The iImpact of reactionary benavior in
channel creation games

How actions influence transaction routing in the
bitcoin lightning network

by
D.DM. Moonen

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday August 22, 2023 at 11:00 AM.

Student number: 4608062

Project duration: December 14, 2021 — August 22, 2023
Thesis committee: Prof. Dr. L. Chen, TU Delft

Dr. S. Roos, TU Delft, supervisor
Dr. T. Durieux, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

Preface

This thesis analyzes the impact of a multi-actor model on the rewards a party is able to obtain by oper-
ating in the Bitcoin lightning network. This project was performed at the Distributed Systems Group '
at Delft University of Technology, and is part of the master of the Cyber Security master degree at the
faculty of computer science. The responsible professor is Lydia Chen, an Associate Professor of the
Distributed Systems Group. The supervising professor is Stefanie Roos, an Assistant Professor of the
Distributed Systems Group. The third and final committee member is Thomax Derieux, an Assistant
Professor of the Software Engineering Research Group.

The source code of this project has been made available?.

"https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
distributed-systems
thtps://github.com/DMoonen/reactionary—games—impact—analysis

https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/distributed-systems
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/distributed-systems
https://github.com/DMoonen/reactionary-games-impact-analysis

iv Preface

Acknowledgement

“Energy and persistence conquer all things.” —Benjamin Franklin

This thesis was not a walk in the park. It has often pushed me beyond what | had previously thought
my capabilities were. It has made me learn and improve myself, but the journey has been worth it. As
it allowed me to achieve something that | am proud of. Those that supported me during this time have
had a great impact on me and that is why | want to thank those who have motivated me, and supported
me in overcoming this challenge. | want to thank my family and friend for supporting me and providing
a place to recharge and vent my frustrations. | want to show my gratitude to Annamarie Struive and
Lilly Umans for their help in proofreading this thesis. And lastly, | want to thank Oguzhan Ersoy and
Stefanie Roos for their guidance and their expertise as my supervisors during this thesis.

D.D.M. Moonen
Delft, August 2023

Preface v

Abstract

Payment channels allow parties to utilize the blockchain to send transactions for a cheaper fee. Previ-
ous work has analyzed to which degree a party can profit by facilitating the transaction process. The
aim is to increase the usability of the network and to be rewarded for providing this service. However,
previous work focuses on maximizing the reward of the individual player in isolation, a model that we
aim to expand. That is why in this work we extend the action space to allow other parties to act and
react, and observe the impact this has on the rewards of the player that would otherwise act in isolation.
Testing existing placement strategies by performing channel placement games, we can assess the dif-
ference in the reward that indicates the potential loss that competition may cause when operating in
the Bitcoin Lightning Network. Furthermore, we have developed a new strategy that is able to improve
the performance in the multi-actor model.

Contents

Introduction 1
Background Knowledge 3
21 GraphTheory. e 3
2.2 Bitcoin Lightning Networko 5
2.3 Networkcreation L e e 7
2.3.1 Resizeingfromsnapshot. 7
2.3.2 Barabasi-Albert. 7
24 Game Theory. e 8
25 Relatedwork L 9
Model 1"
3.1 Assumptions L e 11
3.2 Modeldescription. 12
3.21 Actionspace e 12
3.2.2 Placementstrategies. 12
3.2.3 Model Parameters 13
3.2.4 Initialization problem 13
3.2.5 Initialization Analysis 15
Methodology 19
41 Researchquestion e 19
4.2 Graph e e 19
4.3 Theexperiments e e 21
431 Replication 21
4.3.2 FeeNoise Analysis. e 21
433 TheCases i i e 22
4.3.4 StacklebergGames 22
44 Code e 22
45 Testing e e e 25
46 SErVers e e e 25
4.7 Setup e e 26
471 Performance 26
4.7.2 Resultnormalization 26
Results 29
51 Replication e 29
52 FeeNoise Analysis. L 30
5.3 Action Space Impact Analysis 31
531 Case1:Baseline. 31
5.3.2 Case 2: Network Reaction. 33
5.3.3 Case 3: An AdditionalParty 35
5.3.4 Case 4: Combined ActionSpace 37
54 GameTheory. e e 39
541 Network. 39
542 Party e 41
Conclusion, Limitation & Future Work 45
6.1 Conclusion L 45
6.2 Limitations 46
6.3 Future Work. 47

viii Contents
A Figures 51
A1 Replicationfigures 51
A2 FeeNoise Analysis. e 53
A3 Caselfigures e e 56
A4 Case2figures e 59
A5 Case3figures e 62
A6 Casedfigures 65
A.7 Game Theory Network figures. 68
A.8 Game Theory Party figures 69

Introduction

Ever since its invention in 2008, Bitcoin [Nak08] has impacted the transaction market by providing an
alternative method for transferring funds. In doing so it gives actors with the ability to send funds to
anyone, anywhere across the globe without the need for a centralized authority to process the trans-
action. Making it a promising alternative technology in today’s day and age where transactions occur
frequently.

However, Bitcoin’s blockchain does suffer from issues that arise from scaling. It takes roughly 10
minutes to process a transaction and processes an average of 7 transactions per second (tps) [Cro+16]
[Li+18]. If we were to take Paypal as an example has a tps of close to 200, or Visa which has a tps of
over 1500 [MDP18], it becomes clear that Bitcoin has a significantly lower tps rate than the traditional
central authority competitors.

When a large number of transactions need to be processed using Bitcoin’s technical limitation of 7
tps [Li+18], it leads to congestion. This congestion ultimately manifests itself in high transaction fees,
as parties compete to have their transactions processed on the blockchain.

This is why various researchers have proposed the solution of payment channels [DW15] [BDW18]
[McC+16][PD16]. When a payment channel is created, two parties lock funds on-chain (on the blockchain)
to be used for direct transactions between them. This requires only a limited number of transactions
(namely two) to lock the value, after which many transactions can be performed without the need for
them to be on the chain. By sending signed messages the two parties keep track of who owns which
part of the locked funds, which are also used as collateral when a party tries to cheat the other. This
channel is not limited to two parties. By creating a network of channels it is possible to create a payment
channel network (PCN), which reduce the number of on-chain transaction even further.

Bitcoin Lightning Network [PD16] or Raiden network [Net20] on the Ethereum blockchain [Woo+14]
are such PCN’s and have the following advantages. First, they create a network where the throughput is
seemingly limitless. If the channels are well-funded, and the transactions are balanced, then no channel
will run out of funds. This means that the number of transactions that can occur on the network would
only be limited by the latency between devices. The second advantage is that the transactions are near
instantaneous, requiring only the latency between the two parties. Since the transactions are performed
between two parties, the transaction is processed when the signed messages are exchanged. No
longer is it required to wait until the majority of the chain has verified that the transaction is indeed
legitimate for it to be processed. This feat can be achieved whilst still being able to rely on the security
that the blockchain provides. It would require the owner of the channel to look for and dispute fraudulent
transactions, but it would be able to maintain a high level of security through the blockchain.

However, there are costs involved with channel creation. The implicit cost is that the funds are
locked and can not be spent elsewhere, where returns might be higher. The explicit costs are the
transaction fees that are paid for the transactions, to lock the funds. These disincentivize the main-
tenance of payment channels. And therein lies the problem, because the network requires a large
number of reliable, well-funded channels to operate effectively [Gud+19].

For there to be a network with a large number of reliable, well-funded channels to exist, the benefits
need to outweigh the costs. These benefits come in 2 forms, saved transaction fees and routing re-
wards. When one is part of the network, it means that transactions can be processed off the chain. For

1

2 1. Introduction

every processed transaction one saves the transaction fees that would normally be paid on the chain.
If one performs frequent transactions, the money saved can be quite a large sum. The routing rewards
are obtained by facilitating a transaction that makes use of an established channel that charges a fee.
In this sense, one is rewarded for the connectivity of the channel, and the locking of the funds. Since the
saved transaction fees are determined by the demand on the blockchain, this is not a variable that can
be changed to provide an incentive. This means that the incentive to lock funds and create a channel
largely comes from transaction fees.

This work focuses on the routing incentives within the BitcoinLightning Network, which has been
investigated in Ersoy et al [ERE20]. This closest related work by Ersoy et al proposes a non-default
fee selection algorithm that allows for a higher return on newly created channels. They show that
fees have the potential to motivate rational actors to fund payment channels. However, in their model,
they assume a single actor creates new channels and fixed routing fees by other parties, whereas in
reality there would be the possibility of fee changes and additional channel creations. Furthermore, the
model currently does not include capacity information and contains same-value transactions, whereas
in reality transactions would have different payment values. In general, it would be interesting to see
if the actions of the other parties in the network that follow the channel creation influence or otherwise
impact the "optimal” choice.

For this reason, the aim of this thesis is to add to this existing work and extend the model found
in [ERE20]. By modeling multiple actors that interact consecutively in the channel creation game, the
fee strategy from [ERE20] can be analyzed in a more realistic scenario. By answering "How is the
optimal channel creation choice impacted by a multi-actor model?” a better understanding of rewards
and incentives can be obtained. This provides a more realistic approximation of what the benefits will
be for actors that lock funds for a payment channel in the Bitcoin Lighting Network. These incentives
will ultimately guide the decision for an actor to either lock or abstain from locking funds. To answer
the research question "How the rewards of an optimal channel creation choice are impacted by
a multi-actor model?”, we will consider 2 factors. Namely the impact of the existing actors "How
are rewards impacted when parties are allowed to change their channel fees?”, and the impact
from additional channel creations "How are rewards impacted when there is an additional party
participating in the network creation game?”.

To analyze the impact of these two factors we conduct multiple experiments with slight variations
in action space. This allows us to isolate and observe the specific effects these factors have on the
rewards obtained by routing transactions within the network. The first experiment serves as a baseline
where the action space remains unchanged. In this scenario, we examine the rewards without any
additional parties or changes in channel fees. The second experiment introduces another party to the
network. This new party will react to changes made by the leading party, providing insight into how
their presence influences the rewards. In the third experiment, we allow parties already present in the
network to alter their channel fees. This explores the impact that fee adjustments have on the rewards.
Lastly, the fourth experiment combines the action spaces from the previous two experiments. This
allows us to examine the combined impact of the action space on the obtained rewards.

Our experiments conclude that both the ability of the existing network to alter existing channels and
the inclusion of additional parties have a negative influence on the rewards obtained within the network.
We found this negative effect on rewards to be increased when the existing network was given the ability
to change channel fees. Our results of this thesis indicate that actors within the network tend to undercut
each other, leading to lower rewards. These findings suggest that the optimal channel creation choice
is negatively affected in a multi-actor model.

Based on these conclusions, we aim to mitigate the impact of other actors on the rewards. To
address this, we analyze strategies that take into account the behavior of the other actors during the
decision-making process. Namely what the competitive advantage will be for the leading party when
the reaction to their actions is known beforehand. Our findings indicate that whilst this provides a
significant advantage, it is not enough to counterbalance the reduction in rewards. Our contributions
are:

Extending the model to allow other actors to perform actions.

Analyzing the impact of reactionary games.

Implementation to remove rewards that would originate from the routing party.

* Analyzing two game-theoretical strategies that aim to reduce the influence of other actors.

Background Knowledge

This thesis builds upon common concepts found in various fields related to computer science. While
we assume that these concepts are familiar to the reader, this chapter aims to provide background
knowledge for those who may not have obtained it yet. Section 2.1 covers the fundamentals of graph
theory, which is essential for understanding the blockchain technology discussed in 2.2. In section 2.3,
methods for creating graphs suitable for analysis are described. Section 2.4 delves into the fundamental
principles of game theory, while section 2.5 explores related work. By studying these sections, the
reader will gain the foundation to comprehend the content that will follow in this thesis.

2.1. Graph Theory

In this section, we will highlight some of the fundamental principles underlying graph theory, which will
play a crucial role in comprehending Section 2.2 while providing a solid foundation upon which this body
of scientific literature is built. Graph theory, a branch of mathematics that focuses on constructing and
studying networks that capture relationships, takes center stage. One notable relationship is that of
topological structures and the diverse ways in which one can interact with them. The model comprises
connections, also known as vertices or nodes. The connections between two vertices are called edges
and are defined as (u, v), where u and v represent vertices. The topological structure, known as the
graph, can be described as a collection of vertices and edges, denoted as G = (V, E).

Graphs can possess the property of being either directed or undirected, a characteristic deter-
mined by the edges within the graph. Specifically, it refers to whether the edges allow traversal in both
directions or restrict traversal to a single direction. An edge that permits traversal in only one direction
is termed a directed edge, whereas an edge enabling traversal in both directions is an undirected edge.
A graph comprising solely directed edges is referred to as a directed graph, while a graph consisting
solely of undirected edges is an undirected graph. It is not possible for a graph to have both undirected
and directed edges simultaneously. However, in the event of an anomalous graph with a mixture of
directed and undirected edges, it can be transformed into a directed graph. To achieve this, for every
undirected edge (a, b), one can introduce directed edges (a, b) and (b, a), thereby creating a directed
graph. The reverse transformation will not be viable. If a directed edge (a, b) exists, converting it into
a directed edge (a, b) would necessitate the addition of an extra undirected edge (b, a), which might
not have been present initially. Hence, a graph containing both undirected and directed edges cannot
be converted into a directed graph.

A path is a sequence of edges that joins a sequence of vertices, where all vertices, as well as edges,
are distinct [BW10]. If we intend to join vertices a and b, we can achieve this by utilizing the edge (a, b).
In the event that such an edge does not exist, an alternative sequence could involve (a, c) followed by
(c, b), provided that both of these edges exist within the network. This sequence can be represented
as the path (a, c, b). Multiple paths exist within a graph, and they play a vital role in analyzing the
optimal traversal options. When edges in a graph are assigned weights or requires a fee to traverse,
it follows that the paths within the graph also obtain a weight. This path weight corresponds to the
sum of the weights of all individual edges along the path. The weight of a path can provide valuable
information for decision-making processes. Since the concept of weights is frequently employed in

3

4 2. Background Knowledge

graphs, it is implicit that weighted paths are also widely utilized. Technically, there is no restriction on
a path returning to a vertex that has been visited earlier. When this happens, it is known as a cycle.
Cycles can have practical applications in certain problems. However, in this specific context, they
are generally undesirable since they increase the path weight, which represents the cost of traversal.
In our case, minimizing this cost is the desired outcome for every party within the network. Hence,
our objective will be to eliminate cycles whenever possible. One such method of eliminating cycles
is by using the concept of the shortest paths, which represents the path with the fewest number of
edges required to reach the destination. In the event that this shortest path contains a cycle, we can
simply remove the cycle by recognizing that it revisits the same vertex twice. By doing so, we create
an even shorter path. This process guarantees the removal of all existing cycles, ensuring that the
shortest path remains free of any cycles. A similar situation arises when we utilize weighted shortest
paths. However, instead of limiting the number of edges, our goal is to minimize the path weight. This
approach allows us to include more edges into the path, but only if it results in a lower overall cost. In
other words, we choose to traverse additional edges only if they lead to a reduction in fees. However,
this approach can only be employed when the graph does not contain any edges with negative weights.
Negatively weighted edges can decrease the path weight and potentially incentivize paths to include
cycles. Since this goes against the purposes of this work, we will only consider graphs with positive
weights.

Another optional parameter is the fee. The fee is what one has to pay in order to make use of
a certain edge. The edge charges a fee to traverse it. The inclusion of this concept exists to allow
the model to more accurately describe real-world scenarios. This ensures that the results derived
from the computations will be better applicable to the real-world scenario as well. For this reason, the
use of fees in graphs is a common practice. In this work, we will use the terms edge weight and fee
interchangeably. Both indicate the cost of using an edge, and the reward obtained when someone
makes use of an edge is directly correlated with the cost spent to make use of said edge. When one
does not want to incorporate fee into their model, one should set all of their edges to weight 1, as to
still allow for path and shortest paths to be computed.

While our intuitive perception of a graph often involves a vast interconnected network, not every
graph guarantees that every vertex can reach or be reached by others. Consider the following directed
graph: ¢ = (V = a,b,E = (a,b)). In this graph, vertex a € V can reach vertex b € V through the
directional edge (a, b) € E. However, vertex b cannot reach a since there is no edge (b,a) € E. This
example demonstrates the importance of considering the connectivity between vertices. This conceptis
referred to as the level of connectivity. A graph is considered connected if there exists a path between
every pair of vertices in the graph. Some definitions state that connectivity requires every vertex to be
able to reach every other vertex, excluding the trivial path to itself. These two definitions are essentially
equivalent, and this work will treat them as such. When we extend the concept of connectivity further,
it implies that not only should there be a path between every pair of vertices, but that path must have a
length of one (or zero in the trivial case). In other words, if every possible edge that can exist is present
in the (directed) graph, we refer to it as being fully connected. This implies that for each existing
vertex, there is an edge directly connecting it to every other vertex. Consequently, a directed graph
can have a maximum of #V(#V — 1) edges, where #V represents the number of vertices v € V. A
directed graph is said to be strongly connected when every vertex is able to reach every node in the
network. However, this path does not have to be of length 1. A directed graph is said to be weakly
connected when there exists a pair of vertices that cannot reach each other within the directed graph,
but all pairs of vertices can reach each other in the underlying directed graph [BG08]. When there
exists a vertex that can neither be reached by nor can reach other vertices it is called disconnected.
A graph that contains a disconnected vertex can be expressed in groups that are connected to each
other, these groups are called connected components of the graph. Because of the problems that
arise from working with non-connected graphs, this work will only make use of connected graphs.

Vertices within a graph possess a property known as degree. This property is determined by the
number of connections that a vertex has. Specifically, the degree of a vertex refers to the count of edges
directly connecting it to distinct destinations. The notation for a vertex a with x unique connections is
represented as Deg(a) = x. Computing the degree of a vertex differs between directed and undirected
graphs. In the case of a directed graph, the number of connections leading to vertex a may differ
from the number of connections leaving a. To describe this concept, we use the terms in-degree for
connections going to vertex a and out-degree for connections leaving vertex a. However, in this work,

2.2. Bitcoin Lightning Network 5

where only symmetric edges are utilized, the out-degree and in-degree will always be the same as the
degree. Therefore, in the context of this work, we will exclusively use the term "degree” to refer to this
value, as it will always represent the same number.

Not all edges in a graph are equal in terms of their usage. Some edges may experience higher
traffic or usage compared to others. This discrepancy could arise from factors such as their position
within the graph, the degree of the vertices they connect, or the fee they charge relative to other edges
in the network. Regardless of the underlying reasons, it is important to distinguish and compare the
usage of edges. One metric that aids in this analysis is the betweenness centrality.

The betweenness centrality metric operates on the assumption that each vertex in the network
sends one transaction to every other vertex through the shortest (weighted) paths. By considering all
these paths, it calculates how frequently an edge appears in any of the shortest paths and assigns a
corresponding score. Performing this computation for all edges enables a comparison of their scores.

Mathematically, the betweenness centrality of a vertex v is given by the equation: Cz(v) = Xzt Gi: ()
N3
where gy, represents the set of shortest paths from vertex s to vertex t [Fre77; RKJ14].

2.2. Bitcoin Lightning Network

This section will dedicate itself to the fundamental understanding of the solution to the congestion prob-
lem present in the blockchain space. The congestion problem occurs when the theoretical transaction
limit has been reached, and transactions are required to participate in a bidding war to be validated
(processed). Fortunately, there exists a solution that leverages the properties of the blockchain while
introducing functionality off the blockchain, which is known as a layer 2 solution. In this thesis, we will
explore how such a layer 2 solution addresses the congestion problem.

Now consider the following scenario: we have two individuals who frequently exchange transactions
with each other. Instead of engaging in the bidding war and paying high transaction fees they decide
to perform one transaction where they lock value. From that point onward, instead of performing a
transaction, they simply shift the distribution of the locked value. This scenario describes a channel
being created by two parties and we will continue to use this terminology throughout the rest of this
thesis. While section 2.1 has introduced these concepts as nodes and edges, in the context of channels
they are often referred to as channels and parties. Now consider the scenario where parties have
the ability to send a theoretically infinite number of transactions to each other. They continue sending
transactions until one of the parties decides to discontinue the channel. This process is called Channel
closure, where the current distribution is used to unlock the value and provide to each party their
share. Although the solution of channels effectively solves the congestion problem, there are still some
concerns that need to be addressed.

Firstly we want to address the security concerns that arise when funds are locked in a channel.
There exists the possibility that someone might attempt to forge a fraudulent transaction in order to
manipulate the balance of locked funds in their favor. If successful they will have effectively stolen funds
from the other party, which is not preferable. To address this risk, the concept of signing messages
was introduced, which if we assume that the act of signing is secure would be able to prevent it.

For a transaction to be accepted as valid, both parties need to sign before the transaction is ac-
cepted. This process involves the following steps. First, one of the parties makes a new distribution
of funds according to the transaction and performs a cryptographic operation on the document using
a secret value that only they possess. Then this transaction proposal is sent to the other party, who
can confirm the origin due to the cryptographic signing that has been performed. Once the other party
agrees on the transaction they sign it using their secret value and send the resulting transaction pro-
posal back. Having received a signature on the transaction proposal the initiating party knows that the
transaction has been accepted, and concludes the transaction. It is important for both parties to record
the updated state of the channel, as the consequences of not doing so are explained below.

In the event that a party attempts to deceive the other in any step of the process, the affected
party has the ability to contest or dispute the fraudulent transaction. By providing the last transaction
accepted by both parties and the security of the blockchain the dispute can be resolved. However, as
it currently stands, disputing fraudulent transactions requires parties to actively monitor the blockchain
in order to contest them. For parties that do not have the means to actively monitor all transactions the
concept of a "watchtower” has been developed, where this task can be outsourced to other nodes to
monitor for fraud [Ren18].

6 2. Background Knowledge

Secondly, we will address the issue of available balance within the channel. The locked value within
the channel is finite. When one party uses the channel more frequently or with higher transaction
amounts, over time the distribution will become heavily skewed towards one side. When this occurs
a transaction will attempt to go over the capacity of the channel. Since this is not allowed, it makes
the channel unable to be used in one direction. One possible solution would be for the party to wait
until transactions are made in the reverse direction to redistribute the funds, however, this is not always
feasible. Another solution is to perform a process called rebalancing. A transaction is used to add
more value to the total value locked in the channel thus changing the distribution of funds. By increasing
the value locked in the channel, it ensures that the funds are not fully owned by one party anymore,
enabling transactions to be performed in both directions again.

However, it is worth noting that if the distribution of transactions is not evenly balanced in both
directions of the channel, it is only a matter of time before the channel’s capacity is reached again.
While there exists work that attempts to create channels that are balanced. The asymmetric nature
of transactions makes it difficult to perfectly balance a channel without continuous monitoring [LMZ20]
[KG17] [PN20]. Achieving a balanced distribution of funds in a channel is a difficult task. For the scope
of this work, we assume that this problem has been solved, and thus that channels do not require
rebalancing.

Now that we have a better understanding of how channels work and how they are created, we can
explore how this knowledge can be further developed. In the following scenario, we will consider three
parties named a, b, ¢, and two channels named (a,b), and (a,c). Party b intends to send a transaction to
party c without using the blockchain. Although they have set up a channel with party a, they lack a direct
channel with party c. For providing access to their channels while not participating in the transaction
they are awarded monetary compensation in terms of a fee. Locktime refers to the duration a channel
is willing to reserve funds to facilitate a transaction. When a transaction request is received, the funds
are locked for the specified lock time period before allowing other parties to access them.

Now instead of a network with two parties and three channels, a network can be scaled to any
size. This is what the (Bitcoin) lightning network is. It serves as a Layer 2 solution, which is a
second layer of functionality built on top of the Bitcoin blockchain. The lightning network is a network
of channels that has grown significantly in size, allowing transactions to be performed. The lightning
network offers several advantages. Firstly it addresses the throughput issue. The network’s throughput
has no inherent limit. meaning that it can handle any number of transactions regardless of how large the
network will grow in size. Secondly, it provides faster transaction settlement speed. Transactions within
the lightning network can be settled in under a minute and occur in milliseconds [Ant17]. This is an order
of magnitude faster than the estimated 10 minutes it takes to confirm a transaction on the blockchain.
Although the transaction throughput does not have a fundamental limit, latency serves as an upper limit.
However, it is uncertain what kind of advancements will be made to further reduce latency and thus
increase transaction speed. Thirdly the network enhances transaction privacy. Since transactions are
not published on the blockchain, they can be hidden from actors that only monitor on-chain transactions,
since only the locking of value is published on the blockchain. Within the lighting network routing a
transaction through multiple channels makes it possible to hide the source and destination when the
parties are non-adjacent [Ant17]. Lastly, channels have the added benefit of being able to perform
transactions smaller than one satoshi, which is the smallest unit of a Bitcoin [Ant17]. However, there
is a constraint that a channel initiation request is only valid for 24 hours. If the request is not responded
to within this time, it becomes void. In the Lightning Network, the source party is required to specify the
route their transaction takes to reach its destination. This concept known as source routing allows
the initiating party to determine the path of the transaction. Within the network, each party publishes
its maximum lock time and fees, which are stored by every party in the network.

This information facilitates source routing by providing source nodes within the network to construct
a path that best suits their interest. Typically this comes down to reducing the fee spend to perform their
transaction, but it might also take into account transaction time or chance of success. What matters is
that it grants parties the freedom to determine what path their transaction should follow.

The general formula that represents the fee associated with using a channel between endpoints u
and v is as follows:

fee[u,v] = bfu,v] + friu,v] * amt[u, v]

The fee of using the channel is determined by the base fee bf[u, v] in addition to the variable fee
fr[u, v] multiplied by the desired amount to be transferred over the channel amt[u, v].

2.3. Network creation 7

The path from party a to b is determined using either Dijkstra’s shortest path algorithm [Dij22] or
Yen’s algorithm [Yen70]. The choice of algorithm is left to the source, and the cost function used within
the algorithm can be freely selected. The selection of cost functions impacts which path will be chosen,
which in turn impacts the fees and success rates. Next, we will describe three such cost functions.

The first cost function is LND' and aims to search for paths that have low timeouts, and low fees.
It is defined as follows:

cost[u,v] = amtfu,v] * lt[u,v] *rf + fee[u,v] + bias[u, V]

In this equation, the transaction amount is multiplied by the lock time [t[u, v] and rf (a risk factor set
to 15 = 1079 at default). Additionally, there is a bias term that rewards channels with a successful
transaction history The bias bias[u, v] is calculated by dividing a penalty by the estimated chance of
success based on the channel’s track record.

The second cost function, known as c-Lightning?, also prioritizes low timeouts and low fees. How-
ever, this cost function multiplies these factors instead of adding them. This results in the following cost
function:

cost[u,v] = (amt[u,v] + scale * fee[u, v]) * lt[u,v] *rf + bias

In this equation, amt[u,v], fee[u,v], lt[u,v], rf have the same meaning as they do in LND, with
default values 10 and 1 for rf and the bias respectively. The introduction of scale introduces a degree
of randomness by selecting a value in the interval [0.995, 1.05].

The third and final cost function we will discuss is Eclair®. Eclair's cost function considers the
channel capacity, the time the channel has been open, as well as the fee, and lock time.

COSt[u' V] = fee[u' v] * (nlt [u' 17] * ltratio + (1 - ncap [u' v]) * CAPratio + nage[u' v] * ageratio)

Here ny;, ncqp, and ng,4. represent the normalized lock time, capacity and age respectively. These
values are in between the minimum and maximum of each category. The ratio factors in the equation
are set values. lt, o = 0.15, capyqtio = 0.5, agerqrio = 0.35.

Out of these 3 candidates LND is seen as the best option. Compared to the other algorithms, it
compromises less in terms of fee ratio and lock time, yet performs well [KR21]. Furthermore, previ-
ous work shows that 90% of the lightning network uses LND [TSZ19][MZ21][Zab+22], which, further
indicates that it is the preferred option.

2.3. Network creation

Researching graphs involves selecting the appropriate graph to use. When a network is readily avail-
able, this step is straightforward. However, in situations where a suitable graph is not provided, this
task becomes challenging. The lightning network, for example, undergoes constant real-time changes,
presenting a unique challenge. This subsection explores two commonly used approaches; working with
a snapshot (2.3.1), and using the Barabasi—Albert algorithm (2.3.2) to create graphs fit for research.

2.3.1. Resizeing from snapshot

Analyzing the properties of the ever-changing lightning network can be difficult. To allow analysis to be
performed, the network is observed and stored as a snapshot, which represents the state the network
was in at a specific moment in time. This snapshot can be used to analyze network properties, whilst
the real network changes over time. By analyzing the network properties based on the snapshot while
the real network continues to evolve, we increase the level of reproducibility of the research results.
However, as the lightning network grows in size, analyzing the snapshot becomes more computationally
expensive.

2.3.2. Barabasi—Albert

Another method of network creation is random graph creation. Albert-Laszlé Barabasi and Réka Albert
have come up with the Barabasi—Albert algorithm, which is designed for generating scale-free net-
works. [BA99]. The network starts with two values: the desired size of the network, and the number of
connections that each node should at least have.

"https://github.com/lightningnetwork/Ind
2https://github.com/ElementsProject/lightning
3https://github.com/ACINQ/eclair

8 2. Background Knowledge

The network starts with an arbitrary number of nodes, all of which are connected to each other. It
is important to ensure that the initial number of nodes is greater than the required number of connec-
tions for a newly joined node. This ensures that every node will have at least the specified number of
connections. Additional nodes are then added to increase the transaction size until the desired size of
the network is reached. The connections for these nodes are created based on probability. The proba-
bility of connecting to a particular node increases the higher the number of connections that node has.

i

Mathematically, the probability of creating a connection is determined by the equation p; = zk_k where
j "

k; represents the degree of node i, and k; represents the degree of all preexisting nodes [AB02]. The
resulting network is a scale-free network, which follows the power law. This means that the distribution
of node degrees follows a fixed distribution. Therefore, adding or removing nodes from the network will
not change this distribution.

2.4. Game Theory

After gaining an understanding of how topological structures can be modeled, it is important to intro-
duce the branch of mathematics that analyzes decision-making processes. This branch is called game
theory. In game theory, an acting party is also known as player or agent. A player has the ability to
make decisions called moves. It is assumed that all players act rationally, making moves that maxi-
mize their own benefits. Game theory serves as a tool for simulating different actions players can take
and analyzing their effectiveness in achieving a desired outcome. It also enables us to analyze how
agents can be influenced into taking actions that lead to desired outcomes. The scope of game the-
ory goes beyond that of economics and has its applications in disciplines such as diplomacy, military,
psychology, biology, political science, computer science, sociology, and more [MS+16].

To determine the optimal move in game theory, we require a reward function that enables calcu-
lations for all the agents involved. This function determines what it is that an agent values, and in turn
will influence what the best action to perform is. Differences in reward functions might change which
action is best for one to take. For instance, the choice between valuing time or money, or immediate
rewards versus future gains, can be influenced by the reward function.

In game theory, the level of satisfaction of a player is often expressed using the concept of utility
[Sto68]. Utility represents the perceived value or desirability of a player. The higher the utility, the
higher the level of satisfaction for the player. Therefore, the higher the utility, the stronger the player’s
motivation to pursue the outcome. While there are multiple methods in which utility can change as the
reward grows, within the scope of this thesis we assume that the utility is linear y = x. Reward in terms
of satoshi’s is directly correlated with utility, and thus maximizing the reward maximizes the utility of the
player. With this linear utility function, we do not differentiate between rewards obtained in the future
or present.

Now that a player can determine what it is that they value, they require a framework that determines
their best move. This structure is named a strategy. Take a game of rock-paper-scissors as an exam-
ple. One strategy could be to always play rock. However, another strategy could be to roll a 3-sided
dice and pick either rock, paper, or scissors based on the results. Yet another strategy would be to play
the move that another party has played during the last round.

Naturally, it follows that different strategies will have different levels of success, depending on what
strategy your opponents play. Therefore, it is not guaranteed that the strategy played will yield optimal
rewards. However, it is in a player’s interest to pick or create a strategy that will yield them the highest
level of utility. For this reason, it is often required for a player to adjust their strategy in reaction to their
opponent.

The concept of a strategy is similar in definition to a concept in computer science called an algorithm.
These two terms will both be used throughout the remainder of this Thesis. However, In this work, they
will be used with a different meaning. Even though both an algorithm and a strategy are a series of
steps that can result in obtaining a move, we reserve the term strategy for the act of determining a
move. The term algorithm shall be reserved for the steps taken to compute an output. It is important
to note that the output of a strategy is solely used for determining a move, whereas the output of an
algorithm does not have to be used to perform a move.

This work will also include a specific kind of game within the game theory which is called a Stack-
leberg game. In Stackleberg games, there is a leading player that observes the state of the game and
makes their move. Subsequently, all other players are allowed to simultaneously make their move

2.5. Related work 9

reacting to the leading player’s move. This kind of setting is often encountered in the business context
where companies are given the choice between investing in innovation that sets them apart from the
competition or spending their resource elsewhere. Innovation is frequently associated with higher costs
compared to copying the innovation of competitors that have already been proven effective. Therefore
the balance of innovation and imitation often revolves around maximizing profit derived from the innova-
tion before competitors have caught up, thereby negating the differentiating factor. This work focuses
on the lightning network, as highlighted in section 2.2. While the player order is determined by the
principles of a Stackleberg game, the specific game that is being played is that of a network creation
game. A leading player places a channel with a certain fee value representing their move. Their goal
is to route transactions within the network via their channels and obtain a fee as a reward for providing
this service. After the leading player has made their move other players within the network alter the fee
of their existing channels to optimize the total fee reward the player would obtain by routing transac-
tions through their channels. Once this step is performed, we observe the reward obtained by routing
transactions and play another round. It is up to the leading player to determine which combination
of channel destination, and channel fee will yield the highest reward, and thus yield them the highest
utility.

We have yet to describe the different strategies available to the player(s). However since this is an
integral part of this work, we will do so in section 3.2.1

2.5. Related work

The related work of this thesis relates due to its analysis of placement strategies or the application of
game theory. Because these two topics are often closely intertwined, it is difficult to separate the two.

The first of this category paper we would like to discuss in the thesis is the work of Lange et al.
[LRT21]. This work focuses on different placement strategies. In it, it compares the uniform random,
highest degree, betweenness centrality, k-center, k-means, and MBI placement strategies in a simu-
lated setting. The work analyses the effect of different placement strategies and observes the reward
as the network expands in size. Here one party creates their channel after which 5000 parties se-
quentially join the network creating 10 channels each using default settings. The analysis is able to
compare the performance of different placement strategies, however, does not take into account the
existing network.

The second paper in this category is the work of Avarikiot et al. [Ava+20] that observes the network
topology over time. It does so by analyzing actors that play a network creation game to determine
which parameters will create a state where no actor can create a benefit by changing their strategy.
The following paper follows up on this. Wang et al. [Wan+22] provide an algorithm that may be used
to obtain a network that is in Nash equilibrium. The fourth paper from Bai et al. [BXW22] presents a
model by which fair prices for each of the channels can be calculated. By utilizing the Shapley value,
each channel is assigned a score that represents how "valuable” they are to the overall network. This
value then influences the acceptable fee of a channel, which in turn determines the profit. Lastly, we
would like to discuss the work of the closest related work from Ersoy et al. [ERE20] that studied how to
motivate participants to willingly lock funds in the Bitcoins layer 2 solution. The work shows that routing
fees can serve as a strong incentive to motivate rational agents to lock. This incentive is optimized
by a greedy algorithm that allows a party to increase the fee, when routing through the party, in turn
maximizing the total value of the obtained fee. The formula used to do so is as follows

Tmax

Pr(M =(S,R)) Pr(T=)) > f(Chyj)* PriX(iS,R)]
=1

VS,REV|S#R%A Chiec

Tm ax

Pr(M = (S,R)) represents the probability for S to send a message to R. X.;21* Pr(T = j) represents
the probability f(Ch;, j) represents the fee that would be obtained when a certain channel is used to
route a transaction. Pr[X;(j, S, R)] represents the probability of the channel being chosen, which comes
down to the betweenness centrality of the channel. The authors of the paper condition the experiment
the be able to simplify the equation. First, by having every node send a transaction to every other node
we make the chance of any given sender-receiver pair to be the same. That is how the authors were
able to simplify the formula and remove Y rey|s<ra PT(M = (S, R)) from the equation. Second, by

analyzing fixed transaction amounts Z]T-Zf" Pr(T = j) can effectively be taken out of the equation as

10 2. Background Knowledge

well, reducing it further. Thus after these reductions the maximization of the fee can be seen as a fee
weighted betweenness centrally formula, or ZChiEC f(Ch;, j) = Pr[X;(j,S, R)] formally.

Model

The methods used to construct a model have a direct influence on the subsequent analysis conducted
on that model. This section aims to provide the reader with insights into the model space. Section 3.1
outlines the assumptions made regarding the network and the interacting parties. These assumptions
serve as the foundation and the constraints to our model space. In section 3.2 we provide a more
comprehensive description of the model, describing its structure and choices made during its creation.
This will offer readers with a deeper understanding of the model and its capabilities.

3.1. Assumptions

Firstly, we make the assumption that individual parties prioritize optimizing their rewards and act ratio-
nally. As is commonly the case in game theory, a party will adjust their action if it leads to a higher
reward. Consequently, we assume that parties will not hesitate to perform selfish actions, even if it
may negatively impact the level of decentralization within the network. From this, it follows that there
are no parties willing to lower their reward by charging a negative or zero fee. As a result, all channel
weights in the network will be positive.

Secondly, the cost of opening and closing a channel remains constant over time. This allows us to
perform a comparative analysis that is not impacted by the changing transaction fees caused by the
blockchain. By removing this variable that could interfere with the analyses, we can better isolate the
impact that choices have on the rewards, rather than the influence of changing transaction fees on the
rewards.

Thirdly, we assume that participants within the network have access to the topology of the whole
network. Since parties keep track of the nodes present within the lightning network this would be
improving the realism of our model.

Fourthly we assume that other parties will always be willing to accept channel creation requests. In
this thesis, we study the best-case scenario for a party creating a channel. This means that we leave
the game-theoretical aspect of deciding when to deny a channel creation request for personal gain, as
it falls outside of the scope of this thesis.

Fifthly, we assume that every party will have an infinitely large amount of funds at their disposal to
use on channels. Normally a party would have to limit the number of channels based on how many
satoshi’s they have to lock. However, for the scope of this thesis, we assume that satoshi’s required
to create and to initially fund a channel is not a constraint In this work the number of channels a party
may place are fixed, which will serve as a limit.

Sixthly, we assume that channels will always be balanced. Similarly to the second assumption, we
constrain our model to remove a variable. Maintaining a channel as to reduce the number of channel
resets is ongoing research. For the sake of this work we will assume that this problem has already
been solved.

Seventhly, the reward must stem from routing a transaction. Transactions have the ability to reward
the party from which it originates. However, the party who performs the transactions has to pay the
transaction fees. When a party sends a transaction it is not possible for them to earn fee from it, as any

11

12 3. Model

earned fee would come out of their own pocket. Therefore unlike previous work, we remove the ability
for parties to increase their rewards from transactions that originate from them.

Lastly, it is assumed source routing is in place. This is another constraint that we have placed to
improve the realism of our model, as this is the case in the lightning network. Section 3.2.3 details
which specific cost function is used.

3.2. Model description

Our experiments allow parties to perform actions within the model. Section 3.2.1 details the different
actions that are allowed to be performed as well as who can perform them under which conditions.
Section 3.2.2 described the placement strategies by which channels may be created. It details different
methods a party may utilize to perform the action. Section 3.2.3 details which parameters are available
to us to create our model. In section 3.2.4 we describe a small experiment to determine the values
of some of those parameters, whereas in section 3.2.4 we interpret the results and determine the
parameters to be used.

3.2.1. Action space

The desired goal of the experiments is to assess the impact that other parties have on the reward fee
that a party can obtain within the lightning network. Our aim is to replicate previous research and en-
hance the model to enable a larger number of parties to actively respond to changes within the network.

The highlighted actions in our study are as follows:
1. A party may create a new channel.
2. A party may modify the fee of their existing channel.

In previous work, the only action permitted during the experiment was the creation of channels by an
acting party. However, in our extended model, parties are now able to alter the fees of their existing
channels. Creating new channels costs two transactions on the blockchain and the value of the funds
that are locked. To modify an existing channel it costs 3 transactions in the worst case. One to close
the channel, and 2 more to create a channel. In the best case, you announce your fee change within
the network. It is important to note that certain conditions are in place that determine whether a certain
party is permitted to perform a certain action. We make the distinction between two types of parties:
those already present in the network, and those joining the network. While all parties have the ability
to modify their channel fees, only the parties joining the network are allowed to create new channels.

3.2.2. Placement strategies

As discussed in 3.2.1, some parties are allowed to create new channels within the network. However
section 3.2.1 does not detail the method used to determine who to make a connection to. Therefore we
highlight the 6 strategies that a (leading) party may use to place their channels in this section. The first
five placement strategies are implemented based on [LRT21] whereas the sixth placement strategy
has been described in [ERE20].

The first placement strategy is that of uniform randomness. As the name suggests, we take a list
of all the parties we are not connected to already and pick one based on a uniform random distribution.
After we have made our choice, we connect to said party.

The second strategy is named highest degree. This strategy ranks parties based on how many
channels they have already established. As explained in 2.1 the out-degree and in-degree are the same
in this work, and we therefore use use the degree to determine which party has the most channels.
This party is then chosen and a connection is made with them. The rationale behind this strategy is that
the better connected the neighbors are, the higher the chance that a transaction can be routed through
us. While generally an effective strategy, this method has been shown to induce a “rich-gets-richer”
effect [BA99]. This effect ensures that routing through the most important nodes becomes even more
likely, and the rewards are skewed towards the parties with the most channels.

The third placement strategy is called betweenness centrality. This is a metric to determine how
centrally a party is located in the network., It is computed as follows: every party in the network sends
a simulated transaction to every other party within the network using the shortest path algorithm. After
these transactions are sent, it is counted in how many shortest paths a channel is present. Dividing this

3.2. Model description 13

number by the total number of transactions gives a score, which is the betweenness centrality. Being
centrally located increases the chance that a transaction is routed through one of your channels, and
is, therefore, a benefit. Rohrere et al. observed in their analysis that the single most centrally located
party was present in 37% of the shortest path of all transactions in the network [RT20]. This further
proves that creating channels that increase your centrality is an effective strategy.

K-center is the fourth placement strategy. This strategy analyzes the longest paths within the net-
work. Then it establishes a channel that makes that breaks one of these shortest paths. The act of
breaking the longest path means creating a new route via our party that is the shortest in distance. The
rationale behind this strategy is that breaking an existing longest path will place you within the shortest
path of some parties. This in turn will yield fees when the transactions are routed by your established
channel(s).

The fifth placement strategy is that of k-means (referred to as k-median in [LRT21]). The rationale
behind this strategy is similar to that of k-center. However, rather than breaking one of the longest
paths within the network, this strategy creates a connection that minimizes the average shortest path
within the network.

The sixth strategy is an improvement on betweenness centrality that in previous work has been
called "greedy”. However, in this work, we have decided to call it fee weighted centrality, for we
deem it more intuitive. Here the betweenness centrality score is multiplied by the (hypothetical) fee this
channel would charge. The score that follows from this process is the reward the channel would bring
in. This process maximizes the expected fee rather than the betweenness centrality. In cases where a
lower betweenness would lead to a higher result, it allows one to still pick the most optimal candidate.

3.2.3. Model Parameters
There are several parameters that determine the properties of the model.

The first parameter is network size, which influences the level of realism in the model. If the model
is too small, it might not accurately represent the actual network. Conversely, if the network size is too
large, it could become computationally infeasible to perform calculations. Ideally, we would use the
most up-to-date snapshot of the lightning network to achieve the highest level of accuracy. However,
due to computational limitations, we are unable to use snapshots for the scope of this thesis. Therefore,
our approach is to simulate a smaller yet representative network. Section 4.2 details the steps taken
to create such a representative network.

The second parameter to consider is the choice of the path selection algorithm. The available
options for the path selection algorithm are LND, C-Lightning, and Eclair. In this work, we aim to use
only one path selection algorithm to eliminate potential bias introduced by mapping these different
algorithms onto different parts within the network. Among these three algorithms, LND is the preferred
choice due to its high usage rate and its ability to compromise less than the other two other algorithms,
as discussed in section 2.2.

The third parameter to consider is that of placement strategy. This work will utilize the placement
strategies discussed in 3.2.2. We have chosen to employ a variety of different placement strategies,
as different placement strategies may react differently to the network’s ability to respond.

3.2.4. Initialization problem
Once the model has been created, our aim is to create a new party to join the network.

However, for this joining the occur, we are required to create channel(s) for parties already present
in the network. Determining how many channels we should create and to which parties they should be
connected to, is not without its issues. Therefore, in this section, we detail our analysis by which we
have determined the method by which we initialize a party.

The first issue that one comes across when initializing a party within the network, is that some of
the placement algorithms in this work are dependent on the existence of channels in order to perform
their calculation. When the party is not connected to the network these placement strategies will yield
incorrect results in the form of an error, or by returning an empty list of channels to create.

When we initialize a party, we create channels for said party. These channels have the possibility
to bias the results of the placement strategies. Even when the same channels are created for each
of the placement strategies analyzed in this work. The inherent differences between the placements
strategies result in them reacting differently to the number of channels created. Depending on which

14 3. Model

initial connections are chosen certain channels might yield lower results due to their competitiveness
with the initially created channels, impacting the choice.

Furthermore, there exists the problem of network size. If the network is sufficiently small that creat-
ing the initial connections does not leave the choice for the placement strategy at any point during the
algorithm, then it has impacted the results. While this case should realistically only happen when the
number of initial channels and the number of placed channels are greater than the number of parties
in a network, it is something that we should verify.

The question becomes: How do we initialize a newly introduced party to the network without biasing or
limiting the placement strategy?

The solution to this initialization problem must meet a number of criteria which we describe the im-
portance of later in this subsection. The criteria are as follows:

1. The initialization should have at least 2 channels.
2. The initialization should be deterministic.
3. The initialization should limit the bias it has on the result of the placement strategies.

4. The initialization should leave options for the placement strategies.

Whilst not being an exhaustive search, nor conclusively solving the initialization problem, we aim to
find an initialization that fits these criteria and thus can be used as the initialization for our analysis.

In order to do this we look at three aspects to determine our initialization. These aspects are as follows:
Which placement strategy will be used to determine the initial channels? How many channels will each
newly added party get as part of its initialization? What fee will be asked when routing a transaction
over the channels created during the initialization? By analyzing these three aspects within the network
we can analyze which combination yields an initialization that satisfies the criteria.

For this analysis, one network will be analyzed. This network was created using the Barabasi—
Albert with party size 200 and transformed into a bidirectional weighted graph. The weights for this
graph were obtained by sampling weights from a list created from the snapshot used in Ersoy Et Al.
[ERE20]. This list containing duplicates is created by simulating the fee formulate in which transactions
of 100 satoshi’s are sent between the parties. However, these candidate weights were constrained by
0.1xmost_freq <= weight <= 10*most_freq with most_freq being 1000 in the case of this network.
Since this is one of the three graphs that are used further in this work, more can be read in section 4.2.
Because this work analyses multiple parameters to find a sufficient starting condition we opted to only
analyze one network. That is why the network that simulates transactions of 100 satoshi’s was chosen

In order to determine which placement strategy would yield the best results the plan was to test the
list of placement strategies that we wanted to observe for the main experiment. However as stated
previously, some of them do not function when the party is not already connected to the network. For
this reason, betweenness centrality, k-center, and fee weighted centrality were dropped as initialization
candidates. Leaving uniform randomness, highest degree, and k-means as initialization candidates.
However, as an addition, we wanted to add one more placement strategy nhamely the non-connected
highest degree. This placement strategy follows the same placement strategy as the highest degree
with the criteria that none of the initially chosen parties are already connected to any of the others.
This alteration to the placement strategy allows it to be useful in cases where a leading party is placing
channels.

In order to determine the number of channels needed for the initialization we simply compute a
range of values. This allows us to later compare which number of channels is best. Since we need
at least two channels, the lower bound is set at two. The upper bound was to not exceed the lowest
number of channels a party may have in the existing network. In our case, this is five.

In order to determine the fee for the initialized channels, this analysis will look at three different
cases. First, the case where the fee is set to 1000 which is the default. This case observes what
occurs when we join in as the most frequently picked value. The second case we observe is when
the fee is set to 500, which will be at 50% of the default value. This case will analyze the potential
to undercut some of the channels that run default values. The third case is when we allow the newly

3.2. Model description 15

non-optimized-500 rewards per node placed using graph100 non-optimized-1000 rewards per node placed using graph100
80000 Strategy highest_degree Strategy highest_degree
20000 4 Strategy non_connected_degree Strategy non_connected_degree
Strategy seed_random 250004 Strategy seed_random
Strategy k_means Strategy k_means
60000 _
2 £ 20000
% 50000 4]
& @
= 40000 = 15000 4
= =
x x
B 30000 § e
5 T 10000 4
H =
3]
& 20000 9
5000 4
10000
o 0
2 3 a s 2 3 a 5
Time (# Nodes) Time (# Nodes)
(a) Figure depicting the reward obtained using the flat fee (b) Figure depicting the reward obtained using the flat fee
of 500. of 1000.

optimized rewards per node placed using graph100

Strategy highest_degree
Strategy non_connected_degree
Strategy seed_random

Strategy k_means

100000 4

80000 -

60000 1

40000 4

Rewara (#Milll saushI's)

20000

2 3 4 5
Time (# Nodes)

(c) Figure depicting the reward obtained using the optimiza-
tion algorithm

Figure 3.1: Rewards graphs of the three different analyzed algorithms

created channel to infer its fee based on the current state of the network. First, a connection is made
where the fee is set to the default value, after which the optimum fee is inferred. This analyses the fee
in its optimized form.

It is important to note that within this network we have only control over one side of the bidirectional
channel. As we have assumed in 3.1 the fee can only be changed when the newly joined party is the
source of the channel. The other part of the bidirectional channel, where the destination of the channel
is the newly joined party will always be set as the default value of the graph.

3.2.5. Initialization Analysis

Figure 3.1 depicts the performance of the three algorithms. Figure 3.1a shows the scenario where
connections charge a fee of 500 for re-routing a transaction. The figure shows that the four strategies
perform relatively similarly when two connections are placed. However, when the number of placed
connections increases, the differences in reward become more apparent. Seeded random and non-
connected degrees seem to be competing for the best performance, with k-means coming in third with
roughly half the reward. Highest degree is stuck at 0 rewards. Figure 3.1b depicts a change in the fee
calculation algorithm. In this case, the charged fee is set at a fixed 1000 satoshi’s. Similarly to 3.1a,
seeded random and non-connected degrees are performing well, with k-means and highest degree
performing poorly. Again highest degree is not able to obtain a reward higher than s0. Figure 3.1c
allows us to observe what occurs when a party is allowed to determine its own fee. When a connection
is made, a party analyses fee values from 1 to 10000 to set the fee to the value that maximizes the
highest theoretical reward the channel can receive. This case shows a clear distinction between the
four strategies. Non-connected degree performs the best in this scenario, with seeded random taking
the second spot. Third place is taken by k-means, and highest degree is fourth. This is the only scenario
where highest degree does not end with a reward of 0, despite having 5 connections made within the
network.

Figure 3.2 shows the same reward data as figure 3.1. Where figure 3.1 groups the data based by

16 3. Model

highest_degree rewards per node placed using graph100 k_means rewards per node placed using graph100
Algorithm non-optimized-500 35000 4 Algorithm non-optimized-500
5000 4 Algorithm non-optimized-1000 Algorithm non-optimized-1000
Algorithm optimized Algorithm optimized
30000 4
4000 =
E E 25000
ﬁ 3000 A i
£ S 200004
¥ x
B 2000 B
g £ 15000 4
& &
10009 10000
[3 R —— 5000 4
2 3 a s 2 3 a 5
Time (# Nodes) Time (# Nodes)
(a) Figure depicting the reward obtained when applying the (b) Figure depicting the reward obtained when applying the
highest degree strategy k-means strategy
non_connected_degree rewards per node placed using graph100 seed_random rewards per node placed using graph100
100000 | Algorithm non-optimized-500 Algorithm non-optimized-500
Algorithm non-optimized-1000 60000 1 Algorithm non-optimized-1000
Algorithm optimized Algorithm optimized
80000 50000
2 £ 40000 -
% 60000 4 4l
E % 30000 4
o 40000 1 2
é S:E 20000
20000 +
10000 4
0 04
2 3 4 5 2 3 4 5
Time (# Nodes) Time (# Nodes)
(c) Figure depicting the reward obtained when applying the (d) Figure depicting the reward obtained when applying the
non-connected degree strategy random seed strategy

Figure 3.2: Rewards graphs of the four different analyzed strategies

algorithm, allowing for the strategies to be compared, groups figure 3.2 the reward data by strategy.
This makes it possible to compare the performance of the three algorithms. Figure 3.2a depicts the
highest degree strategy. This graph shows that the optimized strategy is the only strategy that results
in a score that is above 0. Both the non-optimized 500 fee strategy as well as the non-optimized 1000
strategy remain with a reward of 0. It must be noted that this strategy yields the lowest rewards out
of the four strategies analyzed Figure 3.2b shows the k-means strategy. This strategy has one unique
feature, namely that its best and worst-performing algorithms are very close in scores compared to
the other three figures. Again the optimized strategy performs best, the non-optimized 500 fee comes
in second, and the non-optimized 1000 fee performs the worst in this scenario. The non-connected
degree strategy can be seen in figure 3.2c. In this figure, the optimized algorithm also yields the
highest rewards among the three. Non-optimized 500 fee takes the second spot, and non-optimized
comes in last. This strategy yields by far the best maximum rewards among the four strategies. Figure
3.2d shows the reward data when a random seed is used as the strategy. In this case, the optimized
algorithm is again the best-performing one. Non-optimized 500 fee performs the second best, and the
non-optimized 1000 fee performs the worst. The reason behind this is due to an assumption made
about the model. Section 5.3.1 details why this assumption leads to an inability to obtain a reward for
the placement strategy.

The next step is to determine which fee will be charged to route transactions. As can be seen
in figure 3.2, the case where the fee is optimized outperforms other algorithms regardless of which
placement strategy is used. This makes it the best candidate for determining the best fee for a given
connection.

We will be looking at 3.1 to determine which placement strategy is best used to initialize a party.
Non-connected degree performs best out of the four strategies. A case could be made for k-means,
which performs similarly to non-connected degree in two out of the four strategies. However, k-means
seems to start with a lower fee, or is overtaken in performance. Furthermore, if we compare the best
performance between non-connected degree and k-means, we can see that non-connected degree
has a better reward at any point in the analysis regardless of how many connections are placed. The

3.2. Model description 17

aim of this work is to obtain an indication of the maximum amount of reward fee possible, therefore we
want our initialization to bring in as much reward as possible. This makes non-connected degree the
best placement strategy to use in our initialization.

That leaves us with the third and final question, how many channels will each new party place during
the initialization process? Both figures 3.2 and 3.1 show that the reward only goes up as the connection
count increases. Therefore the added benefit of making more initial connections is increasing the initial
reward. However since the focus of the experiment that follows this initialization is to show the change
in rewards as more connections are placed using other strategies, this parameter has little impact.
Therefore picking the required amount of two initial connections seems appropriate to reduce some of
the computational overhead that comes with this initialization.

To conclude, the initialization will be placing 2 connections for every new party that joins the network.
We shall use non-connected degree strategy to determine who the other end of said 2 connections will
be, and use the optimized algorithm to determine what the fee of said connection will be.

The last step we took was to verify that these parameters meet the criteria we set for the initialization
process. Firstly, we need to ensure that the number of channels criteria is met. It is easy to verify that
this criteria is met. We require at least two channels, and the chosen solution will place 2. Furthermore,
since all of the four strategy candidates can place channels without already being connected to the
network, we can guarantee that placing two will be possible unless we observe the trivial network that
only has 1 party in it.

Secondly, is the initialization deterministic? To show that this is the case we need to look at two parts
of the initialization. That the placement strategy and the fee optimization function are deterministic.
Since none of the placement strategies make use of randomness, we know that the chosen strategy is
deterministic. Similarly, since the fee optimization function does not make use of randomness it is also
deterministic.

Thirdly, the initialization should limit the introduced bias for an experiment that will be following the
initialization. As some of the placement strategies are not able to be used if there does not exist a
connection to the network, adding this start state will always add some level of bias. The intended
purpose of the initialization is to change the result in a way that non of the placement strategies crash.
However, by choosing the candidate that outperforms in terms of reward we provide a baseline of
reward. The following experiment then measures how well the placement strategies can increase that
reward. When we add to this that the chosen placement strategy is not a placement strategy tested
in the follow-up experiment, there is no clear bias that one would expect to occur when the placement
strategy used in the initialization matches the placement strategy used in the following experiment. We
would like to reiterate that we do not claim to eliminate bias. Rather than the initialization used aims to
minimize the bias that occurs. We feel confident that the steps taken to reduce the bias introduced by
the chosen initialization method are enough to minimize the bias.

Lastly, we need to show that the connections made in the initialization do not limit the choices
available to the placement strategies during the following experiment. Since in the worst case there
will be a total of 50 parties to choose from, if we were to take 2 options away during the initialization
process it leaves the strategy with 48 choices. Since the following experiment will place fewer than
48 connections we choice pool will never be reduced to zero. Therefore the chosen initialization will
always leave sufficient options for the placement strategy.

Methodology

This chapter details the methodology of this thesis. Section 4.1 reiterates the goal of this thesis. Section
4.2 details the process used to create the graphs for the experiments. Section 4.3 explains the different
experiments that will be run, whereas 4.4 highlights the code used to perform them. In section 4.5 the
testing of our code is highlighted and in section 4.6 we detail the server architecture. In section 4.7 we
detail the setup of the experiments.

4.1. Research question

Our goal is to extend the existing literature by placing it in a more realistic setting. By examining the
impact of a multi-actor model on the optimal channel creation choice, we aim to answer the question,
"How the rewards of an optimal channel creation choice are impacted by a multi-actor model?”. To
answer this question, we have divided it into two sub-questions that focus on different aspects of the
influence of the multi-actor model. These sub-questions are as follows:

* "How are rewards impacted when there is an additional party participating in the network creation
game?”

* "How are rewards impacted when parties are allowed to change their channel fees?”

As discussed in section 3.2.1 we analyze two ways in which the action space can be expanded: by
allowing an additional party to join the network, and by enabling the network to update its fee values
after channels have been created.

4.2. Graph

Due to the time complexity of the algorithms used in this experiment, it is not feasible to make use of
existing snapshots of the Bitcoin Lightning Network. The number of channels to analyze when using a
snapshot would make the runtime of the experiment exceed the time available to run it. Therefore we
opted to create our own graph for our experiments.

One option would be to take an existing snapshot and scale it down to the required size. The aim
would be to turn a network with x nodes and y channels into a graph that is z times smaller. Resulting
in a graph that contains x/z nodes and y/z channels. However, to perform this down-scaling, the model
would be altered in some way. When scaling down the number of nodes we run into the problem of
mapping the channels between the nodes. If we were to keep the distribution in k-degree the same
then we would choose which node will be connected to other high-degree nodes and thus alter the
betweenness centrality of the nodes. If we aim to keep the general betweenness the same, whilst
reducing the network in size we run the risk of altering the distribution of degree of the original network.
While the goal would be to create a representative graph, the resulting graph would always be lacking
in one area or another. Furthermore, this method has the possibility to produce a weakly connected
graph, which would not suffice. The following steps would have to be taken to convert it into a strongly
connected graph, which would then influence the degree and betweenness distribution. This is why it
is difficult to rely on this method to generate a representative graph from a snapshot.

19

20 4. Methodology

Another option would be to use Barabasi—Albert to generate a graph. This method builds up a
graph by adding nodes and creating randomly generated channels until the graph size limit is reached.
This method disregards the distribution of degree as well as the betweenness centrality of the graph
we aim to simulate. However, this approach would be computationally inexpensive to perform as the
Barabasi—Albert is clearly defined. Furthermore, this is guaranteed to create a strongly connected
graph. However, the resulting graph would contain a range of different degrees on its nodes. While
fulfilling the requirement of having a graph to perform operations on, the drawback of this method is
that it makes modeling the channel weights difficult.

Whichever method selected the resulting graph would need to meet the experiment’s needs, as it
would serve as part of the model used to assess the different cases. We opted to combine the two
methods described above to account for the drawbacks. The steps are as follows: First, we create a
graph using Barabasi—Albert with a certain node size, which will then randomly pick five other nodes
it's not already connected to, and create two directed channels with the target. One from the source
to the target, one from the target to the source. The second step then is to provide the newly created
channels with their fee. This is done using data from the snapshot. We use a collection of all the
different fee values that exist in the snapshot. Obtain the most frequent value that appears within
the collection and filter the outliers by only keeping the value if it fits and passes the following test:
10 - #MostFrequentValue = fee = 0.1 - #MostFrequentValue and fee < 10000.

The upper limit for the fee is set to 10000 for this experiment because this limit was used in previous
work. However in practice this fee value is almost never hit, therefore the values with fees higher than
10000 are highly unlikely to re-route transactions. Channels that have a fee higher than that of 10000
will most definitely act as noise within the network which is what we aimed to avoid. The other criterion
is that the fee candidate value must be within 0.1 and 10 times the most frequent value within the
network. The upper bound is again related to the limit placed on the fee optimization algorithm. Here it
ensures that the upper bound is unlikely to exceed 10000 in the first place. With a fee of 1000 being the
default value, ten times the default value gives us a limit close to the 10000 set on the fee optimization
algorithm. The lower bound was chosen to ensure that freedom of fee choices exists within the network.
Preliminary tests showed that small channel weights that connect nodes with high degrees would obtain
an unusually high amount of traffic that way. Removing the values that charge an extremely small fee
compared to the default value made this less of a problem. Thus by filtering these fee weights, we
mitigated the effects of anomalies impacting the graph.

To even further limit this impact we wanted to introduce randomness to the fee values. We opted for
adding a random value in the interval [-30,30] to enforce a difference between the previously filtered fee
values. By adding randomness to the graph we reduce the chance of there being multiple paths within
the network that share a source destination and path fee. This lessens the computational requirements
for the experiment. But the positive effects of the randomization are not only experienced by the com-
putation. It also further improves the freedom of choice of the acting parties within the experiment.
Regardless of the ability of the network or other parties to react, spreading out the fee values makes
the choices of the acting agent more thorough. Taking these steps results in 3 graphs with weighted
channels, that will be used to simulate transactions that are small, medium, and large. A small trans-
action would route 100 satoshi’s, a medium-sized transaction will transfer 10000 satoshi’s, whereas a
large transaction will transfer 1000000 satoshi’s to another party within the network.

However, for some of the experiments, the network has the ability to react to the actions taken
by the actors. It would make sense that this is a continuous process that also occurred before our
experiment starts. Therefore we also require graphs that have already been optimized to keep the
starting condition consistent throughout all of the experiments.

In order to save time we have pre-computed graphs that have the network (all channels) optimized.
These graphs were created as follows: Transforming a non-optimized graph used for case 1 of the
impact analysis into an optimized graph is a simple step. The only thing that needs to be performed
is a network update. A network update entails that we optimize all the channels within the graph
concurrently. As for case 2, the graph used would already have to be optimized, therefore there is no
difference between a non-optimized graph and an optimized graph. Therefore performing the network
update as in case 1 would suffice. For case 3, we use the optimized graph from case 1 as a baseline,
connect one more party to the graph, and perform another network optimization. The reason why we
use the graph from case 1 is that it makes the computation less expensive. Since our aim in this case
is to have 2 nodes start with the exact same channels, we can simply clone the channels used for the

4.3. The experiments 21

party in case 1, to connect the starting channels for the extra party that is to be added. Since the 4th
case is a combination of the 2nd and the 3rd, turning the graph of the 4th case into an optimized graph
is the same as combining the steps we have taken for the previous two cases. Since the optimized
graph of the 3rd case already contains the 2nd optimized graph of the third case already fulfills the
requirements of the 4th case.

4.3. The experiments

The following chapter provides a comprehensive overview of the setup of the experiments of this thesis.
Section 4.3.1 highlights the process of replicating previous work and compares it to ours. Section 4.3.2
details the steps taken to increase the number of path choices within the graph. Whereas section 4.3.3
determines the impact of differences in action space, section 4.3.4 deals with the impact of routing
rewards when the reaction that follows the leading party’s action is known during the decision-making
process.

4.3.1. Replication

One distinguishing aspect of previous work is the optimization of the graph prior to the experiment. By
configuring the model to achieve maximum gain, the subsequent experiment reflects a more realistic
lower bound on the long-term earnings achievable through routing. Inspired by previous work we have
opted to also perform this optimization step at each of our experiments, however, it is our aim to closely
resemble previous work. Therefore we have replicated previous work and compared it to ours. So that
we may highlight the potential difference in starting state that is bound to be noticeable in the results of
the experiments to follow.

However, when replicating previous work, we ran into one problem, namely that our additional
code highlighted an error. When performing the betweenness centrality reduction on the snapshot, the
resulting score would have the possibility to end up negative. Our analysis highlighted that this only
occurred if the snapshot was used in combination with the library code, but could not be replicated by
manual computations nor changes in the network. To account for this we have placed extra constraints
on the reduction to prevent it from going into the negatives.

def remove own betweenness score(graph, src_id, bet scores):
node ids = graph.nodes ()

for dst in node ids:
if src_id != dst:

paths = nx.all shortest paths(graph, src id, dst, weight='weight’)

path list = list(paths)

path weight = 1 / len(path list)

for path in path list:

if round(bet scores|[(path[0], path[1])]) - 1 >= 0.0:
bet scores|[(path[0], path[l])] -= path weight

for key in bet scores.keys():
value = bet scores[key]
if np.abs(value) < 0.0001:

bet scores[key] = 0.0
if value < 0.0:
bet scores[key] = 0.0

return bet scores

Lines 10, 17, and 18 add extra constraints that prevent negative values, which enables us to perform
the comparison. It must therefore be taken into account that the reward values of the snapshot will be
influenced slightly by the change in code. We detail the results obtained in the graphs below:

4.3.2. Fee Noise Analysis

Our work deviates from previous work in its distribution of fee values. Rather than relying on the
default value that occurs frequently, we introduced slight variations to the channel fees during the graph
generation process. This approach aims to increase the range of the available options for fee values
during path selection. By adding a bit of noise to each channel fee, we set out to assess the potential
impact this might have on the resulting rewards. This experiment allows us to explore the influence of
fee distribution on the overall rewards within the network.

22 4. Methodology

4.3.3. The Cases
This section details the four cases used to analyze the impact that a multi-action model will have on
the rewards of an individual present in the network.

To study the impact of the different additions in action space, we first create observe the behavior
and rewards of the leading party in isolation. In this case, action space is not extended, and therefore
only the leading party is able to create channels. By creating channels and setting a preferred fee
they will increase their profits from routing which leads to a reward for the party. After each channel
it is measured the rewards the leading place would have obtained, and stored for analysis. This first
scenario of playing in isolation will serve as a baseline to which we measure rewards from the experi-
ments where we have extended the action space. For this reason, we will refer to this scenario as the
baseline.

After the baseline has been established, our next case will expand the action space to allow the
network to react to changes that occur. The second case is then tasked with analyzing the impact these
reactions will have on the reward. After the leading party has placed a channel, the state of the network
is saved. This saved state is then used by every party in the network to change the fee values of every
channel. It is important to note that this is done in parallel, thus fee updates are not known to other
channels whilst the network reaction takes place. After this network reaction, we determine the reward
that every party would obtain and play another round until the predetermined number of channels have
been placed. This second case will also be referred to as the network reaction case.

The third case will remove the ability of the network to react which we introduced in the second case,
but will allow an additional party to join the network. This additional party will react to the leading party
within the network creation game. The leading party will be placing a number of channels iterative within
the network similar to the first case, the baseline. However, after each channel that the leading party
creates, the additional party will be tasked to place a channel in reaction to it. After placing this channel,
we determine the rewards that every party obtains within the network as we would in the baseline and
play another round placing more channels. Once both parties have placed the predetermined amount
of channels, this case is concluded. The case will also be referred to as the additional party case.

In the fourth and final case of our action space analysis, we will have combined the action spaces
from the additional party case and the network reaction case, to test the combined impact of the two
additions in action space. After the leading party places their channel, an additional party is allowed to
react. Once the additional party has placed their channel in reaction to the leading party, we again task
every channel in the network to update their fee in parallel. Once the network update has concluded,
we determine the party rewards as we would normally.

4.3.4. Stackleberg Games
Since we aim to analyze the impact on rewards when a party has knowledge about future moves will
have, we again have separated this into two parts that we can analyze.

The first Stackleberg case examines the impact on rewards when the fee values that result from
a network update are known during the channel creation process. Since these fee values determine
the leading party’s rewards after the network update, we essentially know the reward we shall obtain
in the future given any channel creation. Rather than optimizing the rewards of a channel now, we
optimize for channel rewards obtained in the future. Doing so allows us to study our ability to minimize
the impact of the network update, and this is the impact that knowledge of future moves shall have.

The second Stackleberg case follows a similar approach to the first Stackleberg case. However in
this case, while analyzing a channel candidate, we simulate the reaction of the additional party and
their future move. Similar to the first case we optimize the future rewards of channel candidates rather
than current rewards. This case would then attempt to minimize the impact that the additional party
would have on the rewards and thus show the impact of having knowledge on future actions.

4.4. Code

The codebase is available on github'. However, in this section, we set out to highlight some of the
fundamental parts of the code.

The first part of the essential code is the algorithm created in [ERE20], which has the ability to
determine the maximum reward given a party and the fee space. It divides the search space into

1https://github.com/DMoonen/reactionary—games—impact—analysis

https://github.com/DMoonen/reactionary-games-impact-analysis

55
56
57
58
59
60
61
62
63
64
65

4.4. Code 23

different intervals and searches them in order to find the maximum rewards. By taking into account the
maximum and minimum fee values in the interval as well as the betweenness centrality the optimization
steps from 4.7.1 can be performed.

"7"Function that maximizes channel rewards, by efficiently searching different fee values.
By calculating the maximum theoretical reward for an interval, intervals can be discarded
aiding in the search.

:param graph: The graph object.
:param min fee: Lower bound of the search space.
:param max_ fee: Upper bound of the search space.
:returns: Void. Return is stored in a global variable.
def maximize channel reward(graph, min fee, max fee):

global max rew fee

global max_rew

global global max_ rew

global global rewards

global edge_global_ rew

er = np.zeros(div + 1)
er max = np.zeros (div)

If the different fee values present, are less then the amount of divisions.
Enter the base
if max_fee - min_fee <= div:
For all the fee candidates, calculate the optimal fee
for fee in np.arange(min fee, max fee + 1):
if global rewards[fee] ==
e rew, r rew = compute node rew init (fee, graph)
if e rew == 0.0:
Therefore in stead of computing them, we’ll set them here
for index 2 in np.arange(0, div + 1):

fee 2 = ((max_fee - min_ fee) * index 2 // div) + min_fee
if fee 2 > fee:
global rewards[fee 2] = e rew + r rew
edge global rew[fee 2] = e rew
global rewards[fee] = e _rew + r_rew
edge_global rew[fee] = e rew

er_local = global rewards|[fee]
If the calculated fee yields a better reward than the current best, replace it.
if er local > global max rew:
max_rew fee = fee
global max rew = er_ local
max_rew = global max rew
return
Else/ Recursion
else:
Separate the fee values into divisions
for index in np.arange (0, div + 1):
Set current div fee
fee = ((max_fee - min fee) * index // div) + min_ fee
Compute fee yield
if global rewards[fee] == 0:
e rew, r rew = compute node rew init (fee, graph)

if e rew == 0.0: # if e rew is 0.0, we will obtain the same value for all
divs greater then current.
Therefore in stead of computing them, we’ll set them here
for index 2 in np.arange (0, div + 1):

fee 2 = ((max_fee - min fee) * index 2 // div) + min fee
if fee 2 > fee:
global rewards[fee 2] = e rew + r_rew
edge global rew[fee 2] = e rew
global rewards[fee] = e rew + r rew
edge global rew[fee] = e rew

er[index] = global rewards|[fee]

82
83
84
85
86
87
88

1
2
3
4
5

6
7

24 4. Methodology

If fee yield is better than current best update
if er[index] > global max rew:

max_rew_fee = fee

global max rew = er[index]

max_rew = global max rew
if er[index] ==

break

Compute the maximum possible reward for the div
for index in np.arange (0, div):

f i

fee = ((max fee - min fee) * index // div) + min fee

£ i+l

fee next = ((max_fee - min fee) * (index + 1) // div) + min fee

(r i *» £ i+1) // £ i + (R i+l - r i+1) => (r i * £ i+l) // £ i + r’ i+l
er max[index] = (edge global rew[fee] * fee next) // fee + (er[index + 1] -

edge global rew[fee next])

Recursively call the interval that contains the highest reward
for index in np.arange (0, div):
if er max[index] > global max rew:
rec_min fee = ((max_fee - min fee) * index // div) + min_ fee
rec_max_fee = ((max fee - min fee) * (index + 1) // div) + min fee
maximize channel reward(graph, rec min fee, rec max fee)

The second part of essential code is the code used to run the experiments. There are many cases
and placement strategies that will be tested therefore we will detail the high-level abstraction of the
experiment loop. Algorithm 1 describes the iterative channel placement game in terms of pseudocode.

Algorithm 1 Iterative Channel Placement

1: channel_amount < 5

2: for placement_algorithm = uniform, highest degree, ..., fee weighted centrality do
3 N « {all parties in the network | n = (lt, fee)}

4 E « {all channels in the network | e = (u,v, fee)}

5: Calculaterewards

6 for channel = 1,2, ...,channel_amount do

7 n' « Party Choice(N,E,placement_algorithm)

8: e' « Create_Channel(n')

o: E«<EuUe’

10: Calculate rewards
1: end for
12: end for

The iterative channel placement algorithm analyses all the different placement strategies, initializing a
clean starting state every run. After this step, #channel_amount number of channels are created using
the action space, ensuring the calculation rewards at the appropriate times.

Note that this pseudocode details the experiment loop for the cases where the leading party oper-
ates in isolation. The cases in which the action space is extended differ slightly in the steps present.
Furthermore, in our experiment we analyze different transaction amounts, this would imply we need to
analyze 3 different graphs.

The third part of the essential code is an alteration we have made. We have expressed the need
for us to punish parties that receive rewards from "routing” transactions that originate from themselves.
The code shown below is the additional code, that subtracts the reward that stems from routing one’s
own transactions.

def remove own betweenness score(graph, src_id, bet scores):
node ids = graph.nodes ()

for dst in node_ ids:
if src_id != dst:
paths = nx.all shortest paths(graph, src_id, dst, weight=’weight’)
path_list = list(paths)

4.5. Testing 25

path weight = 1 / len(path list)
for path in path list:
bet scores[(path[0], path[1l])] -= path weight

for key in bet scores.keys():
value = bet scores|key]
if np.abs(value) < 0.0001:
bet scores[key] = 0.0
return bet scores

The code above will adjust the betweenness centrality scores stored in bet_scores. It will do so, by
recreating all shortest paths originating from the src_id and subtracting the weighted score from the
appropriate channel used in the shortest path(s). Because Python suffers from floating point errors, we
remove any residual value if it is smaller than 1 millionth of a score point.

4.5. Testing

As part of this thesis, we have tested the correctness of our code and enhanced the reliability of our
results. However, testing large networks presents us with a challenge. The main challenge we faced
was related to the size of our graph. Running tests on a large network is time-consuming, and given
the constraints of the overall test framework, we were unable to perform them on our large graphs.
To mitigate this challenge, we used small representative graphs to perform unit and integration tests.
However, it is important to note that these results are not guaranteed to be transferable to the larger
network. Unfortunately, addressing this inherent problem of working with large networks was beyond
the scope of this thesis.

Regardless of the transferability problem, we were able to perform checks on the experiments.
One such check was to analyze the return data generated by the experiment and compare it with our
expected outcomes. Any discrepancies between the output and the expected results indicated the
possibility of a mistake. These discrepancies would either need to be explained as unexpected but
valid results, or analyzed to fix faulty behavior. This method proved to be useful in identifying and
addressing bugs.

In addition, we used another fruitful check in the Stackleberg cases. We compared the reward
values obtained during the decision-making process, with the actual rewards obtained. Verifying that
the rewards obtained are indeed higher or equal to the expected rewards. This test then verifies the
expected behavior of the code even further.

4.6. Servers

As part of our experiment, we have made use of two different servers to run our experiments in parallel.
The first server we have made use of is the DAS6 server which provides clustered computing power.
Each cluster consists of multiple nodes which each have access to a dual 16-core CPU with a clock
speed of 2.8 GHz. For this experiment, we made use of 6 of these nodes.

The architecture of the DAS6 server, with its ability to run multiple parallel programs for a relatively
short duration, was an ideal setup for conducting our baseline, and additional party cases. These cases
did not involve the computationally expensive task of updating fees, which allowed us to complete all
of the baseline and additional party experiments within the span of 24 hours.

Please note that the use of the DAS6 server was specifically chosen for these cases due to their
time constraints, as other experiments exceeded the server’s time limitations.

For the remaining experiments that analyzed the impact of channel fee updates, we used a private
machine with 16 cores, and a clock speed of 3.2 GHz. Running the remaining scripts would take
approximately 18 days, with an average runtime of 1.29 days per script.

Additionally, we used this machine to perform the Stackleberg experiments and to perform the com-
parison to previous work that uses the snapshot as the network. All of these experiments exceeded
one week in runtime, highlighting their computationally intensive nature. The use of a private machine
allowed us to perform the experiment with longer runtime requirements.

26 4. Methodology

4.7. Setup

The setup of the experiment involves combining the graphs that we have created as described in section
4.2. These networks that simulate small, medium, and large transactions were all tested in the different
cases detailed in section 4.3. The comparison to the lightning snapshot, the optimization analysis, the
impact of the 4 different action spaces, and the two game-theoretical experiments were run on the
server architecture described in section 4.6. This resulted in the data described in section 5.

4.7.1. Performance

After taking advantage of the performance increase that parallelization allows for, the time it would take
to run the computationally expensive code was still too long. Therefore time was taken to investigate
where the performance can be further increased. Three such increases were found and are detailed
below. When calculating the optimal fee to charge for making use of a certain channel we can reduce
the search space based on information we find during the search. The first improvement as found in
[ERE20] makes use of intervals. If the search space is divided into different intervals, it allows us to
compute the maximum hypothetical reward that this interval can yield. If this highest maximum reward
is lower than the current best score, we can simply skip the interval, as searching it will not yield a better
result. The second improvement improves the search even further. If the channel reward is zero, we
do not have to compute fee values higher than the one currently calculated. The following example
shows why this is the case. Take the case of R; = r; + 17, where R; represents the total reward of a
party, where r; and R; represent the observed channel and the other channels of a certain party, and
where r; = 0.0. Since r; = 0.0, we conclude that the channel given its current fee value, the channel
performs no routing and therefore has a reward of 0.0. If we combine this knowledge with the fact that
increasing the fee value of a channel will never increase the usage (or betweenness centrality) of the
channel we can conclude that the channel reward will also be 0.0 for the fee values higher than we are
observing at state i. This allows us to simply assign the value of R; we have calculated which allows
us to reduce computation. This information can then later potentially be used to discard intervals and
reduce the search space reducing the computation even further. Note that this only works in the case
of searching from low values to high values. If we were to take the case R; = r; + r}, where i is the
current fee observed, and where r; = 0.0. Here we know that the observed channel undercuts all other
outgoing channels, making it solely responsible for the reward R;. However, if we were to lower the
fee for the betweenness centrality we cannot ensure that this increased edge betweenness will always
lead to a lower reward when multiplied by the lower fee.

Similar to the second improvement, we can potentially reduce the search space by precomputing
fee values. Analysis shows that there exists a fee value that is most common. We will take the fee value
1000 as an example, and therefore we precompute the fee value of 999 (most common occurrence
- 1) and 1001 (most common occurrence + 1) updating the best reward found. Having potentially
found a higher reward value, the hypothetical reward to be found in an interval needs to be higher
for the algorithm to not disregard the interval. Probing an interval around the value that occurs the
most, allows us to start our analysis with a hypothetical reward that is similar to the most occurring
hypothetical reward value. If we then encounter intervals with a lower hypothetical reward value than
we have precomputed, we can skip these intervals and thereby reduce our search space.

4.7.2. Result normalization

During the action space impact analysis, it is our aim to compare the results of the different action
spaces to each other. However, we are faced with a problem, namely that there is a difference in
the number of participants between the experiments. This leads to a different overall reward pool
from which parties gain. In the baseline, and network update analysis, there are 201 parties that
perform transactions within the network. However, in the cases that contain an additional party, there
are 202 parties, increasing the total transactions being sent. In the case of 201 parties, there would be
201 - 200 = 40, 200 transactions, whereas with 202 parties 202 - 201 = 40, 602 transactions, which is
402 paths more. This number might seem low but can have a large impact. A path can have multiple
hops, which means it is routed multiple times. If we assume that a transaction has 3 routes on average,
and all channels use the default fee, then that means that there are 3:1000-402 = 1.206.000 satoshi’s
more in the reward pool. To account for this, we have normalized the rewards that stem from networks
with 202 parties by a factor of 40,200/40,602 = 0.990, which allowed us to compare the results of the

4.7. Setup

27

different action space experiments to each other.

Results

This chapter covers the results of the experiments described in section 4. Section 5.1 covers the results
of the replication, whereas section 5.2 covers the results of the fee distribution analysis. Section 5.3
shows the results of the impact analysis, whereas section 5.4 covers the results of the game-theoretical
analysis. It must be noted that these sections cover some discussion and conclusions where it makes
sense to introduce them.

5.1. Replication

Node rewards over time. le6 Node rewards over time. 1e6
160000 { —® Snapshot —&— Barabasi 200 —8— Snapshot —&— Barabasi
140000 4 L17s
175
140000 4
. 120000 4 L1s0
= 120000 - = 7 w
= = Z 100000 4 t125Z
£ 100000 4 28 2 2 2
z Z Z 80000 1002
S 80000 4 1002 5 5
x & ® *
B 60000] 075 P o 000007 torsg
= 40000 4 050 % & 40000 boso &
20000 4 0.25 20000 4 Lo2s
04 0.00 04 I 0.00
1 2 3 a) 6 1 2 3 3 s]
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the reward obtained in the snapshot, (b) Figure depicting the reward obtained in the snapshot,
and the Barabasi-Albert graph using placement strategy: and the Barabasi-Albert graph using placement strategy:
fee weighted centrality and transaction amount: 100 fee weighted centrality and transaction amount: 10000
Node rewards over time. 1e6
160000 A 25
—8— Snapshot —&— Barabasi
140000 A
120000 1 20
§ 100000 o §
& 15 @
Z 80000 =
= =
® ¥
T 60000 2
: 10
3 3
& 40000 &
20000 05
o]
1 2 3 4 5 6

Time (# Iteration)

(c) Figure depicting the reward obtained in the snapshot,
and the Barabasi-Albert graph using placement strategy:
fee weighted centrality and transaction amount: 1000000

Figure 5.1: Figures depicting reward trends when comparing a snapshot of the Bitcoin Lightning Network to the graphs created
by using the Barabasi-Albert algorithm

As can be seen in figure 5.1, the reward line of the snapshot is similar in pattern to that of the

29

30 5. Results

Barabasi reward line where the difference lies in the y-axis. After normalizing the reward of the snapshot
(by a factor (201 -200)/(1111 - 1110) = 3.26%) such that we can compare them as found in 4.7.2 the
rewards obtained from the snapshot are still around 2 million satoshis in figures 5.1a (1938011.84) and
5.1b (1871425.22). This reaches even higher numbers in figure 5.1¢c (2457294.52) where the leading
party is able to obtain 2.5 million satoshis. The rewards for the Barabasi network differ in size and range
around 150 thousand satoshis. 163376 when observing small transactions, 147745 for medium-sized
transactions, and 156251 for transactions large in size.

From these findings, we conclude that the behavior observed by the leading party in the snapshot is
comparable to the behavior of the leading party in the Barabasi network. However, it must be noted that
there is a measurable difference between the reward number the two networks display. If one wanted
to translate obtained rewards from the Barabasi network to the snapshot, the reward would need to
be increased by at least a factor of 10 to obtain a reward that is comparable to those obtained from a
snapshot.

5.2. Fee Noise Analysis

This section details the results of the experiment described in section 4.3.2. In this section, we detail
some representative graphs that follow from our analysis. The complete list of graphs can be found in
the appendix.

Node rewards over time. Node rewards over time.

—e— Optimized —e— Optimized

350000 -
Non-Optimized 25000 1 Non-Optimized

300000
20000

's)

250000 -
200000 15000 1

150000 o
10000 4

Reward {#Milli Satoshi's)
Reward (#Milli Satoshi

100000 4

5000 1
50000 -

1 2 3 4 5 6 1 2 3 4 5 6
Time (# Iteration) Time (# Iteration)

(a) Figure depicting the channel placement game rewards (b) Figure depicting the channel placement game rewards
with placement strategy: fee weighted centrality and trans- with placement strategy: highest degree and transaction
action amount: 100 amount: 100

Figure 5.2: Figures depicting reward trends when comparing a network with and without fee noise in a channel placement game.

Figure 5.2a denotes the reward that can be obtained by an actor when they operate within a network
that was not optimized before performing case 1 as an experiment. The baseline as an overlay in the
figure shows the rewards an actor can obtain when they perform the experiment on a graph that has
been optimized using fee weighted centrality on each channel in the network. Most of the figures show
this behavior, although some present this behavior more than others. The average impact seems to
be around 50%. Figure 5.2b is an extreme case, which shows a discrepancy between the rewards at
iteration 1. This indicates that even a small difference in fees across the network has a large impact
on this placement strategy since the first channel already starts with over 9 times the rewards than the
network where no fee noise has been added.

Figure 5.3a depicts unexpected behavior only present when the highest degree placement algorithm
is used and the transaction amount is 1000000. Here the graph optimization process impacts the results
of the experiment in such a way that the baseline does not seem to trend upwards at all. The reward of
the graph where the graph optimization is not performed also has difficulty trending upwards. However,
after placing multiple connections it does obtain the ability to route transactions and thus profit.

Figure 5.3b depicts another case of unexpected behavior, present in all three cases where be-
tweenness centrality is used as placement algorithm. Here the placement strategy also starts off with
a discrepancy between the network with and without noise from the first channel onwards.

Besides betweenness centrality, the rewards of all placement strategies are negatively impacted
when optimizing the experiment graph beforehand. The degree of impact varies based on placement
strategy but is sufficiently large that it needs to be taken into account whether noise has been added

5.3. Action Space Impact Analysis

31

Node rewards over time.

—8— Optimized
40000 Nen-Optimized

30000

20000

Reward (#Milli Satoshi's)

10000

1 2 3 2 s 6
Time (# Iteration)
(a) Figure depicting the channel placement game rewards

with placement strategy: highest degree and transaction
amount: 1000000

Node rewards over time.

300001 _g optimized
Non-Optimized

25000

s)

20000 4

15000 4

10000 4

Reward (#Milli Satoshi

5000

1 2 3 a 5 6
Time (# Iteration)
(b) Figure depicting the channel placement game rewards
with placement strategy: betweenness centrality and trans-
action amount: 100

Figure 5.3: Figures depicting unexpected behavior when comparing a network with and without fee noise in a channel placement
game.

to the graph during the experiment.

5.3. Action Space Impact Analysis

As previously mentioned in section 4.1 we have divided the goal of taking the existing work out of its
vacuum into different cases. This section explores the obtained results from the experiments on these
cases. Subsection 5.3.1 highlights the results of the baseline which is needed to provide context to
cases 2 and 3. Subsection 5.3.2 shows the results obtained when the model allows for the existing
network to react to the connections made. Subsection 5.3.3 shows the impact on the result when a
new actor not previously present starts competing for rewards within the network. Subsection 5.3.4
combines the model space of 5.3.2 and 5.3.3 and allows for both the existing network and a new party
to react on connections created within the network. Because it combines the model spaces, it will also
be relying on cases 2 and 3 to serve as a baseline.

5.3.1. Case 1: Baseline

In the first case of the impact analysis, it is only the leading party that is allowed to interact with the
network and plays a channel creation game in isolation. Below we detail and interpret the results that
will be used as a baseline to compare the changes in action space that will follow.

Node rewards over time. Node rewards over time.

—e— Action Space Baseline 80000 1 —g~ Action Space Baseline
140000

70000

120000
60000 4

100000
50000

80000
40000

60000
30000 -

Reward (#Mill Satoshi's)
Reward (#Milli Satoshi's)

40000 20000 4

20000 10000 1

0

Time (# Iteration) Time (# Iteration)

(a) Figure depicting the channel placement reward ob-
tained using placement strategy: fee weighted centrality
and transaction amount: 10000

(b) Figure depicting the channel placement reward ob-
tained using placement strategy: k-center and transaction
amount: 100

Figure 5.4: Figures depicting reward trends when playing a channel placement game with a limited action space.

If we observe all 18 graphs that depict reward data, we observe a general pattern that as the number
of created channels increases, so does the reward a party is able to obtain. This pattern is displayed
in two trends. The first trend is that of an exponential increase, whereas the second trend displays

32 5. Results

a logarithmic trend. Figures 5.4a and 5.4b are examples of this general trend, where 5.4a shows
the logarithmic trend and 5.4b displays the exponential trend. Both graphs are representative of their
respective trend and are caused by the placement strategy used. Placement strategies that are able to
leverage every new channel to its maximum value will find it difficult to keep up the growth in rewards.
As a result, they display a logarithmic trend where every new channel increases the total reward by
a large amount, but the additional reward that a new channel brings slightly decreases with every
channel created. We can take 5.4a as an example, we take a look at its partial rewards: [0.0, 32342.0,
63401.0]. Where the first additional channel adds 32342.0 to the reward pool, the second additional
channel adds 31059.0. Whilst adding 31059.0 to the rewards is noteworthy, it is 1282 less than what the
first additional channel provides. Something similar happens for the placement strategies that display
an exponential pattern. 5.4b shows the reverse. Here every new additional channel has diminishing
returns.

Node rewards over time. Node rewards over time.

—e— Action Space Baseline 21.00 4 —e— Action Space Baseline
4000 1

20.75 1

20.50 1

s5)
s)

% 3000

20.25 1

2000 4 20.00 q

19.75 1

Reward (#Milli Satoshi
Reward (#Milli Satoshi

19.50

H
1]
3
S

19.25 1

19.00 4

1 2 3 4 5 6 1 2 3 4 5 6
Time (# Iteration) Time (# Iteration)

(a) Figure depicting the channel placement reward ob- (b) Figure depicting the channel placement reward ob-
tained using placement strategy: highest degree and trans- tained using placement strategy: highest degree and trans-
action amount: 10000 action amount: 1000000

Figure 5.5: Figures depicting unexpected behavior when playing a channel placement game with a limited action space.

Figure 5.5 depicts unexpected behavior in the placement algorithms. These figures deviate from the
patterns found and described earlier. Figure 5.5a displays a deviation from the logarithmic trend we
observed. At iterations 4 and 6 an additional channel created does not contribute to an increase in
rewards for the leading party. Figure 5.5b displays this behavior to an even larger extent, where none
of the channels are able to increase the reward.

Since the highest degree placement strategy has already been shown to have difficulty in obtaining
reward during the initialization (as seen in figure 3.1), the comparison performed in section 5.2 (as
seen in figure 5.3b), this behavior while not expected, can be explained. Poor performance is a side
effect that occurs when making use of the highest degree in combination with one of the assumptions
made about the model. The assumption in 3.1 that we do not have control over the other side of the
bidirectional channel is the assumption that explains this behavior.

In our model, we work with optimized channels which means that channel fees are optimized. Fur-
thermore, parties with the highest degree are likely to be connected to each other. When a new route
is created between the leading party and the two parties with the highest degree the chance occurs
that the existing optimized channel will be less expensive than the route that makes use of the leading
party. If the existing channel has a fee of less than the default then no matter what the leading party
charges as a fee, the part of the channel that the leading party does not control will cost the default
fee and will outprice the route. When it is never beneficial to make use of a route, then it follows that
this route will not be performing any routing. Furthermore, in this case of the impact analysis, it is not
possible to change the fee value after the channel has been created. In cases 2 and 4 it is possible
for this value to be changed when a network optimization occurs. Therefore in these cases, it might be
possible for the channels to provide their parties with rewards from routing.

Table 5.1 allows us to compare the reward of the different placement strategies and transaction sizes to
each other. When comparing the different transaction sizes we observe that the average reward value is
similar. Where the differences lie is in which placement strategy was used. We observe that placement
strategies betweenness centrality, highest degree both perform worse than a uniform random choice.
The fee weighted centrality, k-center, and k-means placements strategies were able to outperform a

5.3. Action Space Impact Analysis 33

Small Medium Large Average

Betweenness Centrality 1732.0 4133.0 1037.0 2300.67
Fee Weighted Centrality 163376.0 147745.0 156251.0 155790.67
Highest Degree 2999.0 4171.0 20.0 2396.67
K-center 79193.0 85680.0 48226.0 71033.0
K-means 105508.0 117751.0 141822.0 121693.67
Uniform Random 53415.5 33962.65 31013.0 39463.72
Average 67703.92 65573.78 63061.5

Table 5.1: Table depicting the rewards of a channel placement game.

uniform random choice.

From our results we conclude that with one exception, all placement strategies are able to increase their
reward without competition, regardless of transaction size. However, the level at which the different
placement strategies are able to obtain rewards differs. Furthermore, we conclude that our results are
sufficient to serve as a baseline to measure the impact on rewards that other action spaces will have.
We conclude that fee weighted centrality performs the best of the different placement strategies while
k-means place as second best. Strategies betweenness centrality and highest degree perform the
worst in this setting, even worse than picking at random. The fact that the average network reward is
similar to each other is to be expected.

Our networks are created using the Barabasi-Albert algorithm which is scale free. Therefore an
increase in network size should not lead to a difference in network structure. What we did not expect
was for our results to indicate network preference for some of the placement strategies. Placement
strategies k-center seems to prefer small and medium-sized networks over large ones. Whereas the
uniform random placement strategy seems to prefer the small-size network. However, our results
are not conclusive enough to conclude with confidence whether or not this preference is inherent to
transaction size.

5.3.2. Case 2: Network Reaction

In the second case of the impact analysis, we extend the action space to allow the network to react
to every change made by the leading party. Every party is given the ability to change the fee on all of
their channels. Below we detail and interpret the results from the experiment and compare the results
to the baseline.

Node rewards over time. Node rewards over time.

—8— Baseline 140000 {1 —®— Baseline
140000 Network Reaction Network Reaction

120000 1
120000

100000 100000 1

80000 80000 4

60000 60000 4

40000 40000 4 3
20000 / 20000 /
o] @ o4 @

Reward (#Mill Satoshi's)
Reward (#Milll Satoshi's)

S S N G S O S S
Time (# Iteration) Time (# Iteration)

(a) Figure depicting the channel placement rewards ob- (b) Figure depicting the channel placement rewards ob-

tained using placement strategy: fee weighted centrality tained using placement strategy: betweenness centrality

and transaction amount: 10000 and transaction amount: 10000

Figure 5.6: Figures depicting reward trends when playing a channel placement game with an action space extended to allow the
network to react.

Similar to 5.3.1 the results of the 18 reward lines display patterns. Figure 5.6 shows us a common
pattern that are easy to observe. In figure 5.6a we observe that the reward that the leading party is
able to obtain differs from the rewards gained by the baseline. It shows a setting where the leading
party is not able to keep up its reward growth and over the duration of the game loses its ability to

34 5. Results

profit. The leading party ends the experiment with 3.60% of the rewards it would have obtained in the
baseline experiment.

Figure 5.6b shows the case where the leading party is able to maintain its profits for a couple of
iterations longer before eventually having its rewards taken by other parties present in the network.

At steps 0,1,2,...,5 it is up to the leading party to place a channel, that is why on steps 0-1,1-1,2-
1,...4-1 we observe the temporary increase in rewards. The reason that these are only temporary is that
during steps 0-1,...,4-1 the network reaction takes place. This has the effect of lowering the reward of
the leading party. The leading party ends the experiment with 0% of the rewards it would have obtained
in the baseline.

Node rewards over time. Node rewards over time.

—e— Baseline —e— Baseline
Network Reaction Network Reaction

50000 -
40000

40000
30000

30000

20000
20000 -

®
10000 -
10000 - / "/_/
] 4 0] @
x

o 3 °
LS >] N > 5 L Y, S W ©

Reward (#Milli Satoshi's)
Reward (#Milli Satoshi's)

o Y ki »
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the channel placement rewards ob- (b) Figure depicting the channel placement rewards ob-
tained using placement strategy: k-center and transaction tained using placement strategy: uniform random and
amount: 1000000 transaction amount: 1000000

Figure 5.7: Figures depicting unexpected behavior when playing a channel placement game with an action space extended to
allow the network to react.

Figure 5.7 covers figures that displayed unexpected behavior in the reward lines. Specifically, the fact
that the reward of the network reaction temporarily exceeds the reward the leading party could obtain
when playing in the baseline experiment. In figure 5.7a at steps 1 and 1-1 the reward goes to 37164.0
and 56244.0 after which the reward goes down to 4441.5 which is 9.20% of the baseline. Figure
5.7b displays the same pattern. However, the rewards go down in the next network reaction, and the
experiment ends with 12204.75, which is 39.35% of the baseline experiment.

Small Change(%) Medium Change(%) Large Change(%)

Betweenness Centrality 270.4 —84.39 0.0 —100 1021.33 —22.29
Fee Weighted Centrality 2198.12 —98.65 5311.83 —96.40 6491.83 —95.85
Highest Degree 267.33 -91.09 0.0 —100 352 1760

K-center 486.07 -99.38 1370.83 —98.40 4441.5 -90.79
K-means 2356.33 —97.77 4430.5 —96.24 8330.42 —94.13
Uniform Random 15084.1 —-71.76 10762.75 —-68.31 12204.75 —60.65
Average 3443.73 —90.51 3645.99 —93.23 5473.64 232.72

Table 5.2: Table depicting the rewards of a channel placement game.

The data in table 5.2 affirms the behaviour observed in the graph results. Observing the changes in
rewards compared to case 1: the baseline, we observe a severe impact on the ability to profit. From
the results in the table betweenness centrality and highest degree display unexpected behavior. In the
case of highest degree this is due to it being the only reward that has increased and in the case of
betweenness centrality because its reward has not gone down by more than 60%.

In both cases, this behavior can be explained by the fact that these placement strategies have
difficulty obtaining rewards in the baseline. Therefore it is more difficult for the network reactions to
impact these already low reward scores. The average change without these 2 scores would be -85.35%
which falls in line with the results obtained in the experiments using small and medium transaction sizes.
Furthermore, without these cases, there exists no placement strategy that has outperformed uniform

5.3. Action Space Impact Analysis 35

random, which indicates that all of the placement strategies are negatively impacted by the ability of
the network to react.

The rewards show that the highest degree placement strategy is able to increase its rewards when
channel fees are allowed to be changed. This then confirms the explanation stated in 5.3.1, which
hypothesized that the highest degree rewards would increase.

We conclude that the rewards are negatively impacted by extending the action space to allow for
network reaction. In some cases, a leading party is able to briefly keep up with or outperform the
rewards obtained when playing in isolation. However, given five iterations of placement its reward will
decrease. A leading party that uses a placement strategy that does utilize randomness is bound to
lose 85-100% of their rewards.

The general pattern remains. The ability for the network to adjust its fees, combined with the goal
of each party to maximize its own rewards leads to the leading party being outperformed due to the
channel charging lower fees, undercutting parties throughout the network. This behavior was to be
expected. We conclude that the negative impact is regardless of transaction size or placement strategy
and conclude that it is related to the number of parties in the network.

5.3.3. Case 3: An Additional Party

In the third case of the impact analysis, we remove the ability for network reactions but extend the
action space to allow an additional party to join. This additional party will react to the leading party by
placing a channel of their own. The most representative figures have been shown below:

Node rewards over time. Node rewards over time.

175000

—8— Baseline # —8— Baseline
80000 4 Leading Party
% Additional Party

Leading Party
150000 { —&— Additional Party

s)
s)

125000

= 60000

100000

75000 40000 4

Reward (#Milll Satoshr
Reward (#Milli Sateshi

50000
20000

4
25000 /
0 4 04

N Y N
Time (# Iteration)
(a) Figure depicting the channel placement rewards ob-

tained using placement strategy: fee weighted centrality
and transaction amount: 100

N
Time (# Iteration)
(b) Figure depicting the channel placement rewards ob-

tained using placement strategy: k-center and transaction
amount: 10000

Figure 5.8: Figures depicting reward trends when playing a channel placement game with an action space extended to allow an
additional party to react.

Figure 5.8 shows the general trend for the reward lines present in the data. This trend can be divided
into two patterns of which we have chosen two representative examples. Figure 5.8a represent the
cases where the reward of the leading party is lowered, whereas the additional party performs on the
same level as the baseline. In steps 1 to 5 we again observe the actions of the leading party which
increase its rewards by creating a channel. Again in steps 0-1,...,4-1 we observe that these rewards
are lowered whilst the additional party increases their reward.

Figure 5.8b represents the pattern where the leading player is able to compete with the additional

party. Here both the leading party and the additional party generally perform slightly worse than the
baseline, but the reduction in reward is less for the leading party. Similar to 5.3.2 we observe undercut-
ting to obtain rewards from competitors. However, some placement strategies like k-center operate in a
way that makes it more difficult for the additional party to immediately undercut. Its strategy lowers the
chance that the additional party will choose the same destination, which ensures that direct competition
presents itself less often, allowing the leading party to avoid being undercut.
Figure 5.9 displays unexpected behavior observed in the results. Figure 5.9a shows that the competi-
tion of the additional party can even reduce the obtained rewards to O for the leading party. Regardless
of the ability of the placement strategy to obtain rewards, the competition that one additional party
poses can be a threat to the ability to obtain rewards.

Figure 5.9b shows that it is even possible for the leading party to outperform the baseline after the

36 5. Results

Node rewards over time. Node rewards over time.

—8— Baseline 40000 { —®— Baseline
Leading Party ® Leading Party
% Additional Party

4000 4

%~ Additional Party 35000 -

0000 q

s)

473000

s)
Noow

5000 1

N
11
3
o
3

20001

15000

Reward (#Milli Satoshi
Reward (#Milli Satoshi

10000 4

,_.
S
3
=1

5000 4

P S P N P
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the channel placement rewards ob- (b) Figure depicting the channel placement rewards ob-
tained using placement strategy: betweenness centrality tained using placement strategy: k-center and transaction
and transaction amount: 10000 amount: 1000000

Figure 5.9: Figures depicting unexpected behavior when playing a channel placement game with an action space extended to
allow an additional party to react.

reward normalization from 4.7.2 has been performed. Similar to 5.8b, the placement strategy can be
utilized to perform well and reduce competition with the additional party. However, in this setting, it
further increases the ability of the leading party to limit competition and increase its rewards.

Small Change(%) Medium Change(%) Large Change(%)

Betweenness Centrality 196.04 —88.68 0.0 —100 8.91 —99.14
Fee Weighted Centrality 29340.59 —82.04 313703 —78.77 22.28 —99.98
Highest Degree 196.04 —93.46 0.0 —100 891 —55.45
K-center 78555.45 00.80 57545.54 —32.84 50157.43 104

K-means 136876.24 129.73 112612.87 —4.36 97828.71 —-31.02
Uniform Random 49411.53 —7.50 40547.77 119.39 29762.18 —4.03
Average 49095.98 —23.53 40346.08 —32.76 29631.40 —30.94

Table 5.3: Table depicting the experiment rewards. Performance is relative to the performance of Case 1: Baseline as found in
Table 5.1

Table 5.3 compares the rewards that the leading party obtains to the baseline. As can be seen in the
table the addition of an additional party may have a negative influence on the ability of the leading
party to obtain rewards. What is interesting about this data is that the addition of the party impacts
the different placement strategies in a different way. Where some placement strategies perform poorly
across the board, others seem to perform better under some circumstances. K-center seems to perform
well in the network with large transaction sizes, whereas k-means seems to perform better when small
transaction sizes are sent. Both k-means and k-center shows limited negative impact by the additional
party, however perform not as well as random uniform selection. The average impact on rewards is
around -30%.

Table 5.4 displays the difference in rewards between the leading and the additional party. As can
be seen, it is often the case that the additional party ends the experiments with a higher reward than
the leading party. The additional party is able to obtain 65.6 times the rewards of the leading party
when the betweenness centrality placement strategy is used. When fee weighted centrality is used the
additional party outperforms by 7 times and highest degree 34 times. However in the cases of k-center,
k-means, and uniform random the additional party only obtains 0.89, 0.87, 0.14 times the reward that
the leading party is able to obtain on average.

There is also a difference in the average rewards the different placement strategies are able to
obtain. On average the network with small transactions has the highest rewards whereas the network
with large transactions has the lowest average reward.

We conclude that in general the addition of a party negatively influences the ability of the leading
party to obtain rewards. Competing channels that share the same destination are predetermined to
undercut each other and reduce the rewards of one of the channels.

5.3. Action Space Impact Analysis 37

Small Medium Large Average

Betweenness Centrality - Leading 196.04 0.0 891 68.32
Betweenness Centrality - Additional 8483.17 3960.4 1006.93 4483.5
Fee Weighted Centrality - Leading 29340.59 31370.3 22.28 20244.39
Fee Weighted Centrality - Additional 171361.39 113430.69 151248.02 145346.7
Highest Degree - Leading 196.04 0.0 8.91 68.31
Highest Degree - Additional 2744.55 4131.68 8.91 2295.05
K-center - Leading 78555.45 57545.54 50157.43 62086.14
K-center - Additional 78139.6 58380.2 28350.5 54956.77
K-means - Leading 136876.24 112612.87 97828.71 115772.61
K-means - Additional 112365.35 80236.63 109213.86 100605.28
Uniform Random - Leading 49411.53 40547.77 29762.18 39907.16
Uniform Random - Additional 3134.65 4876.04 8743.27 5584.65
Average 55900.38 42257.68 39696.66

Table 5.4: Table depicting the rewards of a channel placement game.

5.3.4. Case 4: Combined Action Space

In the third case of the impact analysis, the action space will be extended to allow both an additional
party to join the network (as in case 3), and we will allow existing channels to be updated (as in case
2). Having studied the two cases independently, combining them allows us to study their full impact.

Node rewards over time. Node rewards over time.

—8— Network Reaction | —®— Network Reaction
Leading Party Leading Party
%~ Additional Party

30000
4% Additional Party
25000
20000

15000

10000

Reward (#Milli Satoshi's)
Reward (#Milli Satoshi's)

5000

o 44 04 L
< \ ’L %x «, m ’l”L’L'»"L’L"L'bO”’;\’“;"““;“’ N D('\,N’lh(’tv‘) N '» 1 -5~, \, ’L '5"1,1'\,0%6";”:»%1,;5 . D('\,D(’LN")‘)
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the reward obtained when case 4 is (b) Figure depicting the reward obtained when case 4 is
run using placement strategy: fee weighted centrality and run using placement strategy: betweenness centrality and
transaction amount: 10000 transaction amount: 10000

Figure 5.10: Figures depicting reward trends when playing a channel placement game with an action space extended to allow
an additional party and the network to react.

Similar to the other cases, we have selected figures to represent the trends present in the reward lines.
In figure 5.10, we will be looking at the reward data of case 4. At steps n the leading party is given the
choice to place a channel. In steps n-1 the network is given the ability to change the fee on channels.
At steps n-2 the additional party places their channel after which the network reacts again in steps n-3.
Since the rewards of Case 2: Network Reaction impact the rewards of the leading party more than
Case 3: An Additional Party we interpret the rewards of Case 4 by using the rewards of Case 2 as a
baseline so that we may more easily observe the impact of Case 3.

While the rewards of figure 5.10b are small in size, it does show even more clearly the behavior of
the reward line. At step 1 the leading party places a connection to which the resulting network reaction
lowers it slightly in 1-1. The additional party that places a connection after this network reaction is
1-2 which even further lowers the leading party’s reward score. The network reaction that follows this
step then makes the reward drop the most in 2. Having profitable channels within the network rewards
the leading party, whereas being undercut by an additional party or the whole network decreases the
rewards.

When a placement strategy is able to perform well in obtaining rewards the same thing occurs,
however, the impact of undercutting has a larger impact on rewards. Figure 5.10a is a representative

38 5. Results

example that displays this behavior. As can be observed the decrease in rewards occurs the first time
the network reacts as can be seen in steps 0-2.

Node rewards over time. Node rewards over time.

1750 4 —8— Network Reaction —8— Network Reaction
Leading Party 50 4 Leading Party

% Additional Party 9~ Additional Party
1500

1250 4

1000 4

5
3
=)

o
=]
S

Reward (#Milli Satoshi's)
Reward (#Milli Satoshi's)

N
&
S

o

O*H—O—Q—O—O—Q—O—O—Q—O—O—Q—O—.—Q—O—O—Q—O—O

< \ ’L %x «, '1. '5 mm”"ﬂ"f”’ ”’xq’mq}'s N D;»Dp;; 5 N '» 1 -5~, \, ’L '5"1,1'\%%6"; q;,q’m,;, . D('\,D(’LN")‘)

Time (# Iteration) Time (# Iteration)
(a) Figure depicting the reward obtained when case 4 is run (b) Figure depicting the reward obtained when case 4 is
using placement strategy: highest degree and transaction run using placement strategy: betweenness centrality and
amount: 10000 transaction amount: 10000

Figure 5.11: Figures depicting unexpected behavior when playing a channel placement game with an action space extended to
allow an additional party and the network to react.

Figure 5.11 shows the unexpected behavior of two of the placement strategies. Figure 5.11a, as well
as figure 5.11b, show the placement strategies that performed poor, both in case 2 and in case 4.
While these placement strategies have performed poorly in previous experiments they usually were
able to perform decently in the experiments where the transaction size was medium. However, these
placement strategies have performed poorly regardless of transaction size, which is consistent with
expectations.

Small Change(%) Medium Change(%) Large Change(%)

Betweenness Centrality 0.0 —-100 0.0 —100 4.35 —99.57
Fee Weighted Centrality 3345.56 152.20 2605.35 —50.95 5161.01 —20.50
Highest Degree 0.8 —99.85 0.0 —100 5.42 —98.46
K-center 548.27 112.80 190.88 —86.08 466.44 —89.50
K-means 3741.16 —-58.77 46.21 —98.96 9563.63 114.80
Uniform Random 6839.41 —54.66 4389.28 —59.22 26747.65 219.16
Average 2412.53 -8.0 1205.29 —82.54 6991.42 4.32

Table 5.5: Table depicting the experiment rewards. Performance is relative to the performance of Case 2: Network Reaction as
found in Table 5.2

Table 5.5 displays the rewards the leading party obtains in case 4. The data is compared to the perfor-
mance in case 2 and the difference is given.

As we can see from the table there are some placement strategies that perform well. This means
that after the decrease that occurs from the network reactions, they are able to limit the decrease
in rewards that stems from the additional party participating. We note that fee weighted centrality is
able to increase its reward compared to case 2, to lose only 50% of its reward using medium-sized
transactions, and lose only 20% using large transaction sizes which if we compare this to the other
placement strategies is only a small decrease in rewards. Only k-center with small transaction sizes
and k-means with large transaction sizes are able to perform at this level. Furthermore, when large
transaction sizes are used, the uniform random placement strategy performs rather well. It is able to
double the rewards when compared to case 2.

When observing the average performances we notice that the leading party performs well compared
to the additional party. In the case of medium-sized transactions, the placement strategies k-center
and k-means allow for the additional party to obtain a higher reward than the leading party. Placement
strategies fee weighted centrality and k-means both allow the leading party to obtain the largest reward
on average. Placement strategies betweenness centrality and highest degree perform poorly. The
uniform random placement strategy has the best performance, outperforming fee weighted centrality

5.4. Game Theory 39

Small Medium Large Average

Betweenness Centrality - Leading 0.0 0.0 4.35 1.45
Betweenness Centrality - Additional 0.0 0.0 5.58 1.86
Fee Weighted Centrality - Leading 3345.56 2605.35 5161.01 3703.97
Fee Weighted Centrality - Additional 1438.51 498.5 272.42 736.48
Highest Degree - Leading 0.8 0.0 5.42 2.07
Highest Degree - Additional 0.0 0.0 5.42 1.81
K-center - Leading 548.27 190.88 466.44 401.86
K-center - Additional 287.04 32591 205.11 272.69
K-means - Leading 3741.16 46.21 9563.63 4450.33
K-means - Additional 1874.78 400.7 7902.44 3392.64
Uniform Random - Leading 6839.41 4389.28 26747.65 12658.78
Uniform Random - Additional 176.93 4761.76 37683.24 14207.31
Average 1506.29 1101.55 7335.23

Table 5.6: Table depicting the rewards of a channel placement game.

and k-means by a factor of 3.

The data shows that the third party performs just as well as the leading party when the betweenness
centrality placement strategy is used, the additional party performs 0.20 times the reward of the leading
party when fee-weighted centrality is used, 0.87 the performance of the highest degree placement
strategy, 0.68 times the performance using k-center, 0.76 times the performance using k-means, and
1.12 times the performance when uniform random is used.

From this, it is concluded, similar to cases 2 and 3 that the inclusion of network reactions as well as
the presence of a third party has a negative effect on the rewards of the leading party. The addition to
the network reaction, by introducing the third party reduces the rewards of the leading party by 60%-
90% in many of the cases. This reduction in rewards is on top of the negative effect that the network
reaction already has on rewards.

It must be noted that there exist some cases in which this reduction does not occur. Fee weighted
centrality is able to increase its rewards compared to case 2 when using small transaction sizes and is
able to limit the reduction to -20% in the case of large transaction sizes. K-center is able to increase its
reward using small transaction sizes compared to case 2, and k-means is able to increase its rewards
using large transactions.

In contrast to case 2 (5.3.2) and case 3 (5.3.3) the k-center and k-means placement strategy perform
well using different transaction sizes. From the performance of the uniform random placement strategy,
it is concluded that it performs well in a network with large transaction sizes.

5.4. Game Theory

Based on the data in 5.3 it was concluded that the ability of parties to react severely impacts the reward
the leading party is able to obtain. However, the question remains whether this negative effect can
be mitigated by changing the placement strategy of the party. This subsection details the result that
follows from an experiment where the leading party is given knowledge of the reaction that other parties
will make to the leading parties channel placement. Subsection 5.4.1 details how rewards are obtained
when the future actions that stem from network reactions are known, whereas section 5.4.2 details the
obtained rewards when the future actions of an additional party are known.

5.4.1. Network

This subsection details the experiments in which we analyze whether the negative impact found in
5.3.2 can be negated when the leading party has knowledge about future reactions that will take place
in reaction to their moves.

An interesting pattern that can be observed in the graphs 5.12 is that the baseline and the game theory
reward are closely competing for the spot of the highest reward. They seem to overtake each other for
the top spot every other step in the graph. But we can see a pattern in the data. When we observe steps
0-1, 1-1, 2-1, ... in the graph, we notice that the game theory reward is lower than the reward of the

40 5. Results

Node rewards over time. Node rewards over time.

—8— No Knowledge 7000 4 —8— No Knowledge

Future Knowledge Future Knowledge
10000

6000 q

8000 - 5000 1

6000 1 4000 1

3000 4
4000 4

Reward (#Milli Satoshi's)
Reward (#Milli Satoshi's)

2000
2000 1

1000 4

P S P N P
Time (# Iteration) Time (# Iteration)
(a) Reward graph with transaction amount: 100 (b) Reward graph with transaction amount: 10000
Node rewards over time.
—e— No Knowledge
20000 Future Knowledge
Z 15000
g
;mooo
2
Z
= 5000
4
o U\ b ,\',’\, v ,L,\ &l ,,J,‘\— B ¥ad “

Time (# Iteration)

(c) Reward graph with transaction amount: 1000000

Figure 5.12: Figures depicting reward trends when playing a channel placement game with knowledge on 1 iteration of future
network reactions.

baseline. The game theory data line overtakes the baseline on the steps that follow the n trend. This
has to do with the difference between the two algorithms. The baseline uses the fee weighted centrality
which optimizes their reward for the n-1 tick in the graph. In contrast, the game theory algorithm creates
a connection that will see its reward increased once the network is allowed to react at step n. This
pattern is clearly seen in 5.12a and 5.12c, but not so much in 5.12b. Here after showing the pattern
briefly the game theory algorithm takes on a higher reward even in the n-1 steps before eventually
being slightly overtaken by the baseline according to the pattern.

However in graphs 5.12a and 5.12c¢ we observe unexpected behavior in steps 4 to 5. The expecta-
tion was that knowledge of the reaction would always lead to an advantage. The graphs indicate that a
party could temporarily be worse off. The steps in 5.12a indicate that while the pattern seems to hold,
the baseline is not able to obtain high rewards at step 4 when the network reacts. During this step, the
game theory algorithm performs well, and can even increase its reward during steps 4-1. However,
step 5 shows the "reverse pattern”. When the network reacts the greedy algorithm is able to obtain
high rewards whereas the game theory algorithm can not. This "reverse pattern” is something that can
be seen in 5.12a already in steps 2-1 to 4. Therefore it is likely that in steps 5-1 to 6 the game theory
rewards will again overtake the reward of the baseline. In 5.12b we observe a similar pattern as we find
in 5.12a. Both in steps 1-1 to 3 and 3-1 to 5 we observe the game theory rewards performing worse
than the greedy algorithm, after which the game theory algorithm overtakes the greedy algorithm.

Small Medium Large Average

Leading - Knowledge 2492.0 4825 12813.0 5262.5
Leading - No Knowledge 11177.66 449.0 4265.0 5297.22
Change 22.29% 107.46% 300.42%

Table 5.7: Table depicting the rewards of figure 5.12. Performance is relative to the performance of the additional party.

Table 5.7 shows that on average there is no difference between the rewards of the party with future

5.4. Game Theory 41

knowledge and the party without future knowledge, however, this average is influenced by the network
that uses small transactions. The pattern present in figure 5.12 indicates that the two lines will change
places as the iterations continue. If we observe the medium and large-sized transactions we observe
that the effect of future knowledge is impactful. While the rewards are low in the medium-sized transac-
tion network a 7.5 % increase is quite the feat. The large transaction network allows future knowledge
to be leveraged for a 300% reward.

While performing better than the greedy algorithm in its ability to minimize the reward reduction it
does not outperform it in all situations. In the case of small and large transactions, we observe the
reward lines oscillating. From this case, it is difficult to conclude which of the two lines performs better,
and whether the additional information is useful. When one leverages future knowledge, one opens
themselves up to being undercut. With the roughly 50 nodes attempting to undercut your channel,
the rewards will be lost. However, from figure 5.12b, it can be concluded that the knowledge can be
successfully leveraged to obtain an advantage.

In general, the game theory algorithm performances show that they can minimize the negative
impacts on rewards network updates have. However, it must be noted that this is not sufficient to fully
negate the negative impact. The impact of the roughly 50 nodes is simply too much for the knowledge
to fully negate.

5.4.2. Party

This subsection details the experiments in which we analyze whether the negative impact found in
5.3.3 can be negated when the leading party has knowledge about future reactions that will take place
in reaction to their moves.

Node rewards over time. Node rewards over time.
60000 { —®— Additional Party - No Knowledge —e— Additional Party - No Knowledge
Leading Party - Future Knowledge Leading Party - Future Knowledge
50000 -
50000
I @
z = 40000 4
@ 40000 @
T]
i &
= = 30000 4
S 30000 H
® *
E % 20000
£ 20000 2 il
H 3
@ &
10000 10000
o 01
I T T SN T T I) R Y B
Time (# Iteration) Time (# Iteration)
(a) Reward graph with transaction amount: 100 (b) Reward graph with transaction amount: 10000

Node rewards over time.

120000

—e— Additional Party - No Knowledge
Leading Party - Future Knowledge

100000 -

80000 -

60000 1

40000

Reward (#Milll satosnr's}

20000 4

04

&
LI LT T B Y e
Time (# Iteration)

(c) Reward graph with transaction amount: 1000000

Figure 5.13: Figures depicting reward trends when playing a channel placement game with knowledge on 1 iteration of future
reactions of an additional party.

Figure 5.13 shows the rewards of the leading party when they have knowledge of 1 reactionary
move that the other party will make. From it, we can see that the leading party is able to leverage their
future knowledge to obtain an advantage, represented by their rewards increasing. In all three of the
figures, we can observe this trend. In figure 5.13a we observe that the reward lines are rather similar
in score for the first 3 iterations of the placement game. However, after this, the leading party is able

42 5. Results

to further increase their rewards whereas the rewards decrease if the leading party would not have
had access to future knowledge. In figure 5.13b the difference between the two reward lines occurs
even earlier in the experiment. While at iteration 1 the leading party is slightly worse off, in all the other
experiments the leading party is better off, indicating that they are able to leverage the knowledge to
increase their reward. In figure 5.13c the pattern is also visible, similar to figure 5.13b it is only at
iteration 1 that the leading is temporarily worse off. Again the leading party is able to perform better in
all other iterations than if it would not have access to future knowledge. This figure is also the setting
in which the leading party is able to obtain the best reward for themselves.

Small Medium Large Average

Leading - Knowledge 59021.0 55707.5 115045.5 76591.17
Additional - No Knowledge32951.0 30515.5 53812.5 39092.83
Performance 179.12% 182.55% 213.79%

Table 5.8: Table depicting the rewards of figure 5.13. Performance is relative to the performance of the additional party.

If we take a look at the rewards at the end of the experiment, we observe the following: We notice
that the rewards of the leading party severely exceed what they would have received otherwise. It is
able to increase its rewards by 80%, 83%, and 114% respectively, which is no small feat. The average
of the leading party is close to doubled which further indicates that the leading party is able to properly
leverage its future knowledge to obtain reward.

Node rewards over time. Node rewards over time.

60000 1 —e— Additional Party - Future Knowledge —e— Additional Party - Future Knowledge
Leading Party - Future Knowledge Leading Party - Future Knowledge
40000 +

50000 -

40000 + 30000

30000 4
20000 1

Reward (#Milli Satoshi's)
Reward (#Milli Satoshi's)

20000

10000 4
10000 4

S S S A S S S S D S S S G S S
Time (# Iteration) Time (# Iteration)
(a) Reward graph with transaction amount: 100 (b) Reward graph with transaction amount: 10000

Node rewards over time.

140000
—8— Additional Party - Future Knowledge

Leading Party - Future Knowledge
120000 4

100000 o

80000 4

60000 q

40000 1

Reward (#Milll Satoshi's)

20000 4

04

u
I T T RS]
Time (# Iteration)

(c) Reward graph with transaction amount: 1000000

Figure 5.14: Figures depicting reward trends when playing a channel placement game where both the leading and additional
party have knowledge on 1 iteration of future reactions each other.

In figure 5.13 we analyzed what would occur when the leading party would have access to future
knowledge during their decision-making. The rewards indicate that the leading party is able to leverage
this knowledge to increase their reward. Figure 5.14c displays what would occur if the additional party
would also have access to the future knowledge during their decision-making process like the leading
party has. Figure 5.14a shows that the additional party is able to reverse the outcome. Whereas in
figure 5.13a the leading party is able to obtain a higher reward from iteration 3 onwards, in figure 5.14a it

5.4. Game Theory 43

is the additional party that is able to obtain the highest rewards from iteration 3 onwards. This indicates
that the advantage disappears when the additional party also has access to future knowledge. Figure
5.14b shows that when the two parties both have access to future knowledge it is also a possibility
for them to tie in rewards. In this case, the rewards of both the leading party and the additional party
are around 40 thousand, whereas in figure 5.13b the leading party would have a reward of around
50 thousand, and the additional party a reward around the 30 thousand. Both the leading and the
additional party attempt to leverage future knowledge, lowering the rewards of their competition in the
process, but their competition has the same effect on them. Figure 5.14c shows that it is still possible
for the leading party the be ahead of the additional party in terms of rewards. While the leading party
is still competing with the additional party by iteration 2 it is able to increase its reward more than
the additional party is able to reduce them winning the competition. While it takes an iteration longer
compared to figure 5.13c, the outcome is still preferable for the leading party, as they have obtained
an advantage.

Small Medium Large Average

Leading - Knowledge 18845.5 42620.0 133949.5 65138.33
Additional - Knowledge59723.5 46182.0 60766.5 55557.33
Performance 31.6% 92.29% 220.43%

Table 5.9: Table depicting the rewards of figure 5.14. Performance is relative to the performance of the additional party.

If we take a look at the rewards at the end of the experiment, we observe the following: We notice that
while the average reward of the leading party is higher than that of the additional party, the difference
is not nearly as large as in table 5.8. Where the increase nearly doubled the rewards, now the leading
party has a 20% higher reward. This is also reflected in the performance where the changes in rewards
are -68.4%, -7.71%, and 120.43% which differs greatly from the performance in table 5.8.

The results found in figure 5.12 and table 5.8 conclude that knowledge about future reactions during
the decision-making process has a positive influence on rewards, and is able to limit the negative impact
that an additional party may have on rewards. We conclude that knowledge of future moves is able
to be leveraged against the additional party to increase the rewards of the leading party. Given future
knowledge the leading payer is able to outperform the results of section 5.3.3 lowering the impact that
the additional party has, however, this is not enough to fully mitigate the effect. Where the leading party
was able to obtain rewards of 150 thousand without an additional party, with this mitigation a leading
party is able to obtain half of those rewards. In our experiments, the presence of the additional party
ensures competition which will negatively impact rewards.

We conclude that when the additional party is given access to knowledge about the future the effect
diminishes. While the effect seems to be influenced by transaction size, the ability of the leading party
to obtain a reward is made more difficult. This is to be expected because by giving the additional
party future knowledge, we have leveled the playing field, essentially removing the advantage that the
leading party had.

Conclusion, Limitation & Future Work

Section 6.1 discusses the results of Chapter 5. Furthermore, it details the conclusions drawn in this
work and answers the research questions. In section 6.2 we highlight the limitations whereas section
6.3 details the future work.

6.1. Conclusion

We have observed differences in the performance between different placement strategies. Our results
show that the placement strategies highest degree, and betweenness centrality do not perform well.
Not only do they both perform poorly in isolation, the situations where other actors are allowed to act
reduce their performance to an even lower level.

It was already known that these placement strategies perform poorly. In the case of highest degree,
this placement strategy has been shown to offer low rewards due to low fee costs. This is likely caused
by short average paths and high efficiency [LRT21] compare [SZ20; Ava+20]. Furthermore, we have
found that many of the parties which use the highest degree placement strategy are already connected
to each other, which makes it difficult for the highest degree strategy to perform well. As for the poor
performance of the betweenness centrality placement strategy, the fee weighted centrality strategy was
specifically created to optimize its poor performance [ERE20]. However, it was unknown what effect the
extension of the action space would have on the rewards. We have shown that this extension may have
a positive effect on the rewards. The highest degree and betweenness centrality placement strategies
show improved rewards when routing large transactions, but these improvements do not allow them to
compete on the same level as the other placement strategies analyzed in this work.

The fee weighted centrality, k-means, k-center, and uniform random placement strategies have
been shown to perform well in isolation. However allowing the existing channels to change their fee, or
adding an additional party to the network has a negative effect on rewards. While k-means, k-center,
and the uniform random placement strategies are able to limit the negative impact of one additional
party, they are unable to mitigate the negative impact when the entire network is allowed to react.
From this, it follows that when we combine the action spaces, the combined negative effects would
also not allow for any of the placement strategies to perform well.

Competition lowers rewards, and therefore a placement strategy that obtains high yields will expe-
rience the largest negative effects from being undercut. This can be seen in the case fee weighted
centrality. That k-means, k-center, and the uniform random placement strategy are able to reduce
the negative impacts can be explained when we observe the level of competition that they encounter.
When one other party is present in the channel creation game, the two parties are not required to be
in direct competition. In these placement strategies, it is often the case that the action of one party
removes an option of the other. This explains why the effect of competition is not seen as clearly in the
rewards. However, in the case of fee weighted centrality, the two parties are nearly always forced to
compete with each other, which enforces undercutting to obtain rewards, lowering the rewards of one

party.
As to how the rewards are impacted when parties are allowed to change their channel fee, we

45

46 6. Conclusion, Limitation & Future Work

concluded that this addition to the action space negatively impacts the reward of a party. Our results
show that a party is bound to lose 85%-100% on average of their rewards to the competition which is
a substantial size. As to how the rewards are impacted when there is an additional party present
in the network, we concluded that the reward of the leading party is negatively impacted by adding
an additional player to the action space. Similar to the network reaction, the rewards are substantially
decreased by the competition that takes place. However, since there exist placement strategies that
limit the impact of competition the average loss is 30%. When the action spaces are combined, the
negative impact increases. The negative impact of the additional party has been shown to stack with
the negative impact of the network reactions, which results in a loss of 95%-100% of the reward a
strategy might be able to obtain when performing in isolation. Therefore the rewards of an optimal
channel creation choice are negatively impacted by 95%-100%

That competition lowers rewards was to be expected, however, the levels at which the rewards are
impacted were not. A relatively small network of 200 participants is enough to outcompete a party
and reduce their rewards by 95%-100%. We, therefore, conclude that a network where every partic-
ipant competes for rewards is detrimental to the reward of the leading party in a network creation game.

Since the impact of competition is so large we aimed to find a strategy that mitigates this effect. We have
created two new placement strategies that allow a leading party to use future knowledge during their
decision-making process to their advantage. The first strategy that aimed to reduce the impact of the
network updates was able to increase the rewards by -78%, 7%, and 200% depending on transaction
size compared to when no access to future knowledge was given. The second strategy that aimed to
reduce the impact of the additional party changed the rewards by 80%, 83%, and 114% depending on
transaction size. While the placement strategies are able to leverage future knowledge, the strategies
are not sufficient to sufficiently negate the negative impact that arises from competition.

From the results of one of the experiments, we must conclude that the strategy is not able to suc-
cessfully leverage its future knowledge, but this is not technically the truth. In the graph, it can be seen
that the reward lines oscillate and at the end of the experiment it so happened to be the case that the
reward line that does not have access to future knowledge is performing well. However, from the data,
we can conclude that future knowledge is able to be leveraged. Because, from the data, we can infer
that the line will very likely be overtaken if another iteration of the game would have been played. This
pattern is likely due to competition, when a party has positioned themselves where they may benefit,
the reaction by the network is to undercut. This lowers the reward of the leading party.

With competition having a large negative impact on results, there is one main implication it will have on
anyone that wants to participate in Bitcoins layer 2 network. They will have to accept that competition
is to follow which will negatively impact their rewards. It is left up to them to decide if the reward is
worth the investment. For the research field, there are multiple things that may still be researched
to aid in this decision. Firstly it can be determined how many parties would be willing to undercut to
compete for rewards. Secondly, different methods of negating the negative impact that competition
has on rewards could be explored, Thirdly, placement strategies that are less impacted by competition
could be explored.

6.2. Limitations

The first limitation is time. Had there been more time, it would have been possible for us to run the
experiment on up-to-date snapshots of the lightning network. This would have provided us with results
that are more representative of the current state of the network, allowing us to better measure the
impact of our work. Although we have taken steps to make our analysis similar to that of the lightning
network by sampling weights from it, we would like to see how our model performs on an up-to-date
snapshot. The analysis of network reactions is expensive on its own. However, paired with a large
network, it is even more expensive to compute.

The second limitation is the effect of our code on the snapshot. During this work, we have made
a comparison to previous work. However, the code that removes rewards from the reward pool would
need to be changed so as to not crash when performing this action on the snapshot. While this allowed
us to obtain an indication of how previous work would perform given our assumption and codebase it
was not able to make a perfect comparison.

6.3. Future Work 47

The third limitation is that of fee sampling. The fee values we sampled to construct our graph were
chosen using randomness. In order for this outcome to be fully analyzed we should have recreated it
multiple times and compared the impact of the initial sampling. However, the distribution of fee values
is heavily skewed towards the default fee of 1000 satoshi’s, we therefore feel confident that sampling
without replacement would yield similar results.

The fourth limitation is that of the utility function. For the context of this work, we have assumed
a utility of x=y. However, it is not a given that this utility function is representative of all the parties
operating in the lightning network. Just as there exist parties that are willing to charge low fees for the
network to function well, there might be parties whose utility function would be logarithmic. The reverse
is also true. The parties that aim to optimize their reward might have a different utility function than the
one used in this thesis.

The fifth limitation stems from assumptions made in our reward distribution. In our work rewards
are distributed to every party sending a message to every other party within the network. However, in
practice, this is not the case. Parties will vary in transaction frequency and destination, which impacts
the rewards. Our reward metric does not take into account when and to whom parties send transactions.

6.3. Future Work

Future work can roughly be grouped into three categories: Extensions of the work described in this
thesis, further changes in action space that can be analyzed, and further changes in game-theoretical
aspects.

There exist extensions to this work which we have left up to future work. The first extension would
be to test our impact on a lightning snapshot directly. Due to our time constraints, we were not able
to run our experiments on the lightning snapshot. It would be useful to see the results of all of our
experiments on a lightning network snapshot. This would also include the Stackleberg games. We
estimate that the time it would take to run our current games on a lightning snapshot, to be roughly
a year, or 2 months per placement strategy. This is expected to be even longer for the Stackleberg
games, of which we do not have a clear estimation. We were not able to run these Stackleberg games
on our 200-node graph and instead had to run this on our 50-node graph.

The second extension would be to combine our Stackleberg games. We have observed the impact
that the two experiments have in isolation, but we have yet to observe the effects of combining them. By
studying the combined effects of the Stackleberg games we can determine if their combination would
be able to mitigate the negative effects of competition.

Next are the changes we can make to the action space described in 3.2.1. The first change would
be to alter the network reaction. Instead of every party in the network being required to update the fee
values on their channels, it would be interesting to see what would happen if only part of the network
updated their fee. By only forcing part of the network to update it would make the model more realistic,
as fee changes are not common. Whereas our work has shown the upper bound on the negative impact
that network interactions could have, this would provide a more realistic impact. However, determining
which party gets to update their channel fees would be a problem. Logic could be used to determine for
each individual party whether they would react, but picking parties at random, or from a predetermined
list would also suffice.

The second change would be to increase the number of additional parties within the network. This
work has limited the number of additional parties to one, but this is not required. Increasing the number
of additional parties would provide a more complex case in which decisions carry more weight. The 2 or
more additional parties would act in parallel to each other after the leading party has made their move.
They are likely to come up with the same channel destination and fee, thus sharing rewards. This
might end up producing even worse rewards than if they would have picked another party to create
a channel with. The implications of game theory would increase the usefulness of this case. What
would happen if the additional parties knew they were acting in parallel and thus that they would be
sharing results? Should they preemptively undercut the other additional parties, or should they seek
out another channel?

The third change to action space we would like to see is the ability to close channels. In our ex-
periments, there exists the possibility for a channel to get undercut. Whilst we observed what happens
when parties are allowed to change the fees to remain profitable, another option would be to close

48 6. Conclusion, Limitation & Future Work

the channel and create one with another party. Would this new channel undercut an existing channel
for optimal results? Would this provide incentives to placement strategies that provide unique shorter
paths, rather than positioning themselves to be the most centrally located node within the network?

The first game-theoretical aspect of this work we would like to see changed would be to break one
of the assumptions we have made. We would like to see what happens when we model the effects of
accepting or denying channel creation requests. In a realistic setting for a channel to provide a reward,
it would have to be well-funded. The party that received the channel creation request would have to
decide if the funds the channel would bring in are worth the cost to create it.

The second change we would like to analyze is the effect of strategically refraining from placing a
channel. Our results indicate that the addition of network updates can be detrimental to the rewards of
a party. But our work does not cover when to refrain from creating more channels once a hypothetical
"sweet spot” has been reached. A party could decide that creating further channels would leave them
open to being undercut, and decide to not create any more channels.

The third of the game-theoretical changes we would make is to change the utility function. In our
work, we have defined it as linear (x=y). However, realistically there should be a limit to the amount of
greed a party has. Studying the different utility functions has the possibility to impact the behavior of
parties, potentially resulting in different actions being selected.

[ABO2]
[Ant17]

[Ava+20]

[BA99)
[BDW18]
[BGO8]
[BW10]

[BXW22]

[Cro+16]
[Dij22]

[DW15]

[ERE20]

[Fre77]
[Gud+19]

[KG17]

[KR21]

[Li+18]

[LMZ20]

Bibliography

Réka Albert and Albert-Laszl6 Barabasi. “Statistical mechanics of complex networks”. In:
Reviews of modern physics 74.1 (2002), p. 47.

Andreas M Antonopoulos. Mastering Bitcoin: Programming the open blockchain.” O’Reilly
Media, Inc.”, 2017.

Zeta Avarikioti et al. “Ride the lightning: The game theory of payment channels”. In: Interna-
tional Conference on Financial Cryptography and Data Security. Springer. 2020, pp. 264—
283.

Albert-Laszlé Barabasi and Réka Albert. “Emergence of scaling in random networks”. In:
science 286.5439 (1999), pp. 509-512.

Conrad Burchert, Christian Decker, and Roger Wattenhofer. “Scalable funding of bitcoin
micropayment channel networks”. In: Royal Society open science 5.8 (2018), p. 180089.

Jorgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

Edward A Bender and S Gill Williamson. Lists, decisions and graphs. S. Gill Williamson,
2010.

Qianlan Bai, Yuedong Xu, and Xin Wang. “Understanding the Benefit of Being Patient in
Payment Channel Networks”. In: IEEE Transactions on Network Science and Engineering
9.3 (2022), pp. 1895-1908.

Kyle Croman et al. “On scaling decentralized blockchains”. In: International conference on
financial cryptography and data security. Springer. 2016, pp. 106—125.

Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Edsger Wybe
Dijkstra: His Life, Work, and Legacy. 2022, pp. 287-290.

Christian Decker and Roger Wattenhofer. “A fast and scalable payment network with bitcoin
duplex micropayment channels”. In: Symposium on Self-Stabilizing Systems. Springer.
2015, pp. 3—18.

Oguzhan Ersoy, Stefanie Roos, and Zekeriya Erkin. “How to profit from payments chan-
nels”. In: International Conference on Financial Cryptography and Data Security. Springer.
2020, pp. 284-303.

Linton C Freeman. “A set of measures of centrality based on betweenness”. In: Sociometry
(1977), pp. 35-41.

Lewis Gudgeon et al. “SoK: Off The Chain Transactions.” In: IACR Cryptol. ePrint Arch.
2019 (2019), p. 360.

Rami Khalil and Arthur Gervais. “Revive: Rebalancing off-blockchain payment networks”.
In: Proceedings of the 2017 acm sigsac conference on computer and communications
security. 2017, pp. 439-453.

Satwik Prabhu Kumble and Stefanie Roos. “Comparative Analysis of Lightning’s Routing
Clients”. In: 2021 IEEE International Conference on Decentralized Applications and Infras-
tructures (DAPPS). IEEE. 2021, pp. 79-84.

Chenxing Li et al. “Scaling nakamoto consensus to thousands of transactions per second”.
In: arXiv preprint arXiv:1805.03870 (2018).

Peng Li, Toshiaki Miyazaki, and Wanlei Zhou. “Secure balance planning of off-blockchain
payment channel networks”. In: IEEE INFOCOM 2020-IEEE conference on computer com-
munications. |IEEE. 2020, pp. 1728-1737.

49

50

Bibliography

[LRT21]
[McC+16]

[MDP18]

[MS+16]

[MZ21]

[Nakos]

[Net20]

[PD16]

[PN20]

[Ren18]
[RKJ14]

[RT20]

[Sto68]
[SZ20]
[TSZ19]

[Wan+22]

[Woo+14]

[Yen70]

[Zab+22]

Kimberly Lange, Elias Rohrer, and Florian Tschorsch. “On the Impact of Attachment Strate-
gies for Payment Channel Networks”. In: arXiv preprint arXiv:2102.09256 (2021).

Patrick McCorry et al. “Towards bitcoin payment networks”. In: Australasian Conference on
Information Security and Privacy. Springer. 2016, pp. 57—76.

Daniela Mechkaroska, Vesna Dimitrova, and Aleksandra Popovska-Mitrovikj. “Analysis of
the possibilities for improvement of blockchain technology”. In: 2018 26th Telecommunica-
tions Forum (TELFOR). IEEE. 2018, pp. 1-4.

Akio Matsumoto, Ferenc Szidarovszky, et al. Game theory and its applications. Springer,
2016.

Ayelet Mizrahi and Aviv Zohar. “Congestion attacks in payment channel networks”. In: Fi-
nancial Cryptography and Data Security: 25th International Conference, FC 2021, Virtual
Event, March 1-5, 2021, Revised Selected Papers, Part Il. Springer. 2021, pp. 170-188.

Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Busi-
ness Review (2008), p. 21260.

Raiden Network. Fast, cheap, Scalabletoken transfers for Ethereum. 2020. URL: https:
//raiden.network/.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. 2016.

Rene Pickhardt and Mariusz Nowostawski. “Imbalance measure and proactive channel
rebalancing algorithm for the lightning network”. In: 2020 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). IEEE. 2020, pp. 1-5.

Willem Rens. “DoS on a Bitcoin Lightning Network channel.” In: (2018).

Sunil Kumar Raghavan Unnithan, Balakrishnan Kannan, and Madambi Jathavedan. “Be-
tweenness centrality in some classes of graphs”. In: International Journal of Combinatorics
2014 (2014).

Elias Rohrer and Florian Tschorsch. “Counting down thunder: Timing attacks on privacy in
payment channel networks”. In: Proceedings of the 2nd ACM Conference on Advances in
Financial Technologies. 2020, pp. 214-227.

M Stone. Mathematical Statistics: A Decision Theoretic Approach. 1968.

Yotam Sali and Aviv Zohar. “Optimizing off-chain payment networks in cryptocurrencies”.
In: arXiv preprint arXiv:2007.09410 (2020).

Saar Tochner, Stefan Schmid, and Aviv Zohar. “Hijacking routes in payment channel net-
works: A predictability tradeoff”. In: arXiv preprint arXiv:1909.06890 (2019).

Xiaojian Wang et al. “Why Riding the Lightning? Equilibrium Analysis for Payment Hub
Pricing”. In: ICC 2022-IEEE International Conference on Communications. |EEE. 2022,
pp. 5409-5414.

Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1-32.

Jin Y Yen. “An algorithm for finding shortest routes from all source nodes to a given des-
tination in general networks”. In: Quarterly of Applied Mathematics 27.4 (1970), pp. 526—
530.

Philipp Zabka et al. “Empirical evaluation of nodes and channels of the lightning network”.
In: Pervasive and Mobile Computing 83 (2022), p. 101584.

https://raiden.network/
https://raiden.network/

Figures

A.1. Replication figures

Node rewards over time. 1e6 Node rewards over time. 1e6
160000 { —® Snapshot —&— Barabasi 200 —e— Snapshot —— Barabasi
140000 - r175
175
140000 4 120000
150 1 r 150
5 120000 4 @ 7 7
] = £ 100000 4 L1252
g 1258 g g
% 100000 % % s é
= = = 1 F1.00 =
S 80000 4 ooz = =
* * o *
T o000 0758 5 60000+ Fo75 5
= 40000 { 050 % & 400004 Fo.50 e
20000 1 0.25 20000 4 Lozs
04 0.00 04 r 0.00
1 3 3 a s 6 1 2 3 a H 6
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the reward obtained in the snapshot, (b) Figure depicting the reward obtained in the snapshot,
and the Barabasi-Albert graph using placement strategy: and the Barabasi-Albert graph using placement strategy:
Fee weighted centrality and transaction amount: 100 Fee weighted centrality and transaction amount: 10000
Node rewards over time. 1e6
1600001 g snapshot —a— Barabasi [25
140000 {
_ 120000 4 2.0 _
§ 100000 4 §
& 158
£ 80000 =
= =
3 ®
B 600004 i
£ 102
i i
T 40000 o =
20000 05
o]
1 2 3 a 5 5

Time (# Iteration)
(c) Figure depicting the reward obtained in the snapshot,

and the Barabasi-Albert graph using placement strategy:
Fee weighted centrality and transaction amount: 1000000

51

52

A. Figures

A.2. Fee Noise Analysis

53

A.2. Fee Noise Analysis

Node rewards over time.

30000

—e— Optimized

Node rewards over time.

Nen-Optimized
25000

20000

15000

10000

Reward (#Milli Satoshi's)

5000

1 2 3 4 5 6
Time (# Iteration)

(a) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: betweenness centrality and trans-
action amount: 100

Node rewards over time.

—e— Optimized
60000 Non-Optimized

50000

40000

30000

20000

Reward (#Milli Satoshi's)

10000

1 2 3 4 5 6
Time (# Iteration)

(c) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: betweenness centrality and trans-
action amount: 1000000

Node rewards over time.

—e— Optimized

400000 Non-Optimized

300000

200000

Reward (#Milli Satoshr's)

100000

1 2 3 4 5 6
Time (# Iteration)

(e) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: fee weighted centrality and trans-
action amount: 10000

Node rewards over time.

—e— Optimized
25000 Non-Optimized

20000

15000

10000

Reward (#Milli Satoshi's)

5000

1 2 3 4 5 6
Time (# Iteration)

(g) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: highest degree and transaction
amount: 100

—e— Optimized
40000 Non-Optimized
£ 30000 4
=
G
2
3
&
= 20000
b
B
]
H
3
& 10000 4
N .—.//r/'—'/_"

1 2 3 4 5 6
Time (# Iteration)

(b) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: betweenness centrality and trans-
action amount: 10000

Node rewards over time.

350000 | —e— Optimized
Non-Optimized

300000 -
B

£ 250000
G
2
@

2 200000 4
H

2 150000
2
©
i

£ 100000 4

50000

04

1 2 3 4 5 6
Time (# Iteration)

(d) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: fee weighted centrality and trans-
action amount: 100

Node rewards over time.

700000 =
—e— Optimized
Non-Optimized
600000
@ 500000 -
H
]
2
® 400000 4
=
300000 4
2
]
2 200000 4
4
100000 o
04

1 2 3 4 5 6
Time (# Iteration)

(f) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: fee weighted centrality and trans-
action amount: 1000000

Node rewards over time.

—e— Optimized

400001 Non-Optimized

s)

30000

20000 -

Reward (#Milli Satoshi

10000

1 2 3 4 5 6
Time (# Iteration)

(h) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: highest degree and transaction
amount: 10000

54

A. Figures

Node rewards over time.

—8— Optimized
40000 Nen-Optimized
@
£ 300004
G
S
]
&
=
& 20000+
T
5
H
&
10000
0
2 3 4 5 6

Time (# Iteration)

(a) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: highest degree and transaction
amount: 1000000

Node rewards over time.

140000 o
—8— Optimized

Non-Optimized
120000 4

100000 4

80000 4

60000 4

Reward (#Milli Satoshi's)

40000 4

20000 4

3 4 5
Time (# Iteration)

H;
N
ey

(c) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k center and transaction amount:
10000

Node rewards over time.

250000
—8— Optimized

Non-Optimized

200000

150000 1

100000 4

Reward (#Milli Satoshi's)

50000 4

3 4 5
Time (# Iteration)

H;
N
ey

(e) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k means and transaction amount:

Node rewards over time.
—8— Optimized
400000 1 Non-Optimized
I
£ 300000 -
&
2
]
@A
£ 200000 1
B
©
=
£
100000 4
oA

3 4 5
Time (# Iteration)

H;
N
ey

(g) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k means and transaction amount:
1000000

Node rewards over time.

140000 1 —8— Optimized
Non-Optimized

120000 o
@

£ 100000 4
G
g
&

2 80000 4
H

£ 60000 {
B
5
i

2 40000 o

20000

0

1 2 3 a 5 6
Time (# Iteration)

(b) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k center and transaction amount:
100

Node rewards over time.

—8— Optimized
250000 4 Non-Optimized
% 200000
H
§
2
3}
2 150000 4
=
3
o
£ 100000
H
3
2
50000 - h//’—’
o

2 3 a 5
Time (# Iteration)

ey

(d) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k center and transaction amount:
1000000

Node rewards over time.

3000007 o ootimized
Non-Optimized

250000
@

£ 200000 4
2
s
7

£ 150000 4
s
3
<4

© 100000
H
3
£

50000 -

04

3 a 5
Time (# Iteration)

,_.4
N
ey

(f) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: k means and transaction amount:
10000

Node rewards over time.

140000 1 —e— Optimized

Non-Optimized
120000 4
100000
80000

60000 1

40000 1

Reward (#Milll Satoshi's)

20000

3 a 5
Time (# Iteration)

,_.4
N
ey

(h) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: uniform random and transaction
amount: 100

A.2. Fee Noise Analysis

55

Node rewards over time.

—8— Optimized

175000 Non-Optimized

150000

125000

100000

75000

Reward (#Milli Satoshi's)

50000

25000 /’//
o

1 2 3 4 5 6
Time (# Iteration)

(a) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: uniform random and transaction
amount: 10000

Node rewards over time.

—8— Optimized
250000 4 Non-Optimized
— 200000 4
@
H
g
2
A 150000 4
H
£
2 100000 4
5
H
@
2
50000
ol D,_ér"/.’/,/'/—'
1 2 3 a 5 6

Time (# Iteration)

(b) Figure depicting the reward obtained when network op-
timization is not performed and is performed (baseline) us-
ing placement strategy: uniform random and transaction
amount: 1000000

56 A. Figures

A.3. Case 1 figures

Node rewards over time.

—e— Action Space Baseline

1600 o

1400 1

1200

1000

Reward (#Milli Satoshi's)

800 4

600

400 4

1 2 3 4 5 6
Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 1 is

run using placement strategy: betweenness centrality and
transaction amount: 100

Node rewards over time.

—e— Action Space Baseline
1000 -

800

600 4

400 4

Reward (#Milli Satoshi's)

2004

1 2 3 4 5 6
Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 1 is
run using placement strategy: betweenness centrality and
transaction amount: 1000000

Node rewards over time.

—8— Action Space Baseline
140000 1

120000 1

100000 4

80000 4

60000 4

40000 o

Reward (#Milli Satoshi's)

20000 4

oA

1 2 3 4 5 6
Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 1 is
run using placement strategy: fee weighted centrality and
transaction amount: 10000

Node rewards over time.

3000 | —e~ Action Space Baseline

25001

2000 4

1500

Reward (#Milli Satoshi's)

1000 4

500

1 2 3 4 5 6
Time (# Iteration)

(g) Figure depicting the reward obtained when scenario 1
is run using placement strategy: highest degree and trans-
action amount: 100

Node rewards over time.

4000 - —e— Action Space Baseline

3000

2000 4

Reward (#Milli Satoshi's)

1000 4

1 2 3 4 5 6
Time (# Iteration)

(b) Figure depicting the reward obtained when scenario 1 is

run using placement strategy: betweenness centrality and
transaction amount: 10000

Node rewards over time.

160000 1 —® Action Space Baseline
140000 4
120000 4
100000 1
80000 1

60000

HEwara (%Ml Satosnr's)

40000 4

20000

oA

1 2 3 4 5 6
Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 1 is

run using placement strategy: fee weighted centrality and
transaction amount: 100

Node rewards over time.

1600007 _g action Space Baseline
140000
120000
100000

80000

60000

HEWara (#Milil Satosni's)

40000 -

20000

oA

1 2 3 a 5 6
Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 1 is
run using placement strategy: fee weighted centrality and
transaction amount: 1000000

Node rewards over time.

—e— Action Space Baseline
4000 4

3000 4

2000 4

Reward (#Milli Satoshi's)

1000

1 2 3 4 5 6
Time (# Iteration)

(h) Figure depicting the reward obtained when scenario 1
is run using placement strategy: highest degree and trans-
action amount: 10000

A.3. Case 1 figures

57

Node rewards over time.

21.00 —8— Action Space Baseline
20.75
20.50

20.25

20.00

19.75

Reward (#Milli Satoshi's)

19.50

19.25

19.00

1 2 3 4 5 6
Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 1
is run using placement strategy: highest degree and trans-
action amount: 1000000

Node rewards over time.

—e— Action Space Baseline
80000

s)

E= 60000

40000

Reward (#Milli Satoshi

20000

1 2 3 a 5 6
Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 1
is run using placement strategy: k center and transaction
amount: 10000

Node rewards over time.

—e— Action Space Baseline
100000

80000

60000

40000

Reward (#Milll Satoshi's)

20000

1 2 3 4 5 6
Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 1
is run using placement strategy: k means and transaction
amount: 100

Node rewards over time.

140000 { —®— Action Space Baseline

120000

100000

80000

60000

Reward (#Milli Satoshr's)

40000

20000

3 4
Time (# Iteration)

(g) Figure depicting the reward obtained when scenario 1
is run using placement strategy: k means and transaction
amount: 1000000

Node rewards over time.

80000 1 _g— Action Space Baseline

70000 4
60000 4
50000 4
40000 4

30000

Reward (#Milli Satoshi's)

20000 4

10000 4

oA

Time (# Iteration)

(b) Figure depicting the reward obtained when scenario 1
is run using placement strategy: k center and transaction
amount: 100

Node rewards over time.

50000 o

—e— Action Space Baseline

40000 4

30000 q

20000 -

Reward (#Milli Satoshi's)

10000 4

1 2 3 a 5 6
Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 1
is run using placement strategy: k center and transaction
amount: 1000000

Node rewards over time.

120000 1 _g— Action Space Baseline
100000 -
80000 1

60000 4

40000 -

Reward (#Milll Satosni's)

200001

1 2 3 4 5 6
Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 1

is run using placement strategy: k means and transaction
amount: 10000

Node rewards over time.

—e— Action Space Baseline
50000 -

40000

s)

30000 4

20000 -

Reward (#Milli Satoshi

10000 4

3 4
Time (# Iteration)

(h) Figure depicting the reward obtained when scenario 1
is run using placement strategy: uniform randomness and
transaction amount: 100

58

A. Figures

Node rewards over time.

35000
—8— Action Space Baseline

30000 4

250001

s)

20000 4

15000

10000

Reward (#Milli Satoshi

5000

1 2 3 4 5 6
Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 1
is run using placement strategy: uniform randomness and
transaction amount: 10000

Node rewards over time.

30000 4~ Action Space Baseline

25000 -

s)

20000 4

15000 4

10000 4

Reward (#Milli Satoshi

5000 o

1 2 3 a
Time (# Iteration)

(b) Figure depicting the reward obtained when scenario 1
is run using placement strategy: uniform randomness and
transaction amount: 1000000

A.4. Case 2 figures

59

A.4. Case 2 figures

Node rewards over time.

5000 —e— Baseline
Network Reaction

4000

s)

3000

2000

Reward (#Milli Satoshi

1000

o 3
L Y]

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: betweenness centrality and
transaction amount: 100

Node rewards over time.

Lo | —& Baseline
Network Reaction
800
B
=
g
2
& 600
H
*
e 400
5
E
3
&
200
[

Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: betweenness centrality and
transaction amount: 1000000

Node rewards over time.

—8— Baseline
Network Reaction

140000

120000

100000

80000

60000

40000

Reward (#Milli Satoshi's)

20000

Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: fee weighted centrality and
transaction amount: 10000

Node rewards over time.

3000 {1 —e— Baseline
Network Reaction

2500

@

£z

& 2000

©

&

=

f 1500

e

s

3 1000

o
500

° &
N A v ,L,\ Kl phs oY °

Time (# Iteration)
(g) Figure depicting the reward obtained when scenario 2
is run using placement strategy: highest degree and trans-
action amount: 100

Node rewards over time.

—e— Baseline
Network Reaction

4000 4

3000

2000 4

Reward (#Milli Satoshi's)

1000 4

° B
[Y, S]

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: betweenness centrality and
transaction amount: 10000

Node rewards over time.

160000 { —®— Baseline
Network Reaction

140000 4
120000 4
100000 1
80000 1

60000

HEwara (%Ml Satosnr's)

40000 1

20000 4

oA

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: fee weighted centrality and
transaction amount: 100

Node rewards over time.

1600007 g Baseline

Network Reaction
140000 1

120000 1

100000 1

80000

60000

HEWara (#Milil Satosni's)

40000 -

20000

oA

Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 2 is
run using placement strategy: fee weighted centrality and
transaction amount: 1000000

Node rewards over time.

—e— Baseline
40004 Network Reaction

T 3000
=
A
2
2
&
= 2000
*
e
&
£
3
= 1000 4

o]

o b
P R Y e W@

Time (# Iteration)
(h) Figure depicting the reward obtained when scenario 2
is run using placement strategy: highest degree and trans-
action amount: 10000

60

A. Figures

Node rewards over time.

—8— Baseline

1750 4
Network Reaction

1500

1250 1

1000 4

750

Reward (#Milli Satoshi's)

500 4

250

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 2
is run using placement strategy: highest degree and trans-
action amount: 1000000

Node rewards over time.

—8— Baseline
80000 1 Network Reaction

s)

60000 4

40000

Reward (#Milli Satoshi

20000 -

Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 2
is run using placement strategy: k center and transaction
amount: 10000

Node rewards over time.

—eo— Baseline
100000 1 Network Reaction

80000 4

60000 4

40000 4

Reward (#Milll Satoshi's)

20000 4

Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 2
is run using placement strategy: k means and transaction
amount: 100

Node rewards over time.

140000 { —®— Baseline

Network Reaction
120000 4
100000

80000 4

60000 4

Reward (#Milli Satoshr's)

40000 4

200001

oA

N Sy &> 50 N > 9

Time (# Iteration)
(g) Figure depicting the reward obtained when scenario 2

is run using placement strategy: k means and transaction
amount: 1000000

Node rewards over time.

800001 g~ Baseline
Network Reaction

70000 4

60000 1

50000 4

40000 4

30000

Reward (#Milli Satoshi's)

20000 1

10000 4

Time (# Iteration)

(b) Figure depicting the reward obtained when scenario 2
is run using placement strategy: k center and transaction
amount: 100

Node rewards over time.

—e— Baseline

Network Reaction
50000

40000 -

30000

20000 1

Reward (#Milli Satoshi's)

10000 4

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 2
is run using placement strategy: k center and transaction
amount: 1000000

Node rewards over time.

120000 4

—e— Baseline
Network Reaction

100000 1

80000 1

60000 1

40000 -

Reward (#Milll Satosni's)

20000 1

Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 2
is run using placement strategy: k means and transaction
amount: 10000

Node rewards over time.

—e— Baseline
50000 - Network Reaction

40000

s)

30000 4

20000 -

Reward (#Milli Satoshi

10000 4

N NN A > > & > 9

Time (# Iteration)
(h) Figure depicting the reward obtained when scenario 2

is run using placement strategy: uniform randomness and
transaction amount: 100

A.4. Case 2 figures

61

Node rewards over time.

—8— Baseline
60000 Network Reaction

50000

40000

30000

20000

Reward (#Milli Satoshi's)

10000

Time (# Iteration)
(a) Figure depicting the reward obtained when scenario 2

is run using placement strategy: uniform randomness and
transaction amount: 10000

Node rewards over time.

—8— Baseline
Network Reaction

40000 o

30000 4

20000 -

Reward (#Milli Satoshi's)

10000 4

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 2

is run using placement strategy: uniform randomness and
transaction amount: 1000000

62

A. Figures

A.5. Case 3 figures

Node rewards over time.

—e— Baseline b 4
8000 Leading Party
& Additional Party

s)

£ 6000
3
£
=
&
E |
3 4000+
B2
5
H
3
3
2000 4
g 2 d
04
° &
P Y Y I)

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: betweenness centrality and
transaction amount: 100

Node rewards over time.

100g | ~* Baseline
Leading Party
% Additional Party
__ 800
=
z
G
2
& 600+
H |
o
T 400
<
=
o
;4
200
0| F—F—F—6———8 ¢

Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: betweenness centrality and
transaction amount: 1000000

Node rewards over time.

—8— Baseline
140000 1 Leading Party
% Additional Party

120000 1

100000 4

80000 4

60000 4

Reward (#Milli Satoshi's)

40000 o

20000 4

oA

Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: fee weighted centrality and
transaction amount: 10000

Node rewards over time.

3000 | —e— Baseline
Leading Party oo
4~ Additional Party

2500

@

£z

& 2000

©

&

H i

§ 100

e

]

ﬂ;J 1000 4

3
500 -

° x
P R T S S A

Time (# Iteration)
(g) Figure depicting the reward obtained when scenario 3
is run using placement strategy: highest degree and trans-
action amount: 100

Node rewards over time.

1000~ Baseline >
Leading Party
4 Additional Party
2 d
Z 3000
z
G
£
@
ul
= 2000
*
2
]
2
]
% 1000 4
04
° N Ao A N > o

¥ N v ¥
Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: betweenness centrality and
transaction amount: 10000

Node rewards over time.

175000 7 —8— Baseline »

Leading Party
150000 1 —&— Additional Party

125000 1

100000 1

75000

Reward (#Milll satosnr's)

50000

25000 -

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: fee weighted centrality and
transaction amount: 100

Node rewards over time.

1600007 _g Baseline
Leading Party
140000 1 o aqditional Party
d

_ 120000 4
@
H
& 100000 1
]
A
£ 80000 q
=
¥
o 60000 4
]
H
£ 40000 4

20000

04
™
R L A 5)

Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 3 is
run using placement strategy: fee weighted centrality and
transaction amount: 1000000

Node rewards over time.

—e— Baseline
4000 7 Leading Party
4~ Additional Party
T 3000
=
A
2
2
&
= 2000
*
e
&
£
3
= 1000 4
o]

o b
P Y e)

Time (# Iteration)
(h) Figure depicting the reward obtained when scenario 3
is run using placement strategy: highest degree and trans-
action amount: 10000

A.5. Case 3 figures

63

Node rewards over time.

20
18
@
£
816
] .
0 —e— Baseline
= Leading Party
1
® 4 Additional Party
B
5
E 12

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 3
is run using placement strategy: highest degree and trans-
action amount: 1000000

Node rewards over time.

—8— Baseline
80000 Leading Party
% Additional Party

s)

E= 60000

40000

Reward (#Milli Satoshi

20000

° Ny N> Sy o []
Time (# Iteration)
(c) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k center and transaction
amount: 10000

Node rewards over time.

140000 —e— Baseline
Leading Party
120000 { —&— Additional Party
»
¥ 100000
Zz | 7amd
G
2
® 80000
£ <
% 60000
2
]
$ 40000 .
=
20000 ¢
0 2 d
° S
o RO R S [

Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k means and transaction
amount: 100

Node rewards over time.

140000 { —®— Baseline
Leading Party
120000 | —& Additional Party
- »
@
Z 100000
3
4 —
A 80000
= ¥
=
* 0000
)<
s
§ 40000
20000
0
o o
L Y I)

Time (# Iteration)

(g) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k means and transaction
amount: 1000000

Node rewards over time.

—8— Baseline
80000 1 Leading Party
- Additional Party » 2 4
£ 60000 o
=
&
2
5
a
S 40000 o
pu
T
=
=
@
& 20000 4
0

Time (# Iteration)

(b) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k center and transaction
amount: 100

Node rewards over time.

50000 | —@— Baseline
Leading Party
@ Additional Party
40000 -
)
K
@
2
= 30000 N
H
£
5 200001 .
&
8 4
-4
10000 4
04
R Y B

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k center and transaction
amount: 1000000

Node rewards over time.

1200007 _q_ Baseline
Leading Party
100000 ~® Additional Party
w
g 80000 q >
g 2 d
il
£ 60000
H
i3
2
T 40000
]
Z
20000 4
04
° S > A N > o

¥ N v ¥
Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 3
is run using placement strategy: k means and transaction
amount: 10000

Node rewards over time.

—e— Baseline
50000 Leading Party
4 Additional Party

;40000*

=

5

8

5

@ 30000 4

=

*

B 20000 -

g

=

H

&

10000

—o—*
o o *
o 1Y
& Yy W ©

Time (# Iteration)

(h) Figure depicting the reward obtained when scenario 3
is run using placement strategy: uniform randomness and
transaction amount: 100

64

A. Figures

Node rewards over time.

40000 { —®— Baseline
Leading Party
35000 | —— Additional Party

30000

s)

250001

20000 -

15000 4

Reward (#Milli Satoshi

10000 4

5000 1

e g " d

0+ >

éu‘«,x‘,y‘xmx’aq’»hpﬁ
Time (# Iteration)
(a) Figure depicting the reward obtained when scenario 3
is run using placement strategy: uniform randomness and
transaction amount: 10000

Node rewards over time.

300004 Baseline
Leading Party
% Additional Party
25000 -
@
=
8 20000 4
3
a
< 15000 -
pu
T
5
10000 4
2 s
&
5000 |
oA
o A S) 5 % s 8

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 3

is run using placement strategy: uniform randomness and
transaction amount: 1000000

A.6. Case 4 figures

65

A.6. Case 4 figures

Node rewards over time.

5000 —e— Network Reaction
Leading Party

—&— Additional Party

4000

s)

3000

2000

Reward (#Milli Satoshi

1000

[’_‘\0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0—0

&
R . I o R B 3 L v Y)

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 4 is
run using placement strategy: betweenness centrality and
transaction amount: 100

Node rewards over time.

—8— Network Reaction
Leading Party
—&— Additional Party

1000

s)

Reward (#Milli Sateshi

P L
Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 4 is

run using placement strategy: betweenness centrality and

transaction amount: 1000000

Node rewards over time.

—8— Network Reaction
30000 Leading Party
—&— Additional Party

25000

20000

15000

10000

Reward (#Milli Satoshi's)

5000

R N O e e e A T i
Time (# Iteration)

VNP

(e) Figure depicting the reward obtained when scenario 4 is
run using placement strategy: fee weighted centrality and
transaction amount: 10000

Node rewards over time.

—e— Network Reaction
Leading Party
2000 4~ Additional Party

1500

1000

Reward (#Milli Satoshi's)

500

3
N oty Y ,V'\V’L,\:’b v ,U'\,V’L,V‘b > ,,’,’\,,J, »f et e? @
Time (# Iteration)

(g) Figure depicting the reward obtained when scenario 4
is run using placement strategy: highest degree and trans-
action amount: 100

Node rewards over time.

—e— Network Reaction
50 4 Leading Party
—&— Additional Party

s)

Reward (#Milli Satoshi

10

01 000000000000 00000000

B
R T T O N e N B IR P O i Y L Vi

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 4 is
run using placement strategy: betweenness centrality and
transaction amount: 10000

Node rewards over time.

—8— Network Reaction
Leading Party
40000 - —&— Additional Party

s)

30000

20000

Reward (#Milli Sateshi

10000

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 4 is
run using placement strategy: fee weighted centrality and
transaction amount: 100

Node rewards over time.

80000 4

70000 q

)
o
S
3
S

50000 -

—e— Network Reaction
Leading Party

—&— Additional Party

40000 -

30000 4

Reward (#Milli Satoshi's)

200001

10000

Time (# Iteration)

(f) Figure depicting the reward obtained when scenario 4 is
run using placement strategy: fee weighted centrality and
transaction amount: 1000000

Node rewards over time.

17501 —e— Network Reaction
Leading Party
—4— Additional Party

1500 4

1250 1

1000 4

750

Reward (#Milli Satoshi's)

500

250 4

R P o N v

Time (# Iteration)
(h) Figure depicting the reward obtained when scenario 4
is run using placement strategy: highest degree and trans-
action amount: 10000

66

A. Figures

Node rewards over time.

—8— Network Reaction
Leading Party
—&— Additional Party

1750 4

1500

1250 4

1000

750 4

Reward (#Milli Satoshi's)

500

2504

Time (# Iteration)

(a) Figure depicting the reward obtained when scenario 4
is run using placement strategy: highest degree and trans-

action amount: 1000000

Node rewards over time.

—8— Network Reaction
Leading Party
—e— Additional Party

17500

15000 4

12500 4

Reward (#Milli Satoshi's)
-
o 5 B
g 8 8
e 8 8

Time (# Iteration)

(c) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k center and transaction

amount: 10000

Node rewards over time.

35000 4 —e— Network Reaction

Leading Party
30000 + —&— Additional Party

s)

250001

200001

15000 4

10000 4

Reward (#Milli Satoshi

5000 1

3
R O T B O b @
Time (# Iteration)

(e) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k means and transaction

amount: 100

Node rewards over time.

80000

70000 -

60000 4

s)

50000 q
—e— Network Reaction

Leading Party
—~ Additional Party

30000

Reward (#Milli Satoshi
S
3
<1
b1
S

20000 1

10000 4

&
B T AL N FE LR AN
Time (# Iteration)

o

O P Y

(g) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k means and transaction

amount: 1000000

Node rewards over time.

—8— Network Reaction
25000 +— Leading Party
—&— Additional Party

20000 -

s)

15000 4

10000 4

Reward (#Milli Satoshi

5000

R BB A S s

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k center and transaction

amount: 100

Node rewards over time.

—8— Network Reaction
Leading Party
50000 —&— Additional Party
2 40000 4
K
@
2
=
a
= 30000
=
£
-
£ 20000
=
3
-4
10000 o
04

Time (# Iteration)

(d) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k center and transaction
amount: 1000000

Node rewards over time.

25000 - —e— Network Reaction
Leading Party
—&— Additional Party

20000 -
=
4
G
&

@ 15000 4
A
H
3

° 10000
@
H
@
&

5000 -

04

NNV SIS I S
Time (# Iteration)
(f) Figure depicting the reward obtained when scenario 4
is run using placement strategy: k means and transaction
amount: 10000

Node rewards over time.

40000 | _g— Network Reaction
Leading Party
35000 4 —&— Additional Party
— 30000 4
o
=
z
£ 25000 1
2
8
g 20000 4
*
B 15000 -
B
=
z
& 10000
5000 A
ol
o 1Y
VG Y P Y ¥q0P P o M e O

Time (# Iteration)

(h) Figure depicting the reward obtained when scenario 4
is run using placement strategy: uniform randomness and
transaction amount: 100

A.6. Case 4 figures

67

Node rewards over time.

—8— Network Reaction
60000 Leading Party
—&— Additional Party
50000
40000

30000

20000

Reward (#Milli Satoshi's)

10000

O @M e? Y PP Vg P D oy

Time (# Iteration)
(a) Figure depicting the reward obtained when scenario 4
is run using placement strategy: uniform randomness and

transaction amount: 10000

Node rewards over time.

—8— Network Reaction
Leading Party

80000 1
~— Additional Party

60000 1

40000 o

Reward (#Milli Satoshi's)

20000 4

~
R T R P o S S T B e L]

Time (# Iteration)
(b) Figure depicting the reward obtained when scenario 4
is run using placement strategy: uniform randomness and
transaction amount: 1000000

68

A.7. Game Theory Network figures

Node rewards over time.

Node rewards over time.

—e— No Knowledge 7000 | —e— No Knowledge
Future Knowledge Future Knowledge
10000 -
6000 4
2 8000+ £ 5000 -
g i
2 £
i 5
£ 6000 £ 4000
= =
i 2
ot = 3000
2 40004 g
H H
i 3
= = 2000 4
2000 1
1000 A
o]
° x ° x
Y S SR T R oo R T . S O o

Time (# Iteration) Time (# Iteration)

(b) Figure depicting the reward obtained when game theory

strategy is used to minimize reward reduction from network
updates with transaction amount: 10000

(a) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from network
updates with transaction amount: 100

Node rewards over time.

—e— No Knowledge
Future Knowledge

20000 4

15000

10000

Reward (#Milli Satoshi's)

5000

N B
A S Y A >

Time (# Iteration)
(c) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from network
updates with transaction amount: 1000000

A.8. Game Theory Party figures

69

A.8. Game Theory Party figures

Node rewards over time.

60000 { —e— Additional Party - No Knowledge

Leading Party - Future Knowledge

50000

40000

30000

20000

Reward (#Milli Satoshi's)

10000

3
v ,1',\ > ,,J,’\-

Time (# Iteration)
(a) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from another
party with transaction amount: 100

Node rewards over time.

—e— Additional Party - No Knowledge
Leading Party - Future Knowledge
50000
= 1
Z 40000
G
2
]
A
= 30000 o
£
3
B
© 200004
H
@
4
10000
04

S

Time (# Iteration)
(b) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from another
party with transaction amount: 10000

Node rewards over time.

120000
—e— Additional Party - No Knowledge
Leading Party - Future Knowledge

100000 -
w

£ 80000 4
g
2
5
ki

= 60000 4
=
*
s

= 40000
=
3
2

20000

0

o 1Y
U‘\» y ,\:\ v ,L,’\ > ”;’\' N\ “
Time (# Iteration)

(c) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from another
party with transaction amount: 1000000

A. Figures

Node rewards over time. Node rewards over time.
60000 4 —— Additional Party - Future Knowledge —e— Additional Party - Future Knowledge
Leading Party - Future Knowledge Leading Party - Future Knowledge
50000 4 40000 1
g 40000 g 30000
& &
30000 4 =
* 20000
<]
20000 g
&
10000 4
10000 4
0 04
wax,\;xlq’x%%xuwx‘: Dv\,x\lxi,vx“nﬁxhyx’a
Time (# Iteration) Time (# Iteration)
(a) Figure depicting the reward obtained when game theory (b) Figure depicting the reward obtained when game theory
strategy is used to minimize reward reduction from another strategy is used to minimize reward reduction from another
party with transaction amount: 100 party with transaction amount: 10000
Node rewards over time.
140000
—e— Additional Party - Future Knowledge
Leading Party - Future Knowledge
120000 1
= 100000 4
£
]
© 80000 4
2
H
4# 60000 q
s
é 40000 4
20000 4
o]
S e v a v s b s

Time (# Iteration)
(c) Figure depicting the reward obtained when game theory

strategy is used to minimize reward reduction from another
party with transaction amount: 1000000

	Introduction
	Background Knowledge
	Graph Theory
	Bitcoin Lightning Network
	Network creation
	Resizeing from snapshot
	Barabási–Albert

	Game Theory
	Related work

	Model
	Assumptions
	Model description
	Action space
	Placement strategies
	Model Parameters
	Initialization problem
	Initialization Analysis

	Methodology
	Research question
	Graph
	The experiments
	Replication
	Fee Noise Analysis
	The Cases
	Stackleberg Games

	Code
	Testing
	Servers
	Setup
	Performance
	Result normalization

	Results
	Replication
	Fee Noise Analysis
	Action Space Impact Analysis
	Case 1: Baseline
	Case 2: Network Reaction
	Case 3: An Additional Party
	Case 4: Combined Action Space

	Game Theory
	Network
	Party

	Conclusion, Limitation & Future Work
	Conclusion
	Limitations
	Future Work

	Figures
	Replication figures
	Fee Noise Analysis
	Case 1 figures
	Case 2 figures
	Case 3 figures
	Case 4 figures
	Game Theory Network figures
	Game Theory Party figures

