R E

]
⊗ v ⊕

[
E E

(τg ⊗N)⊕ T E

]
⊗ v (3-47)

λ⊗ v = (λ⊗
[
E τf ⊗M
R E

]
⊕

[
E E

(τg ⊗N)⊕ T E

]
)⊗ v (3-48)

λ⊗
[
v1
v2

]
=

[
E (λ⊗ τf )⊗M

λ⊗R⊕ (τg ⊗N)⊕ T E

]
⊗

[
v1
v2

]
(3-49)

The validity of equation 3-49 then is used to proof that the lemma 3-3.2 holds true. Equation
3-49 can be divided into two equations :

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗M ⊗ v2 (3-50)
λ⊗ v2 = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1 (3-51)
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Equation 3-50 and equation 3-51 are the first and second row of equation 3-49 respectively.
Here, v1 consist of [v]iq and [v]oq and v2 consists of [v]i,oq+n. The term v2 can be removed from
the right side of equation 3-51 as it will always be less than (λ ⊗ R ⊕ τg ⊗ N ⊕ T ) ⊗ v1.
Equation 3-50 then can be derived for two cases. For the first case, the eigenvector of inner
legs are considered. In this case, equation 3-50 is derived as :

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ e⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-52)
λ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 = τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 ⊕ λ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1

(3-53)
λ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 = λ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-54)

From equation 3-52, it can be noted that [M ]p,q is equal to e for inner legs. The equations
3-53 and 3-54 hold true as the eigenvalue is always larger than zero. In the second case,
equation 3-50 is derived with the eigenvector of outer legs, as :

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-55)
λ⊗ v1 = (τf ⊗ τp)⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 ⊕ λ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-56)

λ⊗ (τf ⊗ τp)⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 = λ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1 (3-57)

Different than equation 3-52, [M ]p,q is equal to τp in equation 3-55. Again, the equation
3-56 and 3-57 hold true as the eigenvalue is always larger than zero. Finally, equation 3-50
holds true for all possible cases. Now, equation 3-51 is also derived for two cases. In the first
case, the row indices of equation 3-51 which correspond to ∀j ∈ {1, ...,m− 1}, ∀p ∈ `j+1 are
considered. The derivation can be described as :

λ⊗ (τf ⊗ τp ⊗ τ∆)⊗j = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1

= [λ⊗R⊗ v1]p ⊕ [τg ⊗N ⊗ v1]p ⊕ [T ⊗ v1]p
= (

⊕
q∈`j

λ⊗ [R]p,q ⊗ [v1]q)⊕ (
⊕

q∈`j+1

τg ⊗ [N ]p,q ⊗ [v1]q)⊕ ([T ]p ⊗ v1)

(3-58)

The derivation of equation 3-58 can be divided into three parts :

⊕
q∈`j

λ⊗ [R]p,q ⊗ [v1]q = (λ⊗ τ∆ ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1)

⊕ (λ⊗ τp ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1)
= λ⊗ τ∆ ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1

= λ⊗ (τf ⊗ τp ⊗ τ∆)⊗j

(3-59)

⊕
q∈`j+1

τg ⊗ [N ]p,q ⊗ [v1]q = (τg ⊗ e⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j)

= τg ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j
(3-60)

[T ]p ⊗ v1 = ε (3-61)
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It is important to note that in equation 3-59 max-plus summation is done for q ∈ `j , corre-
sponding to how matrix R is formed in rule 3-35. It is different than equation 3-60, where
max-plus summation is done for q ∈ `j+1 as q = p in matrix N . Equation 3-61 is equal to ε
as all elements of [T ]p are ε for ∀p ∈ `j+1. Combining equation 3-58, 3-59, 3-60, and 3-61,
equation 3-58 can be further derived as :

λ⊗ (τf ⊗ τp ⊗ τ∆)⊗j = λ⊗ (τf ⊗ τp ⊗ τ∆)⊗j ⊕ τg ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗j

= λ⊗ (τf ⊗ τp ⊗ τ∆)⊗j
(3-62)

In equation 3-62, λ is always larger than τg ⊗ τf ⊗ τp corresponding to assumption A2. Next,
the remaining rows are now considered for the derivation of equation 3-51, as the second case.
The remaining rows consist of rows p ∈ `1, corresponding to how matrix T is formed. The
derivation can be described as :

λ⊗ [v2]p = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1 (3-63)
λ⊗ (τf ⊗ τp ⊗ τ∆)⊗1−1 = λ⊗ [R]p ⊗ v1 ⊕ [τg ⊗N ⊗ v1]p ⊕ [T ⊗ v1]p (3-64)
λ = λ⊗ [R]p ⊗ v1 ⊕ (

⊕
q∈l1

τg ⊗ [N ]p,q ⊗ [v1]q)⊕ (
⊕
q∈lm

[T ]p,q ⊗ [v1]q) (3-65)

The equation 3-65 then can be divided into three parts :

λ⊗ [R]p ⊗ v1 = ε (3-66)⊕
q∈`1

τg ⊗ [N ]p,q ⊗ [v1]q = (τg ⊗ e⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗1−1)

= τg ⊗ τf ⊗ τp
(3-67)

⊕
q∈`m

[T ]p,q ⊗ [v1]q = (τ∆ ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗m−1)

⊕ (τp ⊗ τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗m−1)
= τ∆ ⊗ τf ⊗ τp ⊗ (τf ⊗ τp ⊗ τ∆)⊗m−1

= (τf ⊗ τp ⊗ τ∆)⊗m

(3-68)

In the equation 3-66, all elements of [R]p are equal to ε for rows p ∈ `1. Similar to previous
case, max-plus summation is done for q ∈ `1 as q = p in matrix N. Whereas, max-plus
summation is done for q ∈ `m in matrix T parallel to how matrix T is formed. Substituting
equation 3-66, 3-67, and 3-68 to equation 3-65, the eigenvalue is obtained as

λ = (τf ⊗ τp ⊗ τ∆)⊗m

Therefore, the lemma 3-4.1 is proven with all the equations in this subsection. It is also
proven that the eigenvalue and eigenvector still represent the total cycle time and the steady-
state condition as in the straightforward motion. In the steady-state condition, the desired
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difference between each time instants is described. Knowing the desired difference of time
instants, the chosen gait can be known. Furthermore, in turning motion, the direction of
turning can also be inferred from the eigenvector. The direction of turn can be indicated
by observing the elements of [v]iq and [v]oq. If the elements of [v]iq are odd-indexed, then the
Zebro is turning left. Otherwise, the Zebro is turning right. The chosen gait can be concluded
from the number of sets containing the same element in [v]q, and the index of the elements
in that set. The elements of [v]i,oq+n which correspond to the legs in a particular `p will be the
same. It implies that all legs in a particular `p will lift-off at the same time instant. From the
definition of the eigenvalue, it is also can be concluded that the value of τ̄g depends on τp, τf ,
and τ∆ instead of the τg itself. The τg will only act as the lower boundary in choosing the
other parameters. The inner and outer true stance period, τ̄ ig and τ̄ og , then can be defined as

τ̄ ig = λ− τf (3-69)
τ̄ og = λ− (τf + τp) (3-70)

However, it is also possible that the legs in a particular `p do not lift-off at the same time
instant. This phenomenon happens when the assumption A2 in Lemma 3-4.1 is violated.
Then, the eigenvalue and the eigenvector of trajectory-following SMPL systems are described
in a different way than in Lemma 3-4.1.

Lemma 3-4.2. Consider the assumptions :

A3 : τp > τ∆

If the assumption A2 is violated and assumption A3 holds, and for turning motion, the max-
plus-algebraic eigenvalue of matrix G is defined as

λ := τg ⊗ τf ⊗ τp (3-71)

and the max-plus-algebraic eigenvector v ∈ R2n×1
max is defined as

∀j ∈ {2, ...,m}; ∀qi ∈ `ij ;∀qo ∈ `oj : (3-72)
[v]iq := τg ⊗ (τ⊗2

p ⊗ τf )j−1 ⊗ τf (3-73)
[v]oq := τg ⊗ (τ⊗2

p ⊗ τf )j−1 ⊗ τf ⊗ τp (3-74)

[v]i,oq+n := τg ⊗ (τ⊗2
p ⊗ τf )j−1 (3-75)

∀qi ∈ `i1;∀qo ∈ `o1 : (3-76)
[v]i,oq := τg ⊗ τf ⊗ τp (3-77)

[v]iq+n := τg ⊗ τp (3-78)
[v]oq+n := τg (3-79)

In proving the Lemma 3-4.2, the equation 3-50 and 3-51 are again derived. In contrast with
equation 3-52 to 3-68, the derivation of equation 3-50 and 3-51 are done with respect to the
eigenvalue and eigenvector in Lemma 3-4.2. Similar with the proof of Lemma 3-4.1, the proof
is derived for several cases. To simplify the writing, [v]q and [v]q+n are also written as v1 and
v2 instead. First, the equation 3-50 is derived for ∀p ∈ `i1
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λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ e⊗ τg ⊗ τp (3-80)
λ⊗ τg ⊗ τp ⊗ τf = λ⊗ τf ⊗ τg ⊗ τp (3-81)

The equation 3-81 holds true as λ will always be larger than v1. Then, the equation 3-50 is
derived for ∀p ∈ `o1

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ τp ⊗ τg (3-82)
λ⊗ τg ⊗ τp ⊗ τf = λ⊗ τf ⊗ τp ⊗ τg (3-83)

With both equation 3-81 and 3-83, equation 3-50 is proven to be true for ∀p ∈ `1. Next,
equation 3-50 is derived for ∀p ∈ `ij with ∀j ∈ 2, ...,m.

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ e⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 (3-84)

λ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 ⊗ τf = λ⊗ τf ⊗ τg ⊗ (τ⊗2

p ⊗ τf )j−1 (3-85)

The last case for the derivation of equation 3-50 is for ∀p ∈ `oj with ∀j ∈ 2, ...,m

λ⊗ v1 = v1 ⊕ λ⊗ τf ⊗ τp ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 (3-86)

λ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 ⊗ τf ⊗ τp = λ⊗ τf ⊗ τp ⊗ τg ⊗ (τ⊗2

p ⊗ τf )j−1 (3-87)

Observing both equation 3-85 and 3-87, equation 3-50 holds true for ∀p ∈ `j with ∀j ∈ 2, ...,m.
The equation 3-50 then is proven for all cases. Thereafter, equation 3-51 needs to be proven
so Lemma 3-4.2 can be verified. There are four cases considered in proving equation 3-51.
For the first and second case, equation 3-51 is derived into equation 3-88 first. Equation 3-88
is similar with 3-58, except for how v2 is defined on the left side

λ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1

= [λ⊗R⊗ v1]p ⊕ [τg ⊗N ⊗ v1]p ⊕ [T ⊗ v1]p
= (

⊕
q∈`j

λ⊗ [R]p,q ⊗ [v1]q)⊕ (
⊕

q∈`j+1

τg ⊗ [N ]p,q ⊗ [v1]q)⊕ ([T ]p ⊗ v1)

(3-88)

In the first case, rows ∀p ∈ `2 are considered. Equation 3-88 is then derived into three parts
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⊕
q∈`1

λ⊗ [R]p,q ⊗ [v1]q = λ⊗ τ∆ ⊗ τg ⊗ τp ⊗ τf

⊕ λ⊗ τp ⊗ τg ⊗ τp ⊗ τf
= λ⊗ τp ⊗ τg ⊗ τp ⊗ τf

(3-89)

⊕
q∈`2

τg ⊗ [N ]p,q ⊗ [v1]q = τg ⊗ e⊗ τg ⊗ (τ⊗2
p ⊗ τf )2−1 ⊗ τf ⊗ τp

= (τg ⊗ τp ⊗ τf )2 ⊗ τp
(3-90)

[T ]p ⊗ v1 = ε (3-91)

In the equation 3-89, the assumption A3 is applied to get the maximal value. The result
of equation 3-89 is the same as the result of equation 3-90 as the consequence of how the
eigenvalue is defined. The equation 3-88 is then derived as

λ⊗ τg ⊗ (τ⊗2
p ⊗ τf ) = λ⊗ τp ⊗ τg ⊗ τp ⊗ τf (3-92)

The result of equation 3-92 shows that the equation 3-51 holds true for ∀p ∈ `2. Again, the
equation 3-88 is derived into three parts for ∀p ∈ `j with ∀j ∈ 3, ...,m

⊕
q∈`j−1

λ⊗ [R]p,q ⊗ [v1]q = λ⊗ τ∆ ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−2 ⊗ τf ⊗ τp

⊕ λ⊗ τp ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−2 ⊗ τf

= λ⊗ τp ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−2 ⊗ τf

(3-93)

⊕
q∈`j

τg ⊗ [N ]p,q ⊗ [v1]q = τg ⊗ e⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 ⊗ τf ⊗ τp (3-94)

[T ]p ⊗ v1 = ε (3-95)

Using assumption A3, the result of equation 3-93 is obtained. For this case, the result of
equation 3-88 is

λ⊗ τg ⊗ (τ⊗2
p ⊗ τf )j−1 = λ⊗ τp ⊗ τg ⊗ (τ⊗2

p ⊗ τf )j−2 ⊗ τf (3-96)

The equation 3-51 is again proven with the result of equation 3-96. The equation 3-51 now
needs to be proven for the last two cases. The last two cases are for ∀p ∈ `1. For ∀p ∈ `i1,
equation 3-51 is derived into

λ⊗ τg ⊗ τp = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1

= [λ⊗R⊗ v1]p ⊕ [τg ⊗N ⊗ v1]p ⊕ [T ⊗ v1]p
= (

⊕
q∈`j

λ⊗ [R]p,q ⊗ [v1]q)⊕ (
⊕

q∈`j+1

τg ⊗ [N ]p,q ⊗ [v1]q)⊕ ([T ]p ⊗ v1)
(3-97)
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The result of equation 3-97 is then derived again. The derivation is divided into three parts,
as explained below

λ⊗ [R]p ⊗ v1 = ε (3-98)⊕
q∈`i1

τg ⊗ [N ]p,q ⊗ [v1]q = τg ⊗ τp ⊗ τg ⊗ τf ⊗ τp (3-99)

⊕
q∈`m

[T ]p,q ⊗ [v1]q = τ∆ ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf ⊗ τp

⊕ τp ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf

= τ∆ ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf ⊗ τp

(3-100)

Because of the violation of assumption A2, the result of equation 3-99 is always larger than
the result of equation 3-100. Therefore, the result of equation 3-97 is obtained as

λ⊗ τg ⊗ τp = τg ⊗ τp ⊗ τg ⊗ τf ⊗ τp (3-101)

With the similar steps as in equation 3-97 to 3-100, for ∀p ∈ `o1, equation 3-51 is derived into

λ⊗ τg = (λ⊗R⊕ τg ⊗N ⊕ T )⊗ v1

= [λ⊗R⊗ v1]p ⊕ [τg ⊗N ⊗ v1]p ⊕ [T ⊗ v1]p
= (

⊕
q∈`j

λ⊗ [R]p,q ⊗ [v1]q)⊕ (
⊕

q∈`j+1

τg ⊗ [N ]p,q ⊗ [v1]q)⊕ ([T ]p ⊗ v1)
(3-102)

Again, the equation 3-102 is derived into three parts

λ⊗ [R]p ⊗ v1 = ε (3-103)⊕
q∈`i1

τg ⊗ [N ]p,q ⊗ [v1]q = τg ⊗ e⊗ τg ⊗ τf ⊗ τp (3-104)

⊕
q∈`m

[T ]p,q ⊗ [v1]q = τ∆ ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf ⊗ τp

⊕ τp ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf

= τ∆ ⊗ τg ⊗ (τ⊗2
p ⊗ τf )m−1 ⊗ τf ⊗ τp

(3-105)

With the results of equation 3-103 to 3-105 and the violation of assumption A2, the result of
equation 3-102 is obtained as

λ⊗ τg = τg ⊗ τg ⊗ τf ⊗ τp (3-106)

With the results above, Lemma 3-4.2 is proven for all possible cases. It should be noted that
Lemma 3-4.2 is not desirable in this report, as it breaks the timing convention which is used.
Therefore, assumption A2 needs to be satisfied in this report.
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Furthermore, it is important to know the coupling time of the trajectory-following SMPL
system. From several numerical simulations, the coupling time of the trajectory-following
SMPL system is shown to be two, with one as the cyclicity. The value of the coupling time is
assumed to be true if τp ⊗ τf ⊗ τ∆ ≥ τg. However, the max-plus algebraic proof for the value
of the coupling time is not obtained yet.

3-5 Control Structure

As the SMPL model only decides the touchdown and lift-off event time instants for every
legs, SMPL model alone is not enough to generate locomotion for legged robots. Therefore,
a sufficient control structure is needed for the legged robots. The control structure can be
defined with the picture below[4]

Figure 3-4: Block diagram of the control structure of legged robots

The control structure consists of several function blocks. The first one is the supervisory
controller. The supervisory controller chooses the suitable linear velocity for both left and
right side of the Zebro. The linear velocity of both sides are decided based on the initial and
target position and orientation. The linear velocity of both sides will affect the radius of the
turning if it is needed. Thus, if turning is needed, the suitable linear velocity of both sides
are calculated by the supervisory controller based on the desired radius.Based on the desired
velocity of both sides, the gait generator will decide the gait and the max-plus parameters
(τf , τg, τp, and τ∆). The chosen gait and the max-plus parameters are chosen so the linear
velocity of both sides are as the intended ones.
Based on the gait and the max-plus parameters, SMPL model will decide the touchdown and
lift-off event time instant for every leg. The known touchdown and lift-off event time instants
will be transformed by continuous time scheduler into reference phases for every leg. The
continuous time scheduler can be defined as

[θref]i =


θl(ti(kti)−τ)+(θt+2π)(τ−li(kli))

ti(kti)−li(kli) ifτ ∈ [li(kli), ti(kti)]
θt(li(kli+1)−τ)+θ1(τ−ti(kti))

li(kli+1)−ti(kti) ifτ ∈ [ti(kti), li(kli + 1)]
(3-107)
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with [θref]i as the reference phase for each leg i, θt is the fixed value of phase where the legs
touchdown, and θl is fixed value of phase where the legs lift-off. In equation 3-107, indices kti
and kli are used to state that the event counter for each leg i is different. The resulting [θref]i
can be interpreted as the results of interpolation of θt and θl with current time instant τ .

For each leg, a tracking controller will enforce the reference phase. The tracking controllers
are identical for every legs. The tracking controller can be implemented using phase tracking
PID controller, which is defined as

u(τ) = KP (θref(τ)− θ(τ)) +KD(θ̇ref(τ)− θ̇(τ)) +KI

∫ τ

τ0
(θref(s)− θ(s))ds (3-108)

withKP ,KD, andKI as the proportional, derivative, and integral parameter. The parameters
θ(τ), θ̇(τ), θ(s) are gained from the real condition by collecting the information from legged
robot’s sensors. The generated phase of the legs then can be used to predict the linear velocity
of the legged robot, by means of the kinematics of half-circular compliant legs.

3-6 Summary

In this chapter, trajectory-following SMPL system is presented as the main proposition. The
elements of trajectory-following SMPL are discussed in this chapter. Several properties of the
trajectory-following SMPL system are also explained. With the trajectory-following SMPL,
Zebro can turn using legs scheduling. To compare both SMPL systems, the straightforward-
only SMPL system and its properties are explained. Both SMPL systems use the same control
structure, which is also explained in this chapter.
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Chapter 4

Kinematic Modeling of Zebro

4-1 Introduction

In chapter 3, the trajectory-following SMPL system is proposed as a gait reference generator
for Zebro. Nevertheless, the trajectory-following SMPL system cannot predict position and
orientation change of Zebro. The generated time instants of touchdown and lift-off alone are
not enough to predict position and orientation change of Zebro. Therefore, another model
is needed to predict position and orientation change of Zebro. There are two options which
can be utilized. The first option is a dynamic-based model. In the dynamic-based model,
the generated torque of each leg is used as the input. The second option is a kinematic-
based model. The kinematic-based model uses the angular velocity of each leg as the input.
The second option is chosen in this research, based on the compatibility with the trajectory-
following SMPL system. In the trajectory-following SMPL system, continuous time scheduler
generates reference phase for each leg. The reference phase enforces each leg to touchdown
and lift-off at certain angle and certain time instant. Using the continuous time scheduler,
the angular velocity of each leg can be predicted and controlled in a straightforward manner.
Predicting and controlling the torque of each leg is more complicated with the trajectory-
following SMPL system.

Knowing the angular velocity of a leg, the kinematics of a leg can be inferred. In section
4-2, the kinematics of a leg of Zebro is explained. As the swing period has no effect on
the kinematics of Zebro, the explanation is only for stance period. Zebro is using half-
circular compliant legs with their specific properties. The kinematics of Zebro itself will be
derived based on kinematic modeling of a wheeled mobile robot. Therefore, in section 4-3,
the kinematic modeling of a wheeled mobile robot is discussed based on [5]. The discussion
is intended to describe how a wheeled mobile robot position and orientation can be predicted
using the angular velocity of each leg. Based on section 4-3, the switching kinematic algorithm
for a Zebro is explained in section 4-4. The kinematics of the Zebro is classified as switching
kinematic because of the switching of legs on the stance period after a certain time. The
legs which are on the stance period are regarded as the active legs in this report. A certain
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gait will have specific legs at a certain time. The switching kinematic algorithm is the main
proposition of this chapter.

4-2 Kinematic of A Half-Circular Compliant Leg

The legs of Zebro, and other robots of the RHex-type, are considered to be half-circular
compliant legs [23, 24]. The term compliant arises from the fact that the legs are not rigid,
but flexible. As the legs rotate, their shape change with regards to their position. The change
of shape contributes to the nonlinearity of a half-circular compliant leg. Nonlinearity of a half-
circular compliant leg can be observed from the position of the contact point of the leg. The
position of the contact point of a leg is not vertically below the position of the corresponding
hip. Then, a trigonometric relation exists between the hip position and contact position. The
trigonometric relation of hip and contact position induces the nonlinearity. To understand
further the morphology of the half-circular compliant leg, first figure 4-1 is presented

Figure 4-1: The morphology of a half-circular compliant leg

Leg angle φ is defined as the angle between a line from hip position to contact position and
a vertical line, and the motor angle θ is defined as the angle between a line from hip position
to the toe of the leg and a vertical line. The motor angle θ of a leg is intended to follow
the corresponding reference phase θref. The motor angle can also be defined as the angle
between a line from hip position to the center of the leg and a vertical line. The contact point
is assumed to be vertically below the center of the leg. Thus, the contact position can be
defined as a function of hip position and motor angle. As a convention, the angle between
a vertical line and touchdown angle has negative value in this report. The angle between a
vertical line and lift-off angle has positive value. The same convention applies to the reference
phase. The touchdown and lift-off angle of both leg and motor are illustrated in figure 4-2

In deriving the kinematic of a half-circular compliant leg, there are three possible approaches.
These approaches are derived with regards to the nonlinearity of half-circular compliant leg.
The first and second approach are presented based on [23]. In the first approach, there are
two assumptions used

1. The shape of the leg is always circular with constant total arc length. The radius of the
leg always change based on the corresponding leg and motor angle
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4-2 Kinematic of A Half-Circular Compliant Leg 37

Figure 4-2: Touchdown and lift-off of a half-circular compliant leg

2. The velocity of the contact point against the ground is zero, as slipping is ignored [25]

For the first approach, the radius of a leg r is defined as

r = larc
π − θ

(4-1)

Equation 4-1 arises from assumption of constant total arc length. To preserve the total arc
length, the radius of the leg needs to be changed based on the motor angle. Using equation
4-1, the horizontal position of the contact point is defined as

xc = xh − rsin(θ)

= xh −
larc
π − θ

sin(θ)
(4-2)

The minus term in equation 4-2 comes up from the fact that the horizontal position of
the contact point is ahead of the hip at touchdown, while the touchdown angle is negative.
Differentiating equation 4-2 over time, the kinematics of a half-circular compliant leg is defined
as

ẋh = ( larcsinθ(π − θ)2 + larccosθ
π − θ

)θ̇ (4-3)

From equation 4-3, it can be observed that the kinematics of the leg with the first approach is
nonlinear. The second approach uses only the second assumption of the first approach. The
radius of the leg is assumed to be constant. With the second approach, the kinematics of a
half-circular compliant leg is defined as

ẋh = rθ̇ cos(θ) (4-4)

Similar to the first approach, the second approach results in a nonlinear description of the
kinematics of the leg. The third approach is derived based on the resemblance between the
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leg and half of a wheel. Using the kinematics of a wheel for rolling without slipping motion,
the kinematics of a half-circular compliant leg is derived as

ẋh = 2rθ̇ (4-5)

Equation 4-5 is obviously a linear one, different with the first two approaches. Observing
equation 4-3 and 4-4, the nonlinearity of the kinematics of the leg will cause acceleration on
the hip. The velocity of the hip will not be constant because of the nonlinear terms, even
as the angular velocity of the leg is constant. The acceleration might cause an error in the
position and orientation prediction of Zebro.
In this report, the third approach is used. The main reason is that the legs which are used in
both simulation and implementation are not compliant. Therefore, with rigid legs, it is more
suitable to model the legs as half-wheels. Furthermore, in the first and second approach,
terms cos(θ) and sin(θ) exist. The terms indicate that ẋh depends on the position of the leg
as well for both approaches. However, the kinematic modeling framework which will be used
does not take position of legs as inputs. Then, the first and second approach do not suit the
framework which will be used.

4-3 Kinematic of Wheeled Mobile Robot

The kinematics of a Zebro can be derived from the kinematic modeling of a wheeled mobile
robot with non-steered wheels. The morphology of Zebro is similar to nonholonomic wheeled
mobile robot with no steering. The movement of Zebro is also based on differential drive of
the legs, similar to some wheeled mobile robots. It is different with how some legged robots
move, which are by foot placement. For those reasons, the kinematic of Zebro resembles the
kinematics of wheeled mobile robots with non-steered wheels. In this section, the derivation
of the general approach to kinematics of wheeled mobile robot is explained. The explained
approach is based on [5]. The literature [5] uses Sheth-Uicker conventions to decide the
coordinate frame and derive the homogeneous matrices. The homogeneous matrices are used
to describe the positional relation between the wheels, the body, and the world frame. With
the homogeneous matrices, jacobian matrix of each is derived. The jacobian matrix relates
angular velocity of a wheel and the velocity of vehicle. Then, combining jacobian matrices of
active legs, the kinematics of a wheeled mobile robot with non-steered wheels is obtained.

4-3-1 Definitions and Conventions

In this research, the kinematic modeling is done based on Sheth-Uicker convention. In the
Sheth-Uicker convention, two coordinate frames are assigned at a joint. Each coordinate
frame is assigned at each link, as illustrated in figure 4-3. The considered links are the floor,
the robot body, and the steering links. The joints are a revolute pair at each steering axis,
and a planar pair to model each wheel. Each revolute pair connects a steering link and the
robot body. Each planar pair of a wheel connects the floor and a steering link. The wheeled
mobile robot then can be considered as multiple closed-link chains. Thus, using Sheth-Uicker
convention, there is no confusion in assigning the coordinate frame for multiple closed-link
chains
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4-3 Kinematic of Wheeled Mobile Robot 39

Figure 4-3: Illustration of Sheth-Uicker convention

Based on the existing joints and links, coordinate frames are assigned. The coordinate frame
floor, F , is assigned as a stationary reference frame at the floor. Coordinate frame steering Si
and contact point Ci are assigned at the steering link i. The coordinate frame Si is located
near the revolute pair of the steering link i, and the coordinate frame Ci is located near the
planar pair of the steering link i. For the robot body, coordinate frame robot R is assigned
at the center of the robot body. Coordinate frame hip Hi is also assigned at the robot body,
near the revolute pair of the steering link i.

Corresponding to coordinate frame R and Ci, instantaneous coincident coordinate frame R̄
and C̄i are defined. The coordinate frame R̄ is instantaneously coincident with the coordinate
frame R and stationary to the coordinate frame F . The coordinate frame C̄i is instantaneously
coincident with the coordinate frame C and stationary to the coordinate frame F . As both
R̄ and C̄i are instantaneous coincident, the position of both are redefined as the coordinate
frame R and Ci move. With both R̄ and C̄i, the velocity of each contact point and robot can
be defined independent to the position of R and Ci.

To relate two coordinate frames, a transformation matrix is defined. The transformation
matrix AΠB transform the defining coordinate of a point p from the coordinate frame B to
the coordinate frame A. This relation can be defined in an equation as

Ap = AΠB
Bp (4-6)

where Ap and Bp denote point p defined in coordinate frame A and B respectively. The
transformation matrix AΠB and point Ap themselves can be defined as

AΠB =


cosAψB −sinAψB 0 AdBx
sinAψB cosAψB 0 AdBy

0 0 1 AdBz
0 0 0 1

 (4-7)

Ap =


Apx
Apy
Apz
1

 (4-8)
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with AψB as the angle between the origin of coordinate frame A and B, AdBx as the distance
between the origin of coordinate frame A and B in x direction, and Apx as the position of
point p with respect to coordinate frame A in x direction. The same convention applies to
y and z direction as well. The concept of transformation matrix in 4-7 is used to define the
relation between the coordinate frames in wheeled mobile robot. The transformation matrix
AψB also can be differentiated over time to define the velocity of the point, defined as

Aṗ = AΠ̇B
Bp (4-9)

Here, Aṗ is defined as the velocity of point p defined in coordinate frame A and AΠ̇B is the
differentiation of transformation matrix over time. The elements of Aṗ and AΠ̇B are the
differentiation of the elements of Ap and AΠB over time. Vector AṗB also can be used to
defined the velocity of frame B relative to frame A. There are several useful axioms for the
transformation matrix, which are

• Identity: AΠA = I

• Cascade : AΠB =AΠX
XΠB

• Inversion : AΠB = (BΠA)−1

• Zero velocity : AΠ̇B = 0

• Velocity : AΠ̇B = AΠ̇X
XΠB + AΠX

XΠ̇B

Because of the Sheth-Uicker convention, the transformation matrix AΠB is divided into two
kinds. They are the constant transformation matrix ATB and variable transformation matrix
AΦB. The elements of the constant transformation matrix ATB have fixed values, whereas
the elements of variable transformation matrix AΦB change. In general, for wheeled mobile
robot, the constant transformation matrices are including

• FTR̄ : floor-instantaneous coincident robot body frame transformation matrix

• FTC̄i
: floor-instantaneous coincident contact point frame transformation matrix

• RTHi : robot body-hip transformation matrix for steered wheels

• SiTCi : steering-contact point transformation matrix for steered wheels

• RTCi : robot body-contact point transformation matrix for non-steered wheels

The non-steered wheel has RTCi as the transformation matrix between hip and steering is the
identity matrix. With no steering, the coordinate frame of hip and steering coincide. As the
elements of constant transformation matrices do not change, zero velocity axiom applies to
them. Furthermore, the variable transformation matrices are including

• R̄ΦR : instantaneous coincident robot body-robot body frame transformation matrix
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4-3 Kinematic of Wheeled Mobile Robot 41

• HiΦSi : hip-steering frame transformation matrix for steered wheels

• C̄iΦCi : instantaneous coincident contact point-contact point frame transformation ma-
trix

Those matrices are categorized as variable transformation matrices because of the relative
motion between the frames. Then, the velocity axiom applies to those matrices. Identity
axiom also applies to those matrices because of the instantaneous coincident property. For
non-steered wheels, HiΦSi is an identity matrix.

4-3-2 Wheel Jacobian Matrices

A wheel jacobian matrix is constructed to determine the velocity of robot body caused by the
motion of a leg i. First, the transformation matrix R̄ΦR needs to be defined as the cascade of
other transformation matrices. The cascade is needed as the elements of R̄ΦR are unknown
and always change. Transformation matrix R̄ΦR is defined as

R̄ΦR = FT−1
R̄

FTC̄i

C̄iΦCi
SiT−1

Ci

HiΦ−1
Si

RT−1
Hi

(4-10)

Equation 4-10 can be differentiated over time, applying both velocity axiom and zero ve-
locity axiom. Zero velocity axiom is applied to the constant transformation matrices. The
differentiation R̄Φ̇R is defined as

R̄ΦR = FT−1
R̄

FTC̄i

C̄iΦ̇Ci
SiT−1

Ci

HiΦ−1
Si

RT−1
Hi

+ FT−1
R̄

FTC̄i

C̄iΦCi
SiT−1

Ci

HiΦ̇−1
Si

RT−1
Hi

(4-11)

In equation 4-11, the elements of FTC̄i
are unknown. To define FTC̄i

, the cascade axiom is
used as in equation 4-10. Then, transformation matrix FTC̄i

is defined as

FTC̄i
= FTR̄

R̄ΦR
RTHi

HiΦSi
SiTCi

C̄iΦ−1
Ci

(4-12)

Equation 4-12 replaces the matrix FTC̄i
in equation 4-11, resulting in

R̄ΦR = R̄ΦR
RTHi

HiΦSi
SiTCi

C̄iΦ−1
Ci

C̄iΦ̇Ci
SiT−1

Ci

HiΦ−1
Si

RT−1
Hi

+ R̄ΦR
RTHi

HiΦSi
HiΦ̇−1

Si

RT−1
Hi

(4-13)

Applying identity axiom to equation 4-13, the equation becomes

R̄ΦR = RTHi
HiΦSi

SiTCi
C̄iΦ̇Ci

SiT−1
Ci

HiΦ−1
Si

RT−1
Hi

+ RTHi
HiΦSi

HiΦ̇−1
Si

RT−1
Hi

(4-14)

From the elements of the resulting matrix, robot body velocity vector R̄ṗR is obtained as

Master of Science Thesis William Suriana



42 Kinematic Modeling of Zebro

R̄ṗR =

cosRψCi −sinRψCi
RdCiy −RdHiy

sinRψCi cosRψCi −RdCix
RdHix

0 0 1 −1



C̄ivCix

C̄ivCiy

C̄iwCi
HiwSi


= Ĵi ˙̂qi

(4-15)

The matrix Ĵi is the pseudo-Jacobian matrix of wheel i, while vector ˙̂qi is the pseudo-velocity
vector of wheel i. It is called pseudo-velocity vector as the elements of the vector are not the
physical elements of a wheel. To relate the pseudo-velocity of a wheel with the real velocity
q̇i, wheel matrix Wi of wheel i is used as in

˙̂qi = Wiq̇i (4-16)

Substituting equation 4-16 into equation 4-15, the Jacobian matrix is obtained as

R̄ṗR = ĴiWiq̇i

= Jiq̇i
(4-17)

4-3-3 Sensed Forward Solution

The Jacobian matrix only defines the relation between the velocity of a wheel and the velocity
of robot. In practice, there are several active wheels. To understand the relation between the
velocity of active wheels with the velocity of the robot, sensed forward solution of the robot
is derived as in [5]. First, the real velocity vector q̇i is divided into the sensed and actuated
variable q̇is and the not-sensed and not-actuated variable (q̇in). Then, the Jacobian matrix
Ji is also divided into the sensed and actuated part Jis and the not-sensed and not-actuated
part Jin. The division of Jacobian matrix Ji is done corresponding to the position of elements
in q̇is and q̇in in real velocity vector q̇i. Writing R̄ṗR as ṗ, equation 4-17 is transformed into

ṗ = Jisq̇is + Jinq̇in (4-18)

for wheel i. Then for i = 1,...,N we can set matrices


I1 −J1n 0 ... 0
I2 0 −J2n ... 0
: : ... ... 0
IN 0 ... 0 −JNn




ṗ
q̇1n
q̇2n
:

q̇Nn

 = diag(J1s, J2s, ..., JNs)


q̇1s
q̇2s
:
q̇Ns

 (4-19)

which in general form can be written as

Anṗn = Bsq̇s (4-20)
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Then, with least-squares method as in [5], the velocities vector of the robot and not-sensed
wheel velocities can be calculated with

ṗn = (ATnAn)−1ATnBsq̇s (4-21)

4-4 Switching Kinematic of Zebro

The kinematics of a Zebro can be inferred with the method in 4-3. However, there is a
difference between the motion of a wheeled mobile robot and the Zebro. For a wheeled
mobile robot, the active legs are always the same. If a wheeled mobile robot has four wheels,
then those wheels will always be utilized. The active legs of the Zebro always change, depend
on which legs are on stance period. The legs which are on swing period do not affect the
motion of the Zebro, as they do not interact with the ground. Therefore, the kinematics of the
Zebro can be regarded as switching kinematics. The kinematic relation of Zebro will depend
on the chosen gait and the corresponding period of time. Moreover, Zebro has half-circular
compliant legs instead of wheels. Thus, several modifications of the method proposed in [5]
are considered.

In this research, the kinematics of a half-circular compliant leg is considered as in equation
4-5. This approach suits the proposed method, as it focuses on the resemblance between a
half-circular compliant leg and a half wheel. This approach also simplifies the calculation, as
the equation 4-5 is linear. The linearity of equation 4-5 also means that the angular velocity
θ̇ is the only used input. The motor angle at the particular time instant is not needed as the
input. Nevertheless, this approach might cause an error. Using this approach, the obtained
linear velocity of a leg is constant. With nonlinearity included, the linear velocity of a leg is
changing based on the motor angle.

Based on equation 4-5, the wheel matrix and the real velocity vector of a half-circular com-
pliant leg i can be defined as

Wi =


0 0
2r 0
0 1
0 0

 (4-22)

q̇i =
[
wix
wiz

]
(4-23)

Combining the wheel matrix and the real velocity vector, the pseudo-velocity vector ˙̂qi is
defined as
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C̄ivCix

C̄ivCiy

C̄iwCi
HiwSi

 =


0 0
2r 0
0 1
0 0


[
wix
wiz

]


C̄ivCix

C̄ivCiy

C̄iwCi
HiwSi

 =


0

2rwix
wiz
0


(4-24)

Observing the equation 4-24, the second row of 4-22 is chosen as the longitudinal velocity of
the Zebro is affected by the angular velocity of the Zebro around the lateral axis wix. The
third row of 4-22 means that the yaw angular velocity of the Zebro is equal to the angular
velocity of the rotational slip wiz. The first and last row of 4-22 are zero as the motion of a
leg does not result in the lateral velocity of the Zebro, and all legs are not steered. Using the
pseudo-Jacobian matrix Ĵi in 4-15 and the wheel matrix, the jacobian matrix of a half-circular
compliant leg i is defined as

Ji =

−2rsinRψCi
RdCiy

2rcosRψCi −RdCix

0 1

 (4-25)

For the Zebro purpose, all legs have the same radius r. The jacobian matrices of all legs will
be different as each leg has its own lateral and longitudinal position with respect to the frame
of the robot body. For six-legs Zebro,it is illustrated as

Figure 4-4: The coordinate frame assignments and the dimension of Zebro

On the figure 4-4, an example is given for coordinate frame assignment. The robot body
coordinate frame is assumed to be located at the center of Zebro. The contact point coordinate
frame of leg i is assumed to be located vertically below the hip coordinate frame of leg i.
Related to the coordinate frames, the dimension of Zebro is also explained by figure 4-4
along with the numbering of every leg. In the figure 4-4, every distance of the contact point
frames to the robot body coordinate frame is considered to be symmetric. Then, using the
information from figure 4-4, the Jacobian matrices of all legs are defined as
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J1 =

 0 l
2r b
0 1

 J2 =

 0 l
2r −b
0 1

 (4-26)

J3 =

 0 0
2r b
0 1

 J4 =

 0 0
2r −b
0 1

 (4-27)

J5 =

 0 −l
2r b
0 1

 J6 =

 0 −l
2r −b
0 1

 (4-28)

The Jacobian matrices are then used to generate the sensed forward solution. In the sensed
forward solution for Zebro, wix is the sensed and actuated variable and wiz is the not-sensed
and not-actuated variable. Based on the active legs, the Jacobian matrices of the active legs
are divided as in 4-18. Next, equation 4-19 is formed with variable wiz of active legs on the left
side and variable wix of active legs on the right side. The least square solution of equation4-21
then can be calculated. In this research, only the first three rows of the results are considered.
The rotational slip of the legs are not part of this research. With SMPL framework, the least
square solution in equation 4-21 can be modified. The modification is possible as the real
stance time of the legs can be calculated using the SMPL framework. Multiplying both sides
of equation 4-21 with the time results in forward displacement solution, written as



R̄∆xR̄
R̄∆yR̄
R̄∆αR̄
∆α1z
.
.

∆αNz


= (ATnAn)−1ATnBs


∆θ1x
∆θ2x
.
.

∆Nx

 (4-29)

In equation 4-29, R̄∆xR̄, R̄∆yR̄, and R̄∆zR̄ are the displacement of Zebro body coordinate
frame in lateral, longitudinal, and vertical direction respectively.R̄∆αR̄ is the yaw angle change
of Zebro body coordinate frame. The change of motor angle of the active legs are used as
the inputs here, with ∆θix as the change of motor angle of leg i. The change of motor angle
∆θix can be obtained by using equation 3-107. The displacement of Zebro in equation 4-29 is
independent to the world frame. To configure the displacement of Zebro relative to the world
frame, another transformation is needed. The transformation of Zebro relative to the world
frame is defined as

F∆xR
F∆yR
F∆αR

 =

cosFψR −sinFψR 0
sinFψR cosFψR 0

0 0 1



R̄∆xR̄
R̄∆yR̄
R̄∆αR̄

 (4-30)

However, the result of equation 4-30 cannot be obtained in a straightforward way. The
dimension of matrices and vectors in equation 4-29 are not constant. The dimension of

Master of Science Thesis William Suriana



46 Kinematic Modeling of Zebro

matrices and vectors in equation 4-29 depends on the active legs during a certain duration of
time. A function is presented below to apply equation 4-29 based on the set of active legs

Function 1 Sensed forward solution for active legs
Require: Jis , Jin of all legs

1: for all i ∈ A do

2: Ii ←

1 0 0
0 1 0
0 0 1


3: IA ← Vectorize(Ii)
4: An ← Diagonalize(−Jin)
5: Bs ← Diagonalize(Jis)
6: end for
7: An ←

[
IA An

]
8: ∆pn = (ATnAn)−1ATnBsΘ
9: return

[
R̄∆xR̄ R̄∆yR̄ R̄∆αR̄

]T
←

[
∆pn(1) ∆pn(2) ∆pn(3)

]T
The first three ele-

ments of ∆pn

The function 1 will adapt the size of matrices in equation 4-29 based on the number of active
legs. As the inputs, current active legs A and the change of motor angle of active legs Θ
are used. The jacobian matrices of all legs are also needed in the function. Every jacobian
matrices also must be separated, to Jis and Jin for the jacobian matrix i. To start the
function, in line 1, A is defined as the working set of the function. Then, for every element of
A, an identity matrix of a leg i is defined in line 2. In the line 3, Vectorize means constructing
a new matrix by adding down a identity matrix for every leg inA vertically. Diagonalize, in
line 4 and 5, means constructing a new matrix by adding down a −Jin and a Jis for every
legs in A diagonally. The function 1 results in the displacement of and the yaw angle change
of the Zebro body coordinate frame. The function 1 is then used in the algorithm below

In the algorithm 2, first the initial position and heading angle is prepared from line 2 to 4.
Initial max-plus states xinitial are also prepared in line 1. As explained in line 9, the iteration
is done from k equals to zero until the final iteration kfinal. The value of kfinal can be regarded
as the prediction horizon of switching kinematic algorithm. Then, using the system matrix
G?, the next two states are generated in line 10 and 11. Knowing the next two states, the
maximum touchdown time instant of both states are used as the time boundary in detecting
the active legs.
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Algorithm 2 Switching kinematic algorithm
1: x(0)← xinitial: Initialize x(0) with the initial states
2: FxR ← FxR : Initialize initial x-position
3: F yR ← F yR : Initialize initial y-position
4: FαR ← FαR : Initialize heading angle
5: R̄∆xRp ← 0
6: R̄∆yRp ← 0
7: A ← {}
8: Θ← {}
9: for k = {0, 1, ..., kfinal} do

10: x(k + 1)← G? ⊗ x(k)
11: x(k + 2)← G? ⊗ x(k + 1)
12: tmin ← max x(k)
13: tmax ← max x(k + 1)
14: for τ = {tmin + 0.01, tmin + 0.02}, ..., tmax do
15: for i = {1, 2, ..., 6} do
16: if ti(k) ≤ τ < li(k + 1) then
17: A ← A∪ i
18: ∆θix ← θref(ti(k), li(k+ 1), τ)− θref(ti(k), li(k+ 1), τ −0.01) : see equation 3-107

19: Θ← Θ ∪∆θix
20: else if ti(k + 1) ≤ τ < li(k + 2) then
21: A ← A∪ i
22: ∆θix ← θref(ti(k+1), li(k+2), τ)−θref(ti(k+1), li(k+2), τ−0.01) : see equation

3-107
23: Θ← Θ ∪∆θix
24: end if
25: end for
26: [R̄∆xR, R̄∆yR, R̄∆αR]← SensedForward(A,Θ)
27: FxR ← FxR + cos(α)

R̄∆xR+R̄∆xRp

2 − sin(α)
R̄∆yR+R̄∆yRp

2

28: F yR ← F yR + sin(α)
R̄∆xR+R̄∆xRp

2 + cos(α)
R̄∆yR+R̄∆yRp

2
29: FαR ← FαR + R̄∆αR
30: R̄∆xRp ← R̄∆xR
31: R̄∆yRp ← R̄∆yR
32: A ← {}
33: Θ← {}
34: end for
35: end for

The detection of the active legs is done from line 14 to line 25, for every τ . From line 16 to
line 19, for a particular τ , it is checked if a leg i is on the stance period at τ second. The
checking is done between state k and k + 1. If the leg i is on the stance period, then the
value of i is included in the set A. The motor angle change of the leg i is also calculated, for
0.01 seconds. The calculation is done with regards to the equation 3-107. The motor angle
change of the leg i is then included in the set Θ. These steps are repeated for all legs. The
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same procedures are also done from line 20 to 24, now for τ between k + 1 and k + 2.

The set A is defined as the set of active legs. This set will have a certain pattern, depending
on the chosen gait and direction. As an example, the set A for a Zebro with left as the
intended direction and {1, 4, 5}, {2, 3, 6} as the gait is

{2, 3, 6, 1, 5}, {2, 3, 6, 1, 4, 5}, {1, 4, 5}, {1, 4, 5, 3}, {1, 4, 5, 2, 3, 6}, {2, 3, 6}

Both A and Θ are then used to generate the change of position and yaw angle of the Zebro
relative to instantaneous coincident frame of the Zebro, by using the function 1. From line
27 to 29, the position and yaw angle of the Zebro relative to the world frame is calculated.
The calculation is done based on the equation in [5]. In the calculation, R̄∆xRp and R̄∆yRp

are the previous position and yaw angle change. If the value of FxR and F yR are stored, the
trajectory prediction of the Zebro is obtained by using the switching kinematic algorithm.

4-5 Summary

The foundation of the kinematic modeling of a Zebro is presented in this chapter. The kine-
matic modeling of the Zebro is based on the kinematic modeling of the wheeled mobile robot,
presented in [5]. The kinematic model in [5] is constructed based on the Sheth-Uicker con-
vention, which decided where coordinate frames should be placed. Then, Jacobian matrices
of every leg can be derived from the relation between coordinate frames. The sensed forward
solution is finally used to predict the motion of Zebro by combining the Jacobian matrices.
However, as the legs which are in the stance period are always switching, the kinematic model
of Zebro also changes periodically. The switching kinematic algorithm is proposed to predict
the kinematic model of Zebro at a particular time. The corresponding Jacobian matrices are
used to generate the suitable sensed forward solution.
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Chapter 5

Simulation and Implementation

5-1 Introduction

In this chapter, the simulation and implementation results of Zebro with trajectory-following
SMPL systems are presented. The simulation results are the trajectory generated by computer-
aided design (CAD) model of Zebro, called as virtual Zebro, during the 2D planar simulation
in V-REP. The implementation results are the trajectory generated by physical Zebro during
the actual trial. Before the results are presented, the properties of both simulation and imple-
mentation are explained in 5-2. The properties of the simulation are explained in 5-2-1. The
explained properties for the simulation are including the descriptions of the used software and
the setting of the simulation. Next, the properties of implementation are explained in 5-2-2.
The specifications of Zebro and the setting of the implementation are explained in 5-2-2.

Based on section 5-2, both simulation and implementation are done. The purposes of both
simulation and implementation are to know the turning characteristics of the trajectory-
following SMPL system and to verify the performance of switching kinematic. The turn-
ing characteristics are including the radius of turning and the displacement of turning Ze-
bro. These characteristics are influenced by the gait and the parameters of the trajectory-
following SMPL system. Then, in both simulation and implementation, the parameters of
the trajectory-following SMPL system are divided into constant parameters and changing
parameters. The changing parameters are the parameters which influence the turning char-
acteristics directly, whereas the constant parameters are not. All considered gaits are also
tried in both simulation and implementation. The turning characteristics and the generated
trajectory are both considered as the results, which are presented in section 5-3. The results
of simulation are presented in 5-3-1 and the result of implementation in 5-3-2. The trajectory
generated by switching kinematic for a particular gait and set of parameters is compared with
the trajectory generated in both simulation and implementation, for the same gait and pa-
rameters. In doing both simulation and implementation, there are two hypotheses proposed
:

Hypotheses :
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50 Simulation and Implementation

1. For larger τp, the radius of turning is smaller

2. The switching kinematic model can predict the motion of virtual Zebro

The hypotheses are related to the research questions in this report.

5-2 Simulation and Implementation Properties

5-2-1 Simulation Properties

In designing gait reference generator for a legged robot, simulation can be used to test the
performance of the gait reference generator. With simulation, gait reference generator can
be tested in a quick, economical and efficient way. The considered simulation here is a 2D
planar simulation, as this research only considers motion on flat terrain. In general, there are
two platforms which are needed for 2D planar simulation

1. Algorithm Programming Environment
In this platform, the gait reference generator will be developed, debugged and tested.
Usually, numerical computational software is used for this purpose. There are several
common options such as Matlab, Scilab, GNU Octave, and Phyton. Those software are
open-sourced, except for Matlab.

2. Physical Simulator
Physical Simulator will be used to generate motion of a legged robot based on the chosen
gait reference generator. The motion is generated by the physical simulator based on
the kinematic and/or dynamic of the CAD model. The physical simulator also shows
the resulting motion virtually, in 3D perspective. There are several software for this
purpose, such as V-Rep, Gazebo, and Webots.

In our research, Matlab is used as the algorithm programming environment. The main rea-
son is that Matlab is mathematically considered to be very reliable, with wide variations
of functions. Furthermore, the individuals involved in this research are more familiar with
Matlab than the other numerical computational software. Consequently, the chosen physical
simulator has to be compatible with Matlab.

In this research, V-REP is chosen as the physical simulator. V-REP is chosen as it can be
connected with Matlab easily, and is already used for simulation of legged robots. V-REP
itself is created by Coppelia Robotics to provide a versatile and scalable simulation framework.
There are four kinds of available license for V-REP, Player(open source), Pro Edu(open source
for educational), Pro Eval (open source, except for commercial use) and Pro(commercial
use). V-REP enables users to utilize various relatively independent functionalities. Those
functionalities can be enabled and disabled by the users. Therefore, V-REP does not have
main functionality.

The functionality of V-REP is related to two elements in V-REP, scene objects, and calculation
modules. Scene objects are elemental objects that define how the 3D simulation will be done.
Scene objects operate with other scene objects to form the 3D simulation. Some examples of
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5-2 Simulation and Implementation Properties 51

scene objects are joints, shapes, sensors, paths, cameras, and lights. The scene objects can
be modeled directly in V-REP, with click and drag approach. Calculation modules define
the purpose of the simulation, where each purpose can be done independently. There are
five calculation modules, which are kinematic module, dynamics module, collision detection
module, mesh-mesh distance calculation module, and path/motion planning module. These
modules can directly operate on one or several scene objects. The dynamics module uses a
physic engine to do a hybrid simulation that combines kinematic and dynamics. There are
several physic engines which can be used in V-REP

In this research, V-REP Pro Edu is used. All the calculation modules are activated, with
Vortex as the physics engine for the dynamics module. Vortex is chosen as the physics
engine as it offers real-world parameters for many physical properties. Thus, Vortex is both
realistic and precise. The scene objects in this research are only the floor and the virtual
Zebro. The floor is entirely flat, based on the assumption in this research. Most parts of the
control structure are programmed in Matlab, except for the continuous time scheduler. The
continuous time scheduler is programmed directly in the V-REP while the SMPL systems
and the max-plus states are calculated in Matlab. The max-plus states are then sent to V-
REP using remote API interface. The remote API is also used to obtain the position and
orientation of the virtual Zebro.

In the simulation, the constant parameters are including θt, θl, the Jacobian matrices of
Zebro, τ∆, and τf . These constant parameters are defined with value :

θt = 0.6rad θl = −0.6rad
τ∆ = 0.1 τf = 0.5

Parameters θt and θl are set within the continuous time scheduler, programmed directly in
V-REP. The value of θt and θl are assigned as above to allow enough variation of τg and τp
while still complying the maximum angular velocity of the leg. The combination between a
large range of θ and a small value of τg might cause the leg rotate back and forth during the
stance period. It happens because the leg needs larger angular velocity than the maximum
one to rotate from θt to θl in τg seconds. Here, τ∆ and τf are chosen to be constant as they
are presumed to have minimal effect to the turning radius. Therefore, τ∆ and τf are assigned
with constant small value.

The changing parameters are including the remaining max-plus parameters, τg and τp, and
the gaits. Both τg and τp are varied to observe the effect of stance period duration to the
turning characteristics. Furthermore, the gaits are also varied to observe the effect of chosen
gait to the turning characteristics. The stance time τg is varied between 0.4, 0.5, 0.6, 0.7
and 0.8 seconds, while the difference time τp is varied between 0.1, 0.2, 0.3, and 0.4 seconds.
Regarding the gaits, the tested gaits in the simulation are including

• Tripod 1 {1,4,5},{2,3,6}

• Tripod 2 {2,3,6},{1,4,5}

• Quadruped 1 {1,4},{3,6},{2,5}
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52 Simulation and Implementation

• Quadruped 2 {1,6},{2,3},{4,5}

The chosen gaits are a kind of tripod and quadruped gait and their exact opposite gaits.
These gaits are chosen so the tripod and quadruped gait can be compared with each other,
and with the opposite gaits. The pentapod gait is not considered as it is presumed to be
ineffective for turning. The simulation is done in several steps. First, a certain gait, τg, and
τp are chosen. Then, the virtual Zebro is tested with those chosen parameters. The trajectory
of the virtual Zebro is saved in the V-REP as a .csv file. The .csv file will be transferred
into Matlab, and the corresponding figure is generated. These steps are done for every tested
gait, and every kind of τg and τp. The initial position of the virtual Zebro in the simulation
is always (0,0), with initial yaw angle 0 rad.

The results of the simulation are compared to the trajectory predicted by switching kinematic
algorithm. To use the switching kinematic algorithm, jacobian matrices are needed. The
jacobian matrices of the virtual Zebro are defined as

J1 =

 0 0.2
0.3 0.14
0 1

 J2 =

 0 0.2
0.3 −0.14
0 1

 J3 =

 0 −0.06
0.3 0.18
0 1


J4 =

 0 −0.06
0.3 −0.18
0 1

 J5 =

 0 −0.25
0.3 0.14
0 1

 J6 =

 0 −0.25
0.3 −0.14
0 1



5-2-2 Implementation Properties

In addition to the simulation, an implementation is also done with the Zebro. Currently,
there are three kinds of Zebro developed in TU Delft. They are PicoZebro, DeciZebro, and
KiloZebro. PicoZebro is the smallest one from them, which size is approximately similar with
a matchbox. PicoZebro consists entirely of 6 printed circuit boards. DeciZebro is designed to
be the mainstream Zebro[26]. It is fully modular and intended for mass production. KiloZebro
is the largest one between them. It is designed to be operated on all terrain. Therefore, it
is equipped with powerful motors. KiloZebro is also the heaviest one, weighted 15 kilograms
(kg). KiloZebro is intended to be the charging station for another kind of Zebro.

During the implementation, DeciZebro is used. DeciZebro is used for the implementation as
it has the suitable size, and it also has the suitable system for the trajectory-following SMPL
system[26]. The length of DeciZebro is 267.96 millimeters (mm), and its width is 196 mm.
It also weighs only 1.771 kg. Compared to the KiloZebro, it is relatively easier to operate
DeciZebro during the implementation. In DeciZebro, the motor modules are equipped with
a locomotion controller. A Raspberry Pi Zero is used as the locomotion controller. Then,
the trajectory-following SMPL system can be programmed in the centralized locomotion
controller. The trajectory-following SMPL system is written in C++ programming language,
using DevC++ as the programming environment. The trajectory-following SMPL system
cannot be programmed in the PicoZebro as it uses an embedded integrated circuit as the
centralized locomotion controller.

The implementation is done on a carpeted-floor. The carpeted-floor is used as it provides
surfaces which are not slippery. During the implementation, constant τg, τf , and τ∆ are used.

William Suriana Master of Science Thesis
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The touchdown and lift-off angle of every leg is also set to be constant. The values of them
are

θt = 1.05rad θl = −0.7rad
τ∆ = 0.1 τf = 0.3 τg = 0.4

The value of τp is varied between 0.03, 0.06, 0.09, and 0.12 seconds. The gait is also varied
between tripod 1, tripod 2, quadruped 1, and quadruped 2. During the implementation, the
DeciZebro is first placed at a certain initial position. Then, the DeciZebro is operated with
a certain gait and a certain τp. The motion of the DeciZebro is captured in a video and the
trajectory of DeciZebro is generated from the video. A cell phone application, Motion Shot,
is used to capture the video. This application will take a video for eight seconds, and the
movement is rendered into a single still image. The image will show the generated trajectory
of the DeciZebro. The generated trajectory is used to study the turning characteristic of the
DeciZebro. This process is repeated for all considered gaits and τp.

The results of the implementation are also compared to the trajectory predicted by switching
kinematic algorithm, like the results of the simulation. The jacobian matrices of the DeciZebro
are defined as

J1 =

 0 0.134
0.7 0.098
0 1

 J2 =

 0 0.134
0.7 −0.098
0 1

 J3 =

 0 0
0.7 0.098
0 1


J4 =

 0 0
0.7 −0.098
0 1

 J5 =

 0 −0.134
0.7 0.098
0 1

 J6 =

 0 −0.134
0.7 −0.098
0 1



5-3 Results

5-3-1 Results in Simulation

In this subsection, the results of the simulation are presented and explained. The presented
results are chosen to test the hypotheses and to present the importance of assumption A2 in
3. The results of tripod 1 are presented and explained first.

In figure 5-1, the trajectory of virtual Zebro which violated assumption A2 is shown. It can
be observed that the virtual Zebro turns to the right direction, even though the intended
direction is left. To find the cause of the anomaly, the max-plus states of the corresponding
parameters are observed. With τg = 0.8 and τp = 0.1, the max-plus states for k = 4 are

t(4) =
[
5.8 6.5 6.4 5.8 5.8 6.5

]T
l(4) =

[
5.3 5.9 5.9 5.2 5.3 5.9

]T
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54 Simulation and Implementation

Figure 5-1: The trajectory of virtual zebro with tripod 1 as the chosen gait, τg = 0.8, τp =0.1,
and left as intended direction

From the max-plus states above, all legs in `1 , {1,4,5} liftoff at the same time instant and
touchdown at the different time instant. Thus, the legs in `1 behave in the opposite way
than how they are intended to behave. Different from `1, the legs in `2, {2,3,6}, behave as
intended. Then, it is interesting to know the true stance time of all legs. The true stance
time of all legs are

τ̄g1 = 0.9 τ̄g2 = 0.8 τ̄g3 = 0.9
τ̄g4 = 0.8 τ̄g5 = 0.9 τ̄g6 = 0.8

From the true stance time of all legs, the true stance time of the right-sided legs is smaller
than the left-sided legs. It means that the right-sided legs are still faster than the left-sided
legs, as they should be. The simulation also results in the same cycle time for all legs, which
is τc = 1.4. It implies that the eigenvalue of the corresponding SMPL system is unique. The
value of the stance time of all legs and the eigenvalue show that there is nothing wrong with
the flight time and true stance time of all legs.

However, it should be noted that the simulation always starts with the straightforward-only
SMPL system with tripod gait, coded directly in the V-REP. This initial condition can be
viewed as a disturbance to the intended SMPL system. Therefore, it is a possibility that
the steady-state condition is not reached after the initial disturbance, even after the coupling
time. Using the corresponding parameters, the assumption A2 is checked for this SMPL
system. Both (τf ⊗ τp ⊗ τ∆)m and (τg ⊗ τf ⊗ τp) are calculated as

(τf ⊗ τp ⊗ τ∆)m = 1.4
τg ⊗ τf ⊗ τp = 1.4

Then, it is proven that the assumption A2 is violated. With this particular result, the SMPL
system of the virtual Zebro does not fulfill the timing convention of the trajectory-following
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SMPL system. The behavior of legs in `1 points out the violation of timing convention.The
violation of timing convention is suspected as the cause of the turning anomaly. The switch-
ing kinematic algorithm is used with the same parameters to check if this anomaly can be
predicted by the switching kinematic algorithm. However, using the max-plus states, the
switching kinematic algorithm generates a very different trajectory compared to the trajec-
tory of the virtual Zebro.

Figure 5-2: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm. Here, tripod 1 is chosen as the gait with left as the intended
direction and τg = 0.8, τp =0.1

Figure 5-2 shows that the switching kinematic algorithm generates trajectory with direction as
intended. The difference between the generated trajectory of switching kinematic algorithm
and the trajectory of virtual zebro indicates that the anomaly in the turning direction is not
related to the kinematic of Zebro. However, this does not imply that the turning anomaly
is caused by the violation of timing convention. To further analyze the turning anomaly, the
right direction variant of figure 5-2 is presented

Figure 5-3: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm. Here, tripod 1 is chosen as the gait with right as the intended
direction and τg = 0.4, τp =0.1
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56 Simulation and Implementation

Different than in figure 5-2, figure 5-3 does not signify any turning anomaly. The SMPL
system of virtual Zebro in 5-3 also violates the timing convention. The violation of timing
convention then cannot be concluded as the reason for the turning anomaly. To further find
the cause of the turning anomaly, the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm with the same τp and varied τg are shown below

(a) Left direction (b) Right direction

Figure 5-4: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, tripod 1 is chosen as the gait
with τg = 0.5 and τp =0.1

(a) Left direction (b) Right direction

Figure 5-5: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, tripod 1 is chosen as the gait
with τg = 0.7 and τp =0.1

Figure 5-4a to 5-5b shows that turning anomaly happens when τp = 0.1 and with left as the
intended direction. The switching kinematic function also does not predict the turning motion
accurately for those conditions. For that reason, it is interesting to observe the trajectories
of virtual Zebro and the generated trajectories of switching kinematic algorithm for τp larger
than 0.1. Those trajectories can be observed from the figures below
In the figures above, the virtual Zebro turns with the same direction as the intended direction.
The generated trajectories of switching kinematic algorithms are also approximately similar
with the trajectories of the virtual Zebro. The similarities infer that for the conditions in those
figures, switching kinematic algorithms works well. From these observations, it is presumed
that there is a minimum value of τp so the virtual Zebro can turn with its intended direction.
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(a) Left direction (b) Right direction

Figure 5-6: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, tripod 1 is chosen as the gait
with τg = 0.8 and τp =0.3

(a) Left direction (b) Right direction

Figure 5-7: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, tripod 1 is chosen as the gait
with τg = 0.8 and τp =0.4

(a) Left direction (b) Right direction

Figure 5-8: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, tripod 1 is chosen as the gait
with τg = 0.8 and τp =0.5
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This minimum value also indicates the boundary where the switching kinematic algorithm
might work.

Furthermore, the virtual Zebro trajectories in figure 5-6a to 5-8b are also compared to under-
stand the effect of τp to the turning motion. In figure 5-6a to 5-8b, τg is set to be 0.8. Hence,
τp is the only varied parameter here.

(a) Left direction (b) Right direction

Figure 5-9: The comparison between the trajectory of virtual Zebro with τg = 0.8, tripod 1 as
gait and varied τp, for left and right directions

In both figure 5-9a and 5-9b, the increase of τp results in smaller turning radius. The increase
of τp means that the true stance time difference between the outer and the inner side of Zebro
is increasing. It is equivalent with increasing the angular velocity difference between the outer
and the inner side of differential-drive wheeled robots. In differential-drive wheeled robots,
the larger angular velocity difference between outer and inner side also cause smaller turning
radius. The results of the simulation, with tripod 2 as the gait, are similar with the results
above. Thus, the results are not shown here. The similarities are expected, as those gaits will
result in the same sequences of active legs. The only difference is the active legs at the start
and the end of the motion. The results of the simulation, with tripod 2 as the gait, can be
observed in the Appendix.

Therefore, from the simulation results of virtual Zebro with tripod 1 as the chosen gait, there
are three important things that can be implied. First, the value of τp has to be over a certain
minimum value so the switching kinematic algorithm can predict the turning motion. The
minimum value is assumed to be related to the dynamics of the virtual Zebro. Further research
is needed to prove this assumption. Second, if the minimum value of τp is fulfilled, turning
radius can be decreased by increasing the τp and keeping the other parameters constant. Then,
in designing the supervisory controller, τp can be used as the controlled variable to follow a
certain trajectory. Third, the simulation shows that the violation of timing convention does
not seem to affect the turning motion. It can be observed in figure 5-3 that the virtual Zebro
still turns as intended even with violation of timing convention. However, it is important to
note that the simulation is on flat terrain. The violation of timing convention might affect
the turning motion on the non-flat terrain.

With the results from tripod gait, it is interesting also to check if virtual Zebro with quadruped
gait satisfies the hypotheses. The simulation results of virtual Zebro with quadruped 1 as the
chosen gait are then presented below
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(a) Left direction (b) Right direction

Figure 5-10: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.5 and τp =0.1

(a) Left direction (b) Right direction

Figure 5-11: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.6 and τp =0.1

(a) Left direction (b) Right direction

Figure 5-12: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.7 and τp =0.1
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Figure 5-10a to 5-12b are presented as the direct comparison of figure 5-4a to 5-5b. As in
figure 5-4a to 5-5b, the parameter τp is set as 0.1, with varied τg. Figure 5-10a to 5-12b
show that the virtual Zebro does not turn to the right when right is chosen as the intended
direction. It is the opposite of what occurred in figure 5-4a to 5-5b, where the virtual Zebro
does not turn to left as the intended direction. When the left is chosen as the intended
direction, virtual Zebro turns to the left. Nevertheless, with left as the intended direction,
the trajectories generated by the switching kinematic algorithm do not track the trajectories
of virtual Zebro. The radius of generated trajectories is considerably larger than the radius
of the trajectories of virtual Zebro.
Then, it is interesting to observe the results of simulation for τp larger than 0.1. With tripod
1 as the chosen gait, virtual Zebro turns to the intended direction for τp larger than 0.1. The
switching kinematic algorithm also predicts the turning motion reliably for that particular
condition.

(a) Left direction (b) Right direction

Figure 5-13: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.8 and τp =0.3

(a) Left direction (b) Right direction

Figure 5-14: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.8 and τp =0.4

The results of simulation for τp larger than 0.1, and τg equals to 0.8 are presented in figure
5-13a to 5-15b. From observation of those figures, the turning motion of virtual Zebro is not
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(a) Left direction (b) Right direction

Figure 5-15: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 1 is chosen as the
gait with τg = 0.8 and τp =0.5

smooth if quadruped 1 is chosen as the gait. The virtual Zebro always meanders while it is
turning to the intended direction. The meandering is even more obvious when virtual Zebro
is turning to the right direction. Similar with the results in figure 5-10a to 5-12b, when right
is the intended direction, virtual Zebro somehow does not turn to the right instantly. If left
is the intended direction, virtual Zebro can turn to the left immediately. Still, the switching
kinematic algorithm does not predict the turning motion well for both directions. Visually,
the prediction error of switching kinematic algorithm is larger when quadruped 1 is utilized.

(a) Left direction (b) Right direction

Figure 5-16: The comparison between the trajectory of virtual Zebro with τg = 0.8, quadruped
1 as the gait, and varied τp, for left and right directions

With the results in figure 5-10a to 5-15b, the second hypotheses is not accomplished. To
look whether the first hypotheses is accomplished, figure 5-16a and 5-16b are shown above.
In general, similar as when virtual Zebro uses tripod 1 as the gait, the increase of τp results
in smaller turning radius of virtual Zebro. The only exception occurs for τp equals to 0.4
with left as the turning direction, as can be seen in figure 5-16a. Then, using quadruped 1 as
the gait, τp still can be used as the control variable so virtual Zebro can turn with a certain
radius.

The results of the simulation with quadruped 1 as the gait are compared with the results of
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the simulation with quadruped 2 as the gait. Quadruped 2 is chosen as the sequence of the
legs in the stance period is the exact opposite of quadruped 1. Then, quadruped 2 can be
regarded as the mirror gait of quadruped 1. The simulation results of quadruped 2 as the
chosen gait, with τp equals to 0.1, are presented first.

(a) Left direction (b) Right direction

Figure 5-17: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 2 is chosen as the
gait with τg = 0.5 and τp =0.1

(a) Left direction (b) Right direction

Figure 5-18: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 2 is chosen as the
gait with τg = 0.7 and τp =0.1

The result in the figure 5-17a to 5-18b show that the Zebro is also meandering when it is using
quadruped 2 as the gait. The main difference is, when quadruped 2 is used, virtual Zebro
does not turn to the left when it is the intended direction. It is the opposite of what happen
for the simulation with quadruped 1 as the chosen gait. When right is chosen as the intended
direction, the virtual Zebro turns to the right. However, still, the trajectory generated by
the switching kinematic algorithm is not similar to the trajectory of virtual Zebro for any
direction. When the virtual Zebro turns to the right as the intended direction, the radius of
generated trajectories is also considerably larger than the radius of the trajectories of virtual
Zebro.
For τp larger than 0.1 and τg equals to 0.8, the results of simulation are presented in figure 5-
19a to 5-21b. The results reiterate the difficulty of virtual Zebro to turn left if quadruped 2 is
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(a) Left direction (b) Right direction

Figure 5-19: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 2 is chosen as the
gait with τg = 0.8 and τp =0.3

(a) Left direction (b) Right direction

Figure 5-20: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 2 is chosen as the
gait with τg = 0.8 and τp =0.4

(a) Left direction (b) Right direction

Figure 5-21: The comparison between the trajectory of virtual Zebro and the generated trajectory
of switching kinematic algorithm for left and right directions. Here, quadruped 2 is chosen as the
gait with τg = 0.8 and τp =0.5
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used. As the τp goes larger, the virtual Zebro turns left when it is the intended direction. The
meandering is also still obvious in figure 5-19a to 5-21b. The switching kinematic algorithm
does not predict the motion accurately as well. Then, the second hypothesis is also not
fulfilled for quadruped 2.

(a) Left direction (b) Right direction

Figure 5-22: The comparison between the trajectory of virtual Zebro with τg = 0.8, quadruped
2 as the gait, and varied τp, for left and right directions

The results in figure 5-19a to 5-21b are compiled into figure 5-22a and 5-22b, to observe the
effect of τp. In the figure 5-22a, it can be clearly observed that the virtual Zebro turns left
with smaller radius as the τp goes larger. However, the same observation cannot be seen in
the figure 5-22b. The virtual Zebro produces the largest radius when τp equals to 0.2, but the
trajectories of virtual Zebro with τp equals to 0.3, 0.4, and 0.5 have similar radius. Therefore,
the second hypotheses is not fully satisfied in this case.

Finally, the results of the simulation of each kind of gait are compared. The comparison
is done for τg equals to 0.8 and τp equals to 0.5. For the left direction, the results of the
simulation with tripod 1 and quadruped 1 as the gait are compared. For the right direction,
the results of the simulation with tripod 1 and quadruped 2 as the gait are compared. The
comparison is done in this way as the virtual Zebro tends to turn to a specific direction if
quadruped is used as the gait. The results are

(a) Left direction (b) Right direction

Figure 5-23: The comparison between the trajectory of virtual Zebro with tripod and quadruped
as the gait, for left and right directions. Here, τg = 0.8 and τp =0.5
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(a) Left direction (b) Right direction

Figure 5-24: The comparison between the generated trajectory of switching kinematic algorithm
with tripod and quadruped as the gait, for left and right directions. Here, τg = 0.8 and τp =0.5

From the figure 5-23a and 5-23b, it can be observed that the turning radius of virtual Zebro
with quadruped gait is smaller than with tripod gait for the left direction. On the other
hand, the turning radius of the virtual Zebro with tripod gait is smaller than with quadruped
gait for the right direction. Therefore, with these results, it is interesting to observe the
corresponding generated trajectory of the figure 5-23a and 5-23b. The results are shown in
figure 5-24a and 5-24b. Figure 5-24a and 5-24b show that the turning radius of virtual Zebro
with tripod gait should always be smaller than with quadruped gait. Thus, the results in
figure 5-23a and 5-23b are not as expected.

There is a presumed reason why the switching kinematic algorithm does not predict the
results without an error. The reason is related to the assumption which is used in this report.
In this report, the slipping between the legs and the ground is not considered. However, the
slipping might occurs during the simulation as the dynamic module is turned on in the V-
REP. Therefore, the dynamics between the legs and the ground is considered in the simulation
as well. The skidding of the legs might also be considered in the V-REP as the consequence.
As the dynamics affect the motion of the virtual Zebro, kinematics alone does not predict the
complete motion of the virtual Zebro. The slipping and skidding of the virtual Zebro are not
incorporated in the switching kinematic algorithm. Thus, the switching kinematic algorithm
cannot predict the displacement caused by either slipping or skidding.

When the virtual Zebro does not turn as it is intended, it is presumed to be caused by the
tilting of virtual Zebro. The tilting is caused by the position of the legs which are on the
stance period. When the quadruped gait is utilized, the virtual Zebro tilts routinely. In every
kind of quadruped gait, there are moments when the front leg of a particular side is on the
stance period while the two others are. As the middle and the back leg move on the ground,
the front leg does not hold the virtual Zebro body. Then, the virtual Zebro tilts. As an
example, the sequences of the active legs for quadruped 1 with left as the direction are

{2, 5, 3, 6, 1}, {2, 5, 3, 6, 1, 4}, {3, 6, 1, 4}
{3, 6, 1, 4, 5}, {3, 6, 1, 4, 2, 5}, {1, 4, 2, 5}
{1, 4, 2, 5, 3}, {1, 4, 2, 5, 3, 6}, {2, 5, 3, 6}
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From the sequence of the active legs above, it can be observed that the tilting will happen on
the left side of the virtual Zebro. The tilting will happen when the active legs are {2, 5, 3, 6}.
For right as the intended direction, it can be presumed that the virtual Zebro does not always
turn right because of the tilting on the left side of the virtual Zebro. The tilting on the left
side might cause the decrease of linear velocity on that side. The torque of both legs are
also transformed into vertical force, instead of only horizontal force. Therefore, the linear
velocity of the left side of virtual Zebro might not be larger than the linear velocity of the
right side when the active legs are {2, 5, 3, 6}. The meandering then happens because of that.
The tilting on the left side does not affect much the left turning of virtual Zebro as the linear
velocity of the right side is still larger than the left side. Still, the tilting causes meandering
of virtual Zebro when the virtual Zebro is trying to turn left. The same principle can answer
why the virtual Zebro with quadruped 2 as the gait does not always turn left, for left as the
intended direction. The tilting might also answer why the results in figure 5-23a and 5-23b
are different with figure 5-24a and 5-24b. With the tilting, a certain lower boundary of τp has
to be exceeded to create linear velocity difference between each side. From the observation
of the results above, the boundary is τp equals to 0.4 for virtual Zebro with quadruped gait.

The tilting might also happen when tripod 1 is utilized as the gait, but obviously the effect is
not as worse as when quadruped is utilized as the gait. The tilting is less possible to happen
when tripod is used as the gait, as the active legs of each side are either the front and back
leg, only the middle leg, or all legs. The tilting is more possible to happen the active legs of
a side are the middle and the back leg. The reason is that the front part of that side is not
held by a leg, while the middle and the back leg give force to the front part. However, the
tilting might also answer why a certain lower boundary of τp has to be exceeded to create
linear velocity difference between each side. From the observation of the results above, the
boundary is τp equals to 0.2 for virtual Zebro with tripod gait.

The tilting illustrates the dynamic nature of Zebro, where force has a significant effect on the
motion of Zebro. Because of the switching active legs and its morphology, the force which
occurs on Zebro also cause the vertical displacement. The switching kinematic algorithm is not
able to predict this, as it does not consider any vertical displacement to happen. Therefore,
the switching kinematic algorithm is less accurate if the tilting is more possible to happen.

5-3-2 Results in Implementation

After several trials on the DeciZebro, there is still no conclusion that can be derived as this
report is finished. The results, with tripod 1 as the utilized gait, show that the DeciZebro
can turn with the trajectory-following SMPL system. However, the results do not show any
pattern that can be observed. The results are

From the results, it can be observed that the DeciZebro always turns right even when the
left is chosen as the intended direction. The results do not show clearly the relation between
τp and the turning radius. With the results above, both hypotheses cannot be proven yet.
There are several presumed reasons why DeciZebro does not turn as expected. The first
presumed reason is that the touchdown and lift-off angle of every leg is not the same. If
the touchdown and lift-off angle of every leg is not the same, the trajectory-following SMPL
might not generate the intended turning in DeciZebro. It is obvious, as the kinematics of
DeciZebro is directly affected by the touchdown and lift-off angle of every leg. After the
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(a) Left direction (b) Right direction

Figure 5-25: The trajectory of DeciZebro for left and right directions. Here, tripod 1 is chosen
as the gait with τg = 0.4 and τp =0.03

(a) Left direction (b) Right direction

Figure 5-26: The trajectory of DeciZebro for left and right directions. Here, tripod 1 is chosen
as the gait with τg = 0.4 and τp =0.06

(a) Left direction (b) Right direction

Figure 5-27: The trajectory of DeciZebro for left and right directions. Here, tripod 1 is chosen
as the gait with τg = 0.4 and τp =0.09

results above are obtained, it is found that the angle of the middle left leg is smaller by five
degrees compared to the angle of the middle right leg. The second presumed reason is that
the interaction between the legs and the carpet causes a undesired effect. However, further
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research is needed to explain this effect. The third presumed reason is that the chosen τp is
not enough to induce turning to the left side. It is already shown in the simulation that the
virtual Zebro has a tendency to turn right even when the intended direction is left. During
the simulation, the virtual Zebro will turn left if a certain lower boundary of τp is exceeded.
The same case might happen with the implementation.

Because of the restriction of time, there is no further implementation done as this report is
finished. As the results are not sufficient, the results are not compared with the trajectory
generated by the switching kinematic algorithm. From the experience of the implementation,
there are several acts which have to be done for the next implementation. The first act is
designing a more precise calibration of every leg. The calibration is already done in this
implementation, but the angle error has to be measured manually. From the results above,
it is presumed that the angle of the legs might not be similar during this implementation.
For the next implementation, the angle error of every leg should be measured and corrected
automatically during the calibration process. The second act is to do the implementation
on several kinds of surface. By doing the implementation on several kinds of surface, the
results obtained on each surface can be compared with each other. Then, it can be concluded
whether the turning really happens because of the trajectory-following SMPL. The third act
is to do the implementation with a larger range of τp. With larger range of τp, the effect of
changing τp can really be observed. It also can be checked if the DeciZebro can turn to the
intended direction if a certain lower boundary of τp is exceeded.

5-4 Summary

In this chapter, the results of the simulation and implementation are obtained. The results
show that by increasing the value of τp, the turning radius can be decreased in general. The
results also show that the switching kinematic algorithm can predict the trajectory of virtual
Zebro if the value of τp if several conditions are fulfilled. However, the switching kinematic
algorithm can only predict the trajectory accurately if there is no significant vertical motion
happens. It is shown that if quadruped is utilized as the gait, vertical motion happens and
the turning might not happen as intended. However, the results of the implementation are
not conclusive yet. A further implementation with improvements is needed.
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Chapter 6

Conclusion and Future Works

6-1 Conclusion

This report is mainly concerned with the turning motion of Zebro by means of trajectory-
following switching max-plus linear (SMPL) system. The discussion in this report is intended
to explore how the turning motion of Zebro can be initiated and predicted, with the trajectory-
following SMPL system and the kinematics of Zebro as the foundation. With the discussion
in this report, the research questions are answered

• How can a Zebro turn by means of SMPL system?
A Zebro can turn by utilizing the trajectory-following SMPL system. With the trajectory-
following SMPL system, the Zebro turns in a similar way such as differential-drive mobile
robot. The trajectory-following SMPL system induces different touchdown time instants
between the right-sided and left -sided legs in the same sequence. On the other hand,
the lift-off time instants between all legs in the same sequence are the same. The stance
period of one side then is shorter than another side. Therefore, the angular velocity
of right-sided legs and left-sided legs during the stance period are different. The linear
velocity of the right side and left side of Zebro are consequently different.

• How can the turning motion of Zebro be predicted?
The turning motion of Zebro can be predicted by using the switching kinematics algo-
rithm in Chapter 4. As a consequence of how it moves, the legs of Zebro which are
in stance period always change over time. The switching kinematics algorithm detects
which legs are in stance period at a particular time, and constructs the kinematics rela-
tion of Zebro with the legs which are in stance period. The states of trajectory-following
SMPL system are used to detect the legs which are in stance period and to calculate the
change of angle in those legs. The kinematics relation is formed based on the method
in ??. Comparing to the results of simulation, the switching kinematic algorithm can
predict the motion of Zebro if the tripod gait is utilized with a certain value of τp as
the lower boundary. The switching kinematic algorithm needs the lower boundary as a
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certain linear velocity difference between each side is needed to minimize the effect of
tilting.

• How is the turning performance of the Zebro? In the simulation, the Zebro is
shown to be able to turn by the trajectory-following SMPL. In general, the parameter
τp affects the radius of the turning. With larger τp, the radius of the turning is smaller.
However, the Zebro does not always turn to the intended direction. The turning of
Zebro is also not smooth if quadruped is utilized as the gait. From the results of
the simulation, it can be concluded that the trajectory-following SMPL system can be
applied with respect to several factors as the consideration. Those factors are including
the choice of max-plus parameters and the choice of the gait. Still, the results of the
implementation are not conclusive yet. A further implementation is needed to verify
the expected turning motion of using the trajectory-following SMPL in the Zebro.

It can be concluded that all research questions are answered. In answering the research
questions, this report brings three original contributions. The first and second contribution
are related to the first research question, while the third contribution is related to the second
research question. The contributions can be summarized as :

1. Trajectory-following SMPL system
The trajectory-following SMPL system can be constructed as

x(k) =
[
E τf ⊗M
R E

]
⊗ x(k)⊕

[
E E

(τg ⊗N)⊕ T E

]
⊗ x(k − 1)

= G0 ⊗ x(k)⊕G1 ⊗ x(k − 1)

where the structure of the matrices depend on the chosen gait and the direction of
Zebro. The matrices R and T are formed based on the chosen gait and the direction of
Zebro, while the matrices N and M are formed based only on the direction of Zebro.
The trajectory-following SMPL enables forward motion to all directions. If the Zebro
turns, the trajectory-following SMPL system ensures different touchdown time instants
between the right-sided and left-sided legs in the same sequence. In turning, the stance
period of the inner legs are longer by τp compared to the stance period of the outer legs.
The swing period of the inner legs are shorter by τp compared to the swing period of the
outer legs. The introduction of parameter τp causes Zebro to behave like differential-
drive mobile robot, while keeping the cycle time of all legs the same.

2. Eigenstructure of trajectory-following SMPL system
The eigenvalue and the eigenvector of the trajectory-following SMPL system are defined
as

λ := (τf ⊗ τp ⊗ τ∆)⊗m

∀j ∈ {1, ...,m};∀qi ∈ lij ;∀qo ∈ loj :
[v]iq := τf ⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1

[v]oq := (τf ⊗ τp)⊗ (τf ⊗ τp ⊗ τ∆)⊗j−1

[v]i,oq+n := (τf ⊗ τp ⊗ τ∆)⊗j−1
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The eigenvalue and the eigenvector of the trajectory-following SMPL system can be only
defined as above if assumptions A1 and A2 in Lemma 3-4.1 are fulfilled. The eigenvalue
represents the total cycle time for a leg on the Zebro, while the eigenvector represents
the steady-state condition of the max-plus states. The chosen gait and the direction of
the Zebro can be inferred from the eigenvector.

3. Switching kinematic model of Zebro
The switching kinematic model of Zebro is adapted from the kinematic model of wheeled
mobile robot [5]. The switching kinematic model is able to construct the kinematic
model based on the legs which are on the stance period. The kinematic model itself is
defined as 

R̄∆xR̄
R̄∆yR̄
R̄∆αR̄
∆α1z
.
.

∆αNz


= (ATnAn)−1ATnBs


∆θ1x
∆θ2x
.
.

∆Nx



The dimension and elements of the matrices and vectors in the kinematic model depend
on which legs are on the stance period, and the number of those legs. The inputs of
the kinematic model of Zebro, the change of motor angle ∆θix, are obtained from the
max-plus states and phase reference generator. The switching kinematic algorithm is
limited by the value of τp.

6-2 Future Works

Regarding to the research in this report, there are several topics which can be explored. They
are

• An implementation with improvements
As already explained, there are several improvements that should be done for the next
implementation. The improvements are including an improved calibration process, a
larger range of tested parameters, and variations on the surface used.

• The new legs for Zebro
In [27], a new design of legs for Zebro is already developed. The new legs guarantee a
linear relation between the change of angle and the displacement of each leg. Therefore,
the new design might be useful to develop trajectory-tracking Zebro.

• Coupling time of trajectory-following SMPL system
In this report, the coupling time of trajectory-following SMPL system is expected to
be two, with one as the cyclicity. After several numerical simulations, the expectation
seems to be true if several assumptions are satisfied. However, this hypothesis has to
be proven in the max-plus algebraic sense. With the knowledge of coupling time, the
parameters can be set so the steady-state condition can be reached as soon as possible.
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• Gait, variable, and direction transition of trajectory-following SMPL system
From the results in this report, it is clear that different gait has different turning char-
acteristic. The value of the variables also affect the turning characteristic. Therefore,
when Zebro is a following a trajectory, the change of gait or variable can be utilized. The
change of gait or variables cannot occur instantly, as a transition period will happen.
This report has not discussed the transition period yet. It is also important to note
that Zebro might need to change direction. The transition period is also exist during
the change of direction. Thus, an effective transition is very important to be applied.

• Supervisory control and gait generator of the trajectory-following SMPL system
Last, a supervisory controller and a gait generator is needed to have a fully autonomous
Zebro with the trajectory-following SMPL. The function of the supervisory controller
is to decide the linear velocity of the right and left side of the Zebro. The decision is
based on the trajectory which needs to be followed, or the target position. The gait
generator will translate the desired linear velocity of each side to the right gait and
max-plus parameters. The supervisory controller might be equipped with a trajectory
planning algorithm, to decide where the Zebro should go.
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Appendix A

Appendix:MATLAB code and extra
figures

A-1 MATLAB code of the simulation of trajectory-following SMPL
system (Developed from the MATLAB code of dr.Gabriel Lopes)

1 %% Initialize VREP Simulator:
2 clear all ;
3 clc ;
4 InitSimulator ;
5
6
7 %% Global Variables for Communication :
8
9 global SyncInfo ;
10
11 SyncInfo = [ ] ;
12 %% Add Required Paths
13 addpath (’MaxPlus’ ) ;
14 addpath (’Zebro’ ) ;
15
16 %% Simulation Loop:
17
18 SimTime = 0 ;
19 RMessage=’’ ;
20 JMessage=’’ ;
21 JX=zeros (1 , 12 ) ;
22
23 % chg = input(’What gait do you want?’);
24 % dir = input(’What direction do you want?’);
25 % tg = input(’What tg do you want?’);
26 % tp = input(’What tp do you want?’);
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27
28 count = 1 ;
29
30 %% Simulation Code
31
32 while ( SimTime < 30)
33
34 % Input to SMPL : gait and direction
35 chg =5;
36 dir =2; %2 for right direction , 1 for left direction
37
38 % Input to SMPL : tg and tp
39 tg = 0 . 8 ; %0.6
40 tp = 0 . 5 ; %0.2
41
42 % Reading States from Zebros:
43 [ JPosition JOrientation JState JRotationMatrix ] = Zebro_Read ( clientID ,

vrep , Zebro_Juliet_Handle , ’Zebro_Juliet#0’ ) ;
44
45 % Run controller for Zebro Julliet
46 [ JMode , JDirection , JTurn , Jtheta_T , Jtheta_L , JA , JReference , JMessage ]

= Zebro_Juliet ( SimTime , chg , dir , tg , tp , RMessage ) ;
47
48 % Send information to Zebro
49 % (State x(k) and Rotation Matrix)
50 [ JX ]=Zebro_Write ( clientID , vrep , ’Zebro_Juliet#0’ , JMode , JDirection ,

JTurn , Jtheta_T , Jtheta_L , JA , JReference ) ;
51
52 % Collecting the states
53 JStates ( : , count ) = JX ;
54
55 % Record the simuation time
56 [ SimTime ] = vrep . simxGetLastCmdTime ( clientID ) ;
57 SimTime = SimTime∗1e−3;
58
59 [ dTime ( count ) ] = vrep . simxGetLastCmdTime ( clientID ) ;
60 dTime ( count ) =dTime ( count ) ∗1e−3;
61
62
63 r_position ( count , : ) = JPosition ;
64 r_orientation ( count , : ) = JOrientation ; %Value in radian! Take the second

column
65
66 count = count + 1 ;
67
68 end
69
70 StopSimulator (vrep , clientID ) ;
71
72 %% Calculating Linear and Angular Velocity data
73
74 ro_deg = rad2deg ( r_orientation ) ; % orientation in degree
75
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76 %Calculating the linear and angular velocity
77 for i = 1 : 1 : count−2
78 for j =1:3
79 r_lv (i , j ) = ( abs ( r_position (i+1,j )−r_position (i , j ) ) ) ;
80 r_av (i , j ) = ( abs ( r_orientation (i+1,j )−r_orientation (i , j ) ) ) ;
81 end
82 end
83
84 for p = 1 : 1 : length ( r_lv )
85 v_linear (p ) = sqrt ( r_lv (p , 1 ) ^2 +r_lv (p , 2 ) ^2) ;
86 end
87
88 % Calculating the mean of linear and angular velocity
89 lv_average = mean ( r_lv ) ; % Take only 1st and 2nd column , x and y
90 av_average = mean ( r_av ) ; % Take only 2nd column , alpha
91 vlin_average = mean ( v_linear ) ;
92
93 [ radius , a , b ] = radiusofcurv ( r_position ( : , 1 ) , r_position ( : , 2 ) )
94
95 %% Saving simulation result
96 simresult . position = r_position ;
97 simresult . orientation = r_orientation ;
98 simresult . Vc = r_lv ;
99 simresult . AVc = r_av ;
100 simresult . mVc = lv_average ;
101 simreuslt . mAVc = av_average ;
102 simresult . mVlin = vlin_average ;
103 simresult . rads = radius ;
104 simresult . a = a ;
105 simresult . b = b ;
106 simresult . X =JStates ;
107
108 save (’simresult_quad3_30.mat’ ,’-struct’ ,’simresult’ ) ;

1 %% Establishing connection between MATLAB and VREP:
2 addpath (’RemoteApi’ ) ;
3
4 disp (’Program Started’ ) ;
5
6 vrep = remApi (’remoteApi’ ) ; % Create an object named vrep for remoteApi
7
8 vrep . simxFinish (−1) ; % Just to make sure that all connections with VREP

are
9 % closed
10
11 clientID = vrep . simxStart (’127.0.0.1’ ,19997 , true , true , 5000 ,5) ; % Start

the
12 % connection with debug and synchronous mode set to true.
13
14
15 % Check for Valid Connection
16 if ( clientID > −1)
17
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18 disp (’Connected to remote API server’ ) ;
19
20 else
21
22 disp (’Failed connecting to remote API server’ ) ;
23
24 close ;
25 end
26
27
28 vrep . simxSynchronous ( clientID , false ) ; %Set-up a-synchronous

communication on
29 % the client side
30
31 vrep . simxStartSimulation ( clientID , vrep . simx_opmode_oneshot_wait ) ; %

Start
32 % the simulation
33
34
35
36 %%%%%%%%%% Retrieve all Joint Handles:

%%%%%%%%%%%%
37
38 %%%%% Zebro -Juliet Joint Handles %%%%%
39
40 [ res Zebro_Juliet_Handle (1 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Zebro_Juliet#0’ , vrep . simx_opmode_oneshot_wait ) ;
41 [ res Zebro_Juliet_Handle (2 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint1

#0’ , vrep . simx_opmode_oneshot_wait ) ;
42 [ res Zebro_Juliet_Handle (3 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint2

#0’ , vrep . simx_opmode_oneshot_wait ) ;
43 [ res Zebro_Juliet_Handle (4 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint3

#0’ , vrep . simx_opmode_oneshot_wait ) ;
44 [ res Zebro_Juliet_Handle (5 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint4

#0’ , vrep . simx_opmode_oneshot_wait ) ;
45 [ res Zebro_Juliet_Handle (6 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint5

#0’ , vrep . simx_opmode_oneshot_wait ) ;
46 [ res Zebro_Juliet_Handle (7 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint6

#0’ , vrep . simx_opmode_oneshot_wait ) ;
47
48 %%%%% Zebro -Romeo Joint Handles %%%%%
49
50 [ res Zebro_Romeo_Handle (1 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Zebro_Romeo’ , vrep . simx_opmode_oneshot_wait ) ;
51 [ res Zebro_Romeo_Handle (2 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint1’

, vrep . simx_opmode_oneshot_wait ) ;
52 [ res Zebro_Romeo_Handle (3 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint2’

, vrep . simx_opmode_oneshot_wait ) ;
53 [ res Zebro_Romeo_Handle (4 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint3’

, vrep . simx_opmode_oneshot_wait ) ;
54 [ res Zebro_Romeo_Handle (5 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint4’

, vrep . simx_opmode_oneshot_wait ) ;
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55 [ res Zebro_Romeo_Handle (6 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint5’
, vrep . simx_opmode_oneshot_wait ) ;

56 [ res Zebro_Romeo_Handle (7 ) ] = vrep . simxGetObjectHandle ( clientID , ’Joint6’
, vrep . simx_opmode_oneshot_wait ) ;

57
58 % Get Beacon Handles
59 [ res Beacon_Handle (1 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Right_pickup’ , vrep . simx_opmode_oneshot_wait ) ;
60 [ res Beacon_Handle (2 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Left_pickup’ , vrep . simx_opmode_oneshot_wait ) ;
61 [ res Beacon_Handle (3 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Right_drop’ , vrep . simx_opmode_oneshot_wait ) ;
62 [ res Beacon_Handle (4 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Left_drop’ , vrep . simx_opmode_oneshot_wait ) ;
63 [ res Beacon_Handle (5 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Stairs’ , vrep . simx_opmode_oneshot_wait ) ;
64 [ res Beacon_Handle (6 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Rough_terrain’ , vrep . simx_opmode_oneshot_wait ) ;
65 [ res Beacon_Handle (7 ) ] = vrep . simxGetObjectHandle ( clientID , ’Beacon_Ramp’

, vrep . simx_opmode_oneshot_wait ) ;
66 [ res Beacon_Handle (8 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Final_platform’ , vrep . simx_opmode_oneshot_wait ) ;
67 [ res Beacon_Handle (9 ) ] = vrep . simxGetObjectHandle ( clientID , ’

Beacon_Success’ , vrep . simx_opmode_oneshot_wait ) ;
68
69 % Store the Beacon attributes as a struct
70
71 Beacon{1} = clientID ;
72 Beacon{2} = vrep ;
73 Beacon{3} = Beacon_Handle ;
74
75 % Initiaze variables to save information from VREP:
76
77 for j = 2:7
78
79 [ ret Juliet_Leg_Angle (1 , j ) ] = vrep . simxGetJointPosition ( clientID ,

Zebro_Juliet_Handle (j ) , vrep . simx_opmode_streaming ) ; % Joint Position
80 [ ret Romeo_Leg_Angle (1 , j ) ] = vrep . simxGetJointPosition ( clientID ,

Zebro_Romeo_Handle (j ) , vrep . simx_opmode_streaming ) ; % Joint Position
81 [ ret Juliet_Leg_Angle_Vel (1 , j ) ] = vrep . simxGetObjectFloatParameter (

clientID , Zebro_Juliet_Handle (j ) , 2012 , vrep . simx_opmode_streaming ) ; %
Joint Velcoity

82 [ ret Romeo_Leg_Angle_Vel (1 , j ) ] = vrep . simxGetObjectFloatParameter (
clientID , Zebro_Romeo_Handle (j ) , 2012 , vrep . simx_opmode_streaming ) ; %
Joint Velcoity

83
84 end
85
86 [ ret ] = vrep . simxGetObjectPosition ( clientID , Zebro_Juliet_Handle (1 ) , −1,

vrep . simx_opmode_streaming ) ; % Zebro Juliet Position
87 [ ret ] = vrep . simxGetObjectPosition ( clientID , Zebro_Romeo_Handle (1 ) , −1,

vrep . simx_opmode_streaming ) ; % Zebro Romeo Position
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88 [ ret ] = vrep . simxGetObjectOrientation ( clientID , Zebro_Juliet_Handle (1 ) ,
−1,vrep . simx_opmode_streaming ) ;

89 [ ret ] = vrep . simxGetObjectOrientation ( clientID , Zebro_Romeo_Handle (1 ) ,
−1,vrep . simx_opmode_streaming ) ;

90
91 for j=1:9
92
93 [ res Beacon_Position (j , : ) ] = vrep . simxGetObjectPosition ( clientID ,

Beacon_Handle (j ) ,−1 , vrep . simx_opmode_streaming ) ; %Beacon Position
94
95 end

1 %% This is the Zebro_Juliet controller
2 %
3 % Measurements are:
4 % t: is the simulation time
5 % Position: a vector with coordinates x,y,z
6 % Orientation: Euler angles using the convention x-y-z
7 % RotationMatrix: the 3x3 rotation matrix of zebro
8 % State: a 6 dimentional vector with the angles of all legs
9 % X: is the current x(k) from the max-plus equations
10 % IncomingMessage: A message sent by the other robot , only if it is
11 % within range
12 % Beacons: the coordinates of the beacons in space folloing the
13 % ordering described in the miniproject description PDF
14 %
15 % Inputs:
16 % Mode: 1 - for Max-Plus control. Requires ’Direction ’, ’Turn’, ’

theta_T ’, ’theta_L ’ and ’A’
17 % 2 - for direct control of each individual leg. Requires ’

Reference ’
18 %
19 % Direction: This changes the direction of motion of the left and

right
20 % set of legs. Use:
21 % 1 - Go forward
22 % 2 - Go backwards
23 % 3 - Turn in place to the left
24 % 4 - Turn in place to the right
25 %
26 % Turn: This is an offset introduced in the range of the touchdown

and
27 % liftoff angles , with the effect of creating smooth variable
28 % radius turning while moving forward or backwards. The offset

is
29 % ’theta_T + Turn’ and ’theta_L - Turn’ for the right legs and
30 % ’theta_T - Turn’ and ’theta_L + Turn’ for the left legs. This
31 % means that you should make sure that ’Turn <= |theta_L -

theta_T|,
32 % otherwise you get a strange behaviour.
33 %
34 % theta_T: is the touchdown angle of the legs. For example -0.4 is a
35 % good number.
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36 %
37 % theta_L: is the liftoff angle of the legs. For example 0.4 is a
38 % good number.
39 %
40 % A: is the max-plus system matrix (see lecture notes)
41 %
42 % Reference: is a 6 dimensional vector that sends directly the
43 % reference angles of each leg to the Zebro robot. In v-

rep
44 % a PID controller tracks this reference.
45 %
46 % SendMessage: you can use this variable to send a message to the

other
47 % robot. Message only arrives if robots are within range

.
48 % Otherwise the message is lost.
49 %
50 function [ Mode , Direction , Turn , theta_T , theta_L , A , Reference ,

SendMessage ] = Zebro_Juliet (t , chg , dir , tg , tp , IncomingMessage )
51
52 if ( IncomingMessage ~= ’’ )
53 % process incoming message from other robot
54 end
55
56 %% Mode, direction are always 1
57 Mode = 1 ;
58
59 Direction = 1 ;
60
61 Turn = 0 ;
62
63 theta_T = −0.6; %default -0.4
64
65 theta_L = 0 . 6 ; %default 0.4
66
67 %% Deciding the sufficient gait and gait parameter
68
69 gait = GenerateGait ( chg ) ;
70 td = 0 . 1 ; %0.2
71
72 tf = 0 . 5 ; % DONT FORGET TO CHANGE BACK INTO 0.5 !!!!!!!
73
74
75 if dir ==1 %Turning left
76 tg_left = tg + tp ;
77 tf_left = tf ;
78
79 tg_right= tg ;
80 tf_right= tf + tp ;
81
82 elseif dir == 2% Turning right
83 tg_right = tg + tp ;
84 tf_right = tf ;
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85
86 tg_left= tg ;
87 tf_left= tf + tp ;
88
89 else
90 tg_right = 0 ;
91 tf_right = 0 ;
92
93 tg_left= 0 ;
94 tf_left= 0 ;
95 end
96
97
98
99 %% Constructing matrices
100
101 % Define R, M, N, T
102 R = ComputeR (gait , td , tp , tg_left , tg_right ) ;
103 T = ComputeT (gait , td , tp , tg_left , tg_right ) ;
104 M = ComputeM (tp , tg_left , tg_right ) ;
105 N = ComputeN (tp , tg_left , tg_right ) ;
106
107 siz = size (R ) ; % size(P) == size(Q)
108
109 t_F = tf∗eye ( siz ) ;
110 t_G = tg∗eye ( siz ) ;
111
112 % Define Identity matrix
113 E = MPIdentityMatrix ( siz ) ;
114
115 % Define Zero matrix
116 eNull = MPNullMatrix ( siz ) ;
117
118 % Construct matrix A0 and As
119
120
121 A0_11 = eNull ;
122 A0_12 = t_F+E+M ;
123 A0_21 = R ;
124 A0_22 = eNull ;
125
126 A0 = [ A0_11 A0_12 ; A0_21 A0_22 ] ;
127 As = MPComputeAStar (A0 ) ;
128
129 % Construct matrix A1 and A
130 A1_11 = E ;
131 A1_12 = eNull ;
132 A1_21 = MPPlus ( t_G+E+N , T ) ;
133 A1_22 = E ;
134
135 A1 = [ A1_11 A1_12 ; A1_21 A1_22 ] ;
136
137 A = MPTimes (As , A1 ) ;
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138
139 Reference = [1 1 1 1 1 1 ]∗ t ;
140
141 SendMessage=’’ ;
142
143
144 end

1 function [ Position Orientation State RMatrix ] = Zebro_Read ( clientID , vrep
, Handle , Object )

2
3 %% Function reads the following from VREP Zebro :
4
5 % 1. X -> Discrete State events
6 % 2. Position -> Position of Zebro in World Frame
7 % 3. Heading -> Heading Direction of the Zebro in World Frame
8 % 4. State -> Individual Joints Angles and Joint Velocities of the Zebro

Legs
9
10
11 for j = 2:7
12 % Joint Position
13 [ ret State (1 , j − 1) ] = vrep . simxGetJointPosition ( clientID , . . .
14 Handle (j ) , vrep . simx_opmode_buffer ) ;
15 % Joint Velcoity
16 [ ret State (1 , j + 5) ] = vrep . simxGetObjectFloatParameter ( clientID

, . . .
17 Handle (j ) , 2012 , vrep . simx_opmode_buffer ) ;
18
19 end
20
21
22 % Zebro Position
23 [ ret Position ( 1 , : ) ] = vrep . simxGetObjectPosition ( clientID , . . .
24 Handle (1 ) , −1,vrep . simx_opmode_buffer ) ;
25
26
27 % Zebro Orientation
28 [ ret Orientation ( 1 , : ) ] = vrep . simxGetObjectOrientation ( clientID , . . .
29 Handle (1 ) , −1,vrep . simx_opmode_buffer ) ;
30
31
32
33 [ res retInts RMatrix retStrings retBuffer ] = vrep . simxCallScriptFunction

. . .
34 ( clientID , Object , vrep . sim_scripttype_childscript , . . .
35 ’RotationMatrix’ , [ ] , [ ] , [ ] , [ ] , vrep . simx_opmode_blocking ) ;
36
37
38 RMatrix = reshape ( RMatrix , [ 4 , 3 ] ) ;
39 RMatrix = RMatrix ’ ;
40 RMatrix = RMatrix ( 1 : 3 , 1 : 3 ) ;
41
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42
43 end

1 function [ X ] = Zebro_Write ( clientID , vrep , Object , Mode , Direction , Turn ,
theta_T , theta_L , A , Reference )

2
3 %% Function Writes the following to VREP Zebro :
4
5 % 1. Object -> Name of the Object to Which the Child Script is associated
6
7 % 2. Mode -> Choice of Mode of Operation
8 % Mode 1 -> Max-Plus Algebra based gait control
9 % Mode 2 -> Individual leg control
10
11 % Output X -> Discrete State events x(k)
12 % RMatrix -> Rotation Matrix
13
14 Reference=[1 −1 1 −1 1 −1].∗ Reference ;
15
16 X = [ ] ;
17
18 [ res retInts retFloats retStrings retBuffer ]=vrep . simxCallScriptFunction

. . .
19 ( clientID , Object , vrep . sim_scripttype_childscript , . . .
20 ’Mode_Select’ ,Mode , [ ] , [ ] , [ ] , vrep . simx_opmode_blocking ) ;
21
22
23
24 if ( Mode == 1)
25
26 [ res retInts X retStrings retBuffer ]=vrep . simxCallScriptFunction . . .
27 ( clientID , Object , vrep . sim_scripttype_childscript , . . .
28 ’Mode1’ , Direction , [ Turn ; theta_T ; theta_L ; reshape (A , [ 1 2 ∗ 1 2 , 1 ] )

] , [ ] , [ ] , . . .
29 vrep . simx_opmode_blocking ) ;
30
31 elseif ( Mode == 2)
32
33 [ res retInts retFloats retStrings retBuffer ] = vrep .

simxCallScriptFunction . . .
34 ( clientID , Object , vrep . sim_scripttype_childscript , . . .
35 ’Mode2’ , [ ] , [ Reference ] , [ ] , [ ] , vrep . simx_opmode_blocking ) ;
36 end
37
38 % [res retInts RMatrix retStrings retBuffer] = vrep.

simxCallScriptFunction...
39 % (clientID ,Object ,vrep.sim_scripttype_childscript ,...
40 % ’RotationMatrix ’,[],[],[],[],vrep.simx_opmode_blocking);
41 %
42 % RMatrix = reshape(RMatrix ,[4,3]);
43 % RMatrix = RMatrix ’;
44 % RMatrix = RMatrix(1:3,1:3);
45
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46 end

1 function StopSimulator (vrep , clientID )
2
3 %% Stop simulation and Clean up the connection:
4
5 % Stop the simulation on VREP:
6 vrep . simxStopSimulation ( clientID , vrep . simx_opmode_oneshot_wait ) ;
7
8 % Close the connection to VREP:
9 vrep . simxFinish ( clientID ) ;
10
11 %Call the destructor and destroy the vrep object:
12 vrep . delete ( ) ;
13
14 disp (’Program Ended’ ) ;
15 vrep . simxFinish ( clientID ) ;
16
17 end

1 function [ M ] = ComputeM (tp , tg_left , tg_right )
2
3 M = −inf∗ones ( 6 , 6 ) ;
4
5 for i =1:1:6
6 if tg_left > tg_right %Turning left
7 if mod (i , 2 ) == 0
8 M (i , i )=tp ;
9 elseif mod (i , 2 ) == 1
10 M (i , i ) = 0 ;
11 end
12 elseif tg_left < tg_right %Turning right
13 if mod (i , 2 ) == 0
14 M (i , i )= 0 ;
15 elseif mod (i , 2 ) == 1
16 M (i , i ) = tp ;
17 end
18 elseif tg_left == tg_right %straight
19 M (i , i ) = 0 ;
20 end
21 end

1 function [ N ] = ComputeN (tp , tg_left , tg_right )
2
3 N = −inf∗ones ( 6 , 6 ) ;
4
5 for i =1:1:6
6 if tg_left > tg_right %Turning left
7 if mod (i , 2 ) == 0
8 N (i , i )= 0 ;
9 elseif mod (i , 2 ) == 1
10 N (i , i ) = tp ;
11 end
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12 elseif tg_left < tg_right %Turning right
13 if mod (i , 2 ) == 0
14 N (i , i )= tp ;
15 elseif mod (i , 2 ) == 1
16 N (i , i ) = 0 ;
17 end
18 elseif tg_left == tg_right %straight
19 N (i , i ) = 0 ;
20 end
21 end

1 function [ R ] = ComputeR (gait , td , tp , tg_left , tg_right )
2
3 [ row , m ] = size ( gait ) ;
4 [ row , n ] = size ( gait {1 ,1}) ;
5
6 for i = 1 : 1 : m
7 for j = 1 : 1 : n
8 pq (i , j )= gait {1 ,i}{1 ,j } ;
9 end
10 end
11
12 [ ep , eq ] = size (pq ) ;
13
14 R = −inf∗ones ( 6 , 6 ) ;
15
16 for ei = 1 : ( ep−1)
17 for ej = 1 : eq
18 p (ei , ej ) = pq (ei+1,ej ) ;
19 q (ei , ej ) = pq (ei , ej ) ;
20 end
21 end
22
23 for ei = 1 : ( ep−1)
24 for ej = 1 : eq
25 if tg_left > tg_right %Turning left
26 % q is even for td
27 if mod (q (ei , ej ) , 2 )== 0
28 R (p (ei , : ) ,q (ei , ej ) )= td ;
29 elseif mod (q (ei , ej ) , 2 )== 1
30 R (p (ei , : ) ,q (ei , ej ) )= tp ;
31 end
32 % q is odd for tp
33 elseif tg_left < tg_right %Turning right
34 % q is odd for td
35 if mod (q (ei , ej ) , 2 )== 0
36 R (p (ei , : ) ,q (ei , ej ) )= tp ;
37 elseif mod (q (ei , ej ) , 2 )== 1
38 R (p (ei , : ) ,q (ei , ej ) )= td ;
39 end
40 % q is even for tp
41 elseif tg_left == tg_right
42 R (p (ei , : ) ,q (ei , : ) )= td ;
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43 else
44 R =[ ] ;
45 end
46 end
47 end

1 function [ T ] = ComputeT (gait , td , tp , tg_left , tg_right )
2
3 [ row , m ] = size ( gait ) ;
4 [ row , n ] = size ( gait {1 ,1}) ;
5
6 for i = 1 : 1 : m
7 for j = 1 : 1 : n
8 pq (i , j )= gait {1 ,i}{1 ,j } ;
9 end
10 end
11
12 [ ep , eq ] = size (pq ) ;
13
14 T = −inf∗ones ( 6 , 6 ) ;
15
16 p = pq ( 1 , : ) ;
17 q = pq (m , : ) ;
18
19
20 for ej = 1 : eq
21 if tg_left > tg_right %Turning left
22 % q is even for td
23 if mod (q (ej ) , 2 )== 0
24 T (p , q (ej ) )= td ;
25 elseif mod (q (ej ) , 2 )== 1
26 T (p , q (ej ) )= tp ;
27 end
28 % q is odd for tp
29 elseif tg_left < tg_right %Turning right
30 % q is odd for td
31 if mod (q (ej ) , 2 )== 0
32 T (p , q (ej ) )= tp ;
33 elseif mod (q (ej ) , 2 )== 1
34 T (p , q (ej ) )= td ;
35 end
36 % q is even for tp
37 elseif tg_left == tg_right
38 T (p , q )= td ;
39 else
40 T =[ ] ;
41 end
42 end
43 end
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1 function [ gait ] = GenerateGait ( chg )
2
3 if chg == 1
4 gait = {{1 ,4 , 5} ,{2 , 3 , 6}} ;
5 elseif chg == 2
6 gait = {{2 ,3 , 6} ,{1 , 4 , 5}} ;
7 elseif chg == 3
8 gait = {{1 ,4} ,{3 ,6} ,{2 ,5}} ;
9 elseif chg == 4
10 gait = {{1 ,4} ,{2 ,5} ,{3 ,6}} ;
11 elseif chg == 5
12 gait = {{1 ,6} ,{2 ,3} ,{4 ,5}} ;
13 elseif chg ==6
14 gait = {{1 ,6} ,{4 ,5} ,{2 ,3}} ;
15 else
16 gait =[ ] ;
17 end

1 function As = MPComputeAStar (A )
2
3 siz = size (A , 1 ) ;
4 As=MPIdentityMatrix ( siz ) ;
5 As_ = As ;
6 for n=1:siz−1
7 As=MPPlus ( MPTimes (As , A ) ,A ) ;
8 end
9
10 As=MPPlus (As , As_ ) ;

1 function I = MPIdentityMatrix ( siz )
2
3 I = −Inf∗ones ( siz ) ;
4
5 for i=1:siz
6 I (i , i )=0;
7 end

1 function E = MPNullMatrix ( siz )
2
3 E = −Inf∗ones ( siz ) ;

1 function C = MPPlus (A , B )
2
3 C=max (A , B ) ;

1 function x = MPTimes (a , b )
2
3 x=zeros ( size (a , 1 ) , size (b , 2 ) ) ;
4 for i=1:size (b , 2 )
5 x ( : , i ) = max ( bsxfun ( @plus , a ’ , b ( : , i ) ) , [ ] , 1 ) ’ ;
6 end
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A-2 Extra Figures

A-3 Tripod 1

(a) Left direction (b) Right direction

Figure A-1: τg = 0.4 and τp =0.1

(a) Left direction (b) Right direction

Figure A-2: τg = 0.4 and τp =0.2

(a) Left direction (b) Right direction

Figure A-3: τg = 0.4 and τp =0.3
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(a) Left direction (b) Right direction

Figure A-4: τg = 0.4 and τp =0.4

(a) Left direction (b) Right direction

Figure A-5: τg = 0.4 and τp =0.5

A-4 Tripod 2

(a) Left direction (b) Right direction

Figure A-6: τg = 0.4 and τp =0.1
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(a) Left direction (b) Right direction

Figure A-7: τg = 0.4 and τp =0.2

(a) Left direction (b) Right direction

Figure A-8: τg = 0.4 and τp =0.3

(a) Left direction (b) Right direction

Figure A-9: τg = 0.4 and τp =0.4

A-5 Quadruped 1

A-6 Quadruped 2
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(a) Left direction (b) Right direction

Figure A-10: τg = 0.4 and τp =0.5

(a) Left direction (b) Right direction

Figure A-11: τg = 0.4 and τp =0.1

(a) Left direction (b) Right direction

Figure A-12: τg = 0.4 and τp =0.2
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(a) Left direction (b) Right direction

Figure A-13: τg = 0.4 and τp =0.3

(a) Left direction (b) Right direction

Figure A-14: τg = 0.4 and τp =0.4

(a) Left direction (b) Right direction

Figure A-15: τg = 0.4 and τp =0.5
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(a) Left direction (b) Right direction

Figure A-16: τg = 0.4 and τp =0.1

(a) Left direction (b) Right direction

Figure A-17: τg = 0.4 and τp =0.2

(a) Left direction (b) Right direction

Figure A-18: τg = 0.4 and τp =0.3
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(a) Left direction (b) Right direction

Figure A-19: τg = 0.4 and τp =0.4

(a) Left direction (b) Right direction

Figure A-20: τg = 0.4 and τp =0.5
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